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Abstract 

Macrostomum lignano is a free-living flatworm that is emerging as an attractive experimental animal for research on a 
broad range of biological questions. One feature setting it apart from other flatworms is the successful establishment 
of transgenesis methods, facilitated by a steady supply of eggs in the form of single-cell zygotes that can be readily 
manipulated. This, in combination with the transparency of the animal and its small size, creates practical advantages 
for imaging and fluorescence-activated cell sorting in studies related to stem cell biology and regeneration. M. lignano 
can regenerate most of its body parts, including the germline, thanks to the neoblasts, which represent the flatworm 
stem cell system. Interestingly, neoblasts seem to have a high capacity of cellular maintenance, as M. lignano can 
survive up to 210 Gy of γ-irradiation, and partially offset the negative consequence of ageing. As a non-self-fertilizing 
simultaneous hermaphrodite that reproduces in a sexual manner, M. lignano is also used to study sexual selection and 
other evolutionary aspects of sexual reproduction. Work over the past several years has led to the development of 
molecular resources and tools, including high-quality genome and transcriptome assemblies, transcriptional profiling 
of the germline and somatic neoblasts, gene knockdown, and in situ hybridization. The increasingly detailed charac-
terization of this animal has also resulted in novel research questions, such as bio-adhesion based on its adhesion-
release glands and genome evolution due to its recent whole-genome duplication.
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Natural habitat and life cycle
The flatworm Macrostomum lignano is a free-living, 
marine species belonging to the Macrostomorpha, the 
earliest branching clade of Rhabditophora [1] (Fig.  1). 
The species is found on the beaches of the Northern 
Adriatic and the Aegean Sea. It is adapted to live in the 
interstitial spaces between sand grains in the upper inter-
tidal zone, a zone not covered by water during every tidal 
cycle (Fig.  2a). As a result, the animals are exposed to 
variable environmental conditions and can cope with a 

broad range of temperatures, salinities, and oxygen con-
centrations [2–4]. Adult animals are 1–2  mm in length 
and 0.3  mm in width (Fig.  2b). The epidermis is multi-
ciliated and animals move by coordinated ciliary beat-
ing. Beneath the epidermis and a thin basal matrix lies 
the body wall musculature consisting of circular, diago-
nal, and longitudinal fibers, which permit the animal 
to perform body movements (Additional file  1). Major 
organ systems include a central nervous system with a 
brain anterior to the paired eyes, a mouth, a pharynx and 
a blind-ending rod-shaped gut, paired testes anterior to 
paired ovaries, female and male genital openings, and a 
sclerotised copulatory organ in the tail plate [5]. M. lig-
nano is an obligately non-self-fertilizing species that 
reproduces exclusively in a sexual manner [6] (Additional 
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file 2). Worms lay single-cell fertilized eggs (zygotes), and 
embryonic development takes 5 days (Additional file 3), 
after which a juvenile emerges through a pre-determined 
hatch in the egg shell and directly develops into a mature 
animal in less than 2 weeks (Fig. 2c) [7].

Field collection and laboratory culture
Macrostomum lignano can be readily extracted from 
field-collected sand samples using a classical meiofauna 
extraction technique, i.e., decantation after  MgCl2 anaes-
thesia. Often, samples contain many meiofaunal species, 

including multiple species of Macrostomum. Species 
identification, therefore, requires detailed observa-
tion of a lightly squeezed worm in a so-called squeeze 
preparation under a compound microscope. The main 
distinguishing feature of M. lignano compared to other 
Macrostomum species is the shape and size of the male 
copulatory stylet [5].

Macrostomum lignano is a lab-friendly organism. 
Worms can be kept in Petri dishes with artificial sea 
water as the medium and unicellular diatom algae of the 
species Nitzschia curvilineata as food source. Starvation 
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causes animals to decrease in size, regress the reproduc-
tive system, and reduce mitotic activity of the neoblasts. 
Feeding such animals will, in turn, induce an increase 
of neoblast proliferation, growth, and re-establishment 
of the germline [8]. The optimal laboratory conditions 
are 20 °C and a 14 h/10 h day/night cycle. However, the 
worms can survive in a temperature range between 4 °C 
and 37  °C [2], making it easy to maintain the culture 
even without specialized equipment. M. lignano exhibits 
negative phototaxis, which helps concentrating the ani-
mals at a desired spot in a Petri dish (Additional file 4). 
An adult animal produces 1–2 eggs per day, and a group 
of 20 worms can produce over 200 progeny in 1  week, 
providing ample access to research material. In addition, 
there are various worm lines available including many 
inbred (e.g., DV1, NL12) and transgenic (e.g., HUB1 with 
nearly ubiquitous expression of GFP, NL24 with mScarlet 
expression in ovaries and mNeonGreen in testes) lines [9, 
10].

Major interests and research questions
Stem cells and regeneration
Macrostomum lignano has a large population of stem 
cells, called neoblasts, which are located in two lateral 
bands in the parenchyma, in close proximity to the main 
lateral nerve cords, and merge in the tail plate [11]. The 
rostrum, the region anterior of the eyes, is devoid of 
neoblasts (Fig.  3). Neoblasts are defined by their ability 
to divide—they are the only proliferating somatic cells in 
the animal and thus the only source of new cells [11–14]. 
The neoblast population drives a high cellular turnover 
during adult tissue homeostasis and provides the regen-
eration capacity [12]. As in planarians, the neoblast pool 
of M. lignano is assumed to be heterogeneous, including 
pluripotent and lineage-restricted stem cells. This is sup-
ported by indications that a small fraction of the neoblast 
population is slow cycling or quiescent [13, 15]. Tran-
scriptional profiling of somatic neoblasts and germline 
cells was recently performed [16]. However, direct evi-
dence for neoblast heterogeneity and pluripotency in M. 
lignano is still lacking, and identifying different types of 
neoblasts and characterizing the molecular regulation of 
differentiation into both somatic and germline lineages 
are a major open research question.

Macrostomum lignano can regenerate missing body 
parts anterior to the brain and posterior to the pharynx 
(Fig. 3). The regeneration process can be easily observed 
(Additional file 5), and includes stages of wound closure, 
formation of a blastema, and the subsequent restoration 
of the missing tissues and organs [17]. How this complex 
process is regulated remains poorly understood, and we 
envision that the experimental power of M. lignano will 
help to unravel the molecular mechanisms behind all 

stages of regeneration, including initiation, proliferation, 
and patterning.

Ageing and resistance to DNA damage
The regeneration capacity is maintained with advancing 
age, and worms have a lifespan of more than 2 years [18, 
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Fig. 3 Regeneration capacity of M. lignano. In all worms, the green 
dots represent neoblasts. a Anterior regeneration is limited to the 
rostrum, the region anterior to the eyes and brain. b, c Posterior 
regeneration is characterized by the formation of a blastema, an 
accumulation of proliferating neoblasts, which forms within 48 h 
after amputation. b In case of whole-body amputation, regeneration 
and remodeling of the remaining tissues of the head will result in a 
complete but small worm. This worm will then grow into a full adult 
with new gonads. c After amputation of the tail, the missing tissue 
will be regenerated within a week
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19], which is remarkable for an animal of this small size. 
In contrast to asexual planarians, M. lignano does, how-
ever, demonstrate phenotypic signs of ageing, such as the 
appearance of cysts and loss of eyes [18, 19]. Analysis of 
RNA-sequencing data of ageing animals revealed a signif-
icant age-dependent upregulation of neoblast transcripts 
and several pro-longevity genes, suggesting that M. lig-
nano evolved molecular mechanisms to maintain stem 
cell function and, at least partially, offset the negative 
consequences of ageing [18]. Dissecting the ageing resil-
ience mechanisms in M. lignano may provide significant 
novel insights for ageing research. One such mechanism 
is probably connected to genome maintenance, since the 
worms are highly resistant to external sources of DNA 
damage, such as ionizing radiation. Full elimination of 
neoblasts in M. lignano requires a fractionated total dose 
of 210  Gy of γ-irradiation, compared to just a few Gy 
in mammals [20]. At doses below 210  Gy, the stem cell 
system can recover and animals survive [16, 20]. Thus, 
investigation of molecular mechanisms of DNA protec-
tion and repair in M. lignano holds great promise.

Genome re‑diploidization
The M. lignano haploid genome size is 502 Mb, [9] and 
its karyotype (2n = 8) consists of a pair of large and 
three pairs of small metacentric chromosomes (Fig.  4a) 
[21, 22]. Interestingly, in some laboratory lines, includ-
ing the DV1 line used for the initial genome sequenc-
ing [9, 23], chromosome polymorphisms were revealed, 
associated mostly with copy-number variation of the 

large chromosome [9, 22], resulting in an increase of the 
genome size to 742 Mb [9]. Fluorescence in situ hybridi-
zation (FISH) analyses suggest that the largest chromo-
some is derived from a fusion of all small chromosomes, 
followed by deletions and inversions of some chro-
mosome regions (Fig.  4b), indicating that the modern 
genome of M. lignano may have formed through a recent 
whole-genome duplication event followed by re-diploidi-
zation, including fusion of one full haploid chromosome 
set into one large metacentric chromosome [24, 25]. This 
peculiarity of M. lignano makes it attractive for studies of 
early stages of genome and chromosome evolution after 
whole-genome duplication in animals.

Embryonic development
Macrostomum lignano undergoes a modified spiral-
cleavage pattern (Additional file 3), which deviates after 
the eight-cell stage when yolk-rich and opaque hull cells 
of embryonic origin start surrounding the inner blasto-
meres, impeding live observations [7, 26]. This challenge 
can be overcome with advanced microscopy, such as 4D 
microscopy [26] and light sheet microscopy [27], or with 
histological sections [7, 26]. In contrast to other spiral-
ians, the mesentoblast (forming major parts of meso- 
and endoderm) is not a descendant of blastomere 4d in 
M. lignano [21]. The unusual blastomeric origin of the 
meso- and endoderm compared to other flatworms (pol-
yclads and prorhynchids) is, therefore, a major research 
question.
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Fig. 4 Experimental approaches in M. lignano. a Metaphase chromosomes (left) and karyotype (right) of M. lignano (2n = 8). Chromosomes 
were counterstained with DAPI (inverted image). Scale bar 10 µm. b Fluorescence in situ hybridization (FISH) with microdissected DNA probes 
derived from chromosome 2 (Mli2, green signal) and distal parts of p- and q-arms of chromosome 1 (Mli1dist, red signal) [25]. Scale bar 10 µm. c 
Whole-mount in situ hybridization showing expression of the CABP7 gene [9] in the ovaries (indicated by arrows). d RNAi knockdown phenotype of 
the Mlig-Sperm1 gene [45] showing enlarged testes (indicated by arrows). e Composite image of the NL24 transgenic line [9] showing expression 
of mNeonGreen under the testis-specific promoter of the ELAV4 gene, and mScarlet under the ovary-specific promoter of the CABP7 gene. Note 
that ELAV4 is expressed in sperm, which is also visible in the seminal vesicle, as well as the female antrum, where it was deposited by another NL24 
animal. Scale bars in c–e are 100 µm
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Evolution of sexual reproduction
Macrostomum lignano has long been used as a model sys-
tem for understanding evolutionary aspects of sex alloca-
tion, sexual selection, and sexual conflict in simultaneous 
hermaphrodites. This is aided by the transparency of the 
worm permitting in  vivo observations of internal struc-
tures and processes, including the non-invasive measure-
ment of gonad size and the tracking of GFP-expressing 
sperm [28, 29]. The species provides some of the strong-
est empirical support for sex allocation theory pertaining 
to how individuals should optimally partition investment 
between their male and female sex functions [6, 28, 30, 
31]. Moreover, the genus Macrostomum exhibits diversity 
in reproductive traits, including in behaviour and mor-
phology, making it well suited also for comparative stud-
ies of reproductive trait evolution [32]. A major research 
question now is to better understand how Macrostomum 
species with contrasting and divergent reproductive 
behaviours and morphologies differ with respect to the 
mechanisms of sexual selection and sexual conflict.

Bio‑adhesion
Macrostomum lignano can attach to any natural sub-
strate, followed by controlled detachment [33, 34]. This 
reversible attachment relies on a duo-gland adhesion-
release system which consists of ~ 130 adhesive organs 
located on the ventral side of the tail plate [33, 35]. Each 
adhesive organ is comprised of three cell types: an adhe-
sive gland cell, a releasing gland cell, and a modified epi-
dermal cell called the anchor cell. Recent studies revealed 
a number of adhesion-related transcripts and two large 
proteins that mediate temporary adhesion of M. lignano 
[34, 36]. Using proteomic data, antibody, and lectin stain-
ing, as well as interference of attachment using specific 
molecules and surfaces, a model for M. lignano attach-
ment and release was proposed [34]. Overall, a better 
understanding of M. lignano bio-adhesion could lead to 
the generation of synthetic equivalents for medical and 
industrial applications.

Experimental approaches
Immunohistochemistry and in situ hybridization
The small, transparent body and detailed morphological 
understanding facilitate the use of light and fluorescent 
imaging in whole animals. Antibody labeling is com-
monly used to label proliferating neoblasts by means of 
BrdU incorporation and a polyclonal antibody against 
phosphorylated Histone H3 [11]. Polyclonal antibodies 
against, e.g., Vasa [33], Piwi [37], and Boule [38], were 
produced. In addition, monoclonal antibodies against 
various cell  types, tissues and organs (e.g., spermatids, 
ventral nerve cord, prostate glands, gut, muscles, and epi-
dermis) were developed [39]. Patterns of gene expression 

can be visualized in whole animals by in  situ hybridiza-
tion (Fig. 4c) [40].

RNAi
RNA interference (RNAi) is performed by simply soak-
ing animals in double-stranded RNA (dsRNA) dissolved 
in culture medium (Fig. 4d). While this technique is easy, 
it is labor-intensive and has a rather low throughput. The 
dsRNA fragments can be made in the laboratory with an 
in vitro transcription protocol [41].

Transgenesis
The key feature making M. lignano stands out among 
other flatworm model organisms is the availability of 
transgenic techniques. The worms lay large, single-cell, 
fertilized eggs that can be microinjected using standard 
micromanipulation equipment. An established microin-
jection protocol, coupled with high-quality genome and 
transcriptome assemblies and the short generation time 
of the animal, enables the creation of stable transgenic 
lines in a matter of a few weeks. Several lines with tissue-
specific and heatshock-inducible expression are already 
available (Fig. 4e, Additional file 6) [2, 9]. The published 
transgenesis approach relies on random integration of 
injected DNA constructs into the genome and does not 
require specialized vectors. Stable transgenic lines can be 
obtained from 1–8% of the injected eggs [9], and around 
30–50 eggs can typically be injected in a single session. 
The use of other transgenesis methods, such as transpo-
son-mediated integration, homologous recombination, 
and the CRISPR/Cas9 system for genome editing, should 
be feasible in M. lignano, but remain to be developed.

Live imaging
The transparency of M. lignano is especially advanta-
geous for live imaging (Additional file 7). Worms can be 
immobilized using  MgCl2 as an anaesthetic and squeeze 
preparations. The small thickness of the body makes it 
easy to observe changes in worm morphology even under 
low magnification stereoscopes and is very helpful for 
confocal imaging.

Flow cytometry and FACS
Worms can be macerated into a single-cell suspension 
using Otto buffers [12] or Accutase. Subsequent flow 
cytometry and FACS can be performed using standard 
techniques.

Karyotyping
A single-worm karyotyping technique allows moni-
toring of karyotypes in laboratory cultures of worms 
(Fig.  4a) [22]. The detailed chromosome organization 
can be investigated by FISH using different types of DNA 
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probes, including microdissected region- and chromo-
some-specific DNA probes (Fig.  4b) [24, 25]. Since M. 
lignano shows chromosomal polymorphisms [9, 22], it 
is important to regularly monitor laboratory cultures 
for the spontaneous duplication of the large chromo-
some, which can be performed using flow cytometry [9]. 
Although the chromosomal polymorphisms potentially 
complicate the use of M. lignano as a model for genetic 
studies, in practice, we have not experienced such prob-
lems when using an inbred line NL12, which is derived 
from wild-type line NL10 [9] and shows a stable karyo-
type (2n = 8).

Behaviour
The small size of the worms, in combination with digi-
tal time-lapse video recording, permits very efficient 
observation of mating interactions of many individuals 
simultaneously (Additional file  8), facilitating detailed 
and well-replicated behavioural studies [29, 42–44]. Since 
it is easy to generate a lot of behavioural observations, it 
would be interesting to take advantage of recent develop-
ments in image analysis and machine learning, to convert 
such observations into quantitative data in an automated 
and time-efficient way.

Research community and resources
Macrostomum meeting, ISFB
The Macrostomum research community currently com-
prises about ten laboratories worldwide. Macrostomum 
researchers are meeting approximately yearly since 2007 
in the format of the 2-day International Macrostomum 
Meeting (IMM), which all researchers interested in ini-
tiating research on Macrostomum are highly welcome 
to join. Moreover, many members of the Macrostomum 
research community also regularly attend the Interna-
tional Symposium on Flatworm Biology (ISFB), which 
usually takes place every 3  years and brings together 
researchers that work on free-living flatworms, parasitic 
flatworms, and acoels.

The Macrostomorpha Taxonomy and Phylogeny website
A good reference for field collection, observation, and 
documentation of Macrostomum is the Methods section 
of the Macrostomorpha Taxonomy and Phylogeny web-
site (http://macro stomo rpha.info). This website contains 
digital versions of most of the taxonomic publications in 
the genus Macrostomum and its parent taxon Macrosto-
morpha, and serves as a repository for information about 
taxonomic-type specimens and images of reference spec-
imens (digital hologenophore vouchers) that have been 
used in molecular phylogenetic analyses in this group of 
flatworms [32].

Genome, transcriptome, genome browser
The most recent annotated M. lignano genome assem-
bly version Mlig_3_7_DV1 [9] is available at GenBank 
(acc. no. NIVC00000000.1) and on the Macrostomum 
genome resources website (http://www.macge nome.
org). The genome can be explored using the UCSC 
genome browser interface at http://gb.macge nome.org.

Nanotomy
A whole-animal electron microscopy atlas obtained at 
the nanoscale provides a “Google-Earth” style of data 
presentation and navigation at different levels of reso-
lution [45], and is accessible at http://www.nanot omy.
org/OA/Macro stomu m.

Neoblast and ageing data interfaces
There are two web interfaces, http://neobl ast.macge 
nome.org and http://agein g.macge nome.org, which 
provide a straightforward way to search, visualize, and 
analyse gene expression data generated in the recent M. 
lignano neoblast/germline and ageing studies [16, 18].

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1322 7-020-00150 -1.

Additional file 1. Movie of adult M. lignano animals eating diatom algae. 

Additional file 2. Movie of mating worms. Two individuals of M. lignano 
are engaged in a reciprocal mating, which is followed by one individual 
performing the post-copulatory suck behavior (from 22–27 s), after which 
some sperm can be seen sticking out of the vagina of the worm (final 
frames). Video from https ://www.flick r.com/photo s/lukas _schar er/15281 
56075 7 under a CC-BY 2.0 licence. 

Additional file 3. Movie of the early stages of embryonic development in 
M. lignano. 

Additional file 4. Movie demonstrating negative phototaxis behaviour in 
M. lignano. 

Additional file 5. Movie of an amputated M. lignano head. It will regener-
ate into a full animal within 3 weeks. 

Additional file 6. Movie of the transgenic M. lignano line NL24, where tes-
tes are marked by expression of mNeonGreen under the ELAV4 promoter 
and ovaries by expression of mScarlet under the CABP7 promoter. 

Additional file 7. Movie showing live imaging of the M. lignano tail 
region. The high level of transparency of these worms permits detailed 
observations of anatomical structures in living worms, namely, in order 
of appearance in the video, the adhesive glands (dotted arc), the male 
genital opening (small ciliated circle), the large drop-shaped and sperm-
filled false seminal vesicle (on the right), the smaller and muscular true 
seminal vesicle, the vesicula granulorum (with prostate gland granules), 
the copulatory stylet (long tube from left to right), and some rotating food 
particles inside of the lumen of the gut. 

Additional file 8. Observations on the mating interactions in many 
pairs of M. lignano. A 12 s clip of a longer time-lapse video (captured at 1 
frame per second and played back at 10 frames per second) showing the 
interactions in a total of 18 pairs, each placed into individual 4 µl drops 
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in an observation chamber. Within many of the pairs one can observe 
precopulatory, copulatory, and postcopulatory interactions.
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