A new in vitro model to study mitochondria in Parkinson’s Disease

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Lara Sironi

Basel, 2022

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Fakultätsverantwortlicher: Prof. Christoph Handschin
Dissertationsleiter: Prof. Dr. Stephan Frank
Koreferent: Prof. Dr. Frank Edlich

Basel, den 22.03.2022

The Dean of Faculty
Prof. Dr. Marcel Mayor
Index

1. INTRODUCTION

1.1 Mitochondria .. 1

 1.1.1 Structure .. 1

 1.1.2 Dynamics .. 3

 1.1.2.1 Mitochondrial Fission ... 4

 1.1.2.2 Mitochondrial Fusion ... 7

 1.1.2.3 Cristae structure and remodeling ... 10

 1.1.3 Mitochondrial dynamics in cellular functions ... 10

 1.1.3.1 Apoptosis ... 10

 1.1.3.2 Mitochondrial quality control .. 11

 1.1.3.2.1 The ubiquitin proteasome system (UPS) .. 13

 1.1.3.2.2 The AAA-type ATPase p97 ... 14

 1.1.3.3 Intracellular roles of p97 ... 15

 1.1.3.4 P97 adapter proteins and cofactors ... 16

 1.1.3.5 UBXD1 ... 17

 1.1.3.6 SAKS1 ... 18

 1.1.4 Mitochondrial interactions with other organelles ... 18

 1.1.4.1 Mitochondria-associated membranes (MAMs) .. 19

 1.1.4.2 Mitochondria-Lysosome membrane contact sites ... 20

 1.1.4.3 Mitochondria-Peroxisome contact sites ... 21

 1.1.4.4 Mitochondria bound to Lipid Droplets ... 22

 1.1.5 Mitochondrial motility ... 22

 1.1.6 Mitochondria and neurodegeneration ... 23

 1.1.6.1 Parkinson’s Disease .. 24

 1.1.6.2 Autosomal dominant optic atrophy ... 25

 1.1.6.3 Charcot-Marie-Tooth Disease ... 26

 1.1.7 Dysfunction of p97 and neurodegeneration ... 27

2. MATERIAL AND METHODS

2.1 Materials .. 29

 2.1.1 Equipment ... 29

 2.1.2 Reagents ... 29
2.2 Methods

2.2.1 Molecular Biological Methods

2.2.1.1 Bacterial Strains .. 35
2.2.1.2 Preparation of chemically competent *E. coli* .. 35
2.2.1.3 Polymerase chain reaction (PCR) .. 35
2.2.1.4 DNA digestion .. 36
2.2.1.5 DNA ligation .. 37
2.2.1.6 DNA transformation into chemically competent *E. coli* 37
2.2.1.7 DNA plasmid isolation ... 37
2.2.1.8 Agarose gel electrophoresis .. 38
2.2.1.9 Yeast two-hybrid .. 38
2.2.1.10 RNA extraction .. 38
2.2.1.11 Reverse transcription of RNA to cDNA 38
2.2.1.12 Droplet digital PCR (ddPCR) 39

2.2.2 Biochemical Methods

2.2.2.1 Preparation of cell lysates 39
2.2.2.2 Measurement of protein content 39
2.2.2.3 SDS page ... 40
2.2.2.4 Western blotting .. 40
2.2.2.5 Extraction of genomic DNA 40

2.2.3 Cell Biology Methods

2.2.3.1 Cell culture .. 41
2.2.3.2 Transfection of mammalian cells 41
2.2.3.3 Immunohistochemistry (IHC) 42
3. RESULTS .. 43

3.1 Opa1 PROJECT .. 43
 3.1.1 Generation of a double transgenic mouse model ... 43
 3.1.1.1 A53T α-synuclein transgenic line M83 ... 43
 3.1.1.2 Opa1^{tg} mouse line ... 44
 3.1.2 Generation of stable cell lines .. 47
 3.1.3 Characterization of stable cell lines ... 62

3.2 p97 PROJECT ... 70
 Mutation in p97 causing IBMPFD might impact interaction with its cofactor UBXD1 70

4. DISCUSSION .. 75

4.1 Opa1 PROJECT ... 75
 4.1.1 Generation of a double transgenic mouse model ... 75
 4.1.1.1 A53T α-synuclein transgenic line M83 ... 75
 4.1.1.2 Opa1^{tg} mouse line ... 76
 4.1.2 Generation of stable cell lines .. 77
 4.1.3 Characterization of stable cell lines ... 79
 4.1.4 Conclusions and future perspectives ... 81

4.2 p97 project ... 82
 Mutation in p97 causing IBMPFD might impact interaction with its cofactor UBXD1 82

5. APPENDIX ... 84

5.1 List of Figures ... 84

5.2 List of Tables ... 86

6. REFERENCES .. 87

7. REVIEW ... 122

8. ACKNOWLEDGEMENTS ... 145
1. Introduction

1.1 Mitochondria

The origin of mitochondria dates back to over 1.5 billion years ago, when an α-proteobacterium was engulfed by a eukaryotic progenitor, starting a process of endosymbiosis [1]: whereas mitochondria supplied the host eukaryotic progenitor with metabolites and energy, their replication and morphology largely came under control of the host. Most of the mitochondrial genetic material was transferred to the nucleus, leaving a circular chromosome of 16 kilobases within the organelle, coding for a total of 37 genes: 13 for protein subunits of the respiratory chain, 22 for mitochondria-specific transfer RNA (tRNAs) and 2 for ribosomal RNAs (rRNAs) [2]. The remaining about 1500 proteins that constitute the mitochondrial proteome are nuclear-encoded and post-translationally imported and sorted into the four mitochondrial sub-compartments: the outer mitochondrial membrane (OMM), the inner mitochondrial membrane (IMM), the intermembrane space (IMS) and the matrix [3]. Since the discovery of the Krebs cycle in the 1950s, mitochondria have traditionally been regarded as the “powerhouses” of the cell, due to their association with cellular bioenergetics. The identification of their important contributions to apoptotic cell death in the 1990s [4] paved the way to the idea that mitochondria have a role in cell signalling, as they are implicated in several complex cellular processes, from autophagy [5] to stem cell differentiation [6] and regulation of immune responses [7].

1.1.1 Structure

Mitochondria are surrounded by two membranes, characterized by different composition and function: the OMM and the IMM. The OMM acts as a barrier with low selectivity for solutes, metabolites and larger molecules (≤ ~5000 Da), but also acts as a platform for signalling pathways that are decoded and transmitted into mitochondria. The OMM is also important for interorganellar communication, by the establishment of membrane contact sites with other subcellular compartments, such as the endoplasmic reticulum (ER), lysosomes, peroxisomes, lipid droplets and the plasma membrane.
The IMM marks the limits of the mitochondrial lumen, called matrix, and can be subdivided into three specialised zones: the inner boundary membrane (IBM), the cristae junctions (CJs) and the cristae.

The IBM runs parallel to the OMM and contains proteins for the correct assembly and localization of IMM proteins [8] as well as the translocase inner membrane (TIM) for shuttling proteins into the matrix space [9].

The cristae are bag-like structures protruding into the mitochondrial matrix, hosting the oxidative phosphorylation (OXPHOS) system. The OXPHOS system is composed of protein complexes that couple the oxidation of reducing equivalents (NADH and FADH$_2$) to the pumping of protons across the IMM (also known as electron transport chain (ETC)), generating an electrochemical proton gradient used by ATP synthase to synthesize ATP. According to the “plasticity model”, OXPHOS complexes, located at both sides of the cristae, can be present as both single complexes and supercomplexes (SCs) of different composition (complex I+III, I+III+IV and III+IV) [10], allowing a more efficient transport of electrons. In contrast, ATP synthase is found at the cristae edge as monomer or dimer [11].

Mitochondrial cristae are connected to the IBM via narrow tubular segments of rather uniform diameter of 20-40 nm [12, 13], known as CJs. These CJs create two distinct mitochondrial subcompartments: the intermembrane space (IMS) between the OMM and the IBM, and the intracristal space (ICS). Thus, CJs compartmentalize cristae content (i.e. metabolites, protons and ADP) into the IMS. The formation and maintenance of the CJs are under the control of a large oligomeric complex termed mitochondrial contact site and cristae organizing system, MICOS [14]. The MICOS complex is localized at the IMM and comprises eight components: Mic60, Mic10, Mic19, Mic25, Mic23, Mic27, Mic13 and Mic14. This complex, together with the sorting and assembly machinery (SAM) complex and the interacting protein DnaJ/C11, forms the mitochondrial intermembrane space bridging complex (MIB), a large protein complex spanning both the IMM and the OMM [15].
1.1 Mitochondrial structure and function.

a| Mitochondrial function. Mitochondria are implicated in several cellular processes. **b**| Mitochondrial structure. Mitochondria are surrounded by a double-membrane system, OMM and IMM, enclosing the IMS. The IMM protrudes into the mitochondrial matrix to form invaginations called cristae, hosting the respiratory chain complexes. CJs, under the control of MICOS complex, reduce the release of ICS content into the IMS. **c**| Mitochondrial membrane contact sites. Mitochondria are recognized as signalling platforms, and they interact with other organelles, such as endoplasmic reticulum, lysosomes, lipid droplets, and peroxisomes to convey signals and exchange substrates. **d**| Mitochondrial shape. Mitochondria display a wide range of morphologies. Whereas fragmented mitochondria produce more ROS and are efficiently removed by mitophagy, mitochondrial fragmentation also enables an even distribution of the organelles to daughter cells during cell division. Mitochondrial fusion favours the exchange of matrix content and increases ATP production efficiency. (Figure from Giacomello et al., 2020 [16]).

1.1.2 Dynamics

Mitochondria are highly dynamic organelles, displaying a wide range of morphologies, from single isolated organelles to large interconnected networks [17].

The term “mitochondrial dynamics” was coined to describe the processes of mitochondrial fission and fusion and of cristae remodeling, which all provide the mitochondrial network with the flexibility to adapt to the metabolic and biosynthetic demands of the cell. A family of large GTPases known as dynamin-related proteins (DRPs) controls mitochondrial dynamics,
due to their ability to remodel biological membranes through self-assembly and GTP hydrolysis.

The main effector of mitochondrial fission is Dynamin-related protein 1 (Drp1), while Mitofusins 1 and 2 (Mfn1, Mfn2) and Optic atrophy 1 (OPA1) mediate mitochondrial fusion of the OMM and IMM, respectively. Drp1 is also the main mediator of peroxisomal fragmentation [18].

1.1.2.1 Mitochondrial Fission

Mitochondrial fission is the process through which a single mitochondrial tubule undergoes constriction to generate two daughter mitochondria, and the main mediator is Drp1. Structural studies revealed that Drp1 has four functional domains: at the N-terminus a GTPase domain holding the enzymatic activity; a middle domain; a variable domain harbouring sites of posttranslational modification; and at the C-terminus a GTPase effector domain interacting with the GTPase domain. Drp1 dimerization is mediated by the GTPase effector domain and the middle domain through their α-helix-containing stalk domains [19, 20].

Electron microscopy (EM) and tomography have shown that the ER is required for the initial step of mitochondrial division. Indeed, ER tubules, besides purely making contact with mitochondria, also wrap around these organelles [21] to mark future sites of mitochondrial fission. This process is spatially coupled to sites of mtDNA replication [22], thereby allowing proper mtDNA distribution between newly generated daughter mitochondria. This ER wrapping step of mitochondrial pre-constriction is required to decrease the mitochondrial diameter from approximately 300-500 nm to 150 nm [21] in order for Drp1 recruitment and oligomerization to proceed. Furthermore, ER-bound inverted-formin 2 (IFN2) [23] and the mitochondrial anchored formin-binding Spire1C [24] cooperate at these contact sites to regulate the assembly of actin which is required for mitochondrial constriction, followed by myosin IIA recruitment [25]. Drp1 is subsequently recruited to the OMM through adaptor proteins, the tail-anchored proteins mitochondrial fission factor (Mff) [26] and mitochondrial dynamics proteins 49 and 51 (MiD49 and MiD51) [27, 28]. Of note, Fis1 seems to be dispensable for the mitochondrial fission reaction under basal conditions [28].
Multiple posttranslational modifications can regulate Drp1 fission capacity: phosphorylation, S-nitrosylation, ubiquitylation and SUMOylation [29, 30].

Phosphorylation may occur at two serine residues in the GTPase effector domain. Protein kinase A (PKA) phosphorylates Drp1 on Ser637 in presence of high levels of cyclic adenosine monophosphate (cAMP) resulting in the inhibition of fission activity likely through changes in the association between the GED and GTP-binding/middle domains [31]. Mitochondrial elongation following PKA-mediated Drp1 phosphorylation can protect mitochondria from autophagosomal degradation during nutrient deprivation [5] and prevent cell death [31, 32]. Other kinases can phosphorylate Drp1 and modulate mitochondrial morphology, including Rho-associated coiled coil-containing protein kinase 1 (ROCK1) [33] and glycogen synthase kinase 3β (GSK3B) [34, 35]. Conversely, the calcium-dependent phosphatase calcineurin can target Drp1 phosphorylation at Ser637 to enhance Drp1 fission activity [36].

Cdk1/CyclinB kinase phosphorylates Drp1 at Ser616 exerting the opposite effect of Ser637 phosphorylation, stimulating its oligomerization and triggering mitochondrial fission to enable even mitochondrial distribution to daughter cells during mitosis [37]. Other kinases can also phosphorylate Drp1 at this residue: protein kinase C (PKC) [38] and the Ca²⁺/calmodulin-dependent kinase II (CaMKII) [39, 40] during cell death, and ERK-1/2 during cancer cell invasion [41, 42] and reprogramming [42].

While it was also reported that Drp1 can undergo S-nitrosylation on a conserved cysteine residue in the GTPase effector domain [43, 44], thereby leading to increased mitochondrial fission, this mode of regulation is still controversially discussed [45].

Drp1 function can also be modulated through ubiquitylation via the activity of the RING-finger ubiquitin E3 ligase MARCH5/MITOL [46] and Parkin [47], but it is not yet confirmed whether Drp1 is a direct target of Parkin [48] or if there are alternative mechanisms linking Parkin activity and mitochondrial morphology [49].

Finally, the conjugation of small ubiquitin-like modifier (SUMO) to Drp1 leads to a more stable association of Drp1 with the OMM [50, 51]. In this context, SUMO1, Ubc9 and mitochondrial-anchored protein ligase (MAPL, also known as MULAN) have all been implicated in Drp1 SUMOylation [50, 52, 53]. The family of seven conserved cysteine proteases (Sentrin proteases [SenPs]) catalyse protein deSUMOylation [54]. SenP5 has been identified as a protease that cleaves SUMOylated mitochondrial substrates, including Drp1,
playing a specific role at the G2/M transition [55]. Of note, MAPL-mediated SUMOylation and the following Drp1 stabilisation have recently been implicated as a mechanism downstream of Bax/Bak activation promoting apoptosis, stabilising ER-mitochondria contacts, and generating mitochondrial constriction and cytochrome c release [56].

In addition, post-translational modifications can also regulate Drp1 receptors. Indeed, MFF can be targeted by the cellular energy sensor AMP-activated protein kinase (AMPK) upon mitochondrial dysfunction and a decrease in the cytosolic ATP/AMP ratio. AMPK-mediated phosphorylation of MFF enhances Drp1 recruitment, facilitating mitochondrial fission and elimination of defective portions of the mitochondrial network [57].

Finally, MiD49 ubiquitylation by MARCH5/MITOL leads to its proteasomal degradation, thereby preventing mitochondrial fragmentation and protecting cells from stress-induced apoptosis [58].

After the recruitment to the OMM, Drp1 oligomerizes in a ring-like structure that wraps around ER-marked mitochondrial tubules, and GTP-hydrolysis leads to a conformational change, enhancing pre-existing mitochondrial constriction. Recently, the ubiquitously expressed classical dynamin-2 (Dyn2) has been found to have a direct role in mitochondrial division, downstream of Drp1 constriction. Indeed, Drp1-mediated constriction promotes Dyn2 recruitment, which mediates the final separation of the mitochondrial membrane to complete mitochondrial division [59].

A mechanism for IMM constriction and division has been proposed recently, occurring at ER-mitochondria contacts sites in a Ca\(^{2+}\)-dependent manner. The constriction and division of the IMM may be induced upon stimulation of ER Ca\(^{2+}\) release to mitochondria, independently of OMM-constriction and prior to Drp1 recruitment [60, 61]. In human osteosarcoma cells, this mechanism has been attributed to INF2-mediated actin polymerization, which stimulates mitochondria–ER contacts and mitochondrial calcium uptake [60], while in neurons this mechanism prominently involves OPA1 processing [61]. Following Ca\(^{2+}\) entry into mitochondria, a drop in mitochondrial membrane potential leads to activation of the IMM peptidase OMA1, which processes the IMM protein OPA1 into short (s) forms (s-OPA1). Accumulation of s-OPA1 disrupts the ability of the MICOS complex to stabilise the tethering
between OMM and IMM, leading to the untethering of the IMM and its possible constriction [61].

Fission and fusion regulate mitochondrial morphology and function to respond to cellular demands. Fission takes place at sites where ER wraps around mitochondria upon calcineurin-dependent Drp1 dephosphorylation and mitochondrial recruitment. Fusion of the OMM requires the association of two MFN1 molecules in trans followed by GTP hydrolysis. The fusion-competent protein of the IMM is OPA1. Long OPA1 isoforms undergo proteolytic processing to yield fusion-competent short OPA1 isoforms. (Figure from Giacomello at al., 2020 [16]).

1.1.2.2 Mitochondrial Fusion

The process of mitochondrial fusion, in which two mitochondria merge into a larger organelle, is crucial for the maintenance of a homogeneous and healthy mitochondrial network, allowing mixing of membranes and contents and reducing organelle-to-organelle variability [2].

Three distinct steps characterize mitochondrial fusion: first, two mitochondria are tethered in trans; the distance between the two docking membranes reduces due to increasing contact
surface area [62], and finally, GTP hydrolysis induces conformational changes to allow fusion of the adjacent OMMs [63, 64].

The fusion process is regulated by three dynamin-like GTPases: Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2) at the level of the OMM, and Optic Atrophy 1 (Opa1) located in the IMM [65].

Mfn1 and Mfn2 mediate OMM fusion. Both proteins can establish homo- and heterotypic complexes leading to mitochondrial fusion, with heterotypic complexes showing greater efficacy [66]. Mfn1 and Mfn2 share a high degree of homology and a similar structural organization [67]: they both possess an N-terminal GTPase domain required for fusion activity, a transmembrane domain necessary for OMM insertion, and two predicted heptad repeats that are presumed to mediate tethering between adjacent mitochondria [68]. Nevertheless, Mfn1 and Mfn2 serve different functions: together with Opa1, Mfn1 is a core component of the fusion reaction, while Mfn2 is thought to stabilize the interactions between mitochondria, in addition to participating in juxtaposition of mitochondria the ER [63, 65, 69]. Furthermore, Mfn2 has a role in regulating mitochondrial axonal transport through interaction with the Miro/Milton complex [70].

The conserved dynamin-like GTPase Opa1 is the key mediator of the IMM fusion process. It is encoded by a single gene containing 30 exons. In humans, eight mRNA variants exist as a result of alternative splicing of exons 4, 4b and 5b [71], with exons 4b and 5b being specific for vertebrates [72]. The eight variants are ubiquitously expressed, although at levels which considerably vary among different tissues. This suggests fine regulation of alternative splicing, probably providing cellular flexibility to respond to different metabolic and stress conditions that may perturb mitochondrial homeostasis.

OPA1 protein harbours a mitochondrial targeting sequence (MTS) at the N-terminus, followed by a transmembrane domain (TM) embedded in the IMM and a coiled-coil domain. There are three highly conserved dynamin regions: the GTPase domain, the middle domain and the GTPase effector domain (GED) at the C-terminus [73]. The OPA1 precursor protein is imported through OMM and IMM translocases, upon which the MTS is cleaved by Mitochondrial Processing Peptidase (MPP) to generate OPA1 long forms (l-OPA1). These long forms can then be further processed to produce s-OPA1, which is soluble in the IMS [74]. Two
enzymes are involved in OPA1 processing: the metallopeptidase OMA1 targeting exon 5 at the cleavage site S1, and the i-AAA protease YME1L processing exon 5b at site S2 [75, 76]. OMA1-mediated S1-cleavage occurs at basal levels, but can be further induced following different stress conditions such as mitochondrial depolarization, oxidative stress, heat stress, and hypoxia [77, 78, 79, 80], increasing the amount of short OPA1 forms. Activation of OMA1 is also associated with autocatalytic turnover, allowing reversibility of the stress response [79]. YME1L is constitutively active, and S2-cleavage of OPA1 has been reported to increase upon OXPHOS or ATP stimulation, resulting in enhanced IMM fusion [81]. Experiments of selective silencing of each of the three alternative exons suggested that different OPA1 isoforms may be related to specific mitochondrial functions: variants containing exon 4 could preferably be involved in mitochondrial fusion; exon 5b variants seem to prevent cytochrome c release by stabilising cristae junctions, while variants holding exon 4b might have a specific role in mtDNA maintenance [82].

Figure 1.3 Opa1 protein structure and proteolytic cleavage sites. Overview of the structure of the eight Opa1 isoforms in humans and cleavage sites for protein processing (Figure from Del Dotto et al., 2018 [82]).
1.1.2.3 Cristae structure and remodeling

Changes in number, length, width, or tightness of cristae and cristae junctions are referred to as "cristae remodeling", and occur in response to multiple stimuli in the cell, including oxygen deprivation (hypoxia), glucose depletion, increased reactive oxygen species (ROS) or other toxicity, requiring mitochondrial adaptation [68]. Exposure of the cell to a non-glycolytic substrate such as galactose leads to an increase in cristae number, accompanied by higher levels of respiratory chain proteins and supercomplexes, boosting the activity of OXPHOS [83, 84, 85]. A decrease in cristae width is observed during starvation, supporting respiratory chain supercomplex assembly and ATPase dimerization and activity [5, 83]. A reduction in cristae width upon cell death stimuli decreases the release of apoptotic molecules [86, 87] until the cellular stress becomes detrimental and apoptosis is induced. The key player of cristae remodelling is Opa1, independently of its role during IMM fusion [68]. Indeed, ablation or knockdown of the gene in mammals and yeast results in aberrant cristae morphology [86, 88, 89], whereas overexpression of Opa1 leads to increased cristae numbers and reduced cristae width [83, 90]. Cristae structure maintenance and intercristae membrane tethering are mediated by l-OPA1 oligomers along the length of the cristae membrane [68]. Whereas experiments in YME1L/OMA1 double-knockout mice demonstrated that s-OPA1 is not necessary for the steady-state maintenance of cristae morphology [76], s-OPA1 may play a role by connecting two membrane-bound l-OPA1 molecules, acting like a “staple”, thereby increasing OPA1 oligomerization between apposing cristae membranes [16, 68]. The consequence of l-OPA1 cleavage is a disruption in cristae structure and widening of cristae junctions, with the release of proteins such as cytochrome c otherwise sequestered within the cristae [68].

1.1.3 Mitochondrial dynamics in cellular functions

1.1.3.1 Apoptosis

Apoptosis is a programmed form of cell death, essential for the removal of damaged or harmful cells for the greater good of the organism [91]. It can be triggered by either extrinsic or intrinsic signals and is immunologically silent [92]. Upon a death stimulus, pro-apoptotic pore-forming proteins BAX and BAK translocate to discrete mitochondrial foci, colocalizing with DRP1 and MFN2, promoting DRP1 stabilization on mitochondria and initiating
apoptotic mitochondrial fragmentation [51, 93]. OMM permeabilization and cristae remodelling, with the widening of cristae junctions, leads to the release of cytochrome c from the intracristae space into the cytosol; this process involves I-OPA1 cleavage directly by pro-apoptotic, truncated Bid [94] or by stress-activated Presenilins-Associated Rhomboid-Like (PARL) protein [86, 87]. In the cytosol, cytochrome c interacts with Apoptotic protease activating factor-1 (Apaf-1) and caspase 9 to form the apoptosome and initiate the apoptotic cascade [95]. The activity of diverse kinases phosphorylating both mitofusins, such as the mitogen-activated protein kinase cascade member extracellular signal-regulated kinase (ERK) and the stress-induced JUN amino-terminal kinase (JNK), has been linked with inhibition of mitochondrial fusion during the apoptotic process [16].

Mitochondrial fission is an important step in the apoptotic cascade. Cells deficient in mitochondrial fission show increased resistance to apoptosis [96]; FIS1-knockout, MFN1-overexpressing cells [97, 98, 99] or MAPL-KO cells [56] present a similar phenotype. In contrast, mitochondrial fragmentation following excessive fission or decreased fusion leads to cellular sensitization toward apoptotic stimuli [99, 100].

1.1.3.2 Mitochondrial quality control

One of the major causes of mitochondrial dysfunction is oxidative stress. Antioxidant activity is the first line of defence to prevent direct damage caused by ROS to mitochondrial components and involves mitochondrial proteases degrading unfolded and oxidised proteins inside the matrix and the intermembrane space [101].

Mitochondrial surface proteins can also be removed in response to cellular signals [102]: after ubiquitination, oxidised OMM proteins are retrotranslocated to the cytosol and delivered to the proteasome via the AAA+ ATPase p97 [103, 104] through a process termed OMMAD (outer mitochondrial membrane-associated degradation) [105].

Mitophagy is a specialised form of autophagy dedicated to the removal and recycling of dysfunctional mitochondria, to guarantee the mitochondrial network’s integrity and functionality. Physiologically, this mechanism underlies the degradation of mitochondria during erythrocyte maturation, as well as the removal of sperm-derived mitochondria in fertilised oocytes, the latter being the correlate of the maternal mtDNA inheritance [106].
In mammals, two major mitophagic pathways can be distinguished based on their dependency on the ubiquitin ligase Parkin. Parkin-dependent mitophagy removes damaged or dysfunctional mitochondria through the combined action of the PTEN induced putative kinase 1 (PINK1) and of the E3 ubiquitin ligase Parkin. PINK1 is normally targeted to the mitochondria, imported, and can be cleaved by the matrix processing peptidases and PARL [107, 108], and released from the import channel into the cytosol to be degraded through the N-end rule proteolytic pathway [109, 110, 111]. The import machinery becomes inactivated upon mitochondrial depolarization, and PINK1 is eventually trapped within the import channel or nearby anchored to the OMM [108, 110]. PINK1 kinase domain is then exposed to the cytosol where it phosphorylates ubiquitin and Parkin, leading to Parkin-dependent ubiquitination of OMM proteins, to allow their mitophagic degradation [112]. Different protein regulators drive the tagging and recognition of mitochondria in the PINK1/Parkin independent pathway, such as BCL2 Interacting Protein 3 Like (BNIP3L) [113], FUN14 Domain Containing 1 (FUNDC1) [114], or Autophagy And Beclin 1 Regulator 1 (AMBRA1) [115]. Mitophagy efficiency relies on the formation of the autophagosome to selectively engulf damaged organelles without affecting the entire mitochondrial network. Indeed, mitochondrial fragmentation is observed prior to mitophagy. In fact, not only post-translational modifications such as SUMOylation modulate the pro-fission protein Drp1, but also selective ubiquitin-dependent degradation of proteins involved in fusion and transport of the organelles such as Mfn2 or Miro promote mitophagy [116]. Proteomic studies have shown that the turnover rate of IMM proteins is comparable to the turnover of whole mitochondria through mitophagy [117]. As OMM and mitochondrial matrix proteins redistribute much faster via fusion and fission events throughout the mitochondrial network compared to IMM proteins [118], degradation of IMM proteins may mostly be achieved via mitophagy.

Mitochondrial-derived vesicles (MDVs) are vesicles derived from mitochondrial membrane containing selective protein cargoes, which can include mitochondrial outer and inner membrane as well as matrix content [119, 120, 121]. MDVs are likely another level of mitochondrial quality control, at an early stage of ROS production, to eject damaged proteins and avoid organelle failure [122]. Their size is relatively uniform, between 70 and 150 nm, and
their generation does not require the mitochondrial fission machinery [119, 120, 121]. Once generated, MDVs undergo either fusion with lysosomes [120], or peroxisomes [119]. Cargoes destined for degradation in lysosomes are enriched with oxidised proteins, following mitochondrial stress [121], and their generation requires protein kinase PINK1 and the cytosolic ubiquitin E3 ligase Parkin [122]. Therefore, it has been speculated that the PINK1-Parkin mitophagic mechanism applies to MDVs formation, but at a more localised level [123]. Local oxidative damage or complex assembly defects could interfere with the import process, causing protein misfolding and aggregation at the import site. Imported PINK1 can then accumulate within the import channel and phosphorylate ubiquitin and Parkin, leading to Parkin recruitment and activation [124, 125]. Saturation of matrix chaperones or localised cardiolipin oxidation could lead to failure of the inner membrane import channel. Therefore, cardiolipin could locally become oxidised and alter membrane curvature [126], helping initiate the outward bending of the membrane [123]. The final step is the formation of a vesicle and its release from mitochondria.

The purpose of MDVs delivered to peroxisomes is currently unclear [127]. Only one protein, MAPL, has so far been identified in vesicles destined to peroxisomes [119].

1.1.3.2.1 The ubiquitin proteasome system (UPS)
Controlling the degradation of misfolded or unfolded proteins to prevent cellular damage, the UPS is one of the principal pathways for cellular protein homeostasis [128]. Processing by the UPS depends on the covalent tagging of substrate proteins with the 76 amino acid-short protein modifier ubiquitin (Ub). In the first step of this process, E1 ubiquitin-activating enzyme binds individual ubiquitin molecules in an ATP-dependent manner, to then transfer the activated ubiquitin to an E2 ubiquitin-conjugating enzyme. An E3 enzyme or ubiquitin ligase binds both the E2-ubiquitin complex and a substrate protein to facilitate the bond formation between the C-terminal glycine of ubiquitin and the lysine residue on the substrate [129, 130, 131]. The ubiquitination substrate can either be a target protein or any of the seven lysine residues of ubiquitin itself, leading to poly-ubiquitin chains formation [132]. There is only one ubiquitin-activating enzyme in the human genome, in contrast to some 50 E2 and hundreds of E3 enzymes [133], allowing multiple combinations of E1, E2 and E3 enzymes to promote substrate specificity of ubiquitination [134]. Following ubiquitination,
proteins are recognized by the 26S proteasome and degraded into short peptides, which are further degraded by cytoplasmic peptidases into their component amino acids [135].

The 26S proteasome is a multimeric complex composed of two different subcomplexes, the 19S cap complex and the 20S proteolytic core [136]. The 19S cap is responsible for recognizing ubiquitinated substrates, removing and recycling their ubiquitin chains by deubiquitinating enzymes, regulating access to the 20S core [137, 138]. Bound proteins are then unfolded and sent into the 20S proteolytic core for sequential cleavage into small peptides [139, 140]. Proteasome activity and function are regulated by chaperones and cofactors, which manage subcellular localization and substrate specificity [141, 142].

The removal of ubiquitin chains is promoted by deubiquitinases (DUBs), which hydrolyze all types of polyubiquitin chains [143] to replenish the cellular pool of free ubiquitin. Additionally, DUBs can reverse ubiquitin signaling by removal of ubiquitin chains from post-translationally modified proteins thereby preventing proteasomal degradation [131].

1.1.3.2.2 The AAA+-type ATPase p97

P97, also known as valosin-containing protein (VCP), is a hexameric ATPase associated with a variety of cellular activities (AAA ATPase) [144]. It is conserved from yeast to man and essential for cellular homeostasis.

Each subunit exhibits a regulatory N-terminal domain, essential for substrate binding, and two ATPase domains: the D1 domain required for hexameric assembly, and the D2 domain responsible for overall ATPase activity [145, 146].

![Figure 1.4 p97 protein structure.](Meyer et al., 2012 [147]).
P97 is essential for ATP-driven protein unfolding, directed by ubiquitin and assisted by diverse cofactor proteins [144]. Hence, p97 is able to extract proteins from membranes, unfold proteins for proteasomal degradation, or segregate proteins from binding partners for downstream activity, with a critical role in the ubiquitin proteasome system [148, 149, 150].

Intracellular roles of p97

P97 has a well-established role in ER-associated degradation (ERAD) [151, 152], whereby both luminal and membrane-bound misfolded proteins are retrotranslocated from the ER to the cytosol. During this process, the substrate protein is recruited from the ER lumen to the ER membrane, to be ubiquitinated by specialised ER membrane-anchored E3 ubiquitin ligases. On the ER membrane, p97 cofactors recruit p97 [153], which pulls substrate proteins out of the membrane through ATP hydrolysis [154]. After extraction, cofactors may further process these proteins, for example by removal of sugars from glycoproteins [155], by ubiquitin chain elongation [156] or ubiquitin removal by DUBs [157]. Finally, the substrate is degraded by the proteasome, whereas deubiquitination by DUBs can redirect some substrates from proteasomal degradation [158].

P97 can also play a role in a positive feedback loop where an E4 ubiquitin chain elongation factor is recruited to poly-ubiquitinate oligo-ubiquitinated substrates prior to proteasomal degradation [159]. The subsequent transfer of ubiquitinated substrate proteins to the proteasome is also regulated by p97 cofactors: whereas UFD2 and RAD23 promote the transfer of ubiquitinated substrates to the proteasome [159], while UFD3 diverts substrates from proteasomal degradation [160]. P97 also supports the unfolding of its substrates, thereby promoting proteasomal processing [161, 162].

Inhibition of p97 leads to the accumulation of ubiquitin conjugates in the cytosol [163, 164], in addition to eliciting the unfolded protein response [165], which can trigger ER stress-induced apoptosis.

On the mitochondrial level, P97 extracts ubiquitinated proteins from the OMM through a process called mitochondria-associated degradation (MAD) [104, 166, 167]. In particular, p97 takes part in the degradation of two OMM proteins, the anti-apoptotic factor Mcl1 and the fusion protein Mfn1 [104]: p97 binds ubiquitinated OMM proteins and transports them to the cytosol for degradation. In mammalian cells binding and extraction of ubiquitinated Mfn1 by
p97 prevents fusion of damaged mitochondria, facilitating their removal through mitophagy [103, 168].

In the cytosol, p97 facilitates the degradation of unassembled protein complex components in collaboration with the ubiquitin ligase HUWE1 [169] and counteracts protein aggregation. Even when p97 is localised on cytosolic protein aggregates [170], a disaggregase activity similar to the AAA ATPases Hsp104 in yeast or ClpB in bacteria has not been demonstrated so far [171].

In the nucleus, p97 exerts a regulatory role at the level of chromatin and helps to maintain genome stability and function. Following their ubiquitination, p97 mediates segregation of proteins such kinase Aurora B at the end of mitosis, replication licensing factor Cdt1, stalled RNA polymerase II, and several DNA repair factors [172].

P97 adapter proteins and cofactors

A variety of p97-interacting proteins has been identified, which either function as adaptors, linking p97 to a specific substrate or subcellular compartment, or act as cofactors to aid in substrate processing. Sequence analyses identified conserved protein-protein interaction motives, such as the ubiquitin regulatory X (UBX) motif [173], the VCP interacting motif (VIM) [174], VCP-binding motif (VBM) [175] and the SHP box domain [176]. The vast majority of interacting proteins such as Ufd1, Npl4, p47, ataxin3, and FAF1, bind to the p97 N-terminal domain [177] via their UBX, UBX-L, VIM, VBM or SHP motifs. A smaller group of proteins binds to the C-terminus domain of p97 via peptide N-glycosidase/ubiquitin-associated (PUB) (PNGase/UBA- or UBX-containing proteins) and PUL (PLAA, Ufd3p and Lub1p) domains [178].

The largest family of p97 cofactors identified in the human genome are proteins containing the UBX domain, which is structurally homologous to ubiquitin [179]. Proteins of this family can be further classified into two groups according to their domain composition: UBA-UBX and UBX-only proteins. p47, UBXD7, UBXD8, FAF1, and SAKS1 carry a ubiquitin-associated (UBA) domain at their N-terminus in addition to the UBX domain, enabling them to bind ubiquitinated substrates [180] and function as ubiquitin-receptors in the ubiquitin-proteasome pathway.
Members of the UBX-only group (UBXD1, UBXD2, UBXD3, UBXD4, UBXD5, ASPL, p37, VCIP135 and YOD1) lack the UBA domain and thus the ability to bind ubiquitinated substrates [181].

P97 non-UBX domain-containing cofactors can be classified into two subgroups, adapters and accessory proteins. P97 adapters are required for substrate binding, and the two best studied, nuclear protein localization 4 (Npl4) and ubiquitin fusion degradation 1 (Ufd1), form a heterodimer that binds p97 in a 1:1 ratio [182]. Npl4-Ufd1 heterodimers function as recruiting factors that bind to ubiquitinated substrates at the ER membrane and link the conformational change of p97 upon ATP hydrolysis to substrate translocation into the cytosol [155, 163, 183, 184].

P97 accessory proteins or substrate-processing cofactors use p97 as a docking site to perform a specific enzymatic function on the substrate already associated with p97. Examples of accessory proteins include the deglycosylase PNGase I, the E3 ubiquitin ligases Hrd1, gp78, and Ufd2, as well as the deubiquitinase Ataxin-3.

UBXD1

Human UBX domain protein 1 (UBXD1) has been shown to be a stable protein localized to the nucleus, cytosol, and centrosomes in HeLa cells [185]. UBXD1 is involved in vesicle [186] and endolysosomal trafficking [187, 188], in autophagic removal of damaged lysosomes [189], and in OMMAD [190].

From the N- to the C-terminus, UBXD1 harbours a VIM domain, a PUB domain, as well as a UBX domain. Its interaction with p97 differs from that of other UBX domain-containing proteins, as it involves the VIM and PUB, but not the UBX domain [191]. Interestingly, UBXD1 lacks a clear ubiquitin-binding domain, and it is one of a few adaptors that can bind to both the N- and C-terminal domains of p97.

Recently, it was shown that UBXD1 is a mitochondrial recruitment factor for p97, connecting the ubiquitin-proteasome system to Parkin-dependent mitophagy. Under mitophagic conditions, UBXD1 localises to mitochondria due to its UBX domain, and p97 is then recruited to mitochondria via interaction with the VIM and PUB domains without the need for additional factors or signals, supporting a pro-mitophagic role for UBXD1 [192]. Due to p97 mutations, this interaction between UBXD1 and p97 is impaired in inclusion body myopathy.
associated with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) and ALS [188].

SAKS1

The p97 cofactor SAKS1 (stress-activated protein kinase substrate 1) [193] colocalizes with ubiquitin. It is involved in ubiquitin-proteasome functions [194] via its UBA and UBX domains, which bind ubiquitin and p97, respectively [193]. P97 and SAKS1 co-immunoprecipitate, suggesting that p97 might be directed to polyubiquitinated proteins by SAKS1. SAKS1 was also found to selectively prevent the degradation of ERAD substrates without perturbing cytosolic proteasomal substrates [195]. Furthermore, SAKS1 protects polyubiquitin chains from deubiquitination, thus modulating p97-mediated protein degradation [196].

SAKS1, in complex with p97, is required for the recognition of selected ubiquitylated BAG6 (BCL2-associated athanogene 6) chaperone complex clients [197] prior to their degradation by the proteasome. The degradation of these substrates is crucial, as they could accumulate and overwhelm chaperone systems, leading to inappropriate interactions with cytosolic components, and ultimately to aggregation. Loss of SAKS1 sensitises cells to proteotoxic (in particular ER) stress [198].

Moreover, p97 cofactor SAKS1 has been recently identified as a novel regulator of mitophagic initiation. In this context, SAKS1 has been found to translocate along with p97 to mitochondria upon mitochondrial depolarization. Furthermore, SAKS1 appears to modulate the dynamics of mitochondria - Parkin interaction. Loss of SAKS1 negatively impacts on mitochondrial morphology, ATP generation and ER-mitochondrial contacts, in addition to interfering with the removal of MFN2 from mitochondria, leading to formation of para-mitochondrial MFN2 blobs [199].

1.1.4 Mitochondrial interactions with other organelles

Membrane-confined organelles generate dedicated microenvironments, which enable eukaryotic cells to compartmentalize specialized biochemical reactions at specific cellular locations, like protein degradation, lipid breakdown, or ATP production. Cellular homeostasis is maintained by inter-organelle communication, either through physical contact
or through transfer of specific metabolites. Many cellular processes, such as signaling, regulation of calcium homeostasis, lipid metabolism, and organelle localization and dynamics rely on membrane contact sites (MCSs), a fast and efficient way to exchange molecules and information [200, 201]. MCSs are defined as regions in which membranes of different organelles are kept in close proximity by dedicated tethering machineries [202]. Of note, the two organelles at MCSs never fuse their membranes, and in most cases the distance between the opposing membranes ranges from 10 to 30 nm, although a distance up to 300 nm has been described [203]. MCSs exist between either identical (homotypic) or different (heterotypic) organelles [202]. Recent guidelines define MCSs by the presence of protein-lipid or protein-protein interactions mediating tethering forces among two membranes in the absence of fusion intermediates or of fused membranes; a defined lipidome and proteome of MCSs is necessary to fulfil the above-mentioned definitions [202]. Mitochondria are now recognized as key signaling platforms [204, 205], and their interaction with other organelles is required to exchange substrates and transmit signals for metabolism regulation, intracellular signaling, and cell maintenance [206].

1.1.4.1 Mitochondria-associated membranes (MAMs)

To date, the regions of close apposition between ER and mitochondria are the best-studied type of membrane contact sites, and they were first described by Bernhard in 1956 [207] and later by Copeland and Dalton using electron microscopy [208]. ER-mitochondria contact sites play crucial roles in lipid metabolism and calcium homeostasis, thus regulating essential processes such as mitochondrial morphology [21, 209], reactive oxygen species (ROS)-induced cell stress [210], autophagy [211], and apoptosis [212]. It has been found that MAM-localized functions are significantly up-regulated not only in cellular and animal models of Alzheimer’s disease (AD) but also in AD patient-derived cells [213].
2. Mitochondria-associated membranes (MAMs)

1.1.4.2 Mitochondria-Lysosome membrane contact sites

Similar to mitochondria, lysosomes are highly dynamic organelles responsible for the turnover of cellular components, including proteins and lipids, via hydrolytic enzymes stored in the lysosomal lumen. These organelles also act as iron and calcium stores, and in addition mediate cell death signaling upon lysosomal membrane permeabilization [215]. Mitochondria–lysosome contact sites have been imaged in various cellular models [216, 217, 218, 219, 220, 221]. Lysosomes, together with mitochondria, are critical for the maintenance of...
cellular homeostasis, as dysfunction of both organelles is functionally and genetically linked to several human diseases, such as Parkinson’s disease, Huntington’s disease, Gaucher disease and Niemann-Pick A/B disease. [222, 223, 224, 225].

review [214]

3. Mitochondria-Lysosome Membrane Contact Sites

1.1.4.3 Mitochondria-Peroxisome contact sites

Peroxisomes are ubiquitous and dynamic single membrane-bound organelles and show similar to mitochondria an oxidative type of metabolism. These organelles are essential for human health and development as they fulfil important functions in hydrogen peroxide and lipid metabolism [226]. Additionally, they act as important intracellular platforms for redox-, lipid-, inflammatory-, and innate immunity signaling [227, 228]. Peroxisomes closely cooperate with other organelles, including mitochondria, the ER, and lipid droplets to fulfil their functions [229].

Peroxisomes and mitochondria engage in a close functional interplay [18, 229], perhaps best illustrated by their metabolic cooperation in fatty acid β-oxidation to maintain lipid homeostasis [230], in addition to anti-viral signaling and defence [231, 232]. Moreover, sharing a redox-sensitive relationship [233], peroxisomes and mitochondria contribute to cellular ROS homeostasis. Both organelles also share key components of their division machinery [234], [18], including the large dynamin-like/related GTPase DLP1/Drp1 and its membrane adaptor proteins Fis1 (fission factor 1) and Mff (mitochondrial fission factor), which recruit cytosolic DLP1 to both peroxisomal and mitochondrial constriction sites [235]. Among the mechanisms of communication between mitochondria and peroxisomes there are diffusion processes, for example via the channel-forming peroxisomal membrane protein PXMP2, physical contact sites, and vesicular transport through MDVs interacting and fusing with peroxisomes [119, 123, 236, 237]. However, evidence for a peroxisome - to - mitochondria vesicular transport path is still absent.

The degree of contact between these organelles dynamically changes depending on the cell type and physiological circumstances.
Currently, one peroxisome-mitochondria tethering complex has been identified in mammals, involving the peroxisomal import receptor PEX5, the mitochondrial import receptor subunit TOMM20, and the either peroxisomal- or mitochondrial-targeting protein ACBD2/ECI2 isoform A (acyl-coenzyme A-binding domain 2/ enoyl-CoA-\(\delta\) isomerase 2), with a function in basal and hormone-stimulated steroid formation [238].

1.1.4.4 Mitochondria bound to Lipid Droplets

Mitochondria associated with lipid droplets (LDs) were first observed in 1959 [239] and reported in a variety of tissue types and cell culture models. A recent report showed that mitochondria bound to LDs, named peridroplet mitochondria (PDM), are more elongated than free mitochondria, and have reduced motility as well as distinct proteome and metabolic capabilities [240].

The LD-coating protein PLIN5 was confirmed to localize to mitochondria-LD contact sites by super-resolution microscopy [241], although the mechanisms by which it promotes the interaction between these organelles remain to be elucidated; of note, a postulated OMM protein that associates with PLIN5 has yet to be discovered. It has also been proposed that mitochondrial-LD tethering could involve mechanisms other than protein-protein interactions, such as membrane-membrane interactions [242].

The tethering complex MFN2-PLIN1 was identified in brown adipose tissue (BAT) following treatment with an adrenergic agonist [243]. In addition, biotin-labeling experiments performed under conditions of glucose deprivation revealed interactions between the mitochondrial protein ACSL1 (acyl-CoA synthase long chain family member 1) and SNAP23 and VAMP4 on LDs [244].

1.1.5 Mitochondrial motility

Mitochondria not only continuously change their morphology, but also actively localize to different subcellular areas in order to fulfil their functions. This notion is particularly evident in neuronal cells which have high bioenergetic demands at pre- and post-synaptic terminals and show extensive transport of mitochondrial subunits along their axons. Moreover, mitochondria close to synapses are crucial for local Ca\(^{2+}\) buffering [245].
Mitochondrial transport over long distances occurs along microtubule tracks, with the support of motor proteins [245], and live-cell imaging in neuronal axons has deciphered mechanisms of both anterograde and retrograde transport [246]. Anterograde transport is driven by the KIF5 family of kinesins, holding an ATPase motor domain at the N-terminus and a C-terminal cargo-binding domain [247], while retrograde transport depends on dynein, in association with dynactin [248]. The association of mitochondria to both motor complexes is achieved via adaptor proteins and OMM proteins. In mammals, the adaptor proteins TRAK1 and TRAK2, homologous to Drosophila Milton, bridge the OMM proteins Miro1 and Miro2 and the molecular motors [249]. In particular, TRAK1 can interact with both kinesin and dynein, whereas TRAK2 binds mainly the dynein/dynactin complex [245]. Other adaptor proteins have been identified, including syntabulin, linking mitochondria to kinesin motors [250, 251], and FEZ1, mediating mitochondrial anterograde transport during in vitro neurite outgrowth upon NGF induction [252]. The complexes formed by OMM proteins, adaptor proteins and molecular motors guarantee mitochondrial trafficking and regulate their distribution in response to changes in neuronal activity. Upon high synaptic activity, the sustained Ca2+ entry is sensed by Miro1 and Miro2, causing the inactivation of the MIRO/TRAK/molecular motor complexes, leading to mitochondrial arrest at active synapses [245]. Additionally, the mitochondria-docking protein syntaphilin immobilizes mitochondria in axons during sustained neuronal activity [253]. Miro proteins also have a role in regulating mitochondrial morphology following Ca2+ increases: whereas Miro favours fusion by inhibiting Drp1 activity at resting Ca2+ concentrations, Drp1-dependent fragmentation is initiated upon rising Ca2+ levels [254]. Moreover, it was shown that neuronal Drp1 ablation alters synaptic mitochondrial distribution in vivo [255, 256].

1.1.6 Mitochondria and neurodegeneration

Neurodegenerative diseases are a group of heterogeneous disorders, the majority of which are primarily sporadic, but in rare cases they can be inherited. Nevertheless, the phenotypes of sporadic and familial forms are often indistinguishable, suggesting common underlying mechanisms [257]. The study of hereditary forms suggested that not only defects in
mitochondrial respiration but also in mitochondrial dynamics could contribute to the pathogenesis of many of the most common neurodegenerative disorders, through perturbed mitochondrial trafficking, mitochondrial quality control and communication with other organelles. Neurons are particularly sensitive to mitochondrial dysfunction, due to their high energy demand, and due to their complex morphology [258]. Several in vitro models of neurodegenerative diseases including autosomal dominant optic atrophy (ADOA), Alzheimer’s disease (AD), and Parkinson’s disease (PD) revealed a fragmented mitochondrial network [258, 259, 260, 261, 262].

Moreover, pathogenic mutations identified in genes with a key role in mitochondrial morphology resulted in primarily neurodegenerative disease, indicating that mitochondrial dynamics is a crucial process in brain tissue [223].

1.1.6.1 Parkinson’s Disease

Parkinson’s disease (PD), the most common movement neurodegenerative disorder, is a complex multifactorial disease with an incidence ranging from 5 up to >35 per 100,000 population [263]. Clinically, it is characterised by motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability, which may be accompanied by depression, sleep disorders, anosmia, and, with disease progression, dementia. The neuropathological hallmarks of the disease include a progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta that project to the striatum, and the presence of α-synuclein (α-syn) positive neuronal inclusions known as Lewy bodies (LB) and Lewy neurites (LN) [264].

Familial and sporadic PD forms share common clinical, pathological, and biochemical characteristics. Although many aspects of PD pathogenesis remain elusive, dysregulation of various fundamental physiological processes has been implicated, including impairment of the ubiquitin-proteasome pathway, mitochondrial dysfunction, oxidative stress, and neuroinflammation.

Both environmental and genetic factors converge in the complex molecular pathophysiology of Parkinson’s disease, with mitochondrial dysfunction playing a major role [265, 266, 267, 268]. Several lines of evidence obtained from studies of familial forms of PD, patient tissue samples, and various in vitro/in vivo models point to a prominent involvement of
dysregulated mitochondrial crosstalk with other organelles in addition to impaired mitochondrial quality control pathways.

Review [214]

2.1. MAMs in Parkinson’s Disease

2.1.1. α-synuclein

2.1.2. Parkin and PINK1

2.1.3. DJ-1

2.1.4. LRRK2

3. Mitochondria-Lysosomes contact sites in Parkinson’s Disease

3.1. VPS35

3.2. ATP13A2

3.3. LRRK2

1.1.6.2 Autosomal dominant optic atrophy

The most common inherited optic nerve disorder is Dominant Optic Atrophy (DOA), characterized by the loss of retinal ganglion cells and consequent optic nerve degeneration and blindness [223]. Missense mutations or premature termination within the OPA1 gene, with a consequent loss of function, cause more than half of the cases [269]. The transmission of the disease is autosomal dominant due to the effect of haploinsufficiency, with one copy of the OPA1 gene being insufficient to handle the cell requirements. Most of the missense variants are localized to the GTPase domain (exons 8–16) [270]. Interestingly, the phenotype often almost exclusively affects the eye, although OPA1 expression is ubiquitous. Syndromic forms, known as DOAplus, are reported in up to 20% of OPA1 mutation carriers [271, 272, 273, 274, 275], which may show variable signs of myopathy, peripheral neuropathy, ataxia, encephalopathy, sensorineural hearing loss, and chronic progressive external ophthalmoplegia as clinical features [276].

Recently, bi-allelic OPA1 mutations were associated with Behr syndrome, a syndromic disease characterized by early-onset optic atrophy, spasticity, spinocerebellar ataxia, peripheral neuropathy, gastrointestinal dysmotility, and intellectual disability [277].
In addition, rare associations of heterozygous or bi-allelic *OPA1* mutations have been reported in patients affected by a multiple sclerosis-like syndrome [278], optic atrophy and spastic para-paresis [275], severe syndromic cardiomyopathy associated with myopathy and encephalopathy [279], syndromic parkinsonism and dementia [280, 281], and Behr-like syndrome with metabolic stroke [282], reflecting a remarkable clinical diversity of OPA1-linked phenotypes.

Beyond *OPA1*, mutations in twelve other genes are associated with DOA, the majority of which encode proteins linked to mitochondrial function. WFS1 mutations cause an autosomal recessive neurodegenerative disorder primarily associated with optic atrophy and diabetes, and frequently also featuring hearing loss, renal deficits and mental disease, known as Wolfram syndrome [283]. Remarkably, the protein product of *WFS1*, Wolframin, is an ER membrane glycoprotein enriched at MAMs with a role in Ca\(^{2+}\) homeostasis [284, 285]. Mutations in *WFS1* gene have been reported in families with DOA and neuro-sensorial deafness [286, 287, 288, 289], in Wolfram-like syndrome with variable expression of glucose intolerance [290, 291], as a cause of autosomal dominant inherited deafness [292, 293], and in recessive isolated optic atrophy [287]. In addition, autosomal recessive 3-methylglutaconic aciduria type III (or Costeff syndrome) is due to mutations in the *OPA3* gene, which encodes a mitochondrial inner membrane protein of still unknown function [294]. Clinically, this syndrome is characterised by optic atrophy, spasticity, and movement disorders [295, 296]. Optic atrophy associated with extraocular features, such as cataract, sensorineural hearing loss, peripheral neuropathy, ataxia and areflexia, has been described in several families with dominant *OPA3* mutations [297, 298, 299, 300, 301].

1.1.6.3 Charcot-Marie-Tooth Disease

Charcot-Marie-Tooth Disease (CMT) is a genetically and phenotypically heterogeneous group of inherited peripheral neuropathies [302] characterized by progressive degeneration of peripheral nerves. CMT can be classified depending on whether the pathological process is predominantly axonal (CMT2), with axonal loss and without demyelinating lesions, or demyelinating (CMT1), with reduced nerve-conduction velocities and segmental de- and
remyelination [303]. Irrespective of the aetiology, the degenerative processes clinically result in muscle weakness and sensory loss, with variations in age of onset and rate of clinical progression, which depend on the genetic cause [304, 305].

CMT2A is a severe autosomal dominant form of CMT, identified in families with MFN2 mutations [306]. The majority of patients develop a severe peripheral neuropathy, which in some cases can be complicated by subacute visual failure and optic atrophy [307]. Loss-of-function mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1), involved in mitochondrial fission, cause another form of CMT, CMT4A [308, 309], which features both demyelination and axonal pathology [310, 311]. Studies in GDAP1-KO mice showed disrupted calcium homeostasis and store-operated calcium release in peripheral neurons [312].

1.1.7 Dysfunction of p97 and neurodegeneration

P97 has a crucial role in maintaining cellular proteostasis, and it is therefore not unexpected that mutations in the gene encoding p97 lead to a multisystem degenerative disorder known as inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (IBMPFD). This rare disease is characterized by muscle weakness, which may lead to difficulty breathing and heart failure due to the involvement of cardiac and respiratory muscles. Besides affecting muscles, IBMPFD also manifests itself in the bone, resulting in chronic pain, as well as in the brain, leading to frontotemporal dementia.

P97 mutations can result in ubiquitin-positive intracellular inclusion in skeletal muscles, bone and brain, which were shown to contain TAR DNA binding protein 43 (TDP43), β-amyloid, and phosphorylated tau protein, also present in other neurodegenerative diseases [313, 314, 315]. Most of disease-associated mutations are found in the interface region between the N- and D1-domain, and they do not appear to alter the protein oligomerization; however, some mutations enhance the basal hydrolysis of ATP of p97 [316, 317]. Disease-associated mutations could also affect p97 interaction with some cofactors [318], leading to impairment of a subset of p97 functions rather than a global loss-of-function. Altered p97-UBXD1 interaction affects ubiquitin-dependent membrane sorting at endosomes and degradation in lysosomes, suggesting a role of this pathway in IBMPFD, which probably involves weakened substrate
recognition. Specifically, the interaction of p97-UBXD1 with the main component of caveolae, caveolin-1 (CAV1), is affected [188]. Whereas UBXD1 is required for the endolysosomal trafficking of ubiquitinated CAV1, CAV1 is destined for degradation after being modified with mono-ubiquitin. Accumulation of CAV1-positive endolysosomes and reduced levels of the muscle-specific caveolin CAV3 at the sarcolemmal membrane of skeletal muscle have been seen in mice and patients with pathogenic p97 mutations [319].

Interestingly, a novel heterozygous missense p97 mutation (c.828 A>T, exon 6), in the evolutionary highly conserved linker domain, was described in 3 generations of a Swiss family in 2012 [320]. This new mutation leads to a change from isoleucine to phenylalanine at position 206 (I206F). Affected family members suffered from late-onset progressive muscle weakness, with both acute and chronic muscle denervation, fiber size variation and focal rimmed vacuoles. Immunohistochemistry revealed perivascular and endomysial inflammatory infiltrates. Brain autopsy of one of the affected family members revealed moderate frontotemporal cortical atrophy, and multiple dystrophic neurites positive for ubiquitin and TDP-43 in the neocortex and CA1 region of the hippocampus, a pattern corresponding to TDP-43 positive frontotemporal lobar degeneration type 4 [321]. In none of the patients symptoms indicative of Paget disease of the bone were reported [320].
2. Material and Methods

2.1 Materials

2.1.1 Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC43 microscope</td>
<td>Olympus</td>
</tr>
<tr>
<td>BioWizard Golden Line biosafety Cabinet</td>
<td>Kojair</td>
</tr>
<tr>
<td>C1000 Touch Thermal Cycler with 96-Deep Well Reaction Module</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Countess II</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Fusion FX</td>
<td>Vilber</td>
</tr>
<tr>
<td>HM 355S Automatic Microtome</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Labofuge 400R</td>
<td>Heraeus Instruments</td>
</tr>
<tr>
<td>NanoDrop TM 2000</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>PowerPac TM Basic Power Supply</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>PX1 PCR Plate Sealer</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>QX200 Droplet Generator</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>QX200 Droplet Reader</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Seahorse XF HS Mini Analyzer</td>
<td>Agilent</td>
</tr>
<tr>
<td>SimpliAMP TM Thermal Cycler</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>SubAqua Pro Unstirred Water Bath</td>
<td>Grant Instruments</td>
</tr>
<tr>
<td>TES 99 Paraffin Embedding Center</td>
<td>Medite</td>
</tr>
<tr>
<td>Thermomixer</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Tissue processor TPC15</td>
<td>Medite</td>
</tr>
<tr>
<td>TProfessional TRIO Thermocycler</td>
<td>Analytik Jena</td>
</tr>
<tr>
<td>Trans-Blot Turbo Transfer System</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Varioskan™ LUX multimode microplate reader</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Water Bath</td>
<td>Memmert</td>
</tr>
</tbody>
</table>

Table 2.1: Equipment used during this study.

2.1.2 Reagents

<table>
<thead>
<tr>
<th>Item</th>
<th>Order Number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>2267.4</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>Ampicillin sodium salt</td>
<td>K0291</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>Aureobasidin A</td>
<td>630466</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>BCA protein assay kit</td>
<td>23225</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Cell scraper</td>
<td>90002</td>
<td>TPP</td>
</tr>
<tr>
<td>CellTiter-Glo Luminescent cell viability assay</td>
<td>G7571</td>
<td>Promega</td>
</tr>
</tbody>
</table>

Material and Methods

<table>
<thead>
<tr>
<th>Material/Kit Name</th>
<th>Catalog Number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countess Cell counting chamber slides</td>
<td>C10283</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>ddPCR Supermix for Probes (No dUTP)</td>
<td>1863023</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>DG8 Cartridges</td>
<td>1864008</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>DG8 Gaskets</td>
<td>1863009</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>DMEM high glucose (1X)</td>
<td>41965062</td>
<td>Gibco</td>
</tr>
<tr>
<td>DPBS (1X)</td>
<td>14190-094</td>
<td>Gibco</td>
</tr>
<tr>
<td>Droplet Generation Oil</td>
<td>1863005</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Ethidium Bromide</td>
<td>1410433</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>FBS Tet system approved</td>
<td>16876796</td>
<td>Fisher Scientific</td>
</tr>
<tr>
<td>Fetal Bovine Serum (FBS) Heat Inactivated</td>
<td>5181H-500</td>
<td>Biowest</td>
</tr>
<tr>
<td>FuGENE® 6</td>
<td>E2691</td>
<td>Promega</td>
</tr>
<tr>
<td>GelRed Nucleic Acid Stain</td>
<td>41003</td>
<td>Biotium</td>
</tr>
<tr>
<td>Gene Pulser Cuvettes</td>
<td>165-2086</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>GenElute Mammalian Genomic DNA Miniprep Kit</td>
<td>G1N70-1KT</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Glycerol</td>
<td>3783.1</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>Glycine</td>
<td>3790.3</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>HeLa cell line</td>
<td></td>
<td>LGC Standards</td>
</tr>
<tr>
<td>Histidine</td>
<td></td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>HistoGel</td>
<td>HG-4000-012</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Hygromycin B</td>
<td>10687010</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>K12 ER2925 E. coli</td>
<td>E4109</td>
<td>NEB (Bioconcept)</td>
</tr>
<tr>
<td>L-Glutamine (200mM)</td>
<td>2503032</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>LB-broth</td>
<td>X968.3</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>Leucine</td>
<td>L8912</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Lipofectamine 3000</td>
<td>L3000008</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Matchmaker Gold Y2H System</td>
<td>630489</td>
<td>Clontech Laboratories</td>
</tr>
<tr>
<td>NucleoSpin Gel/PCR Clean-Up</td>
<td>740609.25</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>NucleoSpin Plasmid</td>
<td>470588.25</td>
<td>Macherey-Nagel</td>
</tr>
<tr>
<td>NuPAGE 4-12% Bis Tris, 1.5 mm, Mini Protein Gel, 15-well</td>
<td>NP00336</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>NuPAGE LDS Sample Buffer (4X)</td>
<td>NP007</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>NuPAGE MOPS SDS Running Buffer (20X)</td>
<td>NP0001</td>
<td>Novex by LifeTechnologies</td>
</tr>
<tr>
<td>NuPAGE Sample Reducing Agent (10X)</td>
<td>NP0009</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>NuPAGE TM MOPS SDS Running Buffer (20X)</td>
<td>NP0001</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Opti-MEM Reduced Serum Medium</td>
<td>31985070</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Pierce BCA Protein Assay kit</td>
<td>23227</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Pierce TM ECL Western Blotting Substrate</td>
<td>32209</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Pierce TM RIPA buffer</td>
<td>89901</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Precision Plus Protein Dual Color Standards</td>
<td>161-0374</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Rneasy Mini Kit (50)</td>
<td>74104</td>
<td>Qiagen</td>
</tr>
<tr>
<td>Sodium pyruvate solution</td>
<td>S8636</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

Note: Some suppliers are not specified due to the lack of information provided.
Material and Methods

Stbl3 Chemically Competent *E. coli* C737303 Thermo Fisher Scientific
SureBlock SB232010 Lubro Science
SuperScript™ VILO™ cDNA Synthesis Kit 11754050 Thermo Fisher Scientific
TBS Buffer 20X 28358 Thermo Fisher Scientific
Tetracycline hydrochloride HP63.1 Carl Roth
Tissue-Tek® Uni-Cassette® Stacked Cassettes White 8170 Sakura
Trans-Blot Turbo Midi Nitrocellulose Transfer Pack 1704159 Bio-Rad
Trypsin-EDTA PBS 1:250 w/o Ca/Mg with Phenol Red 5-51FOO-H BioConcept
Tween 20 P9416-100ML Sigma-Aldrich

Table 2.2: Reagents used during this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Order number</th>
<th>Vendor</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>rabbit anti-alpha-synuclein</td>
<td>ab138501</td>
<td>Abcam</td>
<td>1:10000 WB</td>
</tr>
<tr>
<td>mouse anti-GAPDH</td>
<td>sc-32233</td>
<td>Santa Cruz</td>
<td>1:6000 WB</td>
</tr>
<tr>
<td>rabbit anti-OPA1</td>
<td>80471</td>
<td>Cell Signaling</td>
<td>1:1000 WB</td>
</tr>
</tbody>
</table>

Table 2.3: Antibodies used during this work.
WB = western blotting

2.1.4 Composition of Buffers and Media

2YT medium

- NaCl 10 g/l
- yeast extract 10 g/l
- peptone 12 g/l
- MgSO$_4$ 20 mM
- KCl 10 mM

MgSO$_4$ and KCl were added from sterile 1 M stock solutions after autoclaving.

SOB media

- peptone 2 % (w/v)
- yeast extract 0.5 % (w/v)
- NaCl 10 mM
- KCl 2.5 mM
- MgCl$_2$ 10 mM
- MgSO$_4$ 10 mM
Transformation buffer 1 (TFB 1)

- MnCl₂ 30 mM
- RbCl 100 mM
- CaCl₂ 10 mM
- glycerol 15 % (v/v)
- pH 5.8

Transformation buffer 2 (TFB 2)

- MOPS 10 mM
- RbCl 10 mM
- CaCl₂ 75 mM
- glycerol 15 % (v/v)
- pH 6.8

2.1.5 Enzymes and Nucleic Acids

<table>
<thead>
<tr>
<th>Name</th>
<th>Order number</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgeI</td>
<td>R0552</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>ApaI</td>
<td>R0114</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>BamHI</td>
<td>R0136</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>BclI-HF</td>
<td>R3160</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>BglII</td>
<td>R0144</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>ClaI</td>
<td>R0197</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>EcoRV</td>
<td>R0195</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>EcoRV-HF</td>
<td>R3195</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>HindIII</td>
<td>R0104</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>HpaI</td>
<td>R0105</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>KpnI</td>
<td>R0142</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>NdeI</td>
<td>R0131</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>NotI</td>
<td>R0189</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>NotI-HF</td>
<td>R3189</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>NruI</td>
<td>R0192</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>NruI-HF</td>
<td>R3192</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>SpeI</td>
<td>R0133</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>XhoI</td>
<td>R0146</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>DNA Polymerase I, Large (Klenow) Fragment</td>
<td>M0210</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>Phusion Polymerase</td>
<td>M0530</td>
<td>New England Biolabs (NEB)</td>
</tr>
<tr>
<td>T4 DNA ligase</td>
<td>M0202</td>
<td>New England Biolabs (NEB)</td>
</tr>
</tbody>
</table>

Table 2.4: DNA modifying enzymes used during this study.
2.1.6 Oligonucleotides

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAN2670</td>
<td>AGATGACATATGAAGAAAAATCTTTTCAGAGGAGTTCAAGG</td>
</tr>
<tr>
<td>OAN2671</td>
<td>AGATGAGGATCCTTACTTCTCAGGGTTGGCCCCAG</td>
</tr>
<tr>
<td>OAN2691</td>
<td>AGATGACATATGGCTTCTGGAGCCGA</td>
</tr>
<tr>
<td>OAN2692</td>
<td>AGATGAGGCGGCATGTGGCGACTACGTCGG</td>
</tr>
<tr>
<td>OAN2953</td>
<td>AGATGAGGCCCTCAAGCGTAATCTCGAACATCGTATG</td>
</tr>
<tr>
<td>OAN2884</td>
<td>CTGTGACGTCTACTGCTGCTGCTGCC</td>
</tr>
<tr>
<td>OAN2886</td>
<td>CCTAGAGGATCCGCAGGTACCAAGACG</td>
</tr>
<tr>
<td>OAN2889</td>
<td>GCTGACACCCCAACAGTTGAGGAG</td>
</tr>
<tr>
<td>OAN3029</td>
<td>ATTCTCCGGCCCATGGCTGCC</td>
</tr>
<tr>
<td>OAN3030</td>
<td>ATCTTCTGAGAACCATCGCCGAGCN</td>
</tr>
<tr>
<td>OAN3031</td>
<td>CGAGATCCGTCGGCCGAGATTGG</td>
</tr>
<tr>
<td>OAN3032</td>
<td>AGCCATCTGTGTTGCGCTGCTGCTGCC</td>
</tr>
<tr>
<td>OAN3323</td>
<td>CCGCCAGAACACAGGTAAAGTCC</td>
</tr>
<tr>
<td>OAN3324</td>
<td>TACGTAAAGGAAGTTTTGAGAAGAAGAGAAACG</td>
</tr>
<tr>
<td>OAN3325</td>
<td>GCTGAAGATGGTGAGAAGAAGAGATTAAATGCC</td>
</tr>
<tr>
<td>OAN3352</td>
<td>CTAGAGCCCCGAGCTGCTTCTTTC</td>
</tr>
<tr>
<td>Opa1 primer forward</td>
<td>CCAAGAGGATCTGCGGAGAG</td>
</tr>
<tr>
<td>hOpa1 primer reverse</td>
<td>ATAGGGCCACATGGTGAGGA</td>
</tr>
<tr>
<td>hOpa1 probe</td>
<td>TGACAGTCTCCTCCAGTTAAGGTTGACT</td>
</tr>
<tr>
<td>hGAPDH primer forward</td>
<td>CAGCAATGCTGTCGTGACT</td>
</tr>
<tr>
<td>hGAPDH primer reverse</td>
<td>TGGACTGTGGTCATGAGTCC</td>
</tr>
<tr>
<td>hGAPDH probe</td>
<td>CCCCCGTGCCAAGGTCATCC</td>
</tr>
</tbody>
</table>

Table 2.5: Oligonucleotides used during this study (All purchased from Sigma-Aldrich).

2.1.7 Plasmids

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Vector</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAN2103</td>
<td></td>
<td>pBluescript SK (+)</td>
<td></td>
</tr>
<tr>
<td>pAN2861</td>
<td>YFP-UBXD1</td>
<td>EYFP-C1</td>
<td>pAN2741 *OAN 2020/2021</td>
</tr>
<tr>
<td>pAN3090</td>
<td>pGBKTK7 with UBXD1 wt (bait for Y2H)</td>
<td>pGBKTK7 *Ndel, BamHI</td>
<td>PCR pAN2861 OAN2398/9 *Ndel, BamHI</td>
</tr>
<tr>
<td>pAN3102</td>
<td>pGADT7 with p97 wt (prey for Y2H)</td>
<td>pAN3089*EcoRI, PmlI</td>
<td>pAN1502*EcoRI, PmlI</td>
</tr>
<tr>
<td>pAN3266</td>
<td>α-synuclein WT</td>
<td>pEGFP-C1</td>
<td>addgene #40822</td>
</tr>
<tr>
<td>pAN3267</td>
<td>α-synuclein A53T</td>
<td>pEGFP-C1</td>
<td>addgene #40823</td>
</tr>
<tr>
<td>pAN3303</td>
<td>Gal4BD-UBXD11-133 (VIM/N-Term)</td>
<td>p3090 *Ndel, BamHI</td>
<td>PCR on pAN2861 with OAN2670/1</td>
</tr>
<tr>
<td>Plasmid</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3304</td>
<td>GAL4AD-p97 (on fixed wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3305</td>
<td>GAL4AD-p97R155H (on fixed wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3306</td>
<td>GAL4AD-p97I206F (on fixed wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3310</td>
<td>Gene synthesized at Biocat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3311</td>
<td>Gene synthesized at Biocat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3312</td>
<td>Gene synthesized at Biocat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3414</td>
<td>vector of Invitrogen Flp-InT-REX system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3415</td>
<td>vector of Invitrogen Flp-InT-REX system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3417</td>
<td>pcDNA6/TR derivative with EF1a promoter instead of CMV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3418</td>
<td>AAVS1 donor with EF1a- rabbit-b-globin intron - TetR - synthetic pA - PSV40-FRT-ATG-Gluc- SV40pA for generation of stable cell lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3419</td>
<td>pBluescript with ApaI-SaciII fragment of pAN3414 - pcDNA5/FRT/TO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3420</td>
<td>pBluescript with ApaI-SaciII fragment of pAN3414 - pcDNA5/FRT/TO and inserted ATG for hygromycin gene; add NdeI site for control digest upstream ATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3421</td>
<td>modified pcDNA5/FRT/TO with additional ATG for hygromycin gene; low copy!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3463</td>
<td>pcDNA3.1- with human OPA1 variant 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3469</td>
<td>Tet-Inducible WT α-synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3470</td>
<td>Tet-Inducible A53T α-synuclein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3502</td>
<td>WT α-synuclein - SV40pA - EF1α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3503</td>
<td>A53T α-synuclein - SV40pA - EF1α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3507</td>
<td>WT α-synuclein - SV40pA - EF1α in modified pcDNA5/FRT/TO for integration into FRT site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3516</td>
<td>WT α-synuclein - SV40pA - EF1α- hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3517</td>
<td>A53T α-synuclein - SV40pA - EF1α- hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAN3518</td>
<td>EF1α-hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCDNA 3.1 (c)</td>
<td>Thermo Fisher Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCDNA5/FRT/TO</td>
<td>Thermo Fisher Scientific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pGADT7</td>
<td>GAL4AD Matchmaker (Clontech)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pGBK T7</td>
<td>Gal4BD Matchmaker (Clontech)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: Plasmids used in this study.
2.2 Methods

2.2.1 Molecular Biological Methods

2.2.1.1 Bacterial Strains

The *Escherichia coli* (*E. coli*) strains DH5α and dam/dcm *E. coli* K12 ER2925 were used for cloning as well as amplification of plasmid DNA. Both strains were grown in Luria-Bertani media (LB) [322] and on LB agar plates supplemented with the appropriate antibiotic for selection. *E. coli* strain Stbl3 was used for amplification of viral vector DNA. Antibiotics used were ampicillin (100 µg/ml) or kanamycin (50 µg/ml).

2.2.1.2 Preparation of chemically competent *E.coli*

DH5α or dam/-dcm- *E. coli* strains 6 ml were grown overnight following inoculation in 2YT medium. This culture was diluted 1:100 in 10 ml 2YT medium and grown to OD₆₀₀ = 0.5. This new culture was diluted 1:100 in 100 ml 2YT medium, grown again until OD₆₀₀ = 0.5 and then chilled for 10 minutes in an ice-water bath. Bacteria were spun down in a pre-cooled centrifuge at 2000 g and 4 °C for 7 minutes. The pellet was resuspended in ice-cold transformation buffer 1 and chilled in an ice-water bath for 10 minutes. Bacteria were again spun down in a pre-cooled centrifuge at 2000 g and 4 °C for 7 minutes, and the pellet was resuspended in 2 ml of ice-cold transformation buffer 2. The bacterial suspension was aliquoted on dry ice in 50 µl aliquots and immediately stored at -80 °C.

2.2.1.3 Polymerase chain reaction (PCR)

Polymerase chain reaction is a method to exponentially amplify a defined segment of double-stranded DNA using a thermo-stable DNA-polymerase [323].
Material and Methods

<table>
<thead>
<tr>
<th>Component</th>
<th>PCR 1</th>
<th>PCR 2</th>
<th>PCR 3</th>
<th>PCR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template (< 250 ng)</td>
<td>1 µL</td>
<td>1 µL</td>
<td>1 µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>Oligonucleotide 1 (10 µM)</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
</tr>
<tr>
<td>Oligonucleotide 2 (10 µM)</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
<td>2,5 µL</td>
</tr>
<tr>
<td>dNTPs (2 mM each)</td>
<td>5 µL</td>
<td>5 µL</td>
<td>5 µL</td>
<td>5 µL</td>
</tr>
<tr>
<td>5X Phusion HF buffer</td>
<td>10 µL</td>
<td>10 µL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5X Phusion GC buffer</td>
<td>-</td>
<td>-</td>
<td>10 µL</td>
<td>10 µL</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>1,5 µL</td>
<td>-</td>
<td>1,5 µL</td>
</tr>
<tr>
<td>Phusion polymerase</td>
<td>0,5 µL</td>
<td>0,5 µL</td>
<td>0,5 µL</td>
<td>0,5 µL</td>
</tr>
<tr>
<td>Water up to 50 µL</td>
<td>up to 50 µL</td>
<td>up to 50 µL</td>
<td>up to 50 µL</td>
<td>up to 50 µL</td>
</tr>
</tbody>
</table>

Table 2.7: Pipetting scheme to optimise DNA amplification using high fidelity Phusion polymerase (NEB). Four different conditions were tested to then select the condition with the most optimal DNA amplification.

<table>
<thead>
<tr>
<th></th>
<th>temperature</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X</td>
<td>98°C</td>
<td>30 s</td>
</tr>
<tr>
<td>35X</td>
<td>98°C</td>
<td>10 s</td>
</tr>
<tr>
<td></td>
<td>annealing</td>
<td>30 s</td>
</tr>
<tr>
<td></td>
<td>72°C</td>
<td>15-30 s/kb</td>
</tr>
<tr>
<td>1X</td>
<td>72°C</td>
<td>10 min</td>
</tr>
<tr>
<td>1X</td>
<td>10°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

Table 2.8: Temperature and time profile for amplification using high fidelity Phusion polymerase. The annealing temperature was chosen based on the recommendation of the web-based NEB tm calculator (https://tmcalculator.neb.com). For DNA cloning purposes, PCR amplified DNA was separated from free oligonucleotides through agarose gel electrophoresis and purified using NucleoSpin Gel and PCR Clean-Up according to the manufacturer’s recommendations.

2.2.1.4 DNA digestion

For cloning purposes, restriction enzymes were used to treat plasmid DNA. Between 0.5 and 5 µg of plasmid DNA was treated with 1 to 10 U of restriction enzyme for at least 1 h at the manufacturer recommended temperature and buffer conditions. DNA obtained following PCR amplification was digested overnight to improve digestion at the 5’ and 3’ ends. Double
digestion using two or more restriction enzymes were performed according to the manufacturer's instructions whenever possible and where indicated. Digested DNA was purified using agarose gel electrophoresis (2.2.1.8) followed by Machery and Nagel's NucleoSpin Gel and PCR Clean-Up kit.

2.2.1.5 DNA ligation
DNA ligation reactions were prepared by mixing vector DNA and insert DNA fragments, obtained by DNA digestion of plasmid DNA (2.1.7) or PCR products (2.2.1.3), at a 1:3 ratio, with 1 µl of T4 DNA ligase and 2 µl of the appropriate buffer (NEB) in a total reaction volume of 20 µl were added. The ligation mix was incubated at room temperature overnight, and used for transformation into DH5α or dam/dcm - E. coli (2.2.1.6).

2.2.1.6 DNA transformation into chemically competent E. coli
Competent DH5α or dam/dcm - E. coli were thawed on ice. 3 µl of DNA ligation mix (2.2.1.5) was added to 40 µl of competent bacteria and incubated for 10 minutes on ice. Heat shock was carried out by incubating the reaction mix for 45 seconds at 42 °C and shaken at 600 rpm in a thermomixer, immediately followed by cooling for 2 minutes on ice. The transformed bacteria were resuspended in 900 µl SOC medium and shaken at 600 rpm and 37 °C in a Thermomixer for 1 h. An aliquot of the transformation mix was spread on LB plates containing an appropriate antibiotic and incubated at 37 °C overnight.

2.2.1.7 DNA plasmid isolation
After DNA transformation, several E.coli clones grown on LB plates were picked for verification. Each clone was used to inoculate 5 ml of LB medium containing the appropriate antibiotic and incubated overnight at 37 °C and 250 rpm. Plasmid DNA isolation was performed using Machery-Nagel's NucleoSpin Plasmid kit. DNA was then digested (2.2.1.4) using appropriate restriction enzymes, and agarose gel electrophoresis (2.2.1.8) was performed to select correct clones. Sequence analysis (Microsynth, Basel, CH) was used to verify the correct clones.
2.2.1.8 Agarose gel electrophoresis

Agarose gels were prepared from agarose (0.8 to 2% w/v) diluted in 50 ml TAE buffer supplemented with 0.5 µg/ml ethidium bromide. Plasmid DNA was mixed with DNA loading dye, and gel electrophoresis was carried out at 85 V for 45 minutes. NucleoSpin Gel and PCR Clean-Up kit (Machery-Nagel) was used according to manufacturer's recommendations for DNA fragments purification.

2.2.1.9 Yeast two-hybrid

In a Matchmaker GAL4-based two-hybrid assay, a bait protein is expressed as a fusion to the Gal4 DNA-binding domain (DNA-BD), while libraries of prey proteins are expressed as fusions to the Gal4 activation domain. The interaction of two proteins or polypeptides of interest leads to the reconstitution of a functional transcription factor (Fig. 3.25) in genetically modified yeast strains, in which the transcription of a reporter gene results in a specific phenotype, usually growth on a selective medium or change in the colour of the yeast colonies [324]. A downstream analysis was used to quantify the effects of point mutations on the strength of interaction. The Gal-responsive LacZ gene (β-galactosidase) integrated in Y187 yeast strain was employed as a reporter for quantitative studies of protein-protein interactions because it is strongly expressed in this strain.

2.2.1.10 RNA extraction

RNA extraction from cell pellets was performed using RNeasy Mini Kit (Qiagen) according to manufacturer's guidelines, followed by RNA quantification (NanoDrop™ 2000, Thermo Fisher Scientific).

2.2.1.11 Reverse transcription of RNA to cDNA

Reverse transcription of extracted RNA was performed using SuperScript™ IV VILO Master Mix (Thermo Fisher) according to manufacturer's guidelines, and 1.5 ug RNA as input for the reaction. Then, SimpliAMP™ Thermal Cycler (Thermo Fisher) was used as follows: 25°C for 10 min, 42°C for 60 min, 85°C for 5 min, and 4°C thereafter. Samples were then stored at -20°C until further processed.
2.2.1.12 Droplet digital PCR (ddPCR)

For ddPCR, the human OPA1 and human GAPDH primer/probe mixes were prepared as follows: forward primer FAM or HEX (100 μM) 9 μl, reverse primer FAM or HEX (100 μM) 9 μl, probe (100 μM) 2.5 μl, and 79.5 μl ddH2O. Then, 1 μl of cDNA templates at three different dilutions (1:50, 1:100 and 1:200) was added to a 20-μl reaction mixture containing 10 μl Bio-Rad 2x digital PCR supermix for probes (No dUTP), 1 μl of hOPA1 FAM primer/probe mix, 1 μl of hGAPDH HEX primer/probe mix, and 8 μl of nuclease-free water.

For droplet generation, a Bio-Rad cartridge was inserted into the cartridge holder, loaded with droplet generator oil (70 μl) and PCR reactions, covered with Bio-Rad gasket and placed in the QX200 Droplet generator. The droplets volume (around 40 μl) was transferred from the cartridge to a twin.tec semi-skirted 96-well PCR plate, then sealed with an easy pierce heating sealing foil (Thermo Fisher) using the PX1 PCR plate sealer. The PCR reaction was performed in the C1000 Touch Thermal Cycler as follows: 95°C for 10 min followed by 40 cycles 94°C for 30 seconds and 60°C for 1 minute, then 98°C for 10 minutes, and 4°C thereafter. The plate is thus placed in the QX200 Droplet Reader for signal detection. For each sample, the reaction was performed in triplicate, and Bio-Rad QuantaSoft software was used to manually set the amplitude threshold.

2.2.2 Biochemical Methods

2.2.2.1 Preparation of cell lysates

Cells were harvested and cell pellets were stored on ice for immediate use or at -80 °C for several days. For lysis, pellets were resuspended in RIPA buffer supplemented with protease and phosphatase inhibitor cocktail and incubated on ice for 45 minutes. Samples were then centrifuged at 14000 g and 4°C for 15 minutes. Supernatants were collected and stored on ice for immediate use or at -80 °C for several days.

2.2.2.2 Measurement of protein content

Pierce BCA protein assay kit (Thermo Fisher Scientific) was used to measure protein content of cell lysates (add reference) according to manufacturer’s recommendations. Cell lysate supernatants were diluted in ddH2O (1:5 ratio). 10 μl of diluted samples and eight BCA reference solutions were added in triplicate to a 96 well plate. 100 μl of BCA Working Reagent
was added to each well, followed by incubation at 37 °C for 30 minutes. Absorption at 562 nm was then measured with the Varioskan™ LUX multimode microplate reader (Thermo Fisher Scientific) to calculate protein content of the sample.

2.2.2.3 SDS page
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method is used to separate proteins on an acrylamide gel according to their size. Samples were loaded onto precast polyacrylamide gels (NuPAGE™ 4 to 12%, Bis-Tris, 1.5 mm, 15-well, Thermo Fisher Scientific) and were separated at 90 V for 120 minutes in NuPAGE™ MOPS SDS Running Buffer.

2.2.2.4 Western blotting
Western blotting is a method to transfer proteins from an SDS-PAGE gel to a nitrocellulose membrane for antibody-based detection. Protein transfer or blotting was performed on a Trans-Blot Turbo Transfer System (Bio-Rad). After blotting, nitrocellulose membranes were blocked in 1X TBS, 0.1% Tween® 20 (TBS-T) containing 3 % (w/v) SureBlock (Lubio Science) for 1 h to reduce nonspecific antibody binding. Primary antibody (Table 2.3) was added to the membranes in TBS-T or TBS-T 5% w/v BSA and incubated with gentle shaking at 4 °C overnight. After three washes in TBS-T, secondary HRP-coupled antibody diluted in TBS-T was added to the membrane and incubated with gentle shaking for 2 h, after which the membrane was washed three times with TBS-T. Proteins were detected using a chemiluminescent substrate.

2.2.2.5 Extraction of genomic DNA
Genomic DNA was extracted from cells using the GenElute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich) according to the manufacturer's recommendations.
2.2.3 Cell Biology Methods

2.2.3.1 Cell culture

All cell lines were grown in a humidified incubator at 5% CO\textsubscript{2} and 37°C. Cell lines without inducible genes were maintained in DMEM (Dulbecco’s modified Eagle’s media) supplemented with 10% FBS, 2 mM L-glutamine, and 1 mM sodium pyruvate, whereas cell lines harbouring tetracycline-inducible genes were maintained in the same medium but supplemented with 10% Tet system approved FBS. Cells were passaged after reaching 80-90\% confluency by removing growth medium, washing once with PBS and incubating with Trypsin/EDTA at 37°C for 5 minutes. Trypsin/EDTA was inactivated by adding medium in 1:1 ratio. The solution was transferred in a 15 mL falcon tube centrifuged at 1300 rcf for 5 min. The cell pellet was resuspended in fresh medium. Cells were distributed into new tissue culture containers as required. For single cell cloning experiments, cells were grown in 96 well tissue culture plates. For western blot and immunohistochemistry experiments, cells were grown in tissue culture dishes. To select cells with integration of the construct of interest, HeLa cells were treated with 150 µg/ml Hygromycin B. Cells were treated with 1 µg/ml Tetracycline to stimulate expression of tetracycline-inducible genes.

2.2.3.2 Transfection of mammalian cells

For integrative vector transfection, cells were transfected with FuGENE® 6 (Promega). Cells were grown in 6 well tissue culture plates. After 24 h at approximately 60\% confluency, cells were transfected as follows. 6 µl FuGENE® 6 was added to 100 µl Opti-MEM in an Eppendorf Safe-Lock tube while minimising direct contact of FuGENE® 6 to plastic surfaces. After incubation at room temperature for 5 minutes, 2 µg of plasmid DNA was added to the solution, which was incubated for another 15 minutes at room temperature. Finally, the solution was added dropwise to the cells. 24 h after transfection, growth medium was replaced with fresh tetracycline-free growth medium.

Transient transfection of plasmids was done using LipofectamineTM 3000 (Thermo Fisher Scientific). Cells were seeded in a tissue culture dish and grown for 24h before transfection. 6 µg of plasmid DNA (pOG44/pAN3XXX ratio; 9:1) were added to Opti-MEM® medium together with the lipofectamine reagents following manufacturer’s recommendations. After
24 h the medium was exchanged. Cells were grown for an additional 24 h before hygromycin addition to select cells harbouring expression plasmids integration.

2.2.3.3 Immunohistochemistry (IHC)

Cells were harvested in p100 dishes and fixed with 4% paraformaldehyde (PFA) for 15 minutes at room temperature (RT). Cells were collected with a cell scraper, washed in PBS, and spun at 1200 rcf for 5 min to obtain cell pellets. Histogel (Thermo Fisher) was melted in a microwave and used to resuspend the cell pellets (80 µl). Histogel drops with resuspended cells were dried on parafilm for 1 hr and transferred in a uni-cassette system for tissue processing (Tissue Processor TPC15 Medite). Each sample was embedded in paraffin (Tes 99 Paraffin embedding Center Medite), sections were obtained with an automatic microtome (HM 355S Thermo Fisher) and stained with mouse anti-alpha-synuclein antibody. Images of stained sections were acquired with the Olympus BC43 microscope and analyzed using Ilastik software.
3. Results

3.1 Opa1 PROJECT

3.1.1 Generation of a double transgenic mouse model

The aim of this project was to create a double transgenic mouse model that overproduces the inner mitochondrial membrane protein Opa1 along with the mutated human α-synucleinA53T mutation. The question we intended to answer was whether mild overexpression of \textit{OPA1} would rescue, at least partially, the mitochondrial phenotype provoked by mutant α-synuclein A53T. To this end, we crossed Opa1tg[83] with B6;C3-\textit{Tg}(Prnp-\textit{SNCA}*A53T)83Vle/J mice [325], the latter also known in the literature as A53T α-synuclein transgenic line M83.

3.1.1.1 A53T α-synuclein transgenic line M83

For genotyping the A53T α-synuclein transgenic line M83, southern blot or qPCR-based methods are established as standard PCR is not able to discriminate between homozygous and heterozygous animals. As there is no clear qPCR ΔCt threshold established for discrimination, the transgene genotype is usually determined by comparing ΔCt values of unknown samples against known homozygous and heterozygous controls. Furthermore, the exact number of copies of the transgene is not known for either homozygous or heterozygous animals.

To investigate the genotype of heterozygous mice purchased from Jackson Laboratory, Sybr green real-time PCR was performed. Human A53T α-synuclein plasmid (Addgene, 40823) was used to establish a standard curve by serial dilution, to then compare the results of DNA samples obtained from heterozygous mice.
Sybr Green real-time PCR revealed that heterozygous mice had one (mouse 319) and three (mouse 318) copies of A53T α-synuclein transgene, respectively (Fig. 3.1).

3.1.1.2 Opa1^{−/−} mouse line

The Opa1^{−/−} mouse line was re-derived from animal sperm at the Centre for Transgenic Models (CTM) of Basel. After line re-derivation, DNA extracted from tail tissue was PCR amplified to define animal genotype.
Results

Figure 3.2 PCR analysis of Opa1^{tg} mice and derived MAFs.

A. Representative PCR analysis of female heterozygous, female homozygous and male hemizygous Opa1^{tg} mice. B. Representative PCR analysis of primary wt and Opa1^{tg} MAFs from diaphragm of 7-week-old C57BL6/J male mice. C. Representative PCR analysis of immortalized wt and Opa1^{tg} MAFs from diaphragm of 7-week-old C57BL6/J male mice. Red arrows: unexpected 400bp band in Opa1^{tg} MAFs

Female heterozygous animals showed the wt Hprt locus mouse allele at 400 bp, and the tg Hprt locus mouse allele at 1200 bp; the tg Hprt locus mouse allele at 1200 bp is exclusively present in female homozygous animals, as well as in male hemizygous animals (Fig. 3.2A). Fibroblasts were isolated from the diaphragm of wt and hemizygous Opa1^{tg} 7-week-old C57BL6/J male mice (MAFs) and immortalized, with the aim of transfecting them with wt and A53T α-synuclein and thus generating stable cell lines for further experiments.

PCR analysis was performed on primary and immortalized wt and Opa1^{tg} MAFs. While primary (Fig. 3.2B, left picture) and immortalized (Fig. 3.2C) wt MAFs showed a single 400 bp band corresponding to the wt Hprt locus mouse allele, primary (Fig. 3.2B, right picture) and immortalized (Fig. 3.2C) Opa1^{tg} MAFs unexpectedly displayed the 400b bp band of wt Hprt locus mouse allele in addition to the 1200 bp band of the tg Hprt locus mouse allele, as if there would be a mixed population of cells.
To investigate whether the unexpected PCR pattern was solely concerning the diaphragm tissue used to prepare primary MAFs, PCR analysis was performed on DNA extracted from five different tissues including brain, diaphragm, liver, muscle and tail of two animals per genotype as determined by PCR analysis of tail tissue.

The results showed that out of eight animals examined, only one mouse, 230-Female T/wt (Fig. 3.3A), exhibited the same genotype in all tissues analysed, while the remaining seven

Figure 3.3 PCR analysis of brain, diaphragm, liver, muscle, and tail tissues of two animals per genotype. A. B. Female heterozygous. C. D. Female homozygous. E. F. Male wild type. G. H. Male hemizygous. Red arrows: unexpected band; yellow question marks: missing band.
mice showed aberrant PCR patterns (red arrows = unexpected band, yellow question marks = missing band) among the analysed tissues (Fig. 3.3B-H). Interestingly, the genotype of the diaphragm displayed a different pattern in seven out of eight animals analysed.

Based on the performed genotyping analyses, and taking into account the available literature, we came to the conclusion that the planned generation of an $Opa1 \times A53T \alpha$-synuclein double transgenic mouse model that was suitable for studying relevant disease aspects was impossible within the time frame of a PhD thesis, as this would have required e.g. extensive back-breeding due to the different genetic backgrounds of the mouse strains.

3.1.2 Generation of stable cell lines

To overcome the unexpected genotypic problems in the MAFs isolated from $Opa1^{tg}$ mice, we chose an alternative strategy by creating an *in vitro* model to test whether mild OPA1 overexpression would rescue the mitochondrial impairment caused by A53T mutant α-synuclein. Our new approach to generating respective stable cell lines took advantage of the genomic safe harbour (GSH) adeno-associated virus site 1 (AAVS1) for targeted gene delivery and integration subsequent to the introduction of DNA double-strand breaks (DSBs) and homologous recombination (HR). GSH sites are regions within the human genome, into which genetic material can be integrated without adverse effects on the host cell or organism. GSHs thereby allow regulated transgene expression. The GSH AAVS1 site on human chromosome 19, also known as $PPP1R2C$ locus, has an open chromatin structure and is transcription-competent [326].

To achieve targeted human OPA as well as α-synuclein (wt and A53T mutant) gene delivery and integration we combined the GeneCopoeia Genome-TALER™ human AAVS1 Safe Harbor Gene Knock-in System with the ThermoFisher Flp-In™ T-REx™ System, with some modifications. For easy orientation, an overview of the pursued strategy is provided by Figure 3.4.
HeLa cells are co-transfected with specific TALENs generating double-strand breaks (DSBs) within the AAVS1 site on chromosome 19 for the integration of a platform vector holding an FRT site by HR due to presence of AAVS1 homology arms. Cells with successful integration of the platform vector can be selected after single cloning as they are luciferase positive. A second transfection step allows then the integration of an expression plasmid holding an FRT site by HR via Flp recombinase mediation into the platform. The obtained stable expression cells are luciferase negative and hygromycin resistant.

Chr19: chromosome 19; AAVS1: adeno-associated virus site 1; TALENs: transcription activator-like effector nucleases; FRT: Flp recombination target; Flp: flippase; HR: homologous recombination.

The GeneCopoeia Genome-TALER™ human AAVS1 Safe Harbor Gene Knock-in System can generate DSBs in the AAVS1 locus mediated by a pair of AAVS1-specific TALENs (AAVS1-left and AAVS1-right TALEN\(^1\)). This generation of DSBs thus stimulates HR as DNA repair mechanism, and allows the integration of a gene, selection marker or other genetic elements of interest from a donor plasmid cotransfected with AAVS1-specific TALENs into the safe harbour site (Fig. 3.5).

\(^1\) TALENs (transcription activator-like effector nucleases) are restriction enzymes that can be engineered to bind and cut specific DNA locations. Therefore they can be used to edit genomes by inducing double-strand breaks, but are now increasingly replaced by CRISPR-Cas technology [348].
The ThermoFisher Flp-In™ T-REx™ System requires two steps to generate stable, inducible mammalian expression cell lines. The first step consists of transfection and random independent integration of two plasmids: the pFRT/lacZeo target site vector and the pcDNA6/TR plasmid. The result is a host cell line containing a single integrated FRT site, expressing the lacZ-Zeocin™ fusion gene and the Tet repressor under the control of the human CMV promoter. In a second step, the pOG44 plasmid and the pcDNA5/FRT/TO expression vector carrying the gene of interest are cotransfected into the host cell line. The pOG44 plasmid contains the flippase (Flp) recombinase gene, which mediates an HR event between the FRT site integrated into the genome and the FRT site of the pcDNA5/FRT/TO plasmid, resulting in the integration of the pcDNA5/FRT/TO construct into the genome. The obtained stable expression cell line can then be selected for the following phenotypes: hygromycin resistance, blasticidin resistance, Zeocin™ sensitivity and lack of beta-galactosidase activity.

Once stable integration is obtained, expression of the protein of interest can be induced by the addition of tetracycline (Fig. 3.6).
The targeted gene delivery and integration approach to generate stable cell lines requires two steps. The first step involves the use of AAVS1-specific TALENs to generate DSBs in the AAVS1 locus of chromosome 19 of the host cell line, to then allow the integration of a donor plasmid, called platform vector, by HR due to the presence of AAVS1 homology arms (Fig. 3.7).

In addition to the AAVS1 homology arms, the platform vector (pAN3418) is composed of the following elements:

- elongation factor 1 α promoter (pEF1α);
Results

- rabbit beta-globin intron II (IVS), which enhances TetR gene expression;
- tetracycline repressor gene (TetR). TetR binds to tet operator sequences, thereby repressing transcription of the gene of interest in the absence of tetracycline;
- synthetic polyadenylation signal (synthetic pA);
- SV40 early promoter (pSV40);
- FRT (Flp recombination target) site, as binding site for Flp recombinase;
- *Gaussia* luciferase (Gluc) gene, a reporter gene isolated from the marine copepod *Gaussia princeps*, naturally secreted from mammalian cells;

STEP 1: Platform integration in AAVS1 locus

For our experiments, HeLa cells were chosen (limitations of this choice discussed on page 77). HeLa cells were seeded at an amount of 5×10^4 cells/well of a 6-well plate and grown for 24 hours in a humidified incubator at 37°C with 5% CO₂. Cells were transfected using FuGENE®6 Transfection Reagent at a FuGENE®6/DNA ratio of 3:1, and a total DNA amount of 2 µg (0.5 µg for pAN2043 (left TALEN), 0.5 µg for pAN2044 (right TALEN) and 1.0 µg for pAN3418 (platform vector)). The day after transfection, Luciferase assay was performed using the
Results

Pierce™ Gaussia Luciferase Glow Assay kit following the standard protocol for a 96-well plate. HeLa WT and HeLa WT transfected with GFP were used as controls (Fig. 3.8A).

<table>
<thead>
<tr>
<th></th>
<th>HeLa WT</th>
<th>HeLa WT + GFP</th>
<th>HeLa + pAN3418</th>
</tr>
</thead>
<tbody>
<tr>
<td>1054</td>
<td>1198</td>
<td>25805</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HeLa pAN3418 single clones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone 19</td>
</tr>
<tr>
<td>1373</td>
</tr>
</tbody>
</table>

Figure 3.8 Luciferase assay.
A. Luciferase signal 24 hours after transfection.
B. Luciferase signal of positive single clones.

Transfected HeLa cells were then single cloned in a 96-well plate at a density of 1.5 cells/well in 200 µl tetracycline free (tet-free) growth medium and kept for two weeks in a humidified incubator at 37°C with 5% CO₂. Thereafter, Luciferase assay was performed again to evaluate integration of the platform vector (pAN3418) in single clones. Three out of 222 clones occurred to be luciferase positive: clones 19, 31, and 129 (Fig. 3.8B). Positive clones were transferred into 6-well plates in tet-free growth medium, and luciferase signal was assayed again to confirm stable platform vector integration (data not shown).

The three positive clones were also controlled for the absence of mycoplasma contamination. To this end, 100 µl of growth medium was collected from each clone, boiled for 5 minutes at 95°C and centrifuged at 13000 rpm for 5 seconds to discard any debris. The supernatant was collected and analyzed by PCR for the presence of 16S rRNA mycoplasma sequence. None of the clones were contaminated by mycoplasma (Fig. 3.9).

Figure 3.9 PCR analysis for mycoplasma contamination.
Each sample was run in duplicates: lane 1 and 2 positive control, showing a band at 750 bp; lane 3 and 4 HeLa clone 19; lane 5 and 6 HeLa clone 31; lane 7 and 8 HeLa clone 129. Primers: GPO-1 (5'
ACTCTACGGGAGGCAGCAGTA 3'), MGSO (5' TGCACATCTGTCCTTGTTAACCTC 3'). PCR thermocycler program: 94°C for 3 min, 35 cycles at 94°C for 1 min, 58°C for 1 min and 30 s, 72°C for 1 min and 30 s, and 72°C for 10 min. (Agarose 1.5% and TAE 1X, loading purple dye 6X, TrackIT 100 bp DNA ladder Invitrogen)

Genomic DNA isolated from each clone using the GeneElute™ Mammalian Genomic DNA Miniprep Kit was PCR-analysed to check platform vector integration into the AAVS1 site. (Fig. 3.10A).

A Platform knock-in AAVS1 locus

B Knock-in verification PCR primers

Figure 3.10 Platform knock-in integration.

A. Knock-in verification primer pairs. Primers for 5' junction amplification and 3' junction amplification to verify integration of pAN3418. **B. PCR analysis for integration of pAN3418 in HeLa clones.** Primers for 5' junction amplification: OAN2884 (CTTGTGACCTCTAAGGCCTCAGGCCTC) and OAN2886 (CCCTAGAGGATCCCCGTTGATACCCAG), expected PCR product 1258 bp. Primers for 3' junction amplification: OAN2890 (CCCTAGACCCCCGCTGTGTTACCAAG) and OAN2890 (CCCTAGACCCCCGCTGTGTTACCAAG), expected PCR product 1528 bp. PCR thermocycler program for 5' and 3' junction amplification: 98°C for 30 s, 35 cycles at 98°C for 10 s, 69°C for 30 s, 72°C for 30 s, and 72°C for 10 min. (Agarose 0.8% and TAE 1X, loading purple dye 6X, BenchTop 1 kb DNA ladder Promega).

As shown in Fig. 3.10B, all three clones integrated the platform vector pAN3418 into the AAVS1 safe harbour locus.

To determine the clone most suitable for subsequent experimentation, proliferation of the three HeLa pAN3418 clones was evaluated using the CellTiter-Glo® 2.0 Assay; this assay determines the number of viable cells in culture by quantitating the amount of ATP present. The same number of cells (5x10³/well) was seeded for each clone in 6 wells of a 96-well plate, and one 96-well plate was prepared for each of five time points (Fig. 3.11).
Results

Figure 3.11 CellTiter-Glo® 2.0 Assay.
Evaluation of HeLa clones proliferation. 5x10^3 cells/well seeded for each clone. CellTiter-Glo was performed 6h, 24h, 48h, 72h and 96h after cell seeding.

As can be appreciated in Fig. 10, clone 31 grew too fast, reaching a plateau condition between 72 and 96h, and was thus excluded. Clone 129 showed a more linear growth when compared to clone 19, and was therefore selected for further experiments.

Before proceeding with the targeted gene delivery and integration step, CellTiter-Glo® 2.0 Assay was performed to establish the hygromycin concentration required to select cells with integrated construct. HeLa129 cells were seeded at an amount of 1x10^4/well into two 96-well plates using 100 µl of growth medium, 6 wells per condition, and grown in a humidified incubator at 37°C with 5% CO₂. After 48 hours, growth medium was replaced with 100 µl of hygromycin-supplemented growth medium. Hygromycin B (Invitrogen) concentrations of 50, 100, 150, 200, 300, 400 and 500 µg/ml were tested. Cell death was measured using the CellTiter-Glo® 2.0 Assay (Fig. 3.12).
As the hygromycin concentration to select cells with construct integration should be the one killing between 70 to 80% of the cell population, 200 µg/ml hygromycin was selected for later use.

The second step of our targeted gene delivery and integration approach required cotransfection of pOG44 plasmid, constitutively expressing Flp recombinase, together with the expression vector carrying our genes of interest for integration in the platform located in the AAVS1 site of HeLa clone 129. The expression vector used was the same as the Flp-In™ T-REx™ System, that is the pcDNA5/FRT/TO plasmid, whose multiple cloning site (MCS) was used to clone in our genes of interest (Fig. 3.13).

The expression vector (pcDNA5/FRT/TO) is composed of the following elements:

- cytomegalovirus promoter (pCMV);
- tetracycline operator sequences (2X TetO2);
- multiple cloning site (MCS), to clone in the inducible gene of interest;
- bovine growth hormone polyadenylation site (BGHpA);
- FRT (Flp recombination target) site, as binding site for Flp recombinase;
- hygromycin resistance gene;
- SV40 early polyadenylation signal (SV40pA);
- plasmid origin of replication (pUC ori);
- ampicillin resistance gene (Amp).
Fig. 3.13 Step2: integration of pcDNA5/FRT/TO plasmid with genes of interest in HeLa129.

AAVS1 HA-left: AAVS1 homology arm left; pEF1α: EF1α promoter; TetR: tetracycline repressor gene; synthetic pA: synthetic polyadenylation signal; pSV40: SV40 early promoter; FRT: Flp recombination target; Gluc: Gaussia Luciferase gene; SV40pA: SV40 early polyadenylation signal; AAVS1 HA-right: AAVS1 homology arm right; pCMV: cytomegalovirus promoter; Flp: flippase; pUC ori: plasmid origin of replication; Amp: ampicillin resistance gene; 2X TetO: tetracycline operator sequences; MCS: multiple cloning site; BGH pA: bovine growth hormone polyadenylation site; Hygromycin: hygromycin resistance gene; GOI: gene of interest.

Once the expressing vector is integrated, hygromycin can be added to the growth medium to select only the cells where HR and integration took place. These cells do no longer express Gaussia luciferase gene (Gluc) as correct integration separates the promoter from the Gluc open reading frame. Expression of the gene of interest can be triggered by addition of tetracycline.

The intent of this approach was to generate an in vitro model that would recapitulate features of the two single mouse models (Opa1tg; α-synucleinAS3T β) as well as the planned double transgenic mouse (3.1.1). Therefore, respective plasmids were designed, cloned, and cotransfected into HeLa129 cells together with Flp recombinase (pOG44), giving rise to stable cell lines after HR (Fig. 3.14).
Results

Fig. 3.14 Plasmids for the second step of targeted gene delivery and integration.
Overview of plasmids designed and cloned for the generation of stable cell lines. pAN3469: tetracycline-inducible human wild type \(\alpha\)-synuclein. pAN3470: tetracycline-inducible human A53T \(\alpha\)-synuclein. pAN3516: tetracycline-inducible human wild type \(\alpha\)-synuclein and human OPA1 variant 1 under the EF1\(\alpha\) promoter. pAN3517: tetracycline-inducible human A53T \(\alpha\)-synuclein and human OPA1 variant 1 under the EF1\(\alpha\) promoter. pAN3518: human OPA1 variant 1 under the EF1\(\alpha\) promoter.

As a form of hereditary, early-onset Parkinson disease is known to be caused by duplication or triplication of the SNCA gene, human wild-type \(\alpha\)-synuclein was also cloned into the pcDNA5/FRT/TO plasmid.

Thus, five plasmids were generated starting from pcDNA5/FRT/TO plasmid:

- pAN3469: tetracycline-inducible human wild type \(\alpha\)-synuclein with FRT site;
- pAN3470: tetracycline-inducible human A53T \(\alpha\)-synuclein with FRT site;
- pAN3516: tetracycline-inducible human wild type \(\alpha\)-synuclein and human OPA1 variant 1 under the EF1\(\alpha\) promoter with FRT site;
- pAN3517: tetracycline-inducible human A53T \(\alpha\)-synuclein and human OPA1 variant 1 under the EF1\(\alpha\) promoter with FRT site;
- pAN3518: human OPA1 variant 1 under the EF1\(\alpha\) promoter.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Vector</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAN3266</td>
<td>EGFP/WT (\alpha)-synuclein</td>
<td>pEGFP-C1</td>
<td>Addgene #40822</td>
</tr>
<tr>
<td>pAN3267</td>
<td>EGFP/A53T (\alpha)-synuclein</td>
<td>pEGFP-C1</td>
<td>Addgene #40823</td>
</tr>
<tr>
<td>pAN3414</td>
<td>vector of Invitrogen Flp-InT-REX system</td>
<td>pcDNA5/FRT/TO</td>
<td>Invitrogen Flp-InT-REX system</td>
</tr>
</tbody>
</table>
Table 3.1. Plasmids used for cloning the five expression plasmids.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAN3415</td>
<td>vector of Invitrogen Flp-InT-REX system</td>
</tr>
<tr>
<td>pAN3417</td>
<td>pcDNA6/TR derivative with EF1α promoter</td>
</tr>
<tr>
<td>pAN3418</td>
<td>AAVS1 donor with EF1α/rabbit-h-globin intron/Tet/synthetic pA/pSV40/FRT/ATG/Gluc/SV40pA for generation of stable cell lines</td>
</tr>
<tr>
<td>pAN3419</td>
<td>pBluescript with Apal-SacII fragment of pAN3414 - pcDNA5/FRT/TO</td>
</tr>
<tr>
<td>pAN3420</td>
<td>pBluescript with Apal-SacII fragment of pAN3414 - pcDNA5/FRT/TO and inserted ATG for hygromycin gene; add NdeI site for control digest upstream ATG</td>
</tr>
<tr>
<td>pAN3421</td>
<td>modified pcDNA5/FRT/TO with additional ATG for hygromycin gene; low copy!</td>
</tr>
<tr>
<td>pAN3469</td>
<td>Tet-Inducible WT α-synuclein</td>
</tr>
<tr>
<td>pAN3470</td>
<td>Tet-Inducible A53T α-synuclein</td>
</tr>
<tr>
<td>pAN3502</td>
<td>WT α-synuclein/SV40pA/EF1α</td>
</tr>
<tr>
<td>pAN3503</td>
<td>A53T α-synuclein/SV40pA/EF1α</td>
</tr>
<tr>
<td>pAN3507</td>
<td>WT α-synuclein/SV40pA/EF1α in modified pcDNA5/FRT/TO for integration into FRT site</td>
</tr>
<tr>
<td>pAN3516</td>
<td>WT α-synuclein/SV40pA/EF1α/hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
</tr>
<tr>
<td>pAN3517</td>
<td>A53T α-synuclein/SV40pA/EF1α/hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
</tr>
<tr>
<td>pAN3518</td>
<td>EF1α/hOPA1v1 in modified pcDNA5/FRT/TO for integration into FRT site</td>
</tr>
</tbody>
</table>

HeLa129 cells were seeded at an amount of 1x10^6 cells in a p100 dish and grown in tet-free growth medium for 24 hours in a humidified incubator at 37°C with 5% CO₂. Cells were cotransfected using Lipofectamine™ 3000 at a pOG44/pAN3469 ratio of 9:1, and a total DNA amount of 6 µg (i.e., 5.4 µg for pOG44, 0.6 µg for pAN3469). The day after transfection, growth medium was changed and supplemented with 200 µg/ml hygromycin for seven days (Fig. 3.12) to select cells with successful integration. However, this selection scheme was too toxic for cells additionally stressed by the co-transfection procedure, we repeated this experiment at a reduced hygromycin concentration of 150 µg/ml. After seven days of hygromycin exposure, cells were grown in a p100 dish with growth medium supplemented with 50 µg/ml...
hygromycin. Once confluent, 2x10^6 cells were collected for genomic DNA isolation using the GeneElute™ Mammalian Genomic DNA Miniprep Kit.

Fig. 3.15 Expression plasmid knock-in verification primer pairs.
Design of primer pairs to verify integration of the expression plasmid pAN3469 in the AAVS1 knock-in platform.

By subsequent PCR analysis we verified integration of the expression vector in the AAVS1 knock-in platform. Whereas primer pair OAN3029/OAN3030 was used to amplify the region between the SV40 early promoter and the hygromycin gene, primer pair OAN3031/OAN3032 amplified the region between the BGH polyadenylation site and the Gaussia Luciferase gene (Fig. 3.15). This design allowed verifying expression vector integration in all the five stable cell lines.

The PCR reaction setup was performed following the next scheme, to establish the best PCR reaction condition:

OAN3029/OAN3030: expected PCR product 350bp

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume to use</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Master mix 4,5x</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O up to 50 µL</td>
<td>29 µL</td>
<td>27.5 µL</td>
<td>29 µL</td>
<td>27.5 µL</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5X Phusion HF buffer</td>
<td>10 µL</td>
<td>10 µL</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5X Phusion GC buffer</td>
<td>--</td>
<td>--</td>
<td>10 µL</td>
<td>10 µL</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2 mM dNTPs</td>
<td>5 µL</td>
<td></td>
<td></td>
<td></td>
<td>22.5 µL</td>
<td></td>
</tr>
<tr>
<td>10 µM OAN3029</td>
<td>2,5 µL</td>
<td></td>
<td></td>
<td></td>
<td>11,25 µL</td>
<td></td>
</tr>
<tr>
<td>10 µM OAN3030</td>
<td>2,5 µL</td>
<td></td>
<td></td>
<td></td>
<td>11,25 µL</td>
<td></td>
</tr>
<tr>
<td>Template: genomic DNA, not diluted</td>
<td>1 µL</td>
<td></td>
<td></td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>DMSO (optional)</td>
<td>(1,5 µl)</td>
<td>--</td>
<td>1,5 µl</td>
<td>--</td>
<td>1,5 µl</td>
<td>--</td>
</tr>
<tr>
<td>Phusion polymerase</td>
<td>0.5 µL</td>
<td></td>
<td></td>
<td></td>
<td>2,25 µl</td>
<td></td>
</tr>
<tr>
<td>master mix</td>
<td>11 µl</td>
<td>11 µl</td>
<td>11 µl</td>
<td>11 µl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OAN3031/3032: expected PCR product 620bp

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume to use</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Master mix 4,5x</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O up to 50 µL</td>
<td></td>
<td>29 µL</td>
<td>27,5 µL</td>
<td>29 µL</td>
<td>27,5 µL</td>
<td>-- --</td>
</tr>
<tr>
<td>5X Phusion HF buffer</td>
<td></td>
<td>10 µL</td>
<td>10 µL</td>
<td>-- --</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td>5X Phusion GC buffer</td>
<td></td>
<td>-- --</td>
<td>-- --</td>
<td>10 µL</td>
<td>10 µL</td>
<td>-- --</td>
</tr>
<tr>
<td>2 mM dNTPs</td>
<td></td>
<td>5 µL</td>
<td></td>
<td></td>
<td>22,5 µL</td>
<td></td>
</tr>
<tr>
<td>10 µM OAN3031</td>
<td></td>
<td>2,5 µL</td>
<td></td>
<td></td>
<td></td>
<td>11,25 µL</td>
</tr>
<tr>
<td>10 µM OAN3032</td>
<td></td>
<td>2,5 µL</td>
<td></td>
<td></td>
<td></td>
<td>11,25 µL</td>
</tr>
<tr>
<td>Template: genomic DNA, not diluted</td>
<td></td>
<td>1 µL</td>
<td></td>
<td></td>
<td></td>
<td>-- --</td>
</tr>
<tr>
<td>DMSO (optional)</td>
<td></td>
<td>(1,5 µl)</td>
<td>-- --</td>
<td>1,5 µl</td>
<td>-- --</td>
<td>1,5 µl</td>
</tr>
<tr>
<td>Phusion polymerase</td>
<td></td>
<td>0,5 µL</td>
<td></td>
<td></td>
<td></td>
<td>2,25 µl</td>
</tr>
<tr>
<td>master mix</td>
<td></td>
<td>11 µl</td>
<td>11 µl</td>
<td>11 µl</td>
<td>11 µl</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3.16 PCR reaction setup analysis for integration of expression plasmid pAN3469 in HeLa129.

Primers for 5’ junction amplification: OAN3029 (ATTCTCCGCCCCATGGCTGAC) and OAN3030 (ATCTTTGTAGAAACCATCGGCGCAGC), expected PCR product 350 bp. Primers for 3’ junction amplification: OAN3031 (CGAGATCCGTGGTCGAGTTG) and OAN3032 (AGCCATCTGTTGTTGCCCTCC), expected PCR product 620 bp. PCR thermocycler program for 5’ and 3’ junction amplification: 98°C for 10 s, 35 cycles at 98°C for 10 s, 67°C for 30 s, 72°C for 10 min. (Agarose 1% and TAE 1X, loading purple dye 6X, BenchTop 1 kb DNA ladder Promega).

Clone B1 of HeLa3469 proved to have integrated the expression vector pAN3469 into the AAVS1 knock-in platform (Fig. 3.16), and the line was renamed HeLa^{tet-oxynWT} clone B1.

The cell seeding and transfection protocol applied for the integration of the expression plasmid pAN3469 were used for the other four expression plasmids. Cells were then grown in growth medium supplemented with 150 µg/ml hygromycin for seven days, and once confluent, 2x10^6 cells were collected to isolate genomic DNA as described. PCR analysis was then performed using the same conditions as for the HeLa^{tet-oxynWT} clone B1.
Results

Fig. 3.17 PCR analysis for integration of expression plasmids pAN3470, pAN3516, pAN3517 and pAN3518 in HeLa129.

Primers for 5’ junction amplification: OAN3029 (ATTCTCCGCCCCATGGCTGAC) and OAN3030 (ATCTTTGTAGAAACCATCGGCAGC), expected PCR product 350 bp. Primers for 3’ junction amplification: OAN3031 (CGAGATCCGTGGTCGCGAAGTTG) and OAN3032 (AGCCATCTGTTGTTTGCCCCTCC), expected PCR product 620 bp. PCR thermocycler program for 5’ and 3’ junction amplification: 98°C for 30 s, 35 cycles at 98°C for 10 s, 67°C for 30 s, 72°C for 30 s, and 72°C for 10 min. (Agarose 1% and TAE 1X, loading purple dye 6X, BenchTop 1 kb DNA ladder Promega).

Integration of the other four expression plasmids into the AAVS1 knock-in platform was successful (Fig. 3.17), and clones were renamed as follows (Fig. 3.18):

- HeLatet-asynA53T: HeLa129 with integrated pAN3470
- HeLatet-asynWT/Opa1: HeLa129 with integrated pAN3516
- HeLatet-asynA53T/Opa1: HeLa129 with integrated pAN3517
- HeLaOpa1: HeLa129 with integrated pAN3518
Fig. 3.18 AAVS1 Flp-In stable cell lines.
Overview of the AAVS1 site after integration of the single expression plasmids. HeLa\textsuperscript{tet-\alpha\textsubscript{syn}A53T}, AAVS1 knock-in tetracycline-inducible human A53T α-synuclein. HeLa\textsuperscript{tet-\alpha\textsubscript{syn}WT/Opa1}, AAVS1 knock-in tetracycline-inducible human wild type α-synuclein with stable overexpression of OPA1. HeLa\textsuperscript{tet-\alpha\textsubscript{syn}A53T/Opa1}, AAVS1 knock-in tetracycline-inducible human A53T α-synuclein with stable overexpression of OPA1. HeLaOpa1, stable overexpression of OPA1.

Cells with verified integration of the expression plasmids were grown in medium supplemented with 50 µg/ml hygromycin to maintain a mild selection condition.

3.1.3 Characterization of stable cell lines
In the next step, we set out to verify the overexpression of inducible genes (human wild type α-synuclein; human A53T α-synuclein) after tetracycline addition, and to check the stable overproduction of human OPA1. Cells of each cell line were seeded at an amount of 1x10^6/p100 into p100 dishes with tetracycline-free growth medium as follows: one p100 dish with untreated cells, and two p100 dishes with cells induced with tetracycline (1µg/ml) for 24 and 48 hours, respectively. Cell lines without inducible genes, i.e. Hela129 and HeLaOpa1, received an identical treatment to control for any possible toxic effects or impacts on protein expression. Each sample was analysed by Western blot. HeLa129 were used in all SDS PAGE experiments as control to evaluate protein expression in stable cell lines (Fig. 3.19).
Results

A

<table>
<thead>
<tr>
<th></th>
<th>HeLa<sub>tet-αsynWT</sub> B1</th>
<th>Hela129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet 48h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tet 24h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αsyn</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>HeLa<sub>tet-αsynWT</sub> B2</th>
<th>Hela129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet 48h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tet 24h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αsyn</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>HeLa<sub>tet-αsynWT</sub> D1</th>
<th>Hela129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet 48h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tet 24h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αsyn</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>HeLa<sub>tet-αsynWT</sub> D2</th>
<th>Hela129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet 48h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tet 24h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αsyn</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th></th>
<th>HeLa<sub>tet-αsynWT</sub> D3</th>
<th>Hela129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tet 48h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Tet 24h</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>GAPDH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αsyn</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
Results

Fig. 3.19 Evaluation of α-synuclein and Opa1 expression levels in AAVS1 Flp-In stable cell lines.

Representative western blot (left side) and related quantification (right side) of each stable cell line. A. HeLa^{α-synWT} clone B1. B. HeLa^{α-synWT} clone B2. C. HeLa^{α-synWT} clone D1. D. HeLa^{α-synWT} clone D2. E. HeLa^{α-synWT} clone D3. F. HeLa^{α-synA53T}, G. HeLa^{Opa1} clone A. H. HeLa^{Opa1} clone B. I. HeLa^{α-synWT/Opa1} clone A. L. HeLa^{α-synA53T/Opa1}. HeLa129 cells were used as a control. Whole cell lysates were analyzed by western blotting using anti-αsyn (Abcam 138501,
Results

1:10000 in 5% low-fat milk TBST), anti-OPA1 (Cell Signaling D6U6N, 1:1000 in TBST 5% BSA), and anti-GAPDH antibodies (Santa Cruz 32233, 1:1000 in TBST). Secondary antibodies: Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP (ThermoFisher A16072); Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP (ThermoFisher A16104). Vilber Fusion FX and Fusion FX software for acquisition and quantification (average of three technical replicates).

As semi-quantitative technique, Western blotting allows only relative comparisons between protein expression levels. Therefore, we additionally applied immunohistochemistry to verify α-synuclein overexpression. Due to the strong induction of A53T mutant α-synuclein, HeLatet-αsynA53T line was used. Cells were seeded at an amount of 1x106/p100 in three p100 dishes following the same scheme used for Western blot analysis: one p100 dish with untreated cells, and two p100 dishes containing cells induced with tetracycline (1µg/ml) for 24 and 48 hours, respectively. Cells of each condition were collected, washed in PBS, resuspended in 4% PFA and incubated one hour at room temperature for fixation. Each sample was then resuspended in HistoGel (Thermo Scientific HG-4000-012) and paraffin-embedded. Histological sections were stained with anti-α-synuclein antibody according to the standard protocol. Images were acquired for each sample using an Olympus BC43 microscope (10X and 20X magnification), and analysed with Ilastik software to assess the percentage of α-synuclein expressing cells over the total number of cells (Fig. 3.20).

![Fig. 3.20 α-synuclein overexpression in HeLatet-αsynA53T.](image)

Representative micrographs showing α-synuclein staining in uninduced, 24 hours tet-induced and 48 hours tet-induced HeLatet-αsynA53T. Ilastik analysis of expressing cells: six images (10X magnification) analysed for each condition. Statistics: t-test one way ANOVA. * denotes p-values < 0.05, *** p-values < 0.001.

Ilastik analysis revealed that 30% of HeLatet-αsynA53T cells overexpressed A53T α-synuclein at 48 hours after tetracycline-induction. Considering that hygromycin selection was conducted right after transfection of the expression plasmid without any single clone passage, it was expected to have a mixture of stably transfected cells and cells without integration of the
expression plasmids. For this reason, cells of each cell line underwent an additional hygromycin selection step (150 µg/ml) to remove as many cells lacking expression plasmid integration as possible. Cells were collected (2x10^6 cells for each cell line) to isolate genomic DNA and continued integration of the expression plasmids was verified by PCR as described before.

![Fig. 3.21 PCR analysis for integration of expression plasmids after second hygromycin selection.](image)

HeLa129. Primers for 5' junction amplification: OAN2884 (CTTTGAGCTCTACTGGCTTCTGCGCC) and OAN2886 (CCCTAGAGGATCCCCGGGTACCAAG), expected PCR product 1258 bp. Primers for 3' junction amplification: OAN2889 (GCTGCCTCAAAGGGCTTGCCAAC) and OAN2890 (GCAGTCACCCCACAGTTGGAGGAG), expected PCR product 1528 bp. PCR thermocycler program for 5' and 3' junction amplification: 98°C for 30 s, 35 cycles at 98°C for 10 s, 69°C for 30 s, 72°C for 30 s, and 72°C for 10 min.

Stable cell lines. Primers for 5' junction amplification: OAN3029 (ATTCTCCGCCAACATGGCTGAC) and OAN3030 (ATCTTTGTAGAAACCATCGGCCAGC), expected PCR product 350 bp. Primers for 3' junction amplification: OAN3031 (CGAGATCGGCTCGGAATTTG) and OAN3032 (AGCCATCTGTGTGTGCCCTCC), expected PCR product 620 bp. PCR thermocycler program for 5' and 3' junction amplification: 98°C for 30 s, 35 cycles at 98°C for 10 s, 72°C for 30 s, 72°C for 10 min. (Agarose 1% and TAE 1X, loading purple dye 6X, BenchTop 1 kb DNA ladder Promega).

Except for HeLatet-asynWT clone B1, all other stable lines showed expression plasmid integration (Fig. 3.21). As for HeLatet-asynWT additional four clones were available, we decided not to use clone B1 anymore.
As it was not possible to apply immunohistochemistry to verify OPA1 overexpression due to lack of a suitable anti-Opa1 antibody, we decided to use droplet digital PCR to evaluate Opa1 expression levels in those cell lines harbouring integration of the OPA1 construct. Cells were collected (1x10^6 for each cell line) and QIAGEN RNeasy mini kit was used to purify RNA. Reverse transcription of extracted RNA was performed using SuperScript™ IV VILO Master Mix. Each cDNA sample was diluted 1:200 prior to addition to the human OPA1 and human GAPDH primer/probe PCR mix. For each sample, the reaction was performed in triplicate. Following droplets generation, PCR reaction was performed in a C1000 Touch Thermal Cycler, and signal detection was accomplished using the QX200 Droplet Reader. Bio-Rad QuantaSoft software was used to manually set the amplitude threshold and to analyse the data. Hela129 were used as control.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Number of copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa<sup>Opa1</sup> 1A</td>
<td>0.734</td>
</tr>
<tr>
<td>HeLa<sup>Opa1</sup> 1B</td>
<td>0.774</td>
</tr>
<tr>
<td>HeLa<sup>tet-asynWT/Opa1</sup> 1A</td>
<td>0.833</td>
</tr>
<tr>
<td>HeLa<sup>tet-asynWT/Opa1</sup> 1B</td>
<td>1.479</td>
</tr>
<tr>
<td>HeLa<sup>tet-asynA53T/Opa1</sup> 1A</td>
<td>1.037</td>
</tr>
<tr>
<td>HeLa<sup>tet-asynA53T/Opa1</sup> 1B</td>
<td>0.938</td>
</tr>
</tbody>
</table>

Table 3.2 ddPCR results. Number of copies of Opa1 in stable cell lines with integrated Opa1 construct.

ddPCR data analysis revealed that only HeLa^{tet-asynWT/Opa1} clone 1B showed ~1.5 fold overexpression of OPA1 (Table 3.2) compared to the control cell line (Hela129). The other cell lines with OPA1 construct integration did not show any Opa1 overexpression.

As one cell line out of six displayed Opa1 overexpression, we decided to verify the integrity of both the EF1α promoter and the OPA1 gene in these cell lines by PCR. Hela129 were used as control.
Results

Fig. 3.22 PCR analysis for integrity of EF1α promoter and Opa1 gene in stable cell lines with integrated Opa1 construct.

Primers for amplification between EF1α promoter and Opa1: OAN3323 (CCGCCAGAACACAGGTAAGTGCC) and OAN3324 (TACGTAAGGAAGGTTTGTCAAGAAGAAGAAC), expected PCR product 252 bp. Primers for amplification between the final part of Opa1 construct and the FRT site: OAN3325 (GCTGAAGATGGTGAGAAGAAGATTAAATTGC) and OAN3352 (CTAGAGCCCAAGCTGCTTTTC), expected PCR product 430 bp. PCR thermocycler program: 98°C for 30 s, 35 cycles at 98°C for 10 s, 67°C for 30 s, 72°C for 30 s, and 72°C for 10 min.

(agarose 1% and TAE 1X, loading purple dye 6X, BenchTop 1 kb DNA ladder Promega).

Except for the control HeLa129 line, all the stable cell lines exhibited intact EF1α promoter and OPA1 construct (Fig. 3.22)

Following the additional hygromycin selection step, immunohistochemistry was applied to all stable cell lines to verify α-synuclein expression levels. Cells were seeded, treated, collected, fixed and paraffin-embedded as previously described. Histological sections were stained with anti-α-synuclein antibody according to the standard protocol and images were acquired using an Olympus BC43 microscope. Ilastik software was employed to analyse the acquired pictures and assess the percentage of α-synuclein expressing cells over the total number of cells. HeLa129 were used as control.
Fig. 3.23 α-synuclein immunohistochemistry.
Ilastik analysis of α-synuclein stained uninduced, 24 hours tet-induced and 48 hours tet-induced cells: six images (10X magnification) analysed for each condition. Statistics: t-test one way ANOVA.
* denotes p-values < 0.05, ** p-values < 0.01, *** p-values < 0.001, n.s. - no significant difference.

Ilastik analysis revealed that almost 60% of HeLatet-αsynA53T cells overexpressed A53T α-synuclein at 48 hours after tetracycline-induction following the additional hygromycin selection procedure. As expected, this result points out that sequential steps of hygromycin treatment are required to remove cells lacking expression plasmid integration, thereby to obtain a more homogeneous cell population. Concerning HeLatet-αsynWT cells, none of the clones showed a significant overexpression of wt α-synuclein after 48 hours of tetracycline-induction, despite the expression plasmid integration. The two clones of HeLatet-αsynWT/Opa1 showed opposites results: clone A displayed a significant overexpression of wt α-synuclein 48 hours after tetracycline-induction, while clone B showed a reduction of wt α-synuclein expression at the same time point, compared to non-induced cells. Regarding HeLatet-αsynA53T/Opa1 cells, A53T α-synuclein is significantly overexpressed at 24 hours after tetracycline-induction compared to non-induced cells, but then expression decreases at 48 hours after tetracycline-induction. Lastly, a moderate overexpression of α-synuclein is shown 24 hours after tetracycline-induction in HeLaOpa1 clone A, while HeLaOpa1 clone B cells display a light overexpression 48 hours after tetracycline-induction, even though α-synuclein is not present in the integrated expression plasmids.
3.2 p97 PROJECT

Mutation in p97 causing IBMPFD might impact interaction with its cofactor UBXD1

The AAA-ATPase valosin containing protein p97/VCP is the central component of the retrotranslocation machinery, which enables the proteasomal degradation of misfolded proteins at different subcellular locations, thereby preventing proteotoxic cell stress. The p97 protein is therefore regarded as a cofactor-guided, multifunctional protein important for the degradation of ubiquitinated client proteins.

In 2013, the Frank lab (Basel) was involved in the identification of a novel heterozygous missense mutation in the p97 gene in a Swiss family with hereditary inclusion body myopathy and dementia [320]. Three brothers (III 1-3) independently presented with varying degrees of muscular weakness (Fig. 3.24 D). Patient III 2, a half brother of patient III 1, declined follow-up after the first evaluation. Muscle biopsies of all three patients revealed similar features: variation of fiber size, centralised nuclei, and focal perivascular and endomysial lymphocytic infiltrates of varying degrees (Fig. 3.24 A), interpreted as inclusion-body myositis. Brain autopsy of patient III 1 revealed a moderate frontotemporal cortical atrophy (Fig. 1B), and immunostaining of the neocortex and hippocampal CA1 region revealed numerous dystrophic neurites positive for ubiquitin and TDP43 (Fig. 3.24 C). Genomic sequencing of the VCP gene (p97) of the three brothers disclosed a novel heterozygous missense mutation c.828 A>T in exon 6 (Fig. 3.24 E), leading to a change from isoleucine to phenylalanine at position 206 (I206F) within the conserved linker domain of p97 protein. Furthermore, skeletal muscle tissue analysed by electron microscopy displayed altered mitochondrial morphology (swollen mitochondria) and ultrastructure (paracrystalline inclusions) (Fig. 3.24 F).
p97 is assisted by diverse cofactors for the recognition and processing of its substrates. One of these cofactors is the UBXD1/UBXN6/UBXDC2 protein, which targets p97 to perform its
functions in ER-associated degradation (ERAD) [327], endolysosomal sorting [188],
autophagic degradation of lysosomes [189], and outer mitochondrial membrane degradation
(OMMAD) [190]. As recently reported by the Neutzner lab (Basel), the p97 cofactor UBXD1
recognizes depolarized mitochondria, thereby promoting the recruitment of p97 to
mitochondria early during Parkin-dependent mitophagy [192].
Therefore, we set out to evaluate whether the reported novel p97 missense mutation would
affect the interaction with its UBXD1 cofactor. To this end, we took advantage of a yeast two-
hybrid assay. This assay is based on the reconstitution of a functional transcription factor
when two proteins or polypeptides of interest interact in genetically modified yeast strains.
In these modified yeast strains, the transcription of a reporter gene leads to a particular
phenotype, usually growth on a selective medium or change in the colour of the yeast
colonies. In the Matchmaker GAL4-based two-hybrid assay, the transcription factor is split
into two separate fragments, the GAL4 DNA-binding domain (DNA-BD) and the GAL4
activation domain (AD). A bait protein is expressed as a fusion to the DNA-BD, whereas
libraries of prey proteins are expressed as fusion to the GAL4 AD. The VIM domain of UBXD1
protein was chosen as bait protein and fused to the GAL4 DNA-BD, while three different
preys were fused to the GAL4 AD: the N-terminal domain of wild-type p97; the N-terminal
domain of p97 R155H as the most common disease-related mutant, and the N-terminal
domain of p97 I206F as the newly identified missense mutation (Fig. 3.25).

Fig. 3.25 Yeast two-hybrid (Y2H) principle.
Two proteins are expressed separately, the bait protein (UBXD1 VIM domain) fused to the GAL4 DNA binding
domain (BD) and prey proteins (p97 wt, p97 R155H, p97 I206F) fused to the GAL4 transcriptional activation
domain. (modified from Matchmaker® Gold Yeast Two-Hybrid System User Manual)
Serial dilutions of yeast strains containing GAL4BD-UBXD1 VIM domain as bait and GAL4AD fused with the three different p97 as preys or GAL4AD vector as prey control on media selective for interaction (QDOX and QDOXA) revealed growth of strains containing GAL4BD-UBXD1 VIM domain and each of the three different p97 preys, while no growth was detected for yeast strains containing pGBKT7 (empty vector) bait or pGADT7 (empty vector) prey, as shown in Figure 3.26.

As all three p97 variants (wild-type; R155H; I206F) interacted with the VIM domain of UBXD1, we had to set out to quantify the strength of the interaction by an α-galactosidase quantitative assay. This sensitive colorimetric method detects and quantifies the yeast α-galactosidase activity by measuring the rate of hydrolysis of a chromogenic substrate, p-nitrophenyl-α-D-galactoside (PNP-α-Gal). As shown in Figure 3.27, the two disease-associated p97 mutants displayed a stronger interaction with UBXD1 as compared to wild-type p97.
Results

Fig. 3.27 α-galactosidase quantitative assay.

Strength of yeast two-hybrid interaction between the VIM domain of UBXD1 and p97 wild-type or the two disease-relevant p97 mutants was quantified using a para-nitrophenyl-α-galactoside assay. The graph shows the average of two independent experiments with three technical replicates each. Error bars represent standard deviation (SD). Statistical significance was assessed by ANOVA pairwise comparison followed by Student’s t-test using false discovery rate (FDR) correction to account for multiple comparisons. ** denotes p-values < 0.01.

As can be appreciated, differences, although statistically significant, were too small to justify further characterization of the interaction between UBXD1 and newly identified mutant p97.
4. Discussion

4.1 Opa1 PROJECT

4.1.1 Generation of a double transgenic mouse model

Parkinson’s disease (PD) is a pathogenically complex multifactorial disease and the most common neurodegenerative movement disorder [263]. Several lines of evidence, obtained from studies of familial forms of PD, patient samples, and in vitro/in vivo models, underline a major role of mitochondrial dysfunction, impaired mitochondrial quality control, and dysregulated mitochondrial crosstalk with other organelles.

This project aimed to understand whether moderate overexpression of the inner mitochondrial membrane OPA1 would rescue the mitochondrial dysfunction caused by A53T mutant α-synuclein. The underlying rationale for this work was based on the fact that mild overexpression of OPA1 was recently demonstrated to improve the motor performance in addition to biochemical and molecular phenotypes of two mouse models of mitochondrial disease [328]; of note, in mice, mild OPA1 overexpression is compatible with normal development, fertility and lifespan [83]. Therefore, our intention was to cross the Opa1tg mouse with the A53T α-synuclein transgenic line M83 model [325] to analyse the mitochondrial phenotype in the double transgenic mouse.

4.1.1.1 A53T α-synuclein transgenic line M83

The PD mouse model expressing the A53T mutant human α-synuclein was generated by the group of Virginia M. Lee in 2002 [325] by microinjection of the MoPrP.Xho expression vector harboring the A53T mutant human α-synuclein into C57Bl/C3H mouse eggs. Potential founders were identified by Southern blot analysis of the isolated genomic DNA with a 32P-labeled oligonucleotide-primed α-synuclein DNA probe. As standard PCR is not able to discriminate between homozygous and heterozygous animals, genotype evaluation is currently achieved by Southern blot and qPCR. However, as no clear qPCR ΔCt threshold has been established for discrimination, the transgene genotype is usually determined by comparing ΔCt values of unknown samples against known homozygous and heterozygous controls. Furthermore, the exact transgene copy numbers are not known for either homozygous or heterozygous animals, which represented a significant limitation for the
establishment of genotypically defined animal groups after crossing the two mouse models, as double transgenic mice would not have the same number of copies of A53T mutant human α-synuclein. Indeed, sybr green real-time PCR performed on heterozygous mice purchased from Jackson Laboratory revealed varying α-synuclein transgene copy numbers (Fig. 3.1). In addition, the Jackson Laboratory also reported a high incidence of nonproductive matings in homozygous mice. Moreover, the A53T α-synuclein transgenic line M83 model has a different genetic background (C3H) compared to the Opa1ts mouse (Sv129). This would have implied several passages of back-crossing to achieve an identical genetic background in the double transgenic model.

Even if abnormal α-synuclein inclusions of homozygous mice resemble human pathological inclusions of patients with the A53T mutation known as Lewy bodies with regard to their immunological, histological, biochemical and ultrastructural properties, the anatomical distribution of these lesions in A53T mouse brains does not recapitulate the situation in human PD. In fact, tyrosine hydroxylase (TH)-expressing neurons of the substantia nigra do not show the same selective vulnerability as in humans, possibly due to a lack of neuromelanin generation. Additionally, intrinsic protective mechanisms counteracting oxidative damage could prevent this population of neurons from pathological α-synuclein inclusion formation.

4.1.1.2 Opa1ts mouse line

The Opa1ts mouse was developed by the research group of Luca Scorrano in 2013 [83] by targeting mouse variant 1 Opa1 under the human beta-actin promoter in the murine X chromosome Hprt region via homologous recombination in BPES embryonic stem cells, thus avoiding toxically high Opa1 levels and consequent mitochondrial fragmentation [65]. Mice were viable and fertile, with moderate (~1.5 increase) and ubiquitous overproduction of Opa1. Mitochondria turned out to be slightly elongated, with tighter cristae as well as with increased respiratory chain supercomplex (RCS) assembly and respiratory function.

As the generation of the double transgenic mouse despite our best efforts was not feasible, we decided to switch to an in vitro model to address our aim of research. Therefore, to benefit from the moderate Opa1 overexpression already achieved with the Opa1ts mouse, we proceeded with the isolation and immortalization of fibroblasts from the diaphragm of wt and
hemizygous *Opa1* 7-week-old C57BL6/J male mice (MAFs), as described in Cogliati et al. [83]. Our intent was to later stably transfect wt and *Opa1* MAFs with wt and mutated α-synuclein to create an appropriate cellular model to address our research question. Following PCR analysis, primary (Fig. 3.2 B, right picture) and immortalized (Fig. 3.2 C) *Opa1* MAFs displayed an unexpected molecular pattern, showing not only the 1200 bp band of the tg *Hprt* locus mouse allele but also the 400bp band of the wt *Hprt* locus mouse allele, as if the analysed DNA belonged to a mixed population of cells. PCR analysis performed on five different tissues (brain, diaphragm, liver, muscle and tail) confirmed an aberrant PCR pattern among the different tissues in seven out of eight mice (Fig. 3.3). While the exact reasons for this aberrant genotyping remains unclear, our observations point to a mosaicism in these mice. In conclusion, mouse-derived fibroblasts could not be used for our aim of research.

4.1.2 Generation of stable cell lines

Genomic safe harbors (GSHs) are regions of the human genome able of accommodating genetic material and allowing transgene expression without adverse effects on the host cell or organism. Thus, a GSH must not alter cellular functions or predispose cells to malignant transformation [326]. Among the few candidate genomic safe harbors, the adeno-associated virus site 1 (AAVS1) has been successfully targeted. AAVS1 is located within the *protein phosphatase 1, regulatory (inhibitor) subunit 12C (PPP1R12C)* gene on chromosome 19, characterised by an open chromatin conformation and a transcription-competent environment [329]. It is considered a “safe harbor” for transgene integration into the human genome as no known adverse effects have been observed following disruption of the *PPP1R12C* gene locus [330]. For this reason, we decided to use AAVS1 for targeted gene delivery and integration of our genes of interest to generate stable cell lines. Our approach is based on the combination of two existing systems, with some modifications: the GeneCopoeia Genome-TALER™ human AAVS1 Safe Harbor Gene Knock-in System combined with the ThermoFisher Flp-In™ T-REx™ System. As described in Fig. 3.4, we used the GeneCopoeia Genome-TALER™ system to generate DSBs in the AAVS1 locus through specific TALENs, thus stimulating HR and allowing the integration of a platform vector due to the presence of AAVS1 homology arms (Fig. 3.7). HeLa cells were used as cellular model for the application of our targeted gene delivery strategy. We were aware that this cell line, derived from human...
cervical cancer [331], did not represent the optimal model to study neurodegenerative disorders such as Parkinson’s disease. Indeed, our initial choice was the neuroblastoma SH-SY5Y cell lineage, a widely used in vitro model for PD even though its properties do not classify this lineage as dopaminergic [332]. Nevertheless, most of the genes and pathways dysregulated in PD pathogenesis are intact in these cells [333]. Neuroblastoma SH-SY5Y cells followed the same protocol applied to HeLa cells for the transfection and integration of the platform vector within the AAVS1 locus, as well as the process of single cloning in 96 well plates and the Luciferase assay. However, as several attempts were unsuccessful (i.e. no luciferase-positive SH-SY5Y clones could be obtained), we decided to proceed with HeLa cells, with which three luciferase-positive clones were obtained (Fig. 3.8 B). While not of neuronal origin, HeLa cells nonetheless are a widely employed model to study basic mechanisms of mitochondrial quality control. After excluding mycoplasma contamination (Fig. 3.9) and assessing pAN3418 platform vector integration by PCR analysis (Fig. 3.10 B), proliferation of the three luciferase-positive clones was evaluated to determine the clone best suitable for further experimentation. Clone 129 was selected, as it showed a more linear growth compared to clones 19 and 31 (Fig. 3.11).

The second step of our targeted gene delivery and integration approach is based on the ThermoFisher Flp-In™ T-REx™ System. Therefore, Flp-In™ T-REx™ System expression plasmid pcDNA5/FRT/TO, modified after insertion of our genes of interest, was cotransfected with Flp recombinase (pOG44 plasmid) to be integrated into the knock-in platform of HeLa129 following HR. The inserted genes of interest are human OPA1 variant 1 and human A53T α-synuclein with the aim of recapitulating in vitro the characteristics of the two mouse models as well as what would have been the double transgenic mouse. Human OPA1 variant 1 was chosen among the eight isoforms expressed in humans because it generates both long (l)- and short (s)-OPA1 forms through alternative splicing. OPA1 variant 1 is characterised by exon 4b deficiency and incomplete cleavage at the S1 site, just as variants 2, 4 and 7. Indeed, variants containing exon 4 are required for maintaining a fused mitochondrial network [72]. Conversely, the region encoded by exon 4b is present in the other four variants (3, 5, 6 and 8), leading to complete cleavage at the S1 site, generating s-OPA1 forms only [334]. Of note, the OPA1 l/s isoform dysbalance towards s-forms inhibits mitochondrial fusion, leads to network
fragmentation and activates mitochondrial quality control processes to remove fragmented and depolarized mitochondria through mitophagy [335], [336]. Additionally, we decided to clone human wild-type α-synuclein into the pcDNA5/FRT/TO plasmid, as a familial form of (inherited) PD is known to be caused by duplication [337], [338] or triplication [339] of the SNCA gene (coding for α-synuclein), leading to increased formation of toxic aggregates and widespread neuronal damage [340]. Both wild-type and mutated α-synuclein were cloned next to a tetracycline-inducible promoter to evaluate the effects of their overexpression at different time points, while constitutive expression of human OPA1 variant 1 was obtained using the EF1α promoter. Five plasmids were designed, cloned and cotransfected into HeLa129 cells to generate the corresponding stable cell lines, and integration was verified by PCR analysis upon hygromycin selection (Figs. 3.16 and 3.17).

4.1.3 Characterization of stable cell lines

The characterization of the newly generated AAVS1 Flp-in stable cell lines started with evaluation of α-synuclein and Opa1 expression levels by Western blot (Fig. 3.19 A-L). All five HeLa\textsuperscript{tet-\textasciitilde{a}syn\textasciitilde{WT}} clones displayed α-synuclein overexpression following tetracycline-induction compared to the control cell line (HeLa129), with clone D2 (Fig. 3.19 D) displaying the highest α-synuclein expression levels at 24 hours after tetracycline-induction. However, clone B1 presented a more linear increase of protein expression over time upon tetracycline-induction (Fig. 3.19 A).

The two HeLaOpa1 clones showed opposite changes in OPA1 expression levels, with clone A displaying lower OPA1 expression as compared to the control cell line, while clone B showed decreased OPA1 expression following tetracycline treatment.

As for HeLa\textsuperscript{tet-\textasciitilde{a}syn\textasciitilde{WT}/Opa1} and HeLa\textsuperscript{tet-\textasciitilde{a}syn\textasciitilde{A53T}/Opa1}, only one clone for each cell line was analysed by Western blotting (WB), revealing substantial variability in expression levels, which was also true for HeLaOpa1 and HeLa\textsuperscript{tet-\textasciitilde{a}syn\textasciitilde{WT}} clones.

Quite the opposite, HeLa\textsuperscript{tet-\textasciitilde{a}syn\textasciitilde{A53T}} showed a strong and reproducible α-synuclein band in all the WB membranes analysed, with high levels of mutant protein at 48 hours of tetracycline-induction (Fig. 3.19 F). Indeed, this α-synuclein mutant is more prone to aggregate formation and subsequent adoption of a β-sheet conformation [341], which could explain the early disease onset of the α-synuclein A53T mutation-linked form of PD [342]. Among the known
Discussion

consequences of α-synuclein aggregation there are inhibition of the ubiquitin proteasome system (UPS) and impaired autophagy-lysosomal pathway (ALP) function [343], [344], suggesting possible failure of protein degradation machineries.

In order to verify the strong α-synuclein overexpression, immunohistochemistry was applied to HeLa\textsuperscript{tet-\text{asynA53T}}, revealing that 30% of the cell population overexpressed mutant α-synuclein following 48 hours of tetracycline-induction (Fig. 3.20). Due to the lower hygromycin concentration used to avoid massive cell death while selecting cells with expression plasmid integration, it was expected to still have cells without any expression plasmid integration. Therefore, prior to applying immunohistochemistry to the other stable cell lines, an additional hygromycin selection step was performed, followed by PCR to verify persistent integration of the expression plasmids. As shown in Fig. 3.21, all the stable cell lines retained the expression plasmid integration, except for HeLa\textsuperscript{tet-\text{asynWT}} clone B1, which was discontinued even though it showed a linear increase in protein expression following tetracycline-induction and prior to additional hygromycin selection (as judged by Western blotting).

The evaluation of OPA1 expression levels in cell lines harboring integration of the OPA1 construct was performed with droplet digital PCR as no good anti-OPA1 antibodies for immunohistochemistry are commercially available. The analysis revealed that only one out of six cell lines, HeLa\textsuperscript{tet-\text{asynWT}/Opa1} clone 1B, displayed OPA1 overexpression (Table 3.2). Therefore, we performed PCR analysis in all the stable lines with OPA1 integration to evaluate if both EF1α promoter and OPA1 construct were still intact after the repeated selection steps. All samples displayed intact EF1α promoters and OPA1 constructs (Fig. 3.22). Further experiments are needed to understand the absence of OPA1 overexpression even though promoter and gene constructs are intact in all the stable lines as well as in the starting plasmid vector where they were cloned in.

Immunohistochemistry for α-synuclein was repeated after the additional hygromycin selection procedure to verify levels of protein expression in all the stable cell lines. As expected, a higher percentage of HeLa\textsuperscript{tet-\text{asynA53T}} cells (∼60%) overexpressed A53T α-synuclein at 48 hours after tetracycline-induction (Fig. 3.23), compared to the first immunohistochemistry staining. Indeed, with several selection passages, it is possible to reduce the number of cells lacking expression plasmid integration, and to thereby obtain a more homogeneous cell population for further experimentation.
Further evaluations are necessary for the other stable cell lines as none of the HeLatet-\textalpha-syn\textWT clones showed robust wild-type \textalpha-synuclein overexpression, not even at 48 hours after tetracycline-induction, while the two HeLatet-\textalpha-syn\textWT/Opa1 clones showed opposites results, with clone B displaying reduced expression following tetracycline induction. HeLatet-\textalpha-syn\textA53T/Opa1 cells showed an increase in mutant \textalpha-synuclein overexpression at 24 hours after tetracycline-induction, followed by a significant decrease at 48 hours only in clone B. It is not possible yet to speculate that this decrease at 48 hours is a consequence of OPA1 overexpression, as the droplet digital PCR analysis was applied to cells in basal conditions, that is without any induction of \textalpha-synuclein overexpression, and OPA1 expression levels at 48 hours after tetracycline-induction were not analysed.

Finally, HeLaOpa1 clone A showed moderate overexpression of \textalpha-synuclein at 24 hours after tetracycline-induction even though the \textalpha-synuclein construct is not present in the integrated expression plasmid, as well as clone B which showed slight overexpression at 48 hours after tetracycline-induction. This could be due to unspecific \textalpha-synuclein staining of spaces between the cells (images not shown), and also along the edges of histological sections.

4.1.4 Conclusions and future perspectives

The generation of stable cell lines by combining the GeneCopoeia Genome-TALERTM human AAVS1 Safe Harbor Gene Knock-in System with the ThermoFisher Flp-InTM T-REXTM System (Fig. 3.4) was successful with regard to integration of the expression plasmids. Regarding the expression of our proteins of interest, the inducible system worked in HeLa cells with integration of A53T \textalpha-synuclein, while the other stable cell lines (i.e. HeLatet-\textalpha-syn\textWT, HeLatet-\textalpha-syn\textWT/Opa1, HeLatet-\textalpha-syn\textA53T/Opa1) did not show any significant expression. Further experimentation is needed to exclude whether the problem is due to chromatin structure, even if the AAVS1 locus is characterised by an open chromatin conformation and a transcription-competent environment.

The generation of these stable cell lines was pursued with the aim of recapitulating in vitro the mitochondrial phenotype of the two single mouse models (\textit{Opa1}Tg; \textit{\textalpha-synuclein}A53TTg) as well as what would have been the double transgenic mouse, with a focus on mitochondrial morphology, mitochondrial ultrastructure, mitochondrial respiration and mitochondrial crosstalk with other organelles, which occur to be compromised in Parkinson’s disease.
4.2 p97 project

Mutation in p97 causing IBMPFD might impact interaction with its cofactor UBXD1

P97 is a multifunctional protein with a central role in the ubiquitin dependent protein degradation pathway [149], in addition to being required for the full capacity of the lysosomal and autophagic systems [345, 346]. The best-studied function of p97 is in endoplasmic reticulum (ER)-associated degradation (ERAD), where p97 retrotranslocates misfolded ubiquitinated proteins from the ER to the cytosol for degradation [347]. P97 is also important at the mitochondrial level where it extracts ubiquitin-modified proteins from the mitochondrial outer membrane in a process termed outer mitochondrial membrane-associated degradation (OMMAD), preserving mitochondrial integrity and thus cellular homeostasis [167]. Moreover, p97 has a direct function in mitophagy and lysophagy, i.e. affects the selective macroautophagy of mitochondria and lysosomes, respectively [103], [189].

The new heterozygous missense mutation within the conserved linker domain of p97 protein was identified in a Swiss family with hereditary inclusion body myopathy and dementia in 2013 [320]. Altered mitochondrial morphology and ultrastructure (Fig. 3.24 F) were discovered by electron microscopy analysis of skeletal tissue of patient III-1. Since p97 is a cofactor-guided protein and considering that UBXD1 cofactor promotes p97 recruitment following recognition of depolarized mitochondria undergoing Parkin-dependent mitophagy [192], we performed a yeast two-hybrid assay to evaluate whether the novel p97 missense mutation would compromise the interaction with the UBXD1 cofactor.

Since it was reported that the UBXD1 VIM domain is sufficient to bind p97 and promote mitochondrial recruitment [191, 192], the UBXD1 VIM domain was fused to the GAL4 DNA-BD and used as bait protein. Instead, the GAL AD was fused with three different preys: the N-terminal domain of wild-type p97; the N-terminal domain of the most common disease-related mutant p97, R155H; and the N-terminal domain of p97 newly identified missense mutation, I206F (Fig. 3.25). The p97 N-terminus was used as prey because UBXD1 interaction takes place at this region of the p97 protein [191].

Serial dilutions on plates selecting for yeast two-hybrid interaction assessed the interaction of all the three p97 variants with the VIM domain of UBXD1 (Fig. 3.26). Strength interaction quantification by α-galactosidase assays showed only very marginal, although statistically
significant differences between the newly identified p97 mutant and the wild-type form (Fig. 3.27); therefore no further characterization was pursued.

The VIM domain is not the only UBXD1 domain interacting with the N-terminal of p97. UBXD1 PUB domain is also capable of binding and recruiting p97 to mitochondria under mitophagic conditions [192]. Indeed, UBXD1 binds p97 in two regions, at the C-terminus via the PUB domain, and the N-domain with the VIM interaction motif [191]. Hence, it would be of interest to understand if the presence of both UBXD1 domains would give a different result following yeast two-hybrid and α-galactosidase assay experiments.

Moreover, a variety of p97-interacting proteins, functioning as adaptors or cofactors has been identified: their competition for p97 binding regulates the activity of this AAA-ATPase, linking the protein to a specific subcellular compartment or substrate, or helping the substrate processing. Considering the mitochondrial inclusions encountered in the analysed patient’s skeletal muscle tissue upon electron microscopy analysis (Fig. 3.24 F), the UBXD1 cofactor was selected among the others to be used in the yeast two-hybrid assay due to its involvement in the mitophagic process [192]. Another p97-interacting protein, SAKS1/UBXN1, was recently identified as a novel regulator of mitophagic initiation in addition to its involvement in ubiquitin-proteasome functions. Loss of SAKS1/UBXN1 was found to interfere with the removal of mitofusin 2 (MFN2) from mitochondria by causing para-mitochondrial MFN2 blob formation [199]. Therefore, it would also be of interest to analyse if the newly discovered p97 mutant would affect the interaction with the SAKS1/UBXN1 cofactor as well, and how this will impact on p97 mitochondrial recruitment under mitophagic conditions.
5. Appendix

5.1 List of Figures

Figure 1.1 Mitochondrial structure and function.. 3
Figure 1.2 Mitochondrial fission and fusion... 7
Figure 1.3 Opa1 protein structure and proteolytic cleavage sites................................. 9
Figure 1.4 p97 protein structure... 14
Figure 1.5 Mitochondria–ER contact site and main resident proteins........................... 20
Figure 3.1 Analysis of Sybr green real-time PCR of A53T α-synuclein heterozygous mice... 44
Figure 3.2 PCR analysis of Opa1+ mice and derived MAFs... 45
Figure 3.3 PCR analysis of brain, diaphragm, liver, muscle, and tail tissues of two animals per genotype... 46
Figure 3.4 Graphic overview of the strategy for generation of stable cell lines............... 48
Figure 3.5 Genome-TALERTM human AAVS1 Safe Harbor Gene Knock-in System...... 49
Figure 3.6 Flp-InTM T-RExTM System... 50
Figure 3.7 Step1: platform integration in HeLa AAVS1 locus.. 51
Figure 3.8 Luciferase assay... 52
Figure 3.9 PCR analysis for mycoplasma contamination... 52
Figure 3.10 Platform knock-in integration.. 53
Figure 3.11 CellTiter-Glo® 2.0 Assay... 54
Evaluation of HeLa clones proliferation. 5x103 cells/well seeded for each clone. CellTiter-Glo was performed 6h, 24h, 48h, 72h and 96h after cell seeding... 54
Fig. 3.12 Hygromycin killing curve HeLa129... 55
Fig. 3.13 Step2: integration of pcDNA5/FRT/TO plasmid with genes of interest in HeLa129... 56
Fig. 3.14 Plasmids for the second step of targeted gene delivery and integration.............. 57
Fig. 3.15 Expression plasmid knock-in verification primer pairs.. 59
Fig. 3.16 PCR reaction setup analysis for integration of expression plasmid pAN3469 in HeLa129... 60
Fig. 3.17 PCR analysis for integration of expression plasmids pAN3470, pAN3516, pAN3517 and pAN3518 in HeLa129... 61
Appendix

Fig. 3.18 AAVS1 Flp-In stable cell lines. ... 62
Fig. 3.19 Evaluation of α-synuclein and Opa1 expression levels in AAVS1 Flp-In stable cell
lines. ... 64
Fig. 3.20 α-synuclein overexpression in HeLa_{αsyn^{A53T}}. .. 65
Fig. 3.21 PCR analysis for integration of expression plasmids after second hygromycin
selection. .. 66
Fig. 3.22 PCR analysis for integrity of EF1α promoter and Opa1 gene in stable cell lines with
integrated Opa1 construct... 68
Fig. 3.23 α-synuclein immunohistochemistry .. 69
Fig. 3.24 Novel p97 missense mutation.. 71
Fig. 3.25 Yeast two-hybrid (Y2H) principle .. 72
Fig. 3.26 Physical interaction of UBXD1-VIM domain with three isoforms of p97 73
Fig. 3.27 α-galactosidase quantitative assay ... 74
5.2 List of Tables

Table 2.1: Equipment used during this study ... 29
Table 2.2: Reagents used during this study ... 31
Table 2.3: Antibodies used during this work ... 31
Table 2.4: DNA modifying enzymes used during this study .. 32
Table 2.5: Oligonucleotides used during this study .. 33
Table 2.6: Plasmids used in this study ... 34
Table 2.7: Pipetting scheme to optimise DNA amplification using high fidelity Phusion polymerase (NEB) ... 36
Table 2.8: Temperature and time profile for amplification using high fidelity Phusion polymerase .. 36
Table 3.1: Plasmids used for cloning the five expression plasmids 58
Table 3.2 ddPCR results: Number of copies of Opa1 in stable cell lines with integrated Opa1 construct ... 67
6. References

References

References

References

[70] A. Misko, S. Jiang, I. Wegorzewska, J. Milbrandt, and R. H. Baloh, “Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton

References

[110] M. Lazarou, S. M. Jin, L. A. Kane, and R. J. Youle, “Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3

References

References

[151] C. Wójcik et al., “Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation

References

References

References

References

References

References

7. Review

Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson’s Disease

Lara Sironi 1,*, Lisa Michelle Restelli 1, Markus Tolnay 1, Albert Neutzner 2,3 and Stephan Frank 1, *

1. Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; lisa.restelli@usb.ch (L.M.R); markus.tolnay@usb.ch (M.T.)
2. Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland; albert.neutzner@unibas.ch
3. Department of Ophthalmology University Hospital Basel, University of Basel, Basel 4031, Switzerland
* Correspondence: lara.sironi@usb.ch (L.S.); stephan.frank@usb.ch (S.F.); Tel.: +41-61-265-2776 (L.S. & S.F.)

Received: 17 December 2019; Accepted: 16 January 2020; Published: date

Abstract: The pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles’ bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER–mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis.

Keywords: α-syn; LRRK2; DJ-1; Parkin; PINK1; ATP13A2; VPS35; MAM; mitophagy; neurodegeneration

1. Introduction

Parkinson’s disease (PD), the most common movement neurodegenerative disorder, is a complex multifactorial disease with an incidence range between 5 up to >35 per 100,000 population [1]. Clinically, it is characterized by motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability, which may be accompanied by depression, sleep disorders, anosmia, and, with disease progression, dementia. The neuropathological hallmarks of the disease include a progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta that project to the striatum, and the presence of α-synuclein (α-syn) positive neuronal inclusions known as Lewy bodies (LB) and Lewy neurites (LN) [2].

Familial and sporadic PD forms share common clinical, pathological, and biochemical characteristics. Although many aspects of PD pathogenesis remain elusive, dysregulation of various fundamental physiological processes has been implicated, including impairment of the ubiquitin-proteasome pathway, mitochondrial dysfunction, oxidative stress, and neuroinflammation.

Both environmental and genetic factors converge in the complex molecular pathophysiology of Parkinson’s disease, with mitochondrial dysfunction playing a major role [3–6]. A discussion of PD-associated risk factors is not the focus of our review. Several lines of evidence obtained from studies of
familial forms of PD, patient tissue samples, and various in vitro/in vivo models point to a prominent involvement of dysregulated mitochondrial crosstalk with other organelles in addition to impaired mitochondrial quality control pathways. Here, we start from genes that have been linked to familial forms of PD to discuss the role of interorganellar crosstalk involving mitochondria (Table 1).

Table 1. Parkinson’s disease (PD)-linked genes related to mitochondria interorganellar contacts.

<table>
<thead>
<tr>
<th>HGNC ID</th>
<th>Gene Symbol</th>
<th>Alternative Designation</th>
<th>Chromosomal Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC:11138</td>
<td>SNCA</td>
<td>α-synuclein</td>
<td>4q22.1</td>
</tr>
<tr>
<td>HGNC:8607</td>
<td>PRKN</td>
<td>Parkin</td>
<td>6q26</td>
</tr>
<tr>
<td>HGNC:14581</td>
<td>PINK1</td>
<td>PTEN-induced putative kinase 1 (PINK1)</td>
<td>1p36.12</td>
</tr>
<tr>
<td>HGNC:16369</td>
<td>PARK7</td>
<td>DJ-1</td>
<td>1p36.23</td>
</tr>
<tr>
<td>HGNC:18618</td>
<td>LRRK2</td>
<td>Leucine-rich repeat kinase-2 (LRRK2)</td>
<td>12q12</td>
</tr>
<tr>
<td>HGNC:13487</td>
<td>VPS35</td>
<td>Vacuolar sorting protein 35 (VPS35)</td>
<td>16q11.2</td>
</tr>
<tr>
<td>HGNC:30213</td>
<td>ATP13A2</td>
<td>ATPase 13A2</td>
<td>1p36.13</td>
</tr>
<tr>
<td>HGNC:18618</td>
<td>LRRK2</td>
<td>Leucine-rich repeat kinase-2 (LRRK2)</td>
<td>12q12</td>
</tr>
</tbody>
</table>

Overview of PD-linked genes role in interorganellar crosstalk involving mitochondria. HGNC IDs are in accordance with the HUGO Gene Nomenclature Committee at the European Bioinformatics Institute (HGNC) (https://www.genenames.org).

We specifically focus on how dysregulated communication of mitochondria with endoplasmic reticulum and lysosomes as well as compromised quality control at the mitochondrial level contribute to PD pathogenesis. For each interorganellar contact, we first provide a brief overview on their physiological organization and functions, and then describe how PD-linked genes affect these functions (Figure 1).
Figure 1. Overview of organelle crosstalks. Schematic representation of organelles and their relationships.

2. Mitochondria-Associated Membranes (MAMs)

The close apposition between ER and mitochondria was first described as an interorganellar contact by Bernhard in 1956 [7] and later by Copeland and Dalton, who, by electron microscopy, demonstrated the tight spatial relationship between these organelles in 1959 [8]. After performing fractionation studies, Jean Vance termed the biochemically distinct domains of the ER that are in close proximity to mitochondria MAMs (mitochondria-associated membranes), and showed that these specialized membrane contact sites contain the enzymatic activities involved in lipid transfer between ER and mitochondria for the biosynthesis of serine-containing phospholipids [9]. In electron microscopy studies, mitochondria were found to be in proximity to both smooth and rough ER tubules, with an interorganellar distance varying between 10 and 80 nm [8,10–12]. Different conditions, such as ER stress [13], metabolic state [12], and apoptotic stimuli [10] can affect the number, length, and/or width, as well as the protein composition [14] of these microdomains.

Reflecting their biochemical functions in lipid metabolism, MAMs are enriched in proteins such as phosphatidyl ethanolamine methyltransferase 2 (PEMT2), phosphatidylserine synthase 1 and 2 (PSS1/2) [15,16], and fatty acid CoA ligase 4 (FACL4). The latter, involved in triacylglycerol synthesis, is considered one of the most reliable MAM marker proteins [17].

Lipid synthesis, in particular the synthesis of triacylglycerol, phosphatidylcholine (PC), and phosphatidylethanolamine (PE), requires enzymatic activities associated with both ER and
functions as tether regulating ER debate. While Mitofusin 2 (MFN2), localized both on the ER and OMM, has been implicated in the final steps of PC synthesis, PEMT2 [18], was found to be restricted to MAMs [16].

Another enzyme located at ER–mitochondrial contact sites is acyl-CoA/diacylglycerol acyltransferase 2 (DGAT2), which catalyzes triacylglycerol synthesis and promotes lipid droplet formation [19]. MAMs are also enriched in further lipid metabolism enzymes, such as acyl-CoA/cholesterol acyltransferase 1 (ACAT1/SOAT1), which catalyzes the production of cholesterol esters that are subsequently incorporated into lipid droplets.

Besides their role in lipid metabolism, MAMs are also critically involved in Ca\(^{2+}\) homeostasis [20–22], as reflected by the enrichment of the Ca\(^{2+}\) channel inositol 1,4,5-triphosphate (IP3) receptor (IP3R) at these contact sites [23,24]. IP3Rs: type 3 is strongly enriched at MAMs [25]. Thus, MAMs represent Ca\(^{2+}\) signaling hubs providing ER-to-mitochondria Ca\(^{2+}\) transfer to maintain cellular bioenergetics, mitochondrial dynamics and transport, and also to modulate cell death decisions [26–28].

The stimulation of Ca\(^{2+}\) release from the ER through IP3Rs forms microdomains with high Ca\(^{2+}\) concentrations, which are important for the Ca\(^{2+}\) uptake into the mitochondrial matrix [20,29]. Mitochondrial Ca\(^{2+}\) uptake involves its diffusion across voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane (OMM) [30] and the subsequent uptake through the low-affinity mitochondrial calcium uniporter (MCU), juxtaposed at the inner mitochondrial membrane (IMM) [31,32]. Indeed, Ca\(^{2+}\) concentrations modulate the enzymatic activities of mitochondrial ATP synthase and of the dehydrogenases that provide reducing equivalents to the respiratory chain [26]; they also regulate protein folding capacity, as ER chaperones depend on Ca\(^{2+}\) [33]. Ca\(^{2+}\) homeostasis is facilitated by cytosolic Ca\(^{2+}\) re-uptake into the ER through the sarco/endoplasmic reticulum (SR/ER) Ca\(^{2+}\) ATPase pump (SERCA) [34]. While Ca\(^{2+}\) fluxes enhance upon increased energy demand [35], excessive Ca\(^{2+}\) transfer can initiate programmed cell death through mitochondrial Ca\(^{2+}\) overload and opening of the mitochondrial permeability transition pore, leading to pro-apoptotic mediator release from mitochondria with subsequent effector caspase activation [36].

IP3R interacts with the OMM protein voltage-dependent anion channel isoform 1 (VDAC1) through glucose-regulated protein 75 (GRP75), a member of the Hsp70 family of chaperones, forming an interorganellar tethering complex between ER and mitochondria [22]. However, loss of IP3R does not interfere with ER–mitochondria association, which argues against an indispensable role of this Ca\(^{2+}\) channel in ER–mitochondria tethering [9]. As discussed below, additional ER–mitochondrial tethers exist.

Close physical, bidirectional interactions between ER and the mitochondrial network also play an important role in mitochondrial fission. The mitochondrial adaptors syntaxin 17, Mff, MiD49, and MiD51 that are involved in the recruitment of the fission-promoting dynamin-related protein Drp1 localize to ER–mitochondria interfaces [37,38]. ER tubules wrap around mitochondria, mediating constriction of the organelles at sites where subsequent mitochondrial division will occur [39]. Recent reports indicate that ER-bound inverted formin 2 (IFN2) mediates actin polymerization to promote mitochondrial fission [40]. Moreover, ER–mitochondria contact sites are spatially linked to actively replicating mitochondrial nucleoids, thereby coordinating mitochondrial DNA (mtDNA) synthesis with mitochondrial division to enable proper distribution of nucleoids between daughter mitochondria [41].

In addition, MAMs are also involved in the regulation of mitochondrial retrograde and anterograde transport along microtubules. In this context, at resting cytosolic Ca\(^{2+}\) concentrations, mitochondria move at maximal velocity, while their motility is reduced at IP3R-dependent Ca\(^{2+}\) hotspot regions, so that mitochondria accumulate and enhance local Ca\(^{2+}\) buffering by Ca\(^{2+}\) uptake which represents an important feedback mechanism in Ca\(^{2+}\) signaling [27].

The protein composition of some tethering complexes at MAM level continues to be a matter of debate. While Mitofusin 2 (MFN2), localized both on the ER and OMM, has been implicated in regulating ER–mitochondria juxtaposition, the field is still divided on the question of whether it functions as tether [42–44] or tethering inhibitor [45–48] (Figure 2).
Various proteins localized at ER-mitochondria interface such as PACS-2 [49] and GRP75 [22] affect organelle proximity upon modulation of their expression. It still remains unclear how these proteins mediate the tethering between the two organelle membranes. A direct role in tethering has been highlighted for a complex formed by Vesicle-associated membrane protein-associated protein B (VAPB) enriched in MAMs, and the OMM protein tyrosine phosphatase-interacting protein 51 (PTPIP51) [50]. In various biochemical assays, VAPB and PTPIP51 were shown to interact, and modulation of their expression (by siRNA knockdown or overexpression) affects ER-mitochondrial Ca\(^{2+}\) exchange and modulates interorganellar contacts, as assayed by EM. Beyond its Ca\(^{2+}\) exchange function, this ER-mitochondria tethering complex was also proposed to play a role in autophagy regulation [51]. In addition, an interaction of the VAPB-PTPIP51 complex with two other proteins which localize at the ER–mitochondria interface, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and OSBP-related protein 8 (ORP8), was shown recently [52].

2.1. MAMs in Parkinson’s Disease

MAMs serve crucial functions in various signaling pathways and metabolic processes, including mitochondrial bioenergetics and dynamics, Ca\(^{2+}\) homeostasis, and autophagy. While many of these functions are compromised in neurodegenerative disorders including Parkinson’s disease (PD), it is still unclear whether MAM dysregulation is cause or consequence of the pathogenic processes leading to neurodegeneration. Nevertheless, it seems clear that MAM dysfunction can accelerate neuronal death. Both changes in the number of contacts between ER and mitochondria, and impairments of their functionality have been associated with PD [53–55].
Mutations in several PD-associated genes have been causally related to mitochondrial dysfunction. Even if our current knowledge about the role of PD-related proteins in ER–mitochondria crosstalk is still far from complete, the following sections highlight their roles in maintaining MAM structure and function.

2.1.1. α-Synuclein

SNCA was the first gene to be associated with familial cases of PD [56]. It encodes α-syn, a 14 kDa protein highly expressed in nervous tissues. On the cellular level, α-syn was found at presynaptic terminals where it is required for rapid and efficient clathrin-mediated synaptic vesicle endocytosis [57,58], reflecting a role in synaptic transmission. Beside its presence in the cytosol, a fraction of α-syn has been identified in mitochondria [59], where it is required for normal respiratory chain complex activity [60,61]. α-syn can influence Ca²⁺ exchange and the physical interaction between ER and mitochondria, as reported by different groups, with still-debated downstream effects [53,62,63].

α-syn presence has important implications for mitochondrial integrity: expression of either the α-syn disease mutation A53T at low levels, or of wild-type α-syn at high levels, result in fragmented mitochondria [64]. The mitochondrial fragmentation caused by α-syn mutations was reported to be independent of DRP1, as the function and recruitment of the fission protein to mitochondria was unaffected. It has been hypothesized that the increased mitochondrial fragmentation could be due to increased OPA1 cleavage, via an unknown mechanism [62].

Importantly, a portion of α-syn seems to be localized at MAMs [62], consistent with previous observations that the protein preferentially binds to lipid rafts [65] and to membrane domains rich in acidic phospholipids [66].

Pathogenic mutations of α-syn affect its binding to lipid membranes [67], as exemplified by the pathogenic A30P mutation, which decreases the amount of α-syn present in MAMs [65]. Decreased amounts of MAM-localized α-syn are also observed upon expression of the disease-causing mutation A53T [62], although in this case the ability of the mutant protein to bind to lipid membranes did not seem to be compromised [65]. It is known that this particular mutation makes the protein more prone to aggregation [68]. The reported net effect of both mutations (A53T, A30P) was a reduced amount of α-syn within MAMs and a concomitant increase of the mutant protein in the pure mitochondrial fraction, potentially leading to a decrease in mitochondrial membrane potential (MMP) [69] (Figure 3a).
Figure 3. PD-associated genes and their roles in Mitochondria-associated membrane (MAM) structure and function. (a) Mutant α-syn results in DRP1-independent mitochondrial fragmentation, reduced MAM-associated mutant α-syn, with a concomitant increase in the pure mitochondrial fraction. This results in reduced ER–mitochondria apposition, leading to impaired interorganellar crosstalk. The A53T mutation makes the protein more prone to aggregation. (b) DJ-1 responds to oxidative stress, protecting cells against ROS. DJ-1 interacts with monomeric and oligomeric α-syn, preventing its oligomerization. Under oxidative stress conditions, oxidized DJ-1 is unable to interact with α-syn and to prevent its oligomerization. Likewise, DJ-1 mutations also abrogate its interaction with α-syn and no longer neutralize ROS. (c) Mutant PINK1 or Parkin increase ER–mitochondria juxtaposition, resulting in aberrant ER–mitochondria Ca^{2+} signaling. Furthermore, Parkin dysfunction could lead to increased levels of its substrate MFN2 at MAMs. (d) LRRK2 mutations increase its interaction with DRP1, and enhance DRP1 phosphorylation. This results in mitochondrial fragmentation, enhanced ROS, and decreased ATP levels.

This reduced MMP could promote OPA1 cleavage and consequently mitochondrial fragmentation [70]. In addition, decreased localization of both α-syn mutants at MAMs also reduced ER–mitochondria apposition, leading to impaired interorganellar crosstalk with compromised lipid synthesis; in fact, the conversion of PS into PE, a well-recognized biochemical MAM activity, was decreased upon mutant α-syn expression [62].

Although α-syn was shown to be a major component of Lewy bodies more than 20 years ago [71], subsequent proteomic studies revealed that LB consist of more than 300 proteins, of which around 90 were confirmed by immunohistochemistry [72]. Transmission electron microscopy (TEM) studies revealed that LB are composed of filamentous structures immunoreactive for α-syn [73]. More recently,
Shahmoradian and colleagues, using correlative light and electron microscopy (CLEM), demonstrated that the vast majority of LB and LN actually consist of a crowded environment of membrane fragments, dysmorphic mitochondria and vesicular structures resembling lysosomes and autophagosomes, combined with non-fibrillar α-syn [74]. It has been hypothesized that these observations could reflect cellular attempts to segregate damaged lipid-based elements into aggresome-like structures. Indeed, LB were previously found to be immunoreactive for several markers of aggresomes [75], which form in response to cytoplasmic accumulation of misfolded protein [76,77].

2.1.2. Parkin and PINK1

Aggregated proteins and damaged organelles are removed from the cytoplasm by autophagic mechanisms [78]. Mitophagy is a selective form of autophagy that mediates the removal of damaged mitochondria, thereby contributing to mitochondrial turnover [79]. Activation of this process is essential to protect neurons from pro-apoptotic proteins released by damaged mitochondria, which would otherwise trigger programmed cell death pathways in the cytosol [80].

Intriguingly, two PD-associated proteins, PTEN-induced putative kinase 1 (PINK1), a mitochondrially localized kinase, and Parkin, a cytosolic E3 ubiquitin ligase, are the two key players of this mitophagic quality control system. Mutations in PINK1 and Parkin are linked to early-onset familial PD [81], and extensive research efforts during the last decade have uncovered important aspects of the underlying pathogenic processes, some of which may also be shared with sporadic (idiopathic) PD.

Under basal conditions, PINK1 is imported into mitochondria through the translocase of the outer membrane (TOM) complex and then through the translocase of the inner membrane complex (TIM) into the matrix, where it is cleaved by the matrix processing peptidase and the inner membrane protease presenilin-associated rhomboid-like protease (PARL) [82-84]. Thereafter the cleaved product is released into the cytoplasm to be degraded by the proteasome via the N-end rule pathway [85]. However, in response to mitochondrial damage (loss of MMP or accumulation of misfolded proteins), PINK1 accumulates on the OMM. In addition to autophosphorylation, PINK1 phosphorylates Parkin, increasing its E3 ligase activity [86,87], and also phosphorylates pre-existing ubiquitin molecules at the mitochondrial surface [88]. Parkin is then thought to bind to phosphorylated ubiquitin, resulting in partial activation and tethering of Parkin to the OMM. The actions of PINK1 and Parkin contribute to amplification of ubiquitin phosphorylation, leading to conjugation of ubiquitin to several substrates [89]. The ubiquitinated cargo is then bound to specific autophagy receptor proteins that connect it to autophagosomes [90] which are formed at MAMs. In support of this model, upon stimulation of mitophagy, endogenous PINK1 was also found to be localized at MAMs.

Relevant to the ER–mitochondria interface, Parkin was also shown to ubiquitinate MFN2, VDACs and Miro [81]. BECN1/Beclin1 is required for the accomplishment of the mitophagic process, and silencing of this protein activates pro-apoptotic pathways [91]. Finally, autophagosomes fuse with lysosomes to complete the mitophagic process [92].

Fibroblasts from patients carrying mutated PINK1 or Parkin display increased ER–mitochondria juxtaposition, resulting in aberrant ER-to-mitochondria Ca\(^{2+}\) signaling [93,94]. Similar alterations were observed in mouse embryonic fibroblasts from Parkin knock-out mice and attributed to MFN2, which as a Parkin substrate is increased at the MAM fraction upon Parkin dysfunction [94] (Figure 3c).

Parkin and PINK1 null mice generally fail to recapitulate the degeneration of dopaminergic neurons in the SN [95–97]. Furthermore, loss of Parkin does not worsen the neurodegenerative phenotype of MitoPark mice [98]. Nevertheless, Parkin activity is critical for the survival of nigral dopaminergic neurons in Mutator mice (homozygous for a proofreading deficiency in DNA polymerase \(\gamma\)) which have accelerated mtDNA mutation rates [99].

Parkin was reported to co-regulate ER–mitochondria contact sites together with the transcription factor peroxisome proliferator-activated receptor \(\gamma\) coactivator 1α (PGC-1α), a key modulator of mitochondrial biogenesis [100]. Loss of Parkin function results in the accumulation of the zinc finger transcriptional repressor Parkin interacting substrate (PARIS), which suppresses PGC-1α-dependent
Postmortem analysis of SN tissue of PD patients validated this finding, with dopaminergic neurons displaying reduced PGC-1α levels [101].

Parkin has a Ser65 residue within its N-terminal ubiquitin-like (UBL) domain, similar to that of ubiquitin. This residue is phosphorylated by PINK1, resulting in an open and active conformation [102,103]. Characterization of primary cells derived from two unrelated, early-onset PD patients with homozygous Parkin Ser65Asn (ParkinS65N) mutation demonstrated that this mutant is inactive, suggesting that the loss of PINK1-dependent Parkin Ser65 phosphorylation and subsequent inactivation in humans is sufficient to cause PD [104].

PINK1-deficiency in Drosophila, mouse models and patient-derived cells resulted in mitochondrial complex I defects [105] and decreased mitochondrial membrane potential [106], associated with loss of Ser250 phosphorylation of the complex I subunit NADH ubiquinone oxidoreductase subunit A10 (NDUFA10).

2.1.3. DJ-1

The DJ-1 protein serves a broad variety of functions. It plays an essential role in sensing and reacting to oxidative stress, thereby protecting cells against reactive oxygen species (ROS) [107,108]. Within its active site, DJ-1 contains an essential cysteine residue that functions as an oxidative stress sensor. Beyond this function, DJ-1 neutralizes ROS [107,109]: mitochondria-localized DJ-1 is a component of the thioredoxin/apoptosis signal-regulating kinase 1 (Trx/Ask1) complex, which regulates the clearance of endogenous ROS through activation of the radical scavenging system [110]. Brains of PD patients contain high levels of oxidized DJ-1, which indicates an increased ROS scavenging activity [111,112].

In addition to oxidative stress, DJ-1 protects against other toxic agents by modulating PTEN activity and Akt signaling [113,114], either by interacting with the MAPK kinase cascade [115], the p53 pathway [114,116], or by stabilizing the antiapoptotic Bcl-XL protein [117]. Crystallography revealed that DJ-1 is a homodimer, which appears to be critical for its physiological function [118–120].

DJ-1 protein localizes at MAMs where it modulates ER–mitochondria interactions and consequently Ca²⁺ transfer between the two organelles, thereby maintaining mitochondrial function and structure. Depletion or lack of function of this protein causes alterations of mitochondrial morphology, decreases mitochondrial membrane potential, reduces ER-to-mitochondria Ca²⁺ transfer and impairs mitochondrial motility in neurites [55].

Whereas mutations in the gene encoding DJ-1 (PARK7) lead to familial early-onset PD, the exact mechanisms underlying its role in PD pathogenesis still remain elusive [121,122]. In in vitro systems as well as in living cells, DJ-1 interacts directly with monomeric and oligomeric α-syn [123]. The same study showed that familial DJ-1 mutations (L166P, M26I, L10P and P158Δ) abrogated its interaction with α-syn, which could be due to the low expression levels of DJ-1 mutants, as they are more rapidly degraded than wild-type DJ-1 protein [120]. Furthermore, the above-mentioned DJ-1 mutants correlate with increased α-syn oligomerization, suggesting a loss of DJ-1 chaperone function [123]; (Figure 3b).

2.1.4. LRRK2

Leucine-rich repeat kinase-2 (LRRK2) is a large, multi-domain protein involved in a number of functions, such as GTP hydrolysis, kinase activity, and protein binding. Even though its cellular function is largely unknown, emerging evidence attributes to LRRK2 roles in autophagic regulation, microtubule dynamics, and mitochondrial function. In addition to being localized mainly to the cytoplasm, some LRRK2 also resides at mitochondria [124].

Autosomal dominant LRRK2 mutations are associated with both familial and sporadic PD [125,126]. Expression of mutant LRRK2 induces several negative effects at the mitochondrial level, such as increased fragmented mitochondria that produce more ROS and less ATP, leading to increased cell vulnerability to stressors. Skin biopsies from patients carrying the G2019S mutation, which results in an increased kinase activity of the protein, show reduced mitochondrial membrane potential, aberrant
organelle morphology, and decreased total intracellular ATP levels [127]. It still remains unclear how this increased kinase activity impairs cellular functions and promotes cell death [128].

LRRK2 interacts with a number of mitochondrial fission/fusion regulators, either in the cytosol or on mitochondrial membranes [129]. It was shown that LRRK2 associates with Drp1, the key mediator of mitochondrial fission. Neuronal expression of two LRRK2 mutants, G2019S and R1441C, led to increased interaction with DRP1 and higher phosphorylation levels of the fission protein, resulting in mitochondrial fragmentation and enhanced ROS levels [130,131] (Figure 3d).

LRRK2 also interacts and modulates the activities of the mitochondrial fusion regulators MFN1, MFN2, and OPA1. Indeed, PD patients carrying the G2019S mutation showed decreased levels of L-OPA1 [129]. Moreover, fibroblasts and neuroblastoma cells expressing the G2019S mutant display increased basal oxygen consumption and a decreased mitochondrial membrane potential, potentially due to a proton leak caused by upregulation of mitochondrial uncoupling proteins 2 and 4 (UCP2, UCP4) [132]. Thus, the effect of increased LRRK2 activity is decreased mitochondrial fusion with concomitantly increased fission of the organelles, suggesting that LRRK2 may be an important modulator of mitochondrial dynamics.

LRRK2 kinase activity also regulates ER–mitochondrial tethering by modulating the PERK-dependent ubiquitination pathway under ER stress conditions. In this context, LRRK2 interacts with the E3 ubiquitin ligases MARCH5, MULAN, and Parkin, thereby blocking PERK-mediated phosphorylation and activation of these E3 ubiquitin ligases. Kinase-active LRRK2 (G2019S) dissociates from ER ubiquitin ligases, allowing PERK to phosphorylate and thereby activate these enzymes towards MAM components, impinging on ER–mitochondrial tethering [133].

Another crucial aspect of mitochondrial dynamics in the context of neurodegeneration is mitochondrial trafficking, where mitochondrial locomotion is tightly controlled to preserve energy homeostasis. Before the initiation of the mitophagy cascade, mitochondrial motility halts, enabling the sequestration of damaged mitochondria. This arrest of depolarized mitochondria is achieved by removal of the Miro protein from the mitochondrial surface; this process is promoted by LRRK2, which forms a complex with Miro, targeting it for PINK1/Parkin-dependent degradation [134]. Interestingly, the LRRK2 mutant G2019S disrupts its interaction with Miro, slowing down Miro degradation and mitochondrial arrest, consequently delaying mitophagy [124].

3. Mitochondria–Lysosome Membrane Contact Sites

Lysosomes, together with mitochondria, are critical for the maintenance of cellular homeostasis, as reflected by the fact that dysfunction of both organelles is functionally and genetically linked to several human diseases [135–138]. Similar to mitochondria, lysosomes are highly dynamic organelles that are responsible for the turnover of cellular components, including proteins and lipids, via mature enzymes stored in the lysosomal lumen. In addition, these organelles also act as iron and calcium stores. Furthermore, they can mediate cell death signaling upon lysosomal membrane permeabilization [139].

Whereas numerous reports have demonstrated indirect functional interactions between mitochondria and lysosomes [140–147], studies focusing on lysosomal degradation of mitochondria either through mitophagy [81] or via fusion of mitochondrial-derived vesicles (MDVs) with lysosomes [148] showed a direct interaction between these organelles upon cellular stress [149]. The mitophagic process can occur via mitophagy receptors (Optineurin and NDP52) which are recruited in a PINK1/Parkin-dependent manner to ubiquitinated mitochondria, which are then targeted through LC3 to the autophagosome [150,151]. Alternatively, MDVs [148] are small vesicles that bud off from mitochondria and contain distinct subsets of OMM and mitochondrial matrix proteins. MDVs generated in a PINK1/Parkin-dependent manner are targeted to lysosomes, to selectively degrade a subset of mitochondrial proteins instead of entire mitochondria [152].

Mitochondria–lysosome contact sites have been imaged in various cell types under healthy conditions taking advantage of different techniques, such as 2D and 3D electron microscopy [153,154], correlative light electron microscopy (CLEM) [153]. CLEM combined with focused ion beam scanning electron microscopy (FIB-SEM) [155], lattice light sheet spectral imaging [156], and structured
illumination microscopy [153,157,158]. The average distance between mitochondrial and lysosomal membranes is ~10 nm [153,154], and approximately 15% of lysosomes are in contact with mitochondria at any time point, with contact sites remaining stably tethered for an average of 60 s [1543157]. These contact sites do not represent autophagosome biogenesis events or mitophagy, given their negative staining for autophagosome markers [153]. Furthermore, knockout of five autophagy receptors (NDP52, OPTN, NBR1, TAX1BP1, and p62) did not prevent mitochondria–lysosome contact formation [158]. Moreover, mitochondria involved in these contacts were distinct from MDVs as they contained intermembrane space and mitochondrial matrix proteins, and were larger (over 500 nm) compared to MDVs (about 100 nm) [148,153].

The small GTPase Rab7 is a master regulator of lysosomal maturation, positioning, and network dynamics [159]. As evidence of the importance of lysosomal dynamics, mutations in Rab7 lead to peripheral neuropathy in humans [160–163]. Rab7 modulates mitochondrial–lysosome tethering and untethering through its ability to alternate between an active, lysosomal-localized GTP-binding state, and an inactive, cytosolic GDP-binding state. Lysosomal GTP-bound Rab7 promotes tethering via lysosomal membrane-bound Rab7 effector proteins [153]. Then Rab7 GTP hydrolysis mediates the untethering, involving the recruitment of cytosolic TBC1D15 (Rab7 GAP) to mitochondria via the OMM protein Fis1 [164], where it can interact with lysosomal GTP-bound Rab7 to promote GTP hydrolysis. GDP-bound Rab7 is no longer able to bind Rab7 effectors and loses its localization to the lysosomal membrane [165] leading to untethering of the two organelles. Contact sites between mitochondria and lysosomes are also able to modulate mitochondrial dynamics, as most mitochondrial fission events (>80%) are marked by LAMP1-positive vesicles but not early endosomes or peroxisomes [153].

3.1. VPS35

Vacuolar sorting protein 35 (VPS35) is a key component of the retromer complex, involved in intracellular protein trafficking. VPS35 mediates retrograde delivery of cargo from endosomes to Golgi, as well as recycling endosomal cargo to the cell surface [166,167].

The retromer can be divided into a cargo-selective complex (CSC) trimer composed of VPS26, VPS29 and VPS35, involved in binding and sorting protein cargo [168,169], and a sorting nexin (SNX) dimer, consisting of SNX1 or SNX2 and SNX5 or SNX6 in mammalian cells (SNX5 and SNX17 in yeast). These SNX proteins are members of the SNX-BAR family and function in retromer association with the endosomal membrane through a Bin-Amphiphysin-Rvs (BAR) and phox homology (PX) domain [166,168].

VPS35 has a role in the formation of MDVs, which shuttle cargo from mitochondria to either peroxisomes or lysosomes, being so involved in mitochondria quality control [148,170]. This component of the retromer was found to interact with DRP1 and implicated in mitochondrial DRP1 complex recycling and mitochondrial fission. Indeed, DRP1 complexes are present on the OMM where they remain with daughter mitochondria after fission [171]. These complexes probably become inhibitory for subsequent fission events, owing to the occupancy of fission sites or to the sequestration of DRP1 recruiting factors [172–177]. Through the interaction between VPS35 and DRP1, the retromer mediates DRP1 complex removal from mitochondria to lysosomes or peroxisomes via the formation of MDVs, diminishing their inhibitory effects on mitochondrial fission [178].

Remarkably, the VPS35 D620N mutation is associated with autosomal-dominant PD [179,180]. PD patient fibroblasts expressing this mutated protein showed fragmented and functionally impaired mitochondria. These alterations were accompanied by an increased VPS35–DRP1 interaction leading to an enhanced turnover of mitochondrial DRP1 complexes through MDVs and lysosomal degradation [178].

VPS35 can also impinge on mitochondrial dynamics by an MFN2-dependent mechanism. A proteomic study suggested that VPS35/retromer interacts with the OMM E3 ubiquitin ligase MUL1 (also known as mitochondrial-anchored protein ligase, MAPL) [181]. VPS35 promotes the degradation of MUL1, which would otherwise degrade MFN2. Accordingly, the PD-linked VPS35 D620N mutation increases MUL1-mediated MFN2 degradation [182] (Figure 4a).
Figure 4. PD-associated genes and their roles in mitochondria-lysosome crosstalk. (a) VPS35 is a key component of the retromer complex involved in the removal of DRP1 complexes from mitochondria to lysosomes or peroxisomes through MDVs. Mutant VPS35 enhances turnover of mitochondrial DRP1 complexes through MDVs and lysosomal degradation, accompanied by fragmented and dysfunctional mitochondria. PD-linked VPS35 mutant also leads to increased MUL1-mediated MFN2 degradation. (b) ATP13A2 mutations impair the autophagic process, leading to the cytosolic accumulation of α-syn. Sporadic PD patients show decreased levels of this protein, which is also found in Lewy bodies. (c) Mutant LRRK2 protein impinges on autophagosome formation, alters lysosomal pH and lysosomal calcium dynamics, resulting in impaired autophagosome-lysosome fusion and lysosome-mediated degradation.

3.2. ATP13A2

The PARK9 gene encodes the protein ATP13A2, a transmembrane lysosomal type 5 P-type ATPase [183], which has been linked to a neurodegenerative disorder known as Kufo–Rakeb syndrome (KRS), as well as to some juvenile and early-onset forms of PD [183–187]. Several studies focused on determining the cationic substrate of this transporter. While mammalian cell models supported Mn²⁺-modulating activity of ATP13A2 [188–190], studies using KRS patient-derived cells revealed Zn²⁺-dyshomeostasis [191–193] causing abnormal mitochondrial and lysosomal metabolism, with dysfunctional energy production and reduced lysosomal proteolysis, respectively.

The analysis of fibroblasts from two patients with the L3292 and L6025 ATP13A2 mutations showed an impaired clearance of autophagic vacuoles, accompanied by impaired lysosomal acidification, cathepsin activity, and proteolytic capacity, while the delivery of substrates to lysosomes by either macroautophagy or chaperone-mediated autophagy (CMA) translocation did not seem to be affected [194]. α-syn can be degraded by lysosomal pathways, such as macroautophagy and CMA, as well as by the proteasome [195,196].
PD-linked mutations in ATP13A2 may result in insufficient clearance of α-syn through lysosomes, resulting in its accumulation in the cytosol. Furthermore, postmortem nigral tissue samples from sporadic PD patients exhibited decreased neuronal levels of ATP13A2, which appeared to be mostly trapped in Lewy bodies [194] (Figure 4b).

3.3. LRRK2

Beside its involvement at MAMs (described above), LRRK2 serves a critical role in the autophagic pathway at the lysosomal level. During autophagy, damaged organelles and aggregated proteins are engulfed within autophagosomes, subsequently delivered to the lysosome for degradation [197,198]. Local lysosomal release of calcium is required for autophagosome–lysosome fusion [199]. Any disruption affecting autophagosome formation, fusion of autophagosomes with amphisomes or lysosomes, hydrolytic degradation, or the re-formation of lysosomes can impair the autophagic process, resulting in accumulation of autophagy substrates and structures [197,198].

Lysosomal function and protein degradation are regulated by many factors, such as lysosomal pH [200], calcium release [199], and membrane trafficking [201]. Lysosomal dysfunction was shown to lead to α-syn accumulation [202], which could play a role in the formation of Lewy bodies, the pathological hallmark of PD. Furthermore, LRRK2 has been implicated in lysosomal pH regulation [203,204], which is critical for the activity of degradative enzymes and for the fusion of autophagosomes and lysosomes [205]. The authors of [206] investigated the role of LRRK2 in lysosome biology and the autophagy pathway in primary neurons by expressing human wild-type LRRK2 (hWT-LRRK2) and the human LRRK2-G2019S or LRRK2-R1441C mutations, and demonstrating that mutations in different enzymatic domains elicit different effects on LRRK2 enzymatic activity. Neurons expressing hWT-LRRK2 or LRRK2-G2019S displayed a decreased rate of autophagosome formation, which was dependent on LRRK2 kinase activity.

In contrast, neurons expressing LRRK2-R1441C displayed a significantly increased lysosomal pH and alterations in lysosomal calcium dynamics, resulting in impaired autophagosome–lysosome fusion and decreased lysosome-mediated degradation (Figure 4c). These latter effects occurred independently of LRRK2 kinase activity. It is interesting to note here that hWT-LRRK2 interacts with the α1 subunit of the v-type H+ ATPase proton pump (vATPase α1), responsible for the regulation of lysosomal pH. Conversely, LRRK2-R1441C loses this interaction, leading to dysregulated vATPase α1 protein expression and cellular localization, and resulting in impaired autolysosome maturation [206].

4. Perspective

Over decades, research on PD pathogenesis has been dominated by a focus on mitochondrial bioenergetic defects, oxidative stress, and cell death mechanisms. With the discovery in 1997 that Lewy bodies are composed of misfolded/aggregated α-syn [72] and that mutations in the α-syn gene were linked to some inherited forms of the disease [57], the attention of the field has increasingly shifted towards the mechanisms of abnormal protein aggregation and spreading of α-syn pathology. The last years have further improved our understanding of the disease; in particular, the pathogenic importance of properly regulated interorganellar crosstalk was increasingly recognized. Relatively recent insights into dysregulated crosstalk of mitochondria with the endoplasmic reticulum and lysosomes may provide the foundation for a more unifying picture that could help to explain how mitochondrial dysfunction, bioenergetic defects, abnormal protein aggregation, and neuronal cell death converge in PD pathogenesis.

Clearly, our understanding of the complex molecular mechanisms underlying PD pathogenesis and progression is still far from complete, and crucial questions remain to be answered. Among these, it remains to be clarified what event(s) initiate(s) PD pathogenesis, how Lewy bodies form, which of the intracellular functions of α-syn are actually relevant for disease onset and progression, and what role the microbiome plays in modulating PD, to name but a few.
As research efforts in this field increasingly focus on interorganellar communication as opposed to single organelle biology [207], we expect that the picture of PD pathogenesis will become more defined in the near future.

Author Contributions: All authors were involved in manuscript writing and approved the submitted version.

Funding: The authors acknowledge funding by the Bangerter-Rhyner Foundation, the Mach-Gaensslen Foundation, and the Novartis Foundation for medical-biological Research (#18C194).

Conflicts of Interest: The authors declare no conflict of interest.

References

67. faculty

Lysosomal Function during Inflammatory T Cell Responses.

Disorders.

Plotegher, N.; Duchen, M.R. Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders.

Mc Donald, J.M.; Krainc, D. Lysosomal Proteins as a Therapeutic Target in Neurodegeneration.

Dysfunction in Parkinson's Disease.

Pryor, P.R.; Mullock, B.M.; Bright, N.A.; Gray, R.S.; Luzio, J.P. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J. Cell Biol. 2000, 149, 1053–1062.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
8. Acknowledgements

This thesis and all the work behind it would not have been possible without the help and support of many people, close and far away, who always believed in me throughout these long years.

I would like to express my gratitude to my boss Prof. Stephan Frank for giving me the chance to work in his laboratory at the Institute of Pathology. Thank you for your patient guidance, mentoring and cooperation.

I’m also grateful to Dr. Lisa Restelli: thank you for introducing me not only to the “enchanted” world of mitochondria, but also to the “crazy pathology” environment.

Many thanks to the members of my thesis committee, Prof. Christoph Handschin and Prof. Frank Edlich for accepting to be part of my PhD committee.

My most heartfelt thanks go to Prof. Albert Neutzner, the “Master of cloning”. Thank you for your support, patience and willingness to discuss, and to remember me to never give up, even in the darkest moments. Thank you for always recalling me to “have fun” whenever I was starting a new experiment.

Many thanks go to all the current and former members of the Neutzner Lab: Claudia, Corina, Melanie, Jessica, Sarah, Suba, Bart and Chantal. Thank you for letting me feel part of the group.

I would also like to thank all the research people of the Pathology Institute that I met in these past five years, with a special thanks to Ilaria and Mara.

A huge thanks go to the very first friend I found in Basel, Nicole. Thank you for introducing me to the city, to the barbecues and drinks along the Rhine, and for “forcing” me to swim in the Rhine. And thank you for sharing the burden of my crazy PhD.

I also want to thank Stephy, my first swiss friend. Thank you for all our coffee breaks, our trash movie/mario kart nights (together with Dave), and our chats combined with glasses (or better bottles) of wine.
A big thanks go to my beloved friend, Noemi. Thank you not only for the scientific knowledge I acquired working with you, but also for all the support, even if we were far away.

I want to thank my girls Martina, Bianca, Eleonora and Stefania: thank you for always being there every time I was coming back home, for coming visit me in Basel, for our chats, gossips, dinners and party nights.

To my dearest friend Aurora, the only one who came twice here in Switzerland for me. Thank you Borina mia for all our voice massages (even if you were replying months later) and late-night phone calls.

I want to thank a lot Gaia and Stefano: when I thought I was completely alone, I found genuine friends.

A special mention goes to Stephanie, my weekend lab fellow: thank you my dear for sharing with me multiple working weekends.

A special thanks go to the Radiology volleyball people: thank you for all the good matches on sand and indoor. I always arrived back home tired as hell but happy.

My deepest gratitude goes to my Mum, my Dad and my Brother: thank you very much for supporting me since the beginning of this journey, and not just providing good Italian food. Thank you for teaching me how to live in this world with the proper kindness towards myself and the others.

Last but not least, there is one more person I should thank, and that is me, for not giving up when I was alone, when no experiment was working, when it didn’t seem worthy to go on. It was most probably worthy to hold on and arrive here.

“Happiness can be found, even in the darkest of times, if one only remembers to turn on the light.”

Albus Dumbledore

Harry Potter and the Prisoner of Azkaban