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ABSTRACT
Free energies govern the behavior of soft and liquid matter, and improving their predictions could have a large impact on the development
of drugs, electrolytes, or homogeneous catalysts. Unfortunately, it is challenging to devise an accurate description of effects governing sol-
vation such as hydrogen-bonding, van der Waals interactions, or conformational sampling. We present a Free energy Machine Learning
(FML) model applicable throughout chemical compound space and based on a representation that employs Boltzmann averages to account
for an approximated sampling of configurational space. Using the FreeSolv database, FML’s out-of-sample prediction errors of experimental
hydration free energies decay systematically with training set size, and experimental uncertainty (0.6 kcal/mol) is reached after training on
490 molecules (80% of FreeSolv). Corresponding FML model errors are on par with state-of-the art physics based approaches. To generate
the input representation for a new query compound, FML requires approximate and short molecular dynamics runs. We showcase its use-
fulness through analysis of solvation free energies for 116k organic molecules (all force-field compatible molecules in the QM9 database),
identifying the most and least solvated systems and rediscovering quasi-linear structure–property relationships in terms of simple descriptors
such as hydrogen-bond donors, number of NH or OH groups, number of oxygen atoms in hydrocarbons, and number of heavy atoms. FML’s
accuracy is maximal when the temperature used for the molecular dynamics simulation to generate averaged input representation samples in
training is the same as for the query compounds. The sampling time for the representation converges rapidly with respect to the prediction
error.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041548., s

I. INTRODUCTION

An accurate description of solvation free energy is funda-
mentally important to rationalizing reaction kinetics and product
propensities. Therefore, accurate models describing solvation have
far reaching utility from drug design to battery development. Com-
putational methods for predicting solvation free energies based on
ab initio methods,1–4 while accurate, impose a substantial compu-
tational burden and are therefore inherently limited when it comes

to navigating chemical compound space (CCS). Conversely, more
readily available methods based on parameterized force-fields (FFs),
implicit solvent models (PCM,5,6 GBSA,7 SMD,8 COSMO,9,10 and
COSMO-RS11), or hybrid models (3D-RISM12–14) trade reduced
computational expense for lower accuracy with respect to exper-
iment. In particular, continuum solvation models exhibit sev-
eral disadvantages including lack of locality in distinct atomic
environments,15,16 poor modeling of hydrogen-bonding, inaccurate
estimates of entropy contributions,17 as well as poor decoupling
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between short-range and long-range effects. Still, in particular,
alchemical FF based approaches have become a routine method for
free energy calculations.18

The recent success of quantum machine learning (QML) in the
domain of theoretical and computational chemistry due to unprece-
dented availability of calculated single-point geometry quantum
data has been manifested for challenging molecular problems, such
as accurate prediction of molecular electronic properties like atom-
ization energies,19,20 application to elpasolites,21 excited states,23 or
fragment based learning with AMONS.24

Starting with the work of Behler and Parrinello on high-
dimensional neural network potentials,25,26 there has been an
increasing interest in applying ML to molecular dynamics (MD)
simulations,27,28 e.g., using gradient domain ML29 and molecules
in complex environments such as surfaces, water,30–33 or systems
under extreme pressure and temperature.34 A promising develop-
ment is coarse-grained ML models.35–39 Reference 40 provides a
general overview about the most recent developments of ML in
CCS.

ML based free energy models, on the other hand, are much less
established, and potential applications to explore CCS in terms of
thermodynamic properties have largely remained unexplored except
for some very recent publications.41–45 Here, we introduce a new ML
model capable of predicting ensemble averages, such as free ener-
gies of solvation ΔGsol. In particular, our free energy ML (FML)
model is designed to deliver both computational efficiency as well
as prediction errors, which systematically improve with training set
size, thereby being able to reach experimental uncertainty levels. The
FML model fills, to the best of our knowledge, an important gap

FIG. 1. The FML prediction for a new query compound q depends on the phase
space {Γi} of all training compounds consisting of conformers, depicted by dis-
connectivity graphs, sampled at the same temperature T, by virtue of ensemble
average representations ⟨X⟩(T).

in the field of ML for atomistic simulation by explicitly account-
ing for an ensemble of molecular conformations through Boltzmann
averaged representations,46–48 rather than through fixed geometry
based representations. FML thus avoids the pitfall of neglecting the
variance of ensemble properties when basing predictions on fixed
geometries only.

As illustrated in Fig. 1, the prediction of an ensemble property
for a query compound q at temperature T depends on the phase
spaces {Γi} of all training compounds i. From this point of view, FML
infers predictions by combining the information of all the phase
spaces at given temperature T by virtue of the average represen-
tation ⟨X⟩, i.e., as an integral over the configurationally sampled
space.

Our paper is structured as follows: We begin by detailing the
FML workflow in Sec. II A with emphasis on the ensemble based
representation. Next, we present the results in Sec. IV starting with a
numerical demonstration of the necessity of the ensemble represen-
tation before assessing the accuracy of FML. Finally, we demonstrate
the feasibility of the method for high throughput free energy predic-
tions of 116k organic molecules (a subset of QM949) revealing trends
between molecular structure and solubility.

II. THEORY
We employ a representation based on an ensemble of conform-

ers generated through MD sampling. This gives rise to a unique
and temperature dependent representation of the system state. The
resulting machine learning framework FML constitutes a physics
based approach since this representation is rooted in statistical
mechanics.

As shown and discussed below, a comparison with state-of-the
art solvation models reveals that FML retains the promise of being
faster, more transferable, and extendable than solvation methods
based on conventional fitting of model parameters. While we focus
on free energies of solvation, we note that the same methodology
might open new pathways for ML applications to other ensemble
properties such as protein binding or enthalpy and entropy.

A. Kernel ridge regression
We use kernel ridge regression48 (KRR) as a supervised ML

method,50 which can be derived from Gaussian process. KRR non-
linearly maps regression and which non-linearly maps input into a
high-dimensional feature space, which renders the regression prob-
lem linear. The similarity between compounds i and j with represen-
tations Xi, Xj is measured by applying a Gaussian kernel function K,

K(Xi,Xj) = exp(− ∣∣Xi −Xj∣∣22
2σ2 ), (1)

where σ is the kernel-width hyperparameter. The prediction of the
property p of the query compound q is given by

p(Xq) =
Ntrain

∑
i

αiK(Xtrain
i ,Xq), (2)
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where K(Xtrain
i ,Xq) is the kernel function, evaluated on the query

and all training compounds with weight coefficients α. The unique
solution vector for the optimal set of regression coefficients α is given
by

α = (K + λ ⋅ I)−1p, (3)

with the vector p containing all values of the target property in the
training set and regularization parameter λ.

B. Ensemble based representation
While quantum machine learning (QML) is commonly used

as a surrogate model for approximate solutions to the electronic
Schrödinger equation, i.e., they are associated with exactly one fixed
configuration of atoms in a compound (single point). By contrast,
the free energy is a property of an ensemble of possible configura-
tional states.
Hence, the intriguing question is how to define a physics based rep-
resentation of a compound for an ensemble property, such as the free
energy of solvation. Here, we have used averages of FCHL19,46,47 a
geometry dependent many-body representation that includes two-
and three-body terms where the first term accounts for interatomic
distances and the second term accounts for relative orientations
of triplets of atoms. In this spirit, representations for thermody-
namic properties should be designed similarly, taking into account
the ensemble of accessible configurations at a given temperature.
We used a thermodynamic ensemble average allowing for a unique
definition of a representation, given a set of configurational snap-
shots obtained by short MD simulations at temperature T (see
Sec. III). First, the FCHL19 representation X({ri}) is computed for
all snapshots i before calculating the ensemble average by numerical
integration as follows:

⟨X⟩(T) = 1
Z ∫Γ(T)

X({ri})e−βEi dΓ

≈ 1
s

s

∑
i
Xi, (4)

with s uncorrelated gas-phase solute samples weighted by the respec-
tive Boltzmann factor e−βEi with β = 1

kBT
and Z is the partition

function. Note that the average representation ⟨X⟩(T) depends on
T since both the integration domain Γ(T) over phase space and the
Boltzmann factors depend on T.

In Fig. 2, we show the convergence of the pairwise distance Δs
between average representations ⟨Xs⟩ and ⟨Ys⟩ for three molecules X
with respect to a fixed molecule Y for a given number of MD samples
s, which we define as

Δs(X,Y) ∶= ∣ ∥⟨Xs⟩ − ⟨Ys⟩∥ − ∥⟨Xsmax ⟩ − ⟨Ysmax ⟩∥
∥⟨Xsmax ⟩ − ⟨Ysmax ⟩∥

∣, (5)

with the maximal number of MD samples smax = 1000 and
the euclidean norm ∥⋅∥. For the randomly selected examples
shown in Fig. 2, we find that for s = 10 uncorrelated molecu-
lar geometries, the relative 0.4%. Generally, we find that ≈s = 10

FIG. 2. Relative deviation Δs(X, Y) with respect to taking all 1000 MD samples in
percent [see Eq. (5)] of the distance between the FML representations [see Eq. (4)]
of three molecules X and fixed Y (shown as inset) as a function of the number of
MD samples s.

uncorrelated molecular geometries (from MD, see Sec. III) are suffi-
cient to converge the distances below 4% relative deviation (see also
Fig. 4 of the supplementary material).

Our representation, which we also refer to as the FML represen-
tation, is similar to what was recently presented in Ref. 51; however,
here we rather use experimental free energies for training because of
the inherent inaccuracy of conventional of implicit solvation mod-
els17 employed in that work. In addition, there are also a number of
QSAR based approaches for representing conformers.52–54

In the following, we refer to KRR using a given vacuum geome-
try as QML and to free energy machine learning using the ensemble
averaged FCHL19 representation as FML. Note that unlike most
applications of QML, we train on experimental data rather than
on computational results from solutions to the Schrödinger Equa-
tion. The methodology of FML is fully transferable to free ener-
gies from any level of theory, and is both atomistic and ab initio
in the sense that solely atomic configurations are required as an
input without need for molecular connectivities. The generation
of the snapshots via molecular dynamics performed using either
ab initio or force-field based molecular dynamics just as well. In
Fig. 3, we show the practical steps for training a FML model for
free energies of solvation. First, a set of free energies is calculated, or
experimental values are collected from the literature. Subsequently,
for all solute configurations, the average over all representations of
the trajectories is computed [see Eq. (4)]. Finally, the regression
weights α are determined [see Eq. (3)].

C. Uniqueness
To illustrate the importance of an ensemble based approach,

we use QML to predict a hypothetical value of ΔGsol for all possi-
ble fixed conformers of several stereo-isomers. We emphasize that
for an ML model to be consistent, the predictions for free energies
of solvation of a set of conformers should differ less than the exper-
imental uncertainty. However, in the following, we will show that
QML based on a single molecular conformation can indeed lead
to inconsistent predictions. For training the QML model, we use
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FIG. 3. Steps for training an FML model
for the free energy of solvation ΔGsol
(upper box) and for prediction of ΔGq

sol
for a new query compound q (lower box).

experimental free energies and representation vectors Xvac based on
vacuum geometries provided by the FreeSolv55 database.

We randomly select four isomers of C7H10O2 and use their
complete set of conformers resulting from systematic scanning of all
dihedral angles of the isomers56 to compare the FML and QML pre-
dictions. The distributions of the corresponding QML predictions of
the free energy are shown in Fig. 4. They reveal that for different con-
figurations of the same isomer I, the predicted free energy ΔGsol can
vary by several kcal/mol, well above the experimental uncertainty.
Since hundreds of conformational isomers may exist for any given
medium sized constitutional isomer (the number of conformational
isomers shown in Fig. 4 is I1, . . ., I4 = 976, 661, 761, 13), it should be
obvious that using a single geometry as the representation may lead
to considerable prediction errors.

Interestingly, we find (see Sec. IV) that due to an error cancella-
tion QML based on vacuum geometries with weight coefficients, αvac

can reach MAEs comparable with FML (see Sec. IV A). The reason
is that the average of the QML predictions over a set of conformers,
denoted by ⟨⋅⟩c, is close to the FML prediction,

⟨
Ntrain

∑
j

αQML
j K(XQML

j ,Xc)⟩
c

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Average QML

≈
Ntrain

∑
j

αFML
j K(⟨Xj⟩, ⟨Xc⟩c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
FML

, (6)

using the average representation over all conformers ⟨Xc⟩c. This can
be seen by inspecting Fig. 4, where the FML prediction of the average

representation of all conformers is shown as a dashed line and the
average of the individual conformer QML free energies is shown as
a solid line. The FML weight coefficients αFML are obtained using
the representation average ⟨Xj⟩ [see Eq. (4)] over strain = 300 MD
samples (see Fig. 3).

FIG. 4. Distribution of hydration free energies of conformers at 298K estimated
by QML for four constitutional isomers (C7H10O2). Corresponding FML estimates,
as well as averages, are denoted by solid and dashed vertical lines, respectively.
Insets show molecular graphs of corresponding constitutional isomers and number
of conformers.
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D. Δ-machine learning
Using Δ-ML,57 we promote solvation model (sm) free energies

ΔGsm
sol to experimental (exp) uncertainty as follows:

Δexp
sm (⟨X⟩) ≈ ΔGexp

sol − ΔG
sm
sol , (7)

using the ensemble representation ⟨X⟩ as defined in Eq. (4). Note
that the FML correction is different for each compound account-
ing for underestimations as well as overestimations of baseline free
energy models. The step for promoting free energies to a predicted
experimental value ΔGexp

sol (FML) is given by

ΔGexp
sol (⟨X⟩) ≈ ΔG

sm
sol + Δexp

sm (⟨X⟩). (8)

Besides these modifications, the workflow remains the same as in
Fig. 3.

III. COMPUTATIONAL DETAILS
A. Molecular dynamics

All MD simulations are performed with OpenMM58 in vac-
uum in the NVT ensemble using a Langevin integrator with a fric-
tion coefficient of 1 ps−1 and the small molecule FF GAFF259,60

with a time-step of Δt = 2 fs and total simulation time of 2 ns
using SHAKE.61 Partial charges are computed with antecham-
ber59,60 at the AM1-BCC62 level. An exception is the implicit solvent
GBSA63,64 simulations where we use AMBER59/GAFF,60 while all
other simulation parameters are the same. MD samples were selected
with 2 ps separation, which is well beyond the maximal correlation
time of ∼0.5 ps.

B. Machine learning
To optimize the hyper-parameters σ and λ [see Eqs. (1) and

(3)], we perform ten-fold cross-validation on the training set only
and validate the performance on the test set using the QML pack-
age.65 The training set contains all FreeSolv55 molecules except
for those 146 test set molecules, which are also part of the QM9
database.49

Histograms showing the free energy distribution and the
size of all molecules in the FreeSolv database are shown in the
supplementary material. For numerous FreeSolv compounds, no
value for the experimental uncertainty is reported, but a default
value of 0.6 kcal/mol corresponding to thermal energy fluctuations
at 298.15 K is assumed, which we use as our target accuracy, albeit
the total average absolute error of all experimental values is slightly
smaller (0.57 kcal/mol).

IV. RESULTS
A. Learning curves and free energies of 116k
molecules

The performance of several ML models is assessed using learn-
ing curves, i.e., the prediction error is reported as a function of
training set size N (see Fig. 5). Most notably, we assess FML,
the ensemble average representation [see Eq. (4)], and Δ-ML [see
Eq. (8)] for predicting experimental free energies of the FreeSolv55

database.
In addition, we also test the RDKit67 implementation of the

extended connectivity fingerprint66 (ECFP4) commonly used in
cheminformatics as well as a custom QSAR based representation,
named CQ (see the supplementary material). To compare KRR with
conventional fitting methods, we also report the MAEs of a multi-
linear regression model with CQ. The error bars and colored areas

FIG. 5. Learning curves for free ener-
gies of the FreeSolv database55 includ-
ing standard deviation at each number
of training molecules N obtained by ten-
fold cross-validation for feature based
KRR, QML, and FML in (a). QML/FML
based Δ-ML with various solvation mod-
els as baseline in (b). Solid black
line marks thermo-chemical accuracy
at 1 kcal/mol, and dashed line marks
the experimental uncertainty (298 K ⋅ kB
≈ 0.6 kcal/mol). The boxes above illus-
trate the different ML approaches; in the
first approach, the molecule is featur-
ized (as in ECFP466), but all 3d informa-
tion is lost. In the second case (Boltz-
mann weighted), 3d structures of the
molecule are included (FCHL1946,47).
Third, physics based approaches can
be used as a baseline for Δ-ML57 to
improve ML predictions, as in (b).
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in Fig. 5 show the standard deviation of the MAEs resulting from
ten-fold cross-validation over the FreeSolv database. We find that
feature based models ECFP4 and CQ [see Fig. 5(a)] perform worst,
reaching an MAE of only 0.8 kcal/mol for the maximal training set
size of Ntrain = 550. This might be due to the fact that feature based
representations do not properly weigh the ensemble of molecular
conformations, which can have a large influence on predictions of
ΔGsol (see Sec. II A).

QML, on the other hand, reaches the target accuracy, the exper-
imentally relevant accuracy of 0.6 kcal/mol for about Ntrain = 550
training molecules. The best FML model trained with ten random
MD samples per molecule with T = 350 K essentially results in
the same MAE. While both models reach the experimentally rele-
vant accuracy, we find that FML has a slightly smaller offset hitting
1 kcal/mol for Ntrain ≈ 50, while the QML model trained on the
vacuum geometries has an MAE of about 1.5 kcal/mol. The oth-
erwise similar performance of both models may to some extent be
attributed to error compensation, as discussed above.

Learning curves for Δ-ML57 are also shown in Fig. 5 using var-
ious solvation models as a baseline such as GBSA (GAFF59,60), 3D-
RISM12,13 (GAFF59,60/TIP3P68), SMD8 (M06-2X69/Def2-TZVPP70),
and TI (GAFF259,60/TIP3P68). The GBSA values have been com-
puted using AMBER59,60 (see Sec. III), the TI values are from the
FreeSolv55 database, and the values for the two implicit solvation
methods 3D-RISM12,13 and SMD8 are from the supplementary mate-
rial of Ref. 14. We find that Δ-ML can lower the offset of the learning
curves and thus may be useful if experimental data are scarce. FML
requires about 100 training molecules to reach 0.8 kcal/mol, whereas
Δ-ML using TI or 3D-RISM only needs around 50. Note that the
SMD baseline model has the lowest offset since SMD has the small-
est MAE of 0.93 kcal/mol vs an MAE of 1.12 kcal/mol for TI on the
FreeSolv database. However, after inclusion of ∼150 compounds in
training both approaches, direct FML and Δ-ML perform similarly
and converge to target accuracy.

Similar observations were also reported in Ref. 42, but we find
that the target accuracy can be reached using FML without addi-
tional solvation calculations for Δ-ML. We note that some cau-
tion is required for this comparison since the accuracy of Δ-ML
relies heavily on systematic correlation between the baseline and the
target.

B. Comparison to other models
A comparison of various solvation models with FML is shown

in terms of a scatter plot (see Fig. 6) displaying predictions vs experi-
ment. The training set consists of all molecules in FreeSolv but not in
QM9, and the overlap (146 molecules) is used as a test set. The MAEs
for FML and the tested solvation models are listed in Table I. We find
that the best FML model with strain = 10 and Ttrain = 350 K results
in an MAE of 0.57 kcal/mol, reaching the experimentally relevant
accuracy of solvation energy measurements and performing slightly
better than SMD with 0.61 kcal/mol. Note that FML has some signif-
icant outliers such as methane with an error of about 2 kcal/mol. The
largest outlier, however, is 2-hydroxybenzaldehyde with an error of
3.6 kcal/mol. It is worth emphasizing that SMD uses at least 79 of
the test set molecules for parameterization, which were not included
in training of the FML model. Still, FML has a slightly smaller MAE
despite using fewer training points compared to SMD. Furthermore,

FIG. 6. Scatter plot comparing free energies of solvation predicted by FML
(350 K; 10) (blue) using an ensemble based representation and solvation mod-
els: SMD (chocolate), TI (violet), 3D-RISM (green), and GBSA (pink). The FML
predictions are also listed in the supplementary material.

we find that FML clearly outperforms TI and 3D-RISM, reaching
an MAE of 1 kcal/mol after about Ntrain = 100 training molecules.
We emphasize that a typical SMD (M06-2X69/Def2-TZVPP70) cal-
culation of a molecule in the FreeSolv database with Gaussian0971 is
computationally demanding, while a force-field based MD simula-
tion in vacuum to generate the averaged representation can be run
on a single modern central processing unit (CPU) in less than 10
min (see Table I for timing benchmarks).

In addition, FML clearly outperforms COSMO9,10,72 with B-
P8673,74/TZVP,75 resulting in an MAE of 1.94 kcal/mol with higher
computational costs. For comparison with COSMO-RS as imple-
mented in COSMOtherm,76 we refer to a benchmark test11,77 with
a set of 274 molecules resulting in an MAE of 0.52 kcal/mol reaching
the accuracy of FML but at higher computational cost (see Table I)
and as for all other density functional theory (DFT) methods with
a worse scaling with the number of atoms compared to FFs. The
predictions of FML for the test set are provided as a table in the
supplementary material.

To provide further insight into the prediction errors, 642 FML
models were trained on all molecules except for a single test molecule
following a “one-versus-all” strategy.

This results in a mean unsigned error of 0.51 kcal/mol, which is
slightly smaller than the average reported experimental uncertainty
of 0.57 kcal/mol. Note that for 450 of 642 FreeSolv55 molecules, a
default error of kB ⋅T ≈ 0.6 kcal/mol was reported, and our obser-
vation indicates that the “true” experimental error may actually be
much smaller. Indeed, we find that the average of the reported exper-
imental uncertainties (other than default) is 0.48 kcal/mol. Given the
slope and the offset of a continued learning curve (see Fig. 5 in the
supplementary material) as well as 0.48 kcal/mol as an upper bound-
ary of the noise level, we can extrapolate that the learning curve would
begin to flatten off for more than Ntrain = 670 training molecules. We
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TABLE I. Comparison of MAEs, Pearson’s r, and estimated order of CPU time per solute prediction for various solvation models and FML. Approximate number of training
molecules Ntrain needed for FML to reach the MAE of each respective method. The conversion factor from GPU to CPU c = tCPU

tGPU
may vary substantially between ∼10 and 60

depending on hardware/MD code (here OpenMM58). g is the number of grid points for TI, typically ∼10.

Class Model MAE (kcal/mol) r Ntrain ∼CPU h/solute References Year of publication

DFT SMD 0.6114 0.96 400 High 8 and 71 2009
COSMO 1.94 0.90 20 10–1 9, 10, and 72 1993
COSMO-RS 0.5278 0.91 . . . 10–1 11, 72, 76, and 78 2000
DCOSMO-RS 0.9478 0.87 100 10–1 79 2006

FF 3D-RISM 0.9914 0.90 100 10–1 12 and 13 1998
TI 0.9355 0.94 100 g × c × 10−1 55 2017
GBSA 2.41 0.84 20 10–2 63 and 64 2004

ML FML 0.57 0.95 490 10–2 This work 2020

find that the two molecules with identifier mobley_2523689 and mob-
ley_3201701 with the largest prediction errors of 5.3 kcal/mol and
mobley_3201701 4.4 kcal/mol also have the largest reported exper-
imental uncertainty of 1.93 kcal/mol. This may indicate that the

reported experimental uncertainty may cause the large deviation for
these outliers (see Fig. 6 in the supplementary material).

Such a one-versus-all scheme may be useful to identify possi-
ble candidates with high experimental error, but we note that a large

FIG. 7. Free energy distribution of 116k molecules predicted by FML in (a); small histogram corresponds to a subset of 4907 hydrocarbons with averages shown as solid
and dashed lines, respectively. Four molecules with most negative (b) and positive (c) ΔGsol in clockwise order. The mean of ΔGsol for simple descriptors such as number of
H-bond donors Hd (d), NH/OH groups (e), oxygen atoms O in stoichiometry CnC HnH OnO (f), and heavy atoms h (g).
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prediction error is not a sufficient condition but rather an indica-
tion of inconsistency with the rest of the dataset. A large prediction
error may also mean that the molecule in question has a very differ-
ent chemical structure such that the structure–property relationship
cannot be sufficiently explained by the training set.

C. Predicted solvation for 116k organic molecules
We use FML to calculate free energies of a large dataset of

organic molecules, a subset of CCS, in order to identify trends
between solubility and structure. More specifically, 116k molecules
of the QM9 dataset have been considered in order to predict the free
energy distribution in Fig. 7(a). For comparison, we also show the
corresponding distribution of ΔGsol for the FreeSolv database in the
supplementary material. The FML model was trained on the com-
plete FreeSolv database with coincident QM9 molecules removed
from training. We find that the free energy distribution is approx-
imately Gaussian with a mean value of ΔGsol = −7.56 kcal/mol span-
ning a range of 25.1 kcal/mol. The molecules with the most negative
and positive ΔGsol are QM9 compounds indexed 26 712 and 118 570
with −21.63 kcal/mol and 3.47 kcal/mol, respectively [see Figs. 7(b)
and 7(c)]. The top 50 most soluble and least soluble molecules,
according to FML estimates, are also shown in the supplementary
material. We find that the most soluble molecules have a planar ring
structure. On the other hand, the 4907 hydrocarbons of QM9 occupy
the right tail of the distribution. Molecules with many hetero atoms
bonded in NH/OH groups in a planar ring structure tend to have a
very negative ΔGsol, while aliphatic linear molecules tend to be less
soluble. This can be explained by the large difference in electroneg-
ativity between the H and the N, O atoms leading to polar bonds
eventually resulting in H-bonds, lowering the enthalpy of solvation.
Alkanes, on the other hand, have a negligible polarity and thus only
interact with water through much weaker van der Waals interaction
resulting in low solubility.

These simple rules for the solubility lead to trends for the aver-
age free energy ΔGsol such as approximately linear relations with
the number of H-bond donors Hd or the number of OH and NH
groups NH/OH, as shown in Figs. 7(d) and 7(e). Furthermore, ΔGsol
decreases with the number of oxygen atoms for molecules with sto-
ichiometry CnC HnH OnO and with the number of heavy atoms h [see
Figs. 7(f) and 7(g)]. The former effect is due to enthalpic H-bond
contributions from hydroxyl groups, and the latter is due to weak
van der Waals interactions, which roughly scale with the molecule
size. Such linear free-energy relationships (LFER) are well known
and used for predictive models, e.g., for solvation80,81 or organic
chemistry.82

The 116k predictions of FML for the subset of QM949 are
available in the supplementary material.

D. Analysis of the model
We study convergence of the MAE as a function of the num-

ber of MD samples for the training strain and test molecules squery,
given an MD sampling temperature of Tquery = Ttrain = 350 K. Note
that both strain and squery refer to the representation [sum in Eq. (4)]
and not to the number of training or test molecules (here always 620
and 22 respectively, corresponding to 29 fold cross-validation over
FreeSolv55).

By inspection of Fig. 8(a), we find that FML models trained with
large strain tend to have a larger offset in the MAEs and a larger num-
ber of test samples squery is needed to reach the same accuracy as a
model with small strain. Note that we only show up to squery ≤ strain for
the query molecule representation on the x axis since a model eval-
uated on query FML representations with more MD samples than
used for training would certainly not be desirable for ML. All ML
models improve with squery until the MAEs saturate at strain = squery

where FML generally achieves the highest accuracy. Interestingly, we
find that the accuracy of the FML models increases only up to strain

≈ 10 and saturates beyond. This is because we find the FML repre-
sentation to be sufficiently converged for approximately 10 random
MD samples per molecule (see Fig. 2).

Next, we investigate the temperature dependence of the FML
representation. To this end, the MAEs of several ML models
FML(Ttrain; strain) with training molecule sampling temperatures
Ttrain between 50 K and 450 K are compared for various query
molecule sampling temperatures Tquery with strain = squery = 10 [see
Fig. 8(b)]. We find that the FML models usually perform best if

FIG. 8. Comparison of MAEs of FML models using different number of samples
in the training and query molecule representation (Tquery = T train = 350 K) with
Ntrain = 620 distinct training molecules (a). Various temperatures for sampling the
test Tquery and training molecules T train in (b) and resulting MAEs. Solid line marks
thermo-chemical accuracy at 1 kcal/mol, and dashed line marks the experimen-
tal uncertainty (298 K ⋅ kB ≈ 0.6 kcal/mol) with Ntrain = 496 training molecules
evaluated on the test set with 146 molecules.
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Ttrain ≈ Tquery, e.g., model FML (50 K) performs best for Ttrain

= Tquery = 50 K and the MAE increases slightly for higher temper-
atures Tquery. On the other hand, FML (450 K) performs worse at
lower than at higher temperature. This indicates, as suggested by
Eq. (4), that the average representation indeed results in models
specific for the temperature and phase space Γ(T) spanned by the
training MD samples.

V. CONCLUSION
We have studied the role of the representation for ML models

of ensemble properties. As one would expect, numerical results con-
firm that the representation should be rooted in statistical mechanics
since ML based on a single molecular geometry can lead to large and
spurious prediction errors. The definition of a representation based
on Boltzmann weighted averages does not only resolve this issue but
also naturally introduces temperature dependence.

In a similar manner, FML models could be constructed that
depend on pressure, or chemical potential, to account for increas-
ingly more realistic canonical and grand-canonical ensembles.
The numerical performance of FML is encouraging: FML reaches
experimental uncertainty for relatively small training sets and at low
computational cost for new query estimates. As such, it is better
or on par with state-of-the-art models in the field, and it emerges
as a viable alternative whenever sufficient training data are avail-
able. Furthermore, we find that Δ-ML can improve the predictions
for small training set sizes; however, FML can reach experimen-
tal relevant accuracy without requiring additional solvation model
calculations. Furthermore, we stress that it is straightforward to
improve the accuracy and transferability of FML by adding more
experimental data points. This is not necessarily true for other more
conventional solvation models. To demonstrate the usefulness of a
transferable FML model, we have predicted solvation energies for
116k organic molecules of the QM9 database (see Fig. 7). The results
confirm known trends, namely, that molecules with a high solubil-
ity tend to have many hetero atoms and are arranged in planar ring
structures, while linear aliphatic molecules tend to have a lower sol-
ubility. We have therefore demonstrated that FML can be used to
study solvation throughout CCS and that it might prove useful to
identify additional non-trivial structure–property relationships.

SUPPLEMENTARY MATERIAL

See the supplementary material for a table of predicted free
energies of solvation on the test set and information about the CQ-
representation. We also show the predicted most and least soluble
molecules of QM9 as well as the distribution of heavy atoms in
the FreeSolv55 database. In addition, we show a histogram illustrat-
ing the convergence of the FML representation and the individual
prediction errors and outliers of the model as well as an extended
learning curve.
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