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M A T E R I A L S  S C I E N C E

Simplifying inverse materials design problems for fixed 
lattices with alchemical chirality
Guido Falk von Rudorff1,2 and O. Anatole von Lilienfeld1,2*

Brute-force compute campaigns relying on demanding ab initio calculations routinely search for previously un-
known materials in chemical compound space (CCS), the vast set of all conceivable stable combinations of elements 
and structural configurations. Here, we demonstrate that four-dimensional chirality arising from antisymmetry 
of alchemical perturbations dissects CCS and defines approximate ranks, which reduce its formal dimensionality and 
break down its combinatorial scaling. The resulting “alchemical” enantiomers have the same electronic energy up 
to the third order, independent of respective covalent bond topology, imposing relevant constraints on chemical 
bonding. Alchemical chirality deepens our understanding of CCS and enables the establishment of trends without 
empiricism for any materials with fixed lattices. We demonstrate the efficacy for three cases: (i) new rules for elec-
tronic energy contributions to chemical bonding; (ii) analysis of the electron density of BN-doped benzene; and 
(iii) ranking over 2000 and 4 million BN-doped naphthalene and picene derivatives, respectively.

INTRODUCTION
The computational simulation of molecules and materials, per-
formed to predict their physical, material, and chemical properties, 
has become a routine tool in the molecular and materials sciences. 
Current efforts geared towards computational materials and mo-
lecular design might, one day, enable the realization of the holy grail 
of automatized experimental design and discovery. Driven by the 
accelerating progress of computer hardware and statistical learn-
ing (artificial intelligence), the first seminal examples of integrat-
ing sophisticated software and robotics to perform experimental 
sequences and to establish rules and trends among properties and ma-
terials, as well as their synthesis, in realiter have recently been intro-
duced (1–5). However, the lofty goal of “materials on demand” has 
still remained elusive, even when doing it just in silico.

The use of empirical trends to guide experimental design has had 
a long tradition in the chemical sciences. Popular examples include 
Mendeleev’s discovery of the periodic table, Hammett’s relationship, 
Pettifor’s numbering scheme, the Bell-Evans-Polanyi principle, Hammond’s 
postulate, or Pauling’s covalent bond postulate (6). Modern system-
atic attempts to establish and exploit such rules in terms of quanti-
tative structure-property relationships have led to computationally 
advanced bio-, chem-, and materials-informatics methodologies (7). 
Unfortunately, these methods are typically inherently limited to 
certain applicability domains and do not scale because of their em-
pirical nature (8). To rigorously explore the high-dimensional chemical 
compound space (CCS) (9), i.e., the combinatorially scaling number 
of all conceivable molecules or materials (usually defined by com-
position, constitution, and conformation), the quantum mechanics 
of electrons ought to be invoked.

It is thus not unexpected that ab initio–based materials design 
approaches have been at the forefront for more than 20 years (10–14) 
and have played a major role in popularizing the use of efficient and 
accurate quantum methods, such as density functional theory (DFT) 

(15–19). Sampling CCS from scratch, even when done within effi-
cient optimization algorithms, is typically an encyclopedical endeavor 
by nature and ignores the many underlying relations among differ-
ent properties and materials. Quantum machine learning models 
(20) statistically exploit these implicit correlations, hidden in the 
data, and have successfully accelerated CCS exploration campaigns 
(21). Machine learning efficiency and transferability demonstrably 
benefit greatly from explicitly enforcing known relationships (e.g., 
translational, rotational, or atom index invariances) directly in the 
model construction rather than having to learn them agnostically 
from data (22). Specific examples include explicitly imposing forces 
and curvatures in the loss function (23–25), spatial symmetry rela-
tions (26, 27), or arbitrary differential relations (28). However, even 
for the most efficient and transferable statistical models, e.g., the 
atom-in-molecule fragment–based approach (29), the acquisition 
of training data in sufficient quantity and quality requires consider-
able up-front investments.

Here, we introduce the fundamental notion of a new symmetry 
relation in CCS, which is fully consistent with the ab initio view of 
matter (30) and effectively enables us to solve the inverse materials 
design problem in a nonempirical and highly efficient manner. Spa-
tial symmetry considerations have been crucial for the unraveling of 
some of the most fundamental laws of nature and are heavily used 
in many fields. In ab initio calculations, for example, symmetry group 
theory arguments are common to reduce computational complexity 
and load. Symmetry constraints on compositional degrees of free-
dom would be highly desirable to establish general rules among 
distinct materials and properties and to generally improve our 
understanding of CCS (30).

In analogy to conventional spatial chirality, we here define 
“alchemical chirality” as a reflection plane in the space spanned by 
nuclear charges at fixed atomic positions as they enter the electronic 
Schrödinger equation. An illustrative comparison is given in Fig. 1 
(A and B) for conventional enantiomers consisting of a tetravalent 
carbon atom with four different substitutions and for alchemical 
enantiomers consisting of doubly boron nitride (BN)–doped carbon 
in the diamond crystal structure. Figure 1C compares and relates 
this newly described alchemical reflection A with the conventional 
spatial reflection S for the same dopant pattern as in Fig. 1B for a 
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single molecular skeleton. In this case, four subsequent reflections 
alternating between alchemical and spatial reflections return to the 
original molecule. While any spatial reflection leaves the molecule 
unchanged, an alchemical reflection affects the nuclear charges and 
therefore creates a different molecule as reflection image.

Exchange of the dopant atom sequence in Fig. 1B from NBBN to 
BNNB is an alchemical reflection around pristine diamond: For 
each site, the nuclear charge difference to diamond gets inverted. 
Hence, in the space spanned by all nuclear charges of the system, 
pristine diamond corresponds to a reflection center. All reflections 
that leave the total sum of all nuclear charges unchanged are defined 
by a hyperplane (cf. Fig. 1D), which we refer to as the nuclear charge 
reference plane. In other words, treating the change from pristine 
diamond to the two doped variants as a perturbation of the system 
Hamiltonian, there is an antisymmetry relation between these al-
chemical perturbations.

No other spatial symmetry operation (rotation, reflection, or 
inversion) can interconvert the constitutional isomers in Fig.  1B, 
thereby necessitating a fourth dimension, namely, the nuclear charges. 
This amounts to a four-dimensional (4D) alchemical chirality. Note 
that chirality crucially depends on dimensionality, e.g., the letter L is 

chiral within two dimensions only. The chiral center of our chirality 
operation can be a compound in itself (diamond in Fig. 1B and ben-
zene in Fig. 1C).

Alchemical enantiomers exist only if pairs of distinct atomic en-
vironments can be mapped onto each other under a symmetry op-
eration, a consequence of the reflection in nuclear charge space that 
defines alchemical enantiomers. This implies that the total sum of all 
nuclear charges of alchemical enantiomers is identical (see Fig. 1D). 
If a compound has no spatial symmetry, then atom sites with simi-
lar electron density derivatives ​​∂​Z​ n ​ ​ constitute these pairs just like 
strictly symmetry-equivalent atoms do. In any case, alchemical chi-
rality requires a one-to-one correspondence of sites with opposite 
change in nuclear charge. At least two such pairs need to exist in a 
compound to obtain alchemical enantiomers, which are different 
chemical objects. For a single pair of symmetry-equivalent atoms, 
the alchemical reflection in nuclear charge space would trivially 
connect two spatially symmetric compounds, e.g. CO and OC.

In summary, exact alchemical enantiomers are defined as two 
spatially non-superimposable, alchemically coupled, and iso-electronic 
compounds with the same formal charge, where each transmutat-
ing atom is assigned to exactly one subset within each of which 

Fig. 1. Illustrations of alchemical chirality and spatial chirality. (A) Enantioselective catalysis enables the synthesis of either conventional enantiomer related to its coun-
terpart through spatial reflection symmetry. (B) Alchemical (not spatial) chirality at four sites in a diamond cubic lattice relates BN-doped alchemical enantiomers through 
alchemical reflection (boron, nitrogen, and carbon in red, blue, and gray, respectively). (C) Alchemical reflection plane A for the six carbon nuclei (Z = 6) in benzene 
connecting 1,2,3,6-tetrahydro-1,2,3,6-diazadiborinine (THDADB) to 1,2,3,4-tetrahydro-1,4,2,3-diazadiborinine compared to the spatial reflection plane S. Boron, nitro-
gen, carbon, and hydrogen in red, blue, gray, and white, respectively. (D) Illustration of approximate alchemical reflection plane ​​​ ~ ​​ A​​​ (diagonal) in the space defined by the 
nuclear charges Z of two atoms I, J in three cyclic CBNC-containing reference molecules (empty symbols). Three reflections via virtual reference with fractional nuclear 
charges (orange triangle), real reference with two carbons (blue circle), and real reference with two nitrogens (red square) are indicated. The latter reflection does not yield 
alchemical enantiomers. (E) Chains of approximate alchemical enantiomers. The top left and top right molecules are connected via one reference molecule, while the 
bottom left and bottom right molecules are connected via another reference molecule. Both molecules on the right are identical, and therefore, the three distinct mole-
cules form a chain of approximate alchemical enantiomers. Transmutating atoms and symmetry-equivalent sites are denoted with nuclear charges and identical arrows, 
respectively. Electronic energies are given in Hartrees.
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averaging of nuclear charges results in identical chemical environ-
ments. Note that alchemical enantiomers can differ in chemical 
compositions, and that any given alchemical enantiomer can have 
as many alchemical mirror images as different valid averaged refer-
ence compounds can be defined. An alchemical enantiomer and all 
its possible mirror images are degenerate in the electronic energy 
up to the third order. Approximate alchemical enantiomers differ 
from their exact analog in that the pair-wise averaging results in 
similar, rather than identical, atoms within each pair. Alchemical 
enantiomers have approximately the same electronic energy (see 
the “Materials and Methods” section below). This symmetry is then 
broken by (i) the nuclear-nuclear repulsion and (ii) geometry relax-
ation into distinct total energy minima. The nuclear repulsion will 
typically dominate, implying that alchemical enantiomers with spa-
tially closer atoms of higher nuclear charge will exhibit higher total 
energies than their respective mirror images.

While the restriction to fixed atomic positions might seem se-
vere at first, we highlight in the following the importance and rele-
vance of classes of fixed configurational frameworks for materials 
design applications. More specifically, we discuss the implications 
of alchemical chirality for system classes that are low dimensional in 
their structural degrees of freedom and where the problem is dom-
inated by the combinatorial scaling due to varying chemical com-
position.

Examples abound and include any variation of graphitic motifs 
(studied below) prevalent in nanotechnological applications, in in-
organic materials such as MAX-phases, or in organic electronics, 
e.g., polycyclic aromatic hydrocarbon derivatives and other rigid 
scaffolds, such as metal-organic frameworks or perovskites. All these 
systems would be directly amenable to alchemical chirality–based 
estimates (ACEs), i.e., approximating the electronic energies for al-
chemical enantiomers as degenerate and adding nuclear repulsions 
to obtain relative energies. This way, ACEs enable the ranking and 
grouping of large subsets of materials. Within any of these classes, 
the number of possible materials increases combinatorially with the 
number of building blocks. For real-world applications, defects of-
ten need to be included in the quantum chemistry model, which 
further increases the chemical space under consideration. For par-
ticularly rigid frameworks and extended periodic materials, only a 
local and low-dimensional geometric response to a change of com-
position is typically observed. Hence, ACEs amount to a complement
ary means to rigorously sample compositional ensembles within a 
given framework class. As shown below, ACEs become an enabling 
tool for the systematic identification of structure property relations 
within given compound classes that further the understanding of 
the respective impact of the compositional degrees of freedom in 
materials design. Here, we exemplify this by identifying design rules 
from analysis of more than 400 million alchemical estimates of BN-
doped derivatives in the picene framework.

RESULTS
Estimating bond energies
The external potential energy differences between the reference 
compound (defining the reflection plane such as carbon atoms in 
diamond in Fig. 1B) and either alchemical enantiomer are exactly 
mirrored in magnitude (opposite sign). Hence, while the corre-
sponding electronic Hamiltonians are alchemical mirror images of 
each other, their respective solutions to the electronic Schrödinger 

equation are not necessarily equal. More specifically, for reflections 
around atoms with identical chemical environments, we show that 
the electronic energy of corresponding alchemical enantiomers must 
be degenerate up to the third order within alchemical perturbation 
DFT (APDFT) (31) (see the “Materials and Methods” section be-
low), higher-order terms carrying different signs. Hence, approximate 
alchemical enantiomers are only approximately degenerate in their 
electronic energy.

It turns out, however, that this approximation is quite fair and 
that useful rules for chemical binding can be derived. For example, 
by enumerating all colored connected graphs that are subgraphs of 
hexagonal lattices, we obtain the following ACE of two-body inter-
atomic bonding for the electronic energy

	​​ E​ QR​​  ≈ ​ E​ SR​​ + 0.5 × (​E​ QQ​​ − ​E​ SS​​)​	 (1)

where QRS correspond to three adjacent elements in the periodic 
table. Hence, this rule confirms the naive expectation that given two 
heteroatomic bonds—QR and SR—to the same reference atom R, 
that electronic contribution to bonding will be larger, which con-
tains the heteroatom with the larger electronic homoatomic bond, 
i.e., QQ versus SS, respectively. We believe that this simple rule was 
hidden in the past because of the obfuscation caused by the contrib-
uting nuclear repulsion term.

While seemingly reminiscent of Pauling’s electronegativity-
based bond energy estimate (6), EQS = 0.5 × (EQQ + ESS) + , we 
stress that this ACE relation is derived from pure symmetry and 
perturbation theory–based considerations that, for alchemical en-
antiomers, are exact up to the third order. Pauling, by contrast, 
merely postulated his Ansatz. Our rule relies on bonding informa-
tion involving three distinct and adjacent chemical elements rather 
than just two, and maybe more importantly, it pertains to the elec-
tronic potential energy only, i.e., without the nuclear repulsion, which 
is trivial to add a posteriori. This rule is easily verified for the exam-
ple of BC and CN bonds in tetrahydrodiazadiborine (THDADB) by 
simply comparing the sum of all bond energies in either alchemical 
enantiomer (resulting in 2EBC + ENN ≈ 2ENC + EBB).

Subtracting nuclear repulsion estimates from published DFT 
data for all single bonds between main-group elements from the 
second and third periods saturated by hydrogen (32), ACEs yield 
bond energies of elements QR, i.e., solely based on bonding infor-
mation of elements SR, QQ, and SS for adjacent elements QRS in 
the same period. As shown in Fig. 2, predicting bond dissociation 
energies among elements R and Q or S (to the left or right in the 
period) generates remarkably accurate predictions for bonds among 
elements in either period with a mean absolute error of ∼10 kJ/mol, 
not far from the highly coveted “chemical accuracy” of ∼4 kJ/mol. 
A linear fit through all the diverse chemistries encountered yields a 
slope of 1.04, an offset of ∼7 kJ/mol, and a correlation coefficient of 
0.981. Successive daisy chaining across groups in any given period 
represents a straightforward extension, which markedly reduces the 
number of reference bonds required for ACE—but only at the cost 
of reduced accuracy: The mean absolute error (MAE) increases to 
∼22 kJ/mol, i.e., still better or on par with common generalized gra-
dient–based approximations to the exchange correlation potential 
in DFT (33).

Furthermore, ACE rules emerge when increasing the alchemical 
nuclear charge radius (Z = ±1, ±2) with PQRST corresponding to 
five adjacent elements in the periodic table: EPR ≈ ETR + (EPP − ETT)/2, 
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EPQ + EQT + 2ESR ≈ EPS + EST + 2EQR, and 2EPR + EQT + EST ≈ EPQ 
+ EPS + 2ETR. These rules are identical for the 3D diamond lattice 
and the 2D hexagonal graphene structure. Note that other graph 
lattices could yield additional rules and that rules for interatomic 
3- and n-body contributions to binding exist as well. For example, 
invoking Z = ± 1 only, one finds the three-body rule that ESQS + 
2ERSQ + ERQR ≈ EQSQ + 2ERQS + ERSR. A systematic enumeration of 
ACE rules for two- and three-body terms for graphene and dia-
mond lattices is given in the Supplementary Materials.

Ranking molecules
To apply ACE to inverse materials design problems, we showcase 
applications in well-defined subregions of CCS and solve three specific 
and increasingly challenging design tasks. All three use cases ad-
dress the combinatorial design problem of how to dope planar hexagonal 
lattices to an increasing extent (6, 10, and 22 carbon atoms, respec-
tively). Hexagonal lattices are archetypical scaffolds, e.g., relevant in 
the design of graphene-inspired materials for nanotechnological 
devices (34), catalytic surfaces (35–37), porous BN-doped–based 
nanofibers for battery materials (38), or 2D materials in general 
(39). Just doping with BN already results in a combinatorial explo-
sion; already for the 77 smallest benzoid-like structures, the number 
of possible unique BN-doped derivatives exceeds 7 tera (40). Hence, 
we believe that it is warranted, and without loss of generality, to 
focus on constitutional isomers in rigid lattices for which thermal 
or geometrical distortions can be neglected. Note that relative offsets 
in total energies due to differences in stoichiometry are straightforward 
to estimate, and typically occur on different orders of magnitude, 
and that subsequent inclusion of configurational degrees of free-
dom within alchemical predictions is possible, as already demon-
strated for small molecules (41, 42) and ionic, metallic, and 
semiconducting solids (43–45). Hence, the focus of the following 
applications lies on breaking down the combinatorially scaling 
problem of energy predictions throughout colored chemical bond 
connectivity graphs.

As a first use case, we provide an in-depth but intuitive illustra-
tion of alchemical chirality with benzene, its six equivalent carbon 
atoms as the mirroring reflection plane, and the alchemical enantiomers 
corresponding to carborazine [C2H6B2N2, THDADB]. Because 
second-order APDFT—resulting in alchemical normal modes to 
define a complete basis in certain subspaces of CCS—has already 
been applied to benzene (46), the occurrence of six degenerate esti-
mates among the 11 constitutional isomers of THDADB (C2H6B2N2) 
can now be readily explained, thanks to alchemical chirality: They 
represent three pairs of alchemical enantiomers. For the select en-
antiomer pair BNNBCC/NBBNCC, a molecular planar analog to 
the crystalline example (Fig. 1B) is given in Fig. 1C, contrasting the 

Fig. 3. Alchemical enantiomers in carborazine [C2H6B2N2, tetrahydrodiazadiborine (THDADB)] with the reference molecule benzene (C6H6). Left-hand column: 
the perturbing potential V acting on benzene. Remaining columns correspond to electron density derivatives at CCSD/def2-TZVP level. Positive/negative values are 
shown in red/blue, respectively. All density contour lines are set at the same percentiles for each plot to render their shape comparable at different magnitudes. The 
percentiles are chosen to emphasize extremal values. Next to each electron density derivative, the corresponding electronic energy estimate by APDFT is given in Hartree 
for energy  order 1 up to 5. The actual electronic energies are −438.413 Ha (top) and −438.401 Ha (bottom).

Fig. 2. Predicted (EACE) from ACEs versus true (Et) single-bond dissociation en-
ergies. These are predicted according to the two-body rule for adjacent elements 
QRS using published DFT results for main-group elements in the second and third 
rows of the periodic table and assuming all bond distances to correspond to 2 Bohr. 
Predictions of bonding energies between QR and RS elements are denoted as LHS 
and RHS, respectively. Successive recursive application of the rule throughout ei-
ther period is denoted by “rec”. Inset: Each field in the matrix corresponds to a 
bond of the elements in the row and column headers. Arrows show which values, 
when combined together, yield a predicted bond energy. This shows the symmetry 
in going forward (RHS) and backward (LHS) through the groups in the periodic table. 
Using only the initial off-diagonal matrix element and then using one prediction to 
obtain the next following the arrows would correspond to rec in the main figure.
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conventional spatial reflection plane s with the alchemical reflection 
plane A. While NBBNCC and BNNBCC are mutually achiral in the 
sense of conventional spatial 3D chirality, the alchemical chirality re-
lation between the two becomes obvious with regular benzene cor-
responding to the reflection plane.

In Fig. 3, the corresponding perturbing potentials (exact mirror 
images of each other) for the two benzene enantiomers from Fig. 1C 
are shown, as well as the resulting electron density derivatives of 
benzene up to the fourth order. Corresponding figures for all other 
BN-doped benzene mutants are provided in the Supplementary 
Materials. As it becomes obvious already by visual inspection, the 
perturbed densities are nearly identical for even orders and anti-
symmetric for odd orders. This indicates that the perturbational se-
ries in APDFT (31) extrapolates to an approximately equal amount, 
leading to the near degeneracy of the electronic energies of the two 
alchemical enantiomers. To quantify this effect, Fig. 3 also shows 
the corresponding APDFT-based electronic energy estimates up to 
the fifth order (within perturbation theory the energy order pre-
cedes the wave function order), numerically demonstrating that the 
degeneracy is exact in the second order and starts to deviate by 
∼0.01, 0.02, and 0.025 Ha for the third, fourth, and fifth orders, re-
spectively. The fifth-order predictions deviate from the actual elec-
tronic energies by ∼0.03 and 0.02 Ha, respectively. Addition of the 
nuclear repulsion terms typically lifts the approximate degeneracy, 
resulting in quantitative ACEs and simple inequality rules for total 
energies. Hence, EBNNBCC > ENBBNCC because of the larger nuclear 
repulsion experienced when atoms with larger nuclear charges (ni-
trogens in this case) are closer in proximity to each other than at-
oms with lower nuclear charges (boron).

Such accuracy, while not on par with explicitly correlated quan-
tum chemistry calculations in large basis sets, is on a similar scale as 
generalized gradient–approximated DFT or semiempirical quan-
tum chemistry methods—typically sufficiently accurate for compu-
tational materials design studies as demonstrated for the many 
examples of successful computational discovery of heterogeneous 
catalysts (47) or the materials project dataset (48). The following 
two use cases explore this question for ACE-based ranking in a 
more systematic and comprehensive fashion.

Because the equivalence of the electronic energies is transitive, 
having a second reference that connects one alchemical enantiomer 
with a third one allows us to build chains of alchemical enantiomers 
that must have similar electronic energies, consequently enabling a 
ranking of molecules within one such group solely by the magni-
tude of their respective nuclear repulsion. Figure 4A illustrates the 
chaining of exact (A) and approximate (​​​ ~ ​​ A​​​) alchemical enantio-
mers for BN-doped naphthalene where four pairs of alchemical en-
antiomers could form such a chain. For reflections along the exact 
alchemical symmetry axis A, the energy difference is 1 or 8 mHa, 
respectively. For cases with approximate alchemical symmetries ​​​ ~ ​​ A​​​, 
this energy difference is notably larger (237 mHa) but typically 
still much smaller than the nuclear repulsion energy contributions.

Overall, exhaustive charge-neutral and isoelectronic BN doping 
in naphthalene leads to 2285 unique derivatives for which we have 
used ACE to establish energetic ranks. Having identified all al-
chemical enantiomers through exhaustive scanning within one 
stoichiometry [stoichiometries as a whole can be ranked with exist-
ing relations (49–51)], we have ranked all possible molecules using 
ACE within groups of molecules approximately degenerate in elec-
tronic energy. These groups form the connected components of a 

graph where all molecules are nodes and only alchemical enantio-
mers are connected, thus allowing us to exploit the transitivity of 
the electronic energy degeneracy. Within these groups, the nuclear 
repulsion dominates the ranking. Among the groups, we rank on the 
basis of averaged bond-counting results for their bond energies, 
where bond energies have been obtained by fitting to the imposed 
energy degeneracies among all pairs.

Using Coupled cluster with singles and doubles (CCSD/cc-pVDZ) 
as a ground-truth Quantum Mechanics (QM) method for all 
naphthalene derivatives on preoptimized geometry (40), we have 
performed an exhaustive validation of alchemical ranking, resulting 

Fig. 4. Ranking molecules via chains of alchemical enantiomers. (A) Each 
alchemical symmetry plane is denoted by a gray line and the reference molecule, 
the chiral center. Electronic energies given in Hartrees. (B) All 2285 unique BN-
doped naphthalene derivatives ranked by their total energy as obtained from quan-
tum chemistry calculations compared to the ranking from ACEs. Histogram is colored 
by number of molecules in a given bin. Two representative molecules of same 
sum formula C4(BN)3. Inset shows the distribution of rank errors sorted in ascending 
order for different methods: the force field UFF, bond counting (BC), semiempir-
ical PM6, ACE (this work), semiempirical xTB-GFN2 (xTB), and the DFT methods 
PBE and PBE0, both with density-fitted cc-pVDZ basis set. Side panels show 
bond-type frequencies.
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in a Spearman correlation coefficient of 0.9899. Dissecting CCS in 
all the various possible stoichiometries of BN-doped naphthalene, 
the scatterplot of ACE rank versus QM rank results in a very rea-
sonable correlation, as shown in Fig. 4B. To place ACE-based rank-
ing in perspective, the inset of Fig. 4B also reports corresponding 
sorted ranking errors (wrt. CCSD) when using PBE0 (52–54), PBE 
(16), xTB (55), PM6 (56), bond counting, and UFF (57) with respective 
Spearman correlation coefficients of 0.9998, 0.9983, 0.9966, 0.9592, 
0.9562, and 0.9021. In terms of computational cost invested to rank 
all naphthalene derivatives, ACE ranking is slightly more expensive 
than bond counting, UFF, or PM6. In terms of accuracy; however, it 
clearly outperforms all three—without any need for empirical knowl-
edge or fitting to external data. It is worth noting that bond counting 
is the only method that has been reparametrized on this particular 
dataset, which explains its good performance compared to PM6. As 
also shown in Fig. 4B, ACE reproduces bond-type frequency trends 
as a function of rank. While the accuracy of ACE itself is not on par 
with more advanced semiempirical quantum chemistry (xTB), the 
sorted ranking error distribution suggests that alchemical ranking is 
closer to xTB than it is to PM6. However, in contrast to alchemical 
ranking, xTB relies on substantial empirical data for fitting. While PBE 
and PBE0 are obviously more accurate, their computational cost is 
also three orders of magnitude larger than xTB (∼40 s). Hence, we con-
clude that alchemical ranking is superior to bond counting and PM6 
and could represent a viable and less empirical alternative to xTB if 
accuracy thresholds are less stringent and computational load is high.

As a third use case, we have used ACE to explore and deepen our 
understanding of the CCS spanned by the 413,887,189 unique k-fold 
BN-doped derivatives of picene (see Fig. 5, with k < 7 and k > 9). 
Dissecting its CCS first by all stoichiometries, we can use the trends 
to map out obvious structural features as a function of rank to de-
tect useful descriptors for structure-property relationships. Roughly 
speaking, results in Fig. 5 suggest that the energy will typically de-
crease within any given stoichiometry as the number of CC, BN, 
NN, and BB bonds increases, increases, decreases, and decreases, 
respectively. Differences in B and N counts in any ring (a measure 
of compositional homogeneity per ring), hardly affects the energy 
except for the heavily BN-doped stoichiometries (11 and 10 BN pairs). 
The degree of clustering (as measured by root mean squared dis-
tances) varies wildly with little correlation for BB, BN, and NN, as 
long as only few sites have been doped. As the degree of BN doping 
increases, the strong stabilizing effect of BN bonds subdivides the 
constitutional isomers into groups of identical BN bond count 
within which boron clusters are stabilizing while nitrogen clusters 
are destabilizing. Because the BB bond effect is visible for any fixed 
number of BN bonds, we can conclude that the impact of BN bonds 
on stability is larger than the one of BB bonds. Following this con-
cept of conditional order and with the data shown in Fig. 5 and the 
extended version thereof in the Supplementary Materials, we can 
identify the following stabilizing design patterns in decreasing order 
of strength: (i) add BN pairs, (ii) maximize number of CC bonds, 
(iii) substitute sites shared between rings, (iv) maximize number of  
BN bonds, (v) avoid N substitutions on rings sharing a larger amount 
of bonds with other rings, and (vi) balance BN substitutions in each 
ring. Note how ACE has given us access to a complete ranking with-
out a single quantum chemistry calculation. While the individual 
rank might not be completely accurate, as shown in Fig.  4B, the 
emerging pattern yields relevant and novel structure property trends 
as a direct consequence of alchemical chirality.

A common problem in materials design consists of identifying 
global optima. In Fig. 5, we also show the least and most stable BN-doped 
derivatives for each stoichiometry, as identified by ACE. As more 
and more carbon sites are BN doped, the sites interact more strongly, 
and patterns emerge that are in line with the aforementioned sum-
mary observations, e.g., the energetically unfavorable nature of 
nitrogen clusters. Thus, even if high accuracy is needed eventually, 
prefiltering with ACE can markedly accelerate the identification 
and discovery of candidate compound lists that are to be treated 
with higher level quantum methods subsequently.

DISCUSSION
We have introduced “alchemical” 4D chirality, resulting from a re-
flection in the nuclear charge space manifested by the external 
potentials in the electronic Hamiltonian. This symmetry relation is 
exact for the perturbing Hamiltonians of the corresponding enan-
tiomers. The corresponding variational electronic energies are 
degenerate only up to the third order and reminiscent of parity vio-
lation (58), which also lifts the exact energy degeneracy between 
spatial enantiomers (albeit less by many orders of magnitude). Our 
numerical findings indicate that ACEs solely from symmetry con-
siderations alone are sufficiently accurate to enable the exploration 
of substantial swaths of subdomains in CCS. From a practical point 
of view, both experiments and simulations have a resolution limit 
resulting from method uncertainty beyond which molecules or 
crystals are indistinguishable. Alchemical chirality offers a new way 
to find those symmetrically related enantiomers with practically 
identical energies from which only one needs to be considered in 
terms of measurements or calculations. In the current state, this 
could be applied to, e. g., surface adsorption problems such as sur-
face catalysis or molecular sensing. Future work on bounds on ap-
proximate alchemical enantiomers for relaxed geometries might 
give access to weak interaction problems as they occur in molecular 
self-assembly.

Specifically, we have provided novel ACE-based bonding rules 
of chemical bonds and angles. Numerical evidence for single bonds 
of second- and third-row main-group elements even suggests that 
DFT level of accuracy can be reached with these rules. CCSD-based 
perturbation theory results for THDADB (and all other possible 
BN-doped benzene derivatives) have served the illustration of al-
chemical chirality, indicating near degeneracy for the electronic 
energies of alchemical enantiomers, deviating by roughly two orders 
of magnitude less than a covalent bond. Correspondingly, ACE can 
serve the energy ranking of more complex systems, as discussed for 
the two use cases of BN doping in naphthalene and in picene. Using 
CCSD/cc-pVDZ as a reference, the comparison to bond counting, 
semiempirical DFT, generalized gradient–approximated DFT, and 
hybrid DFT results for the more than 2000 naphthalene derivatives 
indicates that the alchemical chirality–based ranking outperforms 
bond counting and common semiempirical quantum chemistry 
(PM6), while approaching the performance of semiempirical DFT 
(xTB) in terms of fidelity—at negligible computational cost and 
without empiricism. For the BN doping of picene, an ACE of more 
than 400 million unique derivatives has enabled the establishment 
of structural trends and the identification of the least and most 
stable derivatives for each stoichiometry. We stress that for all the 
alchemical chirality–derived results presented, not a single quantum 
chemistry calculation was necessary.
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Overall, our arguments and numerical results indicate that the 
concept of alchemical chirality represents a novel, fundamental, 
and useful symmetry relation in CCS. Its power to dissect, group, 
and rank throughout the CCS of constitutional isomers holds great 
promise to further progress toward the overall goal of virtual com-
putational materials discovery. Future work will deal with current 
limitations, such as the necessity to perform alchemical changes only 
in close vicinity in nuclear charge space, to restrict changes to be 
isoelectronic and neutral, or to rely on scaffold lattices with fixed nuclear 
positions. It would also be interesting to study how alchemical chi-
rality can be exploited using quantum machine learning models.

MATERIALS AND METHODS
Previous methodological work tackling CCS from first principles 
through variable (alchemical) nuclear charges included 4D DFT 
(59), the use of thermodynamic integration (60), trends among ver-
tical energies (50), entire potential energy surfaces (61), nuclear 
grand-canonical ensembles (62, 63), linear combinations of atomic 
potentials (64), and APDFT (31). Starting in 1996 with stability of 
solid solutions (65), multiple promising applications, based on 
quantum alchemical changes, have been published over recent 

years, including thermodynamic integrations (66), mixtures in metal 
clusters (67,  68), reactivity estimates (69), water adsorption on 
BN-doped graphene (70), BN doping in fullerenes (71), and proton-
ation energy predictions (72, 73) However, apart from nearsighted-
ness studies on chemical transferability (74), general rules rooted in 
the quantum mechanical framework of variable composition are 
mostly still lacking. Here, we describe alchemical chirality, defined 
by compositional reflection in the nuclear charge mirror plane of 
some reference system. Such a reflection defines alchemical enan-
tiomers as distinct constitutional isomers with electronic energies 
being identical up to the third order. Alchemical chirality relates 
distinct molecules and materials in ways that, to the best of our 
knowledge, have not yet been discussed before.

Calculating the total potential energy of any compound U, most 
commonly obtained within the Born-Oppenheimer approximation 
and neglecting relativistic effects, represents the probably most cru-
cial step in any atomistic simulation study. It consists of two contri-
butions, the nuclear repulsion, which can be evaluated trivially, and 
the more complex electronic energy E, which, within the picture of 
DFT, sums up the electrons’ kinetic contributions as well as their 
interactions with each other and with the nuclear charges. Hence, E 
is key and typically represents the principal goal of most modern 

Fig. 5. Trends among all 414 million BN-doped picenes of the select stoichiometries (top) ranked by their total energy on the basis of ACE. Each row shows a 
structural feature for each stoichiometry as a function of the ACE rank and averaged over more than 200 bins. Those molecules that are the most or least stable for each 
stoichiometry are listed separately.
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electronic structure theory developments, including improved DFT 
approximations. Furthermore, textbook discussions, such as the 
virial theorem in physical chemistry, deal with the discussion of the 
chemical bond in terms of the electronic energy.

The difference in electronic energy E between a reference reflec-
tion molecule, constituting a maximum in electronic energy, with 
electron density r and some “adjacent” isoelectronic alchemical 
enantiomer i, E = E[i(r)] − E[r(r)], can be obtained through thermo-
dynamic integration over the coupling constant 0 ≤ i ≤ 1, which 
linearly interpolates the nuclear charges between reflection mole-
cule and alchemical enantiomer. According to Hellmann-Feynman, 

​E  = ​ ∫−∞​ 
+∞

 ​​ dr ​v​ ri​​(r ) ​∫0​ 
1
 ​​ d ​​ i​​ (r, ​​ i​​)​, with vri(r) as the difference in 

external potential between reflection molecule and alchemical en-
antiomer (31, 75).

Approximating this difference by a Taylor series expansion  

​​​(​​≈ ​ ∑ n=1​ ∞ ​​ ​  1 _ n !​ ​∫−∞​ 
+∞

 ​​ dr ​v​ ri​​(r )​​∂​​​ i​​​ 
n−1​ (r )∣​ 

=0
​​​)​​​​, subtracting the energy of 

the other alchemical enantiomer j (i.e., vri = − vrj) and rearranging 
results in

	​​  ​E​ij​ sym​  ≈ ​  ∑ 
n=1

​ 
∞

 ​​ ​ 1 ─ n ! ​ ​ ∫ −∞​ 
+∞

​​dr ​v​ ri​​(r ) ​(​​ ​ ​∂​​ n−1​ ​​ r​​(r) ─ 
∂​​i​ 

n−1​
 ​  + ​ ​∂​​ n−1​ ​​ r​​(r) ─ 

∂​​j​ n−1​
 ​​ )​​​​	 (2)

which is zero for all orders n as long as ​​∂​​​ i​​​ 
n−1​ ​​ r​​  =  − ​∂​​​ j​​​ 

n−1​ ​​ r​​​. Equation 2 
must be exactly zero up to the third order because (i) the zeroth-order 
term E[r] cancels, (ii) the first-order Hellmann-Feynman term 
∫drvrir is zero for highly symmetric systems (as necessary to de-
fine an alchemical reflection plane) due to v and r being odd and 
even functions (46), and (iii) due to the second-order term cancel-
ing because ∂r = IZI∂ZIr differs for i and j only by the sign of 
ZI. Consequently, knowing all the higher-order contributions for 
one alchemical enantiomer also yields all higher-order terms for the 
other enantiomer without any further calculation. In other words, if 
a molecule contains a set of disjoint pairs of atoms of the same ele-
ments, which share nearly the same chemical environments, then it 
can be seen as the nuclear charge reflection plane, or chiral center, 
of all corresponding alchemical enantiomers. For example, the benzene 
molecule is the chiral center for three pairs of alchemical enantiomers 
(for Z = ± 1, i.e., BN doping), all discussed in the Supplementary 
Materials and one highlighted in Figs.  3 and 1. For isoelectronic 
charge-neutral mutations, alchemical enantiomers differ from their 
chiral center only in their nuclear charges such that the net nuclear 
charge difference of each atom pair is zero. We used nauty (76) for 
graph enumeration and the Coulomb Matrix (77) as implemented 
in qmlcode (78) as similarity measure. Reference calculations were 
performed with Molpro (79) and MRCC (80, 81), in part using basis 
set extrapolation (82).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/21/eabf1173/DC1
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