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Strong spin-orbit interaction and g-factor renormalization
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The spin-orbit interaction lies at the heart of quantum computation with spin qubits, research on topologically
nontrivial states, and various applications in spintronics. Hole spins in Ge/Si core/shell nanowires experience
a spin-orbit interaction that has been predicted to be both strong and electrically tunable, making them a
particularly promising platform for research in these fields. We experimentally determine the strength of
spin-orbit interaction of hole spins confined to a double quantum dot in a Ge/Si nanowire by measuring
spin-mixing transitions inside a regime of spin-blockaded transport. We find a remarkably short spin-orbit length
of ∼65 nm, comparable to the quantum dot length and the interdot distance. We additionally observe a large
orbital effect of the applied magnetic field on the hole states, resulting in a large magnetic field dependence of the
spin-mixing transition energies. Strikingly, together with these orbital effects, the strong spin-orbit interaction
causes a significant enhancement of the g factor with magnetic field. The large spin-orbit interaction strength
demonstrated is consistent with the predicted direct Rashba spin-orbit interaction in this material system and
is expected to enable ultrafast Rabi oscillations of spin qubits and efficient qubit-qubit interactions, as well as
provide a platform suitable for studying Majorana zero modes.

DOI: 10.1103/PhysRevResearch.3.013081

I. INTRODUCTION

The spins of single electrons or holes can be coupled to
orbital degrees of freedom through the spin-orbit interaction.
In a solid-state environment, this interaction arises from the
motion of electrons or holes in electric fields associated with
the host lattice atoms, structural or bulk inversion fields, or ex-
ternally applied electric fields, and its strength can range from
a typically small perturbation in the conduction band to a sig-
nificant effect in the valence band [1]. Spin-orbit interaction is
particularly useful for fundamental applications in spintronics
and quantum information processing with spin qubits [2–4],
as it can be employed to realize fast manipulation of spin
states purely through electrical means [5,6]. For example,
Rabi oscillations with frequencies of ∼100 MHz have been
obtained for electron spins confined in group III-IV semicon-
ductor nanowires, where the spin-orbit interaction was used
to mediate a coupling of the spins to an electrical driving field
[7,8]. Furthermore, spin-orbit interaction provides a promis-
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ing path towards implementing entangling operations between
distant spin qubits, by mediating the coupling of spins to elec-
tromagnetic cavity modes [9,10] or floating gate architectures
[11]. An important advantage of using spin-orbit interaction
for these purposes is that it requires no additional on-chip
components such as micromagnets.

Furthermore, the emergence of Majorana zero modes in
semiconductor nanowires relies on the presence of a strong
spin-orbit interaction [12–15]. The strength of the spin-orbit
interaction sets the range of Zeeman energies in which a topo-
logically nontrivial phase exists together with a sufficiently
large superconducting gap, making a strong spin-orbit inter-
action essential for experimental studies [16].

Hole spins in semiconductor nanostructures can experience
a spin-orbit interaction many times stronger than for electron
spins [1,17,18]. In particular, a strong and electrically tunable
direct Rashba spin-orbit interaction arises for holes confined
in one-dimensional Ge- or Si-based nanostructures [19,20].
The direct Rashba spin-orbit interaction results from direct
dipolar coupling of holes to an external electric field, in com-
bination with mixing of heavy and light hole states due to
confinement to one dimension. This interaction is estimated to
be 10–100 times stronger than the conventional Rashba-type
spin-orbit interaction for electrons or holes.

Such a strong spin-orbit interaction would enable push-
ing spin qubit Rabi frequencies into the GHz regime [9], an
order of magnitude higher than recently demonstrated with
hole spin qubits [21–23], and state-of-the-art electron-based
spin qubits [8,24,25]. Moreover, a large electrical tunability
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of spin-orbit interaction strength promises exquisite control
over qubit coherence and manipulation speeds, providing a
gate-controlled ON/OFF switch of the coupling to electrical
environmental degrees of freedom, which could be used to,
on the one hand, maximize the coupling to microwave drive
fields and, on the other hand, minimize the coupling to charge
noise. Such controllable coupling would make it possible to
combine ultrafast qubit operations with long coherence times.
Furthermore, such electrical tunability can be used to control
the localization length of Majorana zero modes confined to
each end of a nanowire [16], creating the possibility of elec-
trically performing topologically nonprotected operations on
Majorana zero modes.

Due to the tunable nature of the spin-orbit interaction, the
magnitude of the g factor of hole spins in Ge/Si nanowires can
be modulated over a large range using applied electric fields
[26,27]. This feature enables local control over the Zeeman
energy and allows to tune the energy of a qubit relative to a
spin resonance driving field, or to a microwave cavity mode,
making it possible to selectively address individual qubits in
a multiqubit device. Furthermore, in addition to strong and
tunable spin-orbit interaction, hole spins in Ge/Si nanowires
combine several other features that make them amenable for
implementation of high-quality qubits. Hyperfine-induced de-
coherence is expected to be strongly suppressed, since holes
have a p-type Bloch function, which has zero overlap with
lattice nuclear spins [28]. Furthermore, both Ge and Si have
a low natural abundance of isotopes with nonzero nuclear
spins (29Si < 5%, 29Ge < 8%), which can be made vanish-
ingly small through isotopic purification. Finally, in contrast
to electrons, holes in Ge and Si do not experience valley
degeneracy, which for electron spins in Si-based devices can
have a detrimental effect on qubit relaxation times [29].

Here, we investigate the spin-orbit interaction of hole spins
confined in a double quantum dot defined electrostatically in
a Ge/Si core/shell nanowire [30,31]. We use mixing of singlet
and triplet spin states detected through lifting of Pauli spin
blockade [32–36] to perform spectroscopy on the effectively
doubly occupied double dot. Notably, we also find a large
orbital effect of the magnetic field. We have developed a
spectroscopic model, which fully takes into account these
orbital effects, allowing to independently determine the Landé
g-factor, the interdot tunnel coupling strength, and the strength
of the spin-orbit interaction in this device. We find a particu-
larly strong spin-orbit interaction, with a spin-orbit length of
the same order as the dot size. Such a regime of strong spin-
orbit interaction is expected to exhibit effects [37,38] typically
not observed in experiments with quantum dots. Specifically,
it causes a renormalization of the g factor, which we find here
to lead to a Zeeman energy that is a nonlinear function of the
applied magnetic field.

II. DEVICE AND MEASUREMENT SETUP

The device we use consists of a single Ge/Si core/shell
nanowire deterministically placed on top of five finger gates,
which are equally spaced with a pitch of 50 nm [see Fig. 1(a)].
The nanowire is an undoped radial heterostructure of a thin Si
shell around a Ge core [39]. A hole gas accumulates in the
Ge core due to a combination of the type-II staggered band
alignment between Ge and Si and interfacial effects [40,41].

FIG. 1. Device and Pauli spin blockade. (a) False-colour scan-
ning elecron micrograph of the device, used for all the measurements
of this work. The finger gates g1-5 (red: barrier gates, green: plunger
gates) are biased with positive voltages Vg1-5 in order to create a
double quantum dot in the Ge/Si core/shell nanowire (yellow). The
source (S) and drain (D) contacts are defined on either side of the
nanowire. Dashed ellipses indicate the approximate locations of the
two quantum dots. (b) Schematic illustration of Pauli spin blockade,
with zero magnetic field. When the double dot is occupied by holes
in a triplet (1,1) state, the current is blocked until mixing with a
singlet state takes place. The double dot detuning is indicated by
ε. (c) Bias triangles taken at VSD = 2 mV showing signatures of
Pauli spin blockade, through a suppression of current, in the area
delineated by the dashed white lines. The blue arrow indicates the
direction of the detuning axis. (d) Current as a function of detuning,
swept along the arrow in (c), without (red) and with (green) applied
magnetic field.

The nanowire has an overall radius of 11 nm ± 2 nm, as de-
termined through atomic force microscopy, and a nominal Si
shell thickness of 2.5 nm. A 20-nm-thick layer of Al2O3 in
between gates and nanowire serves as electrical insulation.
Electrical contact to the nanowire is made through two Ti/Pd
contact pads, defined on either side of the nanowire. For
more details of the device, see Froning et al. [30]. Previously,
we have shown a large degree of control over the formation
of quantum dots in such devices, which can be tuned over
hundreds of charge transitions down to the few-holes occupa-
tion regime [30,31]. Here, we form a tunnel-coupled double
quantum dot by applying positive voltages to the finger gates
g1–g5 that locally deplete the nanowire hole gas [41]. We
use the contact pads to apply a source-drain voltage bias of
VSD = 2 mV across the nanowire and to measure the current
flowing through the double dot. An external magnetic field is
applied in the sample plane, perpendicular to the major axis
of the nanowire, as indicated in Fig. 1(a). All measurements
were taken at a temperature of 1.4 K.

III. DOUBLE QUANTUM DOT AND PAULI
SPIN BLOCKADE

We tune the double dot to an effective occupation
of two holes and study the transport cycle (0, 1) →
(1, 1) → (0, 2) → (0, 1) in a Pauli spin blockade [3,32,42]
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configuration [see Fig. 1(b)]. Here the first and second num-
bers refer to the effective hole occupation of the left and
right dot, respectively. Even though the absolute occupation
number of both dots is roughly 15, we assume the effective
picture of a doubly occupied double dot to hold when we ob-
serve Pauli spin blockade [36,43]. Transport in this regime is
subject to a spin selection rule imposed by the Pauli exclusion
principle: interdot transitions (1, 1) → (0, 2) are blocked for
spin triplet states (|T↓↓〉, |T0〉, |T↑↑〉, with spin quantum num-
bers s = 1 and ms = −1, 0, +1), since the |T (0, 2)〉 states
are energetically inaccessible. In contrast, interdot transitions
are energetically allowed for holes in a spin singlet state (|S〉,
s = ms = 0). Therefore, when a triplet (1,1) state gets occu-
pied, current through the double dot is blocked, until mixing
with a singlet state takes place.

We exploit such spin-selective transport as a read-out
method allowing us to distinguish spin states [32]. Figure 1(c)
shows a measurement of the current through the double dot
as a function of the voltage on gates g2 and g4, taken at
zero magnetic field. We identify the area of reduced current,
enclosed by the dashed line in Fig. 1(c), as a signature of spin
blockade. Consistently, for opposite VSD, we obtain a larger
current (not shown). Furthermore, as can be seen in the traces
of Fig. 1(d), the blockade is lifted at a finite magnetic field,
resulting in an increased current. Even when in a triplet state,
transport can become unblocked [32] through various spin-
mixing mechanisms that coherently or incoherently couple
triplet and singlet states. Possible spin-mixing mechanisms
are based on hyperfine interactions with the nuclear spin bath
of the host lattice [33,34,44], spin-flip cotunneling [35,45–
47], g-factor differences in the double quantum dot, and spin-
orbit interaction [34–36,44,48]. The dominant spin-mixing
mechanism can be investigated through measurements of the
increase in current due to lifting of Pauli spin blockade, which
we will from here on refer to as leakage current.

IV. LIFTING OF PAULI SPIN BLOCKADE

We study the lifting of spin blockade in more detail, fo-
cusing on the dependence of the resulting leakage current on
double-dot detuning ε, magnetic field B, and interdot tunnel
coupling strength tc. Figure 2 shows a measurement of the
current through the double dot as a function of magnetic field
B and detuning ε. The latter is swept over the entire bias trian-
gle, by changing Vg2 and Vg4 following the arrow in Fig. 1(c).
The white dashed lines in Fig. 2 indicate the spin-blockaded
regime 0 < ε < ε�, with ε� ≈ 1 meV the detuning for which
states with one hole in the first orbital excited state be-
comes energetically available. For detunings exceeding ε�,
we observe features with a significantly increased current.
We attribute these features to spin-flip transitions involving
a higher orbital state, i.e. either |T↑↑,↓↓(1, 1)〉 → |S�(0, 2)〉,
or |S(1, 1)〉 → |T↑↑,↓↓(0, 2)〉 transitions, where |S�〉 refers
to a singlet state with one hole in the orbital ground state
and one hole in the first orbital excited state. Note that also
spin-conserving |T (1, 1)〉 → |T (0, 2)〉 transitions can take
place for these detunings, but since these transitions are spin-
conserving, they do not exhibit a Zeeman splitting and would
correspond to a single curve as a function of magnetic field
and detuning, in contrast to the multiple curves that we ob-

FIG. 2. Measured leakage current as a function of magnetic field
for detunings covering the entire bias triangle, as shown by the arrow
in Fig. 1(c). The dashed white lines delineate the spin-blockaded
region also shown in Fig. 1(c). Here, Vg3 = 3820 mV. Dotted green
curves are guides to the eye, indicating ε−(B) and ε+(B).

serve in our measurement. Remarkably, we find that in our
experiment transitions that do not conserve spin have a higher
amplitude than transitions that do conserve spin, as discussed
in Sec. VI.

Here we are interested in the spin-blockaded region and
in the remaining part we focus on the features between the
white lines in Fig. 2. In this range of detuning, we see a
markedly increased current that correspond to lifting of Pauli
spin blockade. These leakage current features form the main
topic of this work. We can make two important observations:
(1) for a given sign of B, the leakage current is maximum
along two curves as a function of ε and B, marked ε±(B)
in Fig. 2; and (2) around zero magnetic field the leakage
current is suppressed. These observations form the starting
point in identifying the triplet-singlet transitions underlying
the leakage current along ε±(B), as well as the spin-mixing
mechanism.

As explained in more detail in Sec. VI, the position of the
two curves as a function of detuning and magnetic field allows
us to assign them to |T↑↑,↓↓(1, 1)〉 → |S(0, 2)〉 transitions.
These transitions occur at different detuning depending on
the magnetic field, due to an increase in Zeeman splitting,
as well as orbital effects of the magnetic field. As shown
in the next section, we identify spin-orbit interaction as the
dominant spin-mixing mechanism by evaluating the magnetic
field-dependent intensity of these transitions.

V. POSSIBLE SPIN-MIXING MECHANISMS

We now discuss the origin of the spin mixing leading to the
observed lifting of spin blockade by considering the depen-
dence of possible spin-mixing mechanisms on the magnetic
field and detuning. In particular, the zero-field gap can be
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attributed to spin-orbit interaction, which is not effective at
B = 0 T due to time-reversal invariance [44,49], but becomes
important at finite B [50,51]. Furthermore, for ε = 0 and |B|
smaller than a characteristic field B̃, the triplet (1,1) states lie
within the avoided crossing of |S(1, 1)〉 and |S(0, 2)〉, at which
point spin-orbit interaction does not couple them efficiently
to the singlet states, leading to a suppressed leakage current
[42,52].

Spin-flip cotunneling can also lead to dips or peaks in the
leakage current around B = 0 T. Such spin-flip cotunneling
involves the exchange of a hole spin with one of the lead
reservoirs through a process involving a virtual intermediate
state, which can lead to decay of the triplet (1,1) to a singlet
state. Such cotunneling can result in a leakage current peak
at B = 0 T that exists for ε = 0, as well as for values of
ε up to ε�. A shallow zero-field dip can also result from
cotunneling, when the temperature T is small compared to tc
[45,46]. However, the data presented in Fig. 2 shows a deep
zero-field gap and our operating temperature of 1.4K is, as
will be shown later, comparable to tc. We therefore rule out
spin-flip cotunneling as the dominant spin-mixing mechanism
in our measurements.

Furthermore, fluctuating polarizations of the nuclear spin
bath in the double dot can result in triplet-singlet mixing
[33,34,53]. However, as mentioned in the introduction, hyper-
fine interaction is expected to be very small for hole spins in
Ge- and Si-based devices. Moreover, this mechanism is only
effective for values of B up to the root mean square value of
nuclear field fluctuations, which we estimate to be <1 mT in
our system [33]. Most notably, in contrast to what we observe,
this spin-mixing mechanism should result in a leakage current
peak [33,34] around B = 0 T for ε up to ε�.

Finally, differences in g factor between the two dots need
to be considered. The effective g factor for holes in Ge/Si
nanowires can depend sensitively on the electric field [26],
confinement potential [37,38], and hole occupation number.
At finite field, such a g-factor difference will mix the |T0(1, 1)〉
and |S(1, 1)〉 states, thus leading to an additional resonance of
the leakage current [54]. However, such mixing of |T0(1, 1)〉
with |S(1, 1)〉 would not result in the two separated curves
of increased current that we observe. Note further that such
mixing is suppressed as |T0(1, 1)〉 is split off from the singlet
by the exchange energy.

In conclusion, we tentatively identify spin-orbit interaction
as the dominant spin-mixing mechanism responsible for the
observed leakage current. In a double quantum dot, spin-orbit
interaction can flip the spin of a hole tunneling between the
quantum dots. This enables triplet-singlet mixing, when these
states are aligned in energy, which can effectively lift Pauli
spin blockade. As shown in the next section, we can explain
the spectroscopy of the observed leakage current using this
mechanism.

VI. MODEL OF THE TWO TRANSITIONS

Here, we present an analytical model that takes into
account non-spin-conserving interdot tunneling and its de-
pendence on magnetic field and detuning. Our model agrees
very well with the data and accurately reproduces the field-

dependence of the two observed transitions shown in Fig. 2,
allowing us to identify them as |T↑↑,↓↓〉 → |S〉 transitions.

As mentioned before, we assume that the spin blockade
and its lifting can be understood in terms of an effectively
doubly occupied double dot. When the spin-conserving in-
terdot tunnel coupling tc is finite, the singlet states |S(0, 2)〉
and |S(1, 1)〉 are coupled, giving rise to two new eigenstates
we refer to as the lower and higher hybridized singlet states,
|S−〉 and |S+〉, respectively [55]. These hybridized singlets are
defined as |S−〉 = sin(θ/2)|S(1, 1)〉 − cos(θ/2)|S(0, 2)〉 and
|S+〉 = cos(θ/2)|S(1, 1)〉 + sin(θ/2)|S(0, 2)〉, with the mix-
ing angle θ being a function of detuning ε and tc (see Eq. (C4)
for the full expression of θ ). The |S±〉 states exhibit an avoided
crossing around ε = 0 with a gap of 2

√
2tc, as shown in

Fig. 3(a). Importantly, the proportion of |S(0, 2)〉 and |S(1, 1)〉
present in each of the |S±〉 states depends on the detuning.

In the presence of spin-orbit interaction, spin-flip tunnel-
ing couples the |T↑↑,↓↓(1, 1)〉 states with the two hybridized
|S±〉 states, due to the |S(0, 2)〉 content of the latter. The
coupling strength of this spin-flip tunneling is given by the
strength of the spin-conserving tunnel coupling as well as
the strength of the spin-orbit interaction and can be written
as tso = tc tan (a/λso) (see Appendix B for derivation), with a
the interdot distance and λso the spin-orbit length (defined by
πλso/2 being the distance a hole has to travel for spin-orbit
interaction to induce a π -rotation of its spin state).

This coupling leads to avoided crossings when the energies
of the |T↑↑,↓↓〉 states exactly match the energies of the |S±〉
states, as illustrated in the energy level diagrams in Fig. 3(a).
The leakage current is maximum for those values of the detun-
ing where the triplet-singlet avoided crossings occur, which
can be written as:

ε±(B) = U (B) − U (0) ±
(

2t2
c (B)

g(B)μBB
− g(B)μBB

)
. (1)

Here the indices + and − correspond to the |T↑↑〉 → |S+〉 and
|T↓↓〉 → |S−〉 transitions, respectively. Furthermore, μB is the
Bohr magneton, g the g factor in the dot, and U the single-
dot addition energy. Equation (1) describes the evolution of
spin-blockade leakage current with magnetic field shown in
Fig. 2 between the white dashed lines, with ε±(B) giving
the detunings of the resonant peaks of the two features as a
function of magnetic field.

In order to explain the precise magnetic field dependence
of ε±(B), we need to take into account effects that rely on
the magnetic field changing the size of the hole orbitals. In
the experiment, the magnetic field is oriented perpendicular
to the principal nanowire axis and is varied over a wide range
of amplitudes (−8 T � B � 8 T), making such orbital effects
significant in this system.

Remarkably, this turns the spin-conserving tunnel coupling
tc, the addition energy U and the g factor into quantities that
all depend on the magnetic field [see inset Fig. 3(b)]. Such
effects are usually dealt with only qualitatively, even though
their relative magnitude can be quite large. Here, we take these
effects fully into account in our spectroscopic model, enabling
us to quantify the g factor and the spin-orbit length in our
device.

To derive the functional dependence of these quantities
on B, we start from the Hund-Mulliken theory of atomic

013081-4



STRONG SPIN-ORBIT INTERACTION AND g-FACTOR … PHYSICAL REVIEW RESEARCH 3, 013081 (2021)

FIG. 3. Level diagram and magnetic-field dependencies. (a) Double dot energy level diagrams for different values of the magnetic field.
For B = 0 T, the spin-conserving tunnel coupling tc is maximum and there is no singlet-triplet mixing due to spin-orbit interaction. For large
enough magnetic fields (B > B̃), avoided crossings (highlighted by dashed circles) appear when the triplet (1,1) states cross a singlet state with
(0,2) component, corresponding to spin-flip tunneling due to spin-orbit interaction. The size of all avoided crossings becomes smaller with
increasing magnetic field, as can be understood from (c) and Eq. (4). Moreover, due to the magnetic field dependence of the addition energy
U (see (b)), as well as the Zeeman energy, all avoided crossings move to higher detuning with magnetic field. Parameters used to plot the
diagrams were extracted from the data set shown in Fig. 2, using the model described in the text. (b) Calculated magnetic field dependence of
the addition energy U [See Eq. (B10) of Appendix B]. (Inset) Schematic illustration of the effect of increasing magnetic field B on dot size
and separation leading to the observed changes in U , tc and g. Quantities change qualitatively with B as indicated by the arrows. (c) Calculated
magnetic field dependence of the spin-conserving tunnel coupling tc [see Eq. (B5a) of Appendix B]. (d) Calculated magnetic field dependence
of the g factor [see Eq. (2)]. For the plots in (b)–(d), the relevant parameters correspond to those of the measurement of Fig. 2.

orbitals and we assume harmonic confinement in all three
directions. By considering an anisotropic three-dimensional
oscillator, we model the effects of a confinement potential
that is smoother (sharper) in the direction along (perpendic-
ular to) the nanowire as well as the strain-induced anisotropy
of the effective mass [20]. The hole wavefunctions in each
dot are confined more by the magnetic field through the
cyclotron effect and as a result the spin-conserving tun-
neling tc(B) is reduced at large fields while the single-dot
addition energy U (B) is enhanced, as shown schematically
in the inset of Fig. 3(b). The explicit dependencies of
tc(B) and U (B) on magnetic field are given in Eqs. (B5a)
and (B10) of Appendix B, and are plotted in Figs. 3(b)
and 3(c).

The detunings at which the avoided crossings of |T↑↑,↓↓〉
with |S±〉 appear also depend on the Zeeman splitting EZ of
the |T↑↑,↓↓〉 states with respect to the singlets. Usually, the
Zeeman splitting is a linear function of the magnetic field,
which can be written in terms of the g factor as EZ = gμB|B|.
However, strong spin-orbit interaction can renormalize the
g factor [37,38] when the size of the quantum dot is changed.
In our case, the magnetic field changes the dot size through
orbital effects, leading to a dependence of the g factor on the
magnetic field and turning the Zeeman energy into a nonlinear
function of the magnetic field.

The shrinking of the dot with increasing magnetic field
causes the g factor to be enhanced at large values of the
magnetic field and we can write [37,38]

g(B) = g0e
− l2‖

λ2
so

(1+ B2

B2
0

)−1/2

, (2)

where g0 is the g factor without the spin-orbit-induced renor-
malization. Furthermore, l‖ is the field-independent harmonic
length of the hole wave function [l‖ = lz(B = 0), with lz be-
ing the dot confinement length along the wire] and B0 is a
characteristic magnetic field that depends on the average con-
finement strength in the directions perpendicular to the field.
See Appendix A for the precise definition of these quantities.
Figure 3(d) shows a plot of Eq. (2), with values of l‖ and
B0 calculated using ε� as determined from the measurement
of Fig. 2. We stress that the magnetic-field dependence of
the g factor in Eq. (2) is a direct consequence of the strong
spin-orbit interaction in the nanowire and it vanishes when the
spin-orbit length λso is much larger than the dot size, which
is typically the case for quantum dot systems that have been
experimentally realized thus far.

As will be shown in the next section, when taking into
account the magnetic field dependence of U , tc, and g, the res-
onant positions ε±(B) of the |T↑↑,↓↓〉 → |S±〉 transitions given
by Eq. (1) closely reproduce the evolution of the two features
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FIG. 4. Spectroscopy measurements and modeling. [(a)–(c)] Measured leakage current as a function of magnetic field and detuning ε < ε�,
for Vg3 = 3820, 3830, and 3840 mV. The green curves are fits of each data set to Eq. (1), with (solid) and without (dashed) taking into account
g-factor renormalization with magnetic field. [(d)–(f)] Simulated leakage current as a function of magnetic field and detuning. Here, we used
the model discussed in Sections VI–VIII of the main text, with relevant parameters determined from fits of the data shown in (a)–(c). The green
curves are identical to the curves in (a)–(c).

of spin blockade leakage current of Fig. 2 as a function of
magnetic field and detuning.

VII. VARYING THE STRENGTH OF INTERDOT
TUNNEL COUPLING

To demonstrate the versatility of our model we now explore
the influence of varying the voltage Vg3 on the middle gate on
the leakage current. The main expected effects are a change
in the interdot tunnel coupling tc and a change in the dot
confinement. Figures 4(a)–4(c) show measurements similar to
that of Fig. 2, for three values of Vg3 (see Fig. S1 in Ref. [56]
for extended data sets). Comparing the three data sets, we
see that an increase of Vg3 leads to a closing of the zero-field
gap. As discussed before, Pauli spin blockade only becomes
lifted through spin-orbit interaction for magnetic fields above
a critical value. This critical field B̃ can be written as

B̃ =
√

2

μB

tc(B̃)

g(B̃)
, (3)

where we include the magnetic field dependence of tc and g.
When |B| = B̃, the Zeeman energy matches the size of half
of the avoided crossing given by tc. At this point, ε−(B) =
ε+(B) [see Eq. (1)] and both |T↑↑,↓↓(1, 1)〉 → |S±〉 transi-
tions become possible at ε ≈ 0 [see Figs. 3(a) and 4(a)]. For
|B| < B̃, each of the singlet-triplet avoided crossings occurs at
detunings where the involved |S±〉 states are mostly composed
of |S(1, 1)〉, which does not couple to |T↑↑,↓↓(1, 1)〉 through

spin-orbit interaction, leading to a gap in leakage current with
characteristic width B̃ around zero magnetic field.

By increasing Vg3, we reduce tc and from Eq. (3) it follows
that spin blockade can be lifted at smaller magnetic fields.
This moves the points of emergence of ε±(B) for both mag-
netic field polarities closer together and effectively reduces the
width of the zero-field gap of leakage current, in accordance
with the observations. In Figs. 4(a)–4(c), we can clearly see
this reduction of the zero-field gap (indicated with B̃) when
the middle gate voltage Vg3 is increased. Using Eq. (3), we
extract the ratio tc/g at the critical field B̃ for each data set.
When the magnetic field is not much larger than B̃, we neglect
as a first approximation the variation of tc(B) and g(B) from
their value at B̃, see Figs. 3(a) and 3(c), and so using Eq. (1),
we deduce tc(B̃) and g(B̃) from the relative position of the
resonant peaks. Values of B̃, tc(B̃), and g(B̃) extracted in this
way for the three data sets of Fig. 4 are listed in Table I.

By taking into account the orbital effects, our model
allows us to explain the main features of the resonances
at low magnetic fields. By linearly expanding the single-
dot addition energy in the vicinity of the critical field,
U (B) ≈ U (B̃) + U ′(B̃)(B − B̃), we can approximate ε−(B) ≈
ε(B̃) + (U ′(B̃) + g(B̃)μB)(B − B̃), reproducing the approxi-
mately linear dependence of the upper resonance on magnetic
field seen in Fig. 4. On the other hand, in the expression of
the ε+(B) resonant peak the term linear in B is smaller and
the 1/B term gives a significant contribution, leading to a less
pronounced shift in detuning, especially at low magnetic field.

013081-6



STRONG SPIN-ORBIT INTERACTION AND g-FACTOR … PHYSICAL REVIEW RESEARCH 3, 013081 (2021)

TABLE I. Extracted hole spin parameters, obtained for the three datasets shown in Fig. 4 by fitting the model to the data as described in
the main text.

Vg3 B̃ B0 tc(B̃) l‖
(mV) (T) (T) (μeV) g(B̃) (nm) λso/a

Fig. 4(a) 3820 1.2 ± 0.3 3.8 ± 0.2 44 ± 13 0.9 ± 0.15 45 ± 4 0.78 ± 0.06
Fig. 4(b) 3830 0.8 ± 0.2 4.8 ± 0.3 33 ± 10 1.0 ± 0.15 41 ± 5 0.72 ± 0.06
Fig. 4(c) 3840 0.35 ± 0.35 5.0 ± 0.3 16 ± 16 1.1 ± 0.15 39 ± 6 0.71 ± 0.07

Although the 1/B term is proportional to the tunnel coupling,
its effect is counter-intuitively more pronounced in Fig. 4(c),
because here Pauli spin blockade is lifted at lower magnetic
fields.

To characterize the overall magnetic field dependence of
the leakage current, we now find ε±(B) for each data set by
fitting to Eq. (1). The green curves in Fig. 4 are plots of
ε±(B) with (solid) and without (dashed) taking into account
the renormalization of the g factor given by Eq. (2). The ad-
ditional features at larger magnetic fields, such as the bending
of the ε+(B) curve, are captured by the model by considering
the function U (B) beyond the linear approximation, as well as
the renormalization of the g factor due to spin-orbit interac-
tion. We see that the enhancement of the g factor captured by
Eq. (2) is quite important for large magnetic fields, where it
causes a sizable bending of the resonant peaks (see also Fig.
S2 in Ref. [56]). Including the renormalized g factor gives
much better agreement with the measurements over the whole
range of magnetic field values.

In order to calculate the renormalized g factor using Eq. (2),
we estimate the dot confinement length l‖ = √

h̄/(m‖ω‖),
which depends on the confinement energy ω‖ and on the effec-
tive mass m‖ along the nanowire. We determine h̄ω‖ ∼ 1 meV
from measurements of the double dot charge stability diagram
and assume m‖ ∼ 0.05 m0 (here m0 is the bare electron mass).
This choice of m‖ is justified by the fact that we still measure
a nonzero current even at |B| = 8 T. If the effective mass
along the nanowire growth direction would be smaller, the
orbital effects would shrink the wave function to the extent
that the interdot tunnel coupling would vanish at 8 T. For our
experiment, we determine l‖ ≈ 39–45 nm for the range of
Vg3 used here. All the parameters extracted from our analysis
for the three datasets are reported in Table I. These values
capture the qualitative trend expected: when the voltage Vg3

is increased, the hole wave functions become more separated
and squeezed, causing a reduction of the tunneling energy
tc and an enhancement of the g factor because of the strong
spin-orbit interaction, as described by Eq. (2). As shown in
the next section, our model allows us to extract the spin-orbit
length for each measurement. The model color plots shown in
Figs. 4(d)–4(f) take into account the extracted values of the
spin-orbit length, allowing a full reconstruction of the leakage
current in very good agreement with the measurements.

VIII. SPIN-ORBIT LENGTH

We now turn to the evaluation of the strength of the spin-
orbit interaction from the measurements shown in Fig. 4.
The model developed in the previous sections facilitates the
extraction of this strength from the width of the two leakage

current features as a function of detuning in Figs. 4(a)–4(c).
This width is given by the sizes 2�±

ST of the avoided crossings
[see Fig. 3(a)] induced by the spin-orbit interaction. Here, the
spin-flip tunneling energies �±

ST are functions of the spin-orbit
length λso and furthermore depend on the overlap of the wave
functions of the |T↑↑,↓↓(1, 1)〉 states with those of the |S±〉
states, as well as on the dot size. The spin-flip tunneling
energy can be written as (see Appendix C for the complete
derivation)

�±
ST = tc tan

(
a

λso

)√
1 ± cos(θ )

2
, (4)

with θ the mixing angle of the |S±〉 states.
The leakage current I±(B) corresponding to the resonances

around ε = ε±(B) can be written as [48,57–59]

I± = I0 + e�
(�±

ST)2

(ε − ε±)2 + 3(�±
ST)2 + h2�2/4

. (5)

Here, the lead-to-dot relaxation rate � ∼ 0.45 GHz is taken
to be symmetric for both of the leads and is estimated by
adjusting the formula in Eq. (5) for the |S(0, 2)〉 → |S(1, 1)〉
transition, and fitting it to the current measured for opposite
VSD. The offset current term I0 contains all incoherent relax-
ation mechanisms, as well as |S〉/|T0〉 mixing. Discussing this
term in detail is beyond the scope of this paper and we refer
the interested reader to Ref. [44]. Additionally, we note that
since we operate at relatively high temperature, it might be ex-
pected that the transitions are thermally broadened. However,
the temperature of 1.4 K is still low compared to the orbital
level splitting of 1 meV, making such broadening negligible.
The dot-lead tunneling rate � is influenced by temperature,
but the value of � that we determine independently from the
measurements already includes this effect.

We therefore conclude that the width of the two leakage
current features is given by the spin-flip tunneling energies
�±

ST, which are then deduced by fitting the Lorentzians in
Eq. (5) to the data sets of Figs. 4(a)–4(c). An example of
this is shown in Fig. 5. The color plots of Figs. 4(d)–4(f)
are constructed from the Lorentzians found in this way for
different values of the magnetic field. It can be seen that the
model plots accurately reproduce the leakage current observed
in the corresponding experimental data.

Importantly, the determined �±
ST allow to extract the spin-

orbit length λso. Using Eq. (4), we obtain the ratio λso/a
directly from the ratio �ST/tc of the average spin-flip tun-
neling �ST = [(�+

ST)2 + (�−
ST)2]

1/2
and the spin-conserving

tunneling tc. This yields ratios of λso/a as shown in Table I
for the different configurations of our double quantum dot.
Note that the values of B̃ and tc obtained for Vg3 = 3840 mV
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FIG. 5. Measured leakage current as a function of detuning, for
Vg3 = 3820 mV and B = −3.45 T. The black curve is a fit of Eq. (5)
to the data.

have a large relative uncertainty due to the absence of a dip
in the data around zero magnetic field. In this case, Eq. (3)
cannot be used and we infer B̃ and tc solely from fitting Eq. (1)
to the data, which leads to a higher error margin. However,
even in this case, λso/a and g(B̃) can be determined with
good accuracy. The precise value of the interdot distance a
cannot be exactly determined from the measurements, but we
can roughly estimate a ∼ 90 nm by considering the distance
between the gates g2 and g4 [see Fig. 1(a)]. Using this value,
we obtain an average estimated value λso ∼ 65 nm for the
spin-orbit length, with small variation between the measure-
ments of Figs. 4(a)–4(c). This value of λso is consistent with
our recent complementary study using Rabi oscillations of
hole spin qubits defined in a similar device [60], and it agrees
well with earlier results obtained for different regimes, such
as with a Ge/Si nanowire without dot confinement [61] and
with a quantum dot occupation of hundreds of holes [62] (in
this work, we estimate a dot occupation of roughly 15 holes).

Together with the orbital effects of the magnetic field, this
notably small λso leads to a dependence of the g factor on the
magnetic field, as described by Eq. (2). This effect is large,
since the spin-orbit length λso and the confinement length
along the wire l‖ are of the same order of magnitude. In our
measurements, this manifests itself in the additional bending
of the transitions ε±(B) at high values of the magnetic field.

IX. CONCLUSIONS AND OUTLOOK

Summarizing, we have characterized the strength of spin-
orbit interaction for hole spins confined in a double quantum
dot in a Ge/Si nanowire, using spectroscopy measurements in
Pauli spin blockade. We found the spin-orbit length to be of
the same order of magnitude as the dot length and interdot dis-
tance. This has the remarkable consequence that the g factor
exhibits a nonlinear dependence on magnetic field, which we
observe experimentally at high values of the magnetic field.

The observation of this strong spin-orbit interaction in
Ge/Si nanowires forms the starting point of various subse-
quent experiments in this material system. From the value of
λso we can estimate the Rabi frequency for electric dipole
induced spin resonance [5,18] mediated through spin-orbit
interaction to be in the range of ∼0.1–1 GHz, for realistic val-
ues of microwave amplitudes. When combined with pulsing
techniques and microwave control appropriate for high-speed

operation, such Rabi frequencies form an excellent basis for
the implementation of fast hole spin qubits in this system.

Further characterization studies of the spin-orbit interac-
tion in this platform are of interest, in particular because
here a quantitative comparison to relevant theoretical works
[9,16,19,20,26] is challenging, due to the relatively high dot
occupation number. For instance, direct Rashba spin-orbit
interaction is predicted to lead to a profound dependence of
the spin-orbit interaction as well as the g factor on electric
fields. While we observe a dependence of the g factor on a gate
voltage (see Table I), a more complete investigation of these
effects would include measurements of the strength of the
spin-orbit interaction as function of electric field amplitude
or orientation of magnetic field. Such tunability of g-factor
and spin-orbit strength could enable individual addressability
of spin qubits in coupling them to microwave fields, as well
as provide a way to limit the impact of charge noise on spin
coherence.
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APPENDIX A: MODEL HAMILTONIAN

Here, we provide a more detailed analysis of the theoret-
ical model used in the main text. The relevant physics of a
single hole confined in a quantum dot can be captured by the
effective two-dimensional Hamiltonian

H = Ho + Hso + HZ , (A1)

with

Ho = π2
x

2m⊥
+ π2

y

2m⊥
+ π2

z

2m‖
+ m‖ω2

‖
2

z2

+ m⊥ω2
⊥

2
(x2 + y2), (A2a)

Hso = απzσy, (A2b)

HZ = g0μB

2
B · σ. (A2c)

Here, we define the dynamical momentum π = −ih̄∇ − eA,
where A is the vector potential accounting for an externally
applied magnetic field B. These operators satisfy the com-
mutation relations [πi, π j] = iεi jk h̄eBk , [πi, x j] = −ih̄δi j . We
model the confinement potential by an anisotropic harmonic
oscillator, with confinement frequencies ω⊥ and ω‖, and ef-
fective masses m⊥ and m‖ in the direction perpendicular and
parallel to the nanowire growth direction, respectively. In the
following, we assume ω⊥ > ω‖. Because of the magnetic
field, the spin states are split in energy by the Zeeman energy;
here g0 is the g factor of the system and the field B is assumed
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to be homogeneous. The interaction between different spin
states is captured by a Rashba-like spin-orbit interaction Hso

[19,20].
Our final goal is to extract from the measurements the spin-

orbit interaction parameter α. It is convenient to introduce the
spin-orbit length

λso = h̄

m‖α
, (A3)

and to perform the unitary spin-dependent displacement of
states [63]

S = eiσyz/λso , (A4)

that diagonalizes the spin-orbit interaction in spin-space

S(Ho + Hso)S† = Ho − h̄2

2m‖λ2
so

, (A5)

converting the Zeeman term to a position-dependent quantity.
We now focus on the case where the magnetic field points in
the x direction, i.e., B = Bex, and we obtain

SHZ S† = g0μB

2
B

[
σx cos

(
2z

λso

)
+ σz sin

(
2z

λso

)]
. (A6)

In the harmonic confinement approximation, the orbital
Hamiltonian Ho can always be diagonalized exactly. Assum-
ing B > 0, we can introduce the vector of gauge-independent
canonical positions Q and momenta P

Q =

⎛
⎜⎝

z
lB

− lB
h̄ πy

lB
h̄ πy

x

⎞
⎟⎠ and P =

⎛
⎜⎝

y
lB

+ lB
h̄ πz

lB
h̄ πz

−i∂x

⎞
⎟⎠, (A7)

satisfying [Qi, Pj] = iδi j ; here lB = √
h̄/(e|B|) is the magnetic

length. When B < 0, the first two positions and momenta are
swapped. The coupled harmonic oscillators can be decoupled
by the symplectic Bogoliubov transformation(

Q

P

)
=

(A(r) 0

0 A(−r)T

)(
q

p

)
, (A8)

where three-dimensional matrix A(r) is defined by

A(r) =

⎛
⎜⎝

cosh(r) −ω⊥
ω‖

sinh(r) 0

− ω‖
ω⊥

sinh(r) cosh(r) 0

0 0 1

⎞
⎟⎠, (A9)

with squeezing parameter

r = 1

2
arccoth

( e2B2

m⊥m‖
+ ω2

⊥ + ω2
‖

2ω⊥ω‖

)
. (A10)

In the new coordinate system with positions q and momenta
p, we obtain three independent harmonic oscillators with
frequencies ω⊥ and ω1 < ω2, where the Fock-Darwin fre-
quencies are

ω1 = ω2 tanh(r)

=
√

m‖m⊥
eB

ω‖ω⊥

√(
1− ω‖

ω⊥
tanh(r)

)(
1−ω⊥

ω‖
tanh(r)

)
.

(A11)

We point out that when B → 0, Eq. (A11) is still valid and it
leads to the expected result ω1 = ω‖ and ω2 = ω⊥.

The ground state |0〉 is the state simultaneously annihilated
by the annihilation operators in this coordinate system

a j = 1√
2

(
β jq j + i

β j
p j

)
, (A12)

where

β j =
[( ω‖m‖

ω⊥m⊥
γ
)1/4

,

(
ω‖m‖
ω⊥m⊥

1

γ

)1/4

,
√

m⊥ω⊥/h̄

]
j

,

(A13)

and γ = ω‖
ω⊥

ω‖/ω⊥−coth(r)
ω⊥/ω‖−coth(r) . To determine the ground state wave

function in real space, we need to specify a gauge. In the sym-
metric gauge A = B × r/2 and combining Eqs. (A7), (A8)
and (A12), we obtain

ψ0(r) = 1

π3/4
√

lxlylz
e
− 1

2 ( x2

l2x
+ y2

l2y
+ z2

l2z
)+i yz

2l2B
(

ω‖−ω⊥
ω‖+ω⊥ )

, (A14)

where we defined the magnetic field-dependent lengths

ly = l⊥

(
1 + B2

B2
0

)−1/4

and lz = l‖

(
1 + B2

B2
0

)−1/4

, (A15)

and the usual harmonic lengths

lx = l⊥ =
√

h̄

m⊥ω⊥
and l‖ =

√
h̄

m‖ω‖
. (A16)

The characteristic magnetic field B0 in Eq. (A15) determines
the relevant field at which the orbital effects start to become
significant and it is defined by

B0 =
√

m‖m⊥
e

(ω‖ + ω⊥). (A17)

Projecting the Hamiltonian in Eq. (A1) onto the groundstate
subspace and subtracting a constant energy term, we obtain
the effective low energy Hamiltonian

HGS = gμBB

2
σx, (A18)

where we introduce the effective g factor

g = g0e−l2
z /λ2

so . (A19)

We emphasize that the g factor is renormalized by the spin-
orbit interaction, and it acquires a magnetic field dependence
via lz, see Eq. (A15).

We remark that because of the transformation in Eq. (A4),
we are now treating spin-orbit interaction exactly, and the
perturbation coupling different orbital states comes from the
space-dependent magnetic field in the Zeeman energy, see
Eq. (A6). This approach is the most convenient to describe
the results of this experiment, where a strong spin-orbit inter-
action is measured. Because of this term, the orbital ground
state is coupled to the first excited orbital state |1〉 with energy
h̄ω1. In particular, the interaction is

〈0|H |1〉 = lB√
2λsoβ1

(
cosh(r) − ω‖

ω⊥
sinh(r)

)
gμBBσz.

(A20)
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Using the values extracted in the main text, see Table I, we
find that the amplitude of this interaction term is ∼20% of
the energy gap ∼h̄ω1 at the maximal field measured B = 8 T.
Consequently, in the following we focus on the ground state
subspace only.

APPENDIX B: DOUBLE-DOT HAMILTONIAN

We now construct the double-dot effective Hamiltonian by
using the Hund-Mulliken method. To do so, we create an
orthonormal basis of harmonic eigenfunctions whose center
of mass is at the positions z = ±a/2. Here, a is the interdot
distance. Following the conventional procedure, we find the
overlap matrix between the orbital ground states of the two
dots: Pi j = 〈�i|� j〉, where

|�〉 = (Tz(−a/2)S†|ψ0 ↑〉, Tz(−a/2)S†|ψ0 ↓〉,
Tz(+a/2)S†|ψ0 ↑〉, Tz(+a/2)S†|ψ0 ↓〉). (B1)

The magnetic translation operators are defined as Tz(X ) =
eiX (πz/h̄+y/l2

B ) and ψ0 is the ground state wave function in
Eq. (A14). Importantly, because the unitary S† in Eq. (A4) is
spin-dependent, here P is a 4 × 4 matrix. Explicitly, we find

P = τ0σ0 + s cos

(
a

λso

)
τxσ0 + s sin

(
a

λso

)
τyσy, (B2)

where τi are Pauli matrices acting on the different dots, σi are
acting on spins and we define the small parameter

s = e
− a2

4l2z
(1+ (ω⊥−ω‖ )2

4ω⊥ω‖
B2

B2+B2
0

)
. (B3)

Orthogonal and symmetric states |O〉 are constructed from
the nonorthogonal states |NO〉 by the linear map |O〉 =
|NO〉P−1/2 and single-particle operators H transform as
HO = P−1/2HNOP−1/2. The generalization to two-body oper-
ators is straightforward.

For rather general double-dot confinement potentials, we
find that the orbital Hamiltonian in the orthonormal basis has
the form

Ho = tcτxσ0 + tsoτyσy + ε

2
τzσ0. (B4)

Here, ε is the detuning between the two dots typically caused
by an electric field along the wire, tc is the spin-conserving
tunneling energy and tso is the spin-flip tunneling energy
caused by the spin-orbit interaction. In particular, we find that

tc = s

1 − s2
t0 cos

(
a

λso

)
and (B5a)

tso = s

1 − s2
t0 sin

(
a

λso

)
= tc tan

(
a

λso

)
. (B5b)

where t0 is a characteristic energy dependent on the details of
the confinement potential and the leading magnetic field de-
pendence of the tunneling energy is caused by the exponential
dependence of the overlap s on B, see Eq. (B3).

Also, the Zeeman energy in the orthogonal basis is

HZ = gμBB

2
(g1τ0σx + g2τxσx + g3τzσz ), (B6)

where we introduce the dimensionless prefactors

g1 = 1 + √
1 − s2 − 2s2 cos

(
a

λso

)
2 − 2s2

+ (1 − √
1 − s2) cos

(
2a
λso

)
2 − 2s2

= 1 + O(s2), (B7)

g2 = 1 − cos
(

a
λso

)
1 − s2

s, (B8)

g3 = s2 − (1 − √
1 − s2) cos

(
a

λso

)
1 − s2

sin

(
a

λso

)
= O(s2).

(B9)

Neglecting corrections of order s2, we can discard the term
proportional to g3, that couple the triplet states T↑↓(1, 1) to
the singlet state S(1, 1). The term proportional to g2 arise
when the spin-orbit interaction is large and cause interac-
tions between the triplet T0(1, 1) and the doubly-occupied
singlet states S(2, 0) and S(0, 2). This term causes an extra
resonant peak of the leakage current, however, in the present
experiment the energy of this interaction is of a few micro-
electronvolts, much smaller than the contribution due to the
spin-flip tunneling. Consequently, in the following, we will
ignore it and consider only HZ ≈ gμBBτ0σx/2.

Coulomb interactions are also required to understand the
physics of the system. In particular, the most relevant elec-
trostatic interaction element for the current experiment is the
addition energy,

U = 〈�i�i| e2

4πεsr
|�i�i〉

= e2

4πεs

√
2

π

F
(

cos−1
( lz

lx

)∣∣ l2
x −l2

y

l2
x −l2

z

)
√

l2
x − l2

z

, (B10)

where F (a|b) is the elliptic F function and εs = 16ε0 is
the dielectric constant of germanium times the vacuum per-
mittivity ε0. Equation (B10) holds for general values of
lengths li provided that the appropriate limit is taken care-
fully. The next largest Coulomb interaction elements are
the Hartree and Fock terms UH = 〈�i� j �=i| e2

4πεsr
|� j �=i�i〉 and

UF = 〈�i� j �=i| e2

4πεsr
|�i� j �=i〉, respectively. In the present ex-

periment, the overlap s between wave functions of different
dots is expected to be small, and so we discard the correc-
tions of order O(s2) and we ignore the exchange interaction
UF ≈ 0.

APPENDIX C: SINGLET-TRIPLET BASIS

We can now rewrite the Hamiltonian in the singlet-triplet
basis. Neglecting higher orbital states, the relevant triplet
states are

|T↑↑,↓↓(1, 1)〉 = c†
−,↑(↓)c

†
+,↑(↓)|0〉 and

|T0(1, 1)〉 =c†
−,↑c†

+,↓ + c†
−,↓c†

+,↑√
2

|0〉, (C1)
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and the singlets are

|S(0, 2)〉 = c†
+,↑c†

+,↓|0〉 and

|S0(1, 1)〉 = c†
−,↑c†

+,↓ − c†
−,↓c†

+,↑√
2

|0〉, (C2)

where we introduce the fermionic ladder operators c†
i,σ cre-

ating an electron at the ith dot with spin σ . We do not
consider here the singlet state S(2, 0) because it is far detuned
in energy, and so the interactions of these states with it are
suppressed by the large energy difference.

By aligning the spin quantization axis to the direction
of the magnetic field, we find in the singlet-triplet basis
(S(0, 2), S(1, 1), T↑↑(1, 1), T↓↓(1, 1), T0(1, 1))

T

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

U − ε
√

2tc tso −tso 0√
2tc UH 0 0 0

tso 0 UH + gμBB 0 0

−tso 0 0 UH − gμBB 0

0 0 0 0 UH

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(C3)

where tc, tso and g and U are defined in Eqs. (B5a), (A19),
and (B10), respectively. The singlet sector is hybridized by
the spin-conserving tunneling energy. By introducing the hy-
bridized singlet states S± obtained by rotating the singlet
sector by θ/2, where θ is

θ = arctan

(
2
√

2tc
U − UH − ε

)
, (C4)

we can rewrite the Hamiltonian in the convenient form

H =

⎛
⎜⎜⎜⎜⎜⎝

E+ 0 �+
ST −�+

ST 0

0 E− −�−
ST �−

ST 0

�+
ST −�−

ST UH + gμBB 0 0

−�+
ST �−

ST 0 UH − gμBB 0

0 0 0 0 UH

⎞
⎟⎟⎟⎟⎟⎠,

(C5)

where we defined the hybridized singlet energies E± and the
spin-orbit interaction �±

ST via

E± = 1

2
(U + UH − ε) ±

√
2t2

c + 1

4
(U − UH − ε)2, (C6a)

�±
ST = tso

√
1 ± cos(θ )

2
. (C6b)

Note that in the limit of weak spin orbit coupling, i.e.,
a/λso � 1, we recover the result obtained previously for the
ST splitting [55].

The leakage current is related to the matrix elements �±
ST

between singlet and triplet states via [48,57–59]

I± = e�L
(�±

ST)2

(ε − ε±)2 + (�±
ST)2

(
�L
�R

+ 2
) + h2�L

2/4
. (C7)

where �R(L) is the coupling between the right, occupied (left,
unoccupied) dot to the metallic lead and ε± is the position
of the triplet T↑↑,↓↓(1, 1) and the singlet S± anticrossing. In
particular, by using Eq. (C6a), we find

ε± = U − UH ±
(

2t2
c

gμBB
− gμBB

)
. (C8)

Neglecting the corrections due to the Hartree energy UH , small
compared to the addition energy U , and assuming symmetric
dot-lead coupling �L ≈ �R = �, we obtain Eqs. (1) and (5)
of the main text. Note that in the main text the detuning
is measured from the singlet-singlet anti-crossing, therefore
Eq. (1) contains a constant energy shift.
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[20] C. Kloeffel, M. J. Rančić, and D. Loss, Direct Rashba spin-
orbit interaction in Si and Ge nanowires with different growth
directions, Phys. Rev. B 97, 235422 (2018).
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