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Abstract

In this paper we prove the uniform-in-time L p convergence in the inviscid
limit of a family ων of solutions of the 2D Navier–Stokes equations towards a
renormalized/Lagrangian solution ω of the Euler equations. We also prove that,
in the class of solutions with bounded vorticity, it is possible to obtain a rate for
the convergence of ων to ω in L p. Finally, we show that solutions of the Euler
equations with L p vorticity, obtained in the vanishing viscosity limit, conserve
the kinetic energy. The proofs are given by using both a (stochastic) Lagrangian
approach and an Eulerian approach.

1. Introduction

We consider the Cauchy problem for the two-dimensional incompressible Euler
equations in vorticity formulation given by{

∂tω + u · ∇ω = 0,

ω|t=0 = ω0,
(1.1)

where u is the velocity field andω0 is a given initial datum. The velocity is recovered
from the vorticity via the Biot–Savart law. A classical problem in fluid mechanics
is the approximation in the limit ν → 0 of vanishing viscosity (also called invis-
cid limit) of solutions of (1.1) by solutions of the incompressible Navier–Stokes
equations {

∂tω
ν + uν · ∇ων = ν�ων,

ων |t=0 = ων
0 .

(1.2)

The goal of this paper is to study several problems related to the convergence
of ων to ω when the equations (1.1) and (1.2) are considered either on the two-
dimensional torus or on the whole space.
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Local-in-time existence of classical solutions of (1.1) with smooth initial data
was proved by Lichtenstein [27], while global-in-time existence was proved by
Wolibner [42]. Assuming only the integrability hypothesis on the initial vorticity,
more precisely ω0 ∈ L1 ∩ L p for some p > 1, DiPerna and Majda [25] proved
the global existence of weak solutions. The results in [25] were extended to the case
of a finite Radon measure in H−1

loc with distinguished sign in [23] and to ω0 ∈ L1 in
[39]. Uniqueness is known only for p = ∞ and was proved byYudovich [43]. The
uniqueness for unbounded vorticities is an old and outstanding open problem and
only very recently some partial progress towards nonuniqueness has been achieved;
see [7,8,34,40,41].

Concerning the behaviour of the Navier–Stokes vorticity ων in the limit of
vanishing viscosity, in the setting of DiPerna–Majda [25] it holds that, up to a
subsequence, there exists ω ∈ L∞(L p) such that

ων ∗
⇀ ω weakly* in L∞(L p). (1.3)

The limitω is a distributional solution of (1.1) provided p > 4/3.We are interested
in the strong convergence of the vorticity, namely

ων → ω strongly in C(L p), p ∈ [1,∞). (1.4)

The upgrade of (1.3) to (1.4) was proved by several authors in various settings. In
particular, the case of a smooth initial datum is well-established; see e.g. [15] and
[33] and references therein. In less regular settings, we recall the result in [18] for
vortex-patch solutions and then for more general bounded solutions by requiring
additional assumptions on the Euler path in [19]. In the very recent paper [17], P.
Constantin, T. Drivas and T. Elgindi proved the upgrade to strong convergence
in the case of bounded vorticity without additional assumptions. More Precisely,
they proved that on the two-dimensional torus, if ω0 ∈ L∞ and ω ∈ L∞(L∞) is
the unique bounded solution of (1.1), then, for any 1 � q < ∞,

ων → ω strongly in C(Lq). (1.5)

In this paper we improve the result of [17] by proving that both in the periodic
setting and in the whole space setting, if ω0 ∈ L1 ∩ L p with 1 � p < ∞ and ω

as in (1.3) is a renormalized solution of (1.1) in the sense of DiPerna-Lions [24],
then (1.5) holds for for any 1 � q � p. We notice that the possibility of this
improvement was already remarked in [17, Remark 2] and proved at the very same
time of our paper and independently from us in [35] in the case of the torus and for
p > 1.

We give two proofs of the convergence result described above which are based
on two different approaches: the Lagrangian approach and the Eulerian approach.

In the Lagrangian approach, we focus on the case of the two-dimensional flat
torus and only consider p > 1; contrary to [35], we give a quantitative proof.
Precisely, we prove that for any δ > 0, there exists C = C(δ, ω0) > 0 such that,
for ν small enough,

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p � δ + C(δ, ω0)

| ln(max{√ν, ‖uν − u‖L1(L1)})|
+ ‖ων

0 − ω0‖L p .

(1.6)
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We refer to Theorem 2.3 for the rigorous statement. To obtain (1.6) we first ex-
ploit the stochastic Lagrangian formulation of the incompressible Navier–Stokes
equations (as in the paper by P. Constantin and G. Iyer [16]) and then we revisit
the quantitative estimates for flows of Sobolev vector fields obtained by the second
author and C. De Lellis [20] and their stochastic counterpart by N. Champag-
nat and P.-E. Jabin [11], where a more general result on quantitative estimates
for stochastic flows and their deterministic limit is given. In particular, the result
is achieved by studying the zero-noise limit from stochastic towards deterministic
flows of irregular vector fields. This result is of its own importance in the theory of
stochastic flows. We refer to the recent monograph of C. Le Bris and P.-L. Lions
[28] for recent advances on stochastic flows of irregular vector fields.

Of course, (1.6) is not fully quantitative since it depends implicitly on the
difference of the velocities and some approximation of the initial datum. While
the dependence on the approximation of the initial datum can be made quantitative
by assuming addition regularity, e.g. we could assume ω0 ∈ Hs with s > 0, the
dependence on the the difference of the velocities is difficult to avoid, unless the
initial datum ω0 ∈ L∞. The second main result of this note concerns the analysis
of the rate of convergence when the initial vorticity is merely bounded. In [17] it
is proved that in the case of the two-dimensional torus, if ω0 ∈ L∞ ∩ Bs

p,∞, with
s > 0 and p � 1, (Bs

p,∞ is the classical Besov space), then

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p � Cν

s exp (−CT ‖ω0‖L∞ )

1+s exp (−CT ‖ω0‖L∞ ) . (1.7)

A crucial tool to obtain (1.7) is the following losing estimate: if ω0 ∈ L∞ ∩ Bs
p,∞

then the solutionων(t) ∈ L∞∩Bs(t)
p,∞ uniformly inνwith s(t) = s exp (−Ct‖ω0‖L∞).

In [17, Remark 2] the authors notice that by the very same argument used to prove
(1.7) is possible to obtain for any ω0 ∈ L∞ a rate of convergence. In the present
paper, we also obtain a rate of convergence for any ω0 ∈ L∞, but we use a dif-
ferent argument. Precisely, by using an Osgood-type argument as in the result of
J.-Y. Chemin [13], arguing directly at Lagrangian level and using the continuity of
translation in L1 forω0 we deduce that there exist ν0 > 0 and a continuous function
φ : R+ → R

+ with φ(0) = 0 such that, for ν < ν0,

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p(T2) � φ(ν), (1.8)

where the implicit constant in the inequality (1.8) grows with T and φ is not in
general explicit. We refer to Theorem 2.8 for the rigorous statement. It is worth
pointing out that compared to [17], we do not propagate any regularity of the initial
data. Indeed, the rate of convergence is achieved again directly in the zero-noise
limit of the stochastic flow.

In the second part we use the Eulerian approach to prove strong convergence
of the vorticity. In particular, we consider also the case p = 1 and the case when
the domain is the whole space. The main theorem of this part is Theorem 3.2. We
note that the fact that renormalization implies strong convergence is already valid
for the linear transport equation, see [24, Theorem II.4]. We extend to the Euler
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equations and to the case p = 1 the arguments in [24]. Roughly speaking, the
idea is to use the Radon-Riesz theorem combined with an Ascoli-Arzelà argument.
Notice that our proof based on the Eulerian approach is not quantitative, as usual
for compactness arguments. Recently, D. Bresch and P.-E. Jabin proved in [6]
quantitative compactness estimates for solutions of the continuity equation without
using Lagrangian arguments and exploited them for the analysis of compressible
fluids. We believe that extending these estimates to the context of the 2D Euler
equations would be very interesting.

Finally, we comment on the extension from the flat torus to the whole space,
which is crucial to address the fundamental question of the conservation of the
energy: it allows us to extend from the two-dimensional torus to the whole space
the result of [12] on the conservation of kinetic energy for solutions of the Euler
equations obtained as limit of vanishing viscosity when the initial vorticity is in
L p. Indeed, as already noticed in [14], the main issue in extending the result of [12]
to the whole space is to obtain global strong convergence in C(L2) of the velocity.
Due to the lack of compact embedding this cannot be obtained by using the Aubin-
Lions lemma, but it is obtained by exploiting a Serfati-type formula [37], which in
turn requires the strong convergence of the vorticities. We refer to Theorem 4.2 for
this result.

2. The Lagrangian Approach

The section is organized as follows: we first fix the notations and recall some
of the notions needed, then we introduce the (stochastic) Lagrangian formulations
of the Euler and the Navier–Stokes equations and finally we prove the two main
theorems of this section, namely Theorems 2.3 and 2.8.

2.1. Notations and Preliminaries

We denote by T
2 the flat torus, by d(·, ·) the geodesic distance and by L 2 the

Haar measure on T
2. We denote by Br (x) the geodesic ball centered at x with

radius r . We also identify the flat torus with the cube [0, 1) × [0, 1), in particular,
d(x, y) := min{|x − y − k| : k ∈ Z

2 such that |k| � 2}.
Notice that the Haar measure coincides with the Lebesgue measure on the square
and functions on T

2 can be identified with 1-periodic functions on R
2.

2.2. The Lagrangian Formulation of the Euler and the Navier–Stokes Equations
in Two Dimensions

Let T > 0 be finite but arbitrary and consider the 2D Euler equations in
(0, T ) × T

2 in vorticity formulation:{
∂tω + u · ∇ω = 0,

u = ∇⊥(−�)−1ω.
(2.1)
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We assume periodic boundary conditions and the following initial condition for
(2.1):

ω|t=0 = ω0. (2.2)

Next, let ν > 0 and consider the 2D Navier–Stokes equations in (0, T ) × T
2,

{
∂tω

ν + uν · ∇ων − ν�ων = 0,

uν = ∇⊥(−�)−1ων,
(2.3)

with initial datum

ων |t=0 = ων
0, (2.4)

and periodic boundary conditions.
We introduce the Lagrangian formulations of the systems (2.1) and (2.3). We

start with the Euler equations. We recall that for smooth solutions, by the theory of
characteristics, if X : [0, T ] × [0, T ] × T

2 → T
2 solves

{
∂s Xt,s(x) = u(s, Xt,s(x)), s ∈ [0, T ],
Xt,t (x) = x,

(2.5)

for any given t ∈ (0, T ), then

u(t, x) := (∇⊥(−�)−1ω(t, ·))(x), (2.6)

ω(t, x) := ω0(Xt,0(x)), (2.7)

solve the 2D Euler equations in (0, T ) × T
2 with initial datum ω0.

Before introducing Lagrangian solutions to the Euler equations, we give the
definition of flow of a non-smooth vector field.

Definition 2.1. (Regular Lagrangian flows) The map X ∈ L∞((0, T ) × (0, T ) ×
T
2) is a regular Lagrangian flow of (2.5) if for a.e. x ∈ T

2 and for any t ∈ [0, T ]
the map s ∈ [0, T ] �→ Xt,s(x) ∈ T

2 is an absolutely continuous solution of (2.5)
and for any t ∈ [0, T ] and s ∈ [0, T ] the map x ∈ T

2 �→ Xt,s(x) ∈ T
2 is

measure-preserving.

The definition of Lagrangian solutions of the Euler equations is the following:

Definition 2.2. (Lagrangian solutions of the 2D Euler equations) Let p ∈ (1,∞)

and ω0 ∈ L p(T2). We say that (u, ω) is a Lagrangian solution of the 2D Euler
equations if

(u, ω) ∈ L∞((0, T ); W 1,p(T2)) × L∞((0, T ); L p(T2)), (2.8)

there exists a regular Lagrangian flow X ∈ L∞((0, T ) × (0, T ) ×T
2) in the sense

of Definition 2.1, and for a.e. (t, x) ∈ (0, T ) × T
2 the functions u and ω satisfy

(2.6) and (2.7).
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We remark that in the regularity class (2.8), given u the regular Lagrangian flow X
is unique, see [20] and [24].

Next, we consider the Navier–Stokes equations (2.3) and we recall that in two
dimensions solutions of the Navier–Stokes equations (2.3) are regular and unique.
Given a probability space (	,F ,P)we define the map Xν : [0, T ]×[0, T ]×T

2×
	 → T

2 as follows.
For P-a.e. ξ ∈ 	 and for any t ∈ (0, T ), for s ∈ [0, T ]we consider aT2-valued

Brownian motion Ws adapted to the backward filtration, i.e. satisfying Wt = 0.
The map s �→ Xν

t,s(x, ξ) is obtained by solving{
dXν

t,s(x, ξ) = uν(s, Xν
t,s(x, ξ)) ds + √

2ν dWs(ξ), s ∈ [0, t),

Xν
t,t (x, ξ) = x .

(2.9)

For P-a.e. ξ ∈ 	 the map x ∈ T
2 �→ Xν

t,s(x, ξ) ∈ T
2 is measure-preserving for

any t ∈ [0, T ] (see [28]) and s ∈ [0, t] and, by the Feynman-Kac formula (see
[26,28]), ων = E[ων

0(Xt,0(x))] solves the advection-diffusion equation

∂tω
ν + uν · ∇ων − ν�ων = 0,

with initial datum ων
0, where we have denoted by E[ f ] the average with respect to

P, also called expectation. Therefore,

uν(t, x) := (∇⊥(−�)−1ων(t, ·))(x), (2.10)

ων(t, x) := E[ων
0(Xν

t,0(x))], (2.11)

solve the Navier–Stokes equations (2.3).
We remark that the probability space and theBrownianmotion can be arbitrarily

chosen. Indeed, since uν is a smooth function, the equation (2.9) is satisfied in the
strong sense [26] (see also [28]); namely one can find a solution Xν

t,· to (2.9) on
any given filtered probability space with any given adapted Brownian motions as
described above.

2.3. Quantitative Strong Convergence of the Vorticity

In this section we prove our first main result.

Theorem 2.3. Let p ∈ (1,∞) and ω0 ∈ L p(T2). Let {ων
0}ν ⊂ L p(T2) be a

sequence of smooth functions such that

ων
0 → ω0 strongly in L p(T2),

and (uν, ων) is the solution of the Navier–Stokes equations with initial datum ων
0 .

Assume that there exists (u, ω) Lagrangian solution of the Euler equations such
that, up to a subsequence not relabelled,

uν ∗
⇀ u weakly* in L∞((0, T ); L2(T2)). (2.12)

Then
ων → ω strongly in C([0, T ]; L p(T2)).
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Moreover, for any δ > 0 there exists C = C(δ, ω0) > 0 such that, for ν small
enough

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p � δ + C(δ, ω0)

| ln(max{√ν, ‖uν − u‖L1(L1)})|
+ ‖ων

0 − ω0‖L p .

(2.13)

Remark 2.4. The assumption that (u, ω) is Lagrangian is not restrictive. Indeed, if
p � 2 every distributional solution of theEuler equations is renormalized [30] and if
p ∈ [1, 2) every solutions obtained as a limit of vanishing viscosity is renormalized
[21,22]. Moreover, the uniqueness of the linear problem [21,24] implies that every
renormalized solution is Lagrangian.

Remark 2.5. We note that the solution (u, ω) satisfies the conservations

‖ω(t)‖L p = ‖ω0‖L p , ‖u(t)‖L2 = ‖u0‖L2 ,

where u0 = ∇⊥(−�)−1ω0. Indeed, the conservation of the L p-norm of the vortic-
ity is a consequence of (2.5) and the fact that the flow Xt,0(·) is measure-preserving,
while the conservation of the energy is one of the main results in [12].

Remark 2.6. Regarding the case p = 1 we first notice that by following the same
arguments in [9] and [5] we expect the strong convergence of the vorticity to hold
in C(L1) by using the Lagrangian approach. The reason we did not include in
Theorem 2.3 the case that p = 1 is that we do not want to introduce more technical
tools fromHarmonic Analysis and we prefer to deal with this case with the Eulerian
approach in the next section.

Proof of Theorem 2.3. We divide the proof in several steps.

Step 1 Weak convergence of the vorticity.

We prove that

ων ∗
⇀ ω weakly* in L∞((0, T ); L p(T2)). (2.14)

Since (uν, ων) solves (2.3)–(2.4), by standard L p-estimates for the advection-
diffusion equation satisfied by ων we have that

{ων}ν is bounded in L∞((0, T ); L p(T2)). (2.15)

Since p ∈ (1,∞) there exists ω̄ ∈ L∞((0, T ); L p(T2)) such that

ων ∗
⇀ ω̄ weakly* in L∞((0, T ); L p(T2)),

and, by using (2.12),

curl u = ω̄
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in the sense of distribution. Since curl u = ω in the sense of distributions we
conclude that ω = ω̄ and (2.14) is proved.

Step 2 Strong convergence of the velocity.

We start by noticing that by (2.12) we have that

{uν}ν is bounded in L∞((0, T ); L2(T2)),

{ων}ν is bounded in L∞((0, T ); L p(T2)).
(2.16)

By Calderón-Zygmund theorem we have that

‖∇uν(t)‖L p � C‖ων(t)‖L p .

Therefore, by (2.15), we get that

{∇uν}ν is bounded in L∞((0, T ); L p(T2)). (2.17)

Next, since (uν, ων) solve the Navier–Stokes equations in the classical sense, we
also have that

∂t u
ν + div(uν ⊗ uν) − ν�uν + ∇ pν = 0,

where pν has zero-average and solves

−�pν = div(div(uν ⊗ uν)).

Therefore, by using (2.16) and (2.17), we have that, for some s large enough,

{∂t u
ν}ν is bounded in L∞((0, T ); H−s(T2)).

Then, by Aubin–Lions lemma we conclude that

uν → u strongly in C([0, T ]; L2(T2)).

Step 3 Comparison of the flows.

Since (u, ω) is Lagrangian, by Definition 2.2 there exists a regular Lagrangian
flow X . Then, for P-a.e. ξ ∈ 	, for a.e. x ∈ T

2, and for any fixed t ∈ (0, T ) the
following S.D.E. is satisfied for s ∈ [0, t]:{
d(Xν

t,s(x, ξ) − Xt,s(x))=(uν(s, Xν
t,s(x, ξ)) − u(s, Xt,s(x))) ds+√

2ν dWs(ξ),

Xν
t,t (x, ξ) − Xt,t (x)=0.

(2.18)

We define the function qε(y) = ln
(
1 + |y|2

ε2

)
and the related functional Qε

ν(t, s)
as

Qε
ν(t, s) := qε(Xν

t,s − Xt,s) = ln

(
1 + |Xν

t,s − Xt,s |2
ε2

)
,
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where ε > 0 is a fixed parameter that will be chosen later and we have omitted the
explicit dependence on x ∈ T

2 and ξ ∈ 	. By using Itô’s formula we get that∫
T2

E
[
Qε

ν(t, s)
]
dx =

∫ t

s

∫
T2

E
[∇yqε(Xν

t,τ − Xt,τ )

· (uν(s, Xν
t,τ ) − u(τ, Xt,τ )

)]
dx dτ

+ ν

∫ t

s

∫
T2

E

[
∇2

y qε(Xν
t,τ − Xt,τ )

]
dx dτ,

and from the inequalities∣∣∣∣∇ ln

(
1 + |y|2

ε2

)∣∣∣∣ � C

ε + |y| ,
∣∣∣∣∇2 ln

(
1 + |y|2

ε2

)∣∣∣∣ � C

ε2 + |y|2 ,

we obtain that∫
T2

E
[
Qε

ν(t, s)
]
dx

� Cν(t − s)

ε2
+ C

∫ t

s

∫
T2

E

[∣∣uν(s, Xν
t,τ ) − u(τ, Xt,τ )

∣∣
ε + ∣∣Xν

t,τ − Xt,τ
∣∣

]
dx dτ. (2.19)

After adding and subtracting u(s, Xν
t,τ ) in the numerator of the second term on the

right hand side of (2.19) we estimate the resulting terms as follows:

∫ t

s

∫
T2

E

[∣∣uν(s, Xν
t,τ ) − u(s, Xν

t,τ )
∣∣

ε + ∣∣Xν
t,τ − X (s, x)

∣∣
]
dx dτ

� 1

ε

∫ t

s

∫
T2

E
[∣∣uν(s, Xν

t,τ ) − u(s, Xν
t,τ )
∣∣] dx dτ, (2.20)

∫ t

s

∫
T2

E

[∣∣u(s, Xν
t,τ ) − u(τ, Xt,τ )

∣∣
ε + ∣∣Xν

t,τ − Xt,τ
∣∣

]
dx dτ

� C
∫ t

s

∫
T2

E
[M|∇u|(s, Xν

t,τ )
]
dx dτ

+ C
∫ t

s

∫
T2

M|∇u|(s, Xt,τ ) dx dτ.

(2.21)

In the above, we have used the maximal inequality

|u(s, x) − u(s, y)| � Cd(x, y) (M|∇ u|(s, ·)(x) + M|∇ u|(s, ·)(y))

for a.e. x, y ∈ T
2 and s ∈ (0, T ). To estimate the right-hand side of (2.21) we

use that Xt,τ and Xν
t,τ are measure preserving, that d(x, y) � |x − y|, that the

maximal function operator is continuous on Lq(T2) for q > 1, and that T2 has
finite measure. In this way, we obtain

∫ t

s

∫
T2

E

[∣∣u(s, Xν
t,τ ) − u(τ, Xt,τ )

∣∣
ε + ∣∣Xν

t,τ − Xt,τ
∣∣

]
dx dτ � C‖∇ uν‖L1(Lq ).
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In conclusion, we finally get that∫
T2

E
[
Qε

ν(t, s)
]
dx � C

(
ν(t − s)

ε2
+ 1

ε
‖uν − u‖L1(L1) + ‖∇u‖L1(Lq )

)
.

(2.22)
Next, note that(

L 2 ⊗ P

) (
{(x, ξ) ∈ T

2 × 	 : d(Xν
t,s(x, ξ), Xt,s(x)) >

√
ε}
)

� C

| ln ε|
∫
T2

E

[
ln

(
1 + (d(Xν

t,s(x, ξ), Xt,s(x)))2

ε2

)]
dx

� C

| ln ε|
∫
T2

E
[
Qε

ν(t, s)
]
dx

� C

(
ν(t − s)

ε2| ln ε| + 1

ε| ln ε| ‖uν − u‖L1(L1) + 1

| ln ε| ‖∇u‖L1(Lq )

)
,

(2.23)

where we have used that x, y ∈ T
2, d(x, y) � |x − y|, and that the function

z → log(1 + z2

ε2
) is increasing on [0,∞). Therefore,∫

T2
E[d(Xν

t,s(x, ξ), Xt,s(x))] dx

=
∫

{(x,ξ)∈T2×	: d(Xν
t,s (x,ξ),Xt,s (x))�√

ε}
d(Xν

t,s(x, ξ), Xt,s(x)) dP dx

+
∫

{(x,ξ)∈T2×	: d(Xν
t,s (x,ξ),Xt,s (x))>

√
ε}
d(Xν

t,s(x, ξ), Xt,s(x)) dP dx

�
√

ε +
(
L 2 ⊗ P

) (
{(x, ξ) ∈ T

2 × 	 : d(Xν
t,s(x, ξ), Xt,s(x)) >

√
ε}
)

,

(2.24)

where we have used thatL 2 ⊗ P is a probability measure on T2 × 	 and that the
distance d on the torus is bounded. We first choose as

ε = ε(ν) := max{√ν, ‖uν − u‖L1(L1)}
and we use (2.23) in (2.24). Noticing that there exists ν0 > 0 such that for every
ν � ν0 it holds that

√
ε(ν) � 1

| ln ε(ν)| , we conclude that∫
T2

E[d(Xν
t,s(x, ξ), Xt,s(x))] dx �

√
ε(ν) + C

(t − s) + 1

| ln ε(ν)| � CT

| ln ε(ν)| . (2.25)

Step 4 Strong convergence of the vorticity.

Let n ∈ N and {ωn
0}n be a sequence of Lipschitz approximations of ω0. For any

t ∈ (0, T ), by using Jensen’s inequality, we have that

‖ων(t) − ω(t)‖L p = ‖E[ων
0(Xν

t,0)] − ω0(Xt,0)‖L p
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�
(∫

T2

∫
	

|ων
0(Xν

t,0) − ω0(Xν
t,0)|p dP dx

) 1
p

+
(∫

T2

∫
	

|ωn
0(Xν

t,0) − ω0(Xν
t,0)|p dP dx

) 1
p

+
(∫

T2
|ωn

0(Xt,0) − ω0(Xt,0)|p dx

) 1
p

+
(∫

T2

∫
	

|ωn
0(Xν

t,0) − ωn
0(Xt,0)|p dP dx

) 1
p

.

In particular, by using (2.25) and that ωn
0 is Lipschitz, we have

‖E[|ωn
0(Xν

t,0) − ωn
0(Xt,0)|]‖p

L p � Cn‖E[d(Xν
t,0, Xt,0)]‖p

L p

� Cn

| ln(max{√ν, ‖uν − u‖L1(L1)})|p
,

and then we get

‖ων(t) − ω(t)‖L p � ‖ων
0 − ω0‖L p + 2‖ωn

0 − ω0‖L p

+ Cn

| ln(max{√ν, ‖uν − u‖L1(L1)})|
.

Then, since uν converges to u in L1((0, T ); L1(T2)), sending first ν → 0 and then
n → ∞ it follows that ων → ω strongly in C([0, T ]; L p(T2)). The quantitative
estimate (2.13) follows as well. ��

2.4. Rate of Covergence for Bounded Vorticity

In this subsection we study the rate of convergence for bounded vorticity. We
first recall the following result of J.-Y. Chemin [13].

Theorem 2.7. Let ω0 ∈ L∞(T2) and set M := ‖ω0‖L∞ . Let (u, ω) and (uν, ων)

be the unique solutions on (0, T ) × T
2 of the Euler and Navier–Stokes equations

with the same initial datum ω0. Then, there exist ν0 = ν0(T, M) and C = C(T, M)

such that, for any ν � ν0,

sup
t∈(0,T )

‖uν(t) − u(t)‖L2 � Cν
e−CT

2 =: δM,T
ν . (2.26)

We remark that in [13] the theorem is stated and proved when the domain is the
entire space R2. The proof in [13] works also in the case of the torus with minor
changes. Notice also that a different proof of Theorem 2.7 is given in [17, Lemma
4] and a log-improvement of the rate has been obtained in [36]. The main theorem
of this subsection is the following:
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Theorem 2.8. Let ω0 ∈ L∞(T2) and set M := ‖ω0‖∞. Let (u, ω) and (uν, ων)

be the unique bounded solutions on (0, T ) × T
2 of the Euler and Navier–Stokes

equations with the same initial datum ω0. Then, there exists ν0 = ν0(T, M, ω0)

and a continuous function φω0,p,M : R+ → R
+ with φω0,p,M (0) = 0, such that,

for any 1 � p < ∞,

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p � C M1− 1
p max

{
φω0,p,M (δM,T

ν ), (δM,T
ν )

e−CT
2p

}
,

(2.27)
where δM,T

ν is defined in (2.26).

Before giving the proof of Theorem 2.8, we recall the following version of Osgood
lemma (see [13]):

Lemma 2.9. Let ρ be a positive Borel function, γ a locally integrable positive
function, and μ a continuous increasing function. Assume that, for some strictly
positive number α, the function ρ satisfies

ρ(t) � α +
∫ t0

t
γ (s)μ(ρ(s)) ds.

Then we have that

−M(ρ(t)) + M(α) �
∫ t0

t
γ (s) ds, with M(x) =

∫ 1

x

1

μ(s)
ds.

Proof of Theorem 2.8. We divide the proof in several steps.

Step 1 Rate on the difference of the flows.

Let Xν
t,s, Xt,s be respectively the solutions of (2.9) and (2.1). By Itô’s formula

we have that

|Xν
t,s − Xt,s |2

2
=
∫ t

s
[(uν(τ, Xν

t,τ ) − u(τ, Xt,τ )) · (Xν
t,τ − Xt,τ ) + 2ν] dτ

+ √
2ν
∫ t

s
(Xν

t,τ − Xt,τ ) · dWτ .

(2.28)
Next, we have the simple estimate

|(uν(τ, Xν
t,τ ) − u(τ, Xt,τ )) · (Xν

t,τ − Xt,τ )|
� |uν(τ, Xν

t,τ ) − u(τ, Xν
t,τ )||Xν

t,τ − Xt,τ |
+ |u(τ, Xν

t,τ ) − u(τ, Xt,τ )||Xν
t,τ − Xt,τ |

�
|uν(τ, Xν

t,τ ) − u(τ, Xν
t,τ )|2

2
+ |Xν

t,τ − Xt,τ |2
2

+ C
|Xν

t,τ − Xt,τ |2
2

(M|∇u(τ, ·)|(Xν
t,τ ) + M|∇u(τ, ·)|(Xt,τ )

)
.
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Then, taking the expected value and integrating in space, we can estimate (2.28) as
follows:∫

T2

∫
	

|Xν
t,s − Xt,s |2

2
dP dx

� 2ν(t − s) +
∫ t

s

∫
T2

∫
	

|uν(τ, Xν
t,τ ) − u(τ, Xν

t,τ )|2
2

dP dx dτ

+
∫ t

s

(∫
	

∫
T2

M|∇u(τ, ·)|(Xν
t,τ )

p dx dP

) 1
p

×
(∫

T2

∫
	

|Xν
t,τ − Xt,τ |

2p
p−1 dP dx

) p−1
p

dτ

+
∫ t

s

(∫
T2

M|∇u(τ, ·)|(Xt,τ )
p dx

) 1
p

×
(∫

T2

∫
	

|Xν
t,τ − Xt,τ |

2p
p−1 dP dx

) p−1
p

dτ

+
∫ t

s

∫
T2

∫
	

|Xν
t,τ − Xt,τ |2

2
dP dx dτ.

We recall that by Calderón–Zygmund theorem we have that, for p < ∞ large,

‖∇uν(t)‖L p � C p‖ω(t)‖L p . (2.29)

Therefore, by using the measure-preserving property of Xν
t,s and Xt,s , the bound-

edness of the flows and the fact that the maximal function is bounded in L p(T2)

for any 1 < p � ∞, we obtain that∫
T2

∫
	

|Xν
t,s − Xt,s |2 dP dx

�
(
4ν + ‖uν − u‖2L∞(L2)

)
(t − s) +

∫ t

s

∫
T2

∫
	

|Xν
t,τ − Xt,τ |2 dP dx dτ

+ C
∫ t

s
‖∇u(τ, ·)‖L p

(∫
T2

∫
	

|Xν
t,τ − Xt,τ |2 dP dx

) p−1
p

dτ

�
(
4ν + ‖uν − u‖2L∞(L2)

)
(t − s) +

∫ t

s

∫
T2

∫
	

|Xν
t,τ − Xt,τ |2 dP dx dτ

+ C M p
∫ t

s

(∫
T2

∫
	

|Xν
t,τ − Xt,τ |2 dP dx

) p−1
p

dτ,

where we have used (2.29) and the bound in L∞(T2) on the vorticity. Therefore,
if we define

yν(t, s) :=
∫
T2

∫
	

|Xν
t,s − Xt,s |2 dP dx, αT

ν :=
(
4ν + ‖uν − u‖2L∞(L2)

)
T,
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for any s, t ∈ (0, T ) with s < t , we can rewrite the above estimate as⎧⎨
⎩yν(t, s) � αT

ν +
∫ t

s
(yν(t, τ ) + Cpyν(t, τ )

1− 1
p ) dτ,

yν(t, t) = 0,
(2.30)

where the constant C depends on M and we have used (2.29). Moreover, by (2.26)
we can estimate

αT
ν � CδM,T

ν ,

and we get that⎧⎨
⎩yν(t, s) � CδM,T

ν +
∫ t

s

(
yν(t, τ ) + Cpyν(t, τ )

1− 1
p

)
dτ,

yν(t, t) = 0.
(2.31)

At this point we can argue as in [13]: we choose p = 2 − ln(yν(t, τ )) and since
we can assume yν < 1, we get that

yν(t, s) � CδM,T
ν +

∫ t

s
yν(t, τ ) + C(2 − ln(yν(t, τ ))yν(t, τ )

1− 1
2−ln(yν (t,τ )) dτ

� CδM,T
ν + C

∫ t

s
(2 − ln(yν(t, τ )))yν(t, τ ) dτ.

Then, by using Lemma 2.9 with

ρ(s) := yν(t, s), α := CδM,T
ν , γ (x) := C,

μ(x) := x(2 − ln x), M(x) := ln(2 − ln x) − ln 2,

we obtain that

− ln(2 − ln yν(t, s)) + ln(2 − ln δM,T
ν ) � C(t − s), (2.32)

which implies that

yν(t, s) � exp
(
2 − 2e−c(t−s)

) (
δM,T
ν

)e−C(t−s)

� C
(
δM,T
ν

)e−CT

, (2.33)

or in other words∫
T2

E[d(Xν
t,s, Xt,s)

2] �
∫
T2

E[|Xν
t,s − Xt,s |2] dx � C

(
δM,T
ν

)e−CT

. (2.34)

Step 2 Rate of convergence of the vorticities.

Since ω0 ∈ L∞(T2) ⊂ L1(T2), we can use the continuity of the translation
operator in L1(T2) to infer that there exist h0 and a modulus of continuity φω0,M

such that
‖ω0(· + h) − ω0(·)‖L1 ≤ φω0,M (|h|), for |h| ≤ h0. (2.35)
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Then we get

‖ων(t) − ω(t)‖L1

=
∫
T2

|ων(t, x) − ω(t, x)| dx =
∫
T2

|E[ω0(Xν
t,0)] − ω0(Xt,0)| dx

�
∫∫

{d(Xν
t,0,Xt,0)�ε}

|ω0(Xν
t,0) − ω0(Xt,0)| dP dx

+
∫∫

{d(Xν
t,0,Xt,0)>ε}

|ω0(Xν
t,0) − ω0(Xt,0)| dP dx

� φω0,M (ε) + 2M

ε2

∫
T2

E[d(Xν
t,0, Xt,0)

2] dx

� φω0,M (ε) + C

ε2

(
δM,T
ν

)e−CT

,

where in the last two inequalities we have used (2.35) and then (2.34). Finally, to
get (2.27) it is enough to choose

ε(ν) =
(
δM,T
ν

) e−CT
4

,

to take ν0 such that ε(ν) � h0 for ν � ν0 and finally to interpolate L p between L1

and L∞. ��

3. The Eulerian Approach

The section is organized as follows: first we recall the definition of renormalized
solutions of the Euler equations. Then we prove some preliminary lemmas and
finally we show the main result (Theorem 3.2).

3.1. Renormalized Solutions of the 2D Euler Equations and Main Result

We consider the Cauchy problem for the 2D Euler equations in (0, T ) × R
2:⎧⎪⎨

⎪⎩
∂tω + u · ∇ω = 0,

u = K ∗ ω,

ω|t=0 = ω0.

(3.1)

Here, K : R2 → R
2 is the Biot–Savart kernel given by K (x) = 1

2π

x⊥

|x |2 .
Next, let ν > 0 and consider the Cauchy problem for the 2D Navier–Stokes

equations in (0, T ) × R
2,⎧⎪⎨
⎪⎩

∂tω
ν + uν · ∇ων − ν�ων = 0,

uν = K ∗ ων,

ων |t=0 = ων
0 .

(3.2)
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Renormalized solutions for the system (3.1) are defined in analogy with the ones
introduced by DiPerna–Lions [24] for the linear transport equations.

Definition 3.1. (Renormalized solutions of the 2D Euler equations) Let ω0 ∈
L p

c (R2) and ω ∈ C([0, T ]; L p(R2)) with 1 � p < ∞. The pair (u, ω) is a
renormalized solution of (3.1) if for any β ∈ C1(R) ∩ L∞(R) vanishing in a
neighbourhood of zero it holds that∫ T

0

∫
R2

β(ω)(∂tϕ + u · ∇ϕ) dx dt +
∫
R2

β(ω0)ϕ(0, x) dx = 0, (3.3)

for any ϕ ∈ C∞
c ([0, T ) × R

2), and

u(t, x) = (K ∗ ω(t, ·))(x) a.e. in (0, T ) × R
2.

Note that if ω ∈ C([0, T ]; L p(R2)) and β is as in Definition 3.1 then the compo-
sition β(ω) ∈ L∞((0, T ); L1(R2) ∩ L∞(R2)), therefore (3.3) makes sense. We
remark that, in general, the vorticity equations cannot be interpreted in distribu-
tional sense if 1 � p < 4/3. The main theorem of this section is the following:

Theorem 3.2. Let p ∈ [1,∞) and ω0 ∈ L p
c (R2). Let {ων

0}ν be a sequence of
smooth compactly supported functions such that there exists R > 0 with supp
ων
0 ⊂ BR(0) and

{ων
0}ν is bounded in L p(R2) ∩ H−1

loc (R2),

ων
0 → ω0 strongly in L p(R2).

Let (uν, ων) be the solution of the Navier–Stokes equations with initial datum ων
0 .

Assume that there exists (u, ω) renormalized solution of the Euler equations such
that

uν ∗
⇀ u weakly* in L∞((0, T ); L2

loc(R
2)). (3.4)

Then,
ων → ω strongly in C([0, T ]; L p(R2)).

3.2. A Preliminary Lemma

Let us consider the Cauchy problem for the linear transport equation{
∂tρ + b · ∇ρ = 0,

ρ(0, ·) = ρ0,
(3.5)

where ρ0 : Rd → R is a given initial datum in L1(Rd) ∩ L∞(Rd) and b : [0, T ] ×
R

d → R
d is a given vector field satisfying the following assumptions:

(H1) b ∈ L1((0, T ); W 1,p
loc (Rd)) for some p > 1;

(H1’) b ∈ L1((0, T ); L p
loc(R

d)) for some p > 1 and ∇b = S ∗ g where S :
R

d → R
d×d is a singular integral operator of fundamental type [38] and

g ∈ L1((0, T ) × R
d));
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(H2) b ∈ L∞((0, T ); L1(Rd)) + L∞((0, T ) × R
d);

(H3) div b = 0 in the sense of distributions.

Under the above hypothesis the transport equation (3.5) admits a unique solution
in the class of densities ρ ∈ L∞((0, T ); L1(Rd) ∩ L∞(Rd)), which is also renor-
malized, see [9,24]. Moreover, the velocity field u of the two-dimensional Euler
equations (3.1)with vorticityω ∈ L∞((0, T ); L1(R2)∩L p(R2)) satisfies the above
assumptions. Indeed, by the Biot–Savart law the gradient of the velocity field is
a singular integral operator applied to the vorticity ω, therefore the velocity field
satisfies (H1) for p > 1 and (H1’) for p = 1.

Let ν > 0 and consider a sequence {ρν}ν of solutions of the following advection-
diffusion equation with vector field bν and initial datum ρν

0{
∂tρ

ν + bν · ∇ρν = ν�ρν,

ρν(0, ·) = ρν
0 .

(3.6)

We assume that

{bν}ν is bounded in L∞((0, T ); L1(Rd)) + L∞((0, T ) × R
d), (3.7)

and for some m > 1,

bν → b strongly in Lm
loc((0, T ) × R

d). (3.8)

To avoid technicalities we assume that bν is smooth. Moreover, we assume that
{ρν

0 }ν is such that
ρν
0 → ρ0 strongly in L1(Rd),

ρν
0

∗
⇀ ρ0 weakly* in L∞(Rd).

(3.9)

The following lemma is a combination of Theorem IV.1 and Theorem II.4 in
[24], generalized also to the case of vector fields satisfying (H1’) instead of (H1):

Lemma 3.3. Let ρ0 ∈ L1(Rd)∩ L∞(Rd) and {ρν
0 }ν satisfying (3.9). Let b be a vec-

tor field which satisfies (H1) or (H1’), (H2), and (H3) and let the smooth vector field
bν satisfy (3.7) and (3.8). Then, the unique solutions ρν, ρ ∈ L∞((0, T ); L1(Rd)∩
L∞(Rd)) of (3.5) and (3.6) satisfy

ρν → ρ in C([0, T ]; Lq(Rd)), for all 1 � q < ∞.

Proof. We divide the proof in several steps.

Step 1 Strong convergence in Lq((0, T ) × R
2) , 1 < q < ∞.

Let ρν be the unique solution of (3.6). Then, for all 1 � q ≤ ∞ we have that

‖ρν(t)‖Lq � ‖ρν
0‖Lq , (3.10)

and from (3.9)wededuce thatρν is equi-bounded in L∞((0, T ); L1(Rd)∩L∞(Rd)).
Then, up to a subsequence, there exists ρ̄ ∈ L∞((0, T ); L1(Rd) ∩ L∞(Rd)) such
that, for any 1 < q < ∞

ρν ⇀ ρ̄ in Lq((0, T ) × R
d). (3.11)
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Because of the linearity of the equation, it is immediate to deduce that ρ̄ is a solution
of (3.5) and by uniqueness it must be ρ̄ = ρ. Moreover, since ρ is a renormalized
solution of (3.5) it holds that∫

Rd
|ρ(t, x)|q dx =

∫
Rd

|ρ0(x)|q dx .

By the lower semi-continuity of the Lq -normswith respect to theweak convergence
we have that

‖ρ‖Lq (Lq ) � lim inf
ν→0

‖ρν‖Lq (Lq ) � lim sup
ν→0

‖ρν‖Lq (Lq )

� T
1
q lim

ν→0
‖ρν

0‖Lq = T
1
q ‖ρ0‖Lq = ‖ρ‖Lq (Lq ),

which implies the convergence of ‖ρν‖Lq (Lq ) towards ‖ρ‖Lq (Lq ). This latter fact,
together with the weak convergence in (3.11), implies that

ρν → ρ in Lq((0, T ) × R
d), (3.12)

for all 1 < q < ∞.

Step 2 Convergence in C([0, T ]; Lq
w(Rd)), 1 < q < ∞.

By using the equation, it is a well-known fact that a weak solution ρ of (3.5),
with initial datum ρ0 ∈ Lq(Rd), lies in the space C([0, T ]; Lq

w(Rd)). In particular,
this means that for any ϕ ∈ C∞

c (Rd) the map

fϕ : t ∈ [0, T ] �→
∫
Rd

ρ(t, x)ϕ(x) dx,

is continuous. For any ϕ ∈ C∞
c (Rd) define the sequence of functions f ν

ϕ as

f ν
ϕ : t ∈ [0, T ] �→

∫
Rd

ρν(t, x)ϕ(x) dx .

First of all, we have that

sup
t∈(0,T )

| f ν
ϕ (t)| = sup

t∈(0,T )

∣∣∣∣
∫
Rd

ρν(t, x)ϕ(x) dx

∣∣∣∣ ≤ C‖ρ0‖Lq ‖ϕ‖Lq′ . (3.13)

Moreover, by using the equation, we have that

ḟ ν
ϕ (t) =

∫
Rd

ρν(t, x)bν(t, x) · ∇ϕ(x) dx + ν

∫
Rd

ρν(t, x)�ϕ(x) dx,

which is uniformly bounded in [0, T ] by using (3.7) and (3.10). By Step 1, it follows
that

ḟ ν
ϕ → ḟϕ in L1((0, T )),
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which eventually implies that

f ν
ϕ → fϕ uniformly in [0, T ].

By using the density ofC∞
c (Rd) in Lq ′

(Rd), the previous convergence is equivalent
to saying that

ρν → ρ in C([0, T ]; Lq
w(Rd)).

Step 3 Convergence of the Lq -norms on bounded sets.

Let β ∈ L∞(R) ∩ C2(R) and define the functions

fβ,ϕ : t ∈ [0, T ] �→
∫
Rd

β(ρ(t, x))ϕ(x) dx,

f ν
β,ϕ : t ∈ [0, T ] �→

∫
Rd

β(ρν(t, x))ϕ(x) dx .

If we compute the time derivative we get

ḟβ,ϕ =
∫
R2

β(ρ(t, x))b(t, x) · ∇ϕ(x) dx, (3.14)

ḟ ν
β,ϕ =

∫
R2

β(ρν(t, x))bν(t, x) · ∇ϕ(x) dx + ν

∫
Rd

β(ρν(t, x))�ϕ(x) dx

− ν

∫
Rd

|∇ρν(t, x)|2β ′′(ρν(t, x))ϕ(x) dx .

(3.15)

Sinceβ is a bounded function andρν converges a.e. toρ, by dominated convergence
we readily conclude that, for any k < ∞,

β(ρν) → β(ρ) in Lk
loc((0, T ) × R

d). (3.16)

We write the equation for β(ρν) as

∫ T

0

∫
Rd

β(ρν)
(
∂tϕ + bν · ∇ϕ

)
dx dt +

∫
Rd

β(ρν
0 )ϕ|t=0 dx

= ν

∫ T

0

∫
Rd

β(ρν)�ϕ dx − ν

∫ T

0

∫
Rd

|∇ρν |2β ′′(ρν)ϕ dx dt, (3.17)

and by letting ν → 0 and using (3.16) and that ϕ has compact support, since we
know that ρ is a renormalized solution of (3.5), the right hand side must vanish.

Then, looking at (3.14) and (3.15), we get that ḟ ν
β,ϕ converges in L1(0, T ) to

ḟβ,ϕ ,which eventually implies that∫
Rd

β(ρν(t, x))ϕ(x) dx →
∫
Rd

β(ρ(t, x))ϕ(x) dx uniformly in [0, T ].
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By approximation we can take β(s) = sq and ϕ = χR , the indicator of the ball of
radius R > 0, and finally we get that

‖ρν(t)‖Lq (BR) → ‖ρ(t)‖Lq (BR) uniformly in [0, T ].
Step 4 Convergence in C([0, T ]; Lq

loc(R
d)), 1 � q < ∞.

By Step 2 we have that for any t ∈ [0, T ] and any {tν}ν ⊂ [0, T ] such that
tν → t ∫

R2
ρν(tν, x)ϕ(x) dx →

∫
R2

ρ(t, x)ϕ(x) dx, (3.18)

while by Step 3 we get that∫
BR

|ρν(tν, x)|q dx →
∫

BR

|ρ(t, x)|q dx, for any R > 0. (3.19)

From (3.18) and (3.19) we easily infer that,for 1 < q < ∞
ρν → ρ in C([0, T ]; Lq

loc(R
d)). (3.20)

Since the convergence is local in space we deduce that (3.20) also holds in the case
q = 1.

Step 5 Convergence in C([0, T ]; Lq(Rd)), 1 � q < ∞.

Let r > 0, then

‖ρν(t, ·) − ρ(t, ·)‖q
Lq �

∫
Br

|ρν(t, x) − ρ(t, x)|q dx +
∫

Bc
r

|ρν(t, x)|q dx

+
∫

Bc
r

|ρ(t, x)|q dx . (3.21)

By the previous step we know that the first term on the right hand side converges
to 0 as ν → 0 for any fixed r > 0. The remaining two terms can be made arbitrary
small independently from ν if we prove that for 1 � q < ∞ it holds that for any
η > 0 there exists r > 0, independent from ν such that

sup
t∈(0,T )

(∫
Bc

r

|ρν(t, x)|q dx +
∫

Bc
r

|ρ(t, x)|q dx

)
< η. (3.22)

The following argument holds for ν � 0: let r, R > 0 such that 2r < R and let us
consider a positive test function ψ R

r for which

ψ R
r (x) =

⎧⎪⎨
⎪⎩
0 if 0 < |x | < r,

1 if 2r < |x | < R,

0 if |x | > 2R,

(3.23)

such that 0 � ψ R
r � 1 and

|∇ψ R
r | � C

r
, |∇2ψ R

r | � C

r2
. (3.24)
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Let t ∈ (0, T ) and β(s) = sq . Multiply the equation (3.6) by β ′(|ρν |)ψ R
r and

integrate in space and in time. We get that∫
Rd

β(|ρν(t)|)ψ R
r dx �

∫
Rd

β(|ρν
0 |)ψ R

r dx +
∫ t

0

∫
Rd

β(|ρν |)|bν ||∇ψ R
r | dx dt

+ ν

∫ t

0

∫
Rd

β(|ρν |)|�ψ R
r | dx dt.

By using (3.10) and (3.7) in the case ν > 0, the analogous bounds for ρ and b in
the case ν = 0, and (3.24), after sending R → ∞ we obtain that∫

Bc
r

|ρν(t, x)|q dx �
∫

Bc
r

|ρν
0 (x)|q dx + C

r
‖ρν‖L∞(L∞)

∫ T

0

∫
Rd

|bν
1(t, x)| dx dt

+ C

r
‖bν

2(t, ·)‖L∞(L∞)

∫ T

0

∫
Rd

|ρν(t, x)|q dx dt

+ Cν

r2

∫ T

0

∫
Rd

|ρν(t, x)|q dx dt

�
∫

Bc
r

|ρν
0 (x)|q dx + C

r
+ C

r2
,

where the constantC is independent on ν and t . Next, note that by (3.9), we have that
ρν
0 → ρ0 strongly in Lq(Rd), and therefore, given η > 0, there exists r > 0 such

that ∫
Bc

r

|ρν
0 (x)|q dx � η

2
,

and the sameholds forρ0. Finally, choosing r such thatwe also have C
r + C

r2
� η

2 ,we
deduce (3.22). ��

3.3. Proof of Theorem 3.2

Proof. We divide the proof in several steps.

Step 1 Weak convergence of the vorticity.

As in Step 1 of Theorem 2.3 we have that

ων ∗
⇀ ω weakly* in L∞((0, T ); L p(R2)). (3.25)

Indeed, the same proof holds also in the case p = 1 provided we show that {ων}ν
is equi-integrable in L1((0, T )×R

2). To prove this we start by noticing that, since
ων
0 → ω0 in L1(R2), for any ε > 0 there exist Cε, ω

ν,ε
0,1, and ω

ν,ε
0,∞ such that

ων
0 = ω

ν,ε
0,1 + ω

ν,ε
0,∞, ‖ων,ε

0,1‖1 � ε, and ‖ων,ε
0,∞‖∞ � Cε. (3.26)

We also have that both ω
ν,ε
0,1 and ω

ν,ε
0,∞ are in L1(R2) ∩ L∞(R2) with bounds

depending on ν and ε.
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Let us consider the uniqueweak solutionω
ν,ε
1 ∈ L∞((0, T ); L1(R2)∩L∞(R2))

of the linear problem{
∂tω

ν,ε
1 − ν�ω

ν,ε
1 + uν · ∇ω

ν,ε
1 = 0,

ω
ν,ε
1 (0, x) = ω

ν,ε
0,1.

(3.27)

By standard L p-estimates we have that

‖ων,ε
1 (t)‖1 � ‖ων,ε

0,1‖1 � ε. (3.28)

Next, we consider the unique weak solution ω
ν,ε∞ ∈ L∞((0, T ); L1(R2) ∩

L∞(R2)) of the linear problem{
∂tω

ν,ε∞ − ν�ω
ν,ε∞ + uν · ∇ω

ν,ε∞ = 0,

ω
ν,ε∞ (0, x) = ω

ν,ε
0,∞.

(3.29)

By the maximum principle we have that

‖ων,ε∞ (t)‖∞ � ‖ων,ε
0,∞‖∞ � Cε, (3.30)

where Cε is the same constant as in (3.26). Moreover, for C independent on ν and
ε we also have

‖ων,ε∞ (t)‖1 � ‖ων,ε
0,∞‖1 � C, (3.31)

where the last inequality in (3.31) follows from (3.26). Next, we want to prove
that ω

ν,ε∞ is small at infinity. Let r and R be such that R̃ < r < R/2 and let
ψ R

r ∈ C∞
c (R2) be the cut-off function defined in Lemma 3.3. Then, since ω

ν,ε∞
satisfies

∂t |ων,ε∞ | + uν · ∇|ων,ε∞ | − ν�|ων,ε∞ | ≤ 0,

and ψ R
r is positive, we can easily deduce that∫
|ων,ε∞ |ψ R

r dx �
∫∫

|uν ||ων,ε∞ ||∇ψ R
r | dx dt + ν

∫∫
|ων,ε∞ ||�ψ R

r | dx dt,

(3.32)
and after sending R → ∞, we have∫

Bc
2r

|ων,ε∞ | dx � 1

r

∫∫
|uν ||ων,ε∞ | dx dt + ν

r2

∫∫
|ων,ε∞ | dx dt. (3.33)

Let us now decompose the Biot–Savart kernel K = K1 + K2, where K1 =
KχB1(0) ∈ L1(R2) and K2 = KχB1(0)c ∈ L∞(R2). The decomposition of the
kernel induces the decomposition uν = uν

1 + uν
2 and, by Young’s inequality (for

the convolution), we have that {uν
1}ν is bounded in L∞((0, T ); L1(R2)) and {uν

2}ν
is bounded in L∞((0, T )×R

2) and therefore from (3.33) for some C independent
from ν and ε we get that,for a.e. t ∈ (0, T ),∫

Bc
2r

|ων,ε∞ | dx � C(Cε + 1)

r
+ C

r2
, (3.34)



Strong Convergence of the Vorticity 317

which implies the existence of rε such that, for a.e. t ∈ (0, T ),∫
Bc

rε

|ων,ε∞ | dx � ε. (3.35)

Next, we notice that for fixed ν we have that ων ∈ L∞((0, T ); L1(R2)∩ L∞(R2)),
and ων solves {

∂tω
ν + uν · ∇ων = ν�ων,

ων |t=0 = ων
0 .

(3.36)

Then, fix ε > 0 and define ω̂ν,ε := ω
ν,ε
1 +ω

ν,ε∞ . Then, ω̂ν,ε ∈ L∞((0, T ); L1(R2)∩
L∞(R2)), and ω̂ν,ε solves{

∂t ω̂ν,ε + uν · ∇ω̂ν,ε = ν�ω̂ν,ε,

ω̂ν,ε|t=0 = ων
0 .

(3.37)

Then the uniqueness of the linear problem implies that

ων = ω̂ν,ε = ω
ν,ε
1 + ων,ε∞ .

In conclusion, we have proved that for any ε > 0 there exist Cε, rε, ω
ν,ε
1 and ω

ν,ε∞
such that, for a.e. t ∈ (0, T ),

ων = ω
ν,ε
1 + ων,ε∞ , ‖ων,ε

1 (t)‖1 � ε,

‖ων,ε∞ (t)‖∞ � Cε,

∫
Bc

rε

ων,ε∞ (t, x) dx � ε.

By integrating in time, since T is assumed to be finite, we easily get that {ων}ν is
equi-integrable in L1((0, T ) × R

2).

Step 2 Strong convergence of the velocity.

We first recall that for any p � 1, the kernel K : L p(R2) → Lq
loc(R

2) is a
compact operator, when q is such that

1 + 1

q
− 1

p
>

1

2
. (3.38)

Moreover, it is a classical fact (see [25]) that, for some s, m > 0, we also have
that

{uν} is bounded in Lip([0, T ]; W −s,m
loc (R2)).

Then, we easily deduce that for p > 1 we can upgrade the convergence (3.4) to

uν → u in L2((0, T ); L2
loc(R

2)),

while for p = 1 we have

uν → u in Lq((0, T ); Lq
loc(R

2))

for any 1 � q < 2.
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Step 3 Strong convergence of the vorticity.

The proof is based on an ε-third argument as in [17]. Letting ψn be a standard
mollifier on R

2, we introduce the linear problems{
∂tω

ν
n + uν · ∇ων

n = ν�ων
n,

ων
n(0, ·) = ων

0 ∗ ψn,
(3.39)

and {
∂tωn + u · ∇ωn = 0,

ωn(0, ·) = ω0 ∗ ψn .
(3.40)

Note that the Cauchy problems (3.39), (3.40) are linear since the vector fields uν

and u are fixed and do not depend on the solution itself contrary to what happens
for the Euler and the Navier–Stokes equations. Moreover, there exists a unique
smooth solution ων

n of (3.39) because uν is smooth, and a unique solution ωn ∈
L∞((0, T ); L1(R2) ∩ L∞(R2)) as a consequence of the uniqueness theorems in
[24] for p > 1 and [21] for p = 1.

By triangular inequality we have that

sup
t∈(0,T )

‖ων(t) − ω(t)‖L p ≤ sup
t∈(0,T )

‖ων(t) − ων
n(t)‖L p

︸ ︷︷ ︸
(I )

+ sup
t∈(0,T )

‖ων
n(t) − ωn(t)‖L p

︸ ︷︷ ︸
(I I )

+ sup
t∈(0,T )

‖ωn(t) − ω(t)‖L p

︸ ︷︷ ︸
(I I I )

.

(3.41)

We estimate separately the three terms on the right hand side of (3.41). Regarding
(I ), we notice that the difference ων − ων

n satisfies the equation

∂t
(
ων − ων

n

)+ uν · ∇ (ων − ων
n

) = ν�
(
ων − ων

n

)
. (3.42)

Therefore, we easily get, for any t ∈ (0, T ), that

‖ων(t) − ων
n(t)‖L p � ‖ων

0 − ων
0,n‖L p ,

which is small for n large enough independently from ν.
Next, we consider (I I I ): since ω is a renormalized solution, due to the unique-

ness of the linear problem (see [24] and [21]) ω is also Lagrangian and therefore

ω(t, x) = ω0(Xt,0(x)),

where X is the unique regular Lagrangian flow of u. Moreover, the unique solution
ωn of (3.40) is also renormalized and then Lagrangian and therefore is given by

ωn(t, x) = ω0,n(Xt,0(x)).
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By using that X is measure-preserving,

sup
t∈(0,T )

‖ωn(t, ·) − ω(t, ·)‖p
L p = sup

t∈(0,T )

∫
R2

∣∣ω0,n(Xt,0(x)) − ω0(Xt,0(x))
∣∣p dx

=
∫
R2

∣∣ω0,n(y) − ω0(y)
∣∣p dy = ‖ω0,n − ω0‖p

L p ,

which goes to 0 as n → ∞.
Finally, we consider the term (I I ) and we note that for fixed n the sequence

of solutions {ων
n}ν , the sequence of velocity fields {uν}ν , the limit solution ωn , and

the limit vector field u satisfy the hypothesis of Lemma 3.3. Therefore, for fixed n
the term (I I ) goes to zero as ν → 0 and the proof is concluded. ��

4. Conservation of the Energy

In this last section we prove that solutions of the 2D Euler equations obtained in
the vanishing viscosity limit conserve the energy. In particular, we extend the result
in [12] to the case when the Euler equations are considered on the whole space R2.
The strategy we adopt is similar to the one we used in [14] and it is combined with
the results of [12]. We start by introducing some additional notation. We denote
with � the following variant of the convolution:

v � w =
2∑

i=1

vi ∗ wi if v,w are vector fields in R
2, (4.1)

A � B =
2∑

i, j=1

Ai j ∗ Bi j if A, B are matrix-valued functions in R
2. (4.2)

With the notations above it is easy to check that, if f : R2 → R is a scalar function
and v : R2 → R

2 is a vector field, then

f ∗ curl v = ∇⊥ f � v,

∇⊥ f � div(v ⊗ v) = ∇∇⊥ f � (v ⊗ v),

vi ∗ � f = �vi ∗ f.

A peculiar fact of the two-dimensional Euler equations is that the velocity field is
in general not globally square integrable: this is due to the fact that the Biot–Savart
kernel fails to be square integrable at infinity. To have a well-defined kinetic energy
we need to require that the vorticity has zero mean value. In fact, the following
proposition holds true, (see [32]):

Proposition 4.1. An incompressible velocity field in R
2 with vorticity of compact

support has finite kinetic energy if and only if the vorticity has zero mean value,
that is, ∫

R2
|u(t, x)|2 dx < ∞ ⇐⇒

∫
R2

ω(t, x) dx = 0. (4.3)
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The main result of this section is the following. We stress that the proof below does
not hold in the case p = 1 since the convergence (4.4) fails in this case, as already
pointed out in Step 2 in the proof of Theorem 3.2.

Theorem 4.2. Let p ∈ (1,∞) and ω0 ∈ L p
c (R2) verifying (4.3). Let uν, u as in

Theorem 3.2. Then, uν satisfies the convergence

uν → u in C([0, T ]; L2(R2)), (4.4)

and u conserves the energy, that is,

‖u(t)‖L2 = ‖u0‖L2 , ∀t ∈ [0, T ]. (4.5)

Proof. We recall that the parameter ν is always supposed to vary over a countable
set, therefore given the sequence νn → 0, we denote with un and ωn the sequences
uνn and ωνn . We divide the proof in several steps.

Step 1 A Serfati identity with fixed vorticity.

In this step we derive a formula for the approximate velocity un .
Let a ∈ C∞

c (R2) be a smooth function such that a(x) = 1 if |x | < 1 and
a(x) = 0 for |x | > 2. Differentiating in time the Biot–Savart formula we obtain
that, for i = 1, 2,

∂sun
i (s, x) = Ki ∗ (∂sω

n)(s, x)

= (aKi ) ∗ (∂sω
n)(s, x) + [(1 − a)Ki ] ∗ (∂sω

n)(s, x). (4.6)

Now we use the equation (1.2) for ωn obtaining

∂sω
n = −un · ∇ωn + νn�ωn,

and substituting in (4.6),we obtain

∂sun
i = (aKi )∗(∂sω

n)−[(1−a)Ki ]∗(vn ·∇ωn)+[(1−a)Ki ]∗
(
νn�ωn) . (4.7)

By the identity

un · ∇ωn = curl(un · ∇un) = curl div(un ⊗ un),

we obtain that

[(1 − a)Ki ] ∗ (un · ∇ωn) =
(
∇∇⊥[(1 − a)Ki ]

)
� (un ⊗ un), (4.8)

while by the properties of the convolution,

[(1 − a)Ki ] ∗ (νn�ωn) = (�[(1 − a)Ki ]) ∗ (νnωn) , (4.9)

where the notation �was introduced in (4.1) and (4.2). Substituting the expressions
(4.8) and (4.9) in (4.6) and integrating in timewe have that un satisfies the following
formula:

un
i (t, x) = un

i (0, x) + (aKi ) ∗ (ωn(t, ·) − ωn(0, ·)) (x)

−
∫ t

0

(
∇∇⊥[(1 − a)Ki ]

)
� (un(s, ·) ⊗ un(s, ·))(x) ds

+
∫ t

0
(�[(1 − a)Ki ]) ∗ (νnωn) ds.

(4.10)
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Step 2 un is a Cauchy sequence in C([0, T ]; L2(R2)).

Using formula (4.10) we can prove that un is a Cauchy sequence. We consider
un, um with n, m ∈ N. By linearity of the convolution we have that un −um satisfies
the following:

un
i (t, x) − um

i (t, x)

= un
i (0, x) − um

i (0, x)︸ ︷︷ ︸
(I )

+ (aKi ) ∗ (ωn(t, ·) − ωm(t, ·))(x)︸ ︷︷ ︸
(I I )

+ (aKi ) ∗ (ωm
0 − ωn

0)(x)︸ ︷︷ ︸
(I I I )

−
∫ t

0

(
∇∇⊥[(1−a)Ki ]

)
�
[
un(s, ·)⊗un(s, ·)−um(s, ·) ⊗ um(s, ·)] (x)︸ ︷︷ ︸

(I V )

ds

+
∫ t

0
(�[(1 − a)Ki ]) ∗ (νnωn(s, ·) − νmωm(s, ·))︸ ︷︷ ︸

(V )

ds.

(4.11)
In order to estimate ‖un(t) − um(t)‖L2 we estimate separately the L2 norms of the
terms on the right hand side of (4.11). We start by estimating (I ): given η > 0,
since the initial datum un

0 converges in L2 to u0, we have that there exists N1 such
that

‖un
0 − um

0 ‖L2 < η for any n, m > N1. (4.12)

We deal now with (I I ), (I I I ): if ω0 ∈ L p
c (R2) with 1 < p < 2, by Young’s

convolution inequality we have that

‖(aK ) ∗ (ωn(t) − ωm(t))‖L2 � ‖aK‖Lq ‖ωn(t) − ωm(t)‖L p , (4.13)

where 1 < q < 2 is such that 1 + 1
2 = 1

q + 1
p , while for p � 2,

‖(aK ) ∗ (ωn(t) − ωm(t))‖L2 � ‖aK‖L1‖ωn(t) − ωm(t)‖L2 . (4.14)

Since ‖aK‖Lq � ‖K‖Lq (B2) and K ∈ Lq
loc(R

2) for any 1 � q < 2, by the strong
convergence of ωn proved in Theorem 3.2, there exists N2 such that

‖(aK ) ∗ (ωn(t) − ωm(t))‖L2 + ‖(aK ) ∗ (ωn
0 − ωm

0 )‖L2 < Cη (4.15)

for any n, m > N2. We deal now with (I V ): by Young’s convolution inequality we
have that

‖∇∇⊥[(1 − a)K ] � (un(s) ⊗ un(s) − um(s) ⊗ um(s))‖L2

� ‖∇∇⊥[(1 − a)K ]‖L2 ‖un(s) ⊗ un(s) − um(s) ⊗ um(s)‖L1︸ ︷︷ ︸
(I V ∗)

. (4.16)

We add and subtract un(s, ·)⊗um(s, ·) in (I V ∗), and by Hölder inequality we have

‖un(s) ⊗ un(s) − um(s) ⊗ um(s)‖L1
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�
(‖un(s)‖L2 + ‖um(s)‖L2

) ‖un(s) − um(s)‖L2 .

For the first factor in (4.16) we have that

∇∇⊥[(1 − a)Ki ] = −(∇∇⊥a)Ki − ∇⊥a∇Ki − ∇a∇⊥Ki + (1 − a)∇∇⊥Ki ,

and it is easy to see that each term on the right hand side has uniformly bounded
L2-norm. Then we have that∫ t

0
‖∇∇⊥[(1 − a)K ] � (un(s) ⊗ un(s) − um(s) ⊗ um(s)‖L2 ds

� C‖u0‖L2

∫ t

0
‖un(s) − um(s)‖L2 ds.

(4.17)

Finally, we deal with (V ): again by Young’s inequality we have that∥∥(�[(1 − a)Ki ]) ∗ (νnωn(s) − νmωm(s)
)∥∥

L2

� νn‖�[(1 − a)Ki ]‖Lq ‖ωn(s) − ωm(s)‖L p

+ |νm − νn| ‖�[(1 − a)Ki ]‖Lq ‖ωm(s)‖L p ,

where p and q are chosen as in (4.13) or (4.14) depending on whether p is bigger or
smaller than 2. Since �Ki is in Lq(Bc

1), a straightforward computation shows that
�[(1−a)K ] is bounded in Lq . Thus there exists N3 such that,for all n, m > N3,we
have that ∥∥(�[(1 − a)K ]) ∗ (νnωn(s) − νmωm(s)

)∥∥
L2 � Cη. (4.18)

Then, putting together (4.12),(4.15),(4.17) and (4.18) we obtain that for all n, m >

N := max{N1, N2, N3}

‖un(t) − um(t)‖L2 � C

(
η +

∫ t

0
‖un(s) − um(s)‖L2 ds

)
, (4.19)

and by Grönwall’s lemma,

‖un(t) − um(t)‖L2 � Cη. (4.20)

Taking the supremum in time in (4.20),we obtain (4.4).

Step 3 Conservation of energy.

First of all, we can restrict our attention to the case ω0 ∈ L p
c (R2)with 1 < p <

3/2, otherwise there is nothing to prove (see [12]). Let uν be the unique smooth
solution of the Navier–Stokes equations (2.3) and let ων = curl uν , which satisfies
the equation

∂tω
ν + uν · ∇ων = ν�ων. (4.21)

Multiplying (4.21) by ων and integrating over R2 we obtain

d

dt
‖ων(t)‖2L2 = −2ν‖∇ων(t)‖2L2 . (4.22)
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By using the Gagliardo-Niremberg inequality we have that

‖ων(t)‖L2 � ‖∇ων(t)‖1−
p
2

L2 ‖ων(t)‖
p
2
L p , (4.23)

from which it follows that

−2ν‖∇ων(t)‖L2 � −2ν‖ων(t)‖
4

2−p

L2 ‖ων(t)‖− 2p
2−p

L p . (4.24)

We multiply (4.21) by |ων |p−2ων and integrating on R
2 we also get

‖ων(t)‖L p � ‖ων
0‖L p ,

and substituting in (4.24) and in (4.22) we obtain

d

dt
‖ων(t)‖2L2 � −2ν‖ων(t)‖

4
2−p

L2 ‖ων
0‖

− 2p
2−p

L p . (4.25)

Define y(t) = ‖ων(t)‖2
L2 and take C0 such that ‖ων

0‖
− 2p

2−p
L p � C0, where we can

assume that C0 is independent from ν because of the (strong) convergence of ων
0

towards ω0 in L p. Then, integrating in time in (4.25) we obtain

y(t)−
p

2−p − y(0)−
p

2−p � 2νpC0

2 − p
t,

from which it follows that

‖ων(t)‖2L2 �
(

‖ων
0‖

− 2p
2−p

L2 + 2νpC0t

2 − p

)− 2−p
p

. (4.26)

Smooth solutions of the 2D Navier–Stokes equations satisfy the energy identity

d

dt
‖uν(t)‖2L2 = −2ν‖∇uν(t)‖2L2 ,

and rewriting the right hand side in terms of the vorticity we have

d

dt
‖uν(t)‖2L2 = −2ν‖ων(t)‖2L2 . (4.27)

Hence, integrating in time in (4.27) and using (4.26) we deduce that

0 � ‖uν(t)‖2L2 − ‖uν
0‖2L2 � −2ν

∫ t

0

(
‖ων

0‖
− 2p

2−p

L2 + 2νpC0t

2 − p

)− 2−p
p

ds

= − 2 − p

2C0(p − 1)

⎡
⎣(‖ων

0‖
− 2p

2−p

L2 + 2νpC0

2 − p
t

) 2(p−1)
p

− ‖ων
0‖

− 2p
2−p

L2

⎤
⎦ . (4.28)

Now, since ω0 /∈ L2(R2),we must have that

lim
ν→0

‖ων
0‖L2 = +∞,
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and then, given that p > 1, the right hand side of (4.28) vanishes as ν → 0.
Therefore, by using (4.4),we have that

0 = lim
ν→0

(
‖uν(t)‖2L2 − ‖uν

0‖2L2

)
= ‖u(t)‖2L2 − ‖u0‖2L2 ,

which concludes the proof. ��
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