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Abstract. We consider the sparse grid approximation of the Riccati operator P arising from
closed loop parabolic control problems. In particular, we concentrate on the linear quadratic regulator
(LQR) problems, i.e. we are looking for an optimal control uopt in the linear state feedback form
uopt(t, ·) = Px(t, ·), where x(t, ·) is the solution of the controlled partial differential equation (PDE)
for a time point t. Under sufficient regularity assumptions, the Riccati operator P fulfills the algebraic
Riccati equation (ARE)

AP + PA− PBB?P +Q = 0,

where A, B, and Q are linear operators associated to the LQR problem. By expressing P in terms
of an integral kernel p, the weak form of the ARE leads to a non-linear partial integro-differential
equation for the kernel p – the Riccati-IDE. We represent the kernel function as an element of a
sparse grid space, which considerably reduces the cost to solve the Riccati IDE. Numerical results
are given to validate the approach.
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1. Introduction. Operator Riccati differential equations play an important role
in a number of different applications in engineering, physics, and mathematics. To
give a few examples, we mention model reduction ([30, 22]), filtering ([31]), scattering
theory ([42]), radiative transfer and the solution of two point boundary value problems
via the theory of invariant embedding ([2]). A well-known application of the Riccati
equation stems from the optimal control theory, in particular from the unconstrained
linear quadratic (LQ) optimal control of parabolic partial differential equations, see
e.g. [2, 6, 37, 40] and the references therein. In Section 2, we consider unconstrained
LQ optimal control for infinite time horizon. In this case, the optimal control can be
obtained by solving the algebraic Riccati equation (ARE). We refer to the solution of
the ARE as Riccati operator P .

A number of methods is available for the approximation of the ARE (see e.g. [5]
or [7] for a survey). One basic approach is to approximate the operator ARE directly
(cf. [23, 47, 50]). In this article, we follow the method considered in [10, 29]. Therein,
the representation of P in terms of a kernel function p(x, ξ) is considered:

(Pu)(x) =

∫
Ω

p(x, ξ)u(ξ) dξ.

By this means, the solution of the ARE can be characterized via an integro-differential
equation of Riccati type (Riccati-IDE) for the kernel p(x, ξ). We present the derivation
of the Riccati-IDE for the Dirichlet boundary control of the heat equation in Section
3.

The Riccati-IDE is a non-linear equation with a non-linearity in form of a qua-
dratic term. A number of methods for the solution of non-linear equations, which
have been studied for the ARE (see e.g. [3, 4, 5, 34] for a survey), can similarly be
implemented for the Riccati-IDE. In this article, we apply Newton’s method as sug-
gested in [33]. We describe this approach for the discretization of the Riccati-IDE
with a standard finite elements method in Section 4.
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As the Riccati operator P is a linear operator on the state space with domain
Ω, the kernel p(x, ξ) is defined on the product domain Ω × Ω. Provided we use N
degrees of freedom for the discretization of the state space, the discretization of the
kernel by a regular tensor product approach p(x, ξ) amounts to N2 degrees of freedom.
This leads in general to a cubic over-all complexity O(N3) for the evaluation of the
right-hand side and the computation of the gradient in the Newton’s method.

TheO(N3)-complexity is a major bottleneck in the numerical treatment of the LQ
optimal control problems and large scale AREs. At least for d = 3 spatial dimensions,
the quadratic growth of the memory requirements makes the discretization in the
regular tensor product space prohibitively expensive if not even impossible. This is
an example of a more general problem known as curse of dimensionality. At the same
time theoretical results on the regularity of the Riccati operator (cf. e.g. [46]) suggest
that more efficient numerical schemes for the ARE can be constructed for special cases
of the LQ optimal control problem.

Different approaches, like e.g. multigrid methods [20] low-rank techniques or H-
matrices [21] have been studied to overcome the O(N3)-complexity of the numerical
approximation of the ARE. In the present article, we discretize the Riccati-IDE in the
sparse tensor product space – a numerical technique, which allows to overcome the
curse of dimensionality to some extend. Thus, the kernel p(x, ξ) is represented by only
O(N logN) degrees of freedom, which in turn improves the over-all complexity. We
will introduce the sparse tensor product space and the corresponding discretization
of the Riccati-IDE in Section 5.

As shown in [35], a conforming discretization of the homogeneous Dirichlet bound-
ary condition will not lead to the full rate of convergence. Hence, we briefly outline
the Nitsche approximation [45] in Section 6. It is a nonconforming discretization and
yields the full rate of convergence of the solution to the Riccati-IDE.

In Section 7, we verify our approach by numerical experiments, in which conver-
gence rates for the approximation of the Riccati kernel p(x, ξ) as well as the computa-
tional complexity are considered. Finally, in Section 8, we state concluding remarks.

2. LQR Dirichlet boundary control. This section briefly describes the main
ideas of the linear quadratic (LQ) optimal control of partial differential equations. A
detailed discussion of this topic can be found e.g. in [6, 40, 51].

2.1. Parabolic equation with Dirichlet boundary control. We consider a
parabolic equation on the domain Ω ⊂ Rd with Dirichlet boundary control

(2.1)


∂

∂t
z(t, x) + Lz(t, x) = 0 in Ω× (0, T ],

z(0, x) = z0(x) for x ∈ Ω,

z(t, x) = u(t) (x, t) ∈ Σ = Γ× [0, T ] ,

where L is a second order uniformly elliptic differential operator with smooth coef-
ficients and symmetric principal part (cf. [16, p. 442] and [37, p. 183]). We assume
that Ω ⊂ Rn has a Lipschitz boundary Γ = ∂Ω (cf. [44, p. 5]). Moreover, the initial
condition satisfies z0 ∈ L2(Ω) and u ∈ L2(Σ) is the given control function. Note
that, under these assumptions, the existence and uniqueness of the solution to (2.1)
in L2

(
(0, T ); Ω

)
can be shown, e.g., by the method of transposition (cf. [40, Chapter

III, Section 9] or [11]). Here, following [6, 13, 38, 36], we will interpret (2.1) as an
abstract differential equation. To this end, we first introduce some notation.

Let H, U , Y be Hilbert spaces of states, controls, and observations, respectively.
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In the particular case of Dirichlet control for the equation (2.1), we set

H = L2(Ω), U = L2(Γ), Y = R.

The abstract differential equation corresponding to the system (2.1) reads

(2.2)


d

dt
z(t) = Az(t) +Bu(t), t ∈ (0, T ],

z(0) = z0,

where
u ∈ L2

(
(0, T );U

)
, z0 ∈ H.

The derivative d
dt is interpreted in a vector distributional sense, cf. [6, pp. 87&202]

and [51, p. 117].
In the following, we shall assume (cf. [6, p. 517] or [37, p. 122]) that:

(A1) A is the infinitesimal generator of a strongly continuous analytic semigroup
eAt of type ω on H. The semigroup eAt is generally unstable, i.e. we may
assume ω > 0.

(A2) B ∈ L(U , [D(A?)]′). Moreover, for some 0 ≤ γ < 1

Â−γB ∈ L(U ,H),

where Â = λ−A for λ ∈ ρ(A), λ > ω.
With the assumptions (A1) and (A2) at hand, we can use results on existence, unique-
ness and regularity of the solution for abstract differential equations ([6, Part II Chap-
ter 3] or [48]), respectively, for the quadratic optimal control over the infinite time
horizon ([6, Part V Chapter 2] or [37, Chapter 2]), which is considered in Section 2.

In order to obtain an abstract differential equation corresponding to the problem
(2.1), we define the linear operator A as

(2.3) A : D(A) ⊂ H → H, Az =

d∑
i,j=1

∂i(ai,j(x)∂jz) +

d∑
i=1

bi(x)∂iz + c(x)z,

where D(A) = H1
0 (Ω) ∩H2(Ω). We assume coefficients ai,j(x), bi(x) and c(x) to be

smooth and the coefficients ai,j(x) to be symmetric. Moreover, the operator A is a
generator of a strongly continuous analytic semigroup over H (cf. [15, Chapter XIV]),
so (A1) is fulfilled.

Following [37, p. 183], we will consider the control operator of the form

B = −AD, B : U → [D(A?)]′.(2.4)

The operator D in (2.4) is the Dirichlet mapping defined as the extension of the Green
mapping G : H

1
2 (Γ)→ H1(Ω) for the problem{

Aw = 0 in Ω,

w = g on Γ,

cf. [6, p. 436, 37, p. 181, 44, p. 254]. In other words, we have

(2.5) D : U → H, v 7→ Dv = w, where Aw = 0 in Ω, w = v on Γ.
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The operator A in (2.4) is the isomorphic extension of the operator A in (2.3) to
H → [D(A?)]′ (cf. [37, pp. 6& 181] or [6, p. 181]).

The Dirichlet mapping (2.5) is continuous from U to D(Â
1
4−ε), ε > 0 (cf. [36,

Remark 6.4] or [12]). For this reason, we obtain Â−γB ∈ L(U ,H) with γ = 3
4 + ε, so

assumption (A2) is fulfilled.
With these observations regarding the control operator B we can rewrite the

problem (2.1) as

(2.6)


d

dt
z(t) = Az(t)−ADu(t), t ∈ (0, T ] ,

z(0) = z0,

where u ∈ L2
(
(0, T );U

)
, z0 ∈ H, D as in (2.5), and A : H → [D(A?)]′ being the

extension of (2.3). According to [6, Part II, Chapter 3], there exists a unique solution

z ∈
{
v ∈ L2

(
(0, T );H

)
:

dv

dt
∈ L2

(
(0, T ); [D(A?)]′

)}
for abstract differential equations of the type (2.6).

2.2. Optimal control problem. We introduce the following quadratic cost
functional for the abstract differential equation (2.6)

J∞(u) :=

∫ ∞
0

{
‖Cz(t)‖2Y + ‖u(t)‖2U

}
dt,

where C ∈ L(H,Y) is an observation operator. As we consider the case T → ∞,
further assumptions on the existence of a control u ∈ L2

(
(0,∞);U

)
with J∞(u) <∞

has to be made. Such a control is called admissible. If there exists an admissible
control for each initial state z0, the system (2.6) is called C-stabilizable, cf. [6, p. 517].
For C-stabilizable systems, we can consider the unconstrained (i.e. with respect to the
control space) linear quadratic optimal control problem for the heat equation with
Dirichlet boundary control

(2.7)

 min
u∈L2((0,∞);U)

J∞(u)

subject to system (2.6).

The optimal control uopt to the problem (2.7) is given by the feedback formula
(cf. [6, Part V, Chapter 2], [18, 38] and [40, Chapter III, Section 4])

uopt(t) = −B?Pzopt(t),

where B? is the adjoint of the control operator B, zopt is the solution of the closed
loop system (see e.g. [6, p. 518]) and P is the unique solution of the algebraic Riccati
equation (ARE):

(2.8) A?P + PA− PBB?P + C?C = 0.

It can be shown that P –the Riccati operator– is a positive, self-adjoint, and bounded
operator on the state space H. By this result, we can proceed with solving the ARE
(2.8) to obtain the solution to the optimization problem (2.7).
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3. Riccati partial integro-differential equation. There are different ap-
proaches to the solution of equation (2.8) (see, e.g., [10], [29, Chapters 3&4], [40,
Chapter 3], and [39, 43]). In this article, we concentrate on the representation of the
Riccati operator in terms of a kernel function

(3.1) [Pφ] (x) =

∫
Ω

p(x, ξ)φ(ξ) dξ,

where in general p(x, ξ) is a distribution on Ω × Ω (cf. [40, Chapter III, Section 5]).
The existence of such a kernel is guaranteed by the Schwartz kernel theorem.

3.1. Variational formulation. Next, we want to combine (3.1) with the weak
form of the ARE (2.8):

(3.2) (Aφ,Pψ) + (Pφ,Aψ)− (B?Pφ,B?Pψ)U + (C?Cφ,ψ) = 0 for all φ, ψ ∈ D(A).

For the sake of brevity, here and in the following, (·, ·) denotes the scalar product in
the state space H, while (·, ·)U denotes the scalar product in U . In addition, we shall
assume that p ∈ H1(Ω× Ω). Then, for all φ(x), ψ(ξ) ∈ C∞0 (Ω), we obtain

(Aφ,Pψ) = (φ,A?Pψ) =

∫
Ω

φ(x)A?
∫

Ω

p(x, ξ)ψ(ξ) dx dξ

=

∫
Ω

∫
Ω

φ(x)A?xp(x, ξ)ψ(ξ) dxdξ =

∫
Ω×Ω

A?xp(x, ξ)ϕ(x, ξ) d(x, ξ),

where A? is the formal adjoint of A (cf. [41, p. 114])

A?ψ :=

d∑
i,j=1

∂i(ai,j(x)∂jψ) −
d∑
i=1

∂ibi(x)ψ +

(
c(x)−

d∑
i=1

(∂ibi)

)
ψ.

Likewise we compute

(Pφ,Aψ) = (A?Pφ, ψ) =

∫
Ω

A?
∫

Ω

p(x, ξ)φ(ξ) dξ ψ(x) dx

=

∫
Ω

∫
Ω

A?ξp(x, ξ)φ(x)ψ(ξ) dxdξ =

∫
Ω×Ω

A?ξp(x, ξ)ϕ(x, ξ) dx dξ,

where we used the relation p(x, ξ) = p(ξ, x) which comes from P being self-adjoint.
We deduce

(Aφ,Pψ) + (Pφ,Aψ) =

∫
Ω×Ω

(A?x +A?ξ)p(x, ξ)ϕ(x, ξ) d(x, ξ).

We proceed with the non-linear term. In the first step we need to compute the
operator B?. To this end, we can use the Green’s formula and obtain

B? = −D?A? = − ∂

∂νA?

=

d∑
i,j=1

ai,j(x)
∂

∂j
νi,

where ν = (ν1, . . . , νd) is the outward normal to Γ (see [37, p. 183]). To simplify the
notation, we will write ∂

∂ν for ∂
∂νA?

.
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We can now plug in B? into the non-linear term of (3.2)

(B?Pφ,B?Pψ)U =

∫
Γ

∂

∂νζ

∫
Ω

p(ζ, x)φ(x) dx · ∂

∂νζ

∫
Ω

p(ζ, ξ)ψ(ξ) dξ dΓζ

=

∫
Γ

∂

∂νζ

∫
Ω

p(x, ζ)φ(x) dx · ∂

∂νζ

∫
Ω

p(ζ, ξ)ψ(ξ) dξ dΓζ .

By applying Fubini’s theorem, we conclude

(B?Pφ,B?Pψ)U =

∫
Γ

∫
Ω

∂p

∂νζ
(x, ζ)φ(x) dx

∫
Ω

∂p

∂νζ
(ζ, ξ)ψ(ξ) dξ dΓζ

=

∫
Ω×Ω

∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ ϕ(x, ξ) d(x, ξ).

Note that the boundary integral is well-defined if we assume that it holds ∂p/∂νx ∈
L2(Γ× Ω) and likewise ∂p/∂νξ ∈ L2(Ω× Γ).

In order to complete the derivation in terms of kernel functions, we assume in
accordance with [10] and [29, Chapter 3] the operator C : H → Y to be of the form

Cφ =

∫
Ω

s(x)φ(x) dx

with s ∈ L2(Ω). By this means, C?C takes the form

(C?Cφ,ψ) = (Cφ,Cψ)R =

∫
Ω

s(x)φ(x) dx

∫
Ω

s(ξ)ψ(ξ) dξ

=

∫
Ω×Ω

s(x)s(ξ)φ(x)ψ(ξ) d(x, ξ).

We thus set

(3.3) Q = C?C : H → H, v 7→ Qv =

∫
Ω

s(x)s(ξ)v(ξ) dξ =

∫
Ω

q(x, ξ)v(ξ) dξ,

where q(x, ξ) = s(x)s(ξ) is the kernel of Q.
Therefore, since C∞0 (Ω×Ω) is dense inH1

0 (Ω×Ω), the kernel p solves the following
variational problem

∫
Ω×Ω

(A?x +A?ξ)p(x, ξ)ϕ(x, ξ) d(x, ξ) +

∫
Ω×Ω

∫
Γ

∂p

∂νζ
(ζ, x)

∂p

∂νζ
(ξ, ζ) dΓζϕ(x, ξ) d(x, ξ)

(3.4)

=

∫
Ω×Ω

q(x, ξ)ϕ(x, ξ) d(x, ξ) for all ϕ ∈ H1
0 (Ω× Ω).

3.2. Boundary conditions. To derive the boundary conditions for p(x, ξ), we
use the following regularity result from [6, p. 520]:

(3.5) P ∈ L
(
H,D

(
(−A)1−α)),

where for A as in (2.3) we can choose α ∈ (0, 1/4). Furthermore, it holds

(3.6) D
(
(−A)1−α) =

{
H2(1−α)(Ω), if α ∈ (3/4, 1),{
w ∈ H2(1−α)(Ω) : w = 0 on ∂Ω

}
, if α ∈ (0, 3/4).
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Therefore, we deduce from (3.5) and (3.6) that

(3.7) for all v ∈ H : Pv ∈
{
w ∈ H2(1−α)(Ω) : w = 0 on ∂Ω

}
, where α ∈ (0, 1/4).

We next assume that there exists a part Γ̃× Ω̃ ⊂ ∂(Ω×Ω) of the boundary such that
p(x, ξ) 6= 0 for almost all (x, ξ) ∈ Γ̃× Ω̃. Then, taking some v ∈ H with Ω̃ ⊂ supp v,
we have

w(x) =

∫
Ω

p(x, ξ)v(ξ) dξ 6= 0

for almost all x ∈ Γ̃, which is a contradiction to (3.7). Hence, with the symmetry of
p(x, ξ), we conclude {

p(x, ξ) = 0, x ∈ Γ, ξ ∈ Ω,

p(x, ξ) = 0, x ∈ Ω, ξ ∈ Γ,

compare also [40, p. 158].
We shall summarize the results found in Section 3.1 and in this section as follows.

Theorem 3.1. The kernel p ∈ V for the Riccati operator associated with the
Dirichlet boundary control of the equation (2.2), where

V :=

{
f ∈ H1

0 (Ω× Ω) :
∂f

∂νx
∈ L2(Γ× Ω) and

∂f

∂νξ
∈ L2(Ω× Γ)

}
,

is the weak solution of the following integro-differential equation (IDE) of Riccati type:

(3.8)

(A?x +A?ξ)p(x, ξ) +

∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ = q(x, ξ) in Ω× Ω,

p(x, ξ) = 0 on ∂(Ω× Ω).

Remark 3.2. In [40, Chapter III, Section 5], several results of this type are de-
rived, in particular for distributed control, i.e. B ∈ L(U ,H)), and Neumann boundary
control. In [29, Chapter 3] autor considers the Riccati-IDE for Robin boundary con-
trol. The Riccati-PDE for Dirichlet boundary control in the one-dimensional situation
can be found in [10]. There, the results are based on a stronger regularity of the kernel
p(x, ξ), i.e. p ∈ C(Ω× Ω) (cf. [32]).

4. Finite element discretization. In this section, we derive a discrete version
of the Riccati-IDE (3.8) by means of a Galerkin discretization by finite elements. To
this end, we consider the full tensor product discretization of functions defined on the
product domain Ω× Ω.

4.1. Tensor product approximation. Let Z be a Hilbert space with

Z ⊗ Z ⊂ V,

where ⊗ denotes the algebraic tensor product, cf. [25, p. 52]. The completion can
be taken with respect to an appropriate norm. Furthermore, suppose we are given a
finite dimensional subspace ZJ ⊂ Z. We define the full tensor product ansatz space
VJ via

(4.1) VJ := ZJ ⊗ ZJ .
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If {φj}NJ

j=1 is a basis of ZJ , i.e. NJ = dimZJ , then

{φj1 ⊗ φj2}
NJ

j1,j2=1

is a basis of VJ , and dimVJ = N2
J .

The finite dimensional subspace ZJ might be given by the span of globally con-
tinuous, piecewise linear ansatz functions defined with respect to a triangulation or
tetrahedralization of Ω, respectively. Thus, the tensor product space VJ would be
spanned by products of those functions, compare Section 7 for details.

Next, we want to discuss the discretization of Riccati-IDE (3.8) with respect to
the full tensor product space VJ . We make the following ansatz

(4.2) p(x, ξ) =

NJ∑
j1,j2=1

pj1,j2φj1(x)φj2(ξ) ∈ VJ

for the discretization of the kernel function in the space VJ and write

pJ := [p1,1, p1,2, . . . , pNJ ,NJ
]
ᵀ

for the coefficient vector of the Riccati kernel.

4.2. Linear part and right-hand side. First, let us examine the linear part
of (3.4), i.e., the evaluation of

(4.3)
∫

Ω×Ω

(A?x +A?ξ)p(x, ξ)ϕ(x, ξ) d(x, ξ) for all ϕ(x, ξ) = φk1(x)φk2(ξ).

Let a? : H1
0 (Ω)×H1

0 (Ω)→ R be the bilinear form associated to A? (cf. [16, p. 320]),
i.e.
(4.4)

a?(φ, ψ) :=

∫
Ω

d∑
i,j=1

ai,j(x)∂jφ(x)∂iψ(x) +

d∑
i=1

bi(x)φ(x)∂iψ(x) + c(x)φ(x)ψ(x) dx.

The discretization of∫
Ω×Ω

A?xp(x, ξ)ϕ(x, ξ) d(x, ξ) for all ϕ(x, ξ) = φk1(x)φk2(ξ).

with respect to the space ZJ leads to an equivalent formulation (A?J ⊗ EJ) pJ . Here,
A?J ∈ RNJ×NJ is the system matrix of A?x (cf. [24, p. 185]) with entries

(A?J)k,` = a?(φk, φ`).

EJ =
[
ek,`
]NJ

k,`=1
∈ RNJ×NJ is the mass matrix, i.e. we have

(4.5) ek,` =

∫
Ω

φk(x)φ`(x) dx.

Due to the symmetry of (4.3) with respect to x and ξ, we obtain the following
discrete representation for the linear part of the Riccati-IDE (3.4):

(A?J ⊗ EJ + EJ ⊗A?J) pJ .

Since the right-hand side is a rank-1 function, compare (3.3), it can simply be
computed in accordance with

QJ = qJ ⊗ qJ , where qJ = [qk]NJ

k=1 and qk =

∫
Ω

s(x)φk(x) dx.
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4.3. Nonlinear part. The nonlinear part of the Riccati equation in variational
form (3.4) reads

(4.6)
∫

Ω×Ω

∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ φk1(x)φk2(ξ) d(x, ξ), k1, k2 = 1, . . . , NJ .

We use the ansatz (4.2) for the kernel p(x, ξ) and consider first the integral over Γ:∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ(4.7)

=

∫
Γ

 ∂

∂νζ

NJ∑
i1,i2=1

pi1,i2φi1(x)φi2(ξ)

 ∂

∂νζ

NJ∑
j1,j2=1

pj1,j2φj1(x)φj2(ξ)

 dΓζ

=

∫
Γ

∂

∂νζ

NJ∑
i2=1

φi2(ζ)
∂

∂νζ

NJ∑
j1=1

φj1(ζ) dΓζ

NJ∑
i1,j2=1

pi1,i2φi1(x)pj1,j2φj2(ξ).

To simplify the notation, we assume in the following that the integrals∫
Γ

∂

∂νζ
φi2(ζ)

∂

∂νζ
φj1(ζ) dΓζ , i2, j1 = 1, . . . , NJ ,(4.8)

can be computed exactly. This assumption holds e.g. for piecewise polynomials as
basis functions for ZJ , which are often considered in the finite element method. In a
more general case, we may take an appropriate quadrature rule for the evaluation of
integrals in (4.8) (cf. Section 5.3). Now, for the integration over Γ in the last line of
(4.7), we write

(4.9)
NJ∑

i2,j1=1

∫
Γ

∂

∂νζ
φi2(ζ)

∂

∂νζ
φj1(ζ) dΓζ =:

NJ∑
i2,j1=1

αi2,j1 ,

and obtain for the complete expression∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ =

NJ∑
i2,j1=1

αi2,j1

NJ∑
i1,j2=1

pi1,i2φi1(x)pj1,j2φj2(ξ).

With this intermediate result the discretization of (4.6) yields

(4.10)
∫

Ω×Ω

 NJ∑
i2,j1=1

αi2,j1

NJ∑
i1,j2=1

pi1,i2φi1(x)pj1,j2φj2(ξ)

 φk1(x)φk2(ξ) d(x, ξ).

Equation (4.10) corresponds to the application of the mass matrix EJ ⊗ EJ
(cf. (4.5)) to the linear combination

(4.11)
NJ∑

i2,j1=1

αi2,j1p:,i2 ⊗ pj1,:,

where we use the notation

p:,` := [p1,`, . . . , pNJ ,`]
ᵀ and p`,: := [p`,1, . . . , p`,NJ

]
ᵀ for ` = 1, . . . , NJ .
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Overall, we obtain following expression for the evaluation of the nonlinear part of the
Riccati equation (3.8) with ansatz (4.2)

(4.12) E ⊗ E

 NJ∑
i2,j1=1

αi2,j1p:,i2 ⊗ pj1,:

 .

Remark 4.1. A slightly different representation of quadratic part can be obtained
in terms of matrices. Let X,Y, Z ∈ Rn×n. We can write the product XY Z as

XY Z =

m∑
i=1

 m∑
j=1

Yj,iX:,j

Zi,:.

Observe that this expression is similar to (4.11). In view of definition of αi2,j1 in
(4.9), we can introduce the matrices

BJ =
[
αk,`

]NJ

k,`=1
∈ RNJ×NJ , PJ =

[
pk,`
]NJ

k,`=1
∈ RNJ×NJ ,

and rewrite the sum in (4.9) as matrix product PJBJPJ .
Furthermore, by using the identity

vec(XY Z) =
(
ZT ⊗X

)
vec(Y ),

the equation (4.12) may be considered as matrix multiplication

EJ

 NJ∑
i2,j1=1

αi2,j1p:,i2p
ᵀ
j1,:

EJ = EJPJBJPJEJ .

This form corresponds to the usual discretization of the quadratic term of the ARE.

We consider the complexity for the evaluation of (4.12).

Theorem 4.2. The computational cost of evaluating the Riccati-IDE discretized
by the finite element method is of the order O(N2

JN
d−1
d

J ).

Proof. The computational cost are dominated by the evaluation of the quadratic
term. Due to the locality of the finite element basis and of the normal derivative, only
O(N

d−1
d

J ) coefficients αi2,j1 do not vanish in the sum (4.12). For each summand we
need to compute the tensor product p:,i2 ⊗ pj1,:, which takes O(N2

J) operations. The

overall cost amount to O(N2
JN

d−1
d

J ).

4.4. Newton’s method. The Riccati-IDE is a non-linear equation with qua-
dratic non-linearity. To find a solution we have to apply some iterative scheme. To
this end, we use Newton’s method as suggested in e.g. [33].

We first introduce the following notation to simplify the presentation. The linear
part of the Riccati-IDE (3.8) is given by the operator (A?x +A?ξ) on Ω× Ω. We set

RL : p 7→
[
ϕ 7→ a?x(p(x, ξ), ϕ(x, ξ)) + a?ξ(p(x, ξ), ϕ(x, ξ))

]
,

where a?x, a?ξ are the applications of bilinear form a? from (4.4) in x, respectively ξ.
The quadratic part is

RNL : p 7→
[
ϕ 7→

∫
Ω×Ω

∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ ϕ(x, ξ) d(x, ξ)

]
.

10



Finally, the right-hand side can be written as

Q : q 7→
[
ϕ 7→

∫
Ω×Ω

q(x, ξ)ϕ(x, ξ) d(x, ξ)

]
.

With these operators at hand, we can write the Riccati-IDE (3.8) as

RL(p)−RNL(p) +Q = 0.

Applying the Newton’s method to this equation results in

D(RL −RNL)[p(i)]
(
p(i+1) − p(i)

)
= −

(
RL(p(i))−RNL(p(i)) +Q

)
,

where D denotes the Fréchet derivative and i the iteration index of the Newton’s
method.

The Fréchet derivative of a linear operator is the operator itself, i.e. we obtain

DRL[g](h) = RL(h),

while the Fréchet derivative of the non-linear part is given by

DRNL[g](h) =[
ϕ 7→

∫
Ω×Ω

∫
Γ

∂g

∂νζ
(x, ζ)

∂h

∂νζ
(ζ, ξ) +

∂h

∂νζ
(x, ζ)

∂g

∂νζ
(ζ, ξ) dΓζ ϕ(x, ξ) d(x, ξ)

]
.

Therefore, for Newton’s method in the i-th iteration, we seek the new iterate p(i+1)

such that

(4.13)
(
RL −DRNL[p(i)]

)
(p(i+1)) = −

(
RNL(p(i)) +Q

)
, i = 1, 2, . . . .

The discrete version of Newton’s method (4.13) is the Sylvester type equation of
the form

(EJP
(i)
J BJ −A?J)P

(i+1)
J EJ + EJP

(i+1)
J (BJP

(i)
J EJ −A?J) = EJP

(i)
J BJP

(i)
J EJ +QJ .

Notice that, in accordance with Theorem 4.2, each iteration of Newton’s method can
be realized within O(N2

JN
d−1
d

J ) cost if an optimal preconditioner like the multigrid

method is used. Therefore, the over-all cost are O(NiterN
2
JN

d−1
d

J ), where Niter denotes
the number of iterations used by Newton’s method.

5. Sparse grid discretization. Sparse grids are a numerical discretization ap-
proach, which is especially of interest for high dimensional problems. Discretization
on a full grid, as described in Section 4, suffers from the curse of dimensionality, i.e. the
number of degrees of freedom in the space VJ is N2

J . However, provided certain reg-
ularity, the Riccati kernel can be approximated by sparse grids at essentially same
rate with only NJ logNJ degrees of freedom. In this section, we intend to discretize
and evaluate the Riccati-IDE (4.3) in a sparse grid space. A detailed presentation
and introduction to sparse grids can be found in [1, 9, 17, 19, 49], see also [8], [24,
p. 260], [25, p. 280], and [26, 27, 28]. This section recalls the main ideas, where the
representation follows [53].

11



5.1. Discretization by sparse grids. In the following we denote by small
bold letters, e.g. i ∈ N2, a 2-dimensional multi-index, i = (i1, i2). In contrast, cursive
letters, e.g. i ∈ N, are used as usual indices.

As in Section 4, we consider Hilbert spaces Z and V with Z ⊗ Z ⊂ V . Suppose
we are given a nested sequence of finite dimensional subspaces Zj , j = 0, . . . , J , of Z,
that is

Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ ZJ ⊂ Z.

We are going to construct a finite dimensional subspace of V , which will be our ansatz
and test space, upon the spaces Zj . In accordance with [9, 19, 27], let us introduce
hierarchical difference spaces Wj via

Wj := Zj 	 Zj−1, Z−1 := {0}, Nj := dimWj .

We refer to j as level. Furthermore, we shall assume that Nj behaves like an increasing
geometric sequence. This is, for example, the case if the sequence {Zm} is constructed
from dyadic subdivisions of a given coarse grid triangulation or tetrahedralization of
the underlying domain. In particular, for a dyadic subdivision we obtain |Nj | =
O(2dj).

Let Wj = W(j1,j2) denote the tensor product of two spaces Wj1 and Wj2

Wj := Wj1 ⊗Wj2 = (Zj1 	 Zj1−1)⊗ (Zj2 	 Zj2−1) .

The dimension of Wj is Nj := dimWj = Nj1Nj2 . With these spaces at hand, we can
write the full tensor product space VJ from (4.1) as a direct sum

VJ =
⊕

0≤j1,j2≤J

Wj1,j2 =
⊕

0≤‖j‖∞≤J

Wj .

In contrast to the full tensor product, the idea of a sparse grid is to consider only those
basis functions in the space VJ , which have a large contribution to the representation
of an interpolated function f ∈ V , cf. [9, 19]. We denote the sparse grid function
space with V̂J and give the following formal definition

(5.1) V̂J :=
⊕

0≤j1+j2≤J

Wj1,j2 =
⊕

0≤‖j‖1≤J

Wj .

From the representation (5.1), we infer that V̂J consists only of hierarchical dif-
ference spaces with j1 + j2 ≤ J . This construction leads to the relation

N̂J := dim V̂J = O(NJ logNJ).

In general, for sparse grids on m-fold tensor product spaces, there holds dim V̂J =
O(NJ logNm−1

J ) while essentially no approximation power is lost provided that the
function to be approximated exhibits extra smoothness in terms of bounded mixed
derivatives. In other words, the exponential dependency is only in the logNJ factor,
which substantially reduces the dimension of the sparse grid space compared to the
full grid.

We proceed analogously to Section 4 and discretize the Riccati kernel in the sparse
grid space V̂J . Let M , with |M | = NJ , be an index set. We assume the space ZJ to
be spanned by some hierarchical basis {φm}m∈M , i.e. the spaces Zj are spanned by
subsets of {φm}m∈M .
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To reflect the nested structure of the spaces Zj , let us introduce a function δ :
N2 → M , such that δ(j, ·) : N → M is an enumeration of the functions φm spanning
the space Wj . We define the following notation

φj ∈Wk :⇔φδ(j) ∈Wk, j ∈Wk :⇔φj ∈Wk, j ∈ ZJ :⇔∃k ≤ J : j ∈Wk .

The sparse grid ansatz p̂ for the Riccati kernel reads

p̂(x, ξ) =
∑
k+l≤J

∑
i∈Wk

∑
j∈Wl

pi,jϕi,j(x, ξ) ∈ V̂J ,(5.2)

where we abbreviated ϕi,j := φi ⊗ φj . The vector p̂J ∈ RN̂J of coefficients takes the
form

p̂J := [pj ]‖j‖1≤J
, pj := [pk,l]k∈Wj1 , l∈Wj2

,

i.e., pj ∈ RNj are the coefficient vectors corresponding to the spaces Wj .
Note that for n ∈ N and x ∈ RNJ we use an analogous notation

xn =
[
x(n,m)

]
(n,m)∈Wn

.

5.2. Linear part. First, we investigate the linear part of the Riccati-IDE (3.8).
It is possible to consider the application of a linear operator L on V to a function from
the sparse grid space V̂J in a rather abstract setting. The only additional assumption,
beside (5.1), is of the operator L to reflect the tensor product structure of the ansatz
space V̂J . This means that L, restricted to the algebraic tensor space Z ⊗ Z, is
a tensor product of operators T1 and T2 acting on Z, i.e. L|Z⊗Z = T1 ⊗ T2. The
resulting discretization matrix of L has block tensor structure, which, in turn, can be
utlized for fast matrix–vector multiplication (compare [53]).

Provided the operators T1, T2 can be evaluated with linear complexity O(dimZm)

on the spaces Zm, the product operator L can be applied to an element of V̂J with
O(NJ logNJ) operations. The algorithm for the evaluation of the matrix-vector prod-
uct in the space V̂J is called UniDir, cf. [9, 53]. Algorithms which employ similar
techniques have been developed in [26, 27, 28].

The linear part of the Riccati-IDE (3.8) is the operator RL = A?x⊗ Idξ + Idx⊗A?ξ
on Ω × Ω. This operator has tensor product structure for ansatz spaces stemming
from a discretization separate with respect to x and ξ, and in particular for V̂J .

To be more precise we set Z = H1
0 (Ω) and consider the operators

A?x, A
?
ξ : H1

0 (Ω)→ H−1(Ω), v 7→ [w 7→ a?(v, w)] ,

and

(5.3) Id : H1
0 (Ω)→ H−1(Ω), v 7→

[
w 7→

∫
Ω

vw dx

]
.

With these operators we can write for the linear part of the Riccati-IDE

RL|H1
0 (Ω)⊗H1

0 (Ω) = A?x ⊗ Id + Id⊗A?ξ : H1
0 (Ω)⊗H1

0 (Ω)→ H−1(Ω× Ω),

which is a sum of tensor product operators, as required by the UniDir algorithm.
Besides the tensor product structure, we have to ensure that A?x, A?ξ , and Id

can be evaluated with linear complexity on the discretization spaces Zm. There are
13



different examples of appropriate sequences {Zm} and corresponding bases, like e.g.
hierachical bases ([9]), wavelets ([14]), multilevel frames ([27, 53]), or polynomials of
different degrees ([1, 9]). In this article, we will take Zm spanned by the hierarchical
basis of standard hat functions (cf. [9, 27]). We provide an exact definition in Section
7.

Let m = 0, . . . , J . We denote by IWm : RNm → RNJ the canonical embedding,
which maps the coefficient vector x ∈ RNm of a function x̃ ∈ Wm with respect to
the basis δ(m) to the coefficient vector y ∈ RNJ of a function x̃ ∈ ZJ . The map
IZm : RdimZm → RNJ is defined analogously.

Let IWm : RNJ → RNm be the operator which projects the coefficients of x̃ ∈ ZJ
to the coefficients corresponding to the spaceWm ⊂ ZJ . Again, IZm : RNJ → RdimZm

is the analogous map for the space Zm.
Using the operators IWm and IWm

, we define forX ∈ RNJ×NJ the matrixXm,n :=
IWm

XIWn and introduce the following bilinear map

⊗̂ : RNJ×NJ × RNJ×NJ → RN̂J×N̂J , (X,Y ) 7→ [Xi1,j1 ⊗ Yi2,j2 ]‖i‖1,‖j‖1≤J .

With this definition at hand, we can write the application of RL to a function p̂ ∈ V̂J
as the following matrix-vector product(

A?J ⊗̂ EJ + EJ ⊗̂A?J
)
p̂J .

Albeit the matrix A?J ⊗̂ EJ + EJ ⊗̂ A?J is not sparse (cf. [27, 53]), the matrix–vector
product can be computed with complexity O (NJ logNJ), i.e. linear in the number of
degrees of freedom of the sparse grid.

Note that although we can use the UniDir algorithm in the presented abstract
setting, we need further assumptions on the ansatz and test spaces V̂J to guarantee
the convergence of Galerkin method, see e.g. [24, Chapter 8].

5.3. Nonlinear part. In general, for the evaluation of the non-linear part (4.6)
of the Riccati-IDE, we have to consider the evaluation of the operator

RNL : p 7→
[
ϕ 7→

∫
Ω×Ω

∫
Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ ϕ(x, ξ) d(x, ξ)

]
.

We started with discretization of the boundary integral in Section 4.3 and ob-
tained the expression (4.11). We proceed along same lines for the discretization with
respect to V̂J . In the fist step, we apply a quadrature rule with nodes ζs and weights
ws, s ∈ S, to calculate the boundary integral, i.e. we approximate the operator

p(x, ξ) 7→
∫

Γ

∂p

∂νζ
(x, ζ)

∂p

∂νζ
(ζ, ξ) dΓζ

by

p(x, ξ) 7→
S∑
s=1

ws
∂p

∂νζ
(x, ζs)

∂p

∂νζ
(ζs, ξ).(5.4)

Now, similar to (4.9) we can write∫
Γ

∂

∂νζ

∑
j∈ZJ

φj(ζ)
∂

∂νζ

∑
k∈ZJ

φk(ζ) dΓζ

≈
∑
s∈S

ws
∂

∂νζ

∑
j∈ZJ

φj(ζs)
∂

∂νζ

∑
k∈ZJ

φk(ζs) =:
∑
s∈S

∑
j,k∈ZJ

αsj,k.
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The complete expression (5.4) is of the form∑
s∈S

∑
j,k∈ZJ

αsj,k
∑

i∈ZJ−j1
`∈ZJ−k1

pi,jφi(x) pk,`φ`(ξ).

Next, let us consider the integration with respect to x and ξ in RNL. We can
equivalently write the computation of scalar products with test functions as a matrix
multiplication (see also (4.10), (4.11)). To achieve this, we introduce the notation

p̂:,` := [pk,`]k∈ZJ−`1
, p̂`,: := [p`,k]k∈ZJ−`1

, ` ∈ ZJ ,

i.e. p̂:,`, p̂`,: ∈ RdimZJ−`1 are slices of p̂ ∈ RN̂J which correspond to a particular ansatz
function with level `1 and index `2. Furthermore, let x, y ∈ RNJ , X,Y ∈ RNJ×NJ

and

⊗̂ : RNJ × RNJ → RN̂J , (x, y) 7→
[
(IWj1

x)⊗ (IWj2
y)
]
‖j‖1≤J

,

⊗̃ : RNJ×NJ × RNJ×NJ → RN̂J×N2
J , (X,Y ) 7→ [Xi1,j1 ⊗ Yi2,j2 ]‖i‖1,‖j‖∞≤J .

The discretization of the L2 scalar product in RNL now yields (cf. (4.12))

E ⊗̃ E

∑
s∈S

∑
j,k∈ZJ

αsj,k (IZJ−j1 p̂:,j)⊗ (IZJ−k1 p̂k,:)

 .(5.5)

Next, we are going to investigate the complexity for the evaluation of the nonlin-
ear part of the Riccati-IDE discretized by sparse grids. The expression in (5.5) can

obviously be computed with O(N2
JN

d−1
d

J ) operations. In the following, we will reduce
this complexity stepwise. We start with an auxiliary lemma.

Lemma 5.1. For x, y ∈ RNJ and T ∈ RNJ×NJ it holds(
T ⊗̃ T

)
x⊗ y = (Tx) ⊗̂ (Ty) .

Proof. Straightforward calculation yields

(T ⊗̃ T )(x⊗ y) =

 ∑
j1,j2≤J

(Ti1,j1 ⊗ Ti2,j2)xj1 ⊗ yj2


‖i‖1≤J

=

∑
j1≤J

Ti1,j1xj1

⊗
∑
j2≤J

Ti2,j2yj2


‖i‖1≤J

=
[(
IWi1

Tx
)
⊗
(
IWi2

Ty
)]
‖i‖1≤J

= (Tx) ⊗̂ (Ty) .

The main result is the following theorem.

Theorem 5.2. The computational cost of evaluating the Riccati-IDE discretized
by the sparse grid method is of the order O(NJN

d−1
d

J logNJ) while the memory re-
quirement is of the order O(NJ logNJ).
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Proof. Given a quadrature point ζs we note that

αsj,k =
∂

∂νζ
φj(ζs)

∂

∂νζ
φk(ζs), j,k ∈ ZJ ,

i.e. αsj,k is a tensor product. We write αsj,k = αsjα
s
k. Therefore, each summand in

(5.5) is a tensor product of the form

αsj,k (IZJ−j1 p̂:,j)⊗ (IZJ−k1 p̂k,:) = (IZJ−j1αsj p̂:,j)⊗ (IZJ−k1αskp̂k,:),

and we can take separately the summation over j and k in (5.5)∑
j,k∈ZJ

αsj,k (IZJ−j1 p̂:,j)⊗ (IZJ−k1 p̂k,:) =
∑
j∈ZJ

IZJ−j1αsj p̂:,j ⊗
∑
k∈ZJ

IZJ−k1αskp̂k,:.

For each quadrature point ζs the sum∑
j∈ZJ

IZJ−j1αsj p̂:,j(5.6)

has at most O(logNJ) = J nonzero coefficients αsj due to the hierarchical sorting of
the basis. Each summand can be added with complexity O(dimZJ−j1) =

∑J−j1
n=0 Nn.

We estimate the complexity for the evaluation of (5.6) by

J∑
j1=0

J−j1∑
n=0

Nn = O

 J∑
j1=0

2d(J−j1+1)

 = O (NJ) .

By using the above result and Lemma 5.1, we rewrite (5.5) as

∑
s∈S

E ⊗̃ E

∑
j∈ZJ

IZJ−j1αsj p̂:,j ⊗
∑
k∈ZJ

IZJ−k1αskp̂k,:

(5.7)

=
∑
s∈S

EJ ∑
j∈ZJ

IZJ−j1αsj p̂:,j

 ⊗̂(EJ ∑
k∈ZJ

IZJ−k1αskp̂k,:

)
.

The evaluation of the map ⊗̂ for each summand is of complexity O(NJ logNJ), i.e.
the overall complexity for the evaluation of (5.7) is O(|S|NJ logNJ). In view of

|S| ∼ N
d−1
d

J , since we integrate only over the boundary Γ of Ω, we end up with the

computational complexity O(NJN
d−1
d

J logNJ) for the nonlinear part.
As described at the beginning of this section, the complexity for the evalua-

tion of the linear part is O(NJ logNJ). The overall complexity is thus of the order

O(NJN
d−1
d

J logNJ).
The requirement for the memory of the order O(NJ logNJ) is obvious.

Theorem 5.2 means that we save essentially one order in NJ in both, memory
requirement and computation time, compared to the traditional finite element dis-
cretization from the previous section.

Remark 5.3. 1. The realization of Newton’s method based on the above algo-
rithms is straightforward, compare Section 4.4. Especially, the over-all cost for com-
puting the optimal kernel function p̂ are O(NiterNJN

d−1
d

J logN), where Niter denotes
the number of iterations used by Newton’s method.
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2. The bottle-neck of the presented sparse grid discretization is the evaluation
of the non-linear term RNL, which does not scale linearly. A much more involved
algorithm is able to evaluate RNL in complexity O

(
NJN

d−1
2d

J

)
. This is still not of

linear complexity but is essentially the square root of the cost the finite element method
has.

3. The discretization of the Riccati-IDE has been performed in an exact way,
meaning that we compute the exact Galerkin system. Instead, one could also evaluate
RNL in an approximate way, reducing the over-all complexity further. This would
introduce a consistency error which, however, would not matter if it is of the same
order as the discretization error.

4. Using similar argumentation as in the proof of Theorem 5.2, we obtain the
expression

∑
s∈S

EJ ∑
j∈ZJ

IZJ−j1αsjp:,j

⊗(EJ ∑
k∈ZJ

IZJ−k1αskpk,:

)

for the evaluation of (4.12), i.e. for the discretization of nonlinear term of the Riccati-
IDE in a full tensor product space. The vectors p:,k and pk,: are defined similar to
p̂:,k and p̂k,:. However, the complexity is still of the order O(N2

JN
d−1
d ) due to the

computation of the tensor product ⊗.
Remark 5.4. Let an approximation of the Riccati kernel in terms of sparse grids

ansatz p̂(ζ, x) from (5.2), as well as an approximate state zh ∈ ZJ be given. In order
to compute the approximate optimal control, we have to evaluate the expression

uh(ζ) = − ∂

∂νζ

∫
Ω

p̂(ζ, x)zh(x) dx.(5.8)

The integral transform in (5.8) can be evaluated with complexity O(NJ logNJ), we
refer to [17, Section 2.3.4] for the details. In the case of boundary control, we can
reduce the complexity further by first applying the operator B? to the Riccati kernel.
This computation corresponds to the evaluation of the feedback gain operator K =
B?P (cf. [29, Section 4]). To estimate the overall complexity for the evaluation of
(5.8), we consider (5.2) and remark that the number of function with non-vanishing
normal derivative in the spaces Wk is O(d2(d−1)k). Thus, the overall complexity for
the computation of (5.8) is∑
k+l≤J

d2(d−1)k2dl ≤ d
∑
k≤J

2(d−1)k2d(J−k+1) = d2d(J+1)
∑
k≤J

2−k = O
(
dN
− 1

d

J NJ

)
.

6. Nitsche Method. In order to approximate the Riccati kernel, Theorem 3.1
suggests the usage of a scheme conforming in the space H1

0 (Ω × Ω), as considered
in Sections 4 and 5. Although a convergence result is available for the conforming
approximation of (3.8) (cf. [35]), this method is not optimal. It is possible to guaran-
tee a quadratic rate of convergence by using an approximation method with certain
additional properties, which are not fulfilled by the conforming scheme. As a par-
ticular choice of such a method, the Nitsche approximation from [45] is suggested in
[35]. In this section, we discuss hence the approximation scheme for the Riccati-IDE
stemming from the Nitsche method. We will use the notation 〈·, ·〉 = (·, ·)L2(Γ) for the
sake of brevity. The scalar product on the space L2(Ω) is denoted by (·, ·) as before.
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6.1. Linear part. We consider the Nitsche approximation A?N of the operator
A? with respect to the ansatz space ZJ

(6.1) (A?Nφ, ψ) = (A?φ, ψ)−
〈
∂φ

∂ν
, ψ

〉
−
〈
φ,
∂ψ

∂ν

〉
+ β2J〈φ, ψ〉 for all φ, ψ ∈ ZJ ,

where β > 0 is sufficiently large (cf. [45]). The discretization of the first term on
the right hand side in (6.1) for the full, respectively the sparse grid, is described in
Sections 4.2 and 5.2. In addition, the discretization of the boundary terms must be
provided for some particular choice of the ansatz space.

Using the notation GNJ for the discretization matrix of〈
∂φ

∂ν
, ψ

〉
+

〈
φ,
∂ψ

∂ν

〉
and GDJ for the discretization matrix of 〈φ, ψ〉, we obtain similar to Section 4.2 the
following expression for the Nitsche approximation of the linear part of the Riccati-
IDE (

(A?J −GNJ + β2JGDJ )⊗ EJ + EJ ⊗ (A?J −GNJ + β2JGDJ )
)
pJ .

The corresponding sparse grid expression reads(
(A?J −GNJ + β2JGDJ ) ⊗̂ EJ + EJ ⊗̂ (A?J −GNJ + β2JGDJ )

)
p̂J .

Assuming the matrix–vector products for GNJ and GDJ can be computed in O(NJ), the
Nitsche approximation of A? can be evaluated with complexity O(NJ logNJ) using
the UniDir algorithm.

6.2. Nonlinear part. In accordance with [35], the approximation of the opera-
tor B? for the Nitsche scheme is〈(

∂

∂ν
− β2J

)
φ, ψ

〉
for all φ, ψ ∈ ZJ .

This leads, similar to the derivation in Sections 3.1 and 4.3, to the following approxi-
mation of the nonlinear term from the Riccati-IDE∫

Ω×Ω

∫
Γ

(
∂

∂νζ
− β2J

)
p(x, ζ)

(
∂

∂νζ
− β2J

)
p(ζ, ξ) dΓζ φ(x, ξ) d(x, ξ), φ ∈ ZJ .

To obtain a discrete expression, we modify the definition of the coefficients αi2,j1 ,
i2, j1 = 1, . . . NJ , (cf. (4.9)) for the discretization with finite elements to

NJ∑
i2,j1=1

(
∂

∂νζ
− β2J

)
φi2(ζ)

(
∂

∂νζ
− β2J

)
φj1(ζ) dΓζ =:

NJ∑
i2,j1=1

αi2,j1 .(6.2)

Similarly, in the case of the sparse grid ansatz space, we set αsj,k, j,k ∈ ZJ , to∑
s∈S

ws

(
∂

∂νζ
− β2J

) ∑
j∈ZJ

φj(ζs)

(
∂

∂νζ
− β2J

) ∑
k∈ZJ

φk(ζs) =:
∑
s∈S

∑
j,k∈ZJ

αsj,k.(6.3)

With αi2,j1 , respectively αsj,k, as defined in (6.2) and (6.3), the expressions for the
discretization of the nonlinear part are again of the form (4.12) for the finite element
ansatz space, and as in (5.5) for the sparse grid.
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7. Numerical results. In this section, we present numerical results for the
sparse grid discretization of the Riccati-IDE (3.8) and compare them to the standard
full grid discretization.

7.1. Discretization space. We begin with the construction of a sparse grid
ansatz space V̂J on Ω × Ω, Ω = [0, 1]d. To this end we use piecewise linear hat
functions (see e.g. [9]). We start with the standard linear hat function on [0, 1]

φ(x) := max{1− |x|, 0}, x ∈ Ω.

Translation and dilatation of φ(x) is defined as

φ(l,k)(x) := φ

(
x− k · 2l

2l

)
= φ(2−lx− k), l ∈ N0, k ≤ 2l,

whereby φ(0,0) and φ(0,1) are restricted to Ω. The integer l is also referred to as the
level and k as the index of the ansatz function.

Next, let l,k ∈ Nd be multi-indices and x ∈ Rd. We define a piecewise d-linear
function on Ω as a tensor product

φ(l,k)(x) :=

d∏
i=1

φ(li,ki)(xi),

and introduce the discrete space Zj , j = 0, . . . , J , as

Zj := span
{
φ(l,k) : ‖l‖∞ ≤ j and ki ≤ 2li for i = 1, . . . , d

}
.

With spaces Zj at hand, Wj , Wj , V̂J can be constructed as described in Section 5.
To apply the algorithms for the evaluation of the Riccati-IDE on the ansatz space V̂J
constructed with d-linear hat functions, we note that the mapping δ is given by

δ(j, ·) =

{{
(l,k) : ‖l‖∞ = j, ki ≤ 2li odd, i = 1, .., d

}
, j ≥ 1,{

(l,k) : ‖l‖∞ = 0, ki ∈ {0, 1}, i = 1, .., d
}
, j = 0.

7.2. Parameters of numerical experiments. For the numerical experiments,
we will consider 1D, 2D and 3D control problems, i.e., we will have d = 1, 2, 3. The
corresponding Riccati kernels are thus defined on 2D, 4D and 6D domains.

The state dynamics operator A from (2.3) will be

A : H1
0 (Ω) ∩H2(Ω)→ L2(Ω), Az =

d∑
i=1

∂xixi
z −

d∑
i=1

∂xi
z + 2 · z

and we choose the following right-hand side q(x, ξ), x, ξ ∈ Rd:

q(x, ξ) =

d∏
i=1

(1− |2xi − 1|)(1− |2ξi − 1|).

The reference solution is computed by discretizing the weak form of the ARE (3.2)
with the ansatz

p(x, ξ) =

Nref∑
‖v‖∞,‖w‖∞=1

pv,w

d∏
i=1

√
2 sin(viπxi) e

1
2xi
√

2 sin(wiπξi) e
1
2 ξi ,(7.1)

v,w ∈ Nd. Nref is specified below for each value of d.
The algorithm for the solution of the Riccati equation is implemented based on a

general sparse grids library SG++, see [49, 52].
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Figure 7.1. Mean values of the computation times for the evaluation of the quadratic term vs.
NJ – the dimension of the space ZJ .

7.3. Computation time. First, we shall confirm the expected complexity of

O(NJ logNJN
d−1
d

J ) = O(N
2d−1

d

J logNJ)

by measuring the computation times. To this end, we use the boost::timer library
and consider the mean values of the computation time for the evaluation of the qua-
dratic part RNL(p) with (4.12). The number of measurements for the computation of
the mean value is 5000 for d = 1 and 10 for d = 2, 3. The results are found in Figure
7.1, which shows the logarithm of the measured time against NJ – the dimension of
the space ZJ (compare Section 4).

7.4. Convergence. Next, we analyse convergence of the approximation schemes
for the full and the sparse grid. Let papprox denote the computed approximation of
the Riccati kernel, and pref – the reference solution. For the one dimensional control
problem, we estimate the L2-error on a mesh Xeval ⊂ Ω× Ω,

X :=
{

(x, ξ) ∈ [0, 1]2 : (x, ξ) = (i, j) · 1/5000, i, j = 0, . . . , 5000
}
,

by computing

e2 =

√∑
(x,ξ)∈Xeval

(papprox(x, ξ)− pref(x, ξ))2

|Xeval|
.(7.2)

For the computation of the reference solution, we set Nref = 3500.
First, we compare the H1

0 -conforming approximation with the Nitsche method.
Results for d = 1 are presented in Figure 7.2. Herein, ‘DoF’ is the number of degrees
of freedom for the approximation, i.e., the dimension of the ansatz spaces VJ and
V̂J , respectively. One clearly figures out a stagnation of convergence for the H1

0 -
conforming approximation, which can be explained by the results proven in [35].
Thus, for the subsequent experiments, we will use the Nitsche approximation scheme.

The results for d = 1 are presented in Figure 7.3 and Table 7.1. In the table, we
also compute the convergence rates ρi = ld (ei/ei−1), where ei is the value of error
estimator, e2 or e∞, for level i. We observe indeed that the convergence of the sparse
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Figure 7.2. H1
0 -conforming approximation versus Nitsche method. Both methods with sparse

grids, d = 1.
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Figure 7.3. Error estimation e2 of the L2 error versus the number of degrees of freedom (DoF)
of the ansatz space, d = 1.

grid approach is considerably faster compared to the full tensor product approach.
We shall in addition mention that also the cost per degrees of freedom is smaller in
case of the sparse grid approach, meaning that the speed-up is even higher as seen in
Figure 7.3.

A quadrature on a full grid is too expensive to compute the error estimate for
four or six dimensional Riccati kernels. Therefore, in these cases, we estimate the L2

error as

e2 = ‖pref(x, ξ)− papprox(x, ξ)‖L2(7.3)

=

[
‖pref(x, ξ)‖2L2 − 2〈pref(x, ξ), papprox(x, ξ)〉+ ‖papprox(x, ξ)‖2L2

]1/2

,

whereby we use the ansatz (7.1) to evaluate the scalar products directly. Note that
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level e2 ρi(e
2) DoF level e2 ρi(e

2) DoF

2 1.40−3 ? 21 10 2.39−8 1.99 13,313
3 3.68−4 1.93 49 11 6.02−9 1.99 28,673
4 9.37−5 1.97 113 12 1.52−9 1.99 61,441
5 2.37−5 1.99 257 13 3.81−10 1.99 131,073
6 5.96−6 1.99 577 14 9.60−11 1.99 278,529
7 1.50−6 1.99 1,281 15 2.42−11 1.99 589,825
8 3.78−7 1.99 2,817 16 6.11−12 1.99 1,245,185
9 9.51−8 1.99 6,145 ? ? ? ?

Table 7.1
Estimations e2 of the L2 errors and the convergence rates ρi(e2) = ld(e2i−1/e

2
i ) for sparse grid

and d = 1.
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Figure 7.4. Error estimation e2 of the L2 error versus the number of degrees of freedom (DoF)
of the ansatz space, d = 2.

the error estimate (7.2) we use for the one dimensional case can be obtained from
(7.3) by virtue of a numerical quadrature. Thus, the difference between the formulas
(7.2) and (7.3) would be neglectable for sufficiently large Nref.

The approximation results are presented in Figure 7.4 and Table 7.2 for d = 2,
and in Figure 7.5 and Table 7.3 for d = 3. We set Nref = 130 for the two dimensional,
and Nref = 30 for the three dimensional control problem. It again turns out that the
sparse grid approach is superior over the full tensor product approach. The sparse
grid approach realizes a higher rate of convergence with respect to the degrees of
freedom at a smaller cost per degree of freedom.

level e2 ρi(e
2) DoF level e2 ρi(e

2) DoF

2 2.35−4 ? 369 6 1.10−6 1.97 136,705
3 6.49−5 1.85 1,633 7 2.80−7 1.98 593,409
4 1.69−5 1.94 7,169 8 7.06−8 1.99 2,564,100
5 4.34−6 1.96 31,361 ? ? ? ?

Table 7.2
Estimations e2 of the L2 and e∞ of the L∞ errors and the convergence rates ρi(e) = ld(ei−1/ei)

for sparse grid and d = 2.
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Figure 7.5. Error estimation e2 of the L2 error versus the number of degrees of freedom (DoF)
of the ansatz space, d = 3.

level e2 ρi(e
2) DoF level e2 ρi(e

2) DoF

2 5.40−5 ? 6,021 4 4.24−6 1.90 392,561
3 1.58−5 1.77 48,241 5 1.11−6 1.94 3,252,740

Table 7.3
Estimations e2 of the L2 and e∞ of the L∞ errors and the convergence rates ρi(e) = ld(ei−1/ei)

for sparse grid and d = 3.

8. Conclusion. In the present article, we considered the numerical solution of
the algebraic Riccati equation by means of sparse grids. To that end, we did not
start with the algebraic Riccati equation but with its continuous counterpart – the
Riccati-IDE. This partial integro-differential equation has then been discretized by the
Galerkin method with sparse grid ansatz spaces. We have shown that both, memory
requirements and computation times, are reduced considerably in comparison with a
tensor-product finite element discretization. Nonetheless, future research has to be
focus on further speeding-up the computational process.
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