
J. Chem. Phys. 155, 064105 (2021); https://doi.org/10.1063/5.0059742 155, 064105

© 2021 Author(s).

Toward the design of chemical reactions:
Machine learning barriers of competing
mechanisms in reactant space
Cite as: J. Chem. Phys. 155, 064105 (2021); https://doi.org/10.1063/5.0059742
Submitted: 11 June 2021 • Accepted: 22 July 2021 • Published Online: 10 August 2021

 Stefan Heinen,  Guido Falk von Rudorff and  O. Anatole von Lilienfeld

COLLECTIONS

Paper published as part of the special topic on Chemical Design by Artificial Intelligence

ARTICLES YOU MAY BE INTERESTED IN

Machine learning meets chemical physics
The Journal of Chemical Physics 154, 160401 (2021); https://doi.org/10.1063/5.0051418

Perspective on integrating machine learning into computational chemistry and materials
science
The Journal of Chemical Physics 154, 230903 (2021); https://doi.org/10.1063/5.0047760

An extended autoencoder model for reaction coordinate discovery in rare event molecular
dynamics datasets
The Journal of Chemical Physics 155, 064103 (2021); https://doi.org/10.1063/5.0058639

https://images.scitation.org/redirect.spark?MID=176720&plid=1689643&setID=533015&channelID=0&CID=616274&banID=520577610&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9bae6abd127771db46248d5d7925570316299378&location=
https://doi.org/10.1063/5.0059742
https://doi.org/10.1063/5.0059742
http://orcid.org/0000-0001-9382-2342
https://aip.scitation.org/author/Heinen%2C+Stefan
http://orcid.org/0000-0001-7987-4330
https://aip.scitation.org/author/von+Rudorff%2C+Guido+Falk
http://orcid.org/0000-0001-7419-0466
https://aip.scitation.org/author/von+Lilienfeld%2C+O+Anatole
/topic/special-collections/chai2021?SeriesKey=jcp
https://doi.org/10.1063/5.0059742
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0059742
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0059742&domain=aip.scitation.org&date_stamp=2021-08-10
https://aip.scitation.org/doi/10.1063/5.0051418
https://doi.org/10.1063/5.0051418
https://aip.scitation.org/doi/10.1063/5.0047760
https://aip.scitation.org/doi/10.1063/5.0047760
https://doi.org/10.1063/5.0047760
https://aip.scitation.org/doi/10.1063/5.0058639
https://aip.scitation.org/doi/10.1063/5.0058639
https://doi.org/10.1063/5.0058639


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Toward the design of chemical reactions:
Machine learning barriers of competing
mechanisms in reactant space

Cite as: J. Chem. Phys. 155, 064105 (2021); doi: 10.1063/5.0059742
Submitted: 11 June 2021 • Accepted: 22 July 2021 •
Published Online: 10 August 2021

Stefan Heinen,1,2 Guido Falk von Rudorff,1,2 and O. Anatole von Lilienfeld1,2,a)

AFFILIATIONS
1 Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria
2 Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL),

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Note: This paper is part of the JCP Special Topic on Chemical Design by Artificial Intelligence.
a)Author to whom correspondence should be addressed: anatole.vonlilienfeld@univie.ac.at

ABSTRACT
The interplay of kinetics and thermodynamics governs reactive processes, and their control is key in synthesis efforts. While sophisticated
numerical methods for studying equilibrium states have well advanced, quantitative predictions of kinetic behavior remain challenging. We
introduce a reactant-to-barrier (R2B) machine learning model that rapidly and accurately infers activation energies and transition state
geometries throughout the chemical compound space. R2B exhibits improving accuracy as training set sizes grow and requires as input
solely the molecular graph of the reactant and the information of the reaction type. We provide numerical evidence for the applicability of
R2B for two competing text-book reactions relevant to organic synthesis, E2 and SN2, trained and tested on chemically diverse quantum data
from the literature. After training on 1–1.8k examples, R2B predicts activation energies on average within less than 2.5 kcal/mol with respect
to the coupled-cluster singles doubles reference within milliseconds. Principal component analysis of kernel matrices reveals the hierarchy of
the multiple scales underpinning reactivity in chemical space: Nucleophiles and leaving groups, substituents, and pairwise substituent com-
binations correspond to systematic lowering of eigenvalues. Analysis of R2B based predictions of ∼11.5k E2 and SN2 barriers in the gas-phase
for previously undocumented reactants indicates that on average, E2 is favored in 75% of all cases and that SN2 becomes likely for chlorine as
nucleophile/leaving group and for substituents consisting of hydrogen or electron-withdrawing groups. Experimental reaction design from
first principles is enabled due to R2B, which is demonstrated by the construction of decision trees. Numerical R2B based results for inter-
atomic distances and angles of reactant and transition state geometries suggest that Hammond’s postulate is applicable to SN2, but not to
E2.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059742

I. INTRODUCTION

To accelerate robotic experimental materials synthesis, design,
and discovery,2,3 a reliable operating system that can deploy robust
virtual models of alternative chemical reaction channels is necessary.
Rapid yet accurate predictions of the kinetic control of reaction
outcomes for given reactants and competing reaction channels,
however, are still an unsolved problem. Considerable efforts in
quantum chemistry were already directed at the development of
automated transition state (TS) searches and chemical reaction
paths. However, calculation of the relevant parts of potential energy

surfaces remains a difficult challenge under active research.4 To this
end, many TS search algorithms have been introduced, which can
be grouped into single or double ended methods.5,6 An example of
the former is the single-ended growing string method,7 which uses
only the reactant as the starting point and then searches minimum
energy paths and transition states. Double-ended methods, such as
nudged elastic band8,9 or the two-sided growing string method,10

employ both reactant and product geometries to obtain a TS geome-
try. While successful, both approaches are computationally demand-
ing and, in practice, often limited to small systems with mostly single
step reactions.11 Recent advances in synthesis planning and modern
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machine learning techniques hold the promise for dramatic accel-
eration of such numerical challenges.12,13 Already, several artificial
neural networks to predict reaction outcomes were introduced (see
Ref. 14 for a recent review), including work based on molecular
orbital interactions of reactive sites,15 molecular fingerprints (tem-
plate based),16 reaction site identifiers (template free),17,18 scoring
functions in search trees,19 sequence to sequence maps,20 and multi-
ple fingerprint features.21 However, all these machine learning mod-
els rely on experimental records, meaning that they are agnostic of
the underlying kinetics, which are known to be crucial for reliably
predicting reaction outcomes. Neglecting the energetics of chemi-
cal reactivity can be problematic, however, due to the reaction rate’s
exponential dependency on the activation energy (cf. the Arrhenius
equation).

To use machine learning to go beyond experimental data
records and toward more reliable virtual predictions of reaction
outcomes for new chemistries, reaction conditions, catalysts, or sol-
vents, access to substantial and systematic relevant training data of
fundamental energetics, e.g., encoding kinetic or thermodynamic
effects, is required.22 Very recent first steps in the direction of quan-
tum machine learning applied to reactivity included the prediction
of H2 activation barriers of Vaska’s complexes,23 the effect of nucle-
ophilic aromatic substitution to reaction barriers,24 the tempera-
ture dependency of coupled reaction rates,25 or the prediction of
enantioselectivity in organocatalysts.26

In this work, we demonstrate how the reactant-to-barrier (R2B)
model effectively unifies the two directions (yield vs energy) in order

to deliver robust predictions of reaction outcomes of competing
mechanisms. We show how R2B can be used to predict and discrim-
inate competing reaction channels among two of the most famous
text-book reactions in chemistry, SN2 vs E227 (see Fig. 1), using a
quantum dataset from the literature encoding thousands of tran-
sition states obtained from high-level quantum chemistry.28 Using
our R2B model, we complete the dataset for undocumented com-
binations for which transition state optimizers did not converge.
We also demonstrate how decision trees based on R2B give action-
able suggestions for experiments on how to control which reaction
channel dominates and thus the reaction outcome. On the synthetic
chemistry side, an analysis of the predicted activation energies as
well as transition state and reactant complex geometries based on
our models suggests that Hammond’s postulate is not applicable
to E2.

II. METHODS
A. Kernel ridge regression

Ridge regression belongs to the family of supervised learning
methods where the input space is mapped to a feature space within
which fitting is performed. The transformation to the feature space
is unknown a priori and computationally expensive. To circum-
vent this problem, the “kernel trick”29 is applied where the inner
product ⟨xi, xj⟩ of the representations of the two compounds i and
j is replaced by the so-called kernel function k(xi, xj). This results
in kernel ridge regression (KRR). A kernel is a measurement of

FIG. 1. Scheme for competing reactions E2 vs SN2 with transition states E2 (4) and SN2 (5). Reactant and nucleophile at infinite separation (1): in the gas phase, the energy
of the transition state often lies lower than the energy of the reactants at infinite separation.1 Product geometries at infinite separation (6 and 7) and reactant complexes (2
and 3). Properties of interest for this work are activation energies EE

a and ES
a , reactants, reactant complexes, and transition states. The table shows substituents R, leaving

groups X, and nucleophiles Y.
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similarity between two input vectors xi and xj. In this work, we used
the Gaussian kernel

k(xi, xj) = exp(−∥xi − xj∥2
2

2σ2 ), (1)

with the length scale hyperparameter σ and representation x. Using
the representation of a molecule as input space, KRR learns a map-
ping function to a property yest

q (xq), given a training set of N refer-
ence pairs (xi, yi). The representation FCHL19 was optimized for the
Gaussian kernel and currently represents state of the art for energy
predictions within KRR based ML models. The property yest

q (xq) can
be expanded in a kernel-basis set series centered on all the N training
instances i,

yest
q (xq) =

N

∑
i

αik(xi, xq), (2)

where αi is the ith component of the regression coefficient vector α
which is obtained as:

α = (K + λI)−1y, (3)

with the regularization strength λ, the identity matrix I, and the
kernel matrix K with kernel elements k(xi, xj) for all training com-
pounds. The kernel (K) within a representation stays the same for
both reactions and the difference in the R2B models (α) enters in the
change of the label (y).30

B. Representations
Here, we have selected four representations of varying com-

plexity: the Bag of Bonds (BoB),31 spectrum of London32 and
Axilrod–Teller–Muto33,34 (SLATM) potentials, FCHL19,35 and one-
hot encoding.29

BoB uses the nuclear Coulomb repulsion terms from the
Coulomb matrix representation (CM36) and groups them into
different bins (so-called bags) for the different elemental atom
pair combinations. SLATM37 uses London dispersion contributions
as the two body term (rather than coulomb repulsion) and the
Axilrod–Teller–Muto potential as the three body term. While the
FCHL18 parameterization accounts for one-body effects in terms
of the position of the element in the Periodic Table (group and
period),38 FCHL19 limits itself to two- and three-body terms for the
sake of computational efficiency.35 Its two-body terms contain inter-
atomic distances R scaled by R−4, and the three-body terms account
for the angular information among all atom triples scaled by R−2.

All three geometry-based representations have been tested
extensively on close-to-equilibrium structures. Since reactive pro-
cesses, by definition, deal with out of equilibrium structures, we
have also included a simple geometry free representation, namely,
one-hot encoding. This representation has also been used to encode
amino acids in peptides for artificial neural networks.39,40 In one-hot
encoding, the representation is a vector of zeros and ones (i.e., a bit
vector) where only one entry is non-zero per feature. To describe
the molecules, we used a bit vector for every substitution site
Ri ∈ {1, 2, 3, 4} and one for the nucleophiles (Y) and the leaving
group (X), respectively. This results in a combined vector containing
6 bit vectors of total length of 27 bits.

C. Training and testing: Learning curves
To train our R2B models, the dataset was split into a training

set and a test set to optimize the hyperparameters and evaluate the
model, respectively. To get the optimal hyperparameters, we used k-
fold cross validation.29 We divide the training data into k folds and,
for each fold, we trained on all but one fold, which was used for eval-
uating the model. This procedure was done in an iterative fashion
over all the folds. We then calculated the averaged error over these
folds. This was done for different combinations of hyperparameters
σ and λ.

The input for all the geometry based R2B models was the reac-
tants at infinite separation (Fig. 1, compound 1). For each reaction,
different reactant conformers (yielding different reactant complexes;
Fig. 1, compounds 2 and 3) have been reported in the dataset.28 To
obtain a uniquely defined problem for the ML models, we canonical-
ized the reactant complexes by always choosing the lowest-lying one
from the source database. Using compound 1, the kernel for both
reaction channels is the same (Ktot), which contains two kernels:
one for the molecule (M and M′) and one for the attacking group
(Y and Y ′), as shown in Eq. (4). Therefore, for both reactions, the
same kernel can be used, and the difference in the training enters by
the activation energy (y) in Eq. (3),

Ktot = K(Y , Y ′) ○ K(M, M′). (4)

Since one-hot encoding does not depend on the geometry, the kernel
can be calculated directly for the entire system.

In order to measure the accuracy of our R2B models, we picked
the best set of hyperparameters and trained the model using differ-
ent training set sizes N and plotted the mean absolute errors (MAEs)
vs N (in a log–log plot), resulting in learning curves. Using learning
curves allowed us to see the learning behavior of our R2B models
and compare different representations. The error ϵ of a consistently
improving ML model should decrease following a power law for
increasing training set sizes N41 in a logarithmic scale,

log(ϵ) = log(a) − b ⋅ log(N) + ⋅ ⋅ ⋅ , (5)

where a is the offset (an indicator of how well the selected basis
functions fit reality) and b is the slope of the learning curve that
describes the speed at which the accuracy increases using larger
training set sizes. Higher order terms (⋅ ⋅ ⋅) were neglected in this
work, as commonly done.

D. Data and scripts
The data extracted from QMrxn2028 are available on GitHub.42

The scripts used to optimize the hyperparameters and to generate
the learning curves are also available in the same Git repository.

The dataset QMrxn2028 contains 1286 E2 and 2361 SN2
machine learned LCCSD activation barriers (ΔEa). From these reac-
tions, 529 are overlapping reactions, meaning that they start from
the same reactant (1) and go over different reactant complexes (E2:
2 and SN2: 3) toward the corresponding transition states (E2: 4
and SN2: 5). All geometries in the dataset had been optimized with
MP2/6-311G(d),43–47 and subsequently, DF-LCCSD/cc-TZVP sin-
gle point calculations (as implemented in Molpro2018) were per-
formed.48–54 The backbone scaffold of all reactants is an ethane
molecule, which is substituted by functional groups and a leaving
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group. The system also contains the nucleophile (attacking group).
The chemical composition of the reactant complexes is shown in
the table in Fig. 1 and contains the functional groups –H, –NO2,
–CN, –CH3, and –NH2; the leaving groups –F, –Cl, and –Br; and
the nucleophiles H−, F−, Cl−, and Br−. The molecular system (e.g.,
the reactant complex) is negatively charged and contains at most
21 atoms (including hydrogen atoms) or 16 heavy atoms (non-
hydrogen atoms). To ensure the data source28 did not contain dupli-
cated reactions, we calculated the L2 norm of all pairwise differences
between training and test compounds of the corresponding FCHL19
representations and identified only 3 out of the 3647 cases where
that norm is very close to zero. We have inspected these three cases,
and they correspond to systems that only differ in the location of
the same set of substituents. As such, they are distinct but are, due
to their similarity, mapped to very similar regions in feature space.
In any case, since they amount to only less than one per mille of
the data points, we chose to work on the original dataset for better
comparison to the literature.

III. RESULTS AND DISCUSSION
A. Learning barriers

Conventionally, the first principles based prediction of acti-
vation energies requires the use of sophisticated search-algorithms
that iteratively converge toward relevant transition state geome-
tries that satisfy the potential energy saddle-point criterion.8,10,55

The activation energy is then obtained as the energy difference
between reactant and transition state geometry. By contrast, our
R2B models solely rely on reactant information as input. We trained
them using aforementioned geometry based representations BoB,31

SLATM,37 FCHL19,35 and one-hot-encoding to predict activation
energies solely based on reactants at infinite separation as input
geometries (compound 1 in Fig. 1). The resulting learning curves
in Fig. 2 indicate systematically improving activation energy pre-
dictions with increasing training set size N for E2 and SN2. For
both mechanisms, the most data-efficient R2B models (one-hot-
encoding) reach prediction errors of 3 kcal/mol with respect to
Coupled-Cluster Singles Doubles (CCSD) reference, i.e., on par
with the deviation of MP2 from CCSD, already for less than 300
training instances. For 2000 training instances, the prediction error
approaches 2 kcal/mol. Moreover, the lack of convergence sug-
gests that chemical accuracy (1 kcal/mol) could be reached if sev-
eral thousand training data points had been available. The insets
of Fig. 2 show true (Eref

a ) vs predicted (Eest
a ) activation barriers for

both reactions. Barriers in the range of 0–50 kcal/mol are predicted
with decent correlation coefficients (0.89 and 0.94 for E2 and SN2,
respectively). In short, after training on reference activation ener-
gies obtained for explicit transition state geometries (taken from the
QMrxn20 dataset28), the learning curves in Fig. 2 amount to over-
whelming evidence that it is possible to circumvent the necessity for
explicit transition state structural search when predicting activation
energies for out-of-sample reactants.

The trends among learning curves in Fig. 2 are consistent with
literature results for equilibrium structures: The accuracy improves
when going from BoB to SLATM and FCHL19 for a given train-
ing set size.56 Most surprisingly, however, all R2B models based on
geometry dependent representations are less accurate than one-hot
encoding. While still unique (a necessary requirement for functional

FIG. 2. Learning curves: activation energy prediction errors (out-of-sample) as
a function of training set size N for activation barriers (Ea) of E2 (left) and SN2
(right) using reactant information as inputs only. Results are shown for four rep-
resentations (BoB, SLATM, FCHL19, and one-hot) used within KRR models. The
training data reference level of theory corresponds to DF-LCCSD/cc-pVTZ//MP2/6-
311G(d), and the estimated MP2 error is denoted as a blue dashed horizontal line.
Insets: reference vs estimated activation barriers using one-hot-based predictions
and R2 values being 0.89 and 0.94 for E2 (left) and SN2 (right), respectively.

R2B models57,58), one-hot encoding is devoid of any structural infor-
mation, and its outstanding performance is therefore in direct con-
flict with the commonly made conclusion that a physics inspired
functional form of the representation is crucial for the performance
of R2B models.56,59,60 Relying only on the period and group informa-
tion in the Periodic Table to encode composition, other geometry-
free representations have also been applied successfully to the study
of elpasolite61 or perovskite62 crystal structures. Here, by contrast,
one-hot encoding provides the compositional information for a
fixed scaffold.

One can speculate about the reasons for the surprising relative
performance of one-hot encoding. Due to its inherent lack of reso-
lution, which prohibits the distinction between reactant and transi-
tion state geometries, it could be that one-hot encoding represents a
more efficient basis, which effectively maps onto a lower dimension-
ality with superior learning performance. In particular, the induc-
tive effect (practically independent of specific geometric details) is
known to dominate barrier heights for the types of reactions under
consideration,63 and it is explicitly accounted for through one-hot
encoding without imposing the necessity to differentiate it from the
configurational degrees of freedom.

Figure 2 shows one outlier per reaction. For the E2 case, the
molecule closest in one-hot encoding to the failed prediction (only
differs in X and Y) has a much smaller barrier of 12 kcal/mol. Sim-
ilarly, for the SN2 reaction, the closest molecule (only differs in X
and Y) has a barrier of 24 kcal/mol. As such, this scarcity of train-
ing instances in close vicinity to the outlier might be at the origin
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for such relatively large prediction errors. To get an idea of the inner
workings of the one-hot encoding model, we performed a principal
component analysis (PCA) of the kernel matrix of the predictions,
which can go either way, i.e., E2 or SN2. For this subset, it is the
difference in activation energy that will determine the kinetically
stabilized product. Color coding the first two components by the
difference in reference activation barrier labels for the two reactions
results in the graphic featured in Fig. 3. Confidence ellipsoids of the
covariance using Pearson correlation coefficients encode intuitive
clusters corresponding to leaving-group/nucleophile combinations
and suggest that substituents have less significant effect on trends in
activation energies. However, the eigenvalue spectrum of the PCA in
Fig. 3 decays rapidly only after the 21st eigenvalue, which indicates
the number of effective dimensions of the model and implies that
the substituents, although smaller, still have an effect on the activa-
tion barrier. This is consistent with the dimensionality of the one-hot
encoding representation: the vector length is 27 (3 X’s, 4 Y’s, and
4 ⋅ 5 R’s), which is overdetermined, meaning that the X part of
the representation vector consists of three elements F (1, 0, 0),
Cl (0, 1, 0), or Br (0, 0, 1). This could also be uniquely defined with
F (0, 0), Cl (1, 0), Br (0, 1), which leads to a dimension of 21 and
is in agreement with the dimensionality of the representation. To
further investigate the R2B model, we looked at the training set selec-
tion. It is known that for clustered data (see Fig. 3), random splits
used in this work tend to perform better than splits along a clus-
ter, even though random splits are more congruent with the nature
of the reaction space under investigation. For comparison, in a first
model, we excluded the functional group NO2 at position R2 and in
a second model at two positions R2 and R3 from the training to see
how one-hot encoding and FCHL19 perform for known functional
groups but unknown positions in the test set. Figure 4 shows the
learning curves for both cases. Although there is still learning, one-
hot encoding does not perform as well as a structural representation
(FCHL19). For FCHL19 in the E2 case, the learning is not affected at
all compared to random training set selection and the model reaches
a similar MAE for 800 training instances. FCHL19 is able to infer
the missing functional group at position R2 from training com-
pounds where this functional group is present at the neighboring
position R1, since the corresponding representation vectors are sim-
ilar. In addition, one-hot encoding shows learning, but it is not the

FIG. 3. Kernel PCA of the training set. Kernel PCA of one-hot encoding
colored by the energy difference of activation energies of the two reactions
ΔEa = EE

a − ES
a . Inset: eigenvalues of the kernel PCA. Clusters represent most

frequent combinations of leaving groups X (green) and nucleophiles Y (black).

FIG. 4. Learning curves across cluster test error (MAE) vs training set size (N)
excluding NO2 from training at position R2 (spheres) and at positions R2 and R3
(diamonds) for both reactions E2 (left) and SN2 (right). The test set only con-
tains compounds with NO2 at position R2 (spheres) or at positions R2 and R3
(diamonds).

dominant model anymore. In this case, learning is possible because
the functional groups contribute additively to the activation energy
as described in Ref. 63. This means that all the other functional
groups improve, except NO2 at positions R2 and R3, since it has no
corresponding training data. For SN2, both models perform worse
when excluding a functional group, especially for the position at R2,
which is closer to the reaction center and therefore contributes more
to the barrier. This also explains why the models perform better if
two functional groups are missing in the SN2 reaction. The second
functional group at position R3 adds more barriers to the test set
with a smaller impact on the barrier (farther away from the reac-
tion center), which makes the learning problem easier. For larger
molecules, not all combinations of functional groups are present in
the training data, rendering a cluster split a more realistic scenario.
In those cases, one-hot encoding will be less applicable and likely
outperformed by scalable approaches, e.g., Amons.

B. New barrier estimates
Using one-hot encoding (leading to the most performing

model), we have trained two models, corresponding to the 1286 and
2361 activation energies of E2 and SN2 transition state geometries,
respectively. Subsequently, these two models were used to predict
11 353 E2 and SN2 activation barriers for which conventional tran-
sition state search methods had failed within the protocol leading
up to the training dataset.28 A comparison of the Rogers–Tanimoto
distances (see the supplementary material) between the QMrxn20
dataset and the missing data points showed that the dissimilarity
within the QMrxn20 dataset is comparable to the one of QMrxn20
vs the missing data points. Together with the learning curves shown
above, this suggests that our model is applicable to the missing
data points from QMrxn20. A summary of the difference in these
predicted activation barriers is presented in Fig. 5, where the x-
axis corresponds to the nucleophiles Y and the y-axis to the leav-
ing groups X. For every combination of X and Y, there are 5 ⋅ 5
squares for the functional groups at position R1 and R2. Within
these, there are again 5 ⋅ 5 squares belonging to R3 and R4. Each
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FIG. 5. Completion of the dataset using predictions of R2B models. Differences in activation energies (ΔEa = EE
a − ES

a ) for all 7500 reactions (calculated and predicted).
Every square stands for a combination of R1-4, X, and Y shown in Fig. 1. Positive values denote compounds that undergo a SN2 reaction, and negative values lead toward
an E2 reaction.

of the squares represents one reaction for a given combination
of R1-4, X, and Y. Simple heuristic reactivity rules emerge from
inspection of these results: If the nucleophile and the leaving group
are Cl, the preferred reaction is SN2. If the nucleophile and the
leaving group are F, the preferred reaction is E2. The functional
groups at positions R1 and R2 favor E2 due to their electron donat-
ing properties, which disfavor a nucleophilic backside attack in the
SN2 reaction. A comprehensive overview is shown in Fig. 5. The
same rules can be observed in Fig. 6, which shows the distribution
of the differences in the activation barrier (ΔEa) of the training,
predicted, and total datasets. The molecules of the extreme cases,
largest difference in activation energies, are shown for both reac-
tions, E2 (left) and SN2 (right). Figure 6 shows a favorization of
the E2 reaction of a rate of roughly 75%. These results have to be
taken with caution since this shift in E2 can also have occurred due
to the composition of the molecules in the training set, as well as
the choice of small functional groups that minimizes steric effects.

FIG. 6. Histogram of energy distribution of ΔEa. Differences in activation ener-
gies (ΔEa = EE

a − ES
a ) of 529 overlapping training instances (blue), 11k predic-

tions (orange), and all 7500 reactions (green). Molecules of the three highest
(respectively, lowest) barrier differences are shown as molecules.

A more detailed discussion of the training and the dataset com-
pletion with the R2B model can be found in the supplementary
material.

C. Design rule extraction
So far, most studies based on artificial neural networks aimed

at predicting chemical reactions using experimental data do not
account for the kinetics of reactions. It is well known, however,
that activation barriers are crucial for chemical synthesis and ret-
rosynthesis planning. This is exemplified by a decision tree for the
competing reactions E2 and SN2 in Fig. 7. The goal of such trees is
to improve the search for better reaction pathways (lower activation
barriers) by showing the estimated change in energy when chang-
ing functional groups, leaving groups, or nucleophiles. To extract
such rules for the design problem, a large and consistent reaction
dataset is needed. After completing the dataset,28 we are now able to
identify (given a desired product) the estimated changes in the acti-
vation barrier when substituting specific functional groups, leaving
groups, or nucleophiles. This way, the yield of chemical reactions
can be optimized by getting insights into the effects that functional
groups have on a certain molecule. Furthermore, this insight could
be used to direct reactions toward the desired product. Figure 7
shows such a possible decision tree to determine the change in bar-
riers while exchanging substituents. Starting from the total dataset
(left energy level), the first decision considers the functional group
NH2 at position R1. Going down the tree means accepting the sug-
gested change and the respective compounds, while going up means
declining and removing these compounds from the data. Depending
on which product is sought after, hints to improve the energy path
can be found while constantly accepting (going down) or declin-
ing (going up) the tree. For example, if the desired reaction is
E2, then the best way is to go down the tree (decision accepted),
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FIG. 7. Decision tree using extracted rules and design guidelines. Decision tree using the R2B estimated activation barriers to predict changes in barrier heights by starting
at all reactions (first energy level on the left) and subsequently applying changes by substituting functional groups, leaving groups, and nucleophiles with E2 as an example.
Blue dotted lines refer to an accepted change, meaning that only compounds containing these substituents at the position are considered. Orange dotted lines refer to
substitution declined, meaning that all compounds except the decision are kept. Vertical lines on the right of energy levels denote the minimum first (lower limit) and the third
(upper limit) quartile of a box plot over the energy range. Numbers above energy levels correspond to the number of compounds left after the decision. Lewis structures
resemble the decision in question.

which adds electron withdrawing groups to the R3 and R4 posi-
tions, as well as electron donating groups to R1 and R2. In Fig. 7, the
first decision redirects the barrier toward E2 of about ∼8 kcal/mol
by adding an electron withdrawing group (NO2) on the α-carbon.
On the other hand, electron donating group at the β-carbon favor
the E2 reaction because they facilitate the abstraction of the leaving
group, which is shown in the second and the third decision, where
NH2 was added in both positions, R1 and R2. In addition to the R2B
predictions, which estimate the outcome of a specific combination
of one reaction, a decision tree gives simple rules as a coarsened
aggregation that can be used in reaction design to achieve a desired
outcome.

D. Estimates of reactant and transition state
geometries

Additional to barriers, we analyzed the geometries of the tran-
sition states as well as the geometries of the reactant complexes.28

Choosing key geometrical parameters, such as distances, angles,
and dihedrals, we were able to train R2B models to learn these
properties using the one-hot encoding as the representation. These
parameters were extracted from the ethylene scaffold defining the
key positions of the substituents, leaving groups, and nucleophiles
shown in Fig. 8, compounds 2 and 3 for the E2 and SN2 reaction,
respectively.

The parameters for the E2 reaction are the C–X distance dx,
the C–Y distance dy, the X–C–C angle α, the C–C–Y angle β, and
the X–C–C–Y dihedral θ. Similarly, for SN2, we have the C–X dis-
tance dx, the C–Y distance dy, and the X–C–Y angle α. For every
parameter, a separate model was trained using the one-hot represen-
tation. Although this representation does not contain any geometri-
cal information, learning was achieved for every parameter. Figure 8
shows the learning curves and as horizontal dashed lines the null
model, which uses the mean of the training set for predictions. In
the same way as for the transition state geometries, we also trained
a model for the reactant complexes. Figure 8 shows the learning
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FIG. 8. Model evaluation of geometrical properties using learning curves. Test errors (MAE) of distances dx, y, angles α and β, and dihedrals θ for both reactions E2 (a) and
SN2 (b). Horizontal lines correspond to the null model, which uses the mean value of the training set for predictions. Compounds (2 and 3) illustrate the learned properties
of the E2 reaction (2) and the SN2 reaction (3) for reactant complexes and transition states.

curves for both transition states and reactant complexes. The results
for both geometries are similar except for the dihedral of the reac-
tant complexes. The poor performance results from the conformer
search of the reactants. As opposed to bond distances, dihedrals have
multiple local minima, which lead to larger differences between the
reactant and transition state structures. The variance of the dihedrals
is significantly higher, which makes the learning task much harder.
The one-hot representation does not contain any geometrical infor-
mation and therefore is not able to learn the different geometries
only using information about the constitution (R’s, X’s, and Y’s)
of the reactant complexes. The poor performance of the model on
angles and especially on dihedrals renders the one-hot encoding
impractical for 3D geometry predictions. The recently published
Graph to Structure (G2S) quantum machine learning model64 seems

to be more suitable for the 3D coordinate prediction problem in
QMrxn20.

E. Hammond’s postulate
To investigate Hammond’s postulate, we took the difference in

the predicted geometries (dx and dy) for all 7500 reactions for the
E2 and the SN2 reaction, respectively. Then, we plotted these values
against the activation energies of both reactions EE

a and ES
a (Fig. 9).

The distances Δdx correlate well with the energies with R2 values of
0.87 and 0.80 for E2 and SN2, respectively. This is explained by the
leaving group that is bonded to the carbon atom in the reactant com-
plex and only small changes in distance happen moving toward the
transition state geometry. For the SN2 reaction, the backside attack

FIG. 9. Applicability of Hammond’s postulate. Frequency heat map of activation energies projected onto structural differences in distances (dx and dy ) between reactant
complex conformers and transition states for both reactions E2 (first two plots) and SN2 (last two plots). For SN2, a good linear correlation (R2 are 0.8 and 0.65 for dx and dy ,
respectively) in agreement with Hammond’s postulate can be observed, while for E2, only dx shows good correlation (R2

= 0.86), whereas dy lacks correlation (R2
= 0.5).
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of the nucleophile does not allow a broad distribution of distances
and angles in the reactant complex and the transition state. More-
over, the changes in geometry between the reactant complex and the
transition state are modest. Therefore, the parameter Δdy for the SN2
correlates well with the activation energy ES

a , which results in an R2

value of 0.65. The attack of the nucleophile on the hydrogen atom
(E2 reaction) allows for a much broader distribution of the position
of the nucleophile in the transition state. This makes the learning
problem more difficult, especially for a representation not including
geometrical information. These higher degrees of freedom result in
an R2 value of 0.50.

Hammond’s postulate typically holds for the end points of an
intrinsic reaction coordinate (IRC) calculation,65–67 which leads to
a local minimum close to the transition state. Therefore, the reac-
tant only needs a few reorganizations toward the transition state. For
geometries that are farther away from the transition state (such as
in our E2), Hammond’s postulate cannot hold anymore. This means
that even though more reorganization steps toward a transition state
have to be made, the activation energy is not affected anymore. As a
consequence, Hammond’s postulate is no longer applicable.

IV. CONCLUSION
We have introduced a new machine learning model dubbed

Reactant-To-Barrier (R2B) to predict activation barriers using reac-
tants as input only. This approach renders the model useful in prac-
tice, as the dependency on the transition state geometry is only
implicitly obtained at the training stage and not explicitly required
for querying the model. We find that one-hot-encoding, the trivial
geometry free based representation, yields even better results than
geometry based representations designed for equilibrium structures.
As such, our results indicate that accounting only for the com-
binations of functional groups, leaving groups, and nucleophiles
of the reaction is sufficient for promising data-efficiency of the
model. Using R2B predictions, we completed the reaction space of
QMrxn20.28 Future work could include delta ML68 to improve these
results even further, as corroborated by the preliminary results in
Ref. 28, further improvements on the representation (as recently
found to lead to improved barrier predictions for enantioselectivity
in metal-organic catalysts26), or catalytic or solvent effects.69

Using R2B predicted activation barriers, we have also built
a decision tree, enabling the design and discrimination of either
reaction channel encoded in the data. Such trees systematically
extract the information hidden in the data and the model regard-
ing the combinatorial many-body effects of functional groups, leav-
ing groups, and nucleophiles, which result in one chemical reac-
tion being favored over the other. As such, they enable the con-
trol of chemical reactions in the design space spanned by reactants.
Finally, we also report on geometries of the reactant complexes
consisting of different conformers as well as on R2B based transi-
tion state geometry predictions. Using these results, we discuss the
limitations of Hammond’s postulate, which does not hold for the E2
reactant complexes stored in the QMrxn20 dataset.28

SUPPLEMENTARY MATERIAL

The supplementary material contains the results used to gen-
erate the learning curves for barrier learning (Tables 1 and 2) and

geometry learning (Tables 3 and 4). It also gives a brief explana-
tion on how the models were trained and shows a heat map for a
hyperparameter scan of sigmas and lambdas containing the training
errors (Fig. 1). Additionally, we added more learning curves (barrier
learning) using different geometries as input for the representations.
Finally, we added Fig. 3, which compares the Rogers–Tanimoto
coefficients between the training and the test set.
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