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Abstract

Gene regulation is a key process in living organisms. It defines cells identity and
behavior, and allows the cells to adapt to the external environment. From a theoretical
point of view, a central question is how to mathematically characterize the many
players and their complex interactions to understand the gene expression output as
function of the regulatory inputs. A common approach is thermodynamic modelling,
where the transcription is assumed to be in equilibrium with the concentration of
transcription factors, and any fluctuation is averaged away. However, the advent of
new experimental techniques providing precise measurements of gene expression at
the single-cell level is challenging the general validity of the equilibrium assumption.

In this thesis, we focus on the induction of the LexA regulon in the model organism
Escherichia coli, which is involved in the repair of DNA damages. Tracking the single-
cell expression dynamics of different genes under the exclusive control of the inhibitor
LexA, we show that the induction is characterized by short bursts of production,
which are incompatible with a thermodynamic model where gene transcription is in
equilibrium with the concentration of LexA. On the other hand, we show that the
network responds to transient fluctuations in the concentration of the regulator.

Finally, we deal with the question of how to properly analyze flow cytometry
data for bacterial populations. Flow cytometry is an attractive technology to quantify
single-cell gene distribution in high-throughput. However, so far no systematic
investigation has been carried out to estimate the accuracy of these measurements
for small bacterial cells. Here, by comparing the fluorescence distribution of the
same E. coli strain both in flow cytometry and in a microscopy setup, we show
that the fluorescent signal contains a significant amount of electronic noise and
background fluorescence. We then propose a robust method to correct for these
spurious components, and we show that only after correcting for electronic noise and
autofluorescence, measurements from the flow cytometry agree with the ones from
the microscopy setup.
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1. Motivation

1.1. Why biology?

One of the most frequent questions people like to ask me when they know that I left
physics for biology is why?

When I first embarked on the study of physics, I was fascinated by the idea of
being able to understand the complexity of reality, from the tiny world of subatomic
particles, up to the vastness of the Universe. I can fairly say that my journey started
when as a high school student I first read an article about the standard model in a
science magazine. I was stunned by the fact that the complexity of the Universe can
be explained by a bunch of elementary particles and a single equation describing how
they interact (gravity apart). And the very question of how complexity can emerge
from simplicity is what has guided my journey until the present days. However, as
an undergraduate student, I soon realized that I was not fully satisfied by the current
state of affair of theoretical physics, where new theoretical ideas are exploring realms
well beyond the limits of our experience, and where new advancement is justified
more by abstract mathematics, than by empirical evidence. And, although I appreciate
the large effort to trying to reduce the complexity of the whole Universe down to
the behavior of simple entities, I realized that I personally find more intellectually
satisfying the investigation of complex phenomena that can be accessed with the
current technological and experimental tools. One being life on Earth. We know life
is the result of the arrangement of four different bricks, the nucleic acids, that form
the DNA. But, how can the variety and complexity of life emerge from the simple
arrangement of these four nucleic acids? It was the desire to find an answer to this
question and the need for a research field grounded on empirical evidence, that led
me to study biology.

The next question people like to ask is What can a physicist do for biology? The answer,
in my opinion, is that he or she can bring their expertise and new methodological
approaches to solve a specific problem. In modern English, the expression Renaissance
man refers to a man with several interests and broad knowledge in a variety of fields
[1]. That was certainly true if we think of great Renaissance thinkers like da Vinci,
Pascal, or Leibniz, to name a few. On the other side, nowadays we have accumulated
such a large amount of knowledge, that a single mind cannot possibly fully master
more than a specialized portion of it. However, this does not mean that science must
become a compartmentalized discipline, but it is pivotal for the advancement of
knowledge that scientists of different backgrounds, each with their own expertise and
problem-solving approach, work side by side on a common question (as exemplified
in a nice article by Lazebnik [2]. The preface Schrodinger wrote for his What is life [3]
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is also inspiring).

The question is then, what expertise can a physicist bring to complement the
expertise of a biologist? I think the answer is that physicists have a natural tendency to
reductionism, that is to find patterns in apparently different complex phenomena, and
to identify a set of elementary rules that can explain them all, in a unified framework.
That was the case, for example, when Maxwell showed that electricity, magnetism,
and light are all sides of the same force. Indeed, we now know that all the many
facets of life are nothing else but different arrangements of four nucleic acids, in the
same way as a feather and a stone are different arrangements of subatomic particles.
And understanding the many facets of life is not so different than understanding
how a complex physical phenomenon emerges from elementary rules.

1.2. Why gene regulation?

In his Confessions, Augustinus wrote [4], answering the question what is time?: "If
no one asks me, I know; if I wish to explain to him who asks, I know not”. With
life, we are in a very similar situation, although everybody knows intuitively what
life is, and most of the time it seems straightforward to distinguish between living
and non-living matter, finding a formal definition of what life is, is a harder task
[5]. Of the several characteristics that over time have been considered as essential
features of life, I find adaptation one of the most fascinating, since it underlies most
of the complex behavior of living organisms. In particular, I am interested in gene
regulation, that is, the ability of the cells to sense the external environment and react
to external changes by turning on and off specific genes.

I find gene regulation fascinating for several reasons. The rules are very simple
and relatively well understood: roughly speaking, there is only one basic rule: genes
have specific regions that a regulator protein can bind to inhibit or enhance its
transcription. Despite the simplicity of this rule, gene regulation leads to a large
variety of complex behaviors and phenotypes, given the same underlying genotype.
This allows living cells to optimize their gene expression based on the external
environment and therefore it has a pivotal role in adaptation. It guides the precise
and complex body segmentation during the development of embryos. It is responsible
for the plethora of cell types that constitute a complex multi-cellular organism. And,
interestingly, the difference among organisms resides in different ways their genes
are regulated, more than in having different genes [6]. Also, we are living in exciting
times for research in gene regulation, with new high-throughput technologies offering
us a full array of experimental techniques, unthinkable until a couple of decades
ago, which are providing fundamental insights about the underlying mechanisms of
gene regulation [7]. The advent of the DNA-arrays technology in the late go’s and
2000’s [8] provided us with efficient ways to probe the transcriptomes of different
tissues or organisms, and with the rapid advancement in sequencing, we could reach
single-cell resolution. Microscopy image analysis and microfluidic devices allow for
time tracking of gene expression in single cells [9-16], bacterial flow cytometry allows
to investigate snapshots of protein distribution in large populations [17-27], and new
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versions of ChIP allow us to explore the interactions between transcription factor
and DNA [28]. And this is just to name a few. At the same time, synthetic biology
allows us to not only probe existing regulatory networks but also to synthesize novel
architectures de novo, therefore allowing for testing new predictions and theories.

1.3. My contribution

I focused on understanding how gene expression is regulated in Escherichia coli
single-cells, and how the promoter architecture dictates the response of a gene to the
external environment. My work combined time-lapse microscopy, high-throughput
estimation of fluorescent reporters, quantitative image analysis, and mathematical
modeling to foster our understanding of the mechanisms underlying gene regulation.

Although from the seminal work of Jacob and Monod [29] our understanding of
gene regulation has increased enormously, there are still many open questions. Even
for the simplest bacterial genomes, we are still far away from having a complete
picture of the full regulatory network, with 70%-90% of the regulatory interactions in
the model organism E. coli still missing [30]. But even if we knew all the regulatory
inputs, the many molecular players and their complex web of interaction make it hard
to predict the phenotype of a cell from its genotype, or how changes in regulatory
sequences alter the behavior of the cells [31].

I believe that we are in a similar situation as 19" century physicists dealing with the
behavior of gases, and it is no wonder that many mathematical concepts are shared
between the field of gene regulation and thermodynamics or statistical physics. In
thermodynamics, the aim is to describe thermal processes in systems with a large
number of degrees of freedom. Of course, there is no new physics in the behavior of
gases: if we solved Newton equations for each particle, we would be able to explain
all the observations (quantum mechanical corrections aside). However, such a model
will not only be mathematically intractable, but it will also be so complicated that
will give us no insight into the functioning of the system. Thermodynamics is, in
this sense, a more powerful description of gases, although less precise. Instead of
relying on a large number of degrees of freedom, we describe a gas with just three
parameters: temperature, volume, and pressure. With these three parameters, which
are readily interpretable in terms of microscopic properties of the gas, we can make
predictions and understand how a gas behaves. This simplifying approach is at the
base of the humorous metaphor that theoretical physicists only consider spherical
cows in a vacuum. But I think this coarse-graining away of microscopic details and
the simplified modelization of complex systems constitutes the real power of physical
theories.

Similarly to gases, gene regulation is a highly complex process, involving many
components and reactions, and if we want to understand it, we need to reduce it to
a set of simple players and rules. But there are still many open questions, some of
which have been tackled in this thesis. To find coarse-grain models of gene expression,
it is not yet completely clear what approximations we are allowed to make. For
example, in describing the Lac operon it is common practice to assume that the
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system is in equilibrium with the main players involved in mRNA transcription
[32]. This approach works well with the Lac operon, but there might be networks
where the equilibrium hypothesis is not met [33]. Moreover, it focuses only on the
average gene expression, and it is, therefore, unable to discriminate among a variety
of different models giving the same average number of transcripts [34]. At the same
time, it became clear that also expression noise, coarse-grained away by equilibrium
models, is an important feature of regulatory networks, allowing isogenic cells to
have a phenotypic variability that proves to be advantageous in adapting to varying
environments [35—37]. Recently, it has been shown that a sensible part of this noise
comes from the regulatory network itself [18] and this might shed light on the origin
and evolution of de novo regulatory networks [27].

Specifically, I was interested in the question of how transcription factors (molecules
involved in the activation or repression of genes) regulate gene expression at the
single-cell level, and how fluctuations in the concentration of transcription factors
propagate to the regulated genes. I examined this question not only from a theoretical
point of view but also based on experimental data of the SOS response in E. coli [38].
The SOS response has been chosen, together with the experimental team, because one
regulator, LexA, inhibits different genes, some of which are under exclusive control of
LexA. The concentration of LexA is easily controllable using a common antibiotic and
its binding sites are well known. I consider this network (1 regulator — many targets)
as the “helium atom” of gene regulation, the Lac operon (1 regulator — 1 target)
being the “hydrogen atom”. Despite the simplicity of the network, the presence of
feedback loops and fluctuations in LexA concentration cause a complex dynamics,
with a temporal pattern characterized by waves of gene activity [33]. Different kinetic
models have been proposed to explain such idiosyncratic induction pattern, and they
showed the importance of single-cell studies to unmask patterns that are otherwise
hidden at the population level [39—42].

In this thesis, I will discuss three projects related to the mathematical modeling
of gene regulation. First, I show that the equilibrium assumption, valid for the Lac
operon and the regulation of the A phage, is not appropriate for the SOS response. I
then investigate which consequences a non-equilibrium dynamics has on the response
of the cells to the external environment. Second, any mathematical model is useful
only when it can be applied to experimental data, and for this reason, it is important
to have accurate high-throughput measurements. During my research, I carried out a
rigorous comparison of flow cytometry with microscopy setups and I showed how
to correctly extract quantitative information from high-throughput measurements of
bacterial gene expression. Third, equilibrium models can become quite cumbersome
when promoters allow the regulators to bind on different sites. For this reason, to
analyze data of the SOS response previously collected in the lab, I have developed an
efficient algorithm to computationally solve complex equilibrium models.
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2.1. Transcription initiation and regulation

2.1.1. Transcription initiation

One of the main players in gene expression is the DNA-directed RNA polymerase
(RNAP), an enzyme able to synthesize RNA strains from a DNA template in a
process termed transcription. In most bacteria, the RNAP is a 400 kDa enzyme with a
characteristic shape of a crab claw and composed of five domains, a;B8'w [43]. The
C-terminal of the two alpha domains («CTDs) are separated by the main body by an
unstructured link which confers a degree of flexibility, in such a way that the two
«CTDs can be thought of as antennae that the polymerase can use to identify specific
regions of the genome [44].

The RNAP alone is not able to find a gene and to initiate the transcription process.
As a result, a group of molecules, called sigma factors, are required to bind to the
polymerase and to direct it to specific genetic loci, called promoters, situated upstream
the transcription start site (TSS) of a specific gene. The very stable complex of the
RNAP with the bound sigma factor is called holoenzyme and a variety of sigma factors
are present inside the bacterial cell, each with different specificities for different
promoters. However, all bacteria have a housekeeping sigma factor responsible for
the transcription of essential genes in the growing cell. In E. coli the housekeeping
sigma factor is the ¢, so called because its molecular weight is 70 kDa. The pro-
moter sequence of a gene regulated by 0”0 contains 4 elements that the sigma factor
recognizes and binds to: the -35 region, centered around 35 base pairs upstream the
TSS, the -10 region, situated roughly 10 base pairs upstream the TSS, the extended -10
region and the discriminator. The -35 and -10 regions have the consensus sequences
TTGACA and TATAAT respectively, and the optimal space in between is 17 base
pairs and is called spacer. A further element is the UP element, found upstream the
-35 region and recognized by the two «CTDs of the RNA polymerase [45].

Once the holoenzyme has recognized a promoter, a series of reactions, driven
by thermal fluctuations and free energy accumulated in the holoenzyme, lead to
the unwinding of the DNA and the correct positioning of the template strand in
the catalytic center of RNAP, so that the transcription process can begin. As the
transcription proceeds, the DNA is pulled inside the holoenzyme, which on the
other hand stays firmly bound to the promoter, creating a ”scrunching” of the DNA.
Furthermore, 070 blocks the exit channel of the newly synthesized mRNA. The
scrunching of the DNA and the collision of the mRNA with the sigma factor increase
the free energy that can be released in two ways. In many cases, the mRNA dissociates
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from the complex, is released, probably through a secondary channel [43], and the
transcription must be restarted again (abortive initiation cycles). Alternatively, the
mRNA manages to displace the ¢, freeing the exit channel and destabilizing the
bond between the holoenzyme and the -35 region of the promoter sequence. In this
way, the holoenzyme can leave the promoter (promoter escape) and can continue the
transcription of the gene [46].

2.1.2. Transcription regulation

Due to the different environmental conditions that the cells may experience, the
genes to be expressed and their amount of transcription must be regulated. For this
reason, the activity of the holoenzyme is affected by other molecules able to sense
environmental cues and orchestrate the transcriptional program. The first regulatory
element ever identified was the Lacl repressor described in the seminal work of Jacob
and Monod in 1961 [29]. For some time the mainstream idea was that the regulatory
program was carried out entirely by repressors, giving little credence to the existence
of activators [44]. Today we know that the regulation of the transcription activity
can be achieved both by repressors and activators, which act by interfering with the
promoter accessibility or with the polymerase affinity for specific promoters.

We present here only a selection of the most common mechanisms, referring to [44]
and [45] for a more comprehensive discussion.

Promoter-centred regulation

Molecules that control the expression of a gene by binding to specific sites of the
promoter are called transcription factors (TFs) and the sites they bind to are called
operator A repression action can be carried out simply by steric hindrance, preventing
the holoenzyme to bind to the promoter. Alternatively, TFs can introduce looping at
the promoter region, modifying the local DNA structure and decreasing the affinity
of the promoter to the sigma factor. The TF can also interact directly with activators
bound to the promoters (see below) and prevent them to recruit the holoenzyme. On
the other hand, most native promoters have elements whose sequences are far away
from the consensus. For these promoters, the affinity to the 79 is low or, in some cases,
even null. As a result, TFs acting as activators are required. One activating mechanism
is to bind to elements of the promoters that are far away from the consensus sequence,
acting as molecular “velcro” to increase the affinity to the RNAP [45]. Other TFs can
bind between the -35 and -10 region causing a conformation change of the promoter
to set an optimal spacer length. Some sigma factors, like the ¢>* in E. Coli, require
energy to unwind the DNA. Therefore, TFs called Enhancer Binding Proteins, are
required to provide the necessary energy requirements from ATP hydrolysis. To
notice that TFs may also be regulated, for example, they can be actively degraded or
sequestrated by specific anti-repressors. This is, for example, the case of recA and
lexA involved in the SOS response of E. coli and described in more detail in the
following sections.
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Finally, some promoters, like the one controlling the fim operon in E. coli, are in the
wrong direction and must be flipped by the FimB and FimE recombinases to correctly
direct the holoenzyme to the gene.

Polymerase-centred regulation

The presence of different sigma factors is an example of regulation at the level of the
RNAP. While in normal conditions the most abundant factor is the housekeeping
0”9, in stress conditions other sigma factors can become predominant and compete
with 070 in the binding of RNAP and guiding it to a specific subset of promoters.
The availability of alternative sigma factors is regulated by covalent modifications,
subcellular localization, and different rates of synthesis and degradation. Moreover,
they can be sequestrated by anti-sigma factors, which, in turn, can be sequestrated
by anti-anti-sigma factors. An example is the induction of the ¢ factor (RpoS) in
response to stress conditions or at entry into the stationary phase. Here an increase
in the anti-o7" Rsd causes 0™ to predominate in the binding of the RNAP [46].
Sigma factors can also be sequestrated, for example by up-regulation of 65 RNA in
response to slow growth, which binds and sequestrates the sigma factors, allowing
for coupling the growth and gene expression. Alternatively, some phages produce
molecules which inhibit the bacterial RNAP in favor of the phage polymerase, or that
redirect it to the viral promoters. Some of these appropriators are also auto-produced
by the bacterium, e.g. E. Coli SoxS binds to the aCTDs to redirect them to promoters
containing a SoxS box, which are associated to genes involved in coping with the
oxidative stress.

2.2. Mathematical modeling of gene expression

Let’s suppose we want to model the gene expression of a population of cells. The most
precise way to proceed would be to consider all the processes involved: RNAP and
sigma factor binding, open complex formation, promoter escape, ribosome binding...
This way is, however, doomed to fail, because of the high number of degrees of
freedom, some of the mechanisms are still not well understood, and experimental
methods are not enough precise to have a complete quantitative description of gene
expression[47].

To gain insights on the functioning of complex genetic networks, researchers have
extensively looked at simple systems, where most of the components and interactions
are known. The two archetypal examples are the lac operon [48] and the regulation
of the lytic/lysogenic cycle of the A phage [49] in E. coli. Despite the simplicity of
these networks, they already entail many subtleties inherent to gene regulation and
show the challenges one has to face to model more complex networks. An extensive
toolbox of quantitative models, resting on different assumptions of the regulatory
process, has been proposed based on the studies of these two regulatory networks.
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2.2.1. Thermodynamic models

We have already noticed that the modeling of the complex and many processes that
lead to gene expression is similar to when physicists describe a gas, whose behavior
is determined by the complex motion of a large number of individual molecules.
Since we cannot solve the equations of motions for the large number of molecules in
a gas, we consider the single molecules subject to random motion, and we compute
average values of the system as a whole, like pressure, temperature and volume.
The framework that allows us to connect the complex microscopic dynamics to the
simpler macroscopic one is statistical physics.

From thermodynamics, we know that at a macroscopic level, the system is com-
pletely determined by a reduced set of macroscopic quantities, for example pressure P,
volume V, number of particles N, and energy E (or equivalently temperature T). Since
the microscopic system is dynamic, we can expect fluctuations in the instantaneous
values of these macroscopic quanities [50]. For example, the pressure is given by the
force per unit area exerted by the molecules of gas on a wall, and since the molecules
move over time, the pressure itself is a function of time. Nonetheless, because of
the rapid motion of the molecules, we should also expect that changes in pressure
happen at very fast time scales and therefore are somehow averaged out, so that
the measured macroscopic pressure is an effective time-average of the instantaneous
pressure [50]. The question is how to derive this time average.

The answer was first proposed by Gibbs in its 1902 seminal work “Elementary
Principles in Statistical Mechanics” [51], which is considered to be the foundation
of statistical mechanics. His idea is to use a mental construct called ensemble. An
ensemble is a collection of a large number A of mental copies of the system, all
having the same macroscopic state, but differing in the microscopic configuration.
Indeed, the reduced set of macroscopic parameters is not enough to fully determine
the state of the 10%° molecules typically contained in a gas, and we must expect
that a large number of different microscopic configurations give rise to the same
macroscopic state. The assumption Gibbs makes is that we can exchange the time
average of the macroscopic quantities with their ensemble average. If we assume that
over time the system under consideration explores all the microstates in the ensemble,
then, in the limit /" — oo, the ensemble average is equal to the time average (ergodic
hypothesis) [50]. Notice that the ensemble average must be independent on time
for this assumption to hold, that is: the system must be in equilibrium. However, let’s
suppose we change some characteristics of the system, e.g. its internal energy. The
system will undergo a phase of “adaptation” where the macroscopic quantities will
change to reach their new values determined by the new energy. In this phase, the
system is out of equilibrium and cannot be described by thermodynamics (although
recently, researches have made significant progress in the field of non-equilibrium
thermodynamics [52]). When this adaptation phase is over, the system has reached a
new equilibrium state and can be again described by thermodynamics.

It remains to specify how the ensemble average has to be taken, that is, what
is the probability distribution of the different microstates. The postulate of equal a
priori probabilities states that the copies of the ensemble are distributed uniformly,
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that is, with equal probabilities, over the possible microscopic states compatible with
a given macroscopic state [50]. The consequence of the postulate of equal a priori
probabilities and the ergodic hypothesis is that the real system we observe spends
an equal amount of time in each of the possible microscopic states. The ergodic
hypothesis and the postulate of equal a priori probabilities cannot be deduced from
the laws of mechanics and are based on the agreement between the experiments and
the predictions. However, using an information theoretical approach to statistical
mechanics, we can derive them by requiring that the probability distribution of the
microstates contains all and only the information available from the macroscopic
system (maximum entropy principle) [53].

In biology, we are interested in systems characterized by a definite volume YV,
number of particles N and temperature T (canonical ensemble). Since the energy is not
fixed, the copies of the ensemble can have different energetic levels Ej, Es,... It can be
shown that for the canonical ensemble the probability of having a microscopic state
with energy E; is given by the Boltzmann distribution [50]

e PEi

PE) =+ m

(2.1)
where f is a positive constant and the index i runs over all possible energies. The
denominator, called partition function, ensures that the probability of having any of
the possible energies sums up to 1.

Let’s see how the thermodynamic approach helps to describe the gene expression
in cells. A cell can be seen as a system with a definite number of particles, volume,
and temperature, therefore we can use the canonical ensemble approach to model the
concentration of protein. We use the concentration in order to have a fixed volume
despite the growth of the cell. Two assumptions are made. First, the fluctuations
caused by the inherent randomness of the biochemical reactions happen at very
fast time scales, such that they are averaged out and can be ignored (similar to the
thermodynamic description of constant temperature, pressure, and volume). Second,
although gene expression is the result of many and complex processes (loading of
the polymerase, transcription initiation, translation...), we assume that the loading
of the polymerase and TFs on the promoter happens at much slower scales. That is,
we assume that the binding and unbinding of the regulators is the rate-limiting step
and all other processes can be ignored. Therefore, we assume that each promoter
state produces a definite amount of protein, and the observed gene expression is the
time average of the promoter states, where each state is weighted by the amount
of protein it produces [54]. Notice the similarity with the thermodynamics of gases:
the molecular microstates of the gas correspond to the state of the promoter and
the measured pressure, volume or temperature corresponds to the measured gene
expression.

As an example, we consider the scenario where there is only one repressor, as this
is relevant for the SOS network studied in the following sections. We refer to [55] for
a more general description. First of all, we need to enumerate all possible states, that
is, all possible positions of the repressor in the cell. Let’s divide the volume V of the
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cell in N — oo small boxes such that the operator is contained in exactly one box. In
order for the repressor to be unbound, it must be in one of the N — 1 boxes away
from the operator. If we call R the total number of repressors, the number of unbound
states corresponds to the number of possible arrangements of the repressors in the
N — 1 boxes, that is

_ (-1

~ RI(N-1-R)!

The non-normalized probability for all the R repressors to be unbound is given by
the number of states multiplied by the Boltzmann factor of Eq (2.1)
(N-1)! _RE,

Z” 8 m X e (23)

Nu (22)

where E, is the energy of the unbound state in units of B. On the other hand, the non-
normalized probability of being bound is the probability of having R — 1 repressors
unbound and one bound

Z (N-1)! o (R-DE o ,Ey

“*R—DI(N-R)! (2:4)

Putting Eq (2.3) and Eq (2.4) together we have that the probability to be unbound is
given by

_ Zy 1
 Zu+Zy 1+[RjeAC

where we defined the free energy AG = E, — E;, and [R] ~ R/ N is the concentration
of repressor [54]. Notice that the probability of being unbound decreases as the
concentration of repressor increases or if the free energy decreases (that is, if the
bound state has less energy than the unbound state). If we call #f and r! the
transcription rates in the repressed (low) and unrepressed (high) states, we predict
the expression to be

Py

(2.5)

1 L [Rle™¢

_ L H
€= TR 56 T T4 [Rle 50

(2.6)

Thermodynamic models are appealing because they are able to describe gene
expression within a very simple framework:

1. Enumerate all the possible states of the system and their corresponding Boltz-
mann factor.

2. Average the gene expression output of each state, weighted by the probabilities
of that state.

Nonetheless, they make two strong assumptions: gene expression is in equilibrium
and gene expression output depends only on the fraction of time the regulators are
bound or unbound to the promoter. This last assumption is complemented with
the occupancy hypothesis: the binding affinities determine the number of transcrip-
tion factors bound at a given concentration (occupancy); the occupancy is the only

10
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quantity that determines gene expression and other effects, like operator positioning
and specific interactions between the regulators and the polymerase, are ignored.
Depending on the experiment, these hypotheses may be too restrictive. For exam-
ple, if we want to predict the gene expression as a function of the position of the
operator with respect to the promoter, the interaction between the regulator and the
polymerase becomes important[56] and the occupancy hypothesis cannot hold. On
the other hand, in some scenarios, the occupancy hypothesis is reasonable and the
thermodynamic models can explain the observed behavior. Indeed, these models
have been used to successfully describe gene expression for important systems like
the Lac operon [57-65] or the regulation of the A phage cycle [54, 66].

As discussed at the beginning of this section, if some properties of the system
change (e.g. the concentration of repressor), there will be a phase of adaptation,
where the system adapts to reach a new equilibrium state. During this phase, the
expression is not in equilibrium and cannot be described by a thermodynamic model.
However, if the biochemical reactions take place rapidly compared to the change
in the system state, the system reaches very fast the new equilibrium, and the non-
equilibrium phase can be ignored. That is, at any time point we can consider the
system to be in equilibrium and it can be described by a thermodynamics framework.
For example, if the concentration of repressor [R] changes slowly over time and the
system equilibrates very fast, at each time point we can assume that the probabilities
of each promoter state are those that would be attained by the system if it had time
enough to reach the equilibrium with the given concentration [R]. In this case, the
gene expression is still described by Equation (2.6), but now with [R] function of time.
Therefore, thermodynamic equilibrium does not strictly mean that the expression is
constant over time, and indeed it has been applied to describe time-depending gene
expressions [59, 67].

2.2.2. Differential Equations

Although the success of thermodynamic models, they are only able to describe
the steady-state of the system. If we want to describe the time dynamics of gene
expression, or if we want to add more detailed information about the processes, we
need a more sophisticated approach. In the differential equations approach, we boil
down the gene expression process to a bunch of relevant processes by collecting
different reactions into effective ones with specific rates. For example, for a system
where a promoter can switch between a bound and an unbound state, we can consider
two processes

1. The repressor binds with a rate per repressor r, and unbinds with a rate r,,.
2. The mRNA is transcribed with a rate r if the repressor is unbound or rk if the
promoter is bound and decays at a rate ¢ per unit mRNA.

In this case, we are collecting all the transcription reactions (polymerase and sigma
factor binding, switching from the open to the close complex, promoter escape...) into
the effective rates rf and rL. Moreover, we assume that the translation is much faster
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than the translation, so that we can ignore it. The equations governing the system are

dGy

- = ruGp — 1 [R]Gy (2.7a)
dG, dG,

- dt (27b)
C;—T = HG, + Gy —om (2.7¢)

where G, and G, are the fraction of promoters unbound or bound in the population
and m is the number of mRNAs. The first two equations can be solved to give

- _ o= (ru=rp[R])
Gu(t) = R (1 e~ (rut t) (2.8a)
Gy(t) = 1—Gult) (2.8b)

Notice that in the limit of large times we reach the steady state

1
Gu(t) = ——=+ .
u(t) 1—|—[R]% (2.9)
At steady state the third equation for the mRNA gives
Rl
m=rH ! +rk IR];, (2.10)

1+ [R]2 1+ [R]E
If we identify r, = e Ev and rp = e Ev we see that at steady state G, approaches
the thermodynamic probability of being unbound, while m approaches the average
gene expression. But, in addition to the thermodynamic model, we have here the
possibility to solve for the time dynamics, as shown by Eq (2.8). On the other hand,
a differential equation approach can quickly become cumbersome as more reaction
steps are added.

2.2.3. Stochastic models

The differential equation approach assumes that each reaction happens at a constant
rate and the amount of molecules changes continuously. However, the reactions are
stochastic and the number of molecules can change only by discrete integer amounts.
It is therefore more precise to look at the reaction rates as probabilities per unit time
and to model the gene expression using stochastic equations. One way is to write
down the master equation [68] for the probability of the gene to be bound (P,) or
unbound (P,)

ar,
dt
1

= 1,[R|P, —1,P (2.11a)
P, + P, (2.11b)
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Figure 2.1.: Simulated traces of gene expression and comparison with the predictions from different models.
The gray region is the steady state standard deviation predicted with the stochastic equations.
As the number of mRNA decreases, the stochastic fluctuations become more important.

This gives P, (t) = #ﬁm (1 - e*(’”“h[R])t), which agrees with the differential
equation model.

For the mRNA the master equation can be solved exactly if we suppose - = 0,
that is, the gene is completely turned off by the repressor. In this case we have [69,
70]

_ T,
(m) = DP,(m), {1 b8 et Tt/ (2.12a)
T — Tg Tn = Tg
1 1-b,
limCV? = —4——%_ 8 (2.12b)
t—o0 m P, tmtTg

where Ty = (ry + 7, [R]) ! and T = 0! are the characteristic times of the gene and
mRNA dynamics. A tilde means that the value is computed at steady state, that is,
b, = rytg and (1), = riz,.

We can see that the fluctuations become more important, the lower the number of
mRNA molecules. Since in bacterial cells the mRNA is present usually in less than

10 copy numbers [13], we can expect that the stochastic fluctuations might not be
ignored.

Stochastic Simulations

Stochastic modeling is the most accurate method to infer the distribution of gene
expression in the cells. Still, the method is not amenable for analytic treatments, since
the stochastic equations can quickly become impossible to solve as the number of
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reactions increases. For example, in the previous sections, we described the scenario
where a gene can switch between a bound and an unbound state. Let’s suppose
we want to add more details to the model. We can expect that some processes, like
fluctuations in cell growth and binomial sampling of the species at the division,
can increase the CV?, while other processes like protein translation and folding can
decrease the CV? if they happen at slower time scales (thus averaging out the more
rapid dynamic considered so far). A system of this kind cannot be solved analytically
and it becomes important to have efficient ways to simulate them. The most common
algorithm used for this task has been introduced by Gillespie, whose description can
be found in the original paper [71].

Figure 2.1 shows a comparison of the different models of gene expression. The black
trace is a realization of the stochastic simulation of a gene that can switch between an
inactive and an active state (the inactive state is not expressing). The thermodynamic
model (blue line) is able to describe only the mean behavior at steady-state, while the
differential equations introduce more precision in describing also the initial transient
dynamics. The expected standard deviation predicted by the stochastic equations is
shown as a grey region and is valid only in the steady-state. When the number of
mRNAs is high (bottom row), the CV? is low enough and a deterministic treatment
can be enough; but when the number of mRNAs is low (upper row), as it is usual for
bacterial genes, the stochastic fluctuations become important.

2.2.4. Hybrid models

Sometimes it is beneficial to combine different features of the previous models. For
example, as explained in the section of thermodynamic models, we can add some
time dynamics to the system if we suppose that the concentration of regulators
changes over time according to some differential equations. If the change is slow
compared to the time scale of the biochemical reactions, the system is at any given
time point in equilibrium, but the equilibrium state changes over time, depending
on the concentration of regulators. Using this approach, Shea and Ackers managed
to explain key properties of the A phage network, like the stability of the lysogenic
state and the induction of lysis [66]. A similar approach to explain the stability of the
lysogenic state was used also by Santillan and Mackey [67]. More recently, Aurell et al.
[72] introduced stochasticity in thermodynamic models. At each time point, the given
concentration of the two main autoregulators cro and cl is used to compute their
mean expression based on a thermodynamic model. These are then varied by adding
Poisson noise and new concentrations are used to find the next equilibrium state.
Moreover, the cell grows and divides. Hasty and coauthors [73] included stochastic
fluctuations in the A phage system to explain the steep all-or-none response. They
first used the differential equation approach to find all the possible steady states of
the system. Then they added to the differential equation a random Gaussian term
to explain transitions among the steady states. The idea of this approach is that the
noise is small enough that it can be seen as a perturbation to the deterministic model
of differential equations. It is again visible the contribution to physics, where the
same approach was used by Einstein to explain the Brownian motion [68] and is the
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foundation of perturbation theory in quantum mechanics [74].

2.3. SOS response in E. Coli

The SOS response is a mechanism used by E. coli and other bacteria to repair double-
strand DNA breaks. It was first proposed in 1974 by Radman [75] to solve a conun-
drum, initiated by Weigle, that puzzled biologists. Weigle observed that the survival of
a previously UV-irradiated bacteriophage A was greatly improved by UV-irradiating
also the host cell, and among reactivated phages, there was an overrepresentation
of mutant A phages. Moreover, while the phage A requires normally 40 pyrimidine
dimers (induced by UV) to die, reactivated phages require up to 10° dimers, similar to
the host E. coli. This conundrum led Radman to propose the existence of an inducible
SOS response, which can cause mutations and recombinations of the DNA during the
repair process. Over the year, this process turned out to be of fundamental importance
to understand the emergence of antibiotic resistance. It also proved that mutations
were no more unavoidable rare stochastic accidents, but an active inducible cellular
process [76].

The main players of the SOS response are the transcriptional repressor LexA and
the recombinant protein RecA. The combined action of these two molecules allows
the cell to sense for single-strand DNA (ssDNA) that signal the presence of a break
to be resolved. The induction of the network starts when RecA polymerizes on a
ssDNA. These filaments are able to increase the autocleveage rate of LexA and lead to
the derepression of several other genes involved in the SOS response. These activate
different pathways, like homologous recombination (HR), nucleotide excision repair
(NER), and translesion synthesis (TLS) [77]. The activation of the different pathways
is believed to follow a strict temporal order, where the repair mechanisms with the
high fidelity (NER, HR) are induced before the most mutagenetic ones (TLS) [78].

RecA

The Recombinant Protein A (RecA) is able to recognize and bind ssDNA and it is
the first actor involved in the activation of the SOS response. The binding affinity
is increased by the binding of an ATP molecule between two monomers, hence the
minimal unit for the filament formation is the dimer [79]. The nucleoprotein filament
of RecA-ssDNA has two different functions. It can either search for a homologous
dsDNA sequence to use as a template to repair the DNA damage, or it can stimulate
the autocleveage of free LexA.

The inducing activity of the RecA filament is regulated through two processes. First
of all, not ever ssDNA comes from a damage, for example during DNA replication
some single strands are exposed. To prevent RecA to bind to these ssDNAs, single
strands are quickly coated and hidden by Single Strand Binding proteins (SSB). In
order for RecA to compete with SSBs, an additional set of recruiting proteins are
required, namely RecFOR and RecBC [38]. Second, once RecA is loaded on the
ssDNA, it can lead to HR, without requiring the activation of the SOS pathway, or

15



2. Introduction

to the autocleavage of LexA. When the RecA filament is engaged in homologous
recombination, it requires hydrolysis of ATP, which in turn prevents the interaction
with LexA, leading to a down-regulation of the SOS response [8o].

How RecA is able to find a homologous sequence among the huge searching space
of the entire genome has been a riddle until recently. The ssDNA inside the filament
is stretched by doubling the distance every three nucleotides [79]. A dsDNA binds
the filament to a secondary binding site and it is unwound and stretched using the
free energy contained in the ATP molecules attached to the RecA dimers. This stretch
allows the candidate homologous filament to be tested against the ssDNA in triplets
of nucleotides. If a sufficient degree of matching (more than 8bp) is found, the pairing
is stabilized and the HR process is initiated [79]. The scanning of the dsDNA is
performed by combining a 1D sliding along the dsDNA sequence and a 3D diffusion
among different parts of the dsDNA [79, 81]. This search strategy is in common with
other regulatory proteins, as outlined by Berg and von Hippel [82].

LexA

LexA, which stands for locus for X-ray sensitivity A [83], is the transcription factor
responsible to repress the genes of the SOS regulatory network. It is composed of 202
amino acids which fold into two domains linked by a flexible hinge region [84] and it
is predominantly found as a homodimer. Each monomer contains a catalytic site that
recognizes a specific region of the same protein, inducing the auto-cleavage of LexA.
In normal conditions, the protein is folded in such a way that the catalytic site and
the cleavable region are separated, but upon interaction with the RecA filament, a
conformational change is induced, that allows the active site to cleave the monomer.
The cleaved monomer not only cannot bind the DNA efficiently, but it also exposes
residues that are recognized by proteases, and it is thus quickly degraded [84].

To notice that binding with the DNA makes the structure of LexA more rigid,
hindering the conformational change induced by RecA [85], and the DNA sterically
precludes the interaction with the RecA filament [86]. Therefore, only free LexA can
be cleaved, which means that upon induction of the SOS response, the promoter has
to wait for the spontaneous fall off of LexA before being derepressed.

Finally, the dynamic of LexA degradation and recovering after the damage has
been solved is very quick. At the population level, after induction with UV light,
LexA level decays with a half-time of one minute and after the resolution of the break,
it regains its initial level in a time that depends on the strength of the UV irradiation
[87].

2.4. Outline of the thesis

In this thesis, I will discuss three projects related to gene regulation.

The first project deals with data analysis from flow cytometers. This is an estab-
lished technology for the analysis of eukaryotic cells, and in recent times it has been
applied also for the gene expression distribution in bacterial populations. Due to its
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high-throughput, it is a highly attractive technology, but we are still lacking a system-
atic investigation of its accuracy for bacterial populations. In particular, I show that,
contrary to eukaryotic cells, the fluorescence signal contains a substantial amount
of non-biological components, like background fluorescence and electronic noise. I
therefore show an accurate pipeline to extract quantitative information about bacterial
gene expression. The results are collected in a paper, currently under revision at Plos
One.

The second project deals with the mathematical modeling of the SOS response.
Here I show that, contrary to well-established models of Lac operon and A phage
regulation, the SOS network cannot be described by an equilibrium model. On
the other hand, I propose that rather than reading out an effective time average
LexA concentration, the induction of the SOS promoters is a non trivial function of
stochastic transient drops in LexA concentration. I also describe the consequences
an equilibrium and a non-equilibrium model have on the cellular response to the
external environment. The proposed dynamic model is described in a manuscript,
currently under preparation for Plos Computational Biology.

Finally, I describe a side project done to understand unpublished data of flow
cytometry measurements collected in the lab. The software MotEvo [88], previously
developed in the lab, exploits the established techniques of positional weight matrices
to infer all the possible binding sites and their energies in a promoter of interest. My
goal was to use the binding sites inferred by MotEvo to compute the probability for
the system to be in a transcribing state (at least one 079 bound, and no repressor
between the last 079 and the transcription starting site). I used a thermodynamic
framework and I wrote the program in a highly optimized C++ code, which is able to
deal with the large combinatorial number of possible binding configurations arising
from a promoter with multiple binding sites.

Notice that, for ease of reading, the papers are included as a whole, together
with their supplementary and bibliography. That is, the supplementary and the
bibliography of each paper are kept separated and not merged together at the end of
the thesis.
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Abstract

Fluorescence flow cytometry is increasingly being used to quantify single-cell ex-
pression distributions in bacteria in high-throughput. However, there has been no
systematic investigation into the best practices for quantitative analysis of such data,
what systematic biases exist, and what accuracy and sensitivity can be obtained.
We investigate these issues by measuring the same E. coli strains carrying fluores-
cent reporters using both flow cytometry and microscopic setups and systematically
comparing the resulting single-cell expression distributions. Using these results,
we develop methods for rigorous quantitative inference of single-cell expression
distributions from fluorescence flow cytometry data.

First, we present a Bayesian mixture model to separate debris from viable cells
using all scattering signals. Second, we show that cytometry measurements of flu-
orescence are substantially affected by autofluorescence and shot noise, which can
be mistaken for intrinsic noise in gene expression, and present methods to correct
for these using calibration measurements. Finally, we show that because forward-
and side-scatter signals scale non-linearly with cell size, and are also affected by
a substantial shot noise component that cannot be easily calibrated unless inde-
pendent measurements of cell size are available, it is not possible to accurately
estimate the variability in the sizes of individual cells using flow cytometry measure-
ments alone. To aid other researchers with quantitative analysis of flow cytometry
expression data in bacteria, we distribute E-Flow, an open-source R package that
implements our methods for filtering debris and for estimating true biological expres-
sion means and variances from the fluorescence signal. The package is available at
https://github.com/vanNimwegenLab/E-Flow.

1. Introduction

It is has become well recognized that, due to the intrinsic stochasticity of the
gene expression process, even isogenic populations of microbial cells growing in
homogeneous environments exhibit significant heterogeneity in their gene expression,
e.g. [1-4]. Therefore, the traditional studies at the population level, by smoothing out
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this heterogeneity, tend to hide crucial information [5] [6] that is required to correctly
understand and interpret the observed behavior of microbes [7].

Although most studies of single-cell gene expression in bacteria use fluorescent
reporters in combination with microscopy to quantify gene expression in single cells,
fluorescence flow cytometry (FCM) is also an attractive alternative methodology for
single-cell gene expression studies in bacteria. In particular, given that flow cytometers
can quantify the fluorescence of thousands of cells per second, flow cytometry allows
for high-throughput characterization of the single-cell expression distributions of a
large number of fluorescent reporters [8, 9]. Indeed, in recent years there has been a
large number of studies in which standard commercially available flow cytometers
were used in combination with fluorescent reporters to measure gene expression at
the single-cell level in bacteria [10—-31], as well as in single-celled eukaryotes [32, 33].

However, so far there has been little systematic investigation into the accuracy of
flow cytometry in quantifying gene expression in single cells, or a systematic compar-
ison with the results from microscopy measurements. Here we aim at filling this gap
by systematically comparing flow cytometry measurements with measurements from
a microscopy setup. In particular, there are several technical challenges in analyzing
fluorescence flow cytometry data of individual bacterial cells:

1. Differentiating cells from debris. Bacterial cells are typically one thousandth the

volume of mammalian cells, which places them near the edge of instrument de-
tection. At this size it can be challenging to differentiate viable cells from debris
of similar size [9, 34-37]. In the literature different approaches are used to sepa-
rate debris from viable cells. Most of these approaches use ad hoc combinations
of the scatter measurements to retain a fraction of the measurements.
We here perform a careful analysis of all the scatter signals reported by the flow
cytometer and propose a principled way of identifying debris from viable cells
using a Bayesian mixture model that considers all the information available in
the scatter signals.

2. Distinguishing measurement noise from biological variability. In order to quantify the

amount of biological gene expression variation in a population of isogenic cells,
it is important to quantify to what extent variation in measured fluorescence
intensity derives from biological variation, and to what extent it derives from
measurement noise.
We show that flow cytometry measurements contain a substantial amount of
shot-noise which can be easily mistaken for true biological variability, and
develop a method to correct for this shot-noise using measurements of reference
beads that are commonly used to calibrate flow cytometers. Using a mixture
modeling approach, we develop a rigorous method for estimating the true mean
and variance in expression levels of a population of cells.

3. Accounting for autofluorescence. Because of their small size, bacterial cells have
a relatively low copy number of proteins and mRNA [38], which results in
a low fluorescent emission signal, that can be close to the autofluorescence
level[39]. Therefore, gene expression estimates require careful correction for
autofluorescence.

We here provide methods for correcting both the estimated mean and variance



in fluorescence levels for autofluorescence using measurements of cells that do
not express GFP.

4. Estimating the distribution of GEP concentrations. While we provide methods for

accurately estimating the distribution of total GFP levels in a population of cells
from the flow cytometry measurements, microscopy measurements show that
total GFP levels correlate strongly with cell size and that GFP concentrations
vary significantly less across cells than total GFP.
Estimating the distribution of GFP concentrations directly using flow cytometry
requires to not only estimate the total GFP but also the volume of individual
cells. Although forward- and side-scatter signals can be used to distinguish the
average size of populations of cells of sufficiently different shapes and sizes
[40-43], it is substantially more challenging to accurately quantify the relatively
small cell-to-cell variations in cell volume for populations of isogenic bacteria
growing in a homogeneous environment. In line with previous works [35, 44—46]
we find that, because forward- and side-scattering measurements depend on cell
volume in a complex non-linear manner and contain a substantial amount of
shot noise that cannot be easily calibrated, it is impossible to accurately quantify
the sizes of individual cells. Consequently, it is not possible to directly estimate
the distribution of GFP concentrations from flow cytometry measurements.
However, we show that because GFP concentrations and cell sizes fluctuate
approximately independently, it is still possible to obtain reasonably accurate
quantifications of the relative amounts of GFP concentration fluctuations for
different genes.

Although the precise flow cytometer used will of course affect the precise values of
the measurements and calibrations, the methods for separating true cells from debris,
estimating and correcting for autofluorescence, and correcting for measurement shot
noise, are general and should be applicable to data from most flow cytometers. Our
methods have been implemented as an R package called E-Flow, which we make
publically available and can be easily integrated in any flow cytometry data analysis
pipeline.

2. Materials and methods

2.1. Strains and growth conditions

We measured the fluorescence distributions for a number of different Escherichia coli
MGu1655 strains carrying fluorescent transcriptional reporters (a GFP gene down-
stream of a given promoter, either on a low-copy number plasmid, or integrated
into the chromosome) both using flow cytometry of batch cultures and time lapse
microscopy in a microfluidic device (Mother Machine). We considered a number of
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different promoters, that have different means and variances of expression levels.

In particular, we considered E. coli strains with a lacZ-GFP fusion integrated in
the chromosome [47], and a set of E. coli strains that carry a transcriptional reporter
expressed from a low copy number plasmid [48]. These reporters included known
target promoters of the LexA transcription factor (dinB, ftsK, lexA, polB, recA, ruvA,
or uvrD) [49] and two synthetic promoters that were obtained by experimental
evolution and express at levels corresponding to the median and the 97" percentile of
all native E. coli promoters [23]. Throughout the paper, we refer to these two synthetic
promoters as high and medium expressers.

To estimate autofluorescence in both the FCM and microfluidic experiments, we
used two strains that carry plasmids where the GFP sequence is downstream of a
random sequence (pUA66 and pUA139) [48] and hence do not express GFP [23].

In the microfluidic experiments, cells carrying a lacZ-GFP fusion were tracked
using time-lapse microscopy while growing in a microfluidic device in Mg minimal
media supplemented with 0.2% lactose (which leads to full induction of the lac
operon), taking measurements every 3 minutes [47]. Detailed experimental procedures
are available in the corresponding publication [47]. Microfluidic experiments with
strains carrying a transcriptional reporter expressed from a plasmid were performed
following the same procedure, using Mg + 0.4% glucose (supplemented with 50ug /
mL of kanamycin during the overnight preculture only) and acquiring data over 4
hours.

To obtain comparable measurements with flow cytometry (FCM), the same strains
were grown in the same conditions as for the microfluidic measurements. Practically,
strains expressing from a plasmid were inoculated from frozen glycerol stocks and
grown overnight in 200uL of Mg + 0.4% glucose supplemented with 50pg/mL of
kanamycin. After 100x dilution in fresh medium without kanamycin, strains were
grown to saturation again, and re-diluted 100x to fresh medium without kanamycin.
For the lacZ-GFP strain, we used 200iL of Mg + 0.2% lactose with only one overnight
culture. For all strains, expression was measured in mid-exponential phase (typically
after 4h), adjusting the cell concentration with PBS if necessary. All cultures used
for FCM measurements were incubated in g6-well plates at 37 °C with shaking at
600-650 rpm.

To study the accuracy of the scatter signal for estimating cell size, we used the data
acquired for a previous project in the lab [31]. In summary, E. coli strains were grown
in different media characterized by different size distributions: Mg supplemented
with either 0.2% glucose (w/v), 0.2% glycerol (v/v) or 0.2% lactose (w/v); a MOPS
based synthetic rich media (Teknova, M2105) supplemented with 0.2% glucose. We
refer to the original study for more information about the cell cultures and growth
conditions [31].

2.2. Flow cytometry

The flow cytometry measurements were obtained with a BD FACSCanto II cytometer
and were managed using the Diva 8 software. The excitation beam for the GFP was
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set at 488 nm and the emission signal was captured with a 530/30 nm bandpass
filter. The gain voltage were set by default to 625V, 420V, and 600V for FSC, SSC,
and GFP acquisition respectively, and events were created for measurements where
FSC > 200 & SSC > 200. For each sample, 5 x 10* events were recorded at a typical
flow rate ranging from 1 x 10% to 2 x 10* per second.

2.3. Calibration beads

CS&T (Cytometer Setup and Tracking Beads) are artificial fluorescent beads that are
used to calibrate fluorescence measurement values [50]. To calibrate the measurement
shot noise we used beads of lot 41720 that contains beads of two different sizes, which
have high, medium (3pm in size) and low fluorescence (2um in size) levels.

2.4. Microscopy size estimation

To estimate cell sizes, strains containing a plasmid without promoter were selected
from 4 different media with different size distributions (M9 + glucose, lactose or
glycerol; MOPS + glucose. See Strains and growth conditions). Cells were then placed
on a 1% agarose pad and phase contrast images were obtained with a Nikon Ti-E
microscope using a 100 X Ph3 objective (NA 1.45) and an Hamamatsu Orca-Flash 4.0
v2 camera. Cell outlines were identified using a custom MATLAB pipeline [31].

2.5. R package E-Flow

The analysis pipeline presented in this paper has been implemented in the R package
E-Flow available on GitHub https://github.com/vanNimwegenLab/E-Flow. Here the meth-
ods were tested with flow cytometers manufactured by BD and operated through the
DIVA software. Nonetheless we kept the methods as general as possible, such that
they should be applicable to flow cytometers of other manufacturers.

For a detailed explanation of the package, we refer to the GitHub page, including
the vignette and the documentation of the individual functions. Here we list the main
components of the software:

1. Filtering: The cells are filtered based on their scattering profile and an estimate of
the mean and variance of the population is obtained. This is the most resource-
intensive step and therefore can be parallelized.

2. Mean and variance: The mean and variance of the population of cells is computed.
Measurements that are outliers in the fluorescence are accounted for using a
mixture model.

3. Autofluorescence removal: Using the fluorescence distribution of non-expressing
cells, an estimate of the autofluorescence is obtained and subtracted from the
mean and variance of the population.



4. Shot noise removal: The shot noise introduced by the machine is removed and
a corrected variance is calculated. This can be regarded as a proxy for the
biological gene expression noise.

3. Results

3.1. Signals reported by the cytometer
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Figure 3.1.: The signals reported by the cytometer. As a particle enters the laser beam, an electric signal
(pulse) is generated which reaches its maximum when the particle is in the middle of the beam
and trails off as the particle leaves the beam. Each pulse with height over a certain threshold is
recorded and three quantities are reported: height, area, and width of the pulse.

In flow cytometry, a beam of light is used to illuminate cells that flow one by
one through a channel; a series of detectors is able to record the light scattered by
the single cells at right angles or in the forward direction and the cell fluorescence
stimulated by the incident light beam. Most flow cytometers, including the BD Canto
IT used here, report for each measured ‘event’ (typically corresponding to a single
measured cell) a forward-scatter signal, a side-scatter signal, and a fluorescence signal.
Each of these signals is in turn represented by 3 statistics of the electrical impulse,
namely height, area, and width of the impulse (Fig 3.1). The height corresponds to
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the maximal value of the impulse, the area to the area under the curve and the width
is its time duration [51] (see Supplementary Material section A.1).

We noticed that these statistics are not all independent. In particular, for all three
signals, the area is always directly proportional to the product of height and width
(Suppl. Fig. A.1 and Supplementary Material section A.2). Moreover, while height
and width vary approximately independently across events, the area correlates
significantly with both (Suppl. Fig. A.2). Therefore, we only use height and width for
the subsequent analysis of the forward- and side-scatter signals.

For the fluorescence signal we were unable to find any systematic dependence
between the width of the fluorescence signal and any biological signal, such as cell
size or total fluorescence. In addition, for the calibration beads there is clearly no in-
formation in the width of the fluorescence signal (Suppl. Fig. A.3 and Supplementary
Material section A.3). Therefore, for the fluorescence signal we will only use the height
statistic as a proxy for the total fluorescence of the cells. While we believe that all
these considerations apply generally to flow cytometers, we also observed anomalous
behavior of the signal at very low fluorescence levels that may be specific to the BD
machine used here (see Suppl. materials section A.4). Due to this anomalous behavior,
quantitative analysis is restricted to constructs for which the GFP fluorescence is at
least as high as the autofluorescence of the cells (see Suppl. Fig. A.4).

3.2. Filtering events based on their forward- and
side-scatter

In comparison to eukaryotic cells, bacterial cell produce only relatively weak scattering
signals, and we used permissive settings of the device to call events. This increases
the likelihood of having spurious observations that correspond to non-viable cells and
other debris. Consequently, we needed a strategy for using the measured forward-
and side-scatter of the events to separate viable cell measurements from debris. As
explained above, the scatter of each event is characterized by 4 statistics, namely the
height and width of both the forward- and side-scatter. Thus, the measured scatter of
each event can be represented by a point in a 4-dimensional space, and a given dataset
corresponds to a distribution of points in this 4-dimensional space. To separate viable
cells from debris we fit this distribution with a mixture of a multivariate Gaussian
distribution and a uniform distribution, as detailed in the Supplementary Material,
section A.4. The rationale behind this mixture modeling is that most of the data
represents good cells and should cluster in this 4-dimensional space, whereas the
outliers are relatively rare and more widely distributed. In this model, the Gaussian
part of the mixture captures the cluster of good cells, while the uniform component
takes care of outliers, i.e. fragments of dead cells and other debris.

Figure 3.2 shows 2D projections of the 4D scatter of forward- and side-scatter for
events taken from E. coli cells that carry a lacZ-GFP fusion (see [47] for a description
of the strain used) while growing in Mg minimal media supplemented with lactose.
Besides the scatter of measurements, Fig. 3.2 also shows the multivariate Gaussian
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Mixture model fitting of the scatter signals. The panels show different two-dimensional
projections of the full 4D distribution of heights (H) and widths (W) of forward- (FSC) and
side-scatter (SSC) measurements for 5 x 10* events obtained from E. coli cells growing in Mg
minimal media with lactose. The ellipses show the contour of the fitted multivariate Gaussian
distribution, one standard deviation away in each principal direction. Note that the color
indicates the local density of points.
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fitted to the data, showing that this Gaussian indeed captures the bulk of the measured
events.

Once the mixture model has been fitted to a dataset, a posterior probability p; is
calculated for each measured event i to correspond to a viable cell, i.e. the probability
that the observation derives from the multivariate Gaussian component of the mixture
as opposed to deriving from the uniform distribution. By default the E-flow software
retains all events with posterior probability p; > 0.5 and discards as outliers events
with p; < 0.5, but the user can change this threshold probability if desired. Suppl.
Fig. B.1 shows the same scatter of measured events as shown in Fig. 3.2, but now
with selected events in red and events that were filtered out in black when using the
default threshold of p = 0.5.

As the forward- and side-scatter should reflect the size, shape and composition
of the objects measured in each event, one may wonder to what extent filtering out
events based on their forward- and side-scatter may bias measurements towards cells
of a certain size. Indeed, in previous work, e.g. [19], researchers have attempted to
select subsets of cells with similar shapes and size by very strictly gating on forward-
and side-scatter, retaining only those cells that lie near the center of the Gaussian
distribution. To check the viability of such an approach, we compared the distribution
of measured fluorescence levels with two extreme filtering strategies: one very lenient
in which all events with p > ¢~10 are retained and one very strict in which only cells
with p > 1 — e 10 are retained. As shown in Suppl. Fig. B.2, there is virtually no
difference in the observed distribution of fluorescence levels between the very lenient
and very strict filtering. Given that we expect total fluorescence to scale with cell
size, this observation suggests that strict filtering on forward- and side-scatter is not
effective for selecting out a subset of cells with similar size.

3.3. Flow cytometer measurements are affected by
substantial measurement noise

When using the flow cytometer to estimate single-cell gene expression, we aim to
quantify the variation in gene expression across a population of isogenic cells growing
in a homogeneous environment. In such conditions, bacteria at different stages of their
cell cycle vary by roughly two-fold in size, and their total fluorescence is typically
proportional to cell size.

In a previous work we have established that time-lapse microscopy measurements
of cells growing in microfluidic devices can measure cell size with an accuracy of
around 3% error and GFP copy-number G with an error of about v/G [47]. Using such
microscopy measurements on E. coli cells carrying a lacZ-GFP fusion gene in its native
locus while growing in Mg minimal media with lactose, we find a high correlation
between lacZ-GFP levels and cell size (Fig. 3.3, top panels). That is, because lacZ-GFP
concentrations fluctuate only moderately from cell to cell, and both size and GFP
level measurements have high accuracy, the measured cell length explains around
70% of the variance in total fluorescence.
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Figure 3.3.: Correlation between cell size and fluorescence measurements for microscopy and cytometer
measurements. Each panel shows measured GFP fluorescence (vertical axis) and cell size
estimates (horizontal axis) of cells growing in Mg minimal media with lactose. The top 2 panels
show microscopy measurements from a microfluidic device [47]. The lower 4 panels show
fluorescence measurements as a function of size estimates based on forward- (middle 2 panels)
or side-scatter (bottom 2 panels) measurements in the flow cytometer (FCM). The squared
Pearson correlations between fluorescence and size measurements are indicated in each panel.
Note that the color indicates the density of points. The white dots show median values of
equally spaced bins along the horizontal axis.
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We calculated the analogous correlation between size and total fluorescence in
the flow cytometer for the same strain growing in the same environment, using the
scatter signals as representing the cell size. We see that, in contrast to the microscopy
measurements, there is only a very weak correlation between total fluorescence and
scattering measurements (Fig. 3.3, bottom 4 panels).

The lack of correlation between size and fluorescence measurements in the cytome-
ter strongly suggests that either the fluorescence measurements, the size measure-
ments, or both are much more heavily affected by measurement noise than in the
microfluidic experiments. In the following we will look at different sources of noise
and how to deal with them.

3.4. Estimating the mean and variance of the
fluorescence distribution

As has been observed by others [38], we observed that for virtually all E. coli pro-
moters, the distribution of fluorescence levels is fitted very well by a log-normal
distribution [23], i.e. the log-fluorescence follows a Gaussian distribution. Our E-Flow
package fits a Gaussian distribution to the measured log-fluorescence levels of single
cells, estimating a mean y and variance v for a given population of cells. However,
we noticed that, even after filtering events on forward- and side-scatter as explained
above, there are still clear outlying events, i.e. with fluorescence levels that lie far
outside the range observed for almost all other events. To separate these outliers from
valid measurements we modeled the distribution of log-fluorescence levels as a mix-
ture of a Gaussian and a uniform distribution, fitting its parameters using expectation
maximization (see section A.4 of the Supplementary Material for details). The E-Flow
package calculates an estimated mean y and variance v of the log-fluorescence levels
of a set of measurements, together with error bars ¢;, and ¢, on these estimates. In
addition, transforming from log-fluorescence back to fluorescence in linear scale, the
package also calculates mean and variance of the distribution of fluorescence levels,
together with error bars (Suppl. Mat. A.43).

3.5. Autofluorescence estimation

It is well known that the laser used to excite the GFP can also excite other cellular
components of the cell, resulting in an “autofluorescence” signal that also occurs in
cells without GFP molecules. In addition, the fluorescence signal may also contain
a background fluorescence component coming from sources other than the cell’s
autofluorescence. In order to estimate GFP levels, we need to correct for these
other sources of fluorescence and the E-Flow package allows for such correction by
using measurements of cells that do not express GFP. Let’s call I;; the measured
fluorescence intensity, It the true intensity (deriving from GFP molecules) and A the
component from other sources of fluorescence, which for simplicity we will refer to
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Figure 3.4.: Autofluorescence measurements. Each panel shows the measured mean fluorescence (left 4
panels) and variance in fluorescence (right 4 panels) on one day, with each bar indicating the
measured value and error bar for one replicate. Two different strains were used (indicated in
red and blue) and each was measured in triplicate on each day. The black line and grey bar
indicate the estimated averages y; and corresponding error-bars ¢, for each day d. Note that
well G6 on 20/12/2016 appears to be an outlier, possibly due to contamination of the well,
which was excluded from the analysis.

as autofluorescence. We have the relation
Iy = It + A. (3.1)

Assuming that the component A fluctuates independently from the true fluorescence
I, we obtain

(Ir) = (Im) —(4) (3.2a)
var(It) = var(Iy) —var(A). (3.2b)

Thus, in order to correct for autofluorescence, it suffices to estimate both its mean
(A) and variance var(A). These can be easily estimated by performing fluorescence
measurements on cells that either lack GFP, or where the GFP gene is known not to
be expressed, and applying the same Bayesian mixture model described above. Once
(A) and var(A) have been estimated in this way, the true mean and variance of GFP
expression in cells carrying an active reporter can be calculated using equation (3.2).

We measured autofluorescence levels A using strains carrying two different plas-
mids not expressing GFP, designed as negative controls (see materials and methods)
on 4 different days, measuring each strain in triplicate on each day. Figure 3.4 shows
the estimated mean fluorescences (left 4 panels) and variances in fluorescences (right
4 panels) for each replicate of each strain (red an blue) on each day (one panel per
day). Using a procedure described in Suppl. Mat. section A.4, we averaged over
different replicates on each day to calculate a mean fluorescence y; for each day
(black line in each panel) and an error bar on this estimate (grey region in each panel),
and similarly for the variances on each day (right 4 panels). We then additionally
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averaged over different days to calculate an overall average mean autofluorescence fi
and an overall average variance in autofluorescence 7 (see Suppl. Mat. A.4).

3.6. Mean fluorescence levels agree between microscopy
and FCM across the entire range of expression
levels

Correlation between the fluorescence in the MM and in the FCM

1e+05

promoter
-~ dinB
~ ftsK
-~ high
- lexA
medium
polB
recA
ruvA
uvrD

1e+04

t i

1e+03

mean MM fluorescence [molecules]

1e+02 1e+03 1e+04
mean FCM fluorescence [A.U.]

Figure 3.5.: Estimated mean expression levels of different promoters as estimated by FCM and mi-
croscopy. After correcting for autofluorescence, mean fluorescence levels of different promoters
(colors) are perfectly linearly correlated between microscopy and FCM measurements, over the
entire range of expression levels. The scales of the axes are in natural log and the error bars
show the standard error of the mean. Note that the slope of the black line is 1.

Although commercial flow cytometers have been designed to ensure a linear re-
lationship between GFP content and fluorescence measurements over a wide range
and previous gene expression studies studies using FCM have operated under this
assumption, we here tested this assumption by comparing estimated mean fluores-
cence levels of different promoters between FCM and microscopy measurements. To
do so we calculated the mean fluorescence levels, corrected for autofluorescence, of
promoters with a wide range of expression levels using both the FCM and microscopy
measurements. As shown in Fig. 3.5, we indeed find that there is a perfectly linear
relationship between the average expression levels of the different promoters as
estimated by FCM and microscopy, over the entire expression range.
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3.7. Cytometer fluorescence measurements exhibit
significant shot noise
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Figure 3.6.: Difference in CV2 between the FCM and microscopy measurements shows FCM measure-
ments contain substantial shot noise. Top: Difference between the CV? as measured by the
FCM and the microscopy setup for different transcriptional reporters of E. coli promoters
(colored points). Both axes are shown on a logarithmic scale. The difference in C V? scales in-
versely with mean expression. Bottom: The observed CV? of calibration beads of three different
intensities also decreases as the inverse of mean intensity and this dependence can be well
modeled by shot noise (black line), as given by equation (3.3).

We used equation (3.2) to remove the autofluorescence contribution from the mean
expression and variance of the population for a number of different transcriptional
reporters and calculated the observed squared coefficient of variation CV? for each
promoter. Next, we took microscopy measurements from our microfluidic setup
of the same E. coli strains growing in the same conditions and measured CV? for
each of these promoters as well. As shown in the top panel of Fig. 3.6, we observe
systematically higher CV? in the FCM than in the microscopy setup and the difference
in the two CV?s decreases almost exactly inversely with the mean expression level.

Since the growth conditions in the FCM and the microfluidic setup were kept
as close as possible, the true CV? of the distribution of total GFP levels should
be highly similar, so that the difference between the measured CV? must derive
from measurement noise. Indeed, one source of noise whose contribution to CV? is
expected to scale inversely with mean intensity is shot noise from the photomultiplier
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tube, whose CV? scales as 1/mean [52]. Due to this noise, one generally has the
following relationship between the measured fluorescence intensity I5; and the true
intensity I:

Im=Ir+eVIr+0, (33)

where € is a Gaussian random variable with mean 0 and an (unknown) variance 42
which quantifies the size of the shot noise. The constant term O is an offset that is
added in BD devices in order to prevent the clipping of negative values during the
digital conversion, when true intensities It are close to zero [51].

Flow cytometers are often calibrated using synthetic fluorescent beads of known
intensities and such beads can also be used to estimate the size ¢ of the measurement
shot noise. As shown in the bottom panel of Fig. 3.6 (and Suppl. Fig. E.1) the CV?
of the artificial beads also drops inversely with mean expression. If we assume that
the true variation of the beads can be ignored, we get from equation (3.3) that the
measured CV? is 5 20

2
VM= Ty~ Ty oy

If we define Y = CVZ(Ijy) and X = m, we obtain

Y = 6% - 5°0X (3.5)

and we can infer both the strength § and the offset O by fitting Y as a simple
linear function of X. This simple approach leads to an inferred value of § = 13.4
and O = 128. In the Supplementary Material section A.4 we also present a more
sophisticated Bayesian mixture model approach to inferring these quantities, which
does not ignore the true variability of the beads, but assumes that the CV? of the
true intensities It is the same for all three types of beads. Using this more rigorous
procedure, the resulting strength and offset are: 6 = 12.7 £ 0.6, O = 97 29 (Suppl.
Fig. E.1), which are close to the values we would have obtained with the more simple
linear model of equation (3.4). Using this result we can now fit the observed CV? that
we expect to see; the fit describes well the observed data, as shown in the bottom
panel of Fig. 3.6 (and in the top left panel of Suppl. Fig. E.1).

Finally, section A.4 of the Supplementary Material investigates two more subtle
technical points that one might think could affect the direct comparison of FCM
measurements and microscopy measurement from growth in the microfluidic device.
First, one could argue that the age-distributions of the population of cells in the
microfluidic device and in a population that is growing exponentially (i.e. as used
in the FCM) are different. That is, since in the microfluidic device some newborn
daughters are constantly washed out of the growth channels, there are relatively
fewer cells close to birth and more cells close to division in the microfluidic device
than in a population undergoing exponential growth in bulk (Suppl. Fig. F.1). Since
total fluorescence correlates with cell size, which again correlates well with time
since birth, the access of ‘old” cells could in principle effect the distribution of total
fluorescence one observes. However, as shown in Suppl. Mat. section F.1, we derive
theoretically that the effects of the altered age-distribution are small enough to be
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neglected (Suppl. Fig. F.2). Second, since in the microfluidic setup we measure the
fluorescence of a cell multiple times during its cell cycle, there are clearly substantial
correlations between different measurements and one might wonder whether this
could significantly affect the observed statistics. In Suppl. Mat. section F.2 we show
that this effect is also negligible (Supplementary Fig F.2).

3.8. Correcting for autofluorescence and shot noise

After having estimated the mean and variance of the autofluorescence, and the
strength of the FCM’s shot noise, we can now correct the measured means and
variances of transcriptional reporters for these two components. Combining the
autofluorescence contribution from equation (3.1) and the shot noise component from
equation (3.3), we can write the measured intensity I)s as

Iy=Ir+Ar+eyIr+ A7+ 0, (3-6)
and the measured autofluorescence as
Ay =Ar +e /AT +0, (3-7)

where variables with subscript T correspond to true values and variables with
subscript M correspond to measured values, € is again a Gaussian distributed variable
with mean zero and variance 62 and O is a constant offset. From these equations we
find for the mean and variance of the measured intensities Ij:

(IT) = (Im) — (Am), (3.8a)

and
var(It) = var(Iy) — var(Apy) — 0> (I7). (3.8b)

Using these expressions we calculated (It), var(I7) and the resulting CV? for a
set of different E. coli promoters and compared the results with the CV? measured
for the same promoters in the microscopy setup. As shown in Fig. 3.7, the estimated
CV? are much closer to the results obtained with the microscopy measurements and
the difference no longer systematically depends on the mean expression level. In
addition, whereas the CV? of the raw FCM measurements show little correlation with
the CV? of the microscopy measurements, after correcting for autofluorescence and
shot noise there is a much better agreement between the CV? as measured by the
FCM and microscopy (Fig. 3.8).

3.9. Estimating mean and variance of GFP
concentration

As shown in Fig. 3.3, microscopy measurements show a strong correlation between
the size of the cells and total GFP of the cells, indicating that cell size variations
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line in both plots is a line with slope 1 and intercept o.
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are responsible for a large fraction of the variation in total GFP, and that GFP
concentration fluctuates significantly less than total GFP. It would thus be desirable
to be able to estimate the mean and variance of GFP concentrations from the FCM
measurements as well. However, the fact there is a much weaker correlation between
raw fluorescence and scatter measurements in FCM (Fig. 3.3) suggests that it may
be difficult to accurately estimate GFP concentrations for single cells. In particular,
to estimate the GFP concentration of a single cell, we need to not only take the
autofluorescence and shot noise of the fluorescence measurement into account, we
also need to quantify how the cell’s volume relates to the forward- and side-scatter
measurement, which is known to be very challenging.

3.9.1. Scattering signals are non-linear functions of cell size

The extent to which forward- and side-scatter measurements of FCMs can be used
to estimate the size of the measured object is a topic of considerable debate in the
flow cytometry literature. It is generally assumed that forward scatter mostly reflects
cell size, and that side scatter reflects surface properties such as granularity [53].
Several previous studies have established that FCM can be successfully used to
distinguish bacteria of different shapes and sizes [40—43], i.e. the average scattering of
a population of cells reflects the average size of the cells in the population.

To confirm that, also within our setup, the average size of a population of cells can
be inferred from averages of scatter measurements, we made use of flow cytometry
measurements from a recent study from our lab in which E. coli cells were grown in
a number of different conditions and cell sizes were measured using microscopy in
each condition [31]. Notably, the growth-rate of the cells varied considerably across
these conditions and E. coli cells are known to increase size with growth-rate. For each
condition, we calculated both the average cell size from the microscopy measurements
as well as the average height and width of both forward- and side-scatter.

As shown in Figure 3.9, we found a very good correlation between forward-scatter
and cell size in each condition, confirming results from previous studies that average
scatter can indeed be used to estimate average cell size. However, it should be noted
that the observed relationship between cell size and scatter is highly non-linear. That
is, whereas the height of the forward-scatter grows approximately quadratically with
cell area, the width of the forward-scatter grows approximately as area to the power
1/3. Previous studies indicate that the mathematical relationship between cell size
and scattering signal can be highly dependent on the specific experimental setup
and is often at odds with predictions of mathematical theories of light scattering
[8, 36, 37]. In [54] it is further shown that even if a particular non-linear relation
between scattering and single-cell size can be established in a given setting, this
relationship is not universal and it can vary even for bacteria of similar sizes and
geometric properties. Thus, although we could here make use of the microscopy cell
size measurements to calibrate the non-linear relationship between forward-scatter
and cell size, it is highly doubtful that this relationship would apply in other settings.
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Figure 3.9.: Average forward- and side-scatter of cells show approximate power-law dependence on
average cell size. Each panels shows the average of the logarithm of one of the four scattering
signals, i.e. height or width of either forward- (FSC) or side-scatter (SSC), as a function of
the average logarithm of cell area for E. coli cells growing in different media (Mg + glucose,
glycerol or lactose; MOPS + glucose, see legend) as measured by microscopy [31]. The error
bars represent the standard errors of the mean over replicate experiments.
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3.9.2. Scattering signals contain a substantial shot noise
component

Moreover, in order to be able to estimate GFP concentrations in individual cells, we
have to go beyond relating population averages of scatter and size, and estimate sizes
of individual cells from the scattering measurements. Several previous studies have
reported that it is difficult to use individual scattering measurements to measure
variations of the sizes of single cells in a homogeneous population [35, 44—46]. To
investigate this within our setup we focused on height of the forward scattering, since
based on Fig. 3.9 this signal most strongly correlates with cell size, calculated the CV?
of the scattering as a function of the average scatter, and compared this with the CV?
in cell area as a function of average cell area, as measured by microscope (Fig. 3.10).
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0.145 condition

0.125 4
L 0.105- —- g:ucoseI
(@] - —~ glycerol

8822 1+ = + lactose

0.045- ~ MOPS

0.6 0.9 1.2 1.5
Mean log area [umz]
FCM data

0.14

o1od E condition
R i -~ glucose
(>) 0.10 % ~ glycerol

0.08 1 lactose

0.06- | | | | H - MOPS

7.0 7.5 8.0 8.5

Mean log FSC.H [U.A]

Figure 3.10.: The CV? of the scattering distribution is affected by shot noise. Top panel: The CV? of the
cell areas as a function of mean cell area across growth conditions, as measured by microscopy.
Bottom panel: The CV? of the height of the forward scattering signal as function of the mean
height of forward scattering across growth conditions, as measured by FCM. In both panels
the colors corresponds to different growth media as indicated in the legend (Mg + glucose,
Mg + glycerol or Mg + lactose, and MOPS + glucose).

We see that, whereas the microscopy measurements indicate that the CV? in cell
size is roughly equal in all conditions, the FCM measurements show a clear decrease
of CV? with mean, similarly to what was observed for the fluorescence signal. As the
scatter signal is generated by converting a light signal into an electrical impulse, it
is to be expected that scattering measurements are also affected by shot noise, and
the results in Fig. 3.10 confirm that this is the case. Thus, in order to estimate the
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variation in cell sizes from the forward-scatter signals, we not only have to take into
account the non-linear relationship between scattering and size, but also the shot
noise on the scattering measurements. However, in contrast to the situation with
the fluorescence measurements, where we used the calibration beads to estimate the
shot noise, we cannot use these beads for estimating the shot noise on the scattering
measurements since these are strongly influenced by the geometry and material of
the particles. Therefore, the relationship between size and scatter will likely be very
different for the beads than for living cells.

In summary, both the complex non-linear relationship between scattering measure-
ments and size, and the absence of a general procedure for estimating the size of the
shot noise in the scattering measurements, make it very difficult to estimate the true
variability of cell sizes using FCM measurements only. Consequently, we currently
do not see a simple way for using FCM measurements to directly measure the GFP
concentrations in individual cells.

3.9.3. FCM measurements can be used to quantify the relative
sizes of variation in GFP concentrations of different genes

Although we do not believe that, absent of calibration with an independent measure-
ment technology such as microscopy, it is possible to reliably estimate the true sizes
of single cells using forward- and side-scattering measurements, FCM measurements
can still be used to learn a great deal about the relative noise levels of different genes.
Indeed, as confirmed in Fig. 3.7, provided that autoflurescence and shot noise are
taken into account, the CV? of total fluoresence levels of different promoters can be
estimated reasonably accurately from FCM fluorescence measurements. Given that
each of these fluorescent promoter reporter constructs are embedded in identical cells
growing in the same environment, these cells will all exhibit the same variation in cell
sizes, so that the differences in CV?2 in total fluorescence must reflect differences in
the CV? of the GFP concentrations for these reporter constructs.

Without loss of generality, the total GFP intensity I of a cell can be written as the
product I = C -V of GFP concentration C and cell volume V, and we can additionally
write C as the average concentration (C) plus a deviation d¢, and similarly for volume:

I=((C)+dc) (V) +dy), (3-9)

where both J¢ and Jy have average zero.

From the microscopy measurements we know that the fluctuations in the GFP
concentration C are approximately independent of fluctuations in cell volume V
(Suppl. Fig. E.3). Using this, we can derive relationships between both the means and
coefficients of variation of the total GFP I, and the concentration C and volume V,
respectively. We find

(I) (C)(v) (3.10a)
CV} = CVZ+CV3+CVECVE. (3.10b)

22



We can use this to rewrite the coefficient of variation of concentration, in terms of
the coefficient of variation of total GFP (which we have shown how to estimate) and
the (unknown) coefficient of variation in cell size, i.e.

CV? CcVZ

CVE= — : :
CT1ravZ 1+0v2 (-11)

Thus, if the coefficient of variation of cell volume CV3 in the growth condition of
interest can be estimated using independent measurements, then equation (3.11) can
be used to estimate the coefficient of variation of concentration in terms of the CV?
for total GFP, as given by equations (3.8). Importantly, since the CV2 is the same for
all reporter constructs, such a measurement would only have to be done once.

Lastly, even if the C V‘% is not known, we note that it will be the same for each of
the promoter reporter constructs. Therefore, the difference dCV? of the coefficients of
variation in GFP for two promoters is directly proportional to the difference dCV? in
coefficient of variation of total GFP, i.e.

dCV?

dcvi=—1_
€ 1+cvg

(3.12)

Although this still depends on the CV3, for all conditions we tested we found
that CV‘% < 1, so that a reasonable estimate of the relative size of variation in
concentrations is given by simply setting CVZ = 0 in the above equation.

4. Discussion

Although flow cytometry is an attractive technology for single-cell analysis of gene
expression in high-throughput, we have shown that for data from bacterial cells there
are a number of challenges to overcome in data analysis in order to obtain accurate
quantification. We here developed a number of procedures for measuring single-cell
expression distributions in bacteria using FCM data and implemented them in an R
package called E-Flow.

We first analyzed the forward- and side-scatter signals and their correlation struc-
ture. There seems to be little agreement in the literature as to when to use forward-
scatter or side-scatter and whether to use height, width or area. We showed that only
width and height provide independent measurements and developed a Bayesian
mixture model for separating viable cell measurements from debris and other outliers
using the full 4-dimensional distribution of forward- and side-scatter measurements.
In general the filter we developed is much broader than the very strict gating strate-
gies that are sometimes used and typically only a small fraction of the events are
discarded.
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4. Discussion

We next developed a Bayesian mixture model to estimate the mean and variance
in single-cell fluorescences of a population of cells carrying a fluorescent reporter.
However, by comparing of the means and variances estimated by FCM with the
means and variances estimated from microscopy measurements of the same strains
growing in the same conditions, we observed systematic differences because of two
effects. First, the amount of autofluorescence per cell differs systematically between
FCM and microscopy and we developed methods for estimating and removing
the autofluorescence from the FCM measurements. We show that, after correcting
for autofluorescence, there is a perfect agreement between the means of different
reporters as estimated by FCM and microscopy, over the entire range of expression
levels. However, FCM measurements systematically overestimate the variation in
fluorescence levels due to shot noise in the FCM measurement. We developed a
method to correct for the contribution of shot noise to the estimated variation that
uses calibration beads to estimate the size of the FCM shot noise. We showed that,
only after correcting for shot noise do gene expression noise measurements from
the FCM converge to those obtained from microscopy measurements. Although the
precise size of the shot noise and autofluorescence will likely vary between different
flow cytometers, the methods we presented here are general, can be applied to data
from any flow cytometer, and provide a step-by-step procedure for both estimating
the size of autofluorescence and shot noise, and correcting for these components.

Finally, we investigated whether FCM can be used to directly measure the dis-
tribution of GFP concentration across cells by using forward- and side-scatter mea-
surements to estimate the volumes of individual cells. In line with previous work,
we show that because scattering measurements depend on cell size in a complex
non-linear manner and contain a shot noise component that is difficult to calibrate, it
is not possible to accurately estimate the fluctuations in volumes of single cells from
scattering measurements. However, because GFP concentration and cell size fluctuate
independently across cells, we showed that the relative sizes of GFP fluctuations for
different reporter constructs can still be estimated from the variation of total GFP
with reasonable accuracy.
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Supplementary Material A.

Flow cytometers signals and their
statistical properties

A.1. Signal acquisition

In the flow cytometer, each cell is made to pass through a set of laser beams in order to
measure its scattering profile and its fluorescence intensity at several wavelengths. The
scatter has two components, forward- and side-scatter, which are usually interpreted
as follows [55]:

1. Forward-scatter (FSC) generally reflects the size of the cells or particles.
2. Side-scatter (5SC) generally reflects the internal complexity or granularity of
the cells or particles.

The scatter and fluorescence of each event (typically a cell) is converted by a
photomultiplier tube into a pulse of electrical signal that is characterized by a height
and a duration (Fig. 3.1). Roughly speaking, a pulse begins when a particle enters
the laser beam and it reaches its maximum when the particle reaches the middle of
the beam. In order to represent the pulse, the signal is sent to an analog-to-digital
converter (ADC) that discretizes the continuous pulse into a digital one. For the
machine used in this study, the ADC does this by sampling the pulse every o.1 ysec
and the height of the signal is mapped to an integer between 0 and 24, i.e. 14 bits
are used to quantify the height of the signal [51].

A.2. Correlations among the signals

The cytometer gives three statistics of a measured pulse (height, width, and area),
and we investigated correlations between these statistics. For the machine used in
our study, we find that the area is in fact exactly proportional to the product of the
height and width of the signal (Suppl. Fig. A.1).

Consequently, of the three statistics reported, only two are independent and we
next measured the correlations between all pairs of statistics to determine which
of these are most independent. As shown in Suppl. Fig. A.2 we can see that area
correlates significantly with both height and width whereas height and width do not
show significant correlation. We thus decided to characterize each signal by height
and width.
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Supplementary Material A. Flow cytometers signals and their statistical properties
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Figure A.1.: Pulse area is proportional to the product of height and width. Apart from very rarely
occurring negative or saturated signals, the reported area of each pulse is equal to a constant
C times the product of the reported height and width. The histograms show the distribution
of the difference area — C - width - height, which is highly concentrated around zero. Different
colors represent different promoters.

A.3. Signal width is not informative for fluorescence
measurements

To assess the relative importance of the height and width statistics for fluorescence
measurements we made use of the calibration beads manufactured by BD, which
come in a set of three different expression levels. Supplementary Fig. A.3 shows
that, whereas the heights of the signal pulses show three main peaks, corresponding
to the three intensities of the beads, the distribution of measured widths is almost
identical for all beads. Consequently, we chose to only use signal height to quantify
fluorescence.

A.4. Anomalous behavior at low fluorescence intensities

As can already be observed from the measurements of the calibration beads (Suppl.
Fig. A.3), due to shot noise in the fluorescence measurements, the coefficient of
variation generally increases as the fluorescence level decreases. This general negative
correlation between mean fluorescence and its coefficient of variation can not only be
observed for the calibration beads, but also for a library of transcriptional reporters
of native E. coli promoters (Suppl. Fig. A.4). However, as Suppl. Fig. A.4 also shows,
when fluorescence levels become very low, the C V2 of the measurements reaches a
maximum and starts to decrease as the mean decreases further, and the lowest CV? is
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Supplementary Material A. Flow cytometers signals and their statistical properties
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Figure A.2.: Correlations among the different statistics reported for each signal pulse. The plots show
the correlations among the height (H), area (A) and width (W) of the signal pulses for the
forward- (FSC) and side-scatter (SSC) as well as the fluorescence measurements (GFP). The
colors represent 3 different promoters, two native promoters (recA and recN) and one synthetic
promoters (high).
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Supplementary Material A. Flow cytometers signals and their statistical properties
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Figure A.3.: Population separation of calibration beads based on their fluorescence signal pulses. Dis-
tributions of the measured heights (top) and widths (bottom) of the fluorescence signal pulses
for populations of artificial beads. Each color corresponds to one measurement run of a set of
artificial beads consisting of a mixture of beads of three different fluorescent intensities. We see
that, whereas signal height shows 3 clearly separated peaks, the distribution of signal widths
is narrowly peaked at a single value. Note also the notably wider variance of the peaks in
fluorescence height at low intensities than at high intensities, which results from measurement
shot noise.
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Supplementary Material A. Flow cytometers signals and their statistical properties
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Figure A.4.: Coefficient of variation as a function of mean fluorescence level exhibits anomalous behav-
ior at low fluorescence. The blue scatter shows the measured coefficient of variation squared
CV? (vertical axis) as a function of the logarithm of mean fluorescence level (horizontal axis)
for a library of transcriptional reporters of native E. coli promoters [48] as obtained in a recent
study from our lab [31], with each blue point corresponding to one promoter of the library.
The red points show the same statistics for the calibration beads at three intensities. Note
that, due to shot noise in the fluorescence measurements, the CV?2 increases as the mean
fluorescence decreases, including for the calibration beads (that have low intrinsic variance).
However, at very low fluorescence, the CV? reaches a maximum and decreases for even lower
fluorescence.
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observed for cells without any GFP expression. We hypothesize that this decrease
in CV? for very low fluorescence levels derives from the fact that autofluorescence
levels vary less than GFP fluorescence levels, in combination with some specific
signal processing that is performed by the machine at low signal intensities. Although
we invested a significant amount of time in trying to reverse engineer what signal
processing may cause this anomalous behavior at very low fluorescence levels, these
attempts were ultimately not successful. In addition, our repeated requests to BD to
bring us into contact with the relevant technicians went unanswered. Consequently,
we were forced to restrict our quantitative analysis to cells whose GFP levels were
at least twice the autofluorescence level (corresponding the log-mean levels roughly
equal to those of the dimmest calibration beads in Suppl. Fig. A.4).

Supplementary Material B.

Mixture model of the scatter
measurements

The scatter of each measured event is characterized by 4 statistics: the height and
width of both the forward- and side-scatter. We fit the set of 4D scatter measurements
for a given dataset by a mixture of a multivariate Gaussian and a uniform distribution.
The idea is that the Gaussian distribution models the viable cells, while the uniform
distribution represents outliers that may correspond to fragments of dead cells or
other debris. Concretely, we assume that the probability to observe the 4D vector i
for a single measured event is given by

P(71i,%,p) = —=e 1T L (B.1)

where ji is the center of the 4D multivariate Gaussian, ¥ its covariance matrix, p the
fraction of viable cell measurements in the dataset, and A is the volume of the 4D
hypercube spanned by all the data points. Note that |£| denotes the determinant
of the covariance matrix. The E-Flow package that we distribute contains a C++
implementation where the model (B.1) is fit to a given dataset using expectation
maximization. An example of the results of this fitting to a dataset of E. coli cells
grown in minimal media with lactose is shown in Fig. 3.2 of the main paper, showing
that the observed 4D scatter can be well approximated by the mixture model.

Once the mixture model is fitted, we can calculate a posterior probability p; for
each observation i that it derives from the Gaussian mixture component, i.e. that
it is a viable cell measurement. By default E-Flow filters out all events i for which
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this posterior probability is less than 0.5 and retains all measurements with posterior
probability larger than 0.5, but users can choose to alter this threshold in posterior
probability. Supplementary Figure B.1 shows the same 4D scatter of measurements as
shown in Fig. 3.2 of the main text, but now with all selected events in red, and all
events that were filtered out in black.

Filtering based on the scattering signals
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Figure B.1.: Filtering of events based on their scattering profiles. The panels show a scatter of the forward-
and side-scatter measurements for a set of E. coli cells grown in minimal media with lactose.
Events that have posterior probability larger than 0.5 to stem from the Gaussian component
of the mixture are indicated in red, and events with posterior less than 0.5 are superimposed
in black. The red events are considered viable cell measurements and the black events are
discarded. Note that around 4% of the measured events are discarded for this dataset.

To investigate the effect of the filtering strategy on the observed fluorescence levels
we calculated the distribution of fluorescence levels of several reporters when using
either a very strict threshold, retaining only cells with posterior p > 1 —¢ 1% or a
very lenient threshold, retaining all cells with p > ¢~10. As shown in Suppl. Fig. B.2
there is virtually no difference between the observed distribution of fluorescence
with the two thresholds. This observation strongly suggests that it is not possible to
effectively pick out a subpopulation of cells of similar size by strict gating on forward-
and side-scatter.
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Supplementary Material C. Inferring the mean and variance of the fluorescence levels
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Figure B.2.: Fluorescence distribution when using very strict or very lenient gating of forward- and
side-scatter. Each panel shows the observed distribution of fluorescence levels of a transcrip-
tional reporter (rows) using different replicate measurements (columns) when using either a
or a very lenient threshold p > e~1° for filtering events. Note
that the name of the reporter and the voltage of the flow cytometer’s laser used in a given
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Supplementary Material C. Inferring the mean and variance of the fluorescence levels

Supplementary Material C.

Inferring the mean and variance of the
fluorescence levels

After filtering events based on forward- and side-scatter, we next fit the distribution
of fluorescence by a mixture of a log-normal distribution, which captures valid
measurements and corresponds to the bulk of the measurements, and a uniform
distribution capturing outliers. In particular, we assume that the probability for a
fluorescence measurement to have log-fluorescence x is given by the mixture:

x—u)? 1—
P(x|p'y'v):\/%e)(p {_( 2:) ]+ i

where y and v are the mean and variance of log-fluorescence levels, p is the fraction of
‘valid’ measurements and A = Xmax — Xmin is the observed range of log-fluorescence
levels. The log-likelihood for a dataset of n measurements x; is then simply given by

L(p, p,v) = } Slog [P(xilp, 1, 0)] - (C2)

(C.1)

We maximize the log-likelihood (C.2) using expectation maximization to obtain the
fitted parameters p., y« and v.. To obtain error bars ¢}, and oy, on the mean y and
variance v we obtain the Hessian matrix of the log-likelihood by expanding to second
order around its maximum and we take the diagonal elements of its inverse. For any
given set of fluorescence measurements, our package E-Flow returns both the fitted
values (i«,v«) and their error bars (0, 0).

Below we develop methods for correcting the observed fluorescence levels for both
cell autofluorescence and for the shot noise in the FCM measurements. In order to do
this we also need the mean and variance of fluorescence levels, rather than just the
mean and variance of log-fluorescence levels. That is, if we write for the fluorescence
of a cell f = e*, we need to obtain the mean and variance of f. Using the well-known
expressions of the mean and variance of a log-normal distribution we have

(f) =elre /2, (C3)

and
var(f) = [e% — 1] 217, (C.4)

Further, given that the error bars on the mean and variance are generally small
compared to their means, we use a linear approximation to calculate error bars on
the mean and variance of f, and find

3
o = o+ 5 (C5)
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and

Cvan(s) = \/4var(f)203 + (2var(f) + (f)?)? 3. (C.6)

The E-Flow package also returns these estimates and error bars for fluorescence levels

f.

Supplementary Material D.

Averaging of replicate autofluorescence
measurements

As shown in Fig. 3.4 in the main text, we measured the autofluorescence distribu-
tions of cells that do not express GFP in triplicate on 4 separate days, and for two
different strains. Noticing that there appears to be a small but systematic variation
in both the means and variances of the autofluorescence levels, we proceeded as
follows to estimate an overall average for the mean and variance of autofluorescence,
adapting a method first presented in [56].

We assume that there is an overall mean autofluorescence y and that on any given
day d, the mean autofluorescence 4 on that day deviates from u by some amount 4,
ie.

Pa = 1+ 0y (D.1)

We will assume that the deviation J; varies by an (unknown) amount 7 across
days, following a Gaussian distribution. That is, the probability of having mean
autofluorescence y,; on any given day is

1 )2
P(le%f):mTexP {—%} (D.2)

Let p;z be the estimated mean autofluorescence of replicate i on day d, and let oz be
the associated error-bar on this mean. Assuming that the true mean autofluorescence
on day d was ji, the probability to obtain a measured mean autofluorescence y;; is
also given by a Gaussian distribution:

N2
P(pigloia, pa) = \/—;dexp [—M} . (D-3)

2
27TU' 2Uid

The probability of the data D, i.e. all replicate measurements ji;; given an overall mean
u and variance across days 7?2 is given by taking the product over all measurements
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and days, and marginalizing over all day-dependent means i :

P(D|w,7) =] [/ dptaP (alp, ©) T T P(pialoia, ﬂd)} : (D)
d i
These integrals can all be performed analytically and we obtain
(g — 1)*
P(Dlw,7) =]] p [— : (D5)
d 27T(T2 +U§) 2(T2+0'§)
where we have defined the measured mean fi; on day d as
Y tial 0%
g = ——°, (D.6)
SV

and the squared error o2 on the measured mean on day d as

-1
02 = {2 ;—zd] ) (D.7)

If we define the weighted overall average

Fdeﬁd/(TZ+<T§) D3)
Yal/(2+07)’ '
and the overall squared error
- 1 71
=Y . D.
_g‘ 2402 (D.9)
then we can rewrite equation (D.5) as
1 w=—p? 3
P(Dlu,t) = ——— | exp [——4——— —a .
1;[ J2r(e2 + ) | 208 20 §2(72+0§)
(D.10)

We can then finally marginalize over y to obtain a likelihood that depends only on T
and the measurements:

! (D.11)

P(D|t) =0 [H

d \[2r(T% + 03)

-2 -2
o Ha
exp |:2(72 ; 2(-[2 + 0—5)

We maximize equation (D.11) with respect to T to find the optimal value 7.. We then
substitute this value 7. into equations (D.8) and (D.9) to obtain a final estimate fi
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Supplementary Material E. Fitting the shot noise strength using calibration beads

of the overall mean autofluorescence and an error bar ¢ on this estimate. The same
procedure is used to estimate average variances 7, for each day and an overall average
variance 7. The E-Flow package returns all these values as the overall estimates of
autofluorescence averaged over multiple replicates and days.

Supplementary Material E.

Fitting the shot noise strength using
calibration beads

The electronic cascade in the photomultiplier tube introduces a noise whose vari-
ance can be described as a Gaussian with a variance proportional to the square root
of the incoming signal [52]. This means that, for every measurement of fluorescence,
the relationship between measured intensity I; and true intensity Ir is given by

Iy = Ir+O0+¢e/Ir, (E.1)

with € ~ N(0,4) and O is an offset introduced by the electronics in order to avoid
negative values when It is very small.

To infer the strength ¢ of the shot noise term we used a set of calibration beads
consisting of a mixture of beads of three different expression levels. The top right
panel of Suppl. Fig. E.1 shows the observed distribution of expression levels for one
set of beads showing three main peaks and one small additional peak at very high
intensity. We believe that this highest peak is an artifact due to aggregation of multiple
beads. We fit the distribution of bead intensities to a mixture of a uniform distribution
(to account for outliers) plus four Gaussians. We discard all points assigned to the
uniform distribution and the highest Gaussian component, and estimated the means,
variances, and CV? for each of the remaining three Gaussians. This procedure was
repeated for multiple datasets. In total we estimated means, variances, and C V2 for
31 datasets of calibration beads. The top left panel of Suppl. Fig E.1 shows the CV? as
a function of the mean intensities of the beads across all datasets showing that CV?
drops approximately inversely with mean expression, as expected for shot noise.

Given one dataset of beads expressions, we can now fit a model based on Eq. (E.1).
First of all it can be proved that under this model the mean and variance of the
expression intensities of one single peak i are given by

My, = M;+0 (E.2)
Sy = CHMp)*+0*Mp (E3)
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Figure E.1.: Estimation of the shot noise strength using calibration beads. Top left: CV? as a function of

mean intensity for each Gaussian component of each mixture of beads analyzed. Both axes are
shown on a log-scale and different colors refer to different datasets. The black line and the
shaded region represent the fit obtained using a shot noise strength ¢ = 12.7 + 0.6. Top right:
Example of the intensity distribution of a single dataset of beads; the red line shows the fit
with a mixture of three Gaussians and one uniform. Bottom: Estimates of the strength ¢ (left)
and offset O (right) for different datasets; the estimation is done fitting a model of the form
given by equations (E.6) and (E.7). The black lines correspond to the means of § and O and the
gray regions correspond to their variation among datasets.
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where we have supposed that the true coefficient of variation C is the same for every
peak (we assume that each of the 3 types of beads has the same manufacturing
accuracy in their fluorescence intensities). From the histogram in Fig. E.1 (top right)
it is clear that in logarithmic space the intensities are well described by Gaussian
distributions, which means that M, and S, are the mean and variance of a log-
normal distribution. We can work out the y and ¢ of a normal distribution in log-space
that would have M}, and Si; as mean and variance in real space

i

M: M;
sy = log |1+ [C——T +62——T E.
i & ( M’T+O> (Mi +0)2 E4)
. ‘ 5i
why = log(Mr+0) -2 (E.5)

It follows that in logarithmic space the probability of observing a data point x;
(including also a uniform distribution that takes care of possible outliers) is

3 . . . .
P(x¢ | Mr,0,C,4,0) Y piN [ py(MF,0,C,6), s, (Mk,0,C,8)] +
i=1
1-Y2  pi

* A

(E.6)
where g is a vector of weights whose elements sum to one and A is the range of the
data in logarithmic space. The log-likelihood of the data is

N
L(%|Mr,0,C,6,5) = Y log [p (xk | Mr,0,C,0, ﬁ)} (E.7)
k=1

This likelihood is maximized using a coordinate descent algorithm and the error
bar on § was estimated by expanding the log-likelihood to second order around
its maximum, keeping all other parameters fixed. The same procedure was used to
estimate an error bar on the offset O.

After obtaining estimates of § and O and their error bars for each dataset, we
averaged the ds and Os from different datasets in the same way as we did for
autofluorescence measurements above. The bottom part of Suppl. Fig. E.1 shows the
estimates of the shot noise and offset for different datasets and the final average of
all these estimates. We find that J has a value of 12.7 with a variation of 0.6 among
datasets. Finally, the black line on the top left panel of Suppl. Fig. E.1 shows that the
model correctly describes the observed decrease in CV? with mean.
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Supplementary Material F.
Mother machine statistics

F.1. Age distribution in the Mother machine

Especially for highly expressed genes the GFP concentration varies relatively little
across cells, so that the total amount of GFP in a cell correlates well with its size.
Since each cell expands exponentially along its division cycle in exponential growth,
cell size correlates well with the ‘age’ of a cell, i.e. where it is in its division cycle. For
this reason we expect a correlation between the total GFP distribution and the age
distribution of the population, i.e. the relative frequencies of cells in different stages
of their division cycle. Thus, in order to meaningfully compare GFP distributions
from the FCM and from cells growing in a microfluidic device, we must check that
the age distributions of the two populations are indeed comparable.

The cell population analyzed in the FCM is expected to have an over-representation
of younger cells, since for every old cell that divides two young cells are produced
whereas, in the microfluidic device, we expect less over-representation of young cells
due to the fact that cells continuously leave the growth channel.

To infer the population structure of a growing population of cells, we use the Leslie
approach [57]. We discretize the time in steps of 3 minutes, corresponding to the
acquisition time of the time lapse microscopy, and we look for the probability P(a, t)
of having cells of age a at time t. The Leslie theory is based on two quantities, the
fecundity f(x,t) which represents the expected contribution from an individual aged
x at time point ¢ to the population aged 1 at time point t + 1, and the probability
P(x,t) of survival over one time point for individuals who are present in age-class x
at time ¢. These quantities form the Leslie matrix, which is defined as

f,t)  P(Lt) 0 ... 0
f(2,1) 0 P2t ... 0
L(t) = : : : : (F.1)
fd-1t) 0 0 ... P(d-1,t)
f(d,t) 0 0o ... 0

this matrix is a squared d x d matrix where d is an upper limit on the age of the cells,
after which P(x,t) = 0. The population structure at time ¢ is given by a vector 7i(t) of
dimension d, where the entry i is the number of individual in the population of age i.
The theory states that

ii(t) = #(0) - L' (E2)

where we use the convention that vectors are represented by rows. If the matrix L is
diagonalizable and its entries are independent of time, it can be shown that for very
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large t the population reaches a stable age distribution with

A(t) ~ Abdi(0) - Ul ! (F3)
npor o et1os(M) (F4)

where A; and U are the leading eigenvalues and eigenvectors of L.

From

the data from the microfluidic device we can estimate the probability for a

cell of age x at time ¢ to survive one more time point by computing the probability

that the

division occurs at an age larger than x; the fecundity is then given as twice

the probability that the cell doesn’t survive. Suppl. Fig. F.1 shows the computed
P(x,t) by considering cells at different times ¢ from the beginning of the experiment
and it shows that they are all the same, suggesting that the Leslie matrix is indeed
independent of time. We thus decided to compute a single curve for P(x) by pooling
all the cells together independently of the time at which they were measured. The
resulting curve shows that the survival probability becomes negligible after 150
minutes, with a medium age at division of 80 minutes.
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don’t depend on time, we pooled data from all times together to obtain a single survival curve.
Bottom left: Fecundity as function of cell age. Bottom right Asymptotic age distribution of the
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predicted distribution.

We found that the exponential growth rate of the population, Eq (F4), is p ~
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0.0089/min, which is the same as the measured single cell growth rate. As expected,
the population age structure differs markedly between the observed and the theoret-
ical one, as shown on the bottom right part of Fig F.1. In particular the theoretical
distribution predicts more young cells than old, while in the microfluidic device we
have a nearly uniform age distribution with a right tail; hence, as expected, young
cells are relatively under-represented in the population in the microfluidic device.

Assuming that the GFP concentration is constant, the total GFP must depend
on the cell age through the length and in computing the mean and variances we
have to weight the GFP by the ratio between the theoretical and the observed age
fractions. Specifically, if Py,;(age) and Py, (age) are the observed and the theoretical
age distributions, then for the log(GFP) distribution it holds

__ Xligiw(age)
7 YN wlage) )
_ Y (8i — §)* w(age;)
Var g = Zzl'\i 1 w(agei) (F.6)

where i runs over all cell observations, § = log(G) and w(age) is a weighting factor
that accounts for the over-representation of older cells

b th (age)
EIPYIN (E7)
Pops (age)
Going into log-space, we have estimates more robust against outliers and we can
approximate the CV? in the real space as the variance in the log-space. Suppl. Fig. F.2

shows that the age structure correction makes the CVs only slightly lower than the
one measured ignoring the age structure effects.

w(age) =
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Figure F.2.: Effect of the age structure on the measured CV?2. Left: CV? corrected by the age structure in
the microfluidic device versus the CV? as directly measured, ignoring the age structure effect.
The age structure has the effect of making the measured CV? slightly higher than the CV?
corrected by the age structure of the population. Right: CV? obtained by taking all the measures
in the microfluidic device versus the CV? when taking only one point, chosen at random, per
cell. We can see that the difference is very small and the points accumulate around the bisector.
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F.2. Correlation in the measurements

As we are recording the size and GFP expression of cells every 3 minutes in the
microfluidic device, observations from nearby time points are clearly correlated, and
it could be suspected that this may affect the statistics we calculate. In contrast, in the
FCM, we have cells measured at only one time point, so we don’t have correlations
coming from the fact that we have multiple data points coming from the same cell.
To check whether the presence of these correlated data points can substantially bias
the statistics, we measured the CV? for different promoters and media on different
dates in two different ways:

1. Taking all the data, regardless of the fact that they may come from the same
cell.
2. Taking only one randomly selected data point for each cell.

The first condition is the one that we use throughout the paper to compute the
statistics, while the second one should be closer to the FCM setup. Suppl. Fig. F.2
shows that the CV? are almost identical whether correlated time points are included
or not. In conclusion, neither the age structure nor the correlated measurements
affect the comparison of CV? between measurements from the FCM and from the
microfluidic device.
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Abstract

To investigate how noise propagates from transcription factors to the target promoters
at the single-cell level, we focused on the LexA regulon in Escherichia coli, which
is activated in response to DNA damage. We selected a set of promoters that are
known to be only regulated by LexA and we studied the in vivo dynamics of the gene
expression in a microfluidic device, using time-lapse microscopy. We found that LexA
target promoters in single cells show a different behavior compared to constitutive
expressed promoters, and they are characterized by short bursts in transcription
which increase in frequency when LexA is induced. Depending on the promoter, the
signal-to-noise ratio of the bursts can be high or low.

We show that such a behavior cannot be explained by a simple equilibrium model
where fluctuations in the LexA concentration can be ignored. We hypothesize, on the
other hand, that these transcriptional bursts correspond to short transient periods of
low LexA concentrations that are precipitated by individual DNA strand breaks. That
is, we propose that, rather than reading out an effective time average concentration of
LexA, induction of different LexA target promoters is a non trivial function of the
frequency and amplitude of transient drops in LexA concentration.

We then discuss how the architecture determines the ability of a promoter to detect
fluctuations in the regulator levels of different durations, and to integrate the past
history in its expression level.



1. Introduction

Since the discovery of the lac operon and gene regulation in the seminal work of
Jacob and Monod in 1961 [1], we know that gene regulation plays an important role
in the ability of cells to respond and adapt to environmental cues [2, 3]. Although
a lot of effort has since been devoted to experimentally and theoretically dissect
gene regulation, the complex web of interactions in the regulatory networks poses
a great challenge for the development of quantitative models. For this reason, a
full, quantitative understanding of gene regulation still remains an open question in
systems biology, despite more than fifty years of research.

One open question is the functional role of gene expression noise in shaping the
behavior and evolution of regulatory networks [4]. In previous works in our lab,
we showed that noise is fundamental for the accurate evolution of gene regulation
from a state without regulation, and that a large fraction of the noise is shaped by
noise propagation from the regulator to the target promoter [5, 6]. It is, however,
still not clear what the origin of the propagation is. In one regime, the fluctuations
in the regulator are on a different time scale compared to the gene expression
reactions, and can therefore be ignored. In this scenario, the target promoter is
blind to the fluctuations of the regulator, and the noise is solely determined by the
stochastic switching between a repressed and an active state, caused by the binding
and unbinding of the regulator. In a dynamic regime, the fluctuations in the level of
the regulator are on the same time scale as the reactions leading to mRNA production,
and they explicitly contribute to the noise of the target gene.

To dissect the origin of noise, we leveraged today’s technological advances in
single-cell tracking and analysis, which are providing us with an unprecedented level
of detail allowing for new, fundamental insights about the underlying mechanisms
of gene regulation [7] and noise propagation. For example, we are now able to track
real-time gene expression at the single-cell level [8-14], going beyond the analysis of
the mean behavior of a population of cells. This new level of information allows us to
study the time dynamics of the full distribution of molecular species and is believed
to be pivotal to advance our knowledge of the regulatory schemes [15-17]. Indeed,
despite the success of batch studies in describing the average protein production in a
population of cells, single-cell studies are starting to reveal that average measurements
might not fully characterize network responses, and the time evolution of distribution
of the molecular species in single-cells also carries valuable information to dissect the
mechanisms of gene regulation [18-25] and its evolution [6].

In this study, we investigated the diversity in responses of different native promoters
under control of the same transcription factor at the single-cell level. In particular, we
focused on the SOS pathway in Escherichia coli [26, 277], which is activated in response
to DNA damage. This regulatory network presents several characteristics that make



it well suited to study noise propagation. First, the induction mechanism has been
dissected in several studies, resulting in a good characterization of the binding sites
and the transcription factors. Second, the network is under strong selection pressure,
since it is crucial for the survival of the cells. This means that its noise propagation
has been shaped by natural evolution. Finally, the network can be easily induced in
the lab using common DNA damaging agents.

Briefly, the SOS pathway comprises genes involved in the repair of DNA double-
strand breaks (DSBs) and is regulated through the interaction between the repressor
LexA and the molecule RecA, both of which are also under control of the network. In
the absence of DSB, LexA is bound to the promoter of the SOS genes keeping them
repressed. When a DSB occurs, RecA starts to filament around the single-strand DNA
and induces the autocleavage of unbound LexA, which in turn leads to an induction
of the network, including LexA and RecA themselves. Once the break is repaired, the
RecA filaments disassemble, LexA is not cleaved anymore and the network returns
to a repressed state [26—30]. For the SOS response, it has been shown that, despite
the simplicity of the network, the presence of feedback loops and fluctuations in
LexA concentration cause a complex dynamics, with a gene-specific temporal pattern
characterized by waves of gene activity [16, 24, 29, 31—-33]. These studies also show
the importance of single-cell studies to unmask patterns that are otherwise hidden at
the population level.

In the present work, we constantly induced the network to a specific level, by
giving the cells different concentrations of the DNA damaging agent Ciprofloxacin
(Cipro) [34]. The activity of a selection of promoters, known to be only regulated by
LexA, were measured by placing them upstream a GFP coding sequence in plasmids
[35]. We then studied the in vivo dynamics of gene regulation in a microfluidic device
using time-lapse microscopy [36] and found that LexA target promoters in single cells
show short bursts in transcription which increase in frequency as Cipro increases.

We show that a simple equilibrium model, where the fluctuations in the regulator
are ignored, is not able to explain the observed bursts in transcription. On the other
hand, we propose that the bursts in production are caused by transient drops in LexA
concentration caused by a random DNA damage and happening at the same time
scale of the binding and unbinding of the regulator. In particular, our data points to a
kinetic model where, instead of reading an effective time-average concentration of
the regulator, the network responds to rapid and stochastic fluctuations in the LexA
concentration.

We finally investigated how the promoter architecture affects the response of the
promoter to fluctuations in the regulator. We show that the unbinding rate of LexA
determines the level of sensitivity of the promoter to the fluctuations of the regulator,
while the concentration of free LexA in the cell sets a biological limit on the highest
sensitivity a promoter can achieve.



2. Materials and Methods

2. Materials and Methods

2.1. Strains and growth conditions

We measured fluorescence in single cells for a set of Escherichia coli MG1655 strains
that carry a transcriptional reporter inserted upstream of a gene for the fluorescence
protein GFP-mut2 and expressed from a low copy number plasmid [35]. All the se-
quences were verified by Sanger sequencing. These reporters are either for promoters
regulated by LexA only (dinB, ftsK, lexA, polB, recA, recN, ruvA, or uvrD) [37] or
for synthetic promoters obtained by experimental evolution so as to express at levels
corresponding to the median or to 97.5" percentile of all native E. coli promoters [6].
Throughout the paper, we refer to these two synthetic promoters as Synthetic High
and Synthetic Medium.

2.2. Time lapse microscopy

Mother Machine experiments were performed as described in [36], using Mg +
0.4% glucose (supplemented with 50y / mL of kanamycin during the overnight
preculture only). Data were acquired every 3 minutes for 30 hours, supplementing the
growing media with 3 different concentrations of the antibiotic Ciprofloxacin (Sigma
Aldrich ref.: 17850, CAS Number 85721-33-1). The first six hours have no antibiotic
supplemented; from 6h to 18h and from 18h to 30h we supplemented respectively
ing/mL and 2ng/mL of antibiotic. We refer to [36] for a detailed description of the
Mother Machine design that allows to dynamically change the growing media in the
microfluidic device.

2.3. Analysis of the data

The GFP number of molecules correlates strongly with the cell size, as shown in the
Supplementary Fig 2. Therefore, in this study we focused on the GFP concentration
in order to remove variations in gene expression caused by variations in cell size
rather than by induction of the LexA pathway.

Moreover, in computing the average concentration levels we need to keep in
mind that the measurements coming from the same cell trace are highly correlated.
Therefore, the usual computation of the standard error, based on independent samples,
gives underestimated error bars and we need to use a specific algorithm to infer the
corrected standard errors. The algorithm is described in the Supplementary Material
section A.1.

To account for day-to-day variability, in all the experiments we measured a consti-
tutive high expresser [6] and we used its average concentration to normalize across
different days. More details are provided in the Supplementary Material section A.2.



Finally, we noticed that due to the high illumination, cells required about 2 hours
before adapting to the Mother Machine environment and we therefore discarded
all measurements taken earlier than the first two hours (Supplementary Material
Section A.3). Moreover, we discarded all cells that approached the exit channel of the
Mother Machine before the division, as their measured length, and therefore their
GFP concentration, cannot be reliably estimated.

3. Results

3.1. Genes belonging to the LexA regulon show
different inductions at the population level

We studied the induction of the LexA regulatory network focusing on 8 promoters
that are under the exclusive control of LexA and the sigma factor, according to Regu-
lonDB [37]. In addition, we added two constitutively expressed synthetic promoters,
identified as synthetic high and synthetic medium, which exhibit a mean expression
level that is respectively at the 97.5th and 50th percentile of all E. coli promoters
[6]. The network is induced using the DNA damaging antibiotic Ciprofloxacin in 3
different concentrations, which are much lower than the recommended ECsg, and do
not cause major damages to the cells. Indeed, the growth rates are not affected by the
presence of antibiotic (Supplementary Fig A.2B).

Our microfluidic setup enables controlled variation of the Cipro concentration over
time, allowing direct observation of gene regulatory responses to different induction
levels in single cells [36]. In particular, we monitored the cells over a period of 30
hours, starting with no antibiotic in the first 6 hours, switching to 1 ng/mL in the
following 12 hours and finally to 2 ng/mL in the final 12 hours. In Fig 3.1A, we
show time snapshots of the fluorescence level for a growth lane expressing GFP
from the recA promoter, and a growth lane expressing GFP from the synthetic high
promoter. We can see that, while the synthetic promoters express similarly in all
three conditions, recA promoters increase their expression as the concentration of
the DNA damaging agent increases. This is shown more quantitatively in Fig 3.1B,
where we show the fold change of the mean fluorescence level over time for the
synthetic high promoters and the LexA targets which we found to be induced in our
setup. Importantly, the figure shows that different promoters are induced differently
in response to the same regulatory network. Supplementary Fig 1 shows the basal
GFP concentration (in the absence of Cipro), and the fold changes for all the LexA
regulated promoters. The same figure shows the agreement between the behavior of
recA and polB over two different days.
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Figure 3.1.: Induction of the genes under control of the LexA pathway. A: Fluorescence time snapshots
of two representative growth lanes of our microfluidic setup. The top lane includes cells
expressing GFP from synthetic high promoter, while the bottom lane are cells expressing GFP
from the recA promoter. The horizontal axis show the experiment time, with the three different
Cipro concentrations. While the expression of the synthetic promoters is similar across all the
Cipro concentrations, recA promoters express more as the Cipro increases. B: Fold change in
the mean gene expression for a population of cells expressing 4 representative LexA target
promoters, and the unregulated Synthetic promoters. It can be seen that different LexA targets
are induced at different levels.

3.2. LexA regulated promoters have a single cell GFP
production characterized by bursts

To better understand how different promoters respond to the induction of the same
regulatory network, we turn our attention to the expression dynamics of single cells.

For each cell, the microfluidic setup enables us to track the total GFP intensity over
time, as shown in the top panel of Fig 3.2A. To study how the regulatory network
determines the expression of a promoter, we assume that the network affects the
instantaneous production q(t) of GFP, and we model the total GFP G(t) at time ¢
through the following process:

2 — V() - po(1) G

where the term p represents the loss in fluorescence given by bleaching and dilution.
Notice that the production is multiplied by the volume V (¢) of the cell, to factorize
out any contribution to the production coming from the cell cycle (e.g. duplication
of the plasmids), rather than from the regulatory network induction. Solving Eq
(3.1) allows us to infer g(t), as shown in the lower panel of Fig 3.2A. We refer to the
Supplementary Material section A.3 for an in depth discussion of Eq (3.1) and how to
solve it for g(t).

Examples of time traces of GFP production over the entire experiment are shown in
Fig 3.2B for three representative promoters. There is a striking difference in the time
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Figure 3.2.: GFP production over time for single cells. A: The top plot shows the GFP trace for a single
cell expressing the promoter recA. The GFP production begins at time 18h and continues
until about 18.3h. The bottom plot shows the corresponding GFP production, computed from
Eq (3.1). The picture on top shows microscope snapshots of the tracked cell at the different
acquisition times. B: Example of GFP production over the entire duration of the experiment for
three promoters. For each promoter, only one representative cell genealogy is displayed, and
the boundary between the cells of the genealogy are shown by the rectangles below each trace.
The dotted vertical lines separate the three different Cipro concentrations.

traces for constitutively expressed and regulated promoters. The regulated promoters
recA and polB are characterized by low production interspersed by periods of high
production bursts, although for recA the bursts are clearer than for polB. On the other
hand, the constitutive expressed synthetic promoter shows a pattern that is more
similar to a random walk, with the GFP production fluctuating around a mean value.

3.3. Characterization of the bursts

To shed light on the mechanism of LexA induction, we set out to characterize the
bursts in GFP production. We focused on lexA, recA, and recN, where the high signal
to noise ratio allowed a peak calling algorithm (see Supplementary Material Section
A.3) to reliable identify and characterize the bursts. The results are shown in Fig 3.3.

We noticed that the height of the bursts (Fig 3.3A) is characterized by an expo-
nential distribution, whose slope depends on the specific promoter, but not on the
concentration of Cipro. On the other hand, the duration, or width, of the bursts has
a distribution that is not only independent on the concentration of antibiotic, but
also very similar for all the promoters, with a median duration around 7.5 minutes
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Figure 3.3.: Characteristics of the bursts in GFP production. A: Reverse cumulative distribution of the
bursts height for different promoters and Cipro concentrations. The straight lines in a log scale
shows that the distribution is exponential, with a slope determined by the promoter, but not
by the antibiotic concentration. B: Reverse cumulative distribution for the bursts duration,
showing that the distribution does not depend on the Cipro or on the promoter. C: Frequency
of the bursts relative to the frequency without antibiotic, showing that the frequency increases
with the antibiotic concentration in a similar way for all the promoters.

(Fig 3.3B). Finally, the frequency of the bursts, relative to the frequency without
Cipro, increases with the concentration of antibiotic, in a similar way for the different
promoters (Fig 3.3C).

All in all, Fig 3.3 shows that the induction of the regulatory network, caused by
an increase in the antibiotic concentration, affects only the frequency of the bursts,
while the promoter architecture determines the height of the bursts. The widths do
not depend on either the Cipro concentration or the promoter architecture.

3.4. Gene expression model

In order to understand how a promoter responds to fluctuations in the regulator, we
describe the gene expression using the reactions shown in Fig 3.4A.

The promoter can switch between a LexA-bound state and a LexA-free state, with
the LexA unbinding rate determined by the architecture, and the binding rate given by
the concentration of free LexA. When free from LexA, the promoter can be transcribed
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Figure 3.4.: Theoretical models for the induction of the LexA regulatory network. A: Model of gene
expression for a promoter that can switch between a transcribing state (free from LexA)
and a repressed state (bound by LexA). B: Simulation of the equilibrium model where the
concentration of LexA is assumed to be constant over time and determined by the Cipro
concentration (top row). The bursts correspond to periods of time when LexA is unbound
from the promoter (middle row). As the concentration of LexA decreases, LexA rebinds slower,
causing wider and higher bursts and leading to an increase in GFP concentration (bottom row).
C: LexA dynamics in the presence of double strand breaks (DSB). Without DSB (white areas),
LexA has a steady state concentration Lss, which precipitates at a rate « when a DSB occurs
(yellow areas). The break is repaired at a rate r,, and the LexA concentration recovers with an
exponential rate 8. The DSBs occur with a frequency r;,. D: Simulation of the bursts in a non
equilibrium model, where the fluctuations of LexA in panel C are explicitly taken into account.
The bursts correspond to period of time when the LexA concentration is low. We refer to the
Supplementary Section C.3 for a detailed explanations of the simulation algorithm.

into mRNA, which in turn can either decay or be translated into GFP. The GFP protein
is initially immature and it undergoes some post-translational modification to become
a mature, fluorescing protein [38]. The fluorescence of GFP decays very slowly over
time, mainly due to photobleaching and dilution [36]. Notice that the transcription
rate is proportional to the volume of the cell to take into account that as the cell grows
the GFP carrying plasmid doubles.

All the reactions that lead to the expression of the promoter occur in a growing
and dividing cell, according to an adder model [39]. When a cell has added a
randomly selected volume, it divides and the daughter inherits all the molecular
species according to a binomial sampling with probability 0.5.

To understand how LexA determines the induction of the gene expression, it is
critical to understand how the concentration of free LexA depends on the different



3. Results

concentrations of antibiotic. In the next sections, we explore two regimes. In an
equilibrium model, the concentration of LexA at a given antibiotic level is assumed
to be constant over time, and any fluctuation in the target expression are due to
stochastic binding and unbinding of the repressor. On the other hand, in a dynamic
model we explicitly take into account fluctuations in the concentration of the regulator.
We will show that only a dynamic model can recapitulate the observed data.

3.5. An equilibrium model cannot explain the observed
data

To explain the induction of a promoter under the model in Fig 3.4A, one of the
approaches most frequently adopted is based on statistical equilibrium [40]. Starting
from the seminal work of Ackers et al. [41], this strategy has been successfully applied
to explain gene expression, also in presence of complex regulatory patterns [42-50]. A
crucial assumption is that, at each Cipro concentration, the system is in equilibrium
with the concentration of regulator. That is, we can ignore any fluctuation in the LexA
level, and assume an effective constant concentration. This concentration is set by the
amount of antibiotic, it is higher when there is no Cipro, a little bit lower when Cipro
is present at a concentration of 1 ng/mL and even lower when the Cipro increases to
2 ng/mL (Fig 3.4B, top row) [40, 51]. The probability for the promoter to be in the
active state (free from LexA) can then be computed using a Boltzmann distribution,
and the total amount of protein is proportional to this probability [17, 51-53].

In this regime, the bursts in Fig 3.2B correspond to periods of time when LexA is
unbound from the promoter. As the concentration of Cipro increases, the concentra-
tion of LexA decreases, lowering its binding rate and allowing the promoter to be free
for longer periods of time. This causes wider and higher bursts (Fig 3.4B middle row),
leading to the induction of the promoter (Fig 3.4B bottom row). That is, fluctuations
in the expression of the target gene are caused by the stochastic switching of the
promoter between an active and a repressed state, rather than from fluctuations in
the level of LexA.

Notice that the induction is really controlled by only two parameters. The LexA
unbinding rate, determined by the promoter architecture, sets how frequent a burst
occurs. The LexA binding rate, determined by the concentration of free LexA, sets the
duration and height of the bursts. Therefore, as the Cipro concentration increases, the
model necessarily predicts longer and higher bursts, occurring at the same frequency.
This is in clear contrast to the experimental data in Fig 3.3.

3.6. The SOS regulatory network responds to stochastic
fluctuations in the regulator LexA

As an alternative to the previous model, we reject the equilibrium assumption, and
explicitly model the fluctuations in LexA concentration. From the mechanism of
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action of Cipro, we can assume that an increase in the concentration of antibiotic
leads to an increase in the frequency of double-strand breaks (DSB) [54, 55], and from
studies on the SOS response, we know that every time a DSB occurs there is a drop
in functional LexA concentration, which is then restored when the break is repaired
[26, 56] (Fig 3.4C).

Given this model, we can think of a scenario where the LexA concentration is
normally so high that as soon as LexA falls off from the promoter, it immediately
rebinds and the promoter cannot stay free enough time to produce a sensible amount
of mRNA. However, a DSB causes a transiently low concentration of LexA, slowing
down its rebinding and allowing the promoter to produce a burst of transcripts (Fig
3.4D). In this regime, the bursts correspond not to LexA unbinding events, but to
transient drops in LexA concentration caused by DSBs. It is clear that the width and
height of the bursts are determined by the length of time the LexA concentration is
low, that is, by the repair time of the break, which is assumed to be independent of
the Cipro concentration. On the other hand, the frequency of the breaks is determined
by the frequency of the DSBs, which increases with the Cipro.

This model depends on several parameters (Tab 3.1), and it is important to verify
that the observed behaviour can be recapitulated using values that are biologically
relevant. Most of the parameters can be determined from the literature, and there are
only four unknown rates, the LexA binding rate at steady state, the frequency of the
breaks, the transcription rate, and the repair rate. However, a first approximation for
the LexA binding rate can be estimated with the following argument. It is known
that in the cells there are 1100 — 1300 LexA dimers [28, 57], and we also know that a
transcription factor needs 3 — 5 minutes to find its binding site[58, 59]. Therefore, the
LexA binding rate to the promoter can be estimated to be on the order of 400/min.

The remaining three parameters (orange cells in Tab 3.1) need to be fitted from
the data. In the Supplementary Material section C.3 we show that their values are
constrained by the observed duration of the peaks and the exponential distribution of
the heights. Briefly, the duration of the peaks is determined by different time scales,
including the repair rate 7, of the break, the decay time J;, of the mRNA, and the
folding time ¢ of the GFP. Since we know that the folding time is around 8 min [38,
60] and it is reasonable to assume that J;, is at least 3 — 5 minutes [11], they already
make up a good fraction of the observed peak duration (Fig 3.3B). Therefore, the DSBs
must be repaired quickly. Moreover, it can be shown that in the regime of quick breaks
repair, the duration of the peaks are independent from the promoter (Supplementary
Material E.1), and the heights are exponentially distributed (Supplementary Material
section E.2), in agreement with the experimental data. The slope of the exponential
distribution is set by the ratio of the transcription and repair rate, and the range of the
repair rate can be bounded. Indeed, if the repair rate is faster than about 1/min, the
concentration of LexA does not have time to fall low enough to allow the promoter
to be transcribed. On the other hand, if the repair rate is slower than 0.5/min, the
breaks durations become too long and we lose the exponential distribution of the
heights (Supplementary Material section E.2 and E.3). We refer to the Supplementary
Material section C.3 for a more detailed discussion.
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Rate | Description Value / Constraint
O GFP bleaching 1 x 10~*/min[36]
Te GFP maturation time 6 — 8 min[38, 60]
p Translation initiation rate 20/ min[61-64]
o LexA decay rate during the break 1/min[28, 65]
B LexA decay outside breaks 1/min
Lsg LexA binding outside breaks 400/min
Loff LexA unbinding rate 0.1/min (consensus sequence), 3/min
(recA)[31, 66, 67]
Om mRNA decay rate Between 0.52/min and 0.1/min[11]
Transcription initiation per unit volume | 4.5 —9/min
Repair rate of the breaks Between 0.5/min and 1/min
Break frequency Low enough to allow recover of LexA
between two breaks

Table 3.1.: Parameters of the gene expression model. Green cells: we can fix a value for the parameter;
orange cells: a suitable range to explain the observation data is examined in the Supplementary
Material section C.3.

3.7. Response of the promoters to double strand breaks

Having determined that the bursts in gene expression are caused by fluctuations
in the regulator LexA, we set out to understand how the promoter architecture
determines the sensitivity of a promoter to LexA fluctuations of different time scales.
All the analysis of this section are based on simulated data, using an algorithm
described in the Supplementary Section C.3.

First, we want to understand whether a promoter can be tuned to respond and
discriminate among fluctuations of different durations. To do so, we simulate a
growing cell for 15 minutes, with one break repaired after a fixed amount of time
ranging from 1 minute to 10 minutes (Fig 3.5A left). The response of the promoter is
given by the total amount of mRNA produced in the 15 minutes of simulation. Notice
that the break is repaired after a deterministic time, but the LexA unbinding and
mRNA production are still stochastic, leading to a distribution of mRNA production
over different simulations (Fig 3.5A right). In Fig 3.5A right, we show that for very
strong binding sites (LexA unbinding rate of 0.1/min, red box plots), the shortest
breaks are missed by the promoter, since LexA does not have time enough to unbind
before the break is repaired. At higher LexA unbinding rates, the promoter is able to
react to shorter breaks, and to discriminate among breaks of different durations (Fig
3.5A right, green box plots). This shows that the sensibility of a promoter to short
breaks can be tuned by increasing the LexA binding site. However, there is a limit on
the sensitivity. Indeed, we notice that one assumption of the non equilibrium model
is that outside the breaks, LexA rebinds immediately after it unbinds, preventing
a burst of mRNA production. That is, outside the breaks, the promoter is most of
the time repressed, with the mRNA being produced mainly during a DSB. When
the unbinding rate becomes of the same order of the steady sate binding rate (blue
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box plots in Fig 3.5 right), the promoter starts to get transcribed also outside the
break, leading to an mRNA production all the time. In this regime, the promoter is
not able to sense any break. Altogether, to sense shorter fluctuations in the regulator
level, a cell needs to increase the unbinding rate of LexA from the promoter, but the
steady state LexA concentration outside a break sets a biological limit to the fastest
unbinding rate.
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Figure 3.5.: Response of a promoter to different kinds of breaks.. A: mRNA production over 15 minutes
of simulation with one break repaired after a fixed time, from 1min to 10min. On the left, LexA
concentration during a break of duration 1min and 5min. On the right, distribution of total
mRNA production for different repair times. For each repair time, the simulation has been
repeated several time, leading to a distribution of mRNA represented by the box plots. The
different colors correspond to promoters with different LexA unbinding rates. B: We consider
the response to a different number of breaks in the previous hour. The duration of the breaks
is set such that the average LexA concentration is always the same. On the left, an example of 1
long break vs 5 shorter breaks. The black horizontal line shows the average LexA concentration
in both cases. On the right, distribution of total produced mRNA for different amount of
breaks (x axis) and different LexA unbinding rates (different colors).

Next, we wondered how the architecture determines the ability of a promoter to
integrate the past damage history in its expression level. That is, we investigated how
well a promoter is able to discriminate whether in the past only one long fluctuation
in LexA happened, or multiple shorter fluctuations. To this end, we simulated one
hour of growing cell, subjected to one, five, or ten breaks. The duration of the breaks
is set such that the average LexA level over the 1 hour simulation is always the
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same (Fig 3.5B left). We can see that for very strong binding sites (e.g. 0.01/min,
red distribution in Fig 3.5B right), LexA never unbinds and independently on the
number of breaks the promoter never expresses. As the unbinding rate increases, the
promoter is able to discriminate between the number of breaks happened in the past
(green distribution in Fig 3.5B right). However, similarly as the previous scenario,
if the binding site is too weak, LexA starts to unbind also outside the breaks and
the promoter is always expressed, independently on the number of breaks (blue
distribution in Fig 3.5B right). Therefore, also in this case the steady concentration of
LexA sets a biological limit on the sensitivity of the promoter to the break history.

4. Discussion

Despite 50 years of research, a quantitative description of regulatory programs
remains elusive, even for the model organism E. coli. In this work, we focused on the
SOS response in E. coli to understand how fluctuations in the regulator propagate to
the target genes. In particular, we induced the network by exposing the cells to three
different concentrations of the DNA damaging agent Ciprofloxacin, and we followed
the time dynamics of gene expression of single cells using a microfluidic device.

Looking at the time traces of single cells exposed to different levels of inducer,
we found that the induction of the regulatory network is characterized by bursts of
mRNA production. If the equilibrium hypothesis holds, these bursts must correspond
to periods where the promoter is unbound from the repressor LexA, that is, the
noise originates solely from the stochastic binding and unbinding of the regulator.
In this scenario, the induction of the network with Cipro is explained by supposing
a constant concentration of the repressor LexA, which decreases with the antibiotic
level. As the level of Cipro increases, a lower concentration of repressor causes LexA
to take more time to rebind, resulting in higher and longer bursts. On the other hand,
since the occurrence of the bursts is determined by the unbinding of LexA, which
depends only on the architecture of the promoter, the frequency of the bursts cannot
depend on the Cipro level. In contrast, the experimental data show the opposite
behavior, where the frequency of the bursts increases with Cipro, and the height and
the durations are independent, with the durations being also independent on the
specific promoter.

Based on the known mechanism of the SOS derepression, we hypothesized that
this behavior can be explained by supposing a non-equilibrium regime, where the
bursts correspond to stochastic transient low levels of LexA which are precipitated by
a random DNA damage event (DSB). We imagined a scenario where, in the absence
of DSB, the level of the repressor is so high that the promoters are basically always
bound and high transcriptional activity is prevented. But when a DSB occurs, the
level of repressor LexA falls so low that it takes a longer time for it to rebind after an
unbinding event, causing a burst of transcription. In this scenario, the frequency of
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4. Discussion

the bursts is determined by the frequency of DSBs, which in turn increases with the
amount of Cipro. The duration of the breaks is determined by how long it takes for
the DSB to be repaired and for LexA to recover, which, for low levels of antibiotic,
can be assumed to be independent on the amount of Cipro and the specific promoter.

The model requires the specification of a set of parameters and it was fundamental
to verify that the regime described above can be achieved using biological relevant
values. Most of the parameters have been determined independently in the literature.
The only free parameters are the frequency of the breaks, the transcription rate,
and the repair rate. In order to explain the short duration of the bursts, we need to
assume that the DSBs are repaired quickly, on the order of minutes. In this regime, it
can be shown that the heights are geometrically distributed, in agreement with the
experimental data. Moreover, the slope of the geometric distribution uniquely fixes
the ratio of the transcription and repair rate. The repair rate can be further bounded.
Indeed, if the repair rate is faster than about 1/min, the concentration of LexA does
not have time to fall low enough to allow the promoter to be transcribed. On the
other hand, if the repair rate is slower than 0.5/min, the breaks are too long and we
lose the geometric distribution of the heights of the peaks.

Finally, we discussed how the promoter architecture sets the sensitivity of the
promoter to fluctuations in the regulator LexA. We have shown that higher unbinding
rates allow the promoter to sense faster fluctuations, although this sensibility cannot
be increased indefinitely. In fact, for LexA unbinding rates on the order of the steady
state binding rate, the promoter starts to produce mRNA independently from the
breaks, losing its sensitivity to the fluctuations in the regulator.
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Supplementary Material A.
Data analysis

A.1. Correlated statistics

In the Mother Machine, the measurements coming from different time points in
the cell cycle are not independent, but show a high correlation, with the effect of
increasing the error of the mean by reducing the “effective” number of independent
points. Therefore, the usual formula to compute the error of the mean by dividing
the standard deviation of the data by the square root of the number of points is not
adequate.

The problem of correctly estimating the error of the mean in the presence of
correlation is recurring in the analysis of time series and one way to tackle it is to
use the ”blocking” method, as described in [68]. The intuition behind this method is
to transform the dataset by substituting to each pair of consecutive numbers their
mean. In such a way, the mean and the standard deviation of the original set of data
does not change, but the correlation between two consecutive points diminishes. If
this operation is repeated over and over, at a certain point the correlation disappears,
and we are left with a set of uncorrelated data for which we can infer the mean and
standard error using the usual formulas.

Briefly, let’s suppose we want to infer the average of some correlated data xy, ..., x,.
Let’s call m the mean and s the variance of the estimate of m. We know that

1 n 1 n—1 ¢
s = —22%,72— 70+22<1——>% (A.1)
n- .= n — n
1,j+1 t=1
Yij = (xxg) — (xi)(x)) (A.2)
o= vij t=1]i—]| (A3)

Let’s transform the data into a half as large dataset x’1, ey x;,, where

(x2i—1 + x2;) (Ag)

n (A.5)

N = N =

since the transformation is linear, the mean and variance are invariant, that is m’ = m
and s’ =s.
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Supplementary Material A. Data analysis

It can be proved that g increases after each blocking transformation (A.4) and the

vector (1) t=0,.,n_1 COnverges to dyo. At this point, the standard deviation is given,

from equation (A.1), by the usual formula for uncorrelated data v = (x2) — (x)2.
The problem of computing s has been transformed to the problem of computing 7.
For 7y we use the estimator

n - 2
,?0 — 2i=1 (xl <x>) (A6)
n

Therefore the strategy is to iteratively halve the data using the blocking transforma-
tion (A.4) and each time to estimate the standard deviation with the usual formula
for uncorrelated data. After a sufficient number of blocking has been applied, the
computed standard deviation reaches a plateau, which is the correct estimate for the
standard deviation. Notice that if the data are uncorrelated, then (1),_ | =dyo

from the very beginning.
A.2. Day-to-day variations
In Fig A.1A we show the average GFP concentration for the Synthetic high expressers

over different days, and stratified in different time bins. The standard error of the
mean is computed using the blocking strategy described above.

A GFP concentration B Rescaled GFP concentration
Oh <time <4.25h || 4.5n <time <8.75h | | 9h < time < 13.25h Oh<time<4.25h || 4.5n <time <8.75h || 9h <time < 13.25h
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Figure A.1.: Average GFP concentration. A: Average GFP concentration of a population of Synthetic High
expressers on different days, stratified by time bins of 4.5 hours. A day to day variation in the
GFP levels is visible. B: Same as panel A, but we divided each concentration by the average
concentration over the entire day. Now the concentrations look compatible among days.

From the figure, it is clear that even taking care of the correlation in the data, the
error bars show a difference among different days. This difference is likely due to
variations in the experimental conditions which were outside our control and we
took care of them by rescaling the concentrations of all the promoters by the average

18



concentration of the synthetic promoters measured on that same day. The average is
computed over all the experiment, without time stratification. On panel B of Fig A.1,
we can see that the rescaled concentrations for the high expressers are now inside the
error bars over different days and time bins. In Supplementary Figure 1, we show the
average GFP concentration in glucose and the fold changes for all the promoters, and
we can see that for recA and polB, the mean concentrations agree over two days.

A.3. Adaptation to the Mother Machine

Due to the strong illumination the cells are subjected to, it takes some time before
the cells adapt to the experimental environment. We considered the growth rate as a
proxy for the cell physiology and we looked at how they change over the time of the
experiment. The growth rates have been inferred through a linear fit between the time
and the log size of the cells. Figure A.2 shows that the distribution of growth rates is
higher at the beginning of the experiment, but then it starts to go down to reach a
new stable distribution after around 2 hours. For this reason, all measurements from
cells born in the first two hours are discarded.

Supplementary Material B.
Inferring the GFP production

Let G(f) be the amount of GFP inside a cell at a time t. We suppose that the GFP is
created with a production rate per unit volume per unit time 4(t) and destroyed at a
rate 3. Notice that f is the sum of bleaching and dilution. In this scenario we have

‘;_f — q()V(t) — BG(t) = g(t)Voe™ — BG(1) (B.1)

where we also assumed that the volume grows exponentially at a rate A. In this last
equation we only have one unknown that is g(t) and this is indeed the quantity that
characterizes the protein production. We can solve this equation by rewriting it as

L1Ge"] = (1) Voel P (B.2)

Integrating and setting the initial condition G(t = 0) = Gy we find

t
G(t) = Goe Pt + Vye Pt /dT g(1)eM P (B.3)
Jo
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Supplementary Material B. Inferring the GFP production

Adaptation to the Mother Machine

Date = 20160127 Date = 20170228 Date = 20170322
= 0.8
S ool N 5
SRR e R S
2 041
[
£ Date = 20170518 Date = 20171206 Date = 20171211
S 0.8 1;’
(o))
goo| ERdpmEE N e s
304 i
2o
0 10 20 30 0 10 20 30 0 10 20 30
Time [hour]
B Distribution of growth rates
1004 Date = 20160127 Date = 20170228 Date = 20170322
0.751
0.50 1
0.251
. 0.001 col
3 Date = 20170518 Date = 20171206 Date = 20171211 — After 2h
1.001 Before 2h
0.751
0.50 1
0.251
0.001 : ,
00 05 10 1

5 2000 05 10 15 2000 05 10 15 20
Growth rate [1/hour]

Figure A.2.: Adaptation of the cells to the Mother Machine environment. The growth distribution in

the first two hours of the experiment are significantly higher. A) Median growth rate of the
cells measured on different days. As the illumination is turned on (time oh), the growth rate
decreases until it reaches a plateau after about 2 hours. B) Distribution of growth rate stratified
by time bin. The blue lines show the distributions coming from bins earlier than 2 hours and
they are clearly higher than the red distributions coming from bins after 2 hours.

We suppose that g(t) varies slowly between one time sample and the next in the
Mother Machine. This is justified by the fact that g is determined by the dynamic of
the mRNA which is slower than the 3 minutes sampling of the Mother Machine. In
this case, the previous equation can be solved analytically to give (we now substitute
the time t with the sample 7)

where we defined

Gi = a;q + Goe Pt (B.g)
L Vo At —Bt
a; = A+ [e e } (B.5)

Now we can suppose that the measured G; is the true G; plus Gaussian noise

GI" = a;q + Goe Pt + N'(0,0?) (B.6)
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Supplementary Material B. Inferring the GFP production

Given a set of T consecutive measurements {G!" } we can write the probability of the
data as

P({G"}|q,{a;i}, B, o, Go) = 5
1T & 2
re)E T [‘@g(@ — ga; — Goe ) ]

From which we have that the probability for g is
P(q[{G["},{a;}, B, 0, Go) (B.8)
1 1 &
oT &P {—m Y (Gl —qn; = Goboz} P({G]"}, {as}, B,0) P(Go)
i=0

where we defined the bleaching term as b; = ¢ P'. We want to integrate out the
unknown Gy supposing a uniform prior. To do that we rewrite the exponent as

2(72 Z (GI" — qu; — Gob;)? (B.9)
_ 212 _ _ _
- 20.2 l;) |:G0b1 + q“z) 2GOb ( qu; )]
O T<?> ], <(G"—qa)?> < b(G™ —qa) >
T 202 {GO * <> _2GOT}
_ T > <b(G"—qu) > 2
B 202 0 <b?>
T m 2 < b(Gm — ql") >2
702 (< (G™ —qu)” > =

Using this exponent we have

P(q[{G/"} {ai}, B,0) o (B.10)

1 T<b> <b(G" —qa) >
{ /Wdco —exp [——2(72 (Gg S

! T - b(G™ —
XoT 1P {—@ << (G™ —qn)* > — < (< — qa) > ﬂ
xP({G}"}, {i}, B, o)

! T b(G™ — 2
xP({G]"}, {a;}, B, 0)
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Supplementary Material B. Inferring the GFP production

Now we rewrite the exponent in order to isolate g

< b(G" — qa) >2
<b?>

= <(G"?>42<a®> 20<G"a > —
<b(G™) >? +g% <a>2 29 < bG" >< ba >

< (G" —qa)* > — (B.11)

< b2 >
—  ¢*Var(a) — 2qCov(G™, &) + Var(G™)

—— 2 —2
G| SR L o
= Var(a) [" Var(a) Varw

— 2

where Var(x), Cov(x,y) and p are the variance, the covariance and the Pearson
correlation coefficient corrected by the bleaching, i.e.

= o 2 _ < bx >2
Var(x) = <x°> — S (B.12)
—— <bx><by>
Cov(x,y) = <xy> _T;/ (B.13)
~ Cov(x,
P ) (B1g)
Var(x)Var(y)
Using this exponent we get
P(q[{G["}, {wi}, B, 0) o (B.15)
— 2
1 T (= ~ Coo(G™, ) =y (1 2
~T—1 P [ 702 (Vur(zx) [q —?u/r(zx) + Var(G )(1 0 )
xP({GI"}, {wi}, B, )

We assume a scale invariant prior 1/¢ for the standard deviation and we integrate it
out. First we define

— 2
B

such that the integral to be performed becomes

0 1 xy 1
/0 ds Uﬂ exp (—p) (; (B17)
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We make the change of variable y = $ in order to remove the dependence on x from
the integral. The final result is (We don’t need to perform the integral, since it gives

just a constant)
T
2

— 2
Vir(o) (g - S

P(q[{G"}, {a;},B) xx™ T o |1+ Var(G™) (1 — 2)

Remembering that for large N it holds
(14 x)™N = exp(—Nx)
I obtain

Plg | {GF), e}, B)
V(e (g - Ctera )
1

) T- Var(a)
XTZ oexp |— ——
2 Var(em (1—)
from which we see that
. Cou(G",a)
i Var()
2 = LPVren
1 T—-1 Var(a)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

We can interpret these results. The best estimate for g is the usual best estimate for a
linear model. The error is zero if the correlation is one, which means that we have
a perfect straight line. It increases with the variance of the measured values G™,
which is determined by measurement noise; it decreases with the variance of the
independent variable &, which means that if the measurements span a higher interval
of the independent variable, we have a better estimate. Finally, the error depends as
usual on the inverse of the number of points minus one. Notice that the tilde above

the statistics show that the bleaching is taken into account.
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Supplementary Material C. Identification of the peaks in production

Supplementary Material C.

Identification of the peaks in
production

C.1. Defining a genealogy
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Figure C.1.: Creating a single long time traces from all the cells in a growth lane. A: Example of cells
in a single growth lane. The time flows from left to right and the lines connect mothers to
daughters. B: Final order of the cells to make up a single time trace. For graphical purpose,
only the reduced set of numbered cells are considered, but in the full time trace there will be
present all the cells in the growth lane.

Each experiment in the Mother Machine is characterized by cells growing in
different growth lanes and we joined all the time traces of the single cells in a given
growth lane into one single trace, which we call a genealogy. To avoid artifacts, we only
retained cells for which we have data for the entire cell cycle, that is we discarded
cells that at a certain point left the growth lane or that were present at the end of the
experiment.

To create a genealogy, we randomly pick one of the cell in the growth lane and
we trace back its genealogy until the beginning of the experiment. We then pick a
second cell and we again trace back its genealogy, but this time we discard all the
cells that were already present in the previous genealogy. The remaining genealogy
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Supplementary Material C. Identification of the peaks in production

is placed right after the previous one. We iterate this process until all the cells have
been included.

The process is illustrated with an example in Fig C.1. On the top part we show
an example of a growth lane, with time flowing from left to right. As time goes on,
cells grow and divide. To create a single time trace, we start by picking a cell at
the end of the experiment, e.g. cell number 11 and we trace back its genealogy, that
is 1 — 3 — 4 — 11; this is the first part of the final time trace. We then pick e.g. cell
number 10 and again trace back its genealogy 1 —3 — 4 — 10. Since cells 1 —3 — 4
were already in the previous genealogy, we skip them and we add only cell 10 to the
final time trace. Then we pick cell number 14 and we get the genealogy 1 —2 —9 — 14,
from which we discard cell 1 which is already present in the final time trace. Iterating
this process, we get the final time trace

1-3-4-11-10-2-9-14-8-13-12-5—-6—-7—...

C.2. Peak finding method
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Figure C.2.: Distribution of GFP production for the bursty promoters. Histogram of the production rate
q = dG/(V dt) for recA (left, measured in duplicate), recN (middle) and lexA (right). The
y-axis is shown on a logarithmic scale. The production rates 4 were pooled from the entire
experiment, regardless of the Cipro concentration.

We identified peaks in the time traces of the GFP production g = dG/V by finding
consecutive segments in which g is over a cut-off value g.. We used the following
algorithm:

1. Find all contiguous segments in which g > g.

2. For each such segment, find all the local maxima within the segment.

3. For each local maximum, we extract a segment of data points around the
maximum to fit it to a Gaussian shaped peak. To do this, the segment needs
to capture the curvature around the peak. We create a segment by including
contiguous data points to the left and right for as long as the their g values keep
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decreasing, and as long as the g values are at least a fraction f = 0.25 of the
maximum. For each maximum we thus include a segment of falling g values to
the left and right, until 4 drops to a quarter of its maximum values.

4. Before we fit the g values in the segment to a Gaussian, we first perform two
checks: The maximum must not lie at the edge of the segment, and it must
have at least 3 data points in it. If these checks are not passed the maximum is
discarded.

5. For each segment of consecutive g4 measurements [g(t1), 4(¢2), ..., (t,)] around
a maximum, we fit a Gaussian by minimizing the sum of squared deviations

n

A2 — 2 {q(ti) — Aexp (—%)} i (C.1)

i=1

with respect to A (height of the peak), i (time of the peak maximum) and ¢
(peak width). To do this, we iterate maximizing the derivative of A with respect
to 4 and o (finding the root numerically), and A (analytically).

In this way we obtain a set of extracted peaks for each Mother Machine experiment.

C.3. The peak heights come from a distribution with
exponential tail

We empirically find that, for each of the three LexA target promoters that show a
clear bursty behavior (recA, lexA and recN), the distribution of production rates
g = dG/(Vdt), with V the volume of the cell and G the amount of GFP, looks
relatively tightly distributed around a small value, with an exponential tail, see Fig.
C.2. Visual inspection of the time traces of g strongly suggests that these exponential
tails correspond to peaks in the production rate.

We next set out to measure a single peak height h for each of the four experiments,
assuming that the distribution of peaks heights has an exponential tail. That is, we
assume that for peaks with height A larger than a cut-off A, the distribution is
exponential, that is

P(A|A > Ag, h) = A~ MA-A/h (C.2)

Imagine that we have n peaks with A > A, and that (A) 4, is the average heights of
these n peaks. We then find for the optimal height h:

h(Ac) = (<A>Ac - Ac) (C3)
with an error bar A
on(Ac) = (\/5) (C.q)

If the distribution is really exponential, we should find that the heights h(A.) are
relatively insensitive to A; in a reasonable range. Fig C.3 shows that this is indeed
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Supplementary Material D. Simulation of a growing cell
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Figure C.3.: Average peak height A as function of the cutoff A.. Estimated height h(A.) as a function
of a cut-off on peak height A, for each of the 4 experiments. The error bars show estimated
height h(A.) plus and minus one standard-deviation oy, (A ).

the case. Also, the distribution of heights above A, as shown in Fig 3.3 of the main
text, clearly confirms that the heights are exponential.

Supplementary Material D.

Simulation of a growing cell

To simulate the GFP production in a growing and dividing cell, we wrote an
algorithm in C++ that performs the following steps, depicted in Fig 3.4A in the main
text:

1. We start with a cell of volume 2nm. The precise value of this initial volume is
not important because, in the long run, the system loses memory of the initial
conditions.

2. The cell grows exponentially with a constant growth rate of 0.0085/min (half
life of 81min), until it adds a volume AV (adder model [39]). The added volume
is drawn from a Gaussian distribution with mean 1.86 and standard deviation
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0.35, computed from the experimental data.

3. After adding a volume AV, the cell divides into one daughter of half the volume
of the mother. The daughter inherits the mRNA, the immature GFP, and the
mature GFP from the mother, according to a binomial distribution of probability
0.5.

4. During the growth of the cell, the following stochastic events are simulated
using a Gillespie algorithm [69]:

o A DSB is created (rate 1/7p), or repaired (rate 1/r,).

e LexA can bind (rate < Loy,) or fall off (rate Ly¢s) from the promoter. L,y is
given by the concentration of free LexA, while L,y is determined by the
architecture of the promoter.

o If the promoter is free from LexA, an mRNA molecule can be transcribed
(rate 7,,V). The dependence of the transcription rate on the volume is
because during the cell cycle, the concentration of mRNA polymerase
is supposed to stay constant. Therefore, as the volume grows, also the
total number of polymerases grows, increasing the transcription initiation.
Hence, larger cells have a higher transcription rate.

o A molecule of mRNA decays (rate J;;), or is translated into immature GFP
(rate 7).

e An immature GFP can mature into fluorescing GFP (rate 7).

o A mature GFP can decay because of bleaching (rate Jg).

In an equilibrium model, the concentration of free LexA in the cell is supposed to
be constant and proportional to the amount of Ciprofloxacin. In the dynamic model,
the concentration is supposed to be at a constant steady-state level when no breaks
are present (corresponding to a binding rate Lgg). During a break, the concentration
decays exponentially with a rate «. When the break is repaired, the concentration
recovers with a rate B, until it saturates back to the steady-state rate Lgg.

Supplementary Material E.

Theoretical analysis of the peaks

In this section we want to understand how the different characteristics of peaks
are related to the parameters of the dynamic model (Tab 3.1 in the main text). In
particular, we will show that the breaks must be repaired quickly, and that the slope
of the exponential distribution sets the ratio between the transcription and the repair
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Supplementary Material E. Theoretical analysis of the peaks

rate.

E.1. The breaks must be repaired quickly

The duration of the peaks is determined by different time scales, including the repair
rate 7, of the break, the decay time J,, of the mRNA, and the folding time r f of the
GFP. Since we know that the folding time is around 8 min [38, 60] and it is reasonable
to assume that J,, is at least 3 — 5 minutes [11], we see that they already make up
a good fraction of the observed peak duration (gaussian shape with a standard
deviation around 7 minutes). Therefore, the time to produce the mRNA must be less
than 2 — 3 minutes. For this reason, we consider all the mRNA to be produced in a
sudden pulse of transcription, and we work out how this pulse translates into a peak
in GFP production dG/V.

We assume that at time t = 0 we are given a burst of my mRNA molecules which
decay at a rate J, and are translated into immature GFP proteins at a rate r,. In
addition, we assume unfolded GFP proteins mature into fluorescing GFP at a rate
r¢. The production rate dG/V is defined as the production (per unit time) of mature
GFP, per unit volume.

The time dynamic of the mRNAs is a simple exponential decay

m(t) = moe ot (E.1)
The differential equation for the total amount of immature protein P is given by

‘;—1: — rym(t) — r;P(1 (E.2)

and the production is given by
aGc . 1y
T =Lp0) (E3)

Note that since the peaks are short compared to the cell growth, we will ignore the
growth of the volume V. Solving for dG/V we find

dG rpmo e—?‘ft _ eflsmt

7 (=" poy (E-4)

where x = % is the ratio of the mRNA decay to the protein maturation rate.

We now want to determine the values of the time t* at which the maximum of
the peak in GFP production occurs, the height of this maximum, and the time dt for
which the peak is above half of its maximum. First, the maximum is reached at a time

1 log(x

rpx—1
Using this result, we find for the height of the peak

dG™ _rpo e (E.6)

1% 1%

29



Supplementary Material E. Theoretical analysis of the peaks

Finally, there is no simple analytical expression for the time dt that 4% (t) is larger
than half its maximum %9‘ /2. However, we notice that it depends only on ¢,, and
rf, and if we consider r r= 1/7min"! and §,;, = 1/4min" !, we numerically obtain
dt = 13min. This is indeed very close to the width of the peaks we observe (full width
half maximum: 2,/210g(2)o = 17min), providing support that the peaks in 4% are
indeed due to single transcriptional bursts, and explaining why they are the same for
all the promoters.

We simulated the mRNA production for a growing cell, where the breaks are short
compared to the mRNA decay and maturation time (repair rate of 0.9/min). We
considered different mRNA decays and GFP maturation rates, and we fitted the peaks
using the same algorithm as for the experimental data. We verified that, indeed, the
mean peak duration is an increasing function of both d,, and r; and even when we
get to very low values for these rates, the width is already close to the experimental
one (Fig E.1A). If we choose an mRNA decay time of 4 min and a folding time of 7
min, we get a very nice agreement with the observed data (Fig E.1B). The details of
the simulation are discussed in Section C.3 of these Supplementary Materials.

E.2. The number of mRNA transcripts produced during
a break has a geometric distribution

Notice that because of equation (E.6) the distribution of the peak heights is determined
by the distribution mg of the number of mRNA molecules produced during a short
break. For this reason, given the expression model presented in Fig 3.4A in the main
text, we want to determine the distribution T, of mRNA transcripts produced during
a break and how it depends on the LexA dynamics.

We describe the mRNA transcription process during a break as a dynamical system
that over time visits the following states (Fig E.2):

1. By (t): The promoter is bound by LexA and # transcripts have been produced
since the beginning of the break.

2. Uy,(t): The promoter is unbound by LexA and #n transcripts have been produced
since the beginning of the break.

3. Ry, (t): The break is repaired after having produced # transcripts.

The transitions among the states are determined by the corresponding rates (Tab
3.1 in the main paper). Notice that only the unbound state can produce transcripts,
and the repaired state is absorbing, meaning that once the system reaches an R, state,
it will stay there for all future times.

Since in the last section we showed that the breaks must have a short duration,
we can assume that the volume does not change much during the time the break
is repaired. Therefore, we make the simplification that the volume of the cell is just
a constant and we ignore it by redefining the transcription rate r,, — r,,V. A full
account of the solution of this dynamical system is given in the Appendix E.3 of this
Supplementary Materials. Here, we report the main results.

30



Supplementary Material E. Theoretical analysis of the peaks

First of all, it turns out that the decay rate & of LexA during a break sets a time scale
for the dynamics of the transcription process and can be eliminated by measuring the
time in units of «.

Next, we want to understand the distribution T, of mRNA transcripts produced by
the time the break is repaired, since, for short breaks, this is related to the distribution
of peak heights via Eq (E.6). If we introduce the probability g, () of having produced
n transcripts at time ¢ since the beginning of the break, than T}, is given by

T, = A dt g, (t)P(repaired at time t) (E7)

that is, T}, is the probability of having produced n transcripts by the time ¢ and being
repaired at time t, marginalized over the repair times.

In the Appendix F.1, we show that the expression distribution g, (t) is Poisson, but
with a rate which is a non trivial function of time. Nevertheless, if the break lasts
long enough, the concentration of LexA falls so low that, except for the first part
of the break where the concentration of LexA is still high, the promoter is basically
always unbound and constitutively expressed. In this regime, the distribution g (#)
follows the Poisson distribution of a constitutively expressed promoter with a rate
rm. However, to compensate for the first part of the break, where the promoter is
not constitutively expressed, we have to consider an “effective time’ t — b, where
beo is the amount of time the promoter is bound by LexA (Appendix E.3), and it is
determined only by the early part of the break. That is, b is just a constant depending
only on the LexA dynamics and not on the break duration. In conclusion

gt (n)|p>p+ = Pois [t (t — beo)] (E.8)

where t* is the time we need to wait for the LexA concentration to fall so low that the
promoter can be considered constitutively expressed.

As discussed in the Appendix F.4, there is no a simple closed-form formula for
either t* or b, and they must be computed numerically. However, we notice that for
a given LexA dynamics (fixed r, ff and ryy), t* and be are also fixed.

The probability g, () of having n transcripts at time ¢ during a break is a bell-shaped
function of time, peaked at t = n/r,;; + b (Appendix F.3 and Fig F.3). Therefore, the
breaks giving a number of transcripts

n>n" =ry(t" —beo) (E.9)

are breaks lasting more than t*, that is breaks for which the approximation (E.8)
is valid. For this reason, g,(t) simplifies to the simple Poisson distribution of a
constitutive promoter either for large repair times or for large number of transcripts
(Fig E.3).

Finally, we can discuss the probability T, that n transcripts have been produced
when the break is repaired. We want to show that for breaks that result in a large
number of transcripts (that is, the bursts identified in the main text), T, is geometri-
cally distributed. Since for a large number of transcripts the condition in equation
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(E.9) is valid, we expect g, (t) to be a Poisson distribution with the simplified rate of
equation (E.8). The integral in (E.7) simplifies to a geometric distribution:

e
Dol = Mr, 2 / dt (£ — beg)e~ (1 0)rm 7o)
- JO

= lim ¢ b tm \"_ 1 T(n+1bs)
n—o0 Tm+1r) Tm+1r n!

_ efnboo< "'m >n Tr (E.10)

Ym +1r Ym + 1r

where I'(1n + 1, b ) is the upper incomplete gamma function and in the last equality
S
distributed for n > (#* — beo )7, but with a prefactor e "=, and in log space we
expect a straight line with an offset —7,be. This is shown in Fig E.3A. The diamond
shows the point # > (¢* — beo )7, where the geometric approximation is expected to
deviate from the real solution. Both +* and bs have been computed numerically. Fig
E.3B shows that the theoretical description developed so far agrees with the results of
the simulation of a growing cell.

In the next section, we show that the geometric distribution of T}, results in an
exponential tail for the peak heights, in agreement with the experimental data.

we used the fact that lim,_. = 1 [yo]. Therefore, T, is geometrically

E.3. Constraints on the repair and transcription rates

Summarizing the theory developed so far, the distribution of the number n of tran-
scripts follows two regimes, separated by a threshold n*. For n > n* (i.e. the bursts
identified in the main text), the transcripts are produced mostly by breaks that last
long enough for the LexA concentration to fall so low that the promoter is basically
constitutively expressed. This gives rise to a geometric distribution for the number of
transcripts n and therefore to an exponential regime, whose slope is entirely deter-
mined by the ratio r, /7y, of the repair rate with the transcription rate (equation (E.10)
and Fig E.3). On the other hand, for n < n* the breaks are so short that the binding
and unbinding of LexA affects the distribution of transcripts and the geometric
distribution of equation (E.10) is not valid. The threshold n* is given by equation (E.9)
and, although it cannot be expressed as a closed-form expression, it depends only on
the LexA dynamics.

In a previous section, we showed that for short breaks the peak in GFP production
during a short break is proportional to the number of mRNA transcripts produced.
From equation (E.6) it follows that for

g>q°= r—px_ﬁ(t* — beo)tm (E.11)
Vo

the distribution of peak heights must follow an exponential regime, whose slope is
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proportional to the slope of the mRNA transcripts

_ VY = 1
slope = ax. T log (1 T ry/rm> (E.12)

This agrees with the experimental data, for which we know that it exists a threshold
g%, such that the distribution for g > g* is in an exponential regime, whose slope
is promoter-dependent, but the same in all Cipro concentrations (Fig 3.3A and
Supplementary Fig C.3).

Notice that equation (E.12) sets the ratio r, /7y, in order to match the observed slope
of a given promoter. Equation (E.11) then sets an upper bound on r,; (or equivalently
on r,, once their ratio is fixed), because from the observed data we know the threshold
q* where the exponential regime starts
*

Vo _x
< Vo1
p * — beo

(E.13)

If we consider the highest expressed promoter, namely recA, we know from the
literature that the unbinding rate of LexA from its promoter is of the order or
3/min [31, 66], which results in #* = 3.5min and be=1.83 (numerically computed in
Appendix F.1 and Fig F.1). From the experimental observations, we are in exponential
regime for g > 25 — 30 & :;n (Supplementary Fig C.3), with a slope of —0.02 (Fig
3.3A). The average volume of a population of growing and dividing cells is computed
from the simulations to be Vjy = 2.77nm. From equation (E.13) we therefore obtain an
upper limit on the repair rate 7, < 0.95/min (or equivalently 7, < 8.55/min).

Some examples of the distribution of peak heights obtained through simulations
of a growing cell are shown in Fig E.4. Notice how the peak height 4* where the
exponential regime starts increases with the repair rate.

Fig E.4 also shows that the repair rate cannot be made arbitrarily slow. Indeed, as
the repair becomes slow, the distribution starts to bend (as it is visible at a repair rate
of 0.2/min). This is due to the fact that the exponential distribution is expected as
long as equation (E.6) is valid, that is, when we are in the short break approximation
(Fig E.5). Therefore, for the heights of the peaks in GFP production to be exponentially
distributed, the breaks must be long enough for the LexA concentration to fall, but
also short enough for equation (E.6) to hold.
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Supplementary Material F.
Appendix

F.1. The probability g,(t) of having n transcripts at
time t is Poisson

The mRNA transcription process during a break is described as a system that can
transit through the following states (see also Fig E.2):

1. B,(t): The promoter is bound and 7 transcripts have already been done.
2. Uy (f): The promoter is unbound and # transcripts have already been done.
3. Ry (t): The break is repaired. This is an absorbing state.

We also make the further assumption that the volume does not change much during
the time the break is repaired and we can ignore it by redefining the transcription
rate: ry,, — r, V.

The dynamical system is described by the following differential equations

UBa(t) = roulln(t) — (rogf +7,)Bu(t) (F1a)
atun(t) = 7’ofan(t) + 7’mun—1(t) - (rm + ron + 7’r)un(t) (F.1b)
ORu(t) = 1:[Bu(t) + Un(t)] (F1c)

By marginalizing the previous equations, we can compute the probability of the
system to be in the bound or unbound state, regardless of the number of transcripts:

9B(t) = ronlU(t) — (ropr +14)B() (F.2)
wU(t) = roffB(t) — (ron +1)U(F) (F3)

Let’s introduce the probability x(t) that at time f the break is not yet repaired:
x(t) = B(t) + U(t) = P(repair ¢ t) (F4)

x satisfies 0yx(t) = —r,x and therefore x(t) = e "r'. This just says that the repair
happens exponentially with a rate 7,.

The probability to be in the bound and unbound states can be rewritten introducing
the probability f(t) of being unbound at time ¢

u(t) f(6)x(t) (E5)
B(t) = [1—=f(B)x(#) (E6)
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that is, U(f) is the probability of being unbound at time t and not being repaired
at time ¢. f satisfies the following equation:

Af(t) = rogr — (rone L+ ropf) f (1) (E7)

where ¢;, is the LexA decay rate during a break.
We can introduce the probability P, (t) = U, (t) + B, (t) that at time ¢ n transcripts
have been produced and the break has not yet been repaired:

0Py (t) = —1+Py+ 1 fPy1 — rmf Py (E.8)

But P, can be rewritten as P, (t) = x(t)g.(t), where g,(t) is the probability of
having 1 transcripts at time . Rewriting the previous equation in terms of 4 and x
we obtain:

— 1 X()4n () + 1 f ()X(£)Gn1(8) — 1 f () x(£)qn (t) = =7 x(£)qn(t) +x(t)atqn((1? )

9

and therefore 94, () = 7 f (£)qn—_1(t) — tmf (t)qn(t), which is the master equation of
a Poisson process:

¢ n
an(t) = (rm fodrn];(f)d'f) o JdT f(D)dT (F.10)
We notice that L
n /Ode(T)dT = (f) (Fa1)
is simply the average time the promoter is unbound. Therefore,
gn(t) =~ Pois(rp (f)it) (F12)

that is, the number of transcripts produced in a time f is Poisson with rate equal to
the transcription rate r,,, rescaled by the fraction of time the promoter is unbound.
Finally, the probability of having n transcripts when the break is repaired is

Ty = P(n transcripts at repair) = /0 dt gn(t)rre "t (F.13)

F.2. Probability f(f) that the promoter is unbound at

time ¢
To understand the behavior of g, (f), we need first to study in more detail the
probability f(¢) that the promoter is unbound at time ¢. We start from the differential
equation (E.7) for f(t)

F(8) =ropr — (rone °t + o5 1) (1) (F.14)
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First of all notice that if we redefine t — d1t, ro, — 7on/d;, and Toff — roff/JL,
then the previous equation becomes

fI(#) = ropp — (rone "+ ropp) f(1) (E15)

that is, the decay of LexA just sets a global time scale and we can ignore it by
measuring the time in units of LexA decay.
From the theory of differential equations, a solution to an equation of the form

f(t) =a(t)f(t) +b(t) (F.16)
is

F(t) = A <c+ /b(t)e_A(t)dt> (F1y)

where A(t) = [ a(t)dt is an antiderivative of a(t) and C is a constant of integration.
In our case,

a(t) = —(rone ' +r1opf) (F.18a)
b(t) = roff (F.18b)

A(t) is easily found to be A(t) = roue ™" — 71,5t
Let's now solve [ e A(dt = [ dtexp(rone™* — rofft). This can be solved with the
substitution u = rope”

~roff
/e—A(t)dt — _ d_ue—” (L) = —rz‘;iffr (—ruff, Fone_t> (F.19)

u Yon

where T'(z, x) is the incomplete upper gamma function. A general solution for f is
therefore given by

ft)= erone_tirofft [C - 7;°nffr (_roffr roneit)] (F.20)

The expression can be simplified by replacing the incomplete gamma function with
xt

the generalized exponential integral [70] E,(x) = [ dt % = x" (1 —n,x)

—t

f(t) =roppe™ne [E1+r0ff (rone™") — e_r"fftC] (F.21)

The constant of integration C is determined by imposing that at the beginning of the

70
break f(0) = rofffrou'

We notice that

1. For t — oo we have f(t) — 1, since E,(0) = 15 for n > 1 [70]. This is expected,
because for large times the LexA concentration has fallen to 0 and once LexA
falls off, it cannot rebind.

2. If roy = 0, f(t) = 1 — e "/, That is, the probability of being unbound at time #
is the probability that the unbind happens at time lower than ¢.

36



Supplementary Material F. Appendix

F.3. Asymptotic analysis of g, ()

In this section we study the large time behavior of g, (f). As shown in section F.1 of
this Supplementary Material, q;(1) is given by

(rm féde(T)dT)n

. e m fOthf(T)dT (F.22)

qn(t) =

Due to the complex nature of f(t), the above equation shows that g, (t) is a Poisson
distribution whose rate is a complicated function of time.

We can rewrite f(t) as f(t) = 1 — b(t), where b(t) is the probability of being bound
at time t. The integral over 7 in equation (F.22) becomes:

/tdrf(r)ztf/tdrb(f)=tfb (F.23)
0 0 ! 23

where b; is the probability the promoter is bound in the time interval ¢. But since we
have shown that f(t) — 1 for large ¢, lim;_, b(t) = 0 and fOth b(t) converges to an
unknown constant bs, that it can only depend on r,, and r, ff, as shown in Fig F1.
By numerically solving f(t) = 0.98, we see that when ro, = 400 and 7,¢s = 3, f(t)
reaches 0.98 at t = 3.5 (see also Fig F.2), which is compatible with the convergence of
foth b(t), as shown by the vertical lines in Fig F.1.

All in all, we can conclude that for large times

tli_)r(r)lo gi(n) ~ Pois [ry (t — beo)] (F24)

This equation tells us that, although the mRNA production g, (t) is a Poisson distri-
bution whose rate is a non trivial function of time, for large times g, () is a Poisson
process with constant rate r,,,, but with the time shifted by the (constant) fraction of
time the promoter is bound.

For the purposes of the main text, what we need is not g, () at large times, but
gn(t) for large n. However, for large times we have seen that g, (f) is approximated by

n

lim ¢, () = Me—rm(t—bm) (F.25)

t—o00

As function of time, this is a bell shaped function with a peak at t* = 7+ beo and

inflection points at t = tM + % But this also means that for large 1, g, (¢) is non-zero
only when the time is large. Therefore, for large n we can use the simplified rate
m(t — bo ), because for small times, where the approximation does not hold, g, (t) is
in any case null. Fig F.3 shows g;(n) as function of time for different values of n and
roff- As discussed previously, the approximation (F.25) is expected to be good when
J dt Py(t) has converged to a constant b, and from Fig F.1 this happens at t = 3.5
and t = 14.8 for respectively 7,¢; = 3 and r,rf = 0.3. In conclusion, we can write

qt(n)|n>(t*_bw),m ~ Pois (rm [t — beo (Yon, roff)D (F.26)
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F.4. Time to reach a probability 0.5 of being unbound

To have an indication of the order of magnitude of t*, we want to investigate at what
time the promoter is unbound from LexA with a probability of 0.5. Intuitively, we
expect this to happen when the binding and unbinding rate becomes equal, i.e. when
Tone b =1, - Moreover, we notice that the first term in bracket in equation (F.21) is the
integral of a curve increasing exponentially with time, while the second term decreases
exponentially. Hence, for time large enough we can assume that the first term is
dominating over the second. Using this assumption and imposing the condition

rone ' = o5, the probability f(t) of being unbound at time t;/, = log (:ﬂﬂ—f’}) becomes

Ton r 7o
f (t = r‘;f) = ropfe offroffffr (7r0ff, roff> (F.27)
0

where we have rewritten the exponential integral in terms of the upper incomplete
gamma function [70]. The upper gamma function can be expanded as [71]:

~Toff —r 1 —
r(_”off/ rOff) ~ roffffe of f |:2roff + (@) (rofif)} (F28)

Therefore equation (F.27) becomes

. _Yon | _ 1 )
e’ (t - roff> =5+0(n) (F29)

This shows that when the unbinding is fast (the timescale is set by the LexA decay
rate), the probability of being unbound is 0.5 when the unbinding and binding rates
are equal.

On the other hand, for very small unbinding rates, f(¢) can be expanded as

f(t) = roffrZ‘;lffe*rofftF (—roff> +1 (F.30)
If we equate it to 0.5 we get that the time t;, to be unbound with probability 50% is:

. log(roff) 1
rolgflgotl/z = log(ron) + “rapr + log [_zr(_roff)} Tor (F31)

The time to reach f(t) = 0.5 with the fit of the fast and slow unbinding rates are
show in Fig F.4.

More in general, if we are interested in knowing when f(t) = p, with a generic
p, we can rewrite f(t) in terms of a new variable e# = r,,e~t. Ignoring again the
exponential decaying term containing the constant of integration, we get

f(B) = eﬂroffEHroff B)=vp (F32)
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where p is the target probability of being unbound that we want to reach. This
equation cannot be solved analytically, but it shows that the time to reach a probability
p of being unbound increases with the logarithm of r,,. In fact, let’s call § the value
for which f(B) = p, then we have that § is a decreasing function of only r, ffand a
probability of being unbound of p is reached at the time

f=1ogron — P(roff, p) (E33)
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A Peak durations
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Figure E.1.: Duration of peaks in GFP production from pulses of mRNA production. A: We simulated

a growing cell producing mRNA from very short breaks (repair rate = 0.9/min). We inferred
the duration as the standard deviation of a Gaussian fitted to the peak, following the same
procedure as for the experimental data. The horizontal line is the typical duration of the
observed peaks in recA. B: Comparison of the widths distribution for the simulation (black)
and for the measured recA in different conditions (colored lines), for mRNA decay rate
1/ (4min) and GFP maturation rate 1/ (7min).
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Figure E.2.: Markov diagram of the mRNA transcription process. The mRNA transcription process dur-
ing a break is modeled as a chain of states. Bn is a state where the promoter is bound by LexA
and # transcripts have been produced; Un is a state with the promoter free from LexA and
n transcripts have been produced; Rn is a state where the break has been repaired, having

produced 7 transcripts. Only the unbound state can produce mRNA and the repaired state is
an absorbing state.
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A Distribution of transcripts at repair B Simulation of growing cell
ron=400/min, ry=3/min, r,=10/min, r,=1/min ron=400/min, ry=3/min, r,=5/min
0
0
_3 o
~ colour - Repair rate [1/min]
% -6 / Asymptotic behavior % ¢ o1
° Numerical solution ° 4 : ggs
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Number of transcripts n Number of transcripts n

Figure E.3.: Probability of n transcripts at repair. A: In blue is the solution from the numeric integration
of the dynamical system, in red is the geometric approximation valid for large n. The diamond
shows the point n* in equation (E.g) where the geometric approximation is predicted to deviate
from the real solution. t* = 3.5 min has been numerically computed (Appendix E.3). B: Same
as for plot A, but from simulations of a growing cell, with breaks arrival at exponentially
distributed times. Different colors show different repair rates, while the transcription rate is
set such that the slope of the geometric approximation is constant.
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Exponential regime for the peaks of recA
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Figure E.4.: Simulation of the recA promoter. We show the distribution of peak heights obtained simulat-

ing a growing cell expressing from the recA promoter with different repair rates (sub-panels).
The transcription rate has been set to match the slope observed experimentally (black line). The
blue line shows the number of transcripts at which experimentally we are in the exponential
regime, while the red line shows, for each repair rate, the point where we expect to deviate
from the exponential regime.

Short duration B Long duration
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Figure E.5.: Deviation from the short break approximation. Example of mRNA and GFP production

during breaks from the simulation of a growing cell. We show, the time of the break (shaded
gray area), the LexA concentration (red curve), the observed GFP production (green) and
the GFP production predicted if the mRNA was produced instantaneously (Supplementary
equation (E.4), blue line). A): For short breaks, the GFP predicted from the short break
approximation agrees with the observed GFP production. B): If the break lasts too long
compared to the GFP production dynamics, the peak in GFP production deviates from the
small break approximation. Notice the difference time scale in each plot.
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t
f dt b(t) converges to a constant
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Figure F.1.: Convergence of the probability b(t) to be unbound. Numerical computation of the integral
fotdr b(t) shows that it converges to a constant 1.83 min if 7,¢f = 3/min and 5.11 min if
7off = 0.3/min. The vertical lines represent the time when f(t) = 0.98 (3.5 min and 14.8 min)
and it shows that the convergence of the integral is compatible with the convergence of f(t).
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Figure F.2.: Probability for the promoter to be unbound. Example of the probability f(f) to be unbound
for two different unbinding rates. The solid curve shows the analytical solution equation (F.21),
while the dots have been obtained by numerical integration of the dynamical system.
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Figure F3.: 4, (¢) as function of n. g, (t) for different values of n (columns) and r, £ (tows). As n increases,
dn(t) is concentrated at higher times, therefore it is well represented by a Poisson distribution
with the approximated rate 7, (f — be) (red curve). The blue curve shows the numerical solution
using the full rate r,, [ dt f(t).
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Figure F.4.: Time to reach f(t) = p. Numerical solution of the time to reach a probability 0.5 for the
promoter of being unbound for two different unbinding rates. In red is the fit using the fast
unbinding rate approximation; in this case f(t) = 0.5 when 7, = 7of¢. In blue is the fitting of

slow unbinding rates.
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5. Thermodynamic model in the
presence of multiple regulatory sites

MotEvo is a software that infers the position and energy of binding sites for a specific
transcription factor, given a promoter sequence ([88]). Using the thermodynamic
approach described in Sec 2.2.1, we extended the functionality of MotEvo to predict
the probability for a promoter to be in the active state in the presence of multiple oy
and repressor binding sites. The idea is that the probability for the gene to be active
is the fraction of times at least one polymerase is bound downstream all repressors.
We assume that this scenario applies for the SOS pathway, where we have to consider
the binding sites for the repressor LexA and binding sites for the polymerase and o7
holoenzyme.

First of all, we start from the output of MotEvo to get the number, positions
and energies of the binding sites. For illustrative purposes, let’s consider a simple
promoter as in Fig 5.1, which has 3 o7y and 2 LexA binding sites of different energies
and sizes. The strongest LexA is on the negative strand. The solid ellipses and
rectangles show the presence of the o7y or LexA on a specific binding site. To apply
the thermodynamic model, we need to enumerate all possible configurations, keeping
in mind that two transcription factors cannot occupy two overlapping binding sites
at the same time. Then, we have to check which configurations are active, that is
which configurations have at least one ¢79 bound upstream all the LexA. Finally, we
need to multiply the Boltzmann factors of the active configurations and divide by the
Boltzmann factors of all the configurations.

Let’s call {aB} a specific active configuration with « 079 and B LexA bound to the
promoter. The Boltzmann factor associated with {«f} is

W{f;ﬁ} = exp [— Y AG - Y, AG]«] (5.1)
ic{a} je{B}

Each configuration with & 079 and B LexA bound is multiplied by [c79]*[L]?, where
[o70] and [L] are the concentration of polymerase and LexA respectively. Summing
over all possible active configurations, we have that the unnormalized probability to
be active is
Za =Y lonl“[LIFW2, (5-2)
a,B
where Wﬁﬁ = Yiup) W{f}x gy It follows that the normalized probability to be in the

active state is
Za

p=—=4_ .
7 (5-3)
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5. Thermodynamic model in the presence of multiple regulatory sites
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Figure 5.1.: Example of a simple promoter architecture. The wired rectangles show the different binding
sites, with blue representing the polymerase holoenzyme and red the repressor LexA. The
height of the rectangles corresponds to the binding energy. Negative energies show that the
binding site is on the reverse strand. The solid ellipses and rectangles show where the 07 and
LexA are binding. The picture shows 4 possible configurations, but only the ones on the top
row are active, i.e. they have a 07 not blocked by LexA.

where Zg is the analogous of Z4 for the inactive configurations.

Let’s compute the probability to be active using the simple architecture in Fig 5.1.
Let’s suppose that the energies of the binding sites from left to right are log(2), log(3),
log(4) for the polymerase and log(6), log(5) for LexA. Then the matrix Wﬁ% is

0 0 0
A | 9 w0

Wap=1 20 40 0 (5-4)
0 0 0

For example, the 0 row is the sum of the Boltzmann factors of the active configura-
tions with 0 polymerases, but without polymerases there are no active configurations.
Therefore, the first row is always 0. W5y = 20, this is because we have two configura-
tions with two polymerases and no LexA, i.e. the polymerase bound to the first and
third site, with Boltzmann factor 2 - 4, and the polymerase on the second and third
sites, with Boltzmann factor 3 - 4. Notice that the configuration with the polymerase
on the first and second sites is not physically possible because the two sites overlap.

The total Boltzmann factor is then 2 - 4 + 3 - 4 = 20. In the same way, the matrix Wﬂ{ 8

for the inactive configurations is

1 11 0
0 10 0
0 0 O
0 0 O

Wip = (5.5)
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5. Thermodynamic model in the presence of multiple regulatory sites
The probability to be in an active configuration if [o79] = 1.5 and [LexA] = 0.5 is,
from equation (5.3),

(1.5%,1.5!,1.52,1.5%) W4 (0.5°,0.5%,0.5)T
(1.59,1.51,1.52,1.5%) (WA + W) (0.59,0.51,0.52)T

(5.6)

Inserting the values of the matrices, we finally get P = 0.9. In the Appendix we show
how the implementation of the model can be optimized using low level operations in
C++, resulting in a fast algorithm.
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6. Summary and future perspectives

6.1. Summary

Gene regulation is a key mechanism for the survival and evolution of organisms. It is
also of fundamental importance in clinical research, since it can improve our ability
to use bacteria to synthesize therapeutic proteins, increase the efficacy of current
therapies, and improve our understanding of diseases. Although the mechanisms
have been studied since the 60s, there are still many open questions. In particular, the
many players and the complex regulatory network topologies make it hard to come
up with a mathematical model complex enough to give reliable predictions about
the amount of protein produced as a function of the input signal, and simple enough
to provide useful insights on the complex mechanisms of regulation. In this work,
I contributed to improving our understanding of gene regulation, both from data
analysis and theoretical modeling point of view.

Relatively recent advancements in experimental techniques are allowing us to
collect detailed description of gene expression in high throughput. One attracting
technology is flow cytometry, originally developed for large eukaryotic cells, and
now routinely applied to report single cell distribution of gene expression. However,
data analysis must be done carefully, using proper statistical analysis. Comparing
measurements of E. coli strains carrying fluorescent reporters in both flow cytometry
and microscopic setups, we proposed a principled and systematic way of carrying
out analysis of flow cytometry data. In particular, we showed that the expression of
proteins at low copy numbers, typical of bacteria, results in a large component of
the fluorescence signal to come from autofluorescence and electronic shot noise. The
R package E-Flow enables us to remove these spurious components and to extract
biologically relevant results. Also, while for eukaryotic cells is an established practice
to use forward and side scatter to identify cells of different sizes and granularity,
there seems to be little agreement in the literature on how to use scatter for discerning
small bacterial cells. We showed that there is little correlation between scatter signal
and viability of the cells, and we showed that a broad filter that discards only a
small fraction of the cells is to prefer to stricter filterings sometimes used in the
literature. Finally, although the flow cytometer measures total fluorescence, it is
preferable to measure fluorescence concentration, as this does not strongly depend
on the cell size. We could prove that, although scatter signals carry information about
the average cell size of a population, extracting the size of the single cells is much
trickier. Nevertheless, if an independent estimation of the distribution of sizes in the
population of cells is available, then measurements of total fluorescence from the flow
cytometer can be used to get an estimate of the concentration distribution.
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6. Summary and future perspectives

Having a lot of data is not enough to extract meaningful insights. A fundamental
step is to describe the data with a mathematical model able to highlight the rele-
vant relationships between the properties of the system and its behavior. For gene
regulation, thermodynamic models provide a powerful tool that enabled scientific
community to gain meaningful insights on the mechanisms of LacZ expression [57—
65] and A phage induction [54, 66]. However, for a general network, it is still not clear
which simplifying assumptions we are allowed to make, and how to mathematically
characterize the many interacting players involved in gene regulation. We showed
that for the well-known SOS response in E. coli a simple equilibrium model is not
enough to describe the behavior of the network, and fluctuations in the regulator
LexA must be explicitly taken into account in the mathematical model. We proposed a
non-equilibrium model and we showed that it is able to recapitulate the experimental
data, using biological relevant values for the different parameters. We also investi-
gated how the cells can exploit the non-equilibrium dynamics to tune the promoter
architecture in order to either change the responsivness to the external environment,
or the amount of noise propagated from the regulator to the target gene.

6.2. Future perspectives

The work on the SOS regulatory network showed the importance of having time
resolution data of single-cell gene expression data to understand the mechanisms
of gene regulation. Building upon what has been done on this thesis, we see four
possible follow-up studies.

First, it would be interesting to simultaneously measure the expression dynamics of
two LexA target promoters. I am convinced that the correlation structure among the
production peaks of different promoters will provide important insights into the gene
regulation mechanism. Moreover, it has been proposed that a regulatory strategy used
by the cell is to regulate the activation time of different genes in the network, and some
works have shown that the SOS response is indeed characterized by “early” activated
genes and "late” genes[38]. Having the possibility to study the GFP production of
two promoters at the same time, can shed light on the mechanisms that lead to
different activation times. The technology that allows for such an experiment can be
the dual-color Mother Machine, but although already developed, some challenges
still have to be overcome. From a theoretical point of view, the most compelling one is
that the breaks have been shown to be of very short duration, and the largest part of
the peak in production is determined by GFP folding time, more than by the mRNA
transcription. In our study, we used a fast-folding mutant of GFP, but for tracking the
expression of a second gene we need a fluorescent report expressing in a channel far
away from the one of GFP. However, it is difficult to find such reporters with a fast-
folding time, and a longer folding time will smooth out the mRNA production signal,
losing in resolution. Therefore, the comparison between the peaks in production of
this slow folding reporter with the peaks in GFP must be done in a careful way.

Another follow-up project is to use a different induction strategy. In this the-
sis, we constantly induced the network by giving a constant amount of antibiotic
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Ciprofloxacin. However, it would be also interesting to expose the cells to a high
UV radiation at the very beginning of the experiment and observe how the network
induction evolves over time once the UV source is turned off. This has been shown
to have a very interesting dynamic behavior [33], although the study was based on
time snapshots of gene expression distribution in a population of cells, rather than
on time tracking of single cells. Preliminary experiments in our lab, have shown that
with our Mother Machine setup it should be possible to study the network behavior
under UV irradiation.

From a more general theoretical point of view, it is extremely interesting to ask
why the cells have evolved a non-equilibrium dynamics. It is worth to explore what
the advantages of having a non-equilibrium dynamics are and how they depend on
the external environment.

Finally, although we measured gene expression using fluorescent reporters, it
would be highly informative to directly look at single mRNA molecules. A technique
called single molecule Fluorescence In Situ Hybridization (smFISH) [89] allows us
to directly visualize single molecules of mRNA, and it has been recently applied by
the lab of Golding [89] to study the distribution of transcripts in E. coli. Building on
some trials already made in our lab, it would be beneficial to further develop this
technology for bacteria and to be able to integrate it with the Mother Machine.

Considering projects outside the SOS regulatory network, an interesting theoretical
question is how gene regulation is optimized by the cells. During the transition to
another food source, bacteria need a random amount of time to adapt to the new
environment, resulting in a lag phase of no growth. In a study from our lab, it has
been shown how single-cell lag time affects the fitness of the entire population, and
under which circumstances it is beneficial for the population to reduce the lag phase.
Building upon this, it would be interesting to investigate how the cells can optimize
the concentration of a regulator. Let’s suppose an inhibitor is bound to DNA with
energy E. This means that we need to wait on average a time e before it falls off.
For example, for the Lac operon it means that when lactose first enters the cell, the
machinery is not immediately induced, but there will be an exponentially distributed
waiting time. This results in a lag time in the single-cell growth, which in turn affects
the population growth. The cell can reduce the lag time by decreasing the binding
E, but this will require producing more repressor Lacl in order to have the same
repression power when no lactose is present. This in turn reduces the fitness (growth
rate) of the single cell. On the other hand, at the population level, a higher Lacl
binding energy means that the growth of the cell when it wakes up it’s going to
be fast since the cells spend less energy in producing TFs. Therefore, high binding
energies means low levels of inhibitor and fast growth, but also large lag times for
the single cells. On the contrary, low binding energies means high levels of inhibitor
and slower growth, but faster wake up times. If the population is very large, it seems
reasonable to imagine that the first strategy is favorable, because the waiting times
are exponentially distributed and in a very large population we can expect to find a
cell that wakes up immediately and starts to reproduce exponentially. But in a small
population, if the mean waiting time is large, it is less likely to find a cell that wakes
up early. It is therefore interesting to explore what the trade-off between high and
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low TF levels is, and what it depends on (e.g. population size or external conditions).
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Appendix A.

Implementation of the combinatorial
thermodynamic model

Due to the large amount of computations required (the number of configurations to
consider grows exponentially with the number 7 of binding sites as 2") the code to
compute the probability of being in a transcriptionally active state has been written
in C++ using low-level bit-wise operations to optimise the combinatorial analysis.
Using the simplified architecture of Fig 5.1 and focusing only on o7, we can write
the state of the promoter with only one polymerase bound as a string of bits, where 0
means that the specific base is unbound and 1 means bound

11000000
01110000 (A.1)
00000001

To each string is associated a weight Wy, i which is the Boltzmann factor of the
specific configuration.

Since we have three binding sites, we have 2° = 8 possible combinations of bound
070, which can be written as a string of three bits

000
001
010
011

111

For example, the string 011 means that the first site is unbound, while the second
and the third ones are bound. Notice that the number of possible configurations is
simply 2", which is how many binary numbers can be represented with n bits.

Let’s consider the binding configuration 011. This means that the polymerase is
bound on the second and third site, therefore the promoter state is given by 01110001.
How do we build this string?
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Appendix A. Implementation of the combinatorial thermodynamic model

1. We can start from the null sequence of bits ¢ = 00000000, with a Boltzmann
factor B = 1 (nothing is bound to the promoter).

2. We loop through all the bites of the binding configuration 011.

3. For the i-th bite b; we construct the new string ¢’ = c| (b; &c[i]). Where c[i]
is the i-th string in (A.1), describing the promoter with the i-th binding site

occupied. We multiply the current Boltzmann factor by B’ = B x Bf’i, where B;
is the Boltzmann factor of the i-th string in (A.1).

One caveat is that we need to consider the binding configuration only if it doesn’t
have any molecules bound to overlapping sites. So, for example, 110 is not valid.
To check for this, every time we loop on the bites we check ¢ & (b; &c[i]). If this is
different from zero, then there is an overlap and we discard the binding configuration.
Notice that if b; is zero we are not adding any polymerase and the Boltzmann factor
doesn’t increase.

The previous algorithm gives the set of all valid promoter configurations with
some 079 bound. Let’s generalise it to the case where there is also a repressor. The
first step is to compute the possible valid binding configurations, separately for the
070 and the inhibitor. Once we have the possible configurations for the inhibitor and
the polymerase and the corresponding Boltzmann factors, we can build the matrices
W, and W,

But now we have to check which configurations of o7y and inhibitor are compatible
among each other, i.e. they don’t give a repressor overlapping a o7g. Let’s call c; and
cr, the promoter states with respectively the polymerases and the inhibitors bound. To
check that there are no overlapping molecules, we use the same algorithm used above
to check the overlapping of the different o7gs. Once we know that the combination
of bound LexA and o7 is compatible we need to check whether there is at least a
polymerase at the right of all the LexA. We can do that by considering the position of
the right-most set bit in ¢y, and setting do 0 all the bits to the left of this position in cs.
If the resulting cs is different from 0, then the combination of ¢; and ¢; leads to an
active promoter. This gives all the compatible configurations of the active fromoters,

f

together with their Boltzmann factors and allows to build the matrices W, and WAI, B

All the above operations can be achieved by bit-wise operations, making the
algorithm particularly optimised.
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