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Abstract: Concerns associated with nanocarriers’ therapeutic efficacy and side effects have led to the
development of strategies to advance them into targeted and responsive delivery systems. Owing to
their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been
extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with
advances in purely peptidic structures and in combinations of peptides, both native and modified,
with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on
peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends
on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on
nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special
emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane
barriers they encounter on their way to efficient function. In a second part, we address how peptides
advance nanoassembly delivery tools, such that they navigate delivery barriers and release their
nucleic acid cargo at specific sites in a controlled fashion.

Keywords: amphiphilic peptides; non-viral gene delivery; nanocarrier; peptide self-assemblies;
stimuli responsive

1. Introduction

Introducing exogenous nucleic acids into human target cells has been receiving a great
deal of attention for the treatment of several human diseases, in particular cancer and other
genetic disorders. Quite recently, a new treatment involving gene editing CRISPER has
made a mark by using mRNA encoding Cas [1,2]. In face of the worldwide coronavirus
pandemic, mRNA has moved into the limelight as vaccine and many companies are
working on other mRNA vaccines and therapeutics [3,4]. Both vaccines and disease
intervention involve delivering nucleic acids to intracellular locations on a path strewn
with obstacles. To ultimately accomplish modification of protein expression by replacing or
adding missing or defective genes, regulating gene expression at the RNA level (e.g., gene
silencing by RNA interference, modification of RNA processing), controlling microRNA
activity or by genome editing and reprogramming of cells, nucleic acids face a number of
challenging barriers. Hence, despite a broad range of possible therapeutic approaches, the
clinical success of gene therapy has yet to meet the expectations. The lack of efficacy and
issues with clinical safety, in particular with viral vectors, which make up about 70% of
vectors used in gene therapy, are the main reasons gene delivery systems fail in clinical
trials [5,6]. This has led to the emergence of non-viral vector systems, such as liposomes and
polymer supramolecular assemblies with better biological safety. However, their efficacy is
predominantly hampered by insufficient localization of the therapeutic agents at the site
of interest, both at the extracellular and intracellular level [7]. Owing to their remarkable
potency, selectivity and low toxicity, peptides offer ideal alternatives to overcome these
hurdles [8]. In addition, advancements in nanosystems continue to open new avenues for
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an efficient delivery of therapeutics and, thus, nanotechnology has become a favored tool
in medicine [7].

Nanocarriers based on their size, shape, charge, and surface chemistry are internal-
ized by target cells through different pathways including clathrin-mediated endocytosis,
caveolae- or cholesterol-mediated endocytosis, phagocytosis, and macropinocytosis [9,10].
After entering cells by endocytosis, nanocarriers usually remain sequestered in correspond-
ing transport vesicles and their fate depends on the endocytic pathway but also on the
physicochemical properties of the nanocarriers. Endosomal sequestration consists of multi-
ple membrane fusions, in which the endocytic vesicles sequentially merge with early and
late endosomes, proceeding all the way to the lysosomal compartment [10]. A constant
decrease in intravesicular pH and increase in digestive enzymatic content throughout
this pathway have a major impact on the stability of payloads and, subsequently, on effi-
cacy [10,11]. These limitations have led to the search for strategies that can properly protect
the macromolecular drugs from degradation and specifically target the major subcellular
compartments. Furthermore, a boost of discovery research for the better understanding of
intracellular trafficking routes highlight the need for carriers that overcome the barriers
associated with the delivery to the intracellular site of action [11].

The major shortcomings of most commonly used non-viral nucleic acid delivery
systems, such as lipoplexes and polyplexes include nonspecific distribution, inefficient
cytoplasmic delivery, and organelle targeting. In contrast, peptide-based nanocarriers,
e.g., peptide nanoparticles, also called peptiplexes, or peptidic multicompartment micelles,
and nano-assemblies equipped with peptides hold great promise as delivery platforms,
since they can be tweaked to facilitate penetration of cell membranes and to localize to
distinct subcellular compartments. In addition, peptides are easy to synthesize with a
desired bioactivity, and, by multivalent presence, endow the nanocarrier with high avidity
for the target [10,12]. Owing to the highly specific targeting capacity of corresponding
peptides, therapeutic nanocarriers are able to pass through the cell membrane and reach the
specific tissue and cells which results in enhanced intracellular distribution and extended
therapeutic window [13]. Furthermore, smart delivery systems are promising options to
provide solutions related to uncontrolled release of payloads: besides a biocompatible
nanocarrier and suitable targeting moieties, these platforms include stimulus-responsive
elements which endow them with triggered cargo release [14].

The concept of using peptides as targeting moieties for therapeutic and diagnostic
purposes has created new avenues for modern pharmaceutical industries [13,15]. Although
clinical progress in the application of peptides, alone or combined with nano-assemblies, is
slowly moving forward, large investments and wide-ranging research efforts confirm their
promising potential as a delivery platform for therapeutic systems. Increased interest in
smart nanocarrier design with particular focus on, but not limited to, cancer therapy with
the aim of precision medicine application has boosted this unique class of pharmaceutical
compounds into high demand [16–18].

In this review, we discuss various types of membrane active and stimuli responsive
peptides with regard to their role in refining different nanocarriers for gene delivery
applications. As peptides take center stage, we do not cover predominantly lipidic nor
inorganic nanoparticle gene delivery systems. We describe properties of peptides that
promote site-specific localization of nucleic acids and of peptide-based nano-assemblies.
Then, we lay the emphasis on peptide designs that confer stimuli-responsiveness upon
nanosystems with the aim to control payload release. Targeting, controlling, and stimuli-
responsive peptides advance nanosystems from non-specific carriers of nucleic acids to
smart site-specific gene delivery systems.

2. Peptide-Guided Delivery of Nucleic Acids across Biological Barriers

Membrane active peptides interact with cellular membranes by traversing them,
disrupting them or by residing at the membrane interface and fusing with them [19]. They
are known to overcome site-specific delivery barriers and facilitate intracellular delivery
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of various bioactive cargos with low cytotoxicity [19,20]. Although there is a wide variety
of membrane-active peptides, here we mainly discuss peptides for targeting nucleic acid
delivery systems to specific cells and tissues, and peptides that assist in the delivery of
nanocarriers across membrane barriers, such as cell penetrating peptides (CPPs), peptides
facilitating endosomal escape and those that target nanocarriers to subcellular organelles
(Figure 1).

Figure 1. Classes of membrane active peptides facilitating the delivery of nucleic acid across biological barriers. Created
with BioRender.com (Access to BioRender: June–July).

2.1. Tumor-Targeting Peptides

The ability of peptides to mediate translocation across membranes, traffic to desired
sites, as well as executing many fundamental cellular functions made them promising
candidates for targeting [21]. Owing to the high mortality related to cancer, substantial
research investments have been made over the past decades in order to develop specific
cancer diagnostics and treatments that improve survival rate [22]. The aberrant prolifera-
tion of tumor cells, accompanied by the up-regulation of their molecular markers result in
high levels of specific receptors in the tumor and its microenvironment [23]. Thus, tumor-
targeted delivery methods incorporate peptides or antibodies that are selective to the
receptors overexpressed on the tumors [24]. Selective targeting of these tumor-associated
markers promises the accurate targeting of signaling pathways that are dysregulated in the
tumor [25].

BioRender.com
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Although the use of antibodies to target tumors has become highly successful both in
tumor diagnosis and therapy, some deficiencies associated with antibodies, such as inade-
quate pharmacokinetics and limited tissue accessibility, as well as impaired interactions
with the immune system limit their clinical application. Compared to antibodies and other
tumor-targeting ligands, peptides offer better cell or tissue penetration, high affinity and
targeting specificity, low immunogenicity, high stability, and improved pharmacokinetics
by chemical modifications [26]. Tumor-targeting peptides, usually comprising less than
50 amino acids, are synthesized naturally or artificially [27,28]. For example, peptide
sequences containing an arginine-glycine-aspartic acid (RGD) motif are among the most
prominent targeting moieties for non-viral delivery systems [29]. The strong affinity of
the RGD motif for integrin receptors expressed on vascular endothelial cells and overex-
pressed on many cancer cells [30] facilitates cell attachment and uptake of nanocarriers by
receptor-mediated endocytosis (Figure 2) [31].

Figure 2. Schematic representation of (a) fabrication of the RGD10-10R/siRNA complex, (b) tumor-
targeted siRNA delivery involving ligand/receptor interactions. siRNAs accumulated in the tumor
tissue and then entered the tumor cells in a receptor (αvβ3)-mediated endocytosis (RME) man-
ner in vitro. After being internalized by cells, peptide/siRNA complexes escaped from the endo-
somes/lysosomes. Then, siRNAs were released from the complexes and loaded by RNA-induced
silencing complex (RISC). Targeted messenger RNA complementary to the guide strand (antisense
strand) of siRNA was selected and cleaved by argonaute protein. Reprinted with permission from [31].
Copyright 2015 Springer Nature.
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Likewise, the synthetic nonapeptide LyP-1 is an example of a tumor targeting peptide
that can selectively bind to its primary receptor p32 protein overexpressed in various tumor-
associated cells and atherosclerotic plaque macrophages [32]. Binding leads to proteolytic
cleavage of LyP-1 into a truncated version whose exposed C-terminal CendR motif becomes
active and triggers binding to NRP1 and/or NRP2 cell surface receptors [32,33]. This
interaction promotes cellular internalization of LyP-1 and its bioconjugates. NRP1/2 also
mediates transfer to the nucleus, which makes LyP 1-based delivery systems more effective
in imaging and treatment of diseases [34]. An overview of different tumor-targeting
peptides developed for cancer gene therapy is presented in Table 1.

Table 1. Examples of peptides used for targeting in cancer gene therapy.

Peptide Name Cargo Cancer Type Ref.

RGD siRNA breast [35]
cRGD siRNA brain [36]

siRNA skin [37]
iRGD siRNA pancreatic [38]

siRNA lung [39]
RGDfC siRNA and doxorubicin liver [40]
CRGDK siRNA and BAplatin breast [41]
CGKRK siRNA breast and brain [42]
KTLLPTP siRNA and paclitaxel pancreatic [43]
HAIYPRH siRNA and doxorubicin breast [44]
LyP-1 and iRGD siRNA ovarian [45]
YHWYGYTPQNVI siRNA liver [46]
T7 pDNA bone [47]

2.2. Cell-Penetrating Peptides

Cell-penetrating peptides (CPPs) are short peptides (less than 30 amino acids) derived
from naturally occurring proteins, designed de novo or a combination of both [48]. CPPs
by virtue of their ability to permeate the cell membrane in an innocuous manner provided
a means for successful cellular entry and intracellular trafficking of a wide variety of cargos
including nucleic acids (Figure 3) [49–53]. In addition to sequence length, charge and
amphipathicity are the main structural parameters determining internalization but also
cargo interactions. Penetration of nucleic acids across the cell membranes is a key step in
gene delivery and paves the way for an efficient gene therapy [52]. Nucleic acids can be
conjugated to CPPs, either by non-covalent complex formation or by covalent bonds [54].
CPPs promote the intracellular distribution of these membrane-impermeable therapeutic
molecules without destroying the integrity of cellular membranes and, thus, widen the
therapeutic window of cargos [13].
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Figure 3. Schematic illustration of cell penetrating TAT peptides complexed with siRNA and inte-
grated into modified tobacco mosaic virus (TMV) for virus-inspired gene silencing. Reprinted with
permission from [52]. Copyright 2018 American Chemical Society.

CPPs can be classified according to their physicochemical properties as cationic, am-
phipathic, and hydrophobic, which largely impacts the type of cell-membrane interactions
and uptake mechanism [55]. Extensive literature is available on the structure–activity rela-
tionship of CPPs [56–59]. Examples of CPPs classified according to their physicochemical
properties and the genetic cargo they delivered are summarized in Table 2.

Table 2. CPP classification based on physicochemical properties.

Cell-Penetrating Peptides

Cationic Amphipathic Hydrophobic
Name(origin) Cargo Ref. Name(origin) Cargo Ref. Name(origin) Cargo Ref.

Diatos Peptide Vectors
(DPV) siRNA [60] MPG pDNA

siRNA [61,62] C105Y pDNA [63–66]

HIV-1 twinarginine
translocation (TAT)

pDNA
siRNA [67–74] Transportan pDNA

siRNA [72,75,76] K-FGF pDNA [77]

arginine-rich peptides pDNA
siRNA [78–82] NickFect (NF) pDNA

siRNA [83–86] Bip pDNA [87]

Polyarginine pDNA [75,76,88–90] PepFect (PF) pDNA
mRNA [91,92] Melittin-derived

peptides siRNA [93]

Penetratin pDNA [94–96] MAP siRNA [97]
L5a pDNA [98,99] Crotamine pDNA [100–102]

VP22 pDNA [103,104]

Protamine pDNA
mRNA [105–109] Antennapedia

(Antp)
AON
siRNA [110,111]

Pep-1 pDNA [112,113]
CADY siRNA [114–116]
FGF pDNA [77]
pVEC pDNA [117,118]
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Cationic CPPs show a high affinity for negatively charged cell membranes because of
electrostatic interactions and, thus, internalize into the cell through a receptor-independent
mechanism. The key factors determining the activity of cationic CPPs are the number and
position of positively charged amino acids in their structure [57]. TAT and penetratin, the
first cationic CPPs discovered, have been widely used to promote cellular uptake and trans-
fection efficiency of various lipid-, polymer-, and peptide-based nanocarriers [119–121].
Accordingly, several artificial homopolymers of arginine and lysine peptides have been
developed to effectively translocate cargo across the membrane [122,123]. Notably, the
rate of cell uptake and subsequently transfection efficiency was higher for arginine-rich
peptides compared to polylysines [123–125].

Although most naturally occurring CPPs are cationic, the major class of CPPs is amphi-
pathic [48]. Amphipathic CPPs consist of polar and non-polar (rich in hydrophobic) amino
acid regions that are able to fold into α-helical and β-sheet-like structures. The secondary
structure might change in response to different physiological conditions which, in turn,
affects their penetration ability [57]. Prominent representatives of amphipathic CPPs are
various variants of N-Methylpurine DNA Glycosylase or MPG, where amphiphilicity
is a leading factor for their translocation across the membrane [126]. MPGs undergo a
conformational transition from unordered into a folded state upon their interaction with
membrane phospholipids mediated by polar residues. The resulting β-sheet conformation
governed by the hydrophobic domain of MPG lead to transient pore-formation in the
cell membrane, which in turn enable the MPG/cargo complexes direct penetration across
the membrane independent of endocytosis [126,127]. In addition to MPGs’ function in
promoting cellular internalization, it is well known for its strong electrostatic interactions
with oligonucleotides [128]. Consequently, MPG family members form stable noncovalent
nanocomplexes with nucleic acids that enter cells independently of the endosomal pathway.
Accordingly, MPG has shown to efficiently deliver small interfering RNA (siRNA) and
plasmid DNA (pDNA) into cultured cell lines [129]. Transportan and its analogs NickFect
and PepFect are other examples of amphipathic peptides that can condense pDNA and
siRNA into stable nanocomplexes [130–132]. Although their hydrophobicity appears to be
responsible for the nanocomplexes’ stability, the pH-induced change of their charge plays
a key role in promoting oligonucleotide condensation and high delivery efficiency.

Hydrophobic CPPs with low positive or negative net charge are less common and their
uptake mechanism is not well understood. For example, natural C105Y, K-FGF, and Bip
peptide belong to this group and their non-polar amino acids’ affinity to the hydrophobic
domain of cell membranes mediate their translocation [48].

2.3. Peptides Facilitating Endosomal Escape

Endosomal escape is a crucial step in improving intracellular delivery and efficiency
of nucleic acids [133]. Following endocytosis as the major uptake route for many peptide-
based nanocarriers, most internalized nanocarriers significantly suffer from their interaction
with endosomal membrane which leads to their entrapment and eventually their enzymatic
degradation in the lysosomal compartment [134,135]. Peptides are the most promising
candidates for promoting endosomal escape [136,137]. In particular, pH-sensitive peptides
that at physiological pH adopt a random coil structure, transform to an α-helical conforma-
tion able to induce membrane pore formation in the acidic environment of endosomes [138].
Similarly, studies on viruses escaping the lysosome have shown that some viral peptides
change from a hydrophilic ring structure to a hydrophobic spiral structure which will
target the core of the bilayer and destroy the stability of the membrane [139]. Peptide
development aims at facilitating escape from the endosome via pore formation, the “proton
sponge effect”, or conformational changes.

2.3.1. Fusogenic Peptides

Fusogenic peptides (FPs) are short peptides with the potential to promote membrane
destabilization and delivery of nucleic acids to the cytosol and/or the nucleus [140]. Fu-
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sogenic peptides consist of hydrophilic and hydrophobic domains that are able to form
helical structures at endosomal pH. This allows for direct engagement with the endosomal
membrane upon which further energetically favorable conformational changes induce
pore formation in the membrane. Disruption of the bilayer eventually leads to endosomal
escape of nanocarriers equipped with FPs and release of cargos to the cytoplasm (Figure 4).
Overcoming the endosomal membrane barrier presents an important role in facilitating
nucleic acids localization to distinct subcellular compartments as their site of action [54].
However, before integrating a fusogenic peptide into gene delivery systems, the cellular
uptake mechanism should be considered. Since the fusogenic activity of these peptides is
due to a pH-dependent shift in conformation, non-acidic endocytotic pathways, such as
caveolae-mediated endocytosis and macropinocytosis will revoke their membrane lytic
activity [141].

Figure 4. Schematic representation of FP and CPP-mediated delivery. (A) A conventional CPP-
mediated delivery. (1) (A) cationic CPP (blue) interacts electrostatically with the anionic cell-surface,
and a CPP-fused cargo (green) is internalized into the endosome by endocytosis. (2) Because the
endosomal escape efficiency of CPP is low, the cargo-CPP is subjected to lysosomal degradation.
(B) FP- and CPP-mediated delivery. (1) An FP (red)- and CPP-fused cargo is internalized into the
endosome by endocytosis. (2) Because the efficiency of FP-mediated endosomal escape is relatively
high, the cargo-FP-CPP is efficiently transferred from the endosome to the cytoplasm. Reprinted with
permission from [142]. Copyright 2017 Elsevier.

Fusogenic peptides are either derived from the transduction domain of proteins that
interact with cell membranes such as HA2, INF7, and melittin or are synthetic amphipathic
peptides that can penetrate membranes [141,143].

Wild-type HA2(1–23) peptide and a glutamic acid-enriched analogue (INF7) from
influenza virus hemagglutinin are the oldest and best studied fusogenic peptides used for
gene delivery [144–149]. These peptides, based on the protonation of their acidic residues
upon a decrease in pH, assume a helix structure and consequently promote the endosomal
escape, which, in turn, results in enhanced transfection efficiency [150,151].
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Melittin, a cationic amphipathic peptide composed of 26 amino acids, is derived from
the venom of the honey bee Apis mellifera. Melittin with its predominantly hydrophobic
20 N-terminal amino acids and hydrophilic C-terminus acts mainly like a natural detergent
on the membrane and is well known for its cytolytic activity [152]. Oligomerization of this
peptide results in the formation of transmembrane channels which lead to osmotic cell
lysis [153]. Owing to its cytotoxicity, the use of melittin as an agent to promote gene delivery
in transfected mammalian cells is limited. More recently, less toxic melittin analogues that
retained their ability to escape from the endosome were shown to enhance the efficiency of
non-viral gene delivery systems [154–156].

A number of pH-responsive synthetic amphipathic peptides mimic the fusogenic
activity of virus-derived peptides. The most prominent representatives consist of non-
polar alanine-leucine-alanine repeating units with considerable repetitive content of ei-
ther glutamic acid, lysine, or arginine, and are named GALA, KALA, or RALA, respec-
tively [157–161]. Likewise, upon protonation at endosomal pH (5.0), they assume an am-
phipathic α-helical conformation which is associated with a significant affinity for binding
to phospholipid membranes. As a consequence, pore formation, membrane fusion, and/or
lysis are induced. Their membrane lytic activity explains extensive utilization of these
fusogenic peptide in modulating non-viral gene delivery systems [76,162–166]. Similar to
GALA, JTS-1, a negatively charged amphipathic peptide with strong nonpolar amino acids
in the hydrophobic domain and glutamic acid residues in the hydrophilic domain is able to
form an α-helical structure [167]. Owing to the endosomolytic capacity of JTS-1-modified
carriers, improved transfection activity was reported in several studies [168,169].

Taking advantage of the fusogenic properties of peptides, alone or in combination
with other advantageous attributes, promotes the efficacy of peptide-based nanocarriers
for traversing membranes and, thereby, improves their therapeutic effects. Yet, there is a
strong need for systematic study of different fusogenic peptides under similar conditions
in order to elucidate the mechanisms and pin down the parameters that ultimately will
maximize therapeutic outcome. This comprehensive comparison of fusogenic peptides
will allow for designing a robust, widely applicable delivery system.

2.3.2. Histidine-Rich Peptides

The combination of being able to condense nucleic acids and at the same time promote
endosomal escape spurred efforts to incorporate histidine-rich amphipathic peptides into
various gene delivery systems [170]. As described for fusogenic peptides, histidine residues
that become protonated during acidification of the endosome interact with negatively
charged membrane lipids (Figure 5) and destabilize the membrane [171]. Histidylation
of different non-viral vectors among which polylysine was the first example, was found
to increase the buffering capacity of vectors [172]. Substituting several lysines with his-
tidines turns polylysine into a successful gene delivery vector with enhanced transfection
efficiency [173–178].
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Figure 5. Schematic illustration of the intracellular trafficking of mPEG-b-PLA-Phis-ssPEI and siRNA complexes. After
internalized by tumor cell, (I) the complexes rapidly disassemble to release siRNA and free polyethylenimine (PEI)
molecules in response to the acidic and reductive microenvironment, (II) efficiently escape from the endosome, facilitated
simultaneously by cleaved PEI chains inducing membrane destabilization, the “proton sponge effect” of polyhistidine and
polyethylenimine, as well as the relative small size of after disassembly, (III) achieve efficient gene silencing by cytosolic
target mRNA cleavage. Adapted with permission from [179]. Copyright 2018 Elsevier.

Influenza-derived, histidine-rich H5WYG peptide that is capable of traversing in-
tracellular barriers to deliver nucleic acids, is another well-known example that raised
great interest. This pH sensitive peptide has been extensively applied to improve the gene
delivery efficacy of different polymeric, peptidic, and lipid-based carriers [180–186].

Cationic LAH4 is another widely studied histidine-rich peptide where the protonation
of the imidazole groups invokes chloride ion, as well as proton influx into the endosome,
creating a hypertonic environment. Although the so-called “proton sponge effect”, i.e.,
the osmotic influx of water triggering endosome lysis, has been recognized as the pri-
mary route of endosomal escape, other mechanisms also exist [187,188]. Changes in pH
modulate the amphipathicity and membrane topology of LAH4 and derivatives: they
are transmembrane at neutral pH, whereas under acidic conditions, LAH4 peptides align
parallel to the phospholipid bilayer surface [189,190]. The interactions of the peptides with
the bilayer interface eventually result in pore-formation [191] and membrane lysis [192],
thereby modulating nucleic acid delivery. Inspired by the ability to enhance the efficiency
of several gene delivery systems, researchers in the past extensively used LAH4 peptides as
targeting moiety [187,193–198]. By now, there is a growing number of peptidic, as well as
polymeric and lipidic carriers that utilize other histidine-rich moieties, such as O10H6 [199],
MS(O10H6) [200,201], histidine-rich Tat peptide [202–204], or His6 RPCs [205,206] to de-
velop new promising gene delivery strategies. The possibility of intracellular delivery of
nucleic acids in a nontoxic manner, which is a necessary prerequisite for gene therapy,
has opened interesting perspectives in non-viral gene delivery. Nevertheless, there are
many unanswered questions regarding the precise capacity or trafficking routes involved
in favoring endosomal escape [172]. Hence, a comprehensive screen and quantification of
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this step will provide further improvements for exploiting histidine-rich peptides in the
field of gene therapy.

2.4. Peptides Assisting Delivery to Subcellular Organelles

A major focus in gene therapy is delivering nucleic acids to those intracellular com-
partments where they are therapeutically most effective. By escaping the endosome, siRNA
and mRNA cargos arrive at their final destination, the cytosol, whereas DNA cargoes
require translocation to the nucleus or to mitochondria. Intracellular targeting peptides
serve a promising approach to specifically direct their cargo to the respective organelles
and ensure membrane interactions that support delivery. Obviously, such peptides are
particularly favorable candidates to be integrated into gene delivery systems [10,207]. The
degree of translocation enhancement depends on the characteristics of both, delivery sys-
tem and targeting peptide [208]. In the following sections, we address the mechanisms
of intracellular nanoparticle trafficking and provide examples employing intracellular
targeting peptides to ensure nuclear and mitochondrial targeting of nucleic acids.

2.4.1. Nuclear Localization Signals

Nucleocytoplasmic transport is major consideration for effective non-viral gene deliv-
ery [207,209]. Once inside the cell, most DNA must translocate into the nucleus where they
can be either transcribed into the messenger RNA (mRNA) or interfere with transcription
and RNA processing [210,211]. Nuclear localization signals (NLSs) are short peptide motifs
rich in arginine, lysine, or proline that mediate nuclear translocation and when attached to
foreign macromolecules or nanocarriers, deliver them to the nucleus [212]. For example,
polymersomes, artificial vesicles resulting from self-assembly of amphiphilic copolymers,
bypass the nuclear pore complexes (NPCs) that regulate transport into and out of the
nucleus and deliver payloads directly into cell nuclei (Figure 6) [213]. Active transport
of macromolecules to the nucleus is carried out by interactions of the NLS with importin
receptors (karyopherins) and specific proteins of the NPC [214,215].

In view of the fact that the nuclear membrane is the main barrier restricting transgene
expression of most non-viral carriers, gene therapy is the obvious field for the application
of nuclear targeting peptides [216]. The significance of incorporating NLS peptides into
non-viral delivery systems that can adequately favor the genetic materials release into the
nucleus manifests itself by expanding case studies [207,217]. Hereby, positively charged
NLS peptides either are attached to the negatively charged DNA via electrostatic interac-
tions or are covalently coupled to the phosphate backbone of the DNA or to the condensing
agent of the non-viral vector [216].

A frequently used NLS is derived from the large tumor antigen of Simian virus
40, SV40 (PKKKRKV). The positive charges of SV40 NLS peptide not only help in DNA
condensation, but also mediate nuclear targeting [218]. Consistently, addition of the SV40
NLS peptide and its derivatives enhanced the transfection efficiency of many non-viral
carriers [219–222].

Another interesting NLS is M9, a 38 amino acid peptide derived from heterogeneous
ribonucleoprotein A1 (hnRNP A1) which is a major nuclear pre-mRNA binding protein.
M9 is responsible for ferrying hnRNP A1 into the nucleus and also contains a nuclear
export sequence (NES) [223]. Owing to its rather low positive charge, M9 is relatively
poor at condensing DNA. On the other hand, it strongly interacts with its known receptor
transportin 1 [224]. Therefore, utilizing the nuclear import effect of M9 in combination
with positively charged biomaterials that condense the DNA offers great potential for gene
therapy [142,225,226]. Furthermore, an NLS sequence derived from the HIV-1 viral protein
(Vpr) promotes nuclear import through a karyopherin α–independent mechanism [227].
Examples for an enhanced transfection efficiency with Vpr-containing non-viral vectors
are reviewed by Cartier and Reszka [217].
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Figure 6. Organelle-specific targeting of polymersome NCs into the cell nucleus. (a) NLS-NCs self-
assemble from amphiphilic PMOXA-PDMS-PMOXA triblock copolymers. Two model compounds
are used to test for nuclear delivery: Ruthenium red (RR) that is encapsulated within the NLS-NC
lumen, and Bodipy 630/650 that incorporates into its polymeric membrane. (b) The nuclear transport
mechanism involves Kapα•Kapβ1 that (1) authenticates NLS-NCs for selective NPC transport,
(2) binds to FG Nups, and (3) releases NLS-NCs into the nucleus upon binding RanGTP. Reprinted
with permission from [213]. Copyright 2020 National Academy of Sciences.

Other examples of targeting sequences that facilitate nuclear transport of exogenous
DNA include Xenopus protein nucleoplasmin [228,229], adenoviral peptide (Ad) [217,230],
human T-cell leukaemia virus (HTLV) [224], Epstein–Barr virus nuclear antigen (EBNA)-
1 [231]. By overcoming intracellular barriers, these peptides greatly expand the perspectives
in non-viral gene delivery.

2.4.2. Mitochondrial Delivery

Mitochondria have their own genome whose mutations are associated with numerous
disorders, such as cancer, diabetes, neurodegenerative diseases including Parkinson’s
disease, and more recently infectious and autoimmune diseases [225,226]. Given the link
between mitochondrial dysfunction and disease, targeting of therapeutic interventions
to these subcellular organelles is of vital importance [232,233]. Efficient mitochondrial
gene therapy requires nanocarriers that, once inside the cell, target mitochondria and
ferry nucleic acids across the outer (OMM), as well as inner mitochondrial membrane
(IMM) [234]. The hydrophobicity and negative charge of MMs require that for efficient
mitochondrial delivery, negatively charged DNA be shielded by carrier molecules, such as
peptides that have amphiphilic and cationic properties.

Many natural and artificial short peptides and polypeptides have mitochondrial tar-
geting ability [235,236]. Typically, these peptides comprise hydrophobic (phenylalanine,
tyrosine, isoleucine) and positively charged (D-arginine, lysine) amino acids. The devel-
opment of mitochondrion-targeted delivery strategies involving mitochondrial targeting
sequences (MTSs), which are typically tens of amino acids in length, mostly takes advan-
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tage of MM properties including the high negative potential (−160 to −180 mV) and the
intrinsic protein import machinery. Although MTSs vary in length, they have in common
an α-helical structure with an amphiphilic surface that mediates internalization by en-
dogenous transmembrane transporters. However, because of their rather large size, low
solubility and insufficient permeability across the plasma membrane, MTSs by themselves
are not suitable for delivering exogenous nucleic acids.

In addition to MTSs that are recognized by translocators, several smaller peptides
consisting of 4–16 cationic and hydrophobic residues efficiently target and permeate mito-
chondrial double membranes [235,237]. These mitochondria-penetrating peptides (MPPs),
also known as mitochondrial CPPs (mtCPPs), typically appear to penetrate cellular mem-
branes directly rather than by endocytosis [238]. Consequently, nanocarriers targeted by
MPPs circumvent endosome/lysosome segregation, which also increases the chance of
(gene) delivery to the mitochondria. In addition, MPPs appear to have marginal effects on
mitochondrial membrane potential [239]

Considering that cell and mitochondrial membrane barriers have distinct compositions
and properties, a single peptide will not be able to mediate the crossing of both. Here,
combining CPP activity and mitochondrial targeting can act synergistically to optimize
delivery of peptide-based DNA nanoparticles to mitochondria (Figure 7) [233,240]. For
example, a library of fusion peptides with mitochondria targeting (mtCPP1) and cell-
penetrating properties (Pepfect14, a stearylated CPP forming ASO nanocomplexes with
splice-correction activity in cells [241]) that self-assembled with antisense oligonucleotides
(ASO) into complexes was successful in knocking down mitochondrial mRNA [242]. A
combinatorial approach to develop mitochondrial gene expression was also pursued by
incorporating an MTS into WRAP peptides (short tryptophan/arginine rich peptides; [243])
which formed nanocomplexes with plasmid DNA encoding the mitochondrial ND1 gene
that were taken up by cells and targeted to mitochondria [244]. Systematic analysis of CPPs
and MTSs revealed that while both types of peptides were rich in Ala and Arg, the latter
included Leu, suggesting a role for Leu in targeting to mitochondria [245].

Figure 7. Mitochondrion-targeting peptides and peptidomimetics based on their structural classes
and reported applications. Abbreviations: MTSCPP, MTS with cell-penetrating peptides; MPP,
mitochondrion-penetrating peptides; SS-peptides, Szeto−Schiller peptides; CAPH, cationic am-
phiphilic polyproline helix; CRP, cysteine-rich peptides; FLAG-modified peptide, FLAG tag-based
peptide that self-assembled into a nanofiber; AMP, peptides derived from antimicrobial peptides;
CPM, nonpeptidic cell-penetrating motif; OMM, outer mitochondrial membrane; IMM, inner mito-
chondrial membrane; IMS, intermembrane space. Reprinted with modification from [233]. Copyright
2020 American Chemical Society.
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3. Peptide-Related Nano-Assemblies for Nucleic Acid Delivery

Peptides have great potential as self-assembly building blocks on account of pri-
mary and secondary structure variability. Depending on the design, they form vari-
ous supramolecular assemblies, such as vesicles [246], micelles [247], nanotubes [248],
nanofibers [249], or nanoribbons [250]. Choosing corresponding peptide building blocks
allows for tuning size and shape of the nano-assembly to obtain improved nanocarrier prop-
erties including cargo loading and delivery. Moreover, the weak interactions involved in
peptide self-assembly are sensitive to environmental conditions, enabling nano-assemblies
to exhibit specific functionalities in response to different external stimuli, such as tempera-
ture, pH, redox state, enzymes, or even light. We first focus on examples of supramolecular
assemblies where peptides represent the predominant building block of the nanocarriers or
are integrated into the nanocarriers to improve their targeting and gene delivery properties,
and then discuss examples with stimuli-responsiveness.

Prominent structures that serve as nucleic acid carriers are micelles entrapping DNA
during self-assembly, also called “micelleplexes” [251]. If purely peptidic, micelleplexes
possess minimal cytotoxicity [20]. However, often peptides are used as a targeting or
uptake-facilitating moieties associated with nanocarriers made out of different, less bio-
compatible materials. A micelle forming polymer-peptide conjugate used as an siRNA
carrier has recently been reported as an effective tool in anti-metastasis cancer therapies
(Figure 8) [252]. Methoxy-polyethylene glycol combined polycaprolactone conjugated with
a cytoplasm-responsive peptide CH2R4H2C (MPEG-PCL-CH2R4H2C) was used to entrap
anti-RelA siRNA (siRelA). RelA is a subunit of NF-κB involved in metastasis, especially
cancer cell migration and invasion. The MPEG-PCL part of the conjugate was expected
to improve blood retention and tumor accumulation and to facilitate micelle formation.
Consistent with this notion, siRelA/MPEG-PCL-CH2R4H2C micelleplexes successfully
delivered siRNA into cancer cells in a lung metastasis mouse model, causing inhibition of
RelA accompanied by significant suppression of metastasis.

Figure 8. The structure of MPEG-PCL-CH2R4H2C and nano-micelle formation. Reprinted with
permission from [252]. Copyright 2020 Multidisciplinary Digital Publishing Institute (MDPI).

More recently, peptide-assisted polymeric micelles were used for inhibiting the mitotic
cycle of prostate cancer cells by siRNA delivery in cell lines and in tumor-burdened nude
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mice [253]. The hydrophilic segments of acetal-polyethylene oxide-b-polycaprolactone
(A-PEO-PCL) copolymers were chemically modified with a TAT peptide and a ligand for
prostate-specific membrane antigen (DCL) to enhance targeting and cell penetration of
self-assembled micelles loaded with siRNA and docetaxel (anti-cancer drug).

Other small molecules, for example a palmitoyl chain conjugated to the N-terminus
of GGGAAAKRK [254], proved useful in promoting self-assembly of peptides to distinct
nanocarriers with a hydrophobic core. Accordingly, surfactant-like palmitoyl-GGGAAAKRK
formed peptide nanofibers (PNFs) in the presence of siRNA specific for the down-regulation
of BCL2 protein. Human SH-SY5Y cells showed significant uptake of PNF:siBCL2 con-
structs in vitro and silencing of BCL2 in specific loci of rat brains demonstrated effective
delivery of siRNA. In another example, a branched amphiphilic peptide comprising oligoly-
sine segments with DNA binding properties formed different structures depending on
the peptide/DNA ratio: at high peptide/DNA ratio, it coated the DNA surface forming
nanofibers and at low peptide/DNA ratio, it condensed the DNA into nanometer-sized
compacted structures [255]. Using pDNA encoding green fluorescent protein (GFP) as
cargo, the peptide nanocarrier demonstrated higher transfection efficiency in HeLa cells
compared to Lipofectin (commercial transfection agent) when the total number of transfec-
tants alive was considered.

Another type of versatile and reproducible supramolecular nanocarrier with well-
defined structure and composition are dendrimers [256]. Many types of dendrimers in-
cluding peptide dendrimers (PPI; [257]), poly(L-lysine) dendrimers, and polyamidoamine
(PAMAM) dendrimers that display electrostatic interactions with nucleic acids and protect
the cargo from degradation, are particularly suited for gene delivery. In addition, den-
drimers lend themselves to surface conjugation of peptide moieties that enhance gene
delivery. Conjugation of TAT (HIV transactivator of transcription) peptide to PAMAM den-
drimer formed nanometer-sized (105 nm–115 nm) ‘dendriplexes’ with GFP pDNA [258]
that displayed an increased transfection efficiency in Vero cells compared to PAMAM
without TAT.

Stimuli-Responsive Gene Delivery Systems

Peptide-based assemblies are particularly attractive for developing stimuli-responsive
therapeutic nanocarriers for several reasons: they are biocompatible, readily degraded and
then removed from the organism, but most importantly, highly sensitive to environmental
conditions. Small changes in external factors, such as temperature or pH, can induce
transformation of secondary structures (α-helices, β-sheets, and β-turns), thereby affecting
the morphology and concomitantly the function and bio-activity of the polypeptides [259].
Moreover, control over cargo release is a highly sought-after feature in gene delivery
systems and stimuli-responsive nanocarriers can deliver nucleic acids more efficiently
by reducing unspecific release. To date, peptide vectors forming complexes with DNA
by electrostatic interactions still make up the majority of peptide-based nanocarriers. As
stimuli-responsiveness can be readily obtained by modifying the peptide sequence, these
nanoparticles (peptiplexes) represent the main targets for a control of cargo release by
external stimuli. However, nano-assemblies, based on their modularity offer not only
increased DNA loading capacity but are also more susceptible towards environmental
stimuli.

The pH-responsive peptides have been intensively investigated in delivery and diag-
nostic systems because pH variations are typical for many biological systems, intracellular
compartments (lysosomes and endosomes), specific organs (gastrointestinal tract and
vagina), and pathological conditions [260,261]. Particularly, the microenvironment of many
tumor tissues has a lower pH (<6.5) compared to normal tissues (pH 7.4). Thus, polypep-
tides that change conformation in a pH-dependent fashion can find application in selective
binding to cancer sites which can be exploited for tumor diagnosis and treatment. Nanocar-
riers taken up by endocytosis encounter acidification in the endosome, which is exploited
by pH-responsive peptides to increase endosomal escape. For example, (Fmoc)2KH7-TAT,
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an amphiphilic, pH-responsive chimeric peptide [262], complexed with pGL-3 reporter
plasmid mediated transfection of 293T and HeLa cells by promoting endosomal escape via
protonation of KH residues. Moreover, co-delivery of p53 plasmid and doxorubicin using
(Fmoc)2KH7-TAT self-assembled micelleplexes inhibited cell growth in vitro and tumor
growth in vivo.

Nanocarriers with peptide-mediated redox-sensitivity have emerged as a fascinating
type of biomedical material with potential for triggered gene and drug delivery inside cells.
Sensitivity of peptides to the redox state is provided by disulphide bonds, diselenide bonds,
succinimide-thioether linkage or by redox sensitive groups, such as “trimethyl-locked”
benzoquinone [263]. In a reducing environment, redox-responsive nanocarriers undergo a
change in conformation and release their cargo. A major advantage of redox-responsive
nanocarriers is their stability in normal tissues which avoids cytotoxicity caused by the
unwanted release of therapeutic cargo. Tumor tissues show 4-fold higher glutathione levels
compared to healthy tissue and thus triggers redox-responsive cargo release [264].

A “smart”, redox-sensitive peptide designed to trigger the assembly of gadolinium
nanoparticles inside cells, was successfully applied in magnetic resonance imaging of tu-
mors in a xenograft mouse model [265]. Acetyl-RVRR-C(StBu)-K(Gd-DOTA)-CBT contains
an RVRR sequence which mediates cell membrane translocation but is also a cleavage site
for intracellular furin, typically upregulated in many tumors, and a disulphided Cys motif.
After entering the cell, the disulfide bond is reduced by intracellular glutathione (GSH)
and subsequently, the RVRR motif is cleaved by furin in situ. The cleavage product quickly
condenses to amphiphilic dimers that self-assemble via π-π stacking into Gd-containing
nanoparticles.

Peptide structures and the weak interactions contributing to self-assembly of peptide-
based nanocarriers are inherently sensitive to temperature [266,267]. An interesting ex-
ample of a thermo-responsive, purely peptidic DNA nanocarrier are multi-compartment
micellar nanoparticles (MCM-NPs) assembled from (HR)3gT peptide (Figure 9) [20].

Figure 9. Schematic representation and TEM micrograph of the self-assembled (HR)3gT multi-
compartment micellar nano-assembly (MCM) at 4 ◦C (left) and temperature-induced disassembly of
MCMs into disperse or clustered smaller MCMs and individual micelles at 37 ◦C (right). Modified
from [20] with permission from the Royal Society of Chemistry.

Although the multicompartment micellar structure of NPs was stable at 4 ◦C, in-
creasing the temperature to 37 ◦C triggered structural changes that led to the disassembly
into smaller MCMs and individual micelles after several hours. On account of the high
cellular uptake efficiency and thermo-responsive disassembly at physiological temperature,
MCM-NPs are a promising DNA delivery vehicle with great potential for application
in vivo. Similar multicompartment micellar NPs assembled from H3SSgT peptide bearing
a disulfide functional group between hydrophilic and hydrophobic domain, were devel-
oped for redox-responsive codelivery of oligonucleotides and drugs [268]. The disulfide
bond conferred responsiveness to physiological concentrations of reducing agent upon
NPs, resulting in release of the incorporated cargo. The advantage of a supramolecular
multicompartment structure over individual micelles lies in the increased capacity for
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oligonucleotide condensation [269]. Together with the ability to entrap various hydropho-
bic cargos, this makes MCM-NPs well-suited for biomedical applications.

Light has received much attention as an external stimulus, as it provides spatiotem-
poral control that can be triggered remotely. By crosslinking peptides with specific light-
absorbing molecules it is possible to obtain photo-responsive conjugates that allow for light-
stimulated assembly of nanostructures or light-induced release of cargo molecules. Such
light-sensitive conjugates of peptides and photosensitizers can serve as light-controllable
phototherapeutic agents [270].

Photo-crosslinking by UV (254 nm) of poly(ethylene glycol)-b-poly(l-glutamic acid)
diblock copolymer was shown to convert the core of self-assembled core-shell micellar
structures to nanogels that, depending on the composition of the copolymer, could release
drug payload in a pH-dependent manner [271]. These results indicated the potential of
nanogels fabricated by photo-crosslinking of polypeptide micelles as intelligent delivery
systems.

Micelles with a photocleavable poly(S-(o-nitrobenzyl)-l-cysteine) (PNBC) core sur-
rounded by a hydrophilic poly(ethylene glycol) (PEO) corona were also obtained by self-
assembly of PNBC-b-PEO amphiphilic block copolymer [272]. UV irradiation (365 nm)
of these micelles gradually removed nitrobenzyl groups from PNBC-b-PEO resulting in
a shrinkage of the micelles. If micelles were prepared in the presence of doxorubicin, a
photo-triggered release of the drug was observed in vitro. Since self-assembly is achieved
in aqueous solution, photocleavable polypeptide-based block copolymers lend themselves
to developing photoresponsive nanomedicines for anticancer therapy.

4. Combinatorial Approach for Advanced Nucleic Acid Delivery

In view of gene therapy, endowing nanocarries with targeting features and stimuli-
responsiveness that provides site-specific, triggerable control over cargo release could
optimize delivery efficacy, and, at the same time, minimize adverse effects.

For example, folate-receptor targeting, acid-sensitive polymeric micelles (F-ASPM)
have been successfully applied to deliver siRNA to breast cancer cells (Figure 10) [273].
In this approach, poly (L-histidine)-polythelene-glycol (PEG-PHIS) and folate-conjugated
PEG-PHIS amphiphilic block copolymers in the presence of CPP-coupled siRNA self-
assembled into micelles where folate functioned as targeting ligand and histidine residues
provided pH-responsiveness. As PEG-PHIS block copolymers have a pKb of 6.5–7.0,
micelles formed by this copolymer dissociate at pH 6.5–7.0 which renders them suitable
for constructing drug/DNA delivery systems that are sensitive to the extracellular tumor
environment. In addition, c-myc silencing siRNA conjugation to a CPP was obtained
by reduction-sensitive disulfide bonding which turned the resulting micelles into a dual
responsive nanocarrier able to target tumor cells where release and delivery of siRNA are
promoted by the respective peptide sequences.

The combination of targeting and stimuli-responsiveness is also provided by ROSE,
a redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced carrier
system [274]. In ROSE, adamantyl-PEG chains with and without disulfide bonded SP94
targeting oligopeptide, mixed with hydroxypropyl-β-cyclodextrin formed supramolecular
complexes condensing tumor-suppressor microRNA-34a (miR-34a). Oligopeptide-guided
specificity for hepatocarcinoma cells and release of miRNA following disulfide cleav-
age in the reducing environment significantly improved the tumor-suppressing effect of
ROSE/miR-34a over conventional gene delivery strategies.
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Figure 10. Diagram of F-ASPM formation and the mechanism of siRNA delivery into cancer cells. (i) synthesis of PEG-PHIS
and F-PEG-PHIS. (ii) self-assembly of amphiphilic block copolymers in the presence of siRNA-CPP into acid-sensitive
nanocarriers with active targeting ability (F-ASPM). (iii) binding of F-ASPM to cancer cells by folate receptor targeting.
(iv) pH-stimulated release of siRNA-CPPs from F-ASPM. (v) GSH-mediated cleavage of disulfide bond of siRNA-CPPs
leading to release free siRNA into cytosol. Reprinted with permission from [273]. Copyright 2016 John Wiley and Sons.

5. Conclusions

Since the introduction of peptides as potential delivery system for a variety of thera-
peutic cargos, extensive research has focused on their application in gene therapy. To be
suitably tailored for gene therapy, peptide-based nanocarriers must comply with issues
of targeting, cellular uptake, and intracellular trafficking, all of which involve biological
membranes and how they can be overcome. A combinatorial approach, e.g., designer pep-
tides composed of cationic cell-penetrating and hydrophobic endosomal escape domains in
combination with a gene carrier peptide composed of targeting and cationic DNA-binding
domains affording triggered, site-specific (cytosol, nucleus, mitochondria) release of nucleic
acids, may offer some improvement of efficacy. Other properties, including, but not limited
to, low cytotoxicity, target specificity, biodegradability, and cost and time efficiency of
synthesis greatly contribute to the potential of peptides in nanomedicine. Nevertheless,
to broadly realize bench to bedside translation of peptide-related gene delivery systems,
innovative technologies need to be pursued to achieve peptide-based nanocarriers that
more specifically and efficiently deliver nucleic acids or nucleic acid modifying systems
to the desired sites. In many cases, such nanocarriers would further benefit from either
sustained or triggered delivery options.

Advances in peptide development have made peptide-assisted gene delivery more
efficient in vitro and, in some instances, in small animal models [275]. For example, cell
and tissue selectivity could be greatly enhanced in the newest generation of CPPs [276].
Other advances which allow for improved performance with regard to targeting and
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delivery of nucleic acids include adapting peptide sequences to facilitate escape or release
from intracellular vesicles or respond to environmental stimuli for a controlled release of
cargo, and the development of composite, multivalent peptide-based, or peptide-coupled
structures.

Intriguingly, while revolutionary and versatile peptide tools have inspired a great
deal of hope regarding the treatment of genetic diseases, peptide nanocarriers are awaiting
clinical translation. For example, none of the nanocarriers associated with CPPs have
so far been approved for clinical studies. Evidently, besides overcoming membrane bar-
riers, a string of challenges remain that need to be tackled for peptide nanocarriers to
make a breakthrough in clinical application whereas lipid-based formulations, for all their
drawbacks [277], are being used in the field of gene therapy and as a delivery vehicle
in mRNA-based vaccines [278]. Short circulation half-lives, inadequate biodistribution,
and poor chemical and physical serum stability, especially susceptibility to proteolytic
degradation associated with off-target nucleic acid release, hamper clinical translation
of peptide-based nanocarriers. Refining their preparation with regard to gene loading
efficiency and product homogeneity would be a possible improvement. However, reaching
the final target with high selectivity and adequate accumulation at the target site remains a
major issue for in vivo applications. Here, peptide modifications (unnatural amino acids,
cyclization) and conjugate molecules (PEGylation, hydrocarbon chains) that prolong the
circulation time and enhance the structural stability of nanocarriers in the serum come to
mind [279,280]. Peptidomimetics, often based on natural peptide sequences, that exhibit
improved proteolytic stability or even new folds and morphologies designed to enhance
bio availability, improve transport through the blood–brain barrier, or reduce the rate of
clearance, are emerging. However, their modifications bear the risk of reducing potency
or even introducing toxicity, for example D-amino acids [281]. Another alternative to
clear abovementioned hurdles is developing advanced multifunctional carriers comprising
various agents, each of which can overcome the barrier through distinct dictated functions.
Undoubtedly, peptides offer the largest potential when it comes to nucleic acid condensa-
tion, targeting, endosomal escape, and subcellular localization as a part of multifunctional
advanced delivery systems. But again, the combination of functionalities bears the danger
of affecting the individual functions. Thus, extensive research on the development of
stimuli-responsive purely peptidic systems with suitable physicochemical properties for
nucleic acid delivery is being pursued at many levels.

A better understanding of the mechanisms by which peptide-based delivery systems
use to overcome membrane but also other biological barriers, together with advancements
in the synthesis of innovative materials tailored to environmental conditions and extensive
in vivo studies herald a bright future for peptide-based delivery systems in gene therapy
and in nanomedicine in general.
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