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ABSTRACT: Chemical compound space (CCS), the set of all theoretically conceivable
combinations of chemical elements and (meta-)stable geometries that make up matter, is
colossal. The first-principles based virtual sampling of this space, for example, in search of
novel molecules or materials which exhibit desirable properties, is therefore prohibitive for
all but the smallest subsets and simplest properties. We review studies aimed at tackling this
challenge using modern machine learning techniques based on (i) synthetic data, typically
generated using quantum mechanics based methods, and (ii) model architectures inspired
by quantum mechanics. Such Quantum mechanics based Machine Learning (QML)
approaches combine the numerical efficiency of statistical surrogate models with an ab initio
view on matter. They rigorously reflect the underlying physics in order to reach universality
and transferability across CCS. While state-of-the-art approximations to quantum problems impose severe computational
bottlenecks, recent QML based developments indicate the possibility of substantial acceleration without sacrificing the predictive
power of quantum mechanics.
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1. INTRODUCTION

Promising applications of machine learning techniques have
been rapidly gaining momentum throughout the chemical
sciences. Apart from this present special issue in Chemical
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Reviews, a number of special issues in common theoretical
chemistry community journals have appeared, including
International Journal of Quantum Chemistry (2015),1 Journal
of Chemical Physics (2018),2 Journal of Physical Chemistry
(2018),3 Journal of Physical Chemistry Letters (2020),4 and
Nature Communications (2020).5 Books, essays, reviews, and
opinion pieces have also been contributed by practitioners in
the field.6−23 Such growth of interest prompted a general
discussion in Angewandte Chemie within a trilogy of essays by
Hoffmann and Malrieu on the seemingly conflicting nature of
simulation and understanding in quantum chemistry.24−26 The
overall enthusiasm in the hard sciences for machine learning
has even led to the introduction of novel journals, such as
Springer’s Nature Machine Intelligence, IOP’s Machine Learning:
Science and Technology,27 or Wiley’s Applied Artif icial
Intelligence Letters.28

In this review, we attempt to provide a comprehensive
overview on recent progress made regarding the problem of
using machine learning models to train and predict quantum
properties throughout chemical compound space (CCS)
(Figure 1). In contrast to the current trend of machine

learning in quantum computing, we here refer to the
application of statistical learning to quantum properties as
“quantum machine learning” (QML). This notation follows a
common convention in atomistic simulation, where the
quantum nature of the object to be studied corresponds to a
prefix, while the actual algorithms are rather classical in nature.
Examples include Quantum Monte Carlo or Quantum
Molecular Dynamics (also known as ab initio or “first-
principles” molecular dynamics).
Within this introductory section, we will begin by first

providing a qualitative description of chemical compound
space (CCS) in terms of fundamental variables, which is
consistent with the quantum mechanical picture within the
Born−Oppenheimer approximation and neglecting nuclear
quantum and relativistic effects. Thereafter, we briefly review
related but complementary and system specific QML models
which predominantly are not used throughout CCS but rather
for training and predicting potential energies and forces in
terms of conformational degrees of freedom, e.g., using

molecular dynamics. Quantum mechanics based explorations
for the purpose of materials design are mentioned
subsequently, followed by a short subsection on studies
which establish the quantitative and rigorous quantum
chemistry based view on CCS.

1.1. Multiscale Nature of CCS

Figuratively speaking, CCS refers to the virtual set of all the
theoretically (meta-)stable compounds one could possibly
realize in this universe. To paraphrase Buckingham and Utting,
a compound “...is a group of atoms...with a binding energy which
is large in comparison with the thermal energy kT”.29 In other
words, with respect to all its spatial degrees of freedom, it is
that locally averaged atomic configuration, for which the free
energy is in a local minimum surrounded by barriers
sufficiently high to prevent spontaneous reactions within
some observable lifetime. As such, CCS depends on external
conditions. It loses all meaning, for example, when conditions
are such that bonding spontaneously emerges and vanishes
(e.g., aggregation state of plasma).
The mathematical number of compounds grows explosively

with the number of constituting atoms due to the mutual
enhancement of combinatorial scaling at three rather distinct
but well established energetic scales: First, the number of
possible stoichiometries for any given system size (in terms of
electrons and total proton number) represents an integer
partitioning problem which grows combinatorially, see ref 30,
for example. The energetic variance among compounds that
differ in stoichiometry is on the scale of chemical bonding due
to having different number and different types of atoms.
Second, the number of possible connectivity patterns, i.e.,
incomplete labeled undirected weighted graphs distinguishing
constitutional isomers/allotropes (commonly drawn as Lewis
structures) is mathematically known to grow combinatorially
with number of atoms.31−33 The energetic variance among
constitutional isomers is on the scale of differences in chemical
bonding. Third, the number of possible conformational
degrees of freedom grows combinatorially with number of
atoms in a molecular graph (cf. Levinthal’s paradoxon for
polymers), and one could even consider different atomic
configurations of disconnected graphs, i.e., macromolecular or
molecular condensed systems, to fall into this category of
isomers. As such, the energetic variance among conformational
isomers is on the scale of noncovalent intra- as well as
intermolecular interactions. We note that stereoisomerism
typically occurs among constitutional and conformational
isomers. Its extension to compositional chirality has been
proposed only recently.34 Given such size and diversity, highly
universal, and efficient methods are in dire need in order to
meaningfully explore CCS in search of deepened chemical
insight and intuition and of new compounds and materials
which exhibit desirable properties. While quantum mechanics
and statistical mechanics offer the appropriate physical
framework for dealing with CCS in an unbiased and universal
manner, the computational complexity of the equations
involved has hampered their widespread use.
We note that our ab initio definition of CCS implies that

only those compounds are part of CCS that should, at least in
principle, be experimentally accessible as long as sufficiently
sophisticated synthetic chemical procedures and reservoirs of
the necessary chemical elements are available. While any such
synthetic procedure would have to follow the corresponding
relevant free energy paths, by navigating the virtual analogue of

Figure 1. A cartoon of similarities among atoms across chemical
compound space, not in conflict with quantum mechanics. The
exemplary molecule aspirin is highlighted by bonds, and each of its
atoms is superimposed with a similar atom in another molecule
(hydrogens omitted for clarity). Green, yellow, gray, red, and blue
refer to sulfur, phosphor, carbon, oxygen, and nitrogen, respectively.
Reproduced with permission from ref 15. Copyright 2020 Springer
Nature.
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CCS we do enjoy more design freedom and can, namely for
any property that is a state function, also exploit unrealistic
fictitious transformations in line with Hess’ law, i.e., without
the need for direct correspondence to experimental realization
(cf. “alchemical” transmutations).
We conclude this section by noting that our definition

generalizes the more commonly made reference to CCS, which
typically excludes conformational isomers, reactive intermedi-
ates, or minima in electronically excited states. For example,
first steps toward an ab initio based representative exploration
of the latter were also proposed in 2013 for drug-like
compounds by Beratan and co-workers.35 However, for this
review, we do not assume the most general view on CCS which
would still be consistent with quantum mechanics, namely, that
CCS comprises any chemical system, i.e., compounds with any
chemical composition and any atomic configuration (being
close to some state’s energy minimum or not). Such an
encompassing definition would sacrifice the minimal free
energy requirement mentioned above, and it would trivially
correspond to the entire domain of CCS. Therefore, it would
forego the useful link to observable lifetimes of systems as well
as the appealing complementarity (not to be confused with
orthogonality) to the well established problem of sampling
potential energy hyper surfaces to study free energies or
competing elementary reaction steps.

1.2. Machine Learning the Potential Energy Surface

While QM based studies of CCS are mostly concerned with
(meta-)stable compounds, from inspection of the electronic
Hamiltonian, it is quite clear that the effect of nuclear charges
and nuclear coordinates are intimately linked. The well-known
cusp condition due to Kato’s theorem36 explicitly links these
two variables through the electron density observable. As such,
ab initio studies of the PES aimed at calculating geometric
distortion, transition states, or statistical mechanical averages
are closely related to the topic of this review. More specifically,
early attempts of QML have focused on the PES of
homonuclear system (e.g., diamond37 or Sin cluster

38) due to
its relative simplicity (cf. compositional degree of freedom), for
which many QML methods developed are also applicable to
CCS. The distinction between CCS and the PES is somewhat
arbitrary. For example, some molecular quantities of significant
interest, such as libraries of ensemble properties of protein−
ligand binding free energies, require accurate potentials as well
as representative sampling of CCS. Also, instead of considering
(meta-)stable constitutional or conformational isomers as
distinct compounds, they can also equally well be viewed as
local minima of the global PES hypersurface.
As mentioned above, within studies of the PES, the focus (at

least currently) is typically placed on a single system and on
computing energies and forces from scratch, i.e., ab initio. As
such, one does not exploit correlations, constraints, and
relationships, which only emerge through relationships
observed among constitutional and compositional isomers,
i.e., throughout all dimensions of CCS. The most common
use-case of quantum methods for atomistic simulations deals
with the problem of sampling the configurational degrees of
freedom of the atoms of a given system. To develop a better
informed understanding of the field, we now also briefly
discuss relevant and select machine learning studies which
touch upon the quantum based understanding of CCS but
which primarily are concerned with the PES.

The question of how to best model a PES using some
(physical or surrogate) function approximator and based on
scarce and expensive potential energy surface data sets of
specific systems, i.e., not through CCS, obtained from
computationally demanding calculations, is long-standing.
Potential energy hypersurfaces were traditionally studied for
the purpose of molecular spectroscopy or for molecular
dynamics applications of a given system. The development of
empirical interatomic potentials, particularly the reactive force-
field (ReaxFF) approach developed by van Duin and co-
workers since 2001,39,40 amounts essentially to a traditional
multidimensional regression problem for fixed functional basis
functions and constitutes one of the mainstream efforts in this
active field. Unlike traditional force field approaches, ReaxFF
requires no predefined connectivity between atoms (topology)
and casts the empirical interatomic potential within a
formalism of bond order, which depends on the interatomic
distances only. This improved adaptation of an atom to its
environment allows for accurate descriptions of bond breaking
and bond formation and has been applied extensively to model
reactive chemistry at heterogeneous interfaces, involving
typically very large systems,40 made up of millions of atoms.
The force-field approach, despite its efficiency, its chemical

motivation, and its broad applicability and potential accuracy,
suffers from the fixed functional forms imposed when relying
on empirical interatomic potentials, implying that the model is
hard to improve by adding more training data and could even
fail catastrophically in certain regimes and classes. This
limitation motivates interest in more flexible data-driven
models. For example, already in 1994, Ischtwan and Collins
improved the Shepard interpolation scheme for PES
approximations.41 This paper illustrates the close relationship
to QML: The authors utilized a formalism very similar to the
modern kernel ridge regression, one of the workhorses of
QML. The authors also already discussed one of the frequent
challenges coming along with any new ML model project:
How to best down-select optimal configurations for minimal
data acquisition and training costs, and how to obtain
systematic model improvements with increasing training set
size.41 Early awareness of the trade-off between accuracy and
training cost was also already addressed more than a decade
earlier in the 1981 paper by Wagner, Schatz, and Bowman:
Given a finite compute budget, data for which training
instances should be acquired in order to obtain the most
accurate model of the potential energy hypersurface?42 When
facing the exploration of CCS with QML models, analogous
questions must be addressed. For references to similar studies
related to the problem of potential fitting and preceding 1989,
we refer the reader to the comprehensive review by Schatz.43

Most of the data-driven models in the 1990s favored the
neural network regressors for PES fitting. More specifically, in
1992, Sumpter and Noid published a neural network model for
macromolecules.44 Additional neural network potentials were
published by Blank et al. in 199545 for the CO/Ni(111)
system, and Brown et al. in 199646 for the study of ground-
state vibrational properties of two weakly bound molecular
complexes: (FH)2 and FH−ClH. Neural networks were
revisited for systems with increased size in the same year by
Lorenz, Gross, and Scheffler47 for H2/K(2×2)/Pd(100) (with
substrate fixed), followed by their application to represent
high-dimensional potential energy surfaces for H2O2 by
Manzhos and Carrington in 2006.48 Even larger systems, i.e.,
water clusters (up to 6 units), were dealt with by Handley and
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Popelier from 2009 onward,49 accounting for important
electrostatic properties through learning of the atomic
multipoles. These early developments used Cartesian/internal
coordinates directly as the input of NN models, which is
justified for modeling small to medium-sized systems; for large
systems, however, this setup proves to be too inefficient. In
2007, Behler and Parinello published much improved deep
neural network-based potentials,50 encoding molecular geom-
etry effectively in terms of rotation, translation, and
permutation invariant atom-centered symmetry function
(ACSF), followed by molecular dynamics applications using
metadynamics to identify Si phases under high pressure.51 A
detailed overview of various neural network-based advances
since 2010 was given in 2017.52 Starting in the same year,
multiple, more universal, neural network models were
introduced. In particular, Smith et al. advanced the idea of
Behler’s symmetry functions in neural networks with the
aforementioned normal mode displacements in order to
generate a powerful neural network trained on millions of
configurations of tens of thousands of organic molecules, called
ANI.53 An accurate and transferable neural network exploiting
an “on-the-fly” equilibration of atomic charges was introduced
that same year by Faraji et al.,54 and soon thereafter, equally
universal neural nets SchNet55 and PhysNet56 were published.
An extensive review on neural network potentials for modeling
the potential energy surfaces of small molecules and reaction is
also part of the present issue in Chemical Reviews.57

Kernel models started to play a noticeable role for PES
fitting in the late 1990s. In 1996, Ho and Rabitz presented
kernel-based models for the fitting of potential energies58 for
three small systems, He−He, He−CO, and H3

+. Similar to early
PES fitting works within NN framework, these early kernel-
based models also utilized simple Cartesian/internal coor-
dinates as input, and therefore applicability was limited. While
the mathematics of kernel-based surrogate models was firmly
established many decades ago, only from 2010 and onward,
kernel-based models began to flourish, building on the seminal
work contributed by Csanyi, Bartok, and co-workers within
their “Gaussian-Approximated Potential” (GAP) method,
relying on Gaussian process regression (GPR) and an atom
index invariant bispectrum representation.59 In 2012, Henkel-
mann and co-workers introduced an interesting application of
support vector machines (SVM) toward the identification of
transition states.60 One year later, the first flavor of the smooth
overlap of atomic positions (SOAP) representation for GPR
based potentials was published.38 The SNAP61 method
popularized the GAP idea using linear kernels in 2015, and
other GPR applications with automatically improving forces
were published the same year.62,63 Around the same time, a
first stepping stone toward a universal force field, trained on
atomic forces throughout the chemical space of molecules
displaced along their normal modes, was established.64

Reproducing kernels were also shown in 2015 to be applicable
toward dynamic processes in biomolecular simulations,65 and
ever more accurate GPR based potentials were introduced in
201666 and in 2017.67,68 GPR was also applied to challenging
processes in ferromagnetic iron69 and to the problem of the
on-the-fly prediction of parameters in intermolecular force
fields.70 Amorphous carbon was studied using SOAP based
GPR/KRR models,71,72 and GDML, another series of highly
robust and accurate GPR/KRR based molecular force fields,
was introduced in refs 67 and 73−75 starting in 2017.

GPR and NN are currently the two most popular regressors
for PES fitting, and each exhibits advantages and disadvantages.
Seemingly very different in design, they do resemble each other
to some extent in the sense that they take the role of basis
functions (to be elaborated in section “Regressor”), although
the similarity may be blurred within the framework of deep
NN. Numerical comparison of the performance of these two
methods is interesting. Most notably, such a comparison was
made for modeling the potential energy surface of form-
aldehyde in 2018 by Manzhos and co-workers.76 A similar yet
independent study on the same system was performed in 2020
by Meuwly and co-workers.77 Both studies confirm that kernel
based QML models reach higher predictive power than neural
network based models for same training set sizes. A highly
related comparative study on modeling vibrations in form-
aldehyde was contributed by Kas̈er et al.,77 also in 2020.
As for the active learning of interatomic potentials, most of

the related studies relied on the kernel framework, some of
them also detailed below in the section “Training Set
Selection”. As early as in 2004, De Vita and co-workers
proposed updating potential parameters to ab initio results
during molecular dynamics runs (“learning-on-the-fly”),78 for a
very large system, i.e., silicon systems composed of up to
∼200 000 atoms, although the reference level of theory is quite
approximate. Podryabinkin and Shapeev proposed the so-
called D-optimality criterion for selecting the most representa-
tive atomistic configurations for training on-the-fly as early as
2017.79 Using kernel ridge regression (KRR, a variant of GPR),
Hammer and co-workers revisited the on-the-fly learning idea
for structural relaxation in 2018,80 and investigated the
exploration vs exploitation trade-off.81 In 2019, Weinan, Car,
and co-workers contributed another active learning procedure
for accurate potentials of Al−Mg alloys,82 and Westermayr et
al. extended the use of neural networks for molecular dynamics
in the electronic ground state toward photodynamics.83

Among the many purposes (also challenges) of QML for
PES, one particular one is to scale to an extremely large (thus
more realistic) system. Numerous efforts have pushed us closer
to this goal, and most notably, Weinan, Car, and co-workers
made full use of the Summit supercomputer to simulate 100
million atoms with ab initio accuracy using convolutional
neural networks,84 for which they subsequently were awarded
the Gordon Bell prize 2020 by the Association for Computing
Machinery.

1.3. Navigating CCS from First Principles

The scientific research question of how properties trend across
CCS lies at the core of the chemical sciences. Because of ever-
improving hardware performance, improved approximations to
Schrödinger’s equation, most notably within density functional
theory and localized coupled cluster theory, QM data sets of
considerable size have emerged, enabling the use of statistical
learning to train surrogate QML models which can provide
accurate and rapid quantum property estimates for new
compounds within their applicability domain.
While quantum mechanics based computational materials

design efforts had been undertaken as early as the 1990s85−88

with important progress made in the 1980s,89,90 the first-
principles based computational high-throughput design has by
now become an important success story.91 First attempts to
employ machine learning and quantum predictions to discover
new ternary materials databases date back to seminal work by
Hautier and Ceder in 2010.92,93
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As a promising alternative to ab initio high-throughput
computations (or solving Schrodinger equation in general),
one often assumes locality of atoms in molecules when
constructing the mapping from molecular distance/similarity
to difference in properties within QML, and the final predictive
performance depends on how similar two local (and thus
global) entities are, i.e., nuclear types covered by a test set are
required to be retained in the training set. The capability of
QML to treat species made up of elements not seen in training
set is, however, very limited. There exists the so-called
“alchemical” methods, being quite different in philosophy,
allowing for effective and efficient treatment of the change of
nuclear types, with or without the constraint that the number
of electron number (Ne) being fixed (i.e., isoelectronic). We
note in passing that alchemy is typically established within the
density functional theory framework, as it would be
tremendously simpler to expand molecular property (mostly
energy) as a function of four variables (x, y, z, and Z) than 4NI
ones in the case of wave function-based formulation.
Previous methodological works tackling chemical compound

space from first-principles through variable (“alchemical”)
nuclear charges were contributed by various pioneers,
including Wilson’s formal four-dimensional density functional
theory94 in 1962, which expresses the exact nonrelativistic
ground-state energy of an electronic system as a functional of
the electron density, which per se is a function of the spatial
coordinates, and nuclear charges. Following Wilson’s idea,
Politzer and Parr95 in 1972 made one step further toward
practical computation by transforming Wilson’s formula into a
functional of the total electrostatic potential V(r, Z) and
derived some useful semiempirical formulas for the total
energy of atoms and molecules, through the use of
thermodynamic integration.95 Later in the 1980s, Mezey
made some interesting discoveries96,97 about the global
electronic energy bounds for a variety of isoelectronic
polyatomic systems, which may be found useful for
quantum-chemical synthesis planning, using multidimensional
potential surfaces.
The theoretical alchemical research was resurrected in the

new millennium. Among the numerous contributions, notable
ones include a variational particle number (variable proton and
electron number) approach for rational compound design90

proposed by one of the authors and collaborators, followed by
a more detailed description of the underlying theories, in the
name of molecular grand-canonical ensembles (GCE).98 In the
same year, a reformulation of GCE in terms of linear
combinations of atomic potentials (LCAP)99 (instead of Z
and Ne as in GCE) was proposed by Wang et al., but for the
optimization of molecular electronic polarizability and hyper-
polarizability, with the optimal molecule determined analyti-
cally in the space of electron−nuclei attraction potentials. For
the isoelectronic case, related works include the development
of ab initio methods for the computation of higher-order
alchemical derivatives100 by Lesiuk et al. in 2012, as well as the
assessment of the predictability of alchemical derivatives101 by
Munoz et al. in 2017. More recently, alchemical normal modes
in CCS,102 alchemical perturbation density functional
theory,103 and even a quantum computing algorithm for
alchemical materials optimization104 were proposed, further
enriching the field.
Starting in 1996 with stability of solid solutions,105 multiple

promising applications, based on quantum alchemical changes,
have been published over recent years, including thermody-

namic integrations,106 mixtures in metal clusters,107,108

optimization of hyperpolarizabilities,109 reactivity estimates,110

chemical space exploration,111 covalent binding,112 water
adsorption on BN-doped graphene,113 the nearsightedness of
electronic matter,114 BN-doping in fullerenes,115 energy and
density decompositioning,116 catalyst design,117−119 and
protonation energy predictions120,121 Symmetry relations
among perturbing Hamiltonians have also enabled the
introduction of “alchemical chirality”.34

An extension of computational alchemy toward descriptions
which go beyond the Born−Oppenheimer approximation has
been introduced within path-integral molecular dynamics,
enabling the calculation of kinetic isotope effects, already in
2011,122 and subsequently by Ceriotti and Markland.123

However, also varying the electron number is a long-
standing concept within conceptual DFT.124,125 Actual
variations have only more recently been considered, e.g., to
estimate redox potentials,98,126 higher-order derivatives,100−102

or for the development of improved exchange-correlation
potentials.127

2. HEURISTIC APPROACHES
Modern systematic attempts to establish quantitative struc-
ture−property relationships (QSPRs) have led to computa-
tionally advanced bio-, chem-, and materials-informatics
methodologies. Unfortunately, conventional approaches in
QSPR predominantly rely on heuristic assumptions about
the nature of the forward problem, and are thus inherently
limited to certain applicability domains. The implicit bias,
often due to lacking basis in the underlying physics is known,
as discussed, e.g. in a 2010 review by G. Schneider,128 and
many improvements have been contributed more recently.20

While heuristic in nature, QSPR can still provide useful
qualitative trends and insights for relevant applications, and
sometimes yield accurate predictions for specific property
subdomains and systems. Albeit not directly relying on the
laws of quantum mechanics, these early developments are still
valuable, in the sense that some just correspond to special
variants of the more complicated models, for instance, a linear
model can be mapped onto the framework of kernel method,
by choosing a linear kernel, instead of say Gaussian kernel for
Gaussian process regression (GPR). Other heuristic ap-
proaches, exhibiting more quantitative characteristics can be
considered important precursors for modern QML. Such
examples include Collin’s improved Shepard interpolation
scheme41 for accurate representation of molecular potential
energy surfaces, which resembles the form of kernel methods
except that the weights are determined in a heuristic way,
instead of being regressed as in GPR. One may also argue that
Collins’ scheme could be recast into the kernel framework,
except that a specific kernel is chosen such that the Shepard
interpolation weights in Collins’ scheme are exactly repro-
duced (with the constraint that these weights sum up to 1).
Another highly related concept is Ramon Carbo-Dorca’s
quantum similarity (for a comprehensive review, see ref
129), derived based on density matrix, or molecular orbitals, or
other related quantum quantitites, it is also closely linked to
kernel based methods and may be used directly as parameter-
free kernel matrix elements (unlike in GPR, kernel matrix
element characterizing similarity is typically hyper-parameter
dependent).
In the sections below, we focus on relevant literature

regarding three distinct perspectives which largely follow
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chronological order: (i) low-dimensional correlations or simple
models from the early days of chemistry, (ii) coarse
representations of molecules and derived quantities, mostly
providing an overview of QSPR, and (iii) molecular
representations based on properties.

2.1. Low-dimensional Correlations

Early practices of fundamental chemical research dealt with
spotting correlations between inherent properties of the system
and systematic changes of observed quantities. Possibly the
most famous example for such work is Mendeleev’s discovery
of the periodic table.130 Other important examples correspond
to Pauling’s electronegativity concept and covalent bond
postulate,131 or Pettifor’s Mendeleev numbering scheme.132,133

Work along such lines has been continued, and recent
contributions include revisiting Pettifor scales,134,135 use of
variational autoencoders to “rediscover” the ordering of
elements in the periodic table,136 or the chemplitude model
which extends Pauling’s concept,137 among many others. Free-
energy relationships are the subject of yet another broad
category of early research which is still active today. Relating
logarithms of reaction constants (free energy difference) across
CCS for related series of reactions138 has led to the famous
Hammett equation, a 2D projection of all degrees freedom
onto composition and reaction conditions.139−141 Similarly
low-dimensional effective degrees of freedom have been
identified within Hammond’s postulate,142 or Bell−Evans−
Polanyi principle.143,144

Most of the aforementioned concepts were proposed to gain
a better (or more useful) understanding of molecular behavior
in the first place. For extended systems such as metallic
surfaces, complexities arise and many of the simplified
molecular models are no longer applicable. With the advent
of density functional theory (DFT),145−149 alternative
descriptors have been proposed during the past decades,
playing an increasingly important role. Notable contributions
include the d-band center model by Hammer et al.,150,151 the
generalized coordination number,152,153 and the Fermi soft-
ness.154 Free-energy relationships are more robust against
subtle changes in the electronic structure and are being widely
applied in analyzing surface elementary reaction steps.155

Scaling relations between the energetics of adsorbed species on
surfaces156 also enjoy extensive attention and have been
proven useful for catalyst design regardless of the surface not
being metallic.157−159 Many of the empirical chemical concepts
such as electronegativity, softness/hardness, and electro-
philicity/nucleophilicity can be rationalized and quantified
within what is known as “conceptual” DFT.160,161 This specific
field, as pioneered by Fukui or Parr and Yang,160 has been
championed and furthered by many including Geerlings, De
Proft, Ayers, Cardenas, and co-workers.161,162

We note that simple models, involving one or a few variables
in general, represent effective coarse-grained schemes appli-
cable to specific subdomains of chemistry. While they lack the
desired transferability of quantum mechanics, they often do
encode well tempered approximations and therefore are
capable of capturing much of the essential physics. As such,
they have much to offer, and they could, for example, serve the
design of robust and general representations enabling the
training and application of improved QML models (see below
or refs 6 and 163). Alas, this idea, to connect low-dimensional
model, based on well established heuristics, with more recently
developed generic ML models, is still largely unexplored,

despite the fact that the latter often bear (magic) black box
characteristics allowing for little qualitative insights. Unifying
modern ML with low-dimensional model could therefore also
help resolve open challenges in QML. For instance, how can
we properly represent different electronic (spin-) states of
molecules in the molecular representation or different
oxidation states? Conceptual DFT derived linear or quadratic
energy relationships suggest treating the number of electrons
(Ne) and/or its powers as independent features might be a
reasonable starting point. Another thus-inspired direction of
research is to utilize conceptual DFT-based local indicators as
properties of composing atoms/bonds/fragments of a target
molecule as a starting point (much like the fundamental
variables such as Z and R) for building representations. This
might be necessary in order to address hard and outstanding
problems such as building QML models of intensive properties
or to account for multireference character in the electronic
structure.

2.2. Stoichiometry

Given a fixed pattern of structure, stoichiometry alone can be
used as a unique representation of the system under study.
This idea has been demonstrated for an exhaustive QML based
scan of the elpasolite (ABC2D6 stoichiometry) subspace of
CCS, predicting cohesive energies of all the 2 million crystals
made up from main-group elements.164 Elpasolites are the
most abundant quaternary crystal form found in the Inorganic
Crystal Structure Database. Comparison of the QML results to
known competing ternary and binary phases enabled favorable
stability predictions for nearly 90 crystals (convex hull) which
subsequently have been added to the Materials Project
database.165 A compact stoichiometry based representation in
terms of period and group entry for elements A, B, C, and D
was shown to reach the accuracy of explicit geometry based
many-body potential representations at larger training set size,
indicating the dominance of the former in large training data
regimes.166 Similar work was subsequently done by Ye et al.167

as well as Marques et al. for perovskites on crystal stability,168

as well as by Legrain et al.,169 for predicting vibrational free
energies and entropies for compounds, drawn from the
Inorganic Crystal Structure Database.
A naive but useful derived concept is the so-called “dressed

atom” concept,170 which characterizes the atom in a molecule
of a fixed stoichiometry. When using this approach together
with a linear regression model to approximate the total energy
(or atomization energy), the accuracy turns out to be
surprisingly reasonable,171 at least for common data sets of
organic molecules with small variance among constitutional
isomers. For instance, the corresponding mean absolute error
(MAE) for QM7 data set is only 15.1 kcal/mol.170 Using bond
counting, the MAE could be improved further to less than 10.0
kcal/mol, within reach of a conventional DFT GGA func-
tionals.172 Therefore, it seems advisible to always use the
dressed atom approach for centering the data for any fixed
stoichiometry (i.e., averaging out constitutional and conforma-
tional isomers) before proceeding to the next level of QML
training on the complete set of degrees of freedom. This
normalization step can also be seen as data preprocessing,
enabling the QML model to focus on “minor” deviations from
the mean.164,173

2.3. Connectivity Graph

When the systems under study do not share some common
structural skeleton, stoichiometry alone is not enough, and the
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covalent bonding connectivity between atoms, as well as
conformations, may have to be also examined.
It is worth pointing out that chemists often assume a one-to-

one relationship between the molecular graph and its
associated global conformational minima (or the second
lowest energy minima, or the third, etc.), and therefore it
should be possible to build a QML model to predict relevant
quantum properties of such ordered minima from graph-input
only. In fact, the remarkable performance of extended Hückel
theory for some systems could be explained in this way.
Because of the intuitive accessibility and applicability of

(incomplete) graph based representations, such as Lewis
structures and their extensions, for a wide range of molecular
systems, associated ML methods have received broad attention
and wide applications in many fields such as cheminformatics
or bioinformatics. Examples of such representations include
various fingerprint representations,174 such as the signature
methodology.175−177 Another notable example corresponds to
the so-called extended circular fingerprint (ECFP).178 ECFP
and similar representations have been used for drug
design179,180 and qualitative exploration of CCS.181,182 ECFP
has also been used in KRR models for prediction of quantum
properties of QM9 molecules. Numerical results for ECFP
based QML models indicate a substantially worse performance
compared to more complete, geometry derived representa-
tions.183

Modern molecular graphs, typically in SMILES format,
based neural networks models, have gained considerable
momentum during the past decade. A vast amount of related
literature deal with chemical synthesis and retrosynthesis in
such representation spaces (mainly in organic chemis-
try),184,185 typically favoring different deep learning architec-
tures, chemical reaction network,186 as well as molecular design
using variational autoencoder (VAE, which maps a molecule
represented by SMILES string to some latent space187). The
absence or presence of relationships between functional groups
and binding affinity was also recently explored through use of
random matrix theory in drug design.188 The incorporation of
new and improved formats, such as SELFIES,189 might still
lead to further improvements for such research.
In the context of a first-principles view on CCS, we note

however that molecular graphs only encode a (biased)
statistical average of the many conformational configurations
for a molecule near some local minima in the potential energy
surface. As such, they are naturally disposed for use of QML
models of ensemble properties. Work along such lines still
awaits being explored in the future. Albeit popular and justified
for certain problems, graph-based approaches are inherently
limited when it comes to noncovalent problems, such as
supramolecular assembly processes governed by van der Waals
interactions, metal cluster/bulk/surface adsorption involving
“multivalent” (transition) metal elements controlled by weaker
metallic bond (cf., covalent bond), or chemical reactions
requiring the transformation of graphs from one into the other.
In such situations, the intuitive concept of a graph is ill-defined,
and the necessary corrections are not always obvious.

2.4. Coarse-grained

As the system size grows, the cost in training and prediction of
QML models increases accordingly, although with more
favorable scaling than typical quantum chemistry methods.
Therefore, it may become very demanding or even impossible
to deal with system sizes which cross certain thresholds. In

such scenarios, one typically represents the systems in a coarse-
grained fashion, meaning “superatoms” (groups of atoms in
close proximity, or beads) in a molecule are being considered.
Coarse-grained approaches can drastically reduce the number
of degrees of freedom and are therefore the only feasible way
to model systems at macroscopic scale. More importantly, they
enable a significant collapse of the size of chemical space due
to the transferability of beads by design.190

Current practices of coarse-grained ideas comprise mostly
coarse-grained force fields (CGFF) for simulation of large
systems such as macromolecular systems and soft matter. With
the emerging need for systematic control of the accuracy of
models of such systems, coarse-grained representation based
QML models (CGQML) may be a rather promising
alternative to CGFF, much the same as how QML models
based on full-atom representation remedy the deficiencies of
classical force field approaches for small to medium-sized
molecules.19 Such comparison between QML and FF makes
sense, as the most modern implementations of ML hold
promise to approach the computational efficiency of FFs. Some
of the first studies on coarse-grained representation used
together with QML include John and Csańyi’s free energy
surface modeling of molecular liquids in 2017.191 Later, efforts
to tackle complicated biosystems were reported by Bereau and
co-workers in 2019,190 as well as by Clementi and co-
workers.192 Compared to CGFF, CGQML could be
significantly more accurate once the system information is
properly encoded in the coarse-grained representation, as the
QML part can recover what is missing in the CG part by
careful selection of training data (vide infra).

2.5. Property Based

There exists another type of representation, typically referred
to as descriptor and the least “ab initio” in spirit, in which the
basic idea is to simply select a set of pertinent atomic/
molecular properties as underlying degrees of freedom. The
properties can stem from calculation and/or experiment and
have to be relatively easy to obtain and are typically supposed
to somehow “describe” the property of interest, and hence the
name “descriptor”. This representation is often utilized in
combination with some nonlinear regressor like a neural
network, as the relationship between the chosen properties is
commonly highly nonlinear. Although this approach could be
universally applicable, no matter the size or composition of
target systems, its predictive power is limited by construction
due to its potential lack of uniqueness.30,163 Most of the studies
following this direction can be traced back to the early
applications of ML in chemistry and related fields, one example
being Karthikeyan et al.’s work193 on melting and boiling
points prediction of molecular crystals using the properties of
standalone molecules as a feature vector. A more recent and
systematic study of this idea has applied optimization
algorithms toward the down-selection of descriptor candidates
in order to build predictive ML models of formation energies
of binary solids.194 From a first-principles point of view,
however, such representations are questionable because
relationships between different observables (or other arbitrary
mathematical properties), obtained as expectation values of
independent operators, are not necessarily well-defined.

3. QML METHODOLOGY

The fundamental idea to employ machine learning models in
order to infer solutions to Schrödinger’s equation throughout
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CCS, rather than solving them numerically, was first
introduced in 2011.195 The authors stated that ”....the external
potential...uniquely determines the Hamiltonian H of any system,
and thereby the ground state’s potential energy by optimizing Ψ”,
and they show that one can use QML instead (encoding the
number of electrons implicitly by imposing charge neutrality).
As such, the problem of predicting quantum properties
throughout CCS belongs to what is commonly known as
“supervised learning”. One typically distinguishes between
unsupervised (compound data only) and supervised (data
records including compounds and associated properties)
learning. In this review, we focus on the latter, i.e., on the
question how, given sufficient exemplary structure−property
pairs, properties can be inferred for new, out-of-sample
compounds.
The generic procedure for supervised learning requires first

defining the model architecture, i.e., the mathematical
expression for the statistical surrogate model f, which estimates
some quantum property p as a function of any query
compound M, pQML(M) ≈ f((M)|{Mi},{pi

ref};{ci}), where f
corresponds to the regressor, and regression coefficients and
hyper parameters {ci} are obtained via minimization of training
loss-function quantifying the deviation of pQML from {pi

ref} for
all training compounds {Mi}. In other words, f is parametric in
regression coefficients and hyperparameter which, in return,
are nonlinear functions in the training data. The origin
(calculated or measured) as well as the actual existence (some
properties, such as energies of atoms in molecules,116 are not
observables but can still be inferred) of pref is secondary. Noise
in the data (due to experimental or numerical uncertainty, or
due to minor inconsistencies) can be accommodated to a
certain degree through well-established regularization proce-
dures. Converged cross-validation protocols help to avoid
overfitting and to enable the optimization of hyper-parameters
as well as meaningful estimates for any interpolative query. For
introductory texts on kernel based regressors, the reader is
referred to the book by Rasmussen et al.;196 as for
representation and training sets, several reviews have recently
been published.7,10,19,197

3.1. Regressor

When considering the problem of fitting a generic set of basis
functions to precalculated data, some of the most commonly
made choices in the field of atomistic simulation include
support vector machines (kernel ridge regression), tantamount
to Gaussian process regression in their specific model form,
neural networks, random forests, or permutationally invariant
polynomials (PIPs).196,198,199 While agnostic about the training
labels by construction, the choice of these basis set expansions
constitutes a crucial step. Most evidently for support vector
machines, nonlinear kernel functions (based on feature
representations vide infra) map any nonlinear high-dimen-
sional regression problem into a low-dimensional kernel space
within which the regression problem becomes linear and
therefore straightforward to solve through a closed-form
expression (“kernel-trick”). How kernel space relates to CCS
is also quite intuitive to grasp when thinking about it as a graph
of compounds. As displayed in Figure 2, each compound,
being representable by a molecular graph (or derived matrix
such as a Coulomb matrix or Cartesian coordinate and nuclear
charge vector) is projected into higher-dimensional feature
space (shown are only three principal dimensions from the
infinite number of dimensions defined within the framework of

KRR/GPR). The complete connection between all com-
pounds in the new space form another type of graph, with each
vertex corresponding to a compound and each edge
corresponding to a similarity measure of compounds (edge
length may indicates a metric distance between two
compounds). Inferring the property of a new compound
(labeled as pink “X” in Figure 2) may be conceptualized as
summing up distance scaled property weights. Within this
picture, it becomes intuitively obvious that the interpolating
accuracy must improve with increasing compound density.
While deep neural network models are very powerful and

possess significant black-box character, their training requires
data sets of very large size as well as a substantial calculation
effort in order to optimize the regression coefficients and
hyper-parameters (no closed-form solution is known). In this
sense, kernel methods are rather lightweight and preferable in
scarce data scenarios, as they enjoy the potential benefits of
being more intuitive and faster to train. The specific
architecture of the neural network will affect its performance
and data efficiency dramatically. Deep, recurrent, convolu-
tional, message passing, generative, adversarial, geometric
neural networks, and other flavors, as well as choices of
activation function, number of layers, and neurons, have all
shown significant impact on the cost of training and on the
predictive power in atomistic simulation.
In the case of GPR/KRR, the architecture is much simpler

and hence of a lesser concern (GPR/KRR can be seen as a
single-layer neural network model in the limit of infinite
width200), but the specific kernel space does not only depend
on the choice of kernel function but also on the choice of
metric. While it is clear that one should avoid similarity
measures which do not meet the mathematical criteria of how
a metric is defined (identity, symmetry, triangle inequality), the
impact of the specific metric choice has not yet been studied
much in the field of atomistic simulation. Euclidean,
Manhattan, or Frobenius norms are commonly used. Only
most recently, the use of the Wasserstein norm has been

Figure 2. 3D projection of high-dimensional kernel representation of
chemical compound space. Within kernel ridge regression, chemical
compound space corresponds to a complete graph where every
compound is represented by a black vertex and black lines correspond
to the edges which quantify similarities. Each compound, in return,
can be represented by a molecular complete graph (e.g., the Coulomb
matrix (CM)195) recording the elemental type of each atom and its
distances to all other atoms. Given known training data for all
compounds shown, a property prediction can be made for any query
compound as illustrated by X. Choice of kernel-function, metric, and
representation will strongly impact the specific shape of this space and
thereby the learning efficiency of the resulting QML model.
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proposed to gain permutational atom-index invariance while
using index-dependent matrix representations.201 From in-
spection of Figure 2, it should be obvious that any nonlinear
change in metric will strongly affect the shape of the kernel
regression space and thereby the overall performance.

3.2. Learning Curves

Correct implementations of ML algorithms applied to noise-
free data sets afford interpolating ML models, which avoid
overfitting and enable statistically meaningful predictions of
properties of out-of-sample compounds,198 after proper
regularization and hyper-parametrization through converged
cross-validation protocols, as discussed in great detail in the
literature, for example, in refs 202 and 203.
On the basis of statistical learning theory, the leading order

term of the out-of-sample prediction error (E) was shown to
decay inversely with training set size N, i.e., E ∝ a/Nb, for
GPR/KRR as well as for neural network models.204,205 This is
not surprising, considering the great similarities shared
between NN models and GPR/KRR model, as also mentioned
in the preceding subsection. This asymptotic behavior for
QML models has been confirmed numerically within
numerous and independent studies, many of which are
referenced herein. As illustrated in Figure 3, learning curves

(LC), i.e., prediction error E vs training set size N, plotted on
log−log scales assume linear form (log E = log a − b log N)
and serve as a useful standard, facilitating systematic
comparison and quality control of the efficiency of differing
ML models. For maximal consistency, the QML models should
be trained and tested on the exact same cross-validation splits
stemming from the exact same data set. When the data
contains noise, or when relevant degrees of freedom are
neglected (e.g., through use of a nonunique representation,
such as the bag of bond (BoB) representation,170 see section
4.1 for more details), the learning will cease eventually for
some training-set size, manifesting itself visually through
learning curves which level off, cf. solid-black line in Figure
3. For noise-free data and complete representations, however, a
linear correlation between log(E) and log(N) is to be expected
(see the dotted and dashed lines in Figure 3), with some slope
b typically more or less a constant for different unique
representations and related to the effective dimensionality of
the problem, and some offset log a, which typically reflects the
capability of the representation to capture the most relevant
feature variations in kernel space. More specifically, the offset
measures the degree to which the representation encodes the
right physics. An illustrative example for this statement can be
given by comparison of the learning curves obtained for the
CM representation versus derived matrices with off-diagonal
entries dependent on alternative interatomic power-laws.163

For interatomic off-diagonal elements approaching London’s
R−6 law, the representation achieved lower offsets than for off-
diagonal elements decaying according to Coulomb’s law.
Correspondingly, representation matrices with off-diagonal
elements linearly or quadratically growing with the interatomic
distances resulted in LCs with dramatically increased offsets.163

At first glance, it might seem that the slope of LC (aka,
“learning rate” of QML model) barely changes, when switching
from one unique representation to another. It is therefore
natural to ask if it is impossible to further speed up the learning
process as indicated by the dotted-dashed learning curve in
Figure 3, exhibiting a much steeper slope. Through an expert-
informed reduction of effective dimensionality (through a
priori removal of irrelevant information stored in randomly
selected training data), it was shown that this is indeed
possible. Such strategies for a more rational sampling of
training data will be discussed in section 6. Note that in
contrast to conventional curve fitting, training errors for
properly trained machine learning models applied to synthetic
data are typically orders of magnitude smaller than the variance
of the signal. As such, they are negligible and carry little
meaning because noise levels are typically close to zero or at
least many orders of magnitude smaller than label variance.
Consequences of model construction, i.e., choice of regressor,
metric, optimizer, loss-function, representation, or computa-
tional efficiency, become immediately apparent in the
characteristic shape of learning curves. When training a small
parametric regressor, e.g., a shallow neural network with few
neurons, to estimate a complex and high-dimensional target
function, the learning curve will rapidly “saturate” and
converge toward a finite optimal residual prediction error
that can no longer be lowered by mere increase of training set
size. As such, it should come as no surprise that learning curves
have emerged as a crucial tool for development, validation,
comparison, and demonstration purposes of QML models in
the field.

Figure 3. Illustration of learning curves: Errors (E) versus training set
size (N). Horizontal and vertical thin lines illustrate exemplary target
accuracy and available training set size, respectively. For functional
ML models, training errors are close to zero (not shown), and
prediction errors must decay linearly with N on log−log scales. Black-
solid, dotted, dashed and dotted-dashed lines exemplify prediction
errors of ML models with incomplete information (ceases to learn for
large N due to being parametric, using nonunique representations, or
training on noisy data), unique and less physical representation,
unique and more physical representation, and explicit account of
lowered effective dimensionality (i.e., “compact”), respectively. The
solid-pink line corresponds to the training error for a parametric
model. Training errors for ML models are negligible for noise-free
data.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01303
Chem. Rev. 2021, 121, 10001−10036

10009

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01303?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c01303?fig=fig3&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.3. Loss Functions

Imposing differential relationships during training amounts to
adaptation of the loss function to better reflect the problem at
hand. In particular, inclusion of derivative information
(gradients and Hessian) has led to dramatic improvements
when tackling the problem of potential energy surface
fitting.66,67,73,74 A generalization of this idea to adapt the loss
function for response properties of any QM observable was
established for KRR in 2018206−208 (exemplified for forces,
Hessians, dipolemoments, and IR spectra) and for deep neural
nets in 2020 (FieldSchNet exemplified moreover also for
solvent effects and magnetic effects).209

While conventional machine learning assumes that train and
test loss function are identical, for atomistic simulation (or
other application domains for that matter), a mathematically,
more “gready” alternative might exist. In particular, the role of
gradients in loss functions differing for training and testing has
been studied in ref 210, with results suggesting that for
predicting atomization energies throughout a CCS of distorted
structures, inclusion of gradients in training improves learning
curves negligibly while surely inflating the number of necessary
kernel basis functions. However, when it comes to predicting
the potential energy surface of a given system, they do improve
the energy predictions in the above referenced studies.
Conversely, when predicting gradients throughout CCS, the
use of energies alone in training offers no advantage over using
forces, suggesting that the inclusion of forces (if computation-
ally less demanding than energies) should always be beneficial.

4. REPRESENTATIONS

One could consider the choice of functional form of the
representation M to be part of the machine learning
methodology. However, this is a much studied question
which is at the heart of how one views CCS. More specifically,
what are the truly defining aspects in a compound? And how
does one measure similarity? These are old questions which
have already been answered for an impressive array of
applications and instruct much of the basic and fundamental
textbook knowledge. For example, Hammett’s σ-parameter
provides a low-dimensional quantitative data-driven measure of
similarity between distinct functional groups in terms of their
impact on reaction rates or yields.211,212 Within QML,
physically more motivated representations are sought after
for subsequent use within high-dimensional nonlinear
interpolators which are more universal and transferable. As
illustrated for KRR in Figure 2, also the specific form of the
representation (as well as the metric used) can dramatically
affect the way CCS is represented within the regressor. It
should therefore not come as a surprise that the data efficiency
of QML models was found to depend dramatically on the
specifics of the representation used. Because the importance of
the choice of the distance measures has already been
mentioned above, in this section, we will focus on research
that was done to find improved representations.
The choice of this particular compound representation, aka

descriptor or feature, plays a particularly crucial role.
Correspondingly, substantial research on the design of
descriptors has already been made in the fields of chem-,
bio-, or materials informatics where scarce data is typical.174,213

Often, a large set of prospective features is hypothesized and
subsequently reduced within iterative procedures in order to
distill the most relevant variables and low-dimensional

projections pertinent to the problem at hand (see above).
While it is certainly possible to also pursue this approach
within a quantum mechanical description of CCS,194 its
heuristic and speculative character remains as unsatisfactory as
its lack of universality and transferability. Fortunately, the
quantum nature of CCS allows us to follow more systematic
and rigorous procedures in order to address this question.
For example, it is a necessary condition for any successful

ML model to rely on uniqueness (or completeness) in the
representation, as pointed out, proven and discussed several
years ago in refs 214 and 215 and more recently in refs 216 and
217, Uniqueness is essential in order to avoid the introduction
of spurious noise due to uncontrolled “coarsening” of that
subset of degrees of freedom which is neglected. Molecular
graphs based on covalent bond connectivity only, for example,
do not account for conformational degrees of freedom.
Consequently, their use as a representation will make it
impossible to quench prediction errors below the variance of
the target property’s conformational distribution, no matter
how large the training set.
Other characteristics, desirable for representations to

display, include compactness, computational efficiency, sym-
metries, invariances, and meaning. Representations, in
conjunction with the regressor’s functional form, define the
basis functions in which properties are being expanded and
strongly affect the shape of the learning curves, e.g., accounting
for a target property’s invariances through the representation
typically leads to an immediate decrease of the learning curve’s
offset.
While it is possible to model all QM properties using the

same representation and kernel,218 as also demonstrated for
neural nets with multiple outputs already in 2013,219 it should
be stressed, however, that this is a distinct feature of QML
which stands in stark contrast to conventional QSAR or QSPR,
where the ML model is typically strongly dependent on the
target property. If regressor, metric, and representation M are
independent of the label, i.e., the quantum property, there is a
strict analogy to quantum mechanics in the sense of the
Hamiltonian (or the wave function) of a system not depending
on the operator for which the expectation value of any given
observable is calculated.8 This becomes obvious by considering
the training of a KRR model where the regression coefficients
are obtained through inversion of the kernel matrix, α = (K + λ
I)−1pref, where for synthetic calculated data with signals being
orders of magnitude smaller than noise, the regularization λ
(also known as noise level) is typically close to zero. Using
property independent representations, metrics, and kernel
functions, it is therefore obvious that the regression coefficients
adapt to each property only because of the reference property
vector pref. In ref 218, this has been illustrated numerically by
generating learning curves for various properties using always
the same inverted kernel matrix for any fixed training set size.
The predictive accuracy for specific properties varies wildly

as a function of representation and regressor choice.183 The
historic development over years 2012−2018 for a selection of
ever-improved machine learning models (due to improved
representations and/or regressor architectures) can be
exemplified for the prediction errors of atomization energies
stored in the QM9 data set171 and has also recently been
summarized in the context of the “QM9-IPAM-challenge” in
refs 15, 16, and 18.
The inclusion of increasingly more (less) “physics” in the

representation has been demonstrated to systematically
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improve (worsen) learning curves163 and has been followed by
a series of developments which have all been benchmarked on
the same set of atomization energies of small organic molecules
in the QM9 data set171 and which demonstrate the progress
made. While binding energies of “frozen” geometries still
constitute an application somewhat remote from most real-
world applications in chemistry, from a basic physics point of
view they do represent a crucial intermediate step before
tackling more complex properties. In other words, if machine
learning models failed to predict binding energies, one should
not expect them to work for free energies. But also from a
practical point of view, the computational cost of single-point
energy calculations typically dominates all quantum chemistry
compute campaigns and therefore represents one of the most
worthwhile targets for surrogate models used for the navigation
of CCS.
We note that with the emergence of deep neural networks,

the problem of also “learning” the representation can be
mitigated to be incorporated in the overall learning
problem.55,220 While many intriguing and sophisticated
representations, such as Fourier-series expansions,215 wave-
lets,221 multitensors,222 or molecular orbitals223 have been
proposed, most representations can be categorized to either
correspond to discrete adjacency matrices or to continuous
many-body expansions through distribution functions. We
therefore limit ourselves to discuss in the following, both
predominantly in the context of KRR based QML models. A
comprehensive overview on representations for KRR based
QML models has also recently been contributed by Rupp and
co-workers.224

4.1. Discrete

Coordinate-free, bonding neighbors (covalently bonded atom
pairs) based graphs, as well as their systematic extensions to
arbitrary number of neighboring shells, have formed an
important research direction in cheminformatics for many
years.32,174,176,178,213 In 2011, supervised learning was
proposed as an alternative to solving Schrödinger’s equation
throughout a chemical compound space relying as a
representation on a complete undirected labeled graph that
encodes the simplex spanned by all atoms.195 More specifically,
this graph was represented by the “Coulomb matrix” (CM), an
atom by atom matrix with the nuclear Coulomb repulsion on
off-diagonal elements and with approximate energy estimates
of free atoms (EI ≈ 0.5ZI

2.4225) as diagonal elements. Formal
requirements such as uniqueness, translational and rotational
invariance, as well as basic symmetry relations (symmetric
atoms will share the same matrix elements in their respective
rows or columns) are all met by the CM. Atom index
invariance can be achieved through use of its eigenvalues
(thereby sacrificing uniqueness214,226), sets of randomly
permuted CMs,219 or sorting by norms of rows,202 thereby
losing differentiability due to sudden switches in ranks.201 We
reiterate once more that the atom indexing dependence can be
mitigated through using more sophisticated distance measures
such as the Wasserstein metric.201

Similarly encouraging findings of KRR based QML models
applicable throughout CCS were quickly reproduced for other
materials classes such as polymers227 or crystalline solids.228

While off-diagonal elements with a London dispersion power
law (r−6) have subsequently been found to be preferable for
QML models of atomization energies,163 other representations
(vide infra) offer lower learning curve offsets. In particular, the

bag of bonds representation (BoB) is worthwhile mention-
ing.170 Introduced in 2015, BoB groups the entries of the CM
in separate sets for each combination of atomic element pairs
within which all entries have been sorted. When calculating the
similarity between two molecules, only Coulomb repulsions
between atoms with the same nuclear charge are being
compared, rendering thereby the similarity measurement more
balanced and effectively lowering the learning curve offset.
While even more compact than the CM, BoB lacks uniqueness
due to being strictly a two-body representation which can not
distinguish between homometric configurations.215 The
generalization of BoB toward the explicit incorporation of
covalent bond information, angles, as well as dihedrals in terms
of a systematic expansion in Bond, Angle, and higher-order
interactions (i.e., BAML representation) was accomplished in
2016163 by using functional forms and parameters from the
universal force-field.229 A similar, but more elaborate,
parameter-free, many-body dispersion (MBD) based repre-
sentation involving two and three body terms230 was proposed
later in 2018.
The CM has been essential as a baseline for the

interpretation, analysis, and further development of subsequent
QML models. It has also been adapted successfully to account
for periodicity in the condensed phase, as evinced by learning
curves for formation energies of solids.231 For other properties,
such as forces, electronic eigenvalues, or excited states, the CM
(or its inverse distance analogues for QML applications with
fixed chemical composition) is still competitive with state of
the art representations.67,73−75,83,232−235 Furthermore, because
of its uniqueness, compactness, and obvious meaning, the CM
(or its variants) are conveniently used to overcome frequent
data analysis problems in atomistic simulations, such as
removal of duplicates, quantification of noise levels, and
simple learning tests.
Regarding the interatomic distance dependent decay rate of

off-diagonal elements, it is also worthwhile to mention
exponential functions, rather than 1/r. In particular, the
overlap matrix between atomic basis functions of all atoms has
been proposed236 and used with great success for QML models
of basis-set effects237 and excited-state surfaces.238 The overlap
matrix was also included within a recent sensitivity assessment
of various state-of-the art representations and performed in
impressive ways.217 A constant-size descriptor based on a
combination of the CM with more common molecular graph
fingerprints was also proposed in 2018.239

Viewing BoB and CM as first and second rank tensors, to the
best of our knowledge, use of a third rank tensor (explicitly
encoding the surface of all possible triangles in a compound)
has not yet been tested.

4.2. Continuous

Aforementioned discrete and global representations such as
BoB enjoy fast computation. One important requirement for
this kind of representation to work, however, is to introduce
atom indexing invariance by sorting atoms according to the
magnitude of entries belonging to each bond or other many-
body types. This is artificial and may introduce derivative
discontinuities with unfavorable consequences in related
applications such as force predictions.
The sorting and associated problems can be naturally

overcome by selecting continuous or distribution based
representations, which, in essence, integrate out atom index
dependent terms such as distance (w/wo angle and dihedral
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angle) and/or nuclear charge (i.e., alchemically166) through
use of smeared out projections (a Gaussian is commonly
placed on each degree of freedom). Distribution based
representations, also closely related to many-body or cluster
expansion,240 have gained much popularity also within QML
models building on Behler’s seminal work on atom-centered
symmetry functions for training neural networks on potential
energy surfaces,241 or through the subsequent introduction of
smooth overlap of atomic potentials (SOAP) for use in GPR
by Bartok et al. in 2013.38 The first variant of linearly
independent distribution based representations for QML
models, applicable throughout CCS, a Fourier series expansion
of nuclear charge weighted radial distribution functions, was
also contributed already in 2013,215 albeit published in its final
version only in 2015. Radial distributions were also used for
representing crystals in solids in 2014.228 The atomic spectrum
of London Axilrod−Teller−Muto (aSLATM) terms was first
presented in 2017 within the “AMON” approach by Huang et
al.242 (vide infra), yielding unprecedentedly low offsets in
learning curves for atomization energies in the QM9 data
set.171 In that same year, SOAP based QML models were
generalized and shown to be also applicable throughout
CCS.243

The generic histogram of distances, angles, and dihedrals
(HDAD),233 a continuous but simplified version of BAML,
both including many-body terms up to torsions, was
contributed in 2017. In the following year, Faber et al.
conceived the idea of adding alchemical degrees of freedom in
a structural distribution based many-body representation,
dubbed FCHL18166 (FCHL indicating the first letters of the
last names of the authors and 18 in the year 2018). The FCHL
family of representations encodes a systematic interatomic
many-body expansion in terms of Gaussians weighted by
power laws due to the insights gained in ref 163. Power law
exponents and Gaussian widths were optimized as hyper-
parameters through nested cross-validation during training.
FCHL18 consists of three parts: The one-body term
corresponds to a two-dimensional Gaussian encoding the
chemical identity of the atom in terms of groups and periods of
the periodic table; the two-body term encodes the interatomic
distance distribution scaled down by r−4, and the three-body
term encodes all angular distributions and is scaled down by
r−2. The impact of four-body terms has been tested on QM9
but was found to have negligible impact on learning curves.166

Most importantly within the context of CCS, FCHL18 based
QML models have been demonstrated to be capable of
accurately inferring property estimates of systems containing
chemical elements which were not part of training. More
specifically, consider the family of molecules of formula HnY ∼
X, where Y corresponds to an element from group IV (either
C, Si, or Ge), where “∼” represents single, double, or triple
bond depending on chemical element X being from groups
VII, VI, or V, respectively, and where n is the number of H
atoms that saturates the total valences. Semiquantitative
covalent bond potential binding curves have been predicted
for any X/Y/bond-order combination using QML models after
training on corresponding DFT curves for all other molecules
that neither contain X nor Y.(see the top- and left-most
subplot in Figure 4 for an illustration). For example, the ML
binding curve of HC#N was obtained after training on binding
curves of all other molecules that neither contained N nor C,
i.e., when predicting the blue curve in the upper left panel of
Figure 4, the red and green curves of that panel were not part

of training nor were any other blue curve from the other
panels. FCHL19, a recent revision, has been shown to provide
a substantial speed-up in training and testing while imposing
only a small reduction in predictive accuracy.208

We note in passing also the related moment tensor model
(MTM) by Shapeev and co-workers, introduced in 2018,244 as
well as the unifying interpretation of many of the popular
distribution based representations by Ceriotti and co-work-
ers.245

5. REGRESSOR
Depending on how regression parameters are being obtained,
the incorporation of legacy methods in QML models
applicable throughout CCS is typically done either within
neural networks or within Gaussian process regression (GPR)
(or kernel ridge regression, KRR for short). Here, we mostly
focus on kernel methods, mentioning only shortly the idea of
transfer learning in neural network models,246 which is also
applicable to QML models as shown in 2018 by Smith et al.247

More specifically, five categories of QML models can easily
be distinguished, each of which accounting for legacy
information in its own way: QML models of parameters of
existing models, QML models of corrections to existing models
(Δ-ML), multifidelity ML (MF-ML), multilevel-grid-combi-
nation (MLGC), and transfer learning techniques. We briefly
review each of these in the following.
5.1. ML Models of Parameters

Existing force-field models can capture nicely the essential
physics of a wide range of chemical systems, the main
drawback being that force-field parameters (e.g., atom charges,
harmonic force constants, etc.) are often rigid and unable to
adapt to different atomic environments. Therefore, it would be
natural to make these parameters flexible and predicted by ML
models. This idea dates back to the 1990s, and the first piece of

Figure 4. QML models infer properties for new chemical
compositions. DFT and QML (FCHL+KRR) based predictions of
covalent triple, double, and single bonding between groups IV and V
(left column), VI (mid column), and VII (right column) elements,
respectively. Open valencies in the group IV elements have been
saturated with hydrogens. QML models were trained on the DFT
results for all of those chemical elements that are not present in the
query molecule. Reproduced with permission from ref 166. Copyright
2018 licensed under a Creative Commons Attribution (CC BY)
license.
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related works was done by Hobday et al.,248 where they
proposed a neural network model to predict parameters of the
Tersoff potential for C−H systems. In 2009, Handley and
Popelier proposed to use machine learning models for
multipole moments.49 This idea was revisited in 2015, when
learning curves for atomic QML models of electrostatic
properties, such as atomic charges, dipole moments, or atomic
polarizabilities were presented.249 Their use for the con-
struction of universal noncovalent potentials was established in
2018.70 Neural-network based equilibrated atomic charges
were also proposed in 2015 by Goedecker and co-workers54,250

and in 2018 by Roitberg, Tretiak, Isayev, and co-workers.251,252

Similar strategy could also be applied to semiempirical
quantum chemistry methods relying on parameters typically
fitted by computational/experimental data. In 2015, QML
models of nuclear screening parameters were contributed by
Pavlo and co-workers.253 In 2018, unsupervised learning for
improved repulsion in tight-binding DFT was introduced by
Elstner et al.,254 followed by substantial further improvements
in 2020.255 Extended Hückel theory was revisited in 2019 by
Tretiak and co-workers.256

5.2. Δ-ML

The idea to present QML models of label corrections
applicable throughout CCS and which systematically improve
with training data size was first established in 2015 in terms of
Δ-machine learning. Numerical results provided overwhelming
evidence for the success of this idea as demonstrated for
modeling energy and geometry differences between various
levels of theory, including PM7, PBE, BLYP, B3LYP, PBE0,
G2MP4, HF, MP2, CCSD, and CCSD(T) for QM9171 and
subsets thereof.257

Δ-ML also works for correcting complex and subtle
properties, such as van der Waals interactions in extremely
data-scarce limits, as illustrated for DFT corrections based on
training sets with less than 100 training instances,258 or to
model higher-order corrections to alchemical perturbation
density functional theory based estimates of heterogeneous
catalyst activity.259 Among many other applications, Δ-ML has
enabled corrections to electron densities,260 electron correla-
tion based on electronic structure representations within
Hartree−Fock or MP2 level of theory,261 or DFT and
CCSD(T) based potential energy surface estimates.262

For noise-free data and functional QML models (unique
representations), numerical results for learning curves indicate
a constant lowering of offset, no matter which training set size.
Such nonvanishing improvement appears to turn into
vanishing improvement when employing Δ-ML in order to
correct low-quality or coarse-grained baselines, such as a
semiempirical PM7257 or Hammett’s relation.212

5.3. Multifidelity

The success of Δ-ML is encouraging, enabling a significant
reduction in high-accuracy reference quantum chemical data
necessary for training, to reach the same level of predictive
accuracy as traditional QML models. However, it still
consumes a considerable amount of data calculated at some
high level of theory, as its structure in design is too simple to
fully exploit the underlying correlation between varied quality
of properties. In fact, well-established quantum chemical
methods abound in literature, exploiting effectively the
underlying correlation, in the name of the so-called composite
methods, for example, the famous Gn series.263−265 In essence,
these methods approximate some specific part of correlation

energy (e.g., energy lowering due to inclusion of diffuse orbital
in basis set) from a high level of theory (for instance
CCSD(T)) by the same quantity calculated from a relatively
low level of theory (say MP2). Because of error cancellation,
composite methods have been proven to be extremely effective
toward reaching an accuracy of experimental quality and are
widely used for calculations of high-quality thermochemical
data.263−265

To do interpolation and meanwhile exploit error cancella-
tion effectively, multifidelity ML (MF-ML) comes into play.
The core idea of MF-ML is hereafter demonstrated by total
energy (E) prediction. For brevity, we deal with two levels of
theory (the low and high level are denoted by 0 and 1,
respectively) and focus on one flavor of MF-ML, i.e., recursive
KRR (r-KRR for short, or MF-KRR),266 which is similar to its
counterpart, recursive GPR (r-GPR, or MF-GPR),267,268 and
differs to MF-GPR to some extent, in analogy to the difference
between KRR and GPR. Unlike Δ-ML, MF-ML comprises
multiple machines with different labels to learn (two for our
exemplified case). The first one is just a traditional QML
model trained on a set of data (denoted as S0) associated with
the low level of theory, i.e., Ej

0 = Σi∈S0 ci
0k(i,j), where j ∈ S0

denotes the molecular representation vector and c0 is the
regression coefficient associated with the low level of theory.
This machine is also called the baseline model. Then we build
a second machine with training set S1 satisfying S1 ⊂ S0 and
energy delta, i.e., E1 − E0, as label, the same as a Δ-ML model.
In math, ΔEn

0→1 = En
1 − En

0 = Σm∈S1 cm
1 k(m,n), where n ∈ S1. Once

trained separately for each machine, all cl’s are obtained and
MF-KRR predicts the property of any query q out-of-sample at
the high level of theory by Eq

1= Eq
0 + ΔEq

0→1.
Extending r-KRR to more than two levels of theory is

straightforward: except the baseline model for the lowest level,
one needs to build one machine for every two adjacent levels
of theory, and the final test energy is just the summation of the
inferred energies by all machines, i.e., Eq

L = Eq
0 + Σl = 0

L−1 ΔEq
l→l+1,

where l is the level indicator (starts from 0, the lowest level)
and L corresponds to the largest l, or the target level. Bear in
mind that S0 ⊂ S1 ⊂··· ⊂ SL.
We note in passing that MF-GPR has a rather different

formulation compared to MF-KRR and benefits from the
stochastic nature of GP, i.e., it is capable of providing the
variance estimate of prediction. Like GPR, data at each level of
theory in MF-GPR is modeled as a GP,267,268 and every two
adjacent levels are connected by a linear transformation, i.e.,
El+1 = γEl + ϵ, where γ is a scaling factor and ϵ is a correction
term respectively and both of which may depend on the two
involved levels of theory (i.e., l and l + 1). Nevertheless, both
MF-KRR and MF-GPR could end up with the same set of
working equations under certain conditions. For detailed
derivation of the equations of MF-GPR, the reader is referred
to an early review on QML.10 Last but not least, one should
note that MF-KRR converges toward the conventional KRR
model associated with the highest level as the difference
between training sets for each machine vanishes.
Albeit well-founded in mathematics decades ago, the power

of MF-ML has not been harvested until recently. Applications
include quantum collision for the Ar−C6H6 system by Cui et
al.,269 bandgap prediction of solids done by Pilania et al.,270

dopant formation energy prediction in hafnia by Batra et al.,271

high-accuracy potential energy surface prediction for small
molecules by Wiens et al.,272 and the recently performed
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molecular crystal structure prediction study by Egorova et
al.273

5.4. Multilevel Grid Combination

In spite of the drastic improvement over Δ-ML, MF-ML has its
own limitations. For one, the computational cost of the
baseline evaluation for every query compound can still be
considerable. Furthermore, it must be strictly satisfied that the
increasingly more expensive training sets form a nested
structure, implying that possible and beneficial correlations
between non-nested reference data calculated at different level
of theory are not being exploited. To overcome this drawback,
Zaspel et al.266 proposed a multilevel model in 2018,
combining successfully ML with sparse grid (SG),274 a
numerical technique widely used to integrate/interpolate
high dimensional functions.
The genuine SG approach assumes (quasi-)uniform grids

along each dimension, which serves as basis functions (more
precisely, centers of basis functions, such as triangular
function) and based on tensor products of which any
multidimensional function could be represented/expanded.274

The expansion weight for each tensor product is dependent on
only the indices of associated grid and spacing along each
dimension and determined by multivariant Boolean algo-
rithm.275

Replacing such a grid by abstract variable (or combinations
of which) such as electron correlation level (xC), basis set (xB)
and expressing system property as a function of these abstract
variables represents an appealingly rigorous alternative. For
example, the total energy of a system could be expressed as E =
E(xC, xB). Given some sparse grids comprising small xC
combined with all xB’s, and small xB combined with all xC’s,
and intermediate xB’s combined with intermediate xC’s, we are
able to interpolate/extrapolate the E at some different
combination of xC and xB. Of particular interest is extrapolation
to regions unsampled, i.e., regions with large xC and xB.
However, one major issue with such extension is the elusive
nature of distance between two abstract variables, which is
essential in determining the weight associated with each grid,
as mentioned above. More specifically, it is unknown how to
quantitatively characterize how distant HF and MP2 are along
the dimension C, although qualitatively it is certain that HF lies
closer to MP2 compared to CCSD(T). The B subspace, is
understood much better, as the magnitude of xB could be at
least characterized by the largest angular channel, or more
straightforwardly, although less rigorously, by the number of
basis functions. This ill definition of these abstract variables is
absent in genuine SG, as grids there reside typically in
Euclidean space and therefore distance is well-defined. To rise
to this problem, a workaround is to assume uniformality of
grids along each dimension (i.e., equidistant) and grids along
each dimension is represented simply by indices starting from
0 (now weights depend solely on the indices of grids). This,
however, should always be done with great care. In the original
MLGC paper,266 electron correlation levels are reasonably
chosen as HF, MP2, and CCSD(T), together with three basis
sets, i.e., STO-3G, 6-31G, and cc-pVDZ (the number of basis
functions increases by a factor of ∼2).
Note that the aforementioned SG approach deals with

typically one system at a time. To incorporate it within ML
framework, one extra variable has to be introduced, i.e.,
training set (xN), the size of which indicates the magnitude of
xN.

266 Accordingly, E = E(xC, xB, xN). Unlike subspace C or B,

xN is well-defined with explicit value. Nevertheless, it has to be
treated in a similar fashion as for xC/xB, i.e., given the minimal
xN (aka. N0) and a ratio (s) between any two adjacent xN’s,
training sets are to be assigned an array of indices starting from
0 (for N0) and an increment of 1. This assignment is necessary
so as to comply to what has been done for subspaces C and B.
Now each grid in this abstract space is a combination of three
variables: (xC, xB, xN), with xI ∈{0, 1, . . ., Imax}, I ∈{C, B, N}.
For each such combination, an associated ML model is trained
(with N training instances of course). Given a query system, its
energy is predicted as a weighted summation of test energies
from all ML models, with weights derived from Boolean
algorithm.266,275 Note that in practice, to reduce the cost of
generation of reference quantum data, a large xN is associated
with a low level of correlation and/or small basis set, while
only few(er) labeled data are needed for high(er) correlation
level and/or large(r) basis set.
With the above setting, Zaspel et al. were able to show266

that MLGC enables ∼10-fold reduction (cf. traditional single
level ML model) in the costly highest level quantum data (i.e.,
CCSD(T)/cc-pVDZ) to reach chemical accuracy in predicting
atomization energy of out-of-sample QM7b molecules. Last
but not least, it is worth pointing out that MLGC reduces to
MF-ML if only one dimension is being considered.

5.5. Transfer Learning

While multilevel methods are most naturally combined with
kernel methods, they may have even more far-reaching effects
for neural network (NN) models, as training a NN model,
deep NN (DNN) in particular, is a nontrivial problem.
Furthermore, current ad hoc DNN models are typically
specialized, meaning a (D)NN model may need to be retrained
for a slightly different task.
Transfer learning (TL)276 is one popular approach employ-

ing multiple levels in machine learning that can greatly alleviate
the aforementioned problems, which reuses the knowledge
gained through solving one task (base task) as a starting point
for a second task (target task), different but highly related. For
instance, knowledge obtained from learning to infer DFT
energies could be applied to infer CCSD(T) energies.277 A
successful transfer of knowledge can improve the performance
of the target DNN model significantly. Speaking the language
of learning curve, TL could offer276 (i) smaller offset as the
transferred model per se provides a decent starting point and
(ii) steeper learning curve due to the transferred model usually
accounting for a parameter space rather close to the optimal
one.
On the basis of the type of traditional ML algorithms

involved, TL could be categorized into several variants. Here
we focus on a variant named inductive transfer learning, in
which the labeled source and target domains are the same, yet
the source and target tasks are different from each other.
In TL, there are two essential ingredients: (i) a pretrained

model, obtained by either training a network from scratch on
some data set and a specific task, or simply from published
models, and (ii) target network, to be trained on a target data
set and task, but utilizing the learned features from (i). This
process is likely to work only if the features are general (i.e.,
generic features) to both base and target tasks, as would be
captured by the initial layers of NN models. When retraining
the target model, one may choose to either freeze the initial
layers in the base network to use them as feature extractors for
the target model or fine-tune the last several layers further for
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improved performance. A rule of thumb is to freeze when
target labels are scarce (to avoid overfitting), while fine-tune
otherwise.
To develop a successful TL model, it is vital to choose the

proper base model and associated training data set. However, it
remains largely an open question how to make the choice. This
may require profuse intuition developed via experience.
Furthermore, there exists one major potential risk of using
TL, i.e., negative transfer, which refers to scenarios where the
reuse of base-task knowledge degrades the overall performance
of the target task. To avoid negative transfer, one may have to
resort to approaches that explicitly model relationships
between tasks and include this information in the transfer
method.278

Applications of TL covers mainly computer sciences, such as
image recognition and natural language processing. For
chemistry-related problems, TL is emerging as a promising
approach. Examples include Smith et al.’s work on predicting
CCSD(T)/CBS energies based on transferred knowledge
gained through training on DFT energies277 for the ANI-1x
data set (see section 8.1), Iovanac et al.’s work on property
prediction of QM9 molecules,279 as well as Cai et al.’s recent
work on drug discovery.280

6. TRAINING SET SELECTION
Among all factors determining the performance of a QML
model, training set selection plays another fundamentally
important role in the sense that all knowledge essential for
making confident predictions are implicitly encoded in the
training data.
Several pertinent fundamental and distinct questions have

remained open:

Q1 How to extract the most representative and least
redundant general subset from a given data set?

Q2 How to quantitatively define the suitability of a given
training set for a specific query at hand?

Q3 How to systematically select the most relevant training
set for a specific system?

Because of their highly nonlinear impact of training
instances on model parameters, these questions are challenging
and have not been studied much. Of course, the problem of
training set selection is not a problem unique to chemistry, and
it is relevant to most supervised learning problems in other
fields. Currently, the aforementioned issues are mostly
addressed through random selection. Although universally
applicable, random selection suffer inevitably from selection
bias inherent in the data itself. More specifically, in the
randomly selected training set, many instances can be ignored
and their inclusion in training does not improve predictive
performance of the QML model (due to redundancy) or could
even degrade it (due to being irrelevant for a given query test
or due to noise).
Bias could become a very serious issue as the systems under

study are increasingly more complicated. The origins of the
bias issue could be divided into two components: (i) Curse of
dimensionality. This is mainly related to the size of the systems
and plagued further by compositional diversity. More
specifically, as the system size and/or the encompassing
number of types of elements grow, the size of the thus-spanned
CCS grows combinatorially (see above). (ii) the inhomoge-
neity of CCS. The energetics in chemistry typically favors one
kind of bonding over another. For instance, hydrogen atom

favors a single σ bond with other atoms, while carbon atom can
exhibit several different bonding patterns such as sp3, sp2, and
sp. Consequently, random sampling will introduce more
subsampling of hydrogen environments, but proportionally
fewer C−sp local environments leading to worse model
estimates of properties for C than for H.
To tackle the bias issue, previous and ongoing research has

been trying to almost exclusively tackle Q1, assuming a pre-
existing data set (or a data set that is straightforward to
generate, e.g., in molecular dynamics). Examples include the
use of genetic algorithms (requiring labeled data to gradually
expand the optimal training set),80,281 or “active learning”
approaches,79,222 which selects the most representative subset
“on-the-fly” from a given set of unlabeled configurations, i.e.,
no quantum chemical data is needed for making decisions
about whether or not a query configuration is redundant. The
AMONs concept proposed by the authors242 partially resolves
question Q3 (cf. Q1 and Q2), at the same time allowing for
significant dimension reduction of CCS as well as the effective
removal of statistical redundancy of training sets (see below for
details). Other related work shifts the attention to training set
reduction instead, primarily in molecular dynamics simulations,
for instance, Li et al.62 proposed a “learning-and-remembering”
scheme, in which the decision to recompute QM data for a
new configuration was taken every n steps. Another relevant
contribution to active learning in CCS was made in 2018 by
Smith et al.,282 relying on “query by committee”, i.e. ensemble
information obtained through use of multiple neural networks
(of the ANI kind53). Potentially promising alternative
directions could possibly be inspired by recent developments
in computer science, among many others notably the idea of
artificial “soft” labels, curated through carefully blending
features of training instances.283,284 In the original paper, this
idea was tested on the MNIST data set (a database of
handwritten digits) and similar performance was achieved with
much fewer but soft labels, as compared to training on almost
the entire data set. This idea should in principle also be
applicable to CCS requiring the design of some fictitious
averaged training molecules, interestingly probable to violate
common rules of chemical bonding. In the following, we
review the three most promising approaches toward training
set selection: genetic algorithm, active learning, and the
AMONs approach.

6.1. Genetic Algorithm

Genetic algorithms (GA) have been widely used in (global)
optimization problems in quantum chemistry, such as first-
principles based global structure optimization285 (for com-
pounds with desired physio-chemical property), a key topic in
the inverse-design problem.286 To the best of our knowledge,
the first piece of work about using GA for training set selection
within QML was done by Browning et al.281 for molecules,
followed by Jacobsen’s work80 on SnO2(110) surface
reconstruction.
In the following, we discuss the central idea of GA for the

selection of the most representative set of QM9 molecules as
done in ref 281. For applications to other properties and
systems such as chemisorption systems,287 only technical
details will differ. Given a set (S0) of N molecules, GA carries
out three consecutive steps for optimization: (a) Generate M
random sets of size N1. This forms a starting population of
training sets (aka. the parent population), labeled as Ŝ(1) = {Si},
where i ∈ {1, 2, . . ., M}. Note that the initial size needs to be
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balanced against the diversity of the molecules for optimal
performance. (b) Train a QML model on each set in Ŝ(1) and
then test on some joint preselected out-of-sample molecules
(i.e., not part of Ŝ(1)), the resulting test error ϵi (measured by
for instance mean absolute error) serves as a “fitness” indicator,
characterizing how fit si is as a training set (smaller ϵi means
better fitness). (c) Evolution of Ŝ(1) takes place through three
consecutive steps: selection, crossover, and mutation. In the
selection step, decisions have to be made on which Si ∈ Ŝ(1)

should be kept in the population to produce a temporary
refined smaller set t(̂1), and a set with larger fitness value means
higher probability to be kept in t(̂1). The crossover step
involves the update on Ŝ(1) from t(̂1), and the resulting new
population is relabeled as Ŝ(2), each of which is obtained by
mixing molecules from two subsets of t(̂1). The last step
mutation randomly modifies molecules in some subset of Ŝ(2)

to promote diversity, e.g., replace −NH2 group by −CH3. To
avoid introduction of chemical environments alien to the
whole data set, the replacements in mutation have to be
constrained locally in S0. (d) Go back to step (b) and repeat
b−d until there is no improvement in the population and the
fitness value has no significant improvements for over n
iterations. The final converged set corresponds to a “optimal”
training set and is labeled as Ŝ.
It is not a surprise that selected Ŝ should be able to represent

all the typical atomic environments in S0, and therefore a QML
model trained on Ŝ warrants significantly improved test results
in comparison to randomly drawn training sets. As the fitness
value decreases during the GA iterations, the QML models
“tried” out the sensitivity with respect to inclusion of certain
training instances, and this can serve their systematic
inclusion/exclusion. The usefulness of the optimized set Ŝ
has to be assessed by the generalizability of the QML model
trained on Ŝ to new molecules absent in S0. Indeed, improved
generalizability is observed for PubChem molecules compared
to random sampling, as was reported in ref 281.
In spite of its power for solving hard optimization problems,

such as finding the optimal training set composition, the
drawback of most GA implementations is also obvious: It
typically relies on the availability of labeled data to evaluate the
fitness in each iteration. As such, it only offers computational
cost savings in terms of QML model efficiency and not in
terms of reducing the total need for available training data.
Possible solution to circumvent this is to introduce heuristics
in feature space, e.g., accounting for the fitness by some
distance metric instead, meanwhile avoiding the costly
training-test procedure in each iteration.288

6.2. Active Learning

Active learning (AL) is more interesting than GA for training
set selection, as it can use directly unlabeled data, i.e., before the
acquisition of costly labels. Intuitively, it makes sense that this
should be possible as the quantum properties of any
compound are implicit functions of its composition and
geometry, which is the only input required for calculating
rigorous representations. Among the many categories of AL
algorithms used for determining which unlabeled data points
should be labeled, below we mainly focus on the variance
reduction query strategy, which labels only those points that
would minimize output variance (uncertainty in prediction).
Note that the task of variance estimation is fundamentally
different from mean error estimation, and the variance based
selection method differs significantly from the mean error

based selection method (such as GA mentioned above)
accordingly. Relevant works on active learning include the D-
optimality approach79,222 and methods based on variance
estimators using Gaussian process regression (GPR),289−291 as
well as neural network (NN) models.
Rooted in linear algebra, the D-optimality approach79,222

takes advantage of (i) the dimension of features could in
principle be significantly lower than the number of degrees of
freedom spanned by the molecules (in particular for molecules
that are in or close to their equilibrium states) and (ii) linearly
parametrized local atomistic potential. Given a set of K
molecules, the total energy of the qth molecule could be
approximated as E(q) = Σi = 1

N V(xi
(q)) = Σi = 1

N Σj = 1
m θjbj(xi

(q)) =
Σj = 1

m θjBj(x
(q)) (in matrix form, E = θB), where Bj(x

(q)) = Σi = 1
N

bj(xi
(q)) serves as the effective basis function of dimension m

and bj(xi
(q)) is some function dependent only on the local

representation xi
(q) of the ith atom in q, N is the number of

atoms of q. Then deriving the D-optimality criteria boils down
to finding the “best” submatrix (of size m × m) from the
overdetermined matrix AK×m (where K > m and Akl = Bk(x

(l)))
such that the absolute value of det A reaches its maximum.
Well-established algorithms exist to achieve the D-optimality
criteria, e.g., the maxvol algorithm.292 To obtain an optimal set,
one typically has to iterate the procedure, one new query per
time. If the corresponding magnitude of det A increases, it
would be selected (query strategy) and discarded otherwise.
Numerical results79 have shown much improved performance
for long-time MD simulation compared to classical on-the-fly
learning.62 However, the downside of D-optimality approach is
also noticeable, that is, the model has to be updated at each
iteration and application of the model could be prohibitive for
a data set bearing a large feature space. Furthermore, the linear
potential Bj depends on the proposed representation and the
potential form, the latter of which in particular may suffer from
lack of expressive power for some systems, i.e., the potential
form may lack general applicability for a wide range of
molecular systems. And last but not least, this approach relies
on the choice of ratio (of det A values of two consecutive
iterations) threshold manually chosen, which has to be tailored
for a specific data set and may not be applicable to other data
sets that only differ ever so slightly.
We note in passing that an alternative view79 of D-optimality

criteria is to assume that the energy has a Gaussian random
noise and the best submatrix A corresponds to the minimal
variance in the solution of E = θB. Besides, consideration of
other properties such as forces could be naturally incorporated
into this framework by simply taking derivatives of Bj with
respect to Cartesian coordinates, expanding the feature matrix
B.79

Another variance-based approach relies on the GPR directly.
That is, once trained, the model can estimate the variance
directly, without referring to other criteria (as in the D-
optimality approach). The estimated variance serves as a
natural indicator, telling if any newly added data point would
improve the model (if the variance is large with respect to a
user-defined tolerance) or not (if the variance is very small). A
small variance typically also means that the newly added data
lie within or close to the current training space, distant
otherwise. Methods like Gaussian process regression (GPR)
are stochastic in nature and inherently capable of calculating
the variance of prediction. More specifically, GPR aims to
estimate the predictive distribution for any test data (unlike the
kernel ridge regression model). Related works include that of
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Snyder et al.’s,289 in which the Bayesian predictive variance is
shown to correlate with the actual error, and recently Reiher’s
group290,291 used GPR to select optimal training sets in an
automated fashion to explore chemical reaction network290

and subsequently adjust for systematic errors in D3-type
dispersion corrections, with one (sequential scheme) or
multiple systems (batchwise variance-based sampling, BVS)
selected each time.
Neural network (NN) based methods also offer a quite

distinct perspective on the confidence of predictions. The
general finding is that for NN methods estimates tend to be
overconfident,293 possibly due to the lack of principled
uncertainty estimates294 (i.e., NN model typically produces
one single value for an input instead of a preditive distribution
like GPR) and/or that the tools for mean estimation perhaps
do not generalize.294 In spite of the lack of native variance
estimate, variance can still be modeled in practice through
consideration of multiple parallel NN models. In analogy to
GPR, uncertainty in NN models can be understood by taking a
Bayesian view of the uncertainty of weight with some
distribution assumed a priori and then updated by training
data. There exists several variants of such NN models,
including the ensemble neural network models,282,295−297

where NN models share the same architecture but varied
parameters (typically, ensembles are generated by NN
submodels training on distinct subsets of data), and the
dropout regularized neural network,298 a lower cost framework
for deriving uncertainty estimates (randomly dropout some
nodes each time). These NN models are highly dependent on
the training data, and therefore the predicted variance may not
be reliable if the test data is distinct from training data, as is
commonly expected for CCS exploration. Another type of NN
model based uncertainty metrics, widely adopted, may alleviate
this deficiency, which employs distances in feature space (or
some latent space) of the test data point to the current training
data to provide an estimate of similarity measure and thus
model applicability.299 This kind of approach enjoys several
other advantages, such as easy interpretation, model
independence, as well as potentially fast computation, but
suffer from high dependence on the representation.299

6.3. AMON Based QML

Having a closer look at all the selection methods presented
above, one notices that there is always some footprint of
random sampling, i.e., one prerequisite for all those methods is
a pre-existing starting training data, usually randomly selected,
and reaching convergence of training data through iterative
addition of new feature inputs may be slow if the starting
points barely represent the space spanned by test data. The
AMONs approach242 attempts to mitigate these shortcomings
through selection of the “optimal” training set on-the-fly, i.e.,
only after having been provided a given specific query test
feature input. In essence, AMON based QML exploits the
locality of an atom in molecule which allows to reconstruct
extensive properties, such as the ground-state energy, in some
analogy to the nearsightedness of electronic systems.300,301 For
the sake of a succinct discussion, we turn our attention to
valence saturated system only and we neglect hydrogens.
However, extension to other systems (e.g., system involving
radicals, charges, conformational changes, vibrations, reactions,
or noncovalent interactions) are also possible206,242). Note that
throughout the whole process, we are only concerned with
heavy atoms.

The AMONs selection procedure242 can be divided into
four major steps: (i) The connectivity graph G of a query
molecule is constructed using its 3D geometry. (ii) Next, all
subgraphs are enumerated (the ith subgraph is labeled as Gi) of
G with increasing number of heavy atoms (denoted as NI). For
a given Gi, one performs a series of checks to see if it is a
representative subgraph: (a) Is it a connected subgraph? (b)
does subgraph isomorphism hold true? (c) Are all atoms
valency-saturated after rationalization of the subgraph? And
(d), is ring structure retained when all associated nodes are
present in the current subgraph? If all of these criteria are met,
then Gi is ready for further filtering and discarded otherwise.
Criteria b is concise yet informative: subgraph isomorphism
ensures that hybridization states of all atoms in the subgraph
are retained, implying that bonds in query graph with bond
order larger or equal to 2 are not allowed to break for
fragmentation. (iii) Perform geometry relaxation for the
corresponding fragment (now with valencies saturated with
hydrogen atoms) using, for example, Universal Force Field
(UFF)302 or other force-field optimizer with dihedral angles
fixed to match the local geometry of the query molecule (to
avoid conformational changes in local environments). This
step is followed by geometry relaxation using some quantum
chemistry program. At this stage, it may happen that the
subgraph candidate dissociates (turning into a disconnected
graph) or is transformed into a molecule with different
connectivity. In the former case, the fragment should be
discarded, while in the latter case, the subgraph isomorphism
has to be rechecked. (iv) One proceeds if the subgraph
candidate has experienced no change in connectivity or if
subgraph isomorphism is retained despite there being change
in connectivity. The resulting fragment is selected for the
AMON database.
As the number of atoms in the subgraph increases, one

continues looping through {Gi} until the set has been
exhausted. The resulting set of AMONs is considered the
query-specific “optimal” set which is representative of all local
chemistries in the query molecule.
Figure 5 shows all AMONs for an exemplified QM9

molecule named 2-(furan-2-yl)propan-2-ol with AMON size
(NI) being at most 7 by applying the above algorithm. Not
surprisingly, there exist only two molecules possessing NI = 1,
i.e., CH4 and H2O. For NI = 2, a CC double bond is allowed
to be cleaved from the 5-membered ring, forming a valid
AMON H2CCH2, as the resulting AMON retains its original
coordination number for C’s, meanwhile keeping their valence
saturated (i.e., meeting octet rule). While a fragment such as
H2C−OH, also extracted from the ring, is not a valid AMON
as the valence of C atom is not saturated. Repeating similar
arguments for increasingly larger NI’s, we end up with only 30
AMONs, but which as a whole represent the complete set of
local atomic environments present in the target and has the
potential to extrapolate accurately the properties of the
exemplified target QM9 molecule, as well as infinitely many
other molecules that share the same set of AMONs after
fragmentation.
AMON based QML models exhibit improved slopes and

offsets in learning curves, as evinced for thousands of
molecules after reaching respective training set sizes of only
∼50 on average. By contrast, 20 times larger training set sizes
are required using random sampling.242 One should note that
graph based AMONs are not omnipotent. They are best suited
for sampling chemical spaces of large systems. To extend

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c01303
Chem. Rev. 2021, 121, 10001−10036

10017

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


AMONs to also handle configurational spaces is possible in
principle, but not trivial as it faces challenges similar to
modeling large systems without explicit graphs, such as metals,
metal surfaces, or molecular crystals or liquids.

7. PROPERTIES
As we focus on supervised learning throughout this text,
properties (or labels) of molecules have to be always paired
with some molecular representation. Starting from regression
of experimental properties, e.g., atomization energies, dipole
moment, boiling point, in the early practises of machine
learning, by now the scope of properties has been expanded
significantly.
Because of its determining role for stability and dynamics,

energy is among the most important properties, and it is also
the primary target property of most studies. As early as in
2011,303 reorganization energies in a subspace of CCS
consisting of polyaromatic hydrocarbons relevant to photo-
voltaic applications were already predicted using ML models.
While the pioneering work on demonstrating the applicability
of QML models for navigating CCS was published in 2012 for
atomization energies only,195 a multiproperty neural network
was published shortly after,219 covering not only atomization
energies but also polarizabilities, molecular orbital eigenvalues,
ionization potentials, electron affinities, and excited-states
properties at various levels of theory. The correlations
among these properties have confirmed some of the well-
established physical principles as well as shown some
interesting patterns. As illustrated in Figure 6, the ionization
potential (IP) is well correlated with the HOMO energies, as
expected from Koopman’s theorem; the polarizability is linked
to the stability, as often implied by the hard−soft acid−base

principle. Properties calculated at different levels of theory are
strongly correlated, suggesting the possibility to exploit implicit
correlations for the training of QML models with superior data
efficiency. What is more interesting is that, for properties such
as HOMO and atomization energies displaying little
correlation, after training the neural network encodes some
of the underlying and hidden correlations among these
properties (box in Figure 6), indicating already in 2013 that
neural network based QML models are amenable to
“explainable AI”, as also illustrated subsequently in 2017 for
effective atomic chemical potentials.304

While QML commonly deals with properties which
correspond to observables, other well-defined but more
arbitrary labels can also be modeled. Examples include atomic
charges or energies which do not have a unique definition. A
more exotic application consists of successfully trained QML
models of “time-to-solution” in terms of estimates of the
number of iterations necessary to reach convergence for given
initial conditions: In 2020, QML models of the computational
cost of common quantum chemistry calculations have been
demonstrated to enable optimal load-balancing and scheduling
in ensemble calculations of high-throughput compute
campaigns through CCS.305

To provide a more comprehensive perspective on the
interesting subject of property, below we divide all properties
into three main categories depending on the number of atoms/
species involved: atomic property (atom/bond/functional
group in a molecule), molecular property (the entire
molecule), and intermolecular property (at least two molecular
species). And within each section, we briefly review models of
important properties in a rough chronological order. Note that
the boundary between different categories is not clear-cut. For
instance, the highest vibrational frequency of a molecule may
be attributed to certain functional group but only in an
approximate way, the exact value of which may still depend on
all the other atoms in the molecule. For this and similar cases,
we prefer to classify the relevant properties into atomic rather
than molecular properties.

7.1. Atomic

Generally speaking, atomic properties are relatively easy to
learn as they typically benefit the most from the general
assumption of locality of an atom in a molecule. On the basis
of the QM9 database, QML models were introduced for
atomic properties, such as core level excitations, forces (see
previous section), or NMR-shielding constants.64 Atomic
QML models of electrostatic properties, such as atomic
charges, dipole moments, or atomic polarizabilities, were
introduced in 2015,249 and their use for the construction of
universal noncovalent potentials was established in 2018.70

Deep neural networks for similar properties were also
contributed in 2018 and 2019 by Unke and Meuwly.56,306

Information from topological atoms has also been used to
build dynamic electron correlation QML models in 2017.307 In
2017 and 2018, atomic energies and potentials were also
discussed in refs 166, 173, 308, and 309. QML models of
polarizabilities based on tensorial learning were presented in
2020,310 and most recently, Gastegger and co-workers
introduced external field effects within neural networks and
demonstrated interesting performance for predictions of IR,
Raman, and NMR spectra, as well as for continuum solvent
effects on chemical reactions.209 Multiscale models of atomic
properties have also been proposed.311

Figure 5. All AMONs sizes 1−7 for training system specific QML
models of exemplary query molecule 2-(furan-2-yl)propan-2-ol (top
right).
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QML models of NMR shifts in molecules were first studied
in 201564 and 2017,242 followed by shifts in solids in
2018,312,313 and NMR shifts in solvated proteins, coupling, a
kaggle challenge, and an in-depth revisit of shifts in molecules
were all contributed in 2020.314−317

In 2017, self-correcting KRR based models of potential
energy surfaces and vibrational states were presented in ref 318
as well as neural network based molecular dynamics for the
calculation of infrared spectra.319 Out of all QML models for
properties studied in the 2017 overview study on the CCS of
QM9,233 it was only for the highest vibrational (fundamental)
frequency that random forests performed better than KRR or
neural networks, the likely reason being that the QML model’s
task consisted “only” of detecting if an O−H or N−H bond
present on top of the C−H bonds, and to assign the typical
corresponding bond-frequency, and that typically random
forests work well for such classification tasks. Other 2018
studies dealing with infrared spectra include refs 206, 251, and
252.

7.2. Molecular

At the molecular level, properties are greatly diversified,
ranging from properties for ground state to excited ones, from
static to dynamic ones, as well as from single molecule in
vacuum to condensed phase.
QML models of electronic properties, such as excited states,

quantum transport, or correlation, have remained rather sparse
over the years. Examples include QML models for electron
transmission coefficients for transport across molecular bridges
of varying composition,320 and Anderson impurity models321

in 2014, and dynamical mean field theory322 and excitation
energies232 in 2015. Only recently QML has been extended to
also study nonadiabatic excited states dynamics for given
systems (conformational sampling) by Dral, Barbatti, and
Thiel323 or Westermayr and Marquetand.83,324 And the recent
introduction of SchNarc,325 a combination of the deep neural
net architecture SchNet55 and the surface hopping ab initio
molecular dynamics code SHARC,326 has led to promising first
results for CCS studies involving small sets of small

Figure 6. Property vs property matrix for ∼7k organic molecules at various levels of theory. A multiproperty neural net trained in CCS encodes
underlying correlations as evinced by the first principal components of the last layer for 2k molecules not part of training. Reproduced with
permission from ref 219. Copyritht 2013 licensed under a Creative Commons Attribution 3.0 license.
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molecules.327 For more details we refer to the recently
published reviews on this field.328−330

QML models of electron affinities and ionization potentials
with deep neural networks have also recently been
proposed.331 Symmetry conserving neural networks for
efficient calculations of electronic and vibrational spectra
have been presented in 2020.332

7.3. Intermolecular

As the system becomes more complicated, the associated
properties also tend to show more interesting, and sometimes
surprising patterns. Hereafter, we will focus on energetic
properties, unless otherwise stated. Depending on whether or
not the system has experienced significant reconstruction in
the relative orientation between atoms, intermolecular
energetics could be further divided into intermolecular binding
energy or reaction energy/barriers. Below, we summarize
relevant contributions for each of these two subcategories.
In terms of binding energies within assemblies of atoms, ever

since the publication of ref 195 in 2012, a large variety of
systems has been addressed, reaching from formation energy
predictions of diverse inorganic materials,164,166,333 over
models of chemical bonds in molecules,334 to models of
electronic properties of transition metal complexes.335 GPR/
KRR based QML models represent a unified approach, as
demonstrated for applications to surface reconstructions,
organic molecules, as well as protein ligands.243 Symmetry
adapted learning of tensorial properties was introduced in
2018,336 as well as neural networks for atomic energies,309 on-

the-fly learning for structural relaxation,80 crystal graph
convolution networks for materials properties,337 solvation
and acidity in complex mixtures,338 and a machine learning
based understanding of the chemical diversity in metal−
organic-frameworks.339 An extensive review of big data in
metal−organic frameworks was also published in 2020.340

Accurate QML prediction of reaction related properties, the
reaction barrier in particular, is a difficult task, as typically off-
equilibrium configurations are involved, and the training space
is undersampled.
The use of QML models to investigate properties relevant

for catalysis represents another major domain of research. A
GPR model was used in 2016 to estimate free energies of
possible adsorbate coverage for surfaces in order to accelerate
the construction of Pourbaix diagrams.341 In 2017, Ulissi et al.
introduced a neural network based exhaustive search enabling
the identification of active site motifs for CO2 reduction,

342 as
well as a GPR based estimator of adsorption energies for
identifying the most import reaction step.343 QML models of
reaction barriers of elementary reactions (using 236 dehydro-
genation, 38 N2 dissociation, and 41 O2 dissociation examples)
on surfaces were proposed by Singh et al. in 2019.344 Quantum
machine learning based design of homogeneous catalyst
candidates was presented in 2018.345 In 2020, QML models
of competing reaction barriers and transition state geometries
corresponding to SN2 and E2 reactions in the gas phase were
successfully trained and applied throughout a CCS covering
thousands of reactants,346 relying on the QMrxn data set.347

Table 1. Overview: Synthetic Quantum Data Sets in Three Data Families of Chemical Compound Space: Generated Data Base
(GDB33,353,360), Transition Metal Complexes (TMC), and Periodic Systems (Crystalline Solids or Surfaces)a

family data set composition size method properties year notes

GDB QM7385 C, O, N, S 7165 PBE0 E 2012
QM7b358 C, O, N, S, Cl 7211 PBE0, ZINDO, GW E, ε, α, E*, etc. 2013
QM9171 C, O, N, F 134k B3LYP/6-31G(2df,p) E, μ, α, ε, Pthermo, etc. 2014
QM8363 C, H, O, N, F 20k TDDFT, CC2/def2-TZVP E*, f1, f 2 2015 excited state
ANI-1366 C, O, N, F 20M w97x/6-31G(D) E 2017 off-equilibrium
QM7bMl266 C, O, N, S, Cl 7211 {HF,MP2,CCSD(T)}

/ {sto-3g, 6-31g, cc-pVDZ}
E 2018 multifidelity

QML
Alchemy362 C, N, O, F, S, Cl 119k B3LYP/6-31G(2df,p) E, μ, α, ε, Pthermo, etc. 2019
QM7-X359 C, H, O, N, S, Cl 4.2M PBE0+MBD E, f, ε, μ, α, qA,

C6, etc.
2020 off-equilibrium

ANI-1x367 C, O, N, F 5M w97x/def2-TZVPP and
CCSD(T)/CBS

E, f, μ, qA, etc. 2020 off-equilibrium

AGZ7365 B, C, N, O, F, Si, P, S, Cl, Br, Sn, I 140k B3LYP/cc-pVTZ E, μ, α, ε, Pthermo, etc. 2020

TMC tmQM382 3d, 4d and 5d transition metals, B, Si,
N, P, As, O, S, Se, halogens

86k TPSSh-D3BJ/def2-SVP E, μ, qA, ε, etc. 2020 GFN2-xTB
geometry

(MIT)383,386 Cr, Fe, Mn, Co, Ni, C, N, O, S, Cl >2M B3LYP/LANL2DZ (6-31g*) E, ΔEH−L, redox
potential

2017,
2020

periodic Materials
Project165

across periodic table >600k PBE E, electronic and
response
properties

2011

AFlow387 across periodic table 3M PBE E, electronic and
response
properties

2012

OQMD388 across periodic table 300k PBE E, electronic and
response
properties

2013

OC20389 across periodic table >1M RPBE E, Eads 2020
aProperties covered include E (total energy (or atomization energy)), f (atomic forces), qA (atomic charges), μ (dipole moments), α
(polarizability), ε (eigenvalues), E* (excitation energy), f i: oscillation strength for transition from ground state to the ith excited state (i = 1 or 2),
ΔEH−L (high- and low-spin energy difference), C6 (London dispersion coefficients), Pthermo (thermochemical properties such as internal energies,
enthalpy, free energy, and heat capacity); Eads (chemisorption energy).
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That same year, Bligaard and co-workers employed active
learning to identify stable iridium oxide polymorphs and study
their usefulness for the acidic oxygen evolution reaction,348

introduced a Bayesian framework for adsorption energies of
bimetallic alloy catalyst candidates,349 and proposed a bond
information based GPR as a means to speed up structural
relaxation across different types of atomic systems.350 In 2020,
neural networks have been proposed for the prediction of
overpotentials relevant for heterogeneous catalyst candi-
dates,351 as well as a higher-order correction scheme in
alchemical perturbation density functional theory applications
to catalytic activity.259 An overview on machine learning for
computational heterogeneous catalysis was also contributed in
2019.352

8. DATA SETS

As implied already in previous sections, the availability of
training sets is vital for any machine learning. Admittedly, it
would be ideal to generate training set only when necessary,
i.e., to minimize the number of QM computations throughout
CCS, or for converging the sampling using molecular
dynamics. However, for general applications of QML, a pre-
existing data set is indispensable, for instance, to tackle the
inverse design problem to identify some compound with
unknown composition and exhibiting specified and desirable
ground-state physiochemical properties. Currently, this is only
feasible with a given labeled data set being as representative as
possible for the local chemistries that we know to affect the
properties of interest.
Alongside the increasing popularity of QML in chemistry

and related sciences, many data sets have emerged in recent
years. By now, there are a multitude, built for various purposes.
Here we detail all those data sets we know of that encode
quantum information throughout CCS, with a coarsened and
incomplete overview given in Table 1.

8.1. GDB

The synthetic GDB (generated database) data sets created by
Reymond and co-workers for the main purpose of exploring
the CCS of organic drug-like molecules comprise the probably
largest list of systematically generated molecular graphs
(constitutional and compositional isomers only) of small to
medium sized organic molecules of biochemical rele-
vance.182,353−355 To date, GDB17182,355 represents the single
largest set of molecules, which contains more than 166 billion
molecules made up of H, C, N, O, S, and halogens (up to 17
non-hydrogen atoms), obeying certain chemical rules for
stability and synthesizability. GDB17 has two main subsets,
GDB11 (26M)353,356 and GDB13 (970M),354 together with a
variety of smaller subsets featuring specificity of organic
chemistry. Because of its systematic enumeration, interesting
new structures have been identified and subsequently been
synthesized, as exemplified by the synthesis of trinorbor-
nane.357

Other than the implicit information that any compound
listed corresponds to a stable constitutional isomer, the original
GDB data sets are unlabeled in the sense that only molecular
composition and connectivity information are detailed, without
calculated quantum properties. The first extension of the GDB
data set to also include quantum data, QM7195 consists of
7165 ground-state geometries and energies of molecules with
up to 23 atoms (with up to 7 heavy atoms C, N, O, or S)
calculated at the PBE0 level. QM7 is also the first quantum

benchmark data set covering the organic subspace CCS for
QML. Some extensions exists, such as QM7b,358 QM7b
multilevel data set266 (QM7bMl for short), and QM7-X.359

QM7b358 extends QM7 by including chlorine-containing
molecules (expanding the set size to 7211), and reporting 13
additional calculated electronic properties (e.g., polarizability,
HOMO/LUMO energies, excitation energies). QM7bMl266

was designed for studying QML combinations with legacy
quantum chemistry methods such as multilevel, multifidelity,
or transfer learning. Starting from the original coordinates at
PBE level, geometries of QM7b molecules were refined at the
level of B3LYP/6-31G(D), and subsequently single-point
energies were calculated at nine levels of theory, corresponding
to all possible combinations of electron correlation treatment
{HF, MP2, CCSD(T)} and basis sets {STO-3G, 6-31G, cc-
pVDZ}). QM7-X, the largest extension of QM7, is a
comprehensive data set comprising ∼4.2 M equilibrium and
nonequilibrium structures of QM7b molecules, accompanied
by 42 physicochemical properties computed at the
PBE0+MBD level, covering global (molecular) and local
(atom-in-a-molecule) properties ranging from ground-state
quantities (such as atomization energies and dipole moments)
to response quantities (such as polarizability tensors and
dispersion coefficients).
Because of the limited molecular size, QM7 and its variants

are scarcely scattered across CCS and barely begin to represent
its full diversity and complexity. Targeting “big data”
Ramakrishnan et al. released the QM9171 data set in 2014,
derived from molecular graphs drawn from GDB17,360

totalling ∼134k organic molecules made up of C, H, O, N,
or F, and up to nine non-hydrogen atoms. Except for
equilibrium geometries and electronic ground-state properties,
QM9 also records a series of thermochemical properties at 298
K and 1 atm pressure estimated based on harmonic
frequencies, namely enthalpies, and free energies of atom-
ization at the level of B3LYP/6-31G(2df,p). Alongside,
additional QM data is reported for the subset of all of
QM9’s 6k constitutional isomers with sum formula C7H10O2,
i.e., thermochemical properties computed at the G4MP2 level.
In 2020, QM9 was augmented by more accurate energies,
calculated at multiple levels of theory, including M06-2X,
wb97xd, and G4MP2.361 Another similar data set, dubbed
alchemy362 (sized 119 487) expands the volume and diversity
of QMx series and is made up of 9−14 C, N, O, F, S and Cl
atoms, sampled from the GDB MedChem subset of GDB17.355

The only data set that deals with excited-state properties
across CCS is QM8,363 totalling ∼20k structures subsampled
from QM9 and comprising up to eight heavy atoms C, O, N,
or F. Ground-state energies (S0) and the lowest two vertical
electronic singlet−singlet excitation energies (S1 and S2) are
included, calculated at two TDDFT levels employing the
density functional theory/basis-set combination PBE0/def2-
SVP or CAM-B3LYP/def2-TZVP, as well as post-Hartree−
Fock level CC2/def2-TZVP. Corresponding oscillator
strengths ( f1) for each transition from S0 to S1 have also
been recorded.
As also evinced for GDB17, when increasing the number of

atoms per molecule, the data set quickly grows out of control,
and it becomes prohibitive to conduct QM calculations for
comprehensive subsets of CCS. The Amon based dictionary of
building blocks designed to cover GDB360 and Zinc364 and
containing no more than seven heavy atoms (AGZ7) has been
introduced to alleviate this curse of dimensionality.365 It was
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obtained by systematically fragmenting all larger molecules
(from GDB17 and zinc364) into smaller entities containing no
more than seven non-hydrogen atoms (i.e., atom-in-molecule
based fragements, aka, AMONs242). To date, AGZ7 is the
most compact yet most diverse data set relevant for organic/
biochemistry, totalling only 140k molecules but covering up to
13 elements (H, B, C, N, O, F, Si, P, S, Cl, Br, Sn, and I). It
also includes a similar set of properties as in QM9 but relying
on a slightly different level of theory (B3LYP/cc-pVTZ as well
as pseudopotentials for Sn and I).
Apart from QM7-X,359 all data sets mentioned so far deal

with equilibrium geometries only, representing the typical
constraint for what defines a stable molecule. To enable the
QML based study of dynamics and reactivity of non-
equilibrium geometries throughout CCS, however, configura-
tional sampling involving nonstationary geometries has to also
be accounted for through the data sets. Similar to QM7-X,
ANI-1366 also explores nonequilibrium geometries but for
relatively larger systems drawn from GDB11.353,356 It consists
of more than 20 M off-equilibrium structures (sampling both
chemical and conformational degrees of freedom) and wB97x/
6-31G(d) energies for 57 462 small organic molecules
containing up to 11 CONF atoms. Two follow-up data sets
expand ANI-1 considerably, i.e., ANI-1x and ANI-1ccx.367 The
former contains multiple QM properties (density-derived
properties and forces) from 5 M DFT calculations (wB97x/
6-31G* and wB97x/def2-TZVPP), while the latter contains
500k CCSD(T) energies for estimated CBS limits.
For MD simulations, two main data sets are being frequently

benchmarked. One is ISO17,55,308 containing MD trajectories
of 129 molecules randomly drawn from the aforementioned 6k
C7O2H10 isomers, each comprising 5000 conformational
geometries with total energies and atomic forces calculated
at PBE level plus van der Waals correction.368 The other is
MD-17,73,369 which records energies and forces from ab initio
molecular dynamics trajectories (133k to 993k frames) at the
DFT/PBE+vdW-TS level of theory at 500 K for eight organic
molecules: benzene, uracil, naphthalene, aspirin, salicylic acid,
malonaldehyde, ethanol, and toluene. More accurate CCSD-
(T) energies and forces are also available but only for ethanol
(with basis cc-pVTZ), toluene and malonaldehyde (cc-pVDZ),
and CCSD/cc-pVDZ for aspirin. Recently, a revised MD-17
data set was published,210 with a lower noise floor in DFT
forces thanks to tighter SCF convergence criteria and denser
integration grids. In 2020, G4MP2 benchmarks of organic
molecules with up to 14 non-hydrogen atoms were contributed
by Dandu et al.,370 and resulting QML models were compared
and discussed.

8.2. PubChem amd ZINC

While the GDB family currently dominates QML campaigns,
GDB compounds resulted from virtual exhaustive graph
enumeration campaigns and mostly correspond to molecules
for which neither thermodynamics stability nor synthesizability
has been established. Within practical applications, such
aspects matter for the experimental design and fabrication of
new chemical compounds. With respect to QML, some
theoretically possible local chemical environments may not
be viable within the entire molecular framework, and ruling out
such possibilities when training could help to further improve
data efficiency and transferability. PubChem371 is an ever-
growing open chemistry database hosted at the National
Institutes of Health (NIH). As of October 2020, there were

over 111 million unique chemical structures records listed
together with many a experimental property, as contributed by
hundreds of data sources. To harvest the richness and
popularity of this database, Maho Nakata, and co-workers
lauched the so-called PubChemQC project,372 consisting of
ground-state geometries and properties (at B3LYP/6-31G*
level), as well as low-lying excited states of approximately four
million molecules via time-dependent DFT at the level of
B3LYP/6-31+G*. A PubChemQC derived subset, called
pc9,373 covering over 99k molecules made up of CHONF
was published afterward and encoded the same set of
properties as QM9. The full potential of PubChemQC remains
yet to be generally explored.
ZINC,364 yet another large database, focuses more on

biochemistry, in particular drug design. Quantum calculations
on this database per se have not taken place, except for its
associated fragment set. That is, AZ7, a subset of AGZ7,365

contains all ZINC AMONs of up to seven non-hydrogen
atoms (with optimized geometries and electronic properties, as
for AGZ7 described above). AGZ7 could be considered as an
effective set covering all local chemistries of ZINC and may
serve as a scaffold for building larger drugs through a
theoretical approach.
Beside PubChem and ZINC, there are several other public

big databases being exploited within QML. One of them is the
Cambridge Structural Database (CSD),374 on the basis of
which Stuke et al.375 reported a diverse benchmark spectros-
copy data set of 61 489 molecules, denoted OE62. Using
geometries optimized by PBE plus vdW correction, OE62
provides total energies and orbital eigenvalues at PBE and
PBE0 levels for all molecules in vacuum and at the PBE0 level
for a subset of 30 876 molecules in (implicit) water. Also based
on CSD, Schober et al.376 extracted 95 445 molecular crystals
thereof and carried out computations on electronic couplings
(at the level BLYP and fragment molecular orbital-based DFT)
and intramolecular reorganization energies (by QM/MM with
an ONIOM-scheme) as two main descriptors for charge
mobility, hoping to facilitate the theoretical design and
discovery of high mobility organic semiconductors.

8.3. Barriers and Spin

Quantum data sets on chemical reaction profiles are rather
scarce. The QMrxn347 reports calculated quantum properties
for SN2 and E2 reactions amounting to 4466 transition state
and 143 200 reactant complex geometries and energies at
MP2/6-311G(d) and single-point DF-LCCSD/cc-pVTZ level
of theory, respectively. QMrxn covers the subset of CCS that is
spanned by the substituents −NO2, −CN, −CH3, −NH2, and
with −H,−F, −Cl, and −Br as nucleophiles and leaving groups.
A different data set featuring elementary reactions comes from
Grambow et al.,377 totalling 12k organic reactions that involve
H, C, N, and O atoms, calculated at the wB97X-D3/def2-
TZVP level, with optimized geometries and thermochemical
properties for reactants, products, and transition states.
Going beyond mostly singlet-state chemistry, Schwilk et al.

introduced QMspin,378 consisting of ∼5k (∼8k) singlet
(triplet) state carbenes derived from 4k randomly selected
QM9 molecules. QMspin also contains optimized geometries
(B3LYP/def2-TZVP for triplet state and CASSCF(2e,2o)/cc-
pVDZ-F12 for singlet state), as well as the singlet−triplet
vertical spin gap computed at MRCISD+Q-F12/cc-pVDZ-F12
level of theory.
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For the QML models of the computational cost of typical
quantum chemistry computations (measured by the CPU wall
time), Heinen et al. reported the QMt data set,379 consisting of
timings of various tasks (single point energy, geometry
optimization, and transition state search) for thousands of
QM9 molecules at several levels of theory including B3LYP/
def2-TZVP, MP2/6-311G(d), LCCSD(T)/VTZ-F12,
CASSCF/VDZ-F12, and MRCISD+Q-F12/VDZ-F12.
Treating noncovalent interaction (NCI) within QML is an

interesting and important research subject, with relevant large
data sets emerging only as of recently. Most notably, several
collections of NCI data sets have by now become publicly
available,380 covering 3700 distinct types of interacting
molecule pairs: (i) DES370 K, contains interaction energies
for more than 370k dimer geometries with NCI energy
calculated at the level of CCSD(T)/CBS (MP2(aVTZ, aVQZ)
correlation energy is used for extrapolation, and (ii) DES5M,
comprising NCI energies calculated using SNS-MP2, for nearly
5 M dimer geometries. The monomers involved include typical
organic species, made up of common p-block elements as well
as alkali metal ions, most of which containing no more than
seven heavy atoms.
Data sets including artificial molecules which violate basic

principles of chemical bonding may also of great interest for
QML, i.e., they may serve the use of “soft” labels, where
relatively few compounds might more effectively represent
CCS than selected many. MB08-165,381 proposed by Grimme,
exemplifies that idea, relying on systematic constraints rather
than uncontrolled chemical biases. Originally, this data set was
designed for benchmarking DFT methods. The potential of
such “unbiased” artificial molecules as soft labels (training set)
in QML has yet to be unraveled.

8.4. Transition Metals

Transition metal complexes (d-block atom/ion center plus
ligands, TMC for short) are pervasive in chemistry and have
been widely used and studied. Because of their complicated
electronic structure and the resulting higher computational
cost (in comparison to typical organic molecules), the effective
exploration of the chemical space spanned by TMCs remains a
challenge and current efforts into this subspace are constrained
to relatively low level of theory, primarily DFTB or DFT
method with some small basis. Examples include tmQM382 and
the TMC data sets288,335,383 from Kulik and co-workers, as
described below.
tmQM382 contains geometries and common electronic

properties (as for QM9) of 86 665 mononuclear complexes
extracted from the Cambridge Structural Database (CSD).
tmQM includes Werner, bioinorganic and organometallic
complexes based on a large variety of organic ligands and 30
transition metals. On the basis of the DFTB(GFN2-xTB)
geometry, common quantum electronic properties (orbital
energies, dipole meoment and atomic charges) were computed
at the TPSSh-D3BJ/def2-SVP level.
The largest and most comprehensive TMC data sets are

from Kulik’s group at MIT and have been contributed across
multiple publications.288,335,383 Overall, they correspond to
combinations of several metal centers (Cr, Mn, Fe, or Co, Ni)
and a wide range of ligands, ranging from weak-field chloride
(Cl−) to strong-field carbonyl (CO) along with representative
intermediate-field ligands and connecting atoms, including S
(SCN−), N (e.g., NH3), and O (e.g., acetylacetonate).
Calculated properties are primarily energetic, including total

energy, high and low spin-state energy difference (ΔEH−L), and
redox potential and solubility in candidate M(II)/M(III) redox
couples, at the level of theory B3LYP/LANL2DZ (6-31G* for
ligands) with or without polarizable continuum model (PCM)
for solvents. The total size could reach up to several millions.
Recently introduced metal−organic frameworks (MOF)

data set by Rosen and co-workers,384 called Quantum MOF
(QMOF), represent another broad category of metal
complexes. QMOF consists of computed properties (energy,
band gap, charge density, and density of states) at the PBE-
D3(BJ) level of theory, for more than 14 000 experimentally
synthesized MOFs, which are made up chemical elements that
span nearly the entire periodic table.

8.5. Solid and Solid Surface

Compared to TMCs, solid and solid surfaces present a
challenge on their own due to the diversity in composition and
spatial arrangements, as well as the resulting complexity of
electronic structure. Typically DFT based methods are used for
generating large-scale (or high-throughput) data sets for these
systems. The most frequently used method is GGA (PBE) or
GGA+U with PAW (projected augmented wave) potentials.
On the basis of relaxed geometry, associated calculated
properties fall into either electronic properties, e.g., cohesive
energy, band structure (and derived properties including
density of states and band gap), or response properties such as
elastic tensor, bulk modulus, and thermodynamic properties
(vibrational spectra, free energy, specific heat, and entropy)
within harmonic approximations.
Relevant well-known solid databases and compute platforms

include (i) AFlow,387 an open data set of more than 3 M
material compounds (including alloys, intermetallics, and
inorganic compounds) with over 596 M calculated properties.
(ii) The Open Quantum Materials database388 (OQMD), a
high-throughput database currently consisting of nearly 300k
total energy calculations of compounds from the Inorganic
Crystal Structure Database (ICSD). (iii) The Materials
Project165 (www.materialsproject.org) covers the properties
of almost all known inorganic materials, currently containing
over 131k inorganic compounds and more than 530k
nonporous materials. (iv) The Materials Cloud (www.
materialscloud.org),390 a platform designed to enable open
and seamless sharing of resources for computational science,
driven by applications in materials modeling. (v) The Novel
Materials Discovery (NoMaD, http://nomad-repository.eu),
led by Scheffler, Draxl et al. (vi) The Open Materials Database
(http://openmaterialsdb.se, currently under development)
spearheaded by Armiento. The latter both are public archives
for hosting, sharing, and reusing material data in their raw
form. Apart from comprehensive public repositories for solid
data sets, there are also select contributions for select materials
classes, including the aforementioned data set of ∼10k AB2C2

elpasolites covering all main-group elements up to Bi from
Faber et al.164

Regarding solid surfaces, the new Open Catalyst Project389

aims to help discover and design new catalysts for renewable
energy storage using ML (https://opencatalystproject.org),
currently including mainly the OC20 data set,389 consisting of
>1 M relaxations (over 26 M single point evaluations) at RPBE
level for a wide range of adsorbates (C-, N- and O-containing
species) and surfaces.
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9. SOFTWARE PACKAGES

To perform and supplement the aforementioned studies with
methods and data sets, numerous software packages have been
developed over recent years. We briefly mention the available
codes and categorize them into three main types, the first of
which being those related to the acceleration of legacy
quantum codes, such as ab initio molecular dynamics (MD)
runs in VASP,391 Gaussian process based geometry optimiza-
tion in ASE,392 machine learning adaptive basis sets within
CP2K,237 as well as SNAP393 in LAMMPS, a machine-learning
interatomic potential using bispectrum components to
characterize the local neighborhood of each atom of the
system.
Codes which fall into the second category are standalone

packages, some of which having also been interfaced to other
atomistic simulation software. QMLcode208,394 which is an
open-source python-based package featuring the Coulomb-
matrix,195 BoB,170 SLATM/aSLATM,242 FCHL18, and
FCHL19166,208 and other representations. AQML code395 is
a variant of QMLcode featuring the BAML163 representation,
and on-the-fly selection of AMONs for training.242

PLUMED396 is an open-source, community-developed library
that provides a wide range of methods including enhanced-
sampling algorithms, free-energy methods, and MD data
analysis capabilities. It also interfaces with some of the most
popular MD engines. TensorMol397 is a package of neural
networks for chemistry, capable of running many common
tasks in quantum chemistry such as geometry optimizations,
molecular dynamics, Monte Carlo, nudged elastic band
calculations, etc. It can also take into account screened long-
range electrostatic and van der Waals interactions. TorchA-
NI398 is a PyTorch implementation of ANI. It can compute
molecular energies, gradients, Hessian and derived properties
from the 3D coordinates of molecules. It also include tools to
work with ANI data sets (e.g., ANI-1, ANI-1x, etc.).
The third category of software packages deals predominantly

with data set construction, management and analysis. In
particular, specific platforms include AFlow387 which has been
mentioned above in section 8.5, and AiiDA,399 an open-source
infrastructure for automation, management, sharing and
reproduction of the workflows associated with big data in
computational sciences.

10. COMPOUND DISCOVERY

The computational design and discovery of new compounds
can be generally conducted following either one of two distinct
approaches. The Edisonian and more basic one is straightfor-
ward, within a brute-force high-throughput screening, through
solving Schrödinger equations sequentially or in parallel for
potential materials candidates one by one, followed by
subsequent ranking and selection. Given sufficient coverage
and having used the data for training, the ab initio solver could
successively be replaced by QML models, capable of making
faster and equally accurate predictions of target properties of
interest. It is obvious that such an approach suffers from
limited domains of compounds conceived in the first place, no
matter what solver is used for computation of properties. Also,
as the intended search domain expands in CCS, the number of
possible potential candidates will grow combinatorially.
Therefore, when adopting this strategy, one should refrain
from generally expanding the search domain and rather focus
on a constrained subdomain of compounds, sharing one or

more common features, e.g., the same stoichiometry and space
group, as was exemplified for the elpasolite family ABC2D6 by
Faber et al.,164 where compounds with exotic atomic oxidation
states were identified.
The second more sophisticated approach attempts to solve

the problem in an inverse fashion; more specifically, given a
specific (range of) value(s) for the target property, how to best
locate the corresponding optimal (set of) compound(s) from
CCS. One particularly promising variant is the gradient-based
inverse design,14 which can be reformulated as a global
optimization problem and has the potential to search chemical
subspace for substantial domains, due to its analytical nature.
Strictly speaking, almost all current ML-guided studies (mostly
neural network based) on gradient-based inverse design (e.g.,
ref 187, for a review, see ref 286) fall into the QSPR regime, as
the input is seldomly 3D geometry, but rather SMILES or
other molecular graph derived features (therefore, the mapping
from representation to property is not unique). This strategy is
however the only attainable way by now, as otherwise (i) the
search subspace (when optimizing for the “optimal” com-
pound) would become overwhelmingly large due to the
explosion of conformational degrees of freedom (Levinthal’s
paradox). (ii) There exists, to the best of our knowledge, no
3D geometry-based representation that is compact enough for
decoding, i.e., restoring the original geometry from its
representation vector/matrix/tensor (or simply x), even with
the help of a neural network model like variational encoder
(VAE), as the entries in x are highly intertwined (significantly
more so than the SMILES string). The fact that many
representations are still being haunted by the uniqueness issue,
further plagues these efforts, as often only two- and three-body
terms are included in distribution-based representation. While
inclusion of four-body terms are mandatory for reconstructing
geometry, as evinced by the Z-matrix representation of
geometry, the resulting x would become very expensive for
generation, and more importantly, this could further perplex
the feature vector decoder. However, representing a molecule
in its most native form in terms of nuclear charges and
coordinates,{Z; R}, i.e., by the variables employed in the
electronic Hamiltonian, or some transformed form, such as an
external potential, one is free from such problems. This
strategy would be consistent with the aforementioned GCE
and LCAP approach detailed in section 1.3.

11. OUTLOOK AND CONCLUSION
While QML is still in its infancy, very encouraging progress has
already been achieved. It is still a long way, however, before we
will reach the goal of routinely designing and discovering novel
molecules and materials on a computer. Some of the most
fundamental problems, also among the most common tasks in
quantum chemistry calculations, such as correctly predicting
ground-state energy and forces of novel molecules or materials
with high efficiency and accuracy, still remain unresolved at
large. Such seemingly simple tasks are particularly challenging
when it comes to systems that are highly distorted, charged, or
multireference in nature or that involve long-range nonbonded
interactions. Successful QML models could easily demonstrate
their applicability by energy ranking of competing structures of
real materials. We believe that such tasks will be crucial for
subsequent more challenging QML applications.
Another interesting path to pursue might be the integration

of alchemical perturbation theory into QML. Because the
alchemical problem could be essentially reformulated as a ML
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problem that involves both energy and energy gradient with
respect to nuclear charges. A corresponding extension would
exploit similarities between alchemical interpolations in
pseudopotential parameter space and compositional represen-
tations that explicitly account for group and period in the
periodic table, on top of all the structural degrees of freedom.
Within the FCHL representation,166 preliminary results for
inferring properties of chemical elements absent in training
have already been obtained (see Figure 4).
Besides the curse of dimensionality, imposed by the

compositional, constitutional, and conformational diversity of
CCS, the lack of a more theoretical underpinning of the
genesis of data sets is maybe among the most severe
shortcomings. Little, if nothing, is known about fundamental
questions such as: (i) Are there any basic quantities
characterizing the completenes of a molecular data set, for
instance in terms of diversity and/or sparsity? (ii) On the basis
of the inherent properties of the data set, representation and
regressor, can we infer the performance of a model without
actual training/test runs, as translated into the slope and offset
of resulting learning curve. (iii) What, if any, characterizes the
“correct” distribution in CCS. Answering such questions
rigorously, i.e., based on the laws of physical chemistry, is
not only of conceptual importance but would also benefit the
practical design of more efficient/accurate QML models.
Other unresolved issues include (i) the lack of appropriate

QML models that deal with intensive properties such as
HOMO/LUMO energy, or dipole moments, which may
require careful consideration of both local and long-ranged
features of a molecule. (ii) The lack of high-accuracy data sets
at the level of experimental quality (e.g., CCSD(T)-F12/
CVQZ-F12 or multireference) for medium-sized molecules:
published data sets of such quality are still limited to very few
or small molecules, containing typically no more than three
heavy atoms.
As the field has been growing massively and rapidly,16 we

can unfortunately not guarantee completeness of our outlook.
Furthermore, several related important new research direc-
tions, i.e., going beyond the mere supervised learning problem
of the electronic Schrödinger equation, possibly being out of
the scope of “conventional” QML, have not been mentioned.
They include, for example, variational autoencoders which can
be used to help solving the inverse design challenge in CCS
(e.g., applied to the design of improved molecular
electronics400), the reconstruction of quantum states,401 or
the generation of molecular structures.402 Other intriguing
efforts deal with tackling the problem of reaction plan-
ning,403−408 phase diagrams,409−414 studying the electronic
structure in more depth and detail,260,415−418 or the systematic
incorporation of experimental information in order to improve
experimental design.419

To recap, we have provided succinct explanations and
pointers to three major ingredients of QML: representation,
regressor, and training set. We have briefly discussed select
relevant studies which deal with the development and use of
surrogate machine learning models of quantum properties
throughout CCS. One of the primary goals of QML, i.e.,
rational computational discovery and design of compounds
with desired properties, however, has not yet been achieved in
general, and most of the relevant studies are either conducted
in a high-throughput fashion, merely accelerated by QML, or
rely on coarsening the problem through neglect of relevant
degrees of freedom. We have pointed out several open

questions and challenges that must be overcome to reach this
general goal, as well as potential solutions, and suggestions
about interesting new research directions. Given the overall
rapid growth and the multiple success cases already achieved in
this young field, we are optimistic about its future and strongly
believe that QML will develop into a helpful component for
solving some of the long-standing problems in the atomistic
sciences.
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