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Abstract
The concept of a novel traveling wave Zeeman deccelerator based on a double-helix wire geometry
capable of decelerating paramagnetic species with high efficiency is presented. A moving magnetic
trap is created by running time-dependent currents through the decelerator coils. Paramagnetic
species in low-field-seeking Zeeman states are confined in the moving traps and transported to the
end of the decelerator with programmable velocities. Here, we present the theoretical foundations
underlying the working principle of the traveling-trap decelerator. Using trajectory simulations, we
characterise the performance of the new device and explore the conditions for phase-space stability
of the transported molecules.

1. Introduction

In recent years, significant efforts have been invested into developing methods for the production of
molecules at cold (<1 K) and ultra-cold translational temperatures (<1 mK) [1–3]. Besides the
development of laser cooling [4], different techniques have emerged for cooling molecules based on their
interactions with electric or magnetic fields [5]. These developments have been motivated by prospects of
studying molecular collisions and chemical reactions at low and precisely controllable collision energies
[2, 6–8], of precision spectroscopic measurements for testing fundamental physical concepts [9, 10], and of
new approaches to quantum-information processing and quantum simulation [11–13]. Methods based on
the deceleration of supersonic molecular beams are particularly well suited for collision experiments since
the final longitudinal velocity of the sample can be tuned over a wide range with narrow velocity spreads
[6, 14–22]. In this context, the Zeeman deceleration method relies on the state-dependent interaction of
neutral paramagnetic atoms or molecules with time-dependent inhomogeneous magnetic fields [23–43]
and is thus suitable for open-shell systems such as molecular radicals or metastable atoms and molecules
[5, 6, 44].

Here, we present a novel traveling-wave Zeeman decelerator recently developed in our laboratory. The
new decelerator operates with traveling magnetic traps containing molecules which are adiabatically slowed
down, which is conceptually similar to the traveling-wave Stark decelerator [45–50] but works for
paramagnetic atoms and molecules. The present paper focuses on the theory and numerical analysis of the
operational principle of the device. The experimental implementation and its demonstration are described
in the accompanying article [51]. As areas of application of the new decelerator we envisage cold-collision
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Figure 1. Schematic of a decelerator module consisting of two stacked layers of 16 wires wound in right- and left-handed helices.
The two layers are depicted separately in blue and yellow for clarity. n−(n+) ∈ {0, . . . , 15} labels the individual wires in the
outer, left-handed (inner, right-handed) helix layer.

Figure 2. (a) Schematic of a single helical wire in a decelerator module. (b)–(d) Magnetic field components B+x0(z), B+y0(z)
and B+z0(z) along the central coil axis (z, x = y = 0) generated from a single wire. Data points represent the results of numerical
calculations based on the Biot–Savart law (see text). The lines are a fit of the data to equation (1) in the text.

experiments, trap loading for further cooling and studies of the chemistry of trapped particles at very low
temperatures.

2. Formation of a traveling magnetic trap

2.1. Longitudinal dynamics of the moving trap
The decelerator features a modular design [51] with each module consisting of 32 copper wires wound
around a cylinder in two layers where the inner (outer) layer consists of 16 right-handed (left-handed)
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helices, see figure 1. The wires are labelled as indicated in the figure. By supplying time-varying currents to
the double-helix coil geometry, a traveling magnetic wave along the coil axis is formed. To illustrate the
principle, we start by analyzing the magnetic fields generated by a single helix within a deceleration module.
To a good approximation, the magnetic field on the axis of a coil generated by a current of 1 A supplied to a
right-handed wire helix can be expressed as

B+x0(z) = a+ sin(kz),

B+y0(z) = a+ cos(kz),

B+z0(z) = a+z,

(1)

and to a left-handed helical coil as
B−x0(z) = −a− sin(kz),

B−y0(z) = a− cos(kz),

B−z0(z) = a−z.

(2)

The xi = x, y, z components of the magnetic-field vector generated by a single helical wire, B+/−xin, are
shown in figure 2. The subscript n = 0, . . . , 15, denotes the wire index and +(−) stands for a
right-(left-)hand orientation of the wires. k = 2π/λ is the wave number of the traveling wave, where
λ = 14 mm is the periodicity of the helices in the present implementation. The parameters a+/− represent
the amplitude of the magnetic field at a probe current of 1 A. The dimension of a+/− is thus magnetic field
strength. Their values are derived in the supplementary material (https://stacks.iop.org/NJP/23/105006/
mmedia), where also the validity of equations (1) and (2) is demonstrated.

It is straightforward to obtain equivalent expressions for the magnetic fields produced by the other wires
with a rotational transformation by an angle nΔ where Δ = 2π/16 due to 16 wires being distributed evenly
around a cylinder. For the right- and left-handed helices, the components of the magnetic field are
accordingly given by

B+xn(z) = a+ sin(kz + nΔ),

B+yn(z) = a+ cos(kz + nΔ),

B+zn(z) = a+z,

(3)

B−xn(z) = −a− sin(kz + nΔ),

B−yn(z) = a− cos(kz + nΔ),

B−zn(z) = a−z.

(4)

The unitless scaling factors of time-dependent currents of the form

c+n(t) = c+ sin(φ+(t) + nΔ),

c−n(t) = c− sin(φ−(t) + nΔ).
(5)

are applied to the nth wire, where φ+/−(t) is the time-dependent phase of the currents supplied to the
right- (left-) handed layer. The additional phase nΔ serves as a compensation to the geometrical
arrangement of the wires in order to minimise higher-order harmonics in the synthesised magnetic-field
profiles. c+/− are the scaling factors of current amplitudes for right-(+) and left-(−) handed wires,
respectively, and can be tuned individually. The magnetic-field components generated by the entire
double-layer coil geometry are expressed as

Bx(z, t) =
15∑

n=0

{
c+ sin

[
φ+(t) + nΔ

]
a+ sin(kz + nΔ) − c− sin [φ−(t) + nΔ] a− sin(kz + nΔ)

}
, (6)

By(z, t) =
15∑

n=0

{
c+ sin

[
φ+(t) + nΔ

]
a+ cos(kz + nΔ) + c− sin [φ−(t) + nΔ] a− cos(kz + nΔ)

}
, (7)

Bz(z, t) =
15∑

n=0

{
c+ sin

[
φ+(t) + nΔ

]
a+z + c− sin [φ−(t) + nΔ] a−z

}
= 0. (8)

By introducing new parameters Aavg and δA which are the sum and the difference, respectively, of the
magnetic field amplitudes which are proportional to the currents applied to the two layers, c+a+ and c−a−
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can be expressed as

c+a+ = Aavg +
δA

2
,

c−a− = Aavg −
δA

2
.

(9)

The phases φ+(t), φ−(t) can be written as

φ+(t) = φavg(t) +
δφ(t)

2
,

φ−(t) = −φavg(t) +
δφ(t)

2
.

(10)

The ratio c+a+/c−a− depends on the radius and the current amplitude of each layer and can be tuned in a
way such that δA ≈ 0. Inserting equations (9) and (10) into equations (6) and (7) and assuming δA ≈ 0
yields

Bx(z, t) = NAavg sin

(
kz − δφ(t)

2

)
sin

(
φavg(t)

)
, (11)

By(z, t) = NAavg sin

(
kz − δφ(t)

2

)
cos(φavg(t)), (12)

Bz(z, t) = 0, (13)

where N = 16. Thus, the magnitude of the magnetic field on the central axis of the full double-helix
assembly reduces to the form of a traveling wave:

|B(z, t)| =
√

B2
x + B2

y + B2
z = NAavg

∣∣∣∣sin

(
kz − δφ(t)

2

)∣∣∣∣ . (14)

As can be seen in equations (11) and (14), the dynamics of the magnetic wave is controlled by the two
time-dependent phases δφ(t)

2 and φavg(t). The phase δφ(t) serves to control the position of the wave along
the coil axis. By applying a time dependence of the form

δφ(t)

2
= q0t2 + q1t + q2, (15)

the traveling magnetic wave can be programmed to decelerate, accelerate or propagate with constant
velocity along the z coordinate. The parameters q0, q1 and q2 are given by

q0 =
k

2

v2
F − v2

I

2L
,

q1 = kvI,

q2 = 0,

(16)

q0 determines the deceleration (acceleration) and q1 encodes the initial velocity vI of the traveling wave. The
constant phase shift q2 can be set to zero for practical purposes. vF stands for the final velocity of the
traveling wave and L is the length of the decelerator. The on-axis trap dynamics as a function of
time-dependent phase δφ(t)

2 is illustrated in figure 3(a) where the propagation of the magnetic wave is

illustrated by plots of the magnetic field for four values of the phase δφ
2 = π

16 , 5π
16 , 9π

16 and 13π
16 .

So far, only the magnetic-wave dynamics on the central coil axis was discussed. The transverse, i.e.
perpendicular to the central axis, components of the magnetic field were calculated numerically as
explained in the supplementary material. The transverse dynamics of the magnetic wave is controlled by the
time-dependent phase φavg(t). This is illustrated in figure 3(b) where the calculated magnetic field
|B(x, y, 0, t)| is plotted for four different values φavg = 0, π

4 , π
2 and 3π

4 . As can be seen in figure 3(b), the
magnetic field in the transverse direction exhibits a deep minimum along one direction capable of confining
magnetically low-field-seeking species. In the perpendicular direction, the minimum is very shallow so that
particles can escape along this axis. Changing the phase φavg varies the orientation of the trap in the
transverse direction. This effect can be understood as follows: assume a stationary on-axis magnetic wave,
i.e.

(
δφ
2 (t) = 0

)
, then the magnitude of the magnetic field in the transverse direction (at z = 0) generated by

the nth right- and left-hand-oriented helix is given by

Bn(x, y, 0, t) = c+B+n(x, y, 0) sin(φavg(t) + nΔ) + c−B−n(x, y, 0) sin(φavg(t) + nΔ), (17)

4
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Figure 3. Trap dynamics as a function of the phases (a) δφ/2 and (b) φavg controlled by applying appropriate time dependent
currents to the two layers of decelerator coils. The current amplitude used in the calculation is 300 A which is the typical value
chosen in the experiments.

where B+/−n(x, y, 0) is the magnetic field in the xy plane (z = 0) generated by the probe current of 1 A
supplied to the nth helix in right (left) layer. The right- and left-handed nth helices are maximally
contributing to the total magnetic field when φavg + nΔ = kπ

2 , k = 0, 1, 2, . . . If the phase φavg(t) changes
with time as φavg = ωavgt and an angular frequency ωavg, the time at which the nth helices are maximally

contributing is tn = kπ−2nΔ
2ωavg

. At the time tn+1 = tn +
Δ
ωavg

, the maximal contribution comes from the

(n + 1)th helices and the transverse field was rotated by an angle Δ. In this way, the transverse field is
rotated with time at the angular frequency ωavg. The two phases φ

2 (t) and φavg(t) can be chosen
independently from each other, leading to a decoupling of the longitudinal and transverse motions of the
trap. This feature prevents trap losses due to the motional coupling which are characteristic of the
conventional Stark and Zeeman decelerators [52, 53]. Experimentally, both phases are independently
controllable through the time-dependent phases of the supplied currents φ+(t) and φ−(t), equation (10). As
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Figure 4. Magnetic field generated by applying currents of 300 A to both layers of the decelerator coils in the (a) zx, (b) zy and
(c) xy planes.

Figure 5. Magnetic field |B0(t)| along (a) x and (b) y coordinate.

an example, numerically calculated magnetic fields in zx, zy and xy planes at t = 0 generated by
time-varying currents as given by equation (5) and a current amplitude I = 300 A are shown in
figures 4(a)–(c). The magnetic field exhibits confining characteristics along the z and y coordinates, but
only weak trapping along the x coordinate as discussed above (see also figure 5).
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Table 1. Polynomial fit coefficients for the magnetic field |B0|
shown in figure 5 along the x and y coordinates.

x coordinate y coordinate

a0 (T) 1.464(8) × 10−4 1.348(2) × 10−4

a2 (T m−2) 8.39(6) × 10−4 1.78(8) × 10−5

a4 (T m−4) −6.0(2) × 10−4 −2.1(2) × 10−5

a6 (T m−6) 3.18(8) × 10−4 1.9(1) × 10−5

a8 (T m−8) −8.4(2) × 10−5 −7.1(3) × 10−6

a10 (T m−10) 8.6(2) × 10−6 9.1(3) × 10−7

2.2. Transverse stability
In this section, the transverse stability of particles confined in a rotating trap is discussed. The equations of
motion along the x and y directions are given by the coupled differential equations

ẍ(t) = −α
∂

∂x
|B0

(
x(t), y(t), 0, t

)
|, (18)

ÿ(t) = −α
∂

∂y
|B0

(
x(t), y(t), 0, t

)
|. (19)

Here, B0

(
x(t), y(t), z(t), t

)
is the magnetic field generated by a probe current of 1 A supplied to the coil

assembly. The magnetic field generated by an arbitrary current is obtained by scaling the
B0

(
x(t), y(t), z(t), t

)
by a factor c = c+ = c−, B

(
x(t), y(t), z(t), t

)
= cB0

(
x(t), y(t), z(t), t

)
. α is a parameter

given by α = dc, where d = μeff
M is the magnetic-dipole-moment-to-mass ratio, μeff is the effective magnetic

dipole moment and M is the mass of the particle. μB is the Bohr magneton and mu is the atomic mass
constant. To discuss the dynamics of the particles in the rotating trap, the magnetic field |B0| along the x
and y coordinates at t = 0 are plotted in figure 5. The calculated magnetic field is shown by the red lines. A
polynomial fit using the function ffit = a0 + a2x2

i + a4x4
i + a6x6

i + a8x8
i + a10x10

i , xi = x, y is shown by the
black dash-dotted lines. By visual inspection of figure 5 and from the fitted parameters listed in table 1, it
becomes apparent that the magnetic field along both directions exhibits a high degree of anharmonicity
with 4th- and 6th-order terms still being significant.As a result of the anharmonicity, analytical solutions to
the coupled differential equations (18) and (19) do not exist. Therefore, the stability of the solutions as a
function of the parameter α and the rotational frequency ωavg/2π was examined numerically. Solutions
were propagated in time up to t = 50 ms using an adaptive 4th order Runge–Kutta algorithm. The
positions of the particles at the end of the propagation were examined. If the position was found to lie
within the trapping region, the trajectory was considered as stable, and otherwise as unstable. For given

parameters α and ωavg, the equations were solved numerically and the parameter β =
〈|Bmax

0,α (x(t),y(t),0,t)|〉
〈|Bmax

0 (x(t),y(t),0,t)|〉 was

calculated. The pointed brackets denote a time average. β represents the ratio of the maximum of the
time-averaged magnetic field B0 for which the trajectory of a particle is stable and the time-averaged
maximum of the magnetic field B0, or in other words, the ratio of the effective trapping potential and the
maximum trapping potential in the limit ωavg →∞ for a given particle.

The resulting stability diagram of the trap is shown in figure 6. Solutions of the equations of motion
were explored for a frequency range ωavg = 2π × (0–10) kHz, which corresponds to the operational range
of the experimental decelerator. The dependence of the parameter β on the parameters α and ωavg is
illustrated by a color map in figure 6. Regions of unstable trajectories appear in black. Seven distinct regions
were found within the parameter space studied, four regions with stable and three with unstable
trajectories. White dashed lines delineate the borders between stable and unstable regions, and were
produced by fitting a harmonic function kω2

avg to the data where k is a fitting parameter.
The highest stability (maximum β) is achieved for low values of α where trajectories are stable across

the majority of the range of frequencies. With increasing α, the threshold frequency indicated by the thick
white dashed line above which there are no regions of unstable behaviour increases and is proportional to√
α. The existence of regions of stable trajectories both at low and high rotational frequencies allows, in

principle, for a selective confinement of multiple molecular species in the deceleration process. This
property is illustrated by the example of the simultaneous trapping of H atoms in the 12S1/2(ms = 1/2)
state (blue dash-dotted line) and OH molecules in the X2Π3/2(ν = 0, mJ = 3/2) state (red dash-dotted
line). At low rotational frequencies (e.g. ωavg/2π = 0.3 kHz, second region of stability) H atoms have stable
trajectories while OH molecules have unstable trajectories and are thus ejected from the trap. Conversely, if
the angular frequency is in an intermediate range ωavg � 2π × 5 kHz, only trajectories of the OH molecules
are stable. In the frequency range ωavg � 2π × 5 kHz, trajectories of both species are stable and thus both
species are trapped efficiently.
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Figure 6. Stability diagram of a rotating magnetic trap plotted as a function of the angular frequency ωavg and the parameter α
(see text). Dark and bright colors represent regions of low and high stability, respectively. Black areas constitute regions in which
no stable trajectories were found. Regions of stable and unstable behaviour are separated by white dashed lines. The threshold
frequency (thick white dashed line) required for uniformly stable trajectories is proportional to ∝

√
α.

Figure 7. Relative population of OH molecules and H atoms inside a rotating trap at different instances of time for three
different values of the rotational frequency ωavg/2π = 0.3 kHz, 4.5 kHz and 10 kHz.

This effect is illustrated by numerically solving equations (18) and (19) for 105 OH molecules and H
atoms initialised in the trap with a uniform spatial distribution and a velocity distribution of 20 m s−1

(FWHM) for three rotational frequencies ωavg/2π = 0.3 kHz, 4.5 kHz and 10 kHz. The relative population
of each species inside the trap is extracted at different trapping times. The results are shown in figure 7. The
simulations confirm the enhanced trapping of H atoms for ωavg = 2π × 0.3 kHz (black lines) relative to OH
and vice versa for ωavg = 4.5 kHz (red lines). For ωavg = 2π× 10 kHz (blue lines), both species show stable
confinement with time with OH exhibiting a lower relative trapped population due to the lower trapping
potential. These effects are appreciable at the timescales of our experiments and will be the subject of future
experimental studies.

2.3. Numerical trajectory simulations
In order to model the particle dynamics within the entire decelerator and characterize its deceleration
performance, a numerical trajectory simulation code in the Python programming language was developed.
In the simulation, 105 OH molecules were initialised and their trajectories through the decelerator were
calculated under different operating conditions.

The forces Fi acting on each particle i along its trajectory xi(t) ) were obtained from its Zeeman energy
Wi according to Fi(xi(t)) = −∇Wi(xi(t)). The Zeeman energy level structure of OH [54] in its
X2Π3/2, v = 0 ground electronic and vibrational state in a magnetic field was calculated according to

W = μeffB = μB(Λ+ gsΣ)
MJΩeff

J(J + 1)
B, (20)

8



New J. Phys. 23 (2021) 105006 T Damjanovíc et al

Figure 8. The Zeeman effect of OH in its ground rovibronic state, X2Π3/2, v = 0, J = 3/2, as a function of magnetic field
strength B. e and f denote the parity components of the Λ-doublet.

where Λ and Σ are the quantum numbers of the projection of the electron orbital and spin angular
momenta on the molecular axis, gs is the electron-g factor (gs ≈ 2), and MJ and Ωeff are the quantum
numbers of the projection of the total angular momentum�J (with quantum number J) along the external
magnetic field and the molecular axis, respectively [54]. The Zeeman energy level structure for the lowest
rotational level, J = 3/2, is shown in figure 8. The low-field seeking quantum states with the largest Zeeman
energy at a given magnetic field strength which can be decelerated are X2Π3/2, |Ω| = 3/2, e and f, MJ = 3/2.

In the simulations, only molecules in the MJ = 3/2 state were considered. The molecules were initially
generated within a cylinder with a radius of 2 mm and a length of = 11 mm, which mimics the initial
spatial distribution of our experimental molecular beam [55], with a transversal velocity spread of 45 m s−1

and a longitudinal velocity spread of 90 m s−1. The mean forward velocity was initially chosen to be
450 m s−1 in line with our experiments [51]. Thus, the particles fill an initial six-dimensional phase-space
volume of 0.5 × 108 mm3(m s−1)3. Due to the time-dependence of the currents and complex structure of
the wire geometry, the magnetic fields could not be fully calculated prior to a simulation run and were thus
calculated on the fly. In order to reduce the computation time, the calculations were GPU-accelerated using
the NumbaCUDA library in Python [56]. In the simulations, the decelerator was assumed to be 1.792 m
long (32 deceleration modules [51]) followed by a 15 mm region of free flight after which the molecules
were detected. Exemplary results of time-of-flight profiles of the molecules extracted from the trajectory
simulations are displayed in figure 9. Here, the molecules were decelerated to nine different final velocities
in the range 449–50 m s−1 corresponding to decelerations of 0.25–55.80 km s−2. Depending on the final
velocity, the total transit times varied from 4.1 ms to 8.2 ms. Owing to the periodic geometry of the
traveling wave and depending on the initial longitudinal phase-space volume of molecules, several moving
traps can be filled and decelerated. This is evidenced by the substructure visible in the time-of-flight traces
in figure 9, especially at lower final velocities at which neighboring traps are increasingly separated in time.

To illustrate the phase-space stability of the new deceleration method, we show in figures 10(a)–(e) 2D
longitudinal phase-space distributions of particles in a single trap at the end of the decelerator for
decelerations ranging from 0.25 km s−2 to 55.8 m s−2 corresponding to final velocities in the range
449 m s−1 to 50 m s−1. Panel (f) corresponds to an acceleration of +27.6 m s−2, i.e. an acceleration to a
final velocity of 550 m s−1. A normalized particle density is shown as a color map, the calculated
separatrices delineating the phase-stable regions are represented by white solid lines. As evidenced by
figure 10, the phase-space volume transported through the decelerator decreases with increasing
deceleration, as is also the case with previous implementations of Stark- and Zeeman decelerators [52, 53].

Additionally, we explored the 2D phase-space dynamics in both transverse directions for the case of a
stationary transverse trap (ωavg = 0 kHz) and a trap rotating at ωavg = 2π× 10 kHz. Comparatively long
simulation times of 50 ms were chosen to allow the particles to fully explore the phase space. Figure 11
illustrates transverse phase-space distributions extracted from the trajectory simulations. The density
of the particles is represented by a color map. Figures 11(a) and (b) shows the phase-space distributions of
the particles in the x and y for ωavg = 2π× 0 kHz while panels (c) and (d) correspond to the case
ωavg = 2π× 10 kHz. Separatrices are indicated by white lines. We infer a factor of ∼2 difference in
transverse phase-space acceptance between the two cases. These results are in agreement with transverse
magnetic field distribution outlined in section 2.2, figures 4 and 5, where it was shown that stable trapping
regions exist for both ωavg/2π = 0 kHz and 10 kHz along the y direction. Along the x direction at an
angular frequency ωavg = 2π× 0 kHz, the phase-space distribution shows free-flight characteristics due to

9
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Figure 9. Simulated time-of-flight traces of decelerated OH molecules in the X2Π3/2, J = 3/2, MJ = 3/2 state. The molecules
were decelerated from an initial mean forward velocity of 450 m s−1 down to 400 m s−1, 350 m s−1, 300 m s−1, 250 m s−1,
200 m s−1, 150 m s−1, 100 m s−1 and 50 m s−1.

Figure 10. Longitudinal phase-space distributions of molecules obtained from the numerical trajectory simulations at the end of
the decelerator for decelerations (final velocities) of (a) 0.25 km s−2 (449 m s−1), (b) 22.5 km s−2 (350 m s−1), (c) 39.2 km s−2

(250 m s−1), (d) 50.3 km s−2 (150 m s−1), (e) 55.8 km s−2 (50 m s−1) and (f) -27.6 km s−2 (550 m s−1). The white traces delineate
calculated phase-stable regions obtained from a 1D model [53].

very small confinement. At an angular frequency ωavg = 2π× 10 kHz, there is no appreciable difference in
phase-space structure between the x and y directions as the particles are trapped in the same time-averaged
potential along both directions during the deceleration process.

In addition, the complete 6D phase-space acceptance was explored numerically for a range of
decelerations. Results of these calculations are shown in figure 12(a). The 2D longitudinal phase-space
acceptance is shown by the black line, while the transverse phase-space acceptances both for a stationary
(ωavg = 2π× 0 kHz) and rotating (ωavg = 2π× 10 kHz) trap are indicated by the blue lines. The full 6D
phase-space acceptance for a range of decelerations is shown in figure 12(b). An upper limit of the complete
6D phase-space volume is approximated by a product of the 2D volumes along each coordinate. The
dashed traces in figure 12(b) show the thus calculated maximum 6D phase-space acceptance for
ωavg = 2π× 10 kHz (blue dashed line) and ωavg = 2π× 0 kHz (red dashed line). Additionally, the full 6D
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Figure 11. Phase-space distributions of molecules in the transverse directions (a) and (c) x and (b) and (d) y obtained
from 3D numerical trajectory simulations. Panels (a) and (b) correspond to ωavg = 0, while (c) and (d) illustrate the case
ωavg = 2π × 10 kHz. White lines represent the calculated separatrices of the phase-stable regions for each case.

Figure 12. Phase-space acceptance of the traveling-wave Zeeman decelerator as a function of the deceleration. (a) Calculated 2D
phase-space acceptance for the longitudinal (black) and transverse (blue) directions with ωavg/2π = 0 and 10 kHz. (b) 6D
phase-space acceptance for ωavg = 2π× 10 kHz (dashed blue line) and 2π× 0 kHz (dashed red line) estimated from a product of
2D acceptance volumes along each coordinate. Results from the corresponding full 6D numerical trajectory simulations are
shown by full lines. See text for details.

phase-space volume at the end of the deceleration region was extracted from the numerical trajectory
simulations (blue and red full lines in figure 12(b)). The difference between the phase-space acceptances
estimated from the product of the 2D acceptances and the ones obtained from the trajectory simulations is
attributed to transverse instabilities of trajectories far from the centre of the trap.

The maximum phase-space acceptance volumes calculated for the highest deceleration (55.8 km s−2

corresponding to the final velocity of around 50 m s−1) are 8 × 104 mm3 m s−3 for ωavg = 2π× 10 kHz and
5 × 104 mm3 m s−3 for ωavg = 2π× 0 kHz. For comparison, the maximum phase-space acceptance volume
of a typical Stark decelerator at a final velocity of 50 m s−1 is 8 × 103 mm3 m s−3 [57, 58], and
2 × 107 mm3 m s−3 for the Zeeman decelerator reported in [30]. The phase-space acceptance of the current
assembly could be further enhanced by increasing the currents supplied to the coils.
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3. Conclusions

We have developed the theory describing the working principle of a novel traveling-trap Zeeman
decelerator including analytical expressions for the magnetic fields generated from a double-helix coil
geometry in one dimension. Two independent parameters governing the dynamics of the moving magnetic
traps were introduced. The transverse stability of the decelerator was explored in detail. It was shown that
trap stability in relation to the rotation frequency ωavg enables the selectively trapping of molecules
according to the magnetic-dipole-moment-to-mass ratio and the current amplitude supplied to the
decelerator. The deceleration efficiency is limited by the deceleration applied to the molecules which is an
intrinsic property of decelerators based on conservative forces.

Acknowledgments

Funding from the Swiss National Science Foundation, Grant No. 200020_175533, and the University of
Basel is acknowledged. DZ acknowledges the financial support from Freiwillige Akademische Gesellschaft
(FAG) Basel, the Research Fund for Junior Researchers of the University of Basel and National Key R & D
Program of China, Grant No. 2019YFA0307701.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Dongdong Zhang https://orcid.org/0000-0002-2541-837X

References

[1] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[2] Balakrishnan N 2016 J. Chem. Phys. 145 150901
[3] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[4] Tarbutt M R 2018 Contemp. Phys. 59 356
[5] van de Meerakker S Y T, Bethlem H L, Vanhaecke N and Meijer G 2012 Chem. Rev. 112 4828
[6] Narevicius E and Raizen M G 2012 Chem. Rev. 112 4879
[7] Jin D S and Ye J 2012 Chem. Rev. 112 4801
[8] Bohn J L, Rey A M and Ye J 2017 Science 357 1002–10
[9] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008

[10] Chupp T E, Fierlinger P, Ramsey-Musolf M J and Singh J T 2019 Rev. Mod. Phys. 91 015001
[11] Krems R V, Stwalley W C and Friedrich B (ed) 2009 Cold Molecules: Theory, Experiment, Applications (Boca Raton, FL: CRC

Press)
[12] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153–85
[13] McArdle S, Endo S, Aspuru-Guzik A, Benjamin S C and Yuan X 2020 Rev. Mod. Phys. 92 015003
[14] Kirste M et al 2012 Science 338 1060
[15] Vogels S N, Onvlee J, von Zastrow A, Groenenboom G C, van der Avoird A and van de Meerakker S Y T 2014 Phys. Rev. Lett. 113

263202
[16] Vogels S N, Onvlee J, Chefdeville S, van der Avoird A, Groenenboom G C and van de Meerakker S Y T 2015 Science 350 787
[17] Jankunas J and Osterwalder A 2015 Annu. Rev. Phys. Chem. 66 241
[18] Akerman N, Karpov M, David L, Lavert-Ofir E, Narevicius J and Narevicius E 2015 New J. Phys. 17 065015
[19] Gao Z, Karman T, Vogels S N, Besemer M, van der Avoird A, Groenenboom G C and van de Meerakker S Y T 2018 Nat. Chem. 10

469
[20] Vogels S N, Karman T, Kłos J, Besemer M, Onvlee J, van der Avoird A, Groenenboom G C and van de Meerakker S Y T 2018 Nat.

Chem. 10 435
[21] Segev Y, Pitzer M, Karpov M, Akerman N, Narevicius J and Narevicius E 2019 Nature 572 189
[22] Zhelyazkova V, Martins F B V, Agner J A, Schmutz H and Merkt F 2020 Phys. Rev. Lett. 125 263401
[23] Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
[24] Narevicius E, Parthey C G, Libson A, Narevicius J, Chavez I, Even U and Raizen M G 2007 New J. Phys. 9 358
[25] Hogan S D, Sprecher D, Andrist M, Vanhaecke N and Merkt F 2007 Phys. Rev. A 76 023412
[26] Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
[27] Wiederkehr A W, Motsch M, Hogan S D, Andrist M, Schmutz H, Lambillotte B, Agner J A and Merkt F 2011 J. Chem. Phys. 135

214202
[28] Wiederkehr A W, Schmutz H, Motsch M and Merkt F 2012 Mol. Phys. 110 1807
[29] Trimeche A, Bera M N, Cromières J-P, Robert J and Vanhaecke N 2011 Eur. Phys. J. D 65 263
[30] Lavert-Ofir E, Gersten S, Henson A B, Shani I, David L, Narevicius J and Narevicius E 2011 New J. Phys. 13 103030
[31] Motsch M, Jansen P, Agner J A, Schmutz H and Merkt F 2014 Phys. Rev. A 89 043420

12

https://orcid.org/0000-0002-2541-837X
https://orcid.org/0000-0002-2541-837X
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1063/1.4964096
https://doi.org/10.1063/1.4964096
https://doi.org/10.1126/science.aal3003
https://doi.org/10.1126/science.aal3003
https://doi.org/10.1080/00107514.2018.1576338
https://doi.org/10.1080/00107514.2018.1576338
https://doi.org/10.1021/cr200349r
https://doi.org/10.1021/cr200349r
https://doi.org/10.1021/cr2004597
https://doi.org/10.1021/cr2004597
https://doi.org/10.1021/cr300342x
https://doi.org/10.1021/cr300342x
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1126/science.aam6299
https://doi.org/10.1103/revmodphys.90.025008
https://doi.org/10.1103/revmodphys.90.025008
https://doi.org/10.1103/revmodphys.91.015001
https://doi.org/10.1103/revmodphys.91.015001
https://doi.org/10.1103/revmodphys.86.153
https://doi.org/10.1103/revmodphys.86.153
https://doi.org/10.1103/revmodphys.86.153
https://doi.org/10.1103/revmodphys.86.153
https://doi.org/10.1103/revmodphys.92.015003
https://doi.org/10.1103/revmodphys.92.015003
https://doi.org/10.1126/science.1229549
https://doi.org/10.1126/science.1229549
https://doi.org/10.1103/physrevlett.113.263202
https://doi.org/10.1103/physrevlett.113.263202
https://doi.org/10.1126/science.aad2356
https://doi.org/10.1126/science.aad2356
https://doi.org/10.1146/annurev-physchem-040214-121307
https://doi.org/10.1146/annurev-physchem-040214-121307
https://doi.org/10.1088/1367-2630/17/6/065015
https://doi.org/10.1088/1367-2630/17/6/065015
https://doi.org/10.1038/s41557-018-0004-0
https://doi.org/10.1038/s41557-018-0004-0
https://doi.org/10.1038/s41557-018-0001-3
https://doi.org/10.1038/s41557-018-0001-3
https://doi.org/10.1038/s41586-019-1446-2
https://doi.org/10.1038/s41586-019-1446-2
https://doi.org/10.1103/physrevlett.125.263401
https://doi.org/10.1103/physrevlett.125.263401
https://doi.org/10.1103/physreva.75.031402
https://doi.org/10.1103/physreva.75.031402
https://doi.org/10.1088/1367-2630/9/10/358
https://doi.org/10.1088/1367-2630/9/10/358
https://doi.org/10.1103/physreva.76.023412
https://doi.org/10.1103/physreva.76.023412
https://doi.org/10.1103/physrevlett.101.143001
https://doi.org/10.1103/physrevlett.101.143001
https://doi.org/10.1063/1.3662141
https://doi.org/10.1063/1.3662141
https://doi.org/10.1080/00268976.2012.681312
https://doi.org/10.1080/00268976.2012.681312
https://doi.org/10.1140/epjd/e2011-20096-1
https://doi.org/10.1140/epjd/e2011-20096-1
https://doi.org/10.1088/1367-2630/13/10/103030
https://doi.org/10.1088/1367-2630/13/10/103030
https://doi.org/10.1103/physreva.89.043420
https://doi.org/10.1103/physreva.89.043420


New J. Phys. 23 (2021) 105006 T Damjanovíc et al

[32] Liu Y, Zhou S, Zhong W, Djuricanin P and Momose T 2015 Phys. Rev. A 91 021403(R)
[33] Dulitz K, Tauschinsky A and Softley T P 2015 New J. Phys. 17 035005
[34] Cremers T, Chefdeville S, Janssen N, Sweers E, Koot S, Claus P and van de Meerakker S Y T 2017 Phys. Rev. A 95 043415
[35] Akerman N, Karpov M, Segev Y, Bibelnik N, Narevicius J and Narevicius E 2017 Phys. Rev. Lett. 119 073204
[36] Toscano J, Tauschinsky A, Dulitz K, Rennick C J, Heazlewood B R and Softley T P 2017 New J. Phys. 19 083016
[37] Semeria L, Jansen P, Clausen G, Agner J A, Schmutz H and Merkt F 2018 Phys. Rev. A 98 062518
[38] Cremers T, Chefdeville S, Plomp V, Janssen N, Sweers E and van de Meerakker S Y T 2018 Phys. Rev. A 98 033406
[39] McArd L A, Mizouri A, Walker P A, Singh V, Krohn U, Hinds E A and Carty D 2018 arXiv:1807.10648
[40] Plomp V, Gao Z, Cremers T and van de Meerakker S Y T 2019 Phys. Rev. A 99 033417
[41] Cremers T, Janssen N, Sweers E and van de Meerakker S Y T 2019 Rev. Sci. Instrum. 90 013104
[42] Jansen P and Merkt F 2020 Prog. Nucl. Magn. Reson. Spectrosc. 120–121 118
[43] Heazlewood B R 2021 Annu. Rev. Phys. Chem. 72 353
[44] Hogan S D, Motsch M and Merkt F 2011 Phys. Chem. Chem. Phys. 13 18705
[45] Meek S A, Bethlem H L, Conrad H and Meijer G 2008 Phys. Rev. Lett. 100 153003
[46] Meek S A, Conrad H and Meijer G 2009 Science 324 1699
[47] Meek S, Conrad H and Meijer G 2009 New J. Phys. 11 055024
[48] Osterwalder A, Meek S A, Hammer G, Haak H and Meijer G 2010 Phys. Rev. A 81 051401
[49] Meek S A, Parsons M F, Heyne G, Platschkowski V, Haak H, Meijer G and Osterwalder A 2011 Rev. Sci. Instrum. 82 093108
[50] Bulleid N E, Hendricks R J, Hinds E A, Meek S A, Meijer G, Osterwalder A and Tarbutt M R 2012 Phys. Rev. A 86 021404
[51] Damjanovíc T, Willitsch S, Vanhaecke N, Haak H, Meijer G, Cromíeres J and Zhang D 2021 New J. Phys. accepted
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