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Coronary artery disease (CAD) remains the leading cause of death worldwide. Expanding

patients’ metabolic phenotyping beyond clinical chemistry investigations could lead

to earlier recognition of disease onset and better prevention strategies. Additionally,

metabolic phenotyping, at the molecular species level, contributes to unravel the roles

of metabolites in disease development. In this cross-sectional study, we investigated

clinically healthy individuals (n = 116, 65% male, 70.8 ± 8.7 years) and patients

with CAD (n = 54, 91% male, 67.0 ± 11.5 years) of the COmPLETE study.

We applied a high-coverage quantitative liquid chromatography-mass spectrometry

approach to acquire a comprehensive profile of serum acylcarnitines, free carnitine and

branched-chain amino acids (BCAAs), as markers of mitochondrial health and energy

homeostasis. Multivariable linear regression analyses, adjusted for confounders, were

conducted to assess associations between metabolites and CAD phenotype. In total, 20

short-, medium- and long-chain acylcarnitine species, along with L-carnitine, valine and

isoleucine were found to be significantly (adjusted p ≤ 0.05) and positively associated

with CAD. For 17 acylcarnitine species, associations became stronger as the number

of affected coronary arteries increased. This implies that circulating acylcarnitine levels

reflect CAD severity and might play a role in future patients’ stratification strategies.

Altogether, CAD is characterized by elevated serum acylcarnitine and BCAA levels, which

indicates mitochondrial imbalance between fatty acid and glucose oxidation.

Keywords: metabolomics, coronary artery disease, carnitine, acylcarnitine, branched-chain amino acids, fatty

acid oxidation (FAO), mitochondria

INTRODUCTION

Coronary artery disease (CAD) remains the leading cause of death worldwide (1). In spite
of this, in clinical practice, patients’ biochemical stratification is still mainly limited to total
cholesterol and triglyceride quantification (2). Following recent advances in mass spectrometry
and bioinformatics, high-throughput and high-coverage metabolomic approaches now provide
more precise metabolic profiling at the molecular species level (3). Upgrading patients’ metabolic
phenotyping could lead to earlier recognition of disease onset, optimization of prevention
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strategies and health monitoring, ultimately reducing CAD-
related burden (4, 5). In addition to biomarker discovery,
patients’ metabolic phenotyping is of utmost importance to
decipher the roles of metabolites in disease development (6).

Metabolites, including acylcarnitines and amino acids,
have long been used to diagnose inborn errors of metabolism
(7, 8). Recently, acylcarnitines have been suggested as potential
biomarkers of cardiometabolic diseases (9). Specifically, elevated
acylcarnitines levels were observed in patients with type 2
diabetes (10, 11), heart failure (12–14), and in middle-aged
adults and elderly with a combination of different cardiovascular
diseases (15, 16). Additionally, circulating acylcarnitines
were associated with the risk of myocardial infarction and
cardiovascular death in individuals with stable angina pectoris
(17) as well as with the risk of cardiovascular events at 3-year
follow-up in patients with CAD (18, 19). Similarly, elevated
serum concentration of branched-chain amino acids (BCAAs),
whose metabolism is tightly related to that of short-chain
acylcarnitines, was observed in patients with insulin resistance
(20–22), obesity (23, 24), diabetes (25–27), dyslipidemia,
and CAD (19, 28, 29). These studies, however, investigated
patients already suffering from cardiometabolic diseases without
including healthy controls (12, 13, 15, 17–19, 23–28) or with
poorly characterized controls (14, 16, 20, 22, 29). Comparing
diseased against healthy metabolic signature is essential to reveal
disease-associated alterations and to improve our understanding
of metabolites’ roles in pathophysiological processes (30, 31).
Furthermore, these studies investigating a limited number of
acylcarnitines with a maximum of 12 species detected (19).
This number can now be outranged due to technological
advancements (32).

Acylcarnitines play a key role in the transport of fatty
acids longer than 10 carbon atoms (C) across mitochondrial
membranes for oxidation (Figure 5) (37, 46). Reduced oxygen
availability impairs fatty acid oxidation, with consequent
accumulation of acyl-CoA and acylcarnitines in mitochondria
(40, 47, 48). Accumulation of long-chain acylcarnitines further
disrupts membrane function and energy metabolism, which
ultimately leads to cellular stress, inflammation, insulin resistance
and cardiac arrhythmias (32, 44, 45). In contrast to medium-
and long-chain acylcarnitines (C6–C22), whose accumulation
is mainly related to impaired fatty acid oxidation, short-
and odd-chained acylcarnitines (C3 and C5) usually derive
from disrupted BCAA catabolism (Figure 5) (43–45). Thus,
acylcarnitines and BCAAs, which appear to be promising
indicators of mitochondrial function and cardiometabolic health,
could be used to improve patients’ metabolic phenotyping.

This cross-sectional population-based study quantified a
large panel of circulating short-, medium- and long-chain
acylcarnitines as well as BCAAs within well-characterized
clinically healthy individuals and patients with CAD of the
COmPLETE study (49). Our approach applied a high-coverage
targeted hydrophilic interaction liquid chromatography coupled
with high resolution mass spectrometry (HILIC-HRMS) (32).
The acquired comprehensive metabolic profiles allowed us
to identify a set of acylcarnitines and BCAAs associated
with CAD.

MATERIALS AND METHODS

Study Design and Participants
Subsets of the COmPLETE-Health (n= 116, mean age 70.8± 8.7
years old, 65% male) and COmPLETE-Heart samples (n = 54,
mean age 67.0 ± 11.5 years old, 91% male) were investigated. As
reported in the study protocol, only clinically healthy participants
from the Basel area (Switzerland), who had no exercise-limiting
chronic diseases and were non-smokers (or had quit at least
10 years previously) were included in the COmPLETE-Health
sample. This excluded participants with a history of CAD,
stroke, heart failure, lower-extremity artery disease, any kind of
malignant tumor, diabetes, obesity, clinically apparent kidney
failure, severe liver disease, chronic obstructive pulmonary
disease GOLD stages two to four, arterial hypertension grades two
and three, drug or alcohol abuse, exercise-limiting osteoporosis
or musculoskeletal conditions and clinically manifest Alzheimer’s
disease or dementia. The investigated subset of the COmPLETE-
Heart sample consisted exclusively of patients suffering from
CAD, diagnosis of which was confirmed by senior cardiologists.
Patients with unstable angina pectoris, uncontrolled brady- or
tachyarrythmia, permanent atrial fibrillation, severe valvular
disease, acute myocardial infarction, transient ischemic attack,
or stroke in the last 3 months were excluded. The exact
recruitment procedure and the full list of inclusion and exclusion
criteria can be found in the COmPLETE study protocol (49).
The COmPLETE study was funded by the Swiss National
Science Foundation (Grant No. 182815) and approved by the
Ethics Committee of North-Western and Central Switzerland
(EKNZ 2017-01451). A written informed consent document was
obtained from all participants prior to inclusion.

Data Sources
Data collection was carried out between January 2018 and
June 2019. Medical history and medication were reviewed by a
physician using a standardized questionnaire. Participants were
randomly allocated to one of five time slots (08:00, 10:00, 12:00,
14:00 and 16:00) for the measurements, which took around
4 h in total. They were instructed not to diverge from habitual
eating behavior (for the previous 72 h), to avoid exercising,
drinking alcohol (for the previous 24 h) and drinking caffeinated
beverages (for the previous 4 h). On the day of sample collection,
participants took the prescribed medication as usual. Fasting
blood samples (at least 3 h fasting time) were collected before
any kind of measurements involving physical activity. Trained
medical staff collected serum samples (2 × 7.5mL serum-gel,
Monovette R©, Sarstedt, Nümbrecht, Germany) by venipuncture
in the cubital fossa. Serum samples were slightly shaken for
30min, centrifuged (3,000 rpm; 10min; 20–23◦C) and aliquoted
before being frozen at−80◦C.

Anthropometric Values
Height and body mass were measured to the nearest 0.5 cm
and 0.1 kg, respectively. Body mass index was calculated as
kg/m2. Body composition was analyzed using a four-segment
bioelectrical impedance analysis (Inbody 720, Inbody Co. Ltd.,
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Seoul, South Korea). Using InBody 720, -as opposed to dual-
energy x-ray absorptiometry analysis, to measure appendicular
muscle mass was judged to be acceptable (50). After a rest
phase of 10min, resting systolic and diastolic blood pressures
and resting heart rate were measured in supine position
using a non-invasive vascular screening system (VaSera VS-
1500N; Fukuda Denshi, Tokyo, Japan). The peak oxygen uptake
(VO2 peak) was used as marker for the cardiorespiratory
fitness and was determined during an exercise test until
maximal exertion (i.e., volitional exertion, dyspnea, or fatigue)
using an electromagnetically braked cycle ergometer (Ergoselect
200; Ergoline, Bitz, Germany) and a computer-based system
(MetaMax 3B; Cortex Biophysik GmbH, Leipzig, Germany). VO2

peak was defined as the highest 30 s average of VO2 at any point
of the test.

Biochemical Analysis
Serum samples were analyzed for triglyceride, total cholesterol,
high-density lipoprotein (HDL) and low-density lipoprotein
(LDL) cholesterol concentrations using an Olympus AU680
automatic analyzer (Beckman Coulter, Brea, CA, USA),
enzymatic reagents (DiaSys, Holzheim, Germany) and secondary
standards (Roche Diagnostics, Mannheim, Germany). For
glycated hemoglobin (HbA1c), whole blood was analyzed by
high pressure liquid chromatography (HPLC) using D-10 (Bio-
Rad, Hercules, CA, USA). NT-proBNP was determined using
a chemiluminescent microparticle immunoassay (Architect,
Abott, IL, United States).

Metabolic Profiling
A large panel of carnitine related metabolites, including
free carnitine, deoxycarnitine and 36 acylcarnitine species
(Supplementary Table 1) were targeted in serum samples.
BCAAs were also measured, as C3- and C5-acylcarnitine species
are byproducts of the BCAA catabolism (43–45). Analysis was
conducted at the Metabolomics Platform, Faculty of Biology
and Medicine, University of Lausanne (Switzerland). A detailed
description of the method used is available (32).

Sample Preparation
For absolute quantification of acylcarnitines and BCAAs, samples
were prepared by mixing 20 µL of serum with 250 µL of ice-
cold methanol spiked with internal standard (IS) solution of
corresponding isotopically labeled acylcarnitines and BCAAs
(Supplementary Table 1), which was completed to 300 µL with
0.1% formic acid in water. Samples were then mixed by shaking
and centrifuged for 15min at 4◦C and 2,700 g. The resulting
supernatants were transferred to LC-MS vials prior to injection.

Metabolite Quantification
Extracted samples were analyzed by HILIC-HRMS in full
scan MS mode using a Q ExactiveTM Hybrid Quadrupole-
Orbitrap interfaced with the ultra-high-performance liquid
chromatography (UHPLC) Vanquish Horizon (Thermo Fisher
Scientific) as previously described (32). Metabolites were
separated using an ethylene bridged hybrid (BEH) amide column
(1.7µm, 100mm × 2.1mm I.D.) (Waters, MA, US) in positive

ionization mode. The mobile phase was composed of A= 20mM
ammonium formate and 0.1% formic acid (FA) in water and B=

0.1% FA in acetonitrile (ACN). The gradient elution started at
95% B (0–2min) decreasing to 65% B (2–14min), reaching 50%
B at 16min and was followed by an isocratic step (16–18min)
before a 4min post-run for column re-equilibration. The flow
rate was 400µL/min, column compartment 25◦C and the sample
injection volume was 2µl. Heated electrospray ionization (HESI)
source conditions were set as follows; sheath gas flow at 60, aux
gas flow rate at 20, sweep gas flow rate at 2, spray voltage at+3 kV,
capillary temperature at 300◦C, s-lens RF level at 60 and aux gas
heater temperature at 300◦C. Full scan HRMS data was acquired
over the m/z range 50–750, with the following MS acquisition
parameters; mass resolving power at 70,000 full width at half
maximum (FWHM), 1 microscan, 1e6 automatic gain control
(AGC) and maximum inject time at 100 ms.

Data Processing and Analysis
Raw data files were processed using Xcalibur 4.1 (Thermo
Fisher Scientific). Peak was manually curated and corrected if
necessary. For absolute quantification, calibration curves and
the stable isotope spike (or internal standard spike) at known
concentration were used to report the concentrations quantified
in each serum sample. Linearity of the standard curves was
evaluated for each metabolite using 11-point range. A human
plasma standard reference material (Certificate of Analysis, NIST
1950) was analyzed within each batch of samples and used as a
quality control for the validation of measurement accuracy.

Statistical Methods
Metabolite concentrations were log2-transformed and z-
standardized prior to statistical analysis. Multiple linear
regressions were run to assess associations between metabolites
and CAD phenotype. To determine which confounders required
adjustment for regressions, directed acyclic graph (DAG)
were drawn (Supplementary Figure 1) (51, 52). Metabolites
were used as dependent variables, while CAD phenotype and
confounders served as independent variables. Regressions using
acylcarnitines or carnitine as dependent variable were adjusted
for the following confounders age (53, 54), sex (55), HbA1c
(%) (11, 56, 57), body fat (%) (11, 58, 59), smoking habits (60),
antihypertensive and lipid lowering medication (61–64) as well
as fasting and sampling time (Supplementary Figure 1) (65–67).
Regressions using BCAAs as dependent variable were adjusted
for the following confounders: age, sex (67–70), skeletal muscle
mass (71, 72), smoking habits (60, 73), sampling time and fasting
time (Supplementary Figure 2) (65–67).

Two sets of multiple linear regressions were run. In the first
set, CAD was defined as a categorical two-level variable opposing
sickness vs. health. In the second set, CAD was defined as the
number of stenosed coronary arteries (0, 1, 2, or 3). As the
concentrations of deoxycarnitine, hydroxyhexanoylcarnitine
(C6:0-OH), hydroxydodecanoylcarnitine (C12:0-OH) and
arachidonylcarnitine (C20:4) were below the quantification limit
(0.003µM) of the HILIC-HRMS method employed for some
participants (deoxycarnitine n=1, hydroxyhexanoylcarnitine n
= 2, hydroxydodecanoylcarnitine n = 1, arachidonylcarnitine
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n = 1), a Tobit regression using the CensReg R package was
applied for these metabolites to estimate regression coefficients
in the presence of left censored values (74).

Graphical methods were used to assess linearity, normal
distribution, and homoscedasticity of data. P-values were
adjusted using the Benjamini-Hochberg (BH) method, separately
within each set of multiple linear regression (75). Adjusted
p ≤ 0.05 were considered as significant. Statistical analyses
were carried out using R (version 4.0.2) (76). Rain plots were
computed using a previously published R-code (77).

RESULTS

Participants’ Characteristics
The investigated subjects consisted of 116 healthy individuals
(70.8 ± 8.7 years, 65% male) and 54 patients with confirmed
CAD (67 ± 11.5 years, 91% male) (Table 1). The clinically
healthy individuals had normal body mass index (BMI) and
HbA1c values. (78). Mean blood pressure values were in the
high normal range, with 20% of participants treated for arterial
hypertension grade one (79). Sixty-six percent of the clinically
healthy individuals had never smoked, whereas 34% had quit
smoking more than 10 years previously. Both clinically healthy
controls and CAD patients were characterized by elevated LDL-
cholesterol according to the 2019 ESC/EAS guidelines on primary
(clinically healthy participants) and secondary (CAD patients)
prevention (2). Eighty nine percentage of the CAD patients
were under statin, compared to only 8% of the clinically healthy
participants, which could explain the lower levels of LDL-
cholesterol in the CAD patients. CAD patients displayed elevated
NT-proBNP levels and a mean BMI value in the overweight
range, while HbA1c, triglyceride and HDL-cholesterol levels as
well as systolic and diastolic blood pressure values were normal
(2, 78–80). It is worth noting that all CAD patients were on
antihypertensivemedications. Additionally, 50% of CADpatients
were non-smokers, while 20% ceased smoking at least 10 years
ago. Fasting duration was of at least 3 h with mean of 8.5
± 5.3 h for those with CAD and 6.7 ± 3.0 h for clinically
healthy individuals.

Associations Between Circulating
Acylcarnitines and CAD
Figure 1 exhibits the results of the first set of regression, in which
CAD was defined as a dichotomous variable opposing CAD vs.
absence of CAD. It shows that 20 out of 30 quantified carnitines
(seven short-chain, eight medium-chain and five long-chain
acylcarnitines) were significantly and positively associated
with CAD phenotype after adjustment for confounders
(Table 2, Supplementary Table 2, Supplementary Figure 3).
Hexanoylcarnitine (C6:0) showed the strongest positive
association with CAD (β-coefficient 1.02; BH p ≤ 0.004)
followed by palmitoylcarnitine (C16:0) (β-coefficient 1.02; BH
p-value 0.002), and hexadecenoylcarnitine (C16:1) (β-coefficient
0.96; BH p-value 0.003) (Supplementary Table 2). Figure 2

represents the results of the second set of regressions, in
which CAD was defined as the number of stenosed coronary
arteries (zero-, one-, two- and three-vessel coronary artery

disease). It shows that the strength of association (β-coefficient)
increased with increasing number of affected coronary arteries
for 17 acylcarnitines (3 short-, 8 medium- and 6 long-chain
acylcarnitine species) (Supplementary Table 2). Besides,
individuals with CAD had significant elevated levels of two
short-chain hydroxylated acylcarnitines (C4:0-OH and C5:0-
OH) and dicarboxylic acylcarnitine suberoylcarnitine (C8:0-DC)
(Supplementary Table 2).

Regarding the cardiometabolic risk factors used as
confounders, age showed significant and positive associations
with more than 50% of the measured acylcarnitine species
(one short-, eight medium- and eight long-chain species,
including two hydroxylated acylcarnitines). Six medium-
chain and six long-chain acylcarnitines were found to be
significantly and negatively associated with HbA1c, while no
significant association was found between acylcarnitines and
smoking status.

The BCAA Signature of CAD
Figure 3 exhibits the results of the first set of regression, in
which CAD was defined as a dichotomous variable opposing
CAD vs. absence of CAD. It shows that valine and isoleucine
were significantly and positively associated with CAD phenotype
(valine: β-coefficient 0.55; BH p-value 0.046 and isoleucine: β-
coefficient 0.52; BH p-value 0.046) (Supplementary Table 2).
Conversely, no significant association was found between BCAAs
and the number of stenosed coronary arteries (Figure 4).
Concerning the cardiometabolic risk factors used as confounders,
valine and leucine showed a significant negative association
with age and a significant positive association with the male
sex. No significant association was found between muscle mass
and BCAAs.

DISCUSSION

The present study revealed significant elevated levels of
circulating acylcarnitines and BCAAs in patients with CAD
compared to clinically healthy individuals. Acylcarnitine species
of all chain-length showed positive associations with CAD
phenotype. Compared to previous studies, the present work
quantified a larger panel of acylcarnitines, which allowed the
identification of novel associations between acylcarnitine species
and CAD phenotype (17–19). For instance, the short- and
medium-chain acylcarnitines C4:0, C4:0-OH, C5:0-OH, C5:1,
C5:1-O2, C6:0, and C8:1 were observed for the first time to be
associated with CAD. To the authors’ best knowledge, this is the
first study to have examined associations between the number
of stenosed coronary arteries and circulating acylcarnitines
and BCAAs. For 17 acylcarnitine species, associations became
stronger as the number of affected coronary arteries increased.
The number of coronary artery disease has been described as a
simple measure of CAD severity (81–84). Globally, the higher the
number of affected coronary arteries, the higher the probability
that a bigger part of the myocardium could be damaged (85, 86).
Therefore, there is a relation between the number of affected
coronary arteries, the area of impaired myocardium and heart
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TABLE 1 | Participants’ characteristics.

Clinically healthy CAD P-value (t-test or Mann Whitney U test) P-value (chi-squared test

Participants, n (%) 116 (68) 54 (32)

Anthropometry, mean ± SD

Age (years) 70.8 ± 8.7 67.0 ± 11.5 0.034

Male (%) 64.7% 90.7% < 0.001

Body mass (kg) 67.0 ± 10.4 84.0 ± 14.9 < 0.001

Body fat (%) 27.9 ± 6.9 30.2 ± 6.8 0.043

Lean mass (kg) 26.3 ± 5.1 32.2 ± 5.5 < 0.001

BMI (kg/m2 ) 24.0 ± 2.8 27.8 ± 4.1 < 0.001

Systolic blood pressure (mmHg) 131.8 ± 13.2 126.7 ± 15.4 0.029

Diastolic blood pressure (mmHg) 80.8 ± 8.3 77.3 ± 10.8 0.024

VO2peak (L/min) 1.86 ± 0.53 1.82 ± 0.60 0.629

Smoking status, n (%)

Never smoked 76 (66) 27 (50) 0.019

Smokers 0 (0) 6 (11) < 0.001

Ex-smokers (quit <10 years ago) 40 (34) 11 (20) < 0.001

Ex-smokers (quit >10 years ago) 0 (0) 10 (19) 0.110

Biochemical parameters, mean ± SD

Fasting duration prior to blood sampling (h) 6.7 ± 3.0 8.5 ± 5.3 0.522

Total cholesterol (mmol/L) 6.17 ± 1.04 4.12 ± 0.82 < 0.001

LDL-C (mmol/L) 3.46 ± 0.68 2.16 ± 0.52 < 0.001

HDL-C (mmol/L) 3.47 ± 0.68 2.16 ± 0.52 < 0.001

Triglycerides (mmol/L) 1.37 ± 0.76 1.50 ± 0.96 0.611

HbA1c (%) 5.4 ± 0.3 6.1 ± 0.7 < 0.001

NT-ProBNP (pg/ml) 145.5 ± 110.4 603.0 ± 651.4 < 0.001

Comorbidities

Hypertension 23 (20) 54 (100) < 0.001

No of coronary artery with stenosis, n (%)

0 116 (100) 0 (0)

1 0 (0) 12 (22)

2 0 (0) 15 (28)

3 0 (0) 24 (44)

Not known 0 (0) 3 (6)

Diabetes mellitus 0 (0) 10 (19) < 0.001

Cardiovascular medications, n (%)

Antihypertensive 23 (20) 54 (100) < 0.001

ACE inhibitors 3 (3) 32 (59) < 0.001

Angiotensin receptor blockers (ARBs) 19 (16) 18 (33) < 0.001

Amlodipin 6 (5) 7 (13) 0.008

Beta-blockers 4 (3) 43 (80) < 0.001

Statins 9 (8) 48 (89) < 0.001

Diabetes medications, n (%)

Oral antidiabetic drugs 0 (0) 9 (17) < 0.001

Insulin 0 (0) 6 (11) < 0.001

Other medications, n (%) 52 (45) 52 (96)

A Student’s t-test was performed to compare body fat, lean mass, BMI, systolic and diastolic blood pressure between clinically healthy and sick individuals. Other continuous variables

were compared using a Mann-Whitney U test. A chi-squared. BMI, body mass index; LDL-C, low density lipoprotein cholesterol; HDL-C, low density lipoprotein cholesterol; HbA1c,

glycated hemoglobin; NT-proBNT, N-terminal (NT)-pro hormone B-type natriuretic peptide. Other drugs include: Acetylsalicylic acid (57), diuretics (36), anticoagulants/antiplatelets

(32), vitamins (32), proton-pump inhibitors (30), chondroitinsulfat (13), lipid-lowering drugs except statins (11), non-steroidal anti-inflammatory drugs (11), thyroid hormones (11),

topical ophthalmic drugs (11), estrogen/hormone replacement therapy (9), 5α-reductase inhibitors (7), paracetamol (5), uricostatic drugs (5), antidepressants (3), antihistamines (3),

bisphosphonate (3), ginkgo (3), non-benzodiazepine benzodiazepine receptor agonists (3), fluticasone/salmeterol (2), prednisolone (2), pregabalin (2), benzodiazepine (1), febuxostatum

(1), fluticasone/vilanterol (1), gabapentin (1), L-dopa/benserazid (1), melatonin (1), mesalazine (1), molsidomin (1), mometasone (1), polystyrene sulfonate (1), tamsulosin (1), topic

fluticasone (1), tiotropium (1), rifamycin (1).
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FIGURE 1 | Associations between serum carnitine/acylcarnitine species, coronary artery disease and selected cardiovascular risk factors. This rainplot represents the

results of the first set of regression, in which metabolites were used as dependent variables (vertical axis), while CAD phenotype (two-level variable opposing sickness

vs. health) and confounders served as independent variables (horizontal axis). The redder the dots the higher the beta coefficient and the bigger the dot the smaller the

adjusted p-value. A clustering has been done regrouping the metabolites with similar beta-coefficients and adjusted p-values. BH, Benjamini-Hochberg; HbA1c,

glycated hemoglobin.
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TABLE 2 | Quantified metabolites.

Abbreviation Targeted metabolites

C0 Carnitine

Deoxycarnitine

S
h
o
rt
-c
h
a
in

(n
=

9
)

C2:0 Acetylcarnitine

C3:0 Propionylcarnitine

C4:0 Butyrylcarnitine

C4:0-OH Hydroxybutyrylcarnitine

C4:1-O2 O-succinylcarnitine

C5:0 Isovalerylcarnitine

C5:0-OH 3-Hydroxyvalerylcarnitine

C5:1 Tiglylcarnitine

C5:1-O2 Glutarylcarnitine

M
e
d
iu
m
-c
h
a
in

(n
=

1
1
)

C6:0 Hexanoylcarnitine

C6:0-OH 3-Hydroxyhexanoylcarnitine

C6:1-O2 Adipoylcarnitine

C8:0 Octanoylcarnitine

C8:0-DC Suberoylcarnitine

C8:1 2-Octenoylcarnitine

C10:0 Decanoylcarnitine

C10:1 Trans-2-decenoylcarnitine

C12:0 Lauroylcarnitine (dodecanoylcarnitine)

C12:0-OH 3-Hydroxydodecanoylcarnitine

C12:1 Trans-2-dodecenoylcarnitne

L
o
n
g
-c
h
a
in

(n
=

1
0
)

C14:0 Myristoylcarnitne (tetradecanoylcarnitine)

C14:1 Trans-2-tetradecenoylcarnitine

C14:2 Cis, cis-5,8-tetradecanedienoylcarnitine

C16:0 Palmitoylcarnitine (hexadecanoylcarnitine)

C16:1 Trans-2-hexadecenoylcarnitine

C17:0 Heptadecanoylcarnitine

C18:0 Stearoylcarnitine (octadecanoylcarnitine)

C18:1 Oleoylcarnitine (octadecenoylcarnitine)

C18:2 Cis, cis-9,12- octadecadienoylcarnitine

C20:4 Arachidonylcarnitine

B
C
A
A Leucine

Isoleucine

Valine

Acylcarnitines can be categorized depending on the number of carbon atoms of their

acyl-group into short-chain (C2–C5), medium-chain (C6–C13), and long-chain (C14–C21)

acylcarnitines (34, 80). C, number of carbon atoms of the acyl-group; DC, dicarboxyl; OH,

Hydroxy; BCAA, branched-chain amino acid.

function. This implicates that circulating acylcarnitine levels
might reflect CAD severity.

Elevated Medium- and Long-Chain
Acylcarnitine Levels in CAD
In the present study, circulating medium- and long-chain
acylcarnitines, especially C6:0, C8:0, C8:1, C12:1, C14:1, C16:0,
C16:1, C18:1, and C20:4, were found to be elevated in
CAD patients. This accumulation could be explained by a
dysregulation in carnitine shuttle enzymes and by an inefficient
beta-oxidation as previously demonstrated (34, 38, 40, 44,
56, 87–90). The main carnitine shuttle enzymes are carnitine

palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase
2 (CPT2), which are responsible for the conversion of acyl-
CoA and carnitine to free CoA and acylcarnitine and the
opposite reaction, respectively. The conversion of acyl-CoA to
acylcarnitine allow fatty acids longer than 10 carbon atoms to be
transported across the mitochondrial membrane for subsequent
beta oxidation. In ischemic conditions, CPT1 activity is increased
and CPT2 activity decreased, leading to an accumulation
of medium- and long-chain acylcarnitines (Figure 5) (87).
Furthermore, ischemia leads to an altered beta-oxidation, which
may be attributed to impaired function of fatty acid oxidation
enzymes or increased fatty acid oxidation relative to tricarboxylic
acid (TCA) flux (12, 38), both leading to accumulation of
acyl-CoA (12, 34, 47, 88, 91, 92). Excess acyl-CoA can be
retroconverted to acylcarnitine, which can then be excreted via
blood and urine, thus detoxifyingmitochondria of excess carbons
(Figure 5) (37, 39, 88, 93).

Our results are in line with previous findings. Within
medium-chain acylcarnitines, hexanoylcarnitine (C6:0) was
reported to be able to discriminate patients with cardiovascular
diseases from clinically healthy controls (16). Likewise,
octanoylcarnitine (C8:0) was associated with cardiovascular
mortality and reduced heart function (17, 94). Within long-chain
acylcarnitines, palmitoylcarnitine (C16:0) has been associated
with heart failure (94), cardiovascular mortality in patients
with stable angina pectoris (17) and cardiovascular events
in very old individuals with previous history of CAD (15).
Similarly, oleoylcarnitine (C18:1) was shown to be able to predict
cardiovascular events in elderly individuals with previous history
of CAD (15).

The Interconnection of Short-Chain
Acylcarnitine and BCAA Metabolism
We found elevated levels of several C3- and C5-acylcarnitine
species, as well as of their precursors valine and isoleucine, in
patients with CAD. Our results are consistent with those of
previous studies, which found that elevated levels of circulating
BCAAs (19, 28, 29) and short-chain acylcarnitines (19, 28)
were associated with CAD and stroke in a population at high
cardiovascular risk (95). BCAAs and acylcarnitines seem to
interplay at different levels. First, chronic cardiac ischemia
can disrupt the BCAA catabolism, leading to increased BCAA
catabolism derivatives such as C3- and C5-acylcarnitines (38, 96,
97). Excess BCAAs can then impair fatty acid oxidation, which
results in the accumulation of incompletely oxidized lipid species
and acylcarnitines (5, 98).

Acetylcarnitine (C2:0), which is the most abundant
circulating acylcarnitine (99), plays a central role in detoxifying
mitochondria from excessive acetyl-CoA, the universal
degradation product of all metabolic substrates (Figure 5)
(93). Interestingly, we found that acetylcarnitine (C2:0) was
not significantly associated with CAD phenotype and does
not accumulate in CAD patients. As the acetyl-CoA is the
main substrate of the TCA cycle, this observation implies
that the capacity of the TCA cycle is not necessarily exceeded
as previously postulated (12, 38, 98). Therefore, the globally
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FIGURE 2 | Associations between serum carnitine/acylcarnitine species, number of stenosed coronary arteries and selected cardiovascular risk factors. This rainplot

represents the results of the second set of regression, in which metabolites were used as dependent variables (vertical axis), while the number of stenosed coronary

arteries (0, 1, 2, or 3) and confounders served as independent variables (horizontal axis). The redder the dots the higher the beta coefficient and the bigger the dot the

smaller the adjusted p-value. A clustering has been done regrouping the metabolites with similar beta-coefficients and adjusted p-values. BH, Benjamini-Hochberg;

HbA1c, glycated hemoglobin.
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FIGURE 3 | Associations between serum branched-chain amino acids, coronary artery disease and confounders. This rainplot represents the results of the first set of

regression, in which metabolites were used as dependent variables (vertical axis), while CAD phenotype (two-level variable opposing sickness vs. health) and

confounders served as independent variables (horizontal axis). The redder the dots the higher the beta coefficient and the bigger the dot the smaller the adjusted

p-value. A clustering has been done regrouping the metabolites with similar beta-coefficients and adjusted p-values. BH, Benjamini-Hochberg; HbA1c, glycated

hemoglobin.

elevated levels of acylcarnitines are likely due to impaired fatty
acid oxidation and carnitine shuttle enzymes, rather than to
reduced TCA flux.

Hydroxylated and Dicarboxylic
Acylcarnitines
The short-chain hydroxylated acylcarnitine
hydroxybutyrylcarnitine (C4:0-OH) was found to be elevated
in CAD. Accumulation of plasma hydroxybutyrylcarnitine
(C4:0-OH) is used for the diagnosis and screening of patients
with an inherited defect in the short-chain hydroxyacyl-CoA
dehydrogenase (SCHAD), an enzyme of the mitochondrial fatty
acid oxidation (100). This finding further supports an impaired
beta oxidation in CAD.

Suberoylcarnitine (C8:0-DC) was positively associated with
CAD phenotype. This is in line with the findings of Shah
et al., which showed that a signature composed of short-
and medium-chain dicarboxylic acylcarnitines was predictive of
cardiovascular events in individuals with CAD (19). In addition

to an alteration in mitochondrial fatty acid oxidation, elevated
dicarboxylic acylcarnitine levels in CAD could indicate increased
fatty acid omega-oxidation (101). Dicarboxylic acylcarnitines
are byproducts of medium-chain dicarboxylic acids. The latter
are the final products of microsomal omega-oxidation and
of the subsequent peroxisomal beta-oxidation (102). Both
mitochondria and peroxisomes perform fatty acid beta-oxidation
but with different aims. Short-, medium and long-chain fatty
acids are predominantly oxidized in mitochondria, whereas
peroxisomes oxidize specific carboxylic acids such as very long-
chain fatty acids, branched-chain fatty acids, bile acids, and fatty
dicarboxylic acids (DCAs) (103, 104). The carnitine shuttle is
then used to transport the end-products (acetyl-CoA, propionyl-
CoA, and medium-chain acyl-CoA) from the peroxisome to
the mitochondria for complete oxidation via the TCA cycle
(Figure 5) (37, 38, 105). While the mitochondrial beta-oxidation
is essential for catabolism and energy production, peroxisomal
beta-oxidation is mainly involved in biosynthesis pathways
(106). Altogether, in addition to impaired mitochondrial
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FIGURE 4 | Association between serum branched-chain amino acids, number of stenosed coronary arteries and confounders. This rainplot represents the results of

the second set of regression, in which metabolites were used as dependent variables (vertical axis), while the number of stenosed coronary arteries (0, 1, 2, or 3) and

confounders served as independent variables (horizontal axis). The redder the dots the higher the beta coefficient and the bigger the dot the smaller the adjusted

p-value. A clustering has been done regrouping the metabolites with similar beta-coefficients and adjusted p-values. BH, Benjamini-Hochberg; HbA1c, glycated

hemoglobin.

beta-oxidation, CAD patients also seem to have an altered
peroxisomal and microsomal fatty acid oxidation (105).

Acylcarnitines: Angels or Demons?
An accumulation of medium- and long-chain acylcarnitines
can impair several regulatory mechanisms in mitochondria.
First, fatty acids and glucose intermediates compete as
metabolic substrates for energy production (Randle cycle)
(42). An intramitochondrial accumulation of long-chain
acylcarnitines inhibits pyruvate and lactate oxidation, leading to
metabolic inflexibility (Figure 5) (42) or the incapacity to switch
between substrate for energy production depending on their
availability (41). Secondly, an excess of long-chain acylcarnitines
compromises membrane function, induces electrophysiological
alterations through modulation of calcium and potassium
channels (contributing to cardiac arrhythmias), promotes insulin

resistance and inflammation, inhibits oxidative phosphorylation
and stimulates the production of reactive oxygen species
(34, 37, 87, 88, 107).

A dysregulation in the BCAA catabolism, with a back-up of
BCAAs and their byproducts, also has important consequences.
The BCAA catabolism intermediates branched-chain keto
acids (BCKAs) can be cytotoxic at high levels, promoting
mitochondrial dysfunction, superoxide accumulation, and
cardiomyocyte death, eventually leading to heart failure (96).
Furthermore, an accumulation of BCAAs sensitizes the heart
to ischemic injury (108) and contributes to cardiac dysfunction
and remodeling following myocardial ischemia (109, 110). This
can be explained by various mechanisms including inhibition
of glucose metabolism (108) and activation of the mammalian
target of rapamycin (mTOR) (109, 110). Altogether, BCAA
catabolism seems to be disrupted in individuals with CAD,
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FIGURE 5 | Acylcarnitine and branched-chain amino acid (BCAA) metabolism in a cardiac cell. This study found elevated levels of circulating short-, medium- and

long-chain acylcarnitine and BCAA species in patients with CAD compared to clinically healthy individuals. Under aerobic conditions, lipids represent the main

energetic substrate in cardiac cells (33). The main role of carnitine and acylcarnitines is to transport fatty acids, containing acyl-chain(s) of 10 or more carbon atoms,

into the mitochondria for subsequent beta-oxidation. The so-called carnitine shuttle includes several enzymes. The enzyme carnitine palmitoyltransferase 1 (CPT1)

located at the outer mitochondrial membrane converts acyl-CoAs into acylcarnitines. These are then transported through the inner mitochondrial membrane by the

carrier carnitine/acylcarnitine translocase (CACT). Once inside the mitochondrion, the enzyme carnitine palmitoyltransferase 2 (CPT2) converts acylcarnitines back to

their corresponding acyl-CoAs, which will then undergo beta-oxidation to produce acetyl-CoA (34–36). Beyond fuel trafficking, acylcarnitines also defend against

mitochondrial stress by buffering the intracellular free CoA to acyl-CoA ratio (37–39). The carnitine shuttle enables mitochondrial export of excess carbons in the form

of acylcarnitines, which can then be excreted via blood and urine (37, 39). This process also supports metabolic flexibility by relieving the inhibition of PDH induced by

acetyl-CoA accumulation (40). Metabolic flexibility is the ability to switch between substrate for energy production depending on substrate availability (41). Fatty acids

and glucose intermediates compete as metabolic substrate for energy production in cardiac mitochondria (Randle cycle) (42). Short- and odd-chain acylcarnitine

species, such as propionylcarnitine (C3) and isovalerylcarnitine (C5), are usually derived from BCAA catabolism (43–45). Molecules on a yellow background were

measured in this study. Regulatory mechanisms are represented with gray lines, normal arrows for stimulation and arrows to bar for inhibition. Lightning icons

represent impairment. Acyl-CN, acylcarnitine; BCAA, branched-chain amino acid; C, number of carbon atoms; CACT, carnitine-acylcarnitine translocase; CAT,

carnitine acetyltransferase; CPT1, carnitine palmitoyltransferase 1; CPT2, carnitine palmitoyltransferase 2; PDH, pyruvate dehydrogenase.

provoking an accumulation of BCAAs and their byproducts,
favorizing mitochondrial dysfunction.

While an accumulation of BCAAs, medium- and long-
chain acylcarnitines have deleterious consequences, research
has indicated that some short-chain acylcarnitines could
also have positive effects (37). Evidence has suggested that
propionylcarnitine (C3) increases cellular carnitine content,
stimulates pyruvate dehydrogenase activity and increases
TCA cycle efficiency under hypoxia (111, 112). Therefore,
supplementation in propionylcarnitine (C3) could be beneficial
in the treatment of cardiovascular disorders (112). For L-
carnitine, several studies have also reported a protective role
on the myocardium by exerting anti-apoptotic effects in
cardiomyocytes (94, 113). A protective role of L-carnitine within
the myocardium is further supported by studies in individuals
with genetic carnitine deficiency developing cardiomyopathies
(114). Importantly, in our study, propionylcarnitine and L-
carnitine were found to be elevated in CAD patients. Considering

the potential beneficial effects of these carnitine species, elevated
levels of circulating L-carnitine and proprionylcarnitine observed
in CAD patients in our study could suggest an attempt of the
body to adapt to chronic ischemia. This hypothesis remains to be
further investigated.

Can Acylcarnitines Replace Cholesterol in
Clinical Practice?
Mitochondrial dysfunction is a major determinant of metabolic
disease such as metabolic syndrome, non-alcoholic fatty liver
disease and type 2 diabetes mellitus, conditions which are highly
linked to increased risk of cardiovascular disease and myocardial
infarction (115, 116). This supports the use of acyclarnitines as
markers of mitochondrial function and cardio-metabolic risk.
Additionally, understanding the acylcarnitine metabolism in
CAD could lead to new treatment targets. Most research on the
effects of ischemia on mitochondrial enzymes has been done
in acute ischemic situations. This study showed that altered
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mitochondrial metabolism reflected in high levels of circulating
carnitine, acylcarnitines and BCAAs is also a hallmark of CAD,
a chronic ischemic situation. These findings should be further
investigated at an enzymatic level and in model organisms. There
has been emerging evidence that manipulating fuel supply and
substrate consumption of the myocardium could have an impact
on the development and progression of heart failure (117, 118),
which often occurs in CAD. Therapeutic interventions with
“metabolic” antianginal agents that suppress fatty acid oxidation
and increase the oxidation of pyruvate in the mitochondria could
reduce the ischemia-induced accumulation of long-chain fatty
acid intermediates and other disruption in cardiac metabolism
(119). Hypoxia, anoxia and ischemia might have different effects
on the cardiac metabolism and these conditions should be clearly
distinguished in future works (33).

Strengths and Limitations
While previous studies analyzed L-carnitine and/or a limited
number of acylcarnitines in patients with cardiometabolic
diseases, we examined a large panel of acylcarnitine species
and related BCAAs. This resulted in a thorough phenotyping
of patients with CAD at the molecular species level (35
metabolites) comparing them to clinically healthy controls,
which was rarely the case in previous research. Additionally,
we conducted a detailed analysis of possible confounders and
adjusted the regressions for those variables. Given the exploratory
nature of this study, several limitations should be taken into
consideration. First, as multiple organs usually contribute to
the circulating pool of metabolites, it is difficult to identify the
cellular origin, destination or subcellular localization of these
metabolites (120). Therefore, the findings of the present study
should be interpreted with caution when it comes to mechanistic
explanations. Fortunately, it was recently shown that circulating
acylcarnitine levels reflect cardiac tissue content of acylcarnitines
(121), whereas elevated plasma levels of BCAAs reflect impaired
BCAA catabolism in cardiac cells (122). These two facts
support the rationale of the present study. Secondly, the cross-
sectional nature of this study only allows for the establishment
of associations, and not causality, between metabolites and
CAD (123). While it is currently unknown if elevated level of
circulating acylcarnitines is a consequence or a cause of ischemia-
related cardiac damages, this question is of crucial relevance for
the therapy of CAD and should be further investigated. Thirdly,
the extent to which the reported associations represent the
acylcarnitine and BCAA signature of CAD in females is unclear,
as most enrolled patients were male (90.7%). This study likely
did not capture the sex-specific metabolic signature of CAD.
Fourthly, although serum samples were collected in a fasting state
and regression analyses were adjusted for fasting time, the fasting
duration might have been too short (6.7 h ± 3.0 h for healthy
controls and 8.5 h ± 5.3 h for CAD patients). However, while
circulating acylcarnitine levels have been shown to decrease up to
3 h after food intake (124) and increase after 12 h of fasting (125–
127), the effect of a fasting time comprised between 3 and 12 h
is unknown to the authors’ best knowledge. Finally, we did not
control for the amount and type of food intake, which is known
to influence the metabolome (67).

CONCLUSION

This study found elevated levels of circulating acylcarnitine and
BCAA species in patients with CAD compared to clinically
healthy individuals. Acylcarnitine species of all chain-lengths
showed positive associations with CAD phenotype. Interestingly,
associations between acylcarnitine species and CAD became
stronger as the number of affected coronary arteries increased.
Thus, circulating acylcarnitine levels might reflect CAD severity
and should be considered as potential candidates to improve
patients’ stratification. Altogether, CAD is characterized, at a
molecular species level, by elevated acylcarnitine and BCAA
levels, thus implying impaired mitochondrial metabolism in
cardiac cells.
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