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ABSTRACT

Fingerprint distances, which measure the similarity of atomic environments, are commonly calculated from atomic environment
fingerprint vectors. In this work, we present the simplex method that can perform the inverse operation, i.e., calculating finger-
print vectors from fingerprint distances. The fingerprint vectors found in this way point to the corners of a simplex. For a large
dataset of fingerprints, we can find a particular largest simplex, whose dimension gives the effective dimension of the finger-
print vector space. We show that the corners of this simplex correspond to landmark environments that can be used in a fully
automatic way to analyze structures. In this way, we can, for instance, detect atoms in grain boundaries or on edges of carbon
flakes without any human input about the expected environment. By projecting fingerprints on the largest simplex, we can also
obtain fingerprint vectors that are considerably shorter than the original ones but whose information content is not significantly
reduced.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0030061

I. INTRODUCTION

Materials science has become, to a large extent, a data driven
science. Several data banks exist that contain not only structural
data but also calculated properties; many exceed the hundreds of
thousands of structural properties in number, with their num-
ber growing dramatically. * Molecular dynamics (MD) simula-
tions typically also generate very large datasets. Such large datasets
cannot anymore be inspected by eye and tools for classifying the
structures in an automatic way are needed. Atomic environments
can be described in a quantitative fashion by descriptors called
“atomic environment fingerprints,”” ’ which can also provide a
description for entire crystalline structures.’ Atomic environ-
ment fingerprints are also used as inputs for supervised machine

learning schemes'' ™" of potential energy surfaces. For such a use,
it is desirable that the fingerprint is able to detect any difference in
the environment'* while keeping the fingerprint vector as short as
possible.

One of our goals will be the detection of grain boundaries,
which are the disordered regions between one or two ordered
phases. Grain boundaries have an important influence on physical
properties of the system including strength, conductivity, ductility,
and crack resistance.'” "’

Several methods have been proposed in the literature to distin-
guish between certain reference crystalline structures and disordered
and mainly liquid structures in melting and nucleation simulations
such as Steinhardt parameters”’ and common neighbor analysis
(CNA).”” These methods have also been used to study dislocations,
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local ordering, and grain boundaries.””*" One of the disadvantages
of these methods is that they are based on a sharp cutoff, and they
end up lacking smoothness with respect to particle displacements
occurring in MD or during relaxations. As its name suggests, in
the adaptive common neighbor analysis,” the cutoff is adapted to
the environment of each atom. Although more robust compared
to CNA, it remains sensitive to thermal vibrations. Different pre-
defined crystalline structures can be distinguished by polyhedral
template matching.”” SOAP” fingerprints coupled to machine learn-
ing methods were recently also used to predict properties of grain
boundaries.”’ Based on a formula to calculate the entropy for a
system interacting only via pairwise forces, an atomic entropy can
be obtained, which allows us to distinguish between liquid, FCC,
BCC, and HCP crystalline phases.’” Several other methods exist
in the computational physics and machine learning communities
for the selection of fingerprint components and atomic environ-
ments. In the Pearson correlation method, the correlation between
the selected features and the atomic environments is optimized.””
In the farthest point method,” the Euclidian fingerprint distance
between the data points is maximized. Sketch maps™ try to map
faithfully distances from a high dimensional into a low dimen-
sional space. The unsupervised landmark analysis of Kahle et al. is
based on a Voronoi tessellation of the space such that all points
in a certain region are closer to the points in the same region
than the points in other regions.”” CUR decomposition finds a
low rank of the fingerprint matrix such that the least information
is lost.” In the principal component analysis (PCA), the covari-
ance matrix is diagonalized and the most important directions are
selected.”

In this work, we introduce a method that selects all the rele-
vant structures fully automatically based on a large pool of struc-
tures. The method is also applicable without any adjustments to any
molecular system whose atomic environments can be represented by
fingerprints.

Il. THE LARGEST SIMPLEX METHOD

A. Fingerprints and fingerprint distances

In this section, we provide a short review of the overlap matrix
(OM) fingerprint method that we use to describe the local atomic
environment. A complete description can be found in the original
paper detailing the method.'""”

In order to calculate the overlap matrix (OM) fingerprint for
an atom k in a structure, we take into account the relative position
of all the neighbors of that atom within a cutoff sphere (centered
on atom k) of radius R.. Neighbors include all the relevant peri-
odic images of an atom when dealing with an atom at the edge of
a repeating unit for a periodic system. Each of the atoms is asso-
ciated with a minimal set of normalized atom-centered Gaussians
G,(r — R;), centered on the atom itself. The width of each Gaussian
is given by the covalent radius of the atom on which it is centered.
For carbon with its strong directional bonding, we have used a set
of s and p-type orbitals (v = s, px, py, pz) and denote the resulting
fingerprint by OM[sp], and for aluminum with its metallic bond-
ing, we have used only v = s and denote the fingerprint by OM[s].
We then calculate the overlap between Gaussian functions in the
sphere,
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Shwia = [ Gulr = R)Gu(r — R)dr. )

Next, the overlap matrix S5, ju is multiplied by the amplitude func-
tions fc(|[Rx — Ri|]) and fc(|[Rx — Rj|) to obtain a modified overlap
matrix S,

85, = fe(IRy = Ri)SE fe (R — Ry]). @)

fe(r) =(1- % )? is a cutoff function that vanishes at and beyond
r = 2w = R. with two continuous derivatives. w gives the length
scale over which f.(r) drops to zero and we typically choose it so
that about 50 atoms are contained within the cutoff radius R.. The
matrix whose columns are denoted by the composite index i, v and
whose rows are given by the composite index j, y is then diagonal-
ized to obtain the eigenvalues. Finally, the vector V* containing all
the sorted eigenvalues of the matrix Sf,, i 18 the fingerprint of atom
k. It has a length L = 4N gy, for OM([sp] and L = Npper, for OM[s],
where N pper, is the number of atoms in the sphere around the central
atom.

By construction, the fingerprint is robust against displacements
of the atoms across the boundary of the sphere radius, and there-
fore, it is possible to calculate derivatives of the fingerprints with
respect to infinitesimal structural change around the atom k. The
fingerprint vectors V¥ characterize the atomic environments around
atom k, and the fingerprint distance d;; is a measure of the dis-
similarity between two environments i and j. The fingerprint dis-
tance is obtained from the Euclidean norm of the difference vector
throughout this study,

dij = |Vi—Vj|. (3)

B. Obtaining fingerprint vectors from fingerprint
distances

The above formula (3) gives a trivial recipe to obtain fingerprint
distances d; j from a set of points represented by the fingerprint vec-
tors in a space of dimension L. In the following, we will derive the
formulas for the inverse operation. Given a set of pairwise finger-
print distances d;,j, we want to construct a set of points x* that will
satisfy these constraints. The solution of this problem is not unique.
The solution can, however, be made unique by requiring that the first
point be the origin, x° = 0, and that for each consecutive point, the
number of nonzero components increases by one. Hence, the points
¥’ have the following structure:

X110 X12 . XIN

X22 v XN

(xl,xz,...,xN): 0 A S| (4)

0 0 0 XN,N

Hence, after placing the first point at the origin, the next point lies
on the positive x-axis at the right distance, the following on the xy
plane (y > 0), and so on. The components of the set of points x”’s can
be obtained recursively from simple relations between the distances
among the vectors V.
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The distance between x" and the origin, x°, is simply given by
the norm of the vector,

N
dé,N = inZ,N' (5)
i=1

For M < N, the difference between columns N and M is related to
the distance between points xV and x™ as

M N
dﬁ/I,N = Z (x,',N - .QC,',M)2 + Z xﬁN. (6)
i=1

j=M+1

By taking the difference between d3; y and dj v, we obtain a simpli-
fied set of equations,

M M
dyn —don =Y (xin = xin)” = xin = Y —Xipm (2xin — Xir). (7)

i=1 i=1

In Eq. (7), the unknowns x;,y depend only on other column
elements x;j,» with M <N,

x1,1 = do1, (8)
d(z),l + d<2),2 - d%z

X|p= ————————=, 9
12 o ©)

X202 = A /da2 - xiz. (10)

We can write for M < N, in general,

2 2 2 M-1
XN = do,M +don —dyn —22i0] XiMXiN (11)
? 2xM>M ’

and for M = N, we have

N-1
XN,N = d(z)N - Z xl.z’N. (12)
i=1

The geometrical body having as corners the above calculated points
is a N-dimensional simplex with volume xi1x22---xn,n/N!. The

. New (New=1) 7.
above construction can be done for any set of % distances

as long as the original V"s giving rise to the distances via Eq. (3)
are linearly independent. Since the number of environments Ny, is
typically much larger than the length L of the fingerprint vectors, at
most, L points (including in the count the origin) can be obtained. If
the number of linearly independent fingerprint vectors is less than
L, x;,; will become zero for some i < L, and it is thus not possi-
ble to increase the dimension of the simplex. In the context of our
fingerprints, it turns out that the x;; typically are not exactly zero
but become very small, which means that all the fingerprint vec-
tors are essentially contained in a sub-volume whose dimension is
smaller than L. The component that is orthogonal to this subspace
is then very small and can be neglected. This is the basic property

ARTICLE scitation.org/journalljcp

that will be exploited for the fingerprint compression later in the
paper.

C. Construction of the largest simplex

Now, we will describe how we can use the construction outlined
above to obtain the largest simplex, which we will simply denote
by the largest simplex (LS). We do this since we are interested in
finding the effective dimension [ of the space spanned by the finger-
prints, which gives the number of the highly distinctive landmark
environments together with these environments. We start by iden-
tifying the two environments characterized by the largest distance.
This defines the origin x° and the first point along the x-axis, i.e.,
x', and in this way, the first two corners of the simplex, which is, at
this stage, just a line. To enlarge, in the next step, the dimension of
the simplex by one, we search for the environment that will give the
largest area triangle if the point x%, corresponding to this environ-
ment, is used as the third corner. We then increase the dimension of
the simplex step by step and we choose the new corners in each step
in such a way that the volume of the new simplex will be maximal.
The procedure is stopped if in a certain step /, the volume collapses
to a very small value because additional fingerprint vectors are quasi
linearly dependent on the previous ones. In this way an effective
dimension [ of the entire fingerprint space can be determined. Once
this largest simplex is constructed, we can express other fingerprint
vectors in the basis of the vectors x' spanning the LS. To get the
expansion coefficients, we just perform the same steps of Egs. (8)-
(12) that would be needed to add a corner to the simplex. However,
in this case, we know already that the xj.1,;41 from Eq. (12) will
be negligible because we stopped the largest simplex construction
exactly for the reason that we could not find any point that gave a
large XI+1,1+1-

lll. APPLICATIONS

In this section, we show some applications of the LS. In
Sec. Il A, we apply the methodology to the study of a variety
of Cep molecules to identify the most distinct environments and
group the most similar ones. In Sec. III B, we use the method
to find the grain boundaries in a Al nanocrystalline material. In
Sec. I1I C, we exploit the LS to reduce the dimensions of the fin-
gerprint and compare its performance with CUR decomposition
method.”

A. Cgo clusters

Our first system to be studied consists of 5000 Ceo structures,
i.e,, 5000 x 60 atomic environments, that exhibit several structural
motifs including sheets, chains, and cages. These structures were
generated by minima hopping™ runs coupled to Density Functional
based Tight Binding (DFTB).”” Our aim is to identify the most dis-
tinct atomic environments as well as to classify the environments.
We use OM|[sp] with a cutoff radius of R; = 2w = 6 A and follow
the approach described in Sec. II to generate the LS with N = 60.
In Fig. 1, we show the first 20 corners of the LS, which represent 20
highly distinct landmark environments in the dataset. In agreement
with the basic chemical intuition, the first two corners represent-
ing the two most different chemical environments are a fourfold
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FIG. 1. (a)-(t) The first 20 corners of the LS, i.e., the 20 most distinct atomic environments. The central atoms are shown in a different color than the rest of the atoms. The
relative size and the colors of the atoms are for visualization purposes and are not physically important.
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coordinated atom and a carbon atom at the end of a linear chain
with only one nearest neighbor, as shown in Figs. 1(b) and 1(a).
Other twofold coordinated atoms in chains are also represented by
higher order corners of the LS, as shown in Figs. 1(f), 1(q), 1(r), and
1(c). In Fig. 1(c), the reference atom is part of a chain, but the chain
points inside the cage, which shows that our method can distinguish
between chains that point inward or outward since it is not based
solely on its nearest neighbors, but on its general environment.

The fourth corner of the LS is an atom with one nearest neigh-
bor and near a hole in the Cgp shown in Fig. 1(d). Other cor-
ners of the LS also clearly represent truly different environments.
For instance, the 8th corner of the LS shown in Fig. 1(h) is an
atom in a graphite flake and the 16th corner of the LS is an atom
in a fragmented part shown in Fig. 1(p). Our dataset contains
only a few fragmented structures in the dataset, which are of type
Fig. 1(p) and the LS could correctly recognize them as highly distinct
environments.

Next, we employ the corners of the LS to analyze structures.
Based on the fact that each corner represents highly distinct land-
mark environments, we can assume that each fingerprint that has
a small fingerprint distance to any of these corners represents an
environment that is similar to the corresponding landmark envi-
ronment. Hence, we assign each atomic environment to its closest
corner if the fingerprint distance is less than a threshold value d,
which we take to be 0.5. With this criterion, we calculate the number
of environments that belong to each class, as shown in Fig. 2. The
environments that do not belong to any corner of the LS because
their fingerprint distance to the their closest corner is larger than ¢
are shown in the blue bar in Fig. 2. Since the first corner is at the
origin, Fig. 2 starts at zero.

The energetic minimum of the Ceo molecule is the fullerene
molecule. In this structural motif, the atomic environments for all
of the carbon atoms are equivalent. This is not true anymore if
the fullerene has a so-called Stone-Wales defect.”’ In the follow-
ing, we look at such a structure as well as a 60 atom graphite flake
and categorize the atoms according to their fingerprint distance to
the landmark environments, i.e., the corners of the LS. None of the
atomic environments of these two structures is actually a landmark

ARTICLE scitation.org/journalljcp
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FIG. 2. The number of atomic environments in the dataset of Cgq structures, which
are similar to one of the corners of the LS. The blue bar represents environments
that are not similar to any corner based on the threshold value & = 0.5.

environment of the LS. For the visualization, we assign a color to
each corner of the LS. All the atomic environments in the data that
have a short fingerprint distance to this corner are then shown in this
color.

Our method automatically classifies the atoms of the struc-
ture shown in Fig. 3(a) into three types, and we can easily verify
by visual inspection that these three classes are in agreement with
chemical intuition: We see an atom surrounded by two pentagons
and one hexagon [corner 47 shown in Fig. 3(b)], one pentagon and
two hexagons [corner 38 shown in Fig. 3(c)], or three hexagons
[corner 23 shown in Fig. 3(d)]. As can be seen from Fig. 2, a large
number of atomic environments in our dataset are similar to these

corners.

FIG. 3. (a) A Cgo with a Stone-Wales defect: the atoms are colored according to their closest corners, which is shown by the same color in the other three images. (b) Corner

47, (c) corner 38, and (d) corner 23 of the LS.
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Another example is shown in Fig. 4. The atoms of the structure
in Fig. 4(a) are similar to one of the six different corners of the LS.
These are shown in Figs. 4(b)-4(g). Hence, indeed groups of envi-
ronments that have a short distances to a landmark environment
share similar chemical environments.

B. Grain boundary networks in nanocrystalline Al

In our second application, we study a nanocrystalline Al aggre-
gate with 255064 atoms containing grain boundary networks. The
details on the generation of the nanocrystalline Al used here can
be found elsewhere.”! We use the OM[s] fingerprint with a cutoff
radius of R. = 5 A to build the LS. We take N = 46, which is the
same as the length of the fingerprint. Having generated the LS, we
assign a different color to each of the corners of the LS for the follow-
ing visualizations. These corners are the most distinct environments
in the nanocrystalline Al i.e., each corner can represent a class of
diverse environments in the data. We again categorize the atoms in
the system according to their similarity to the corners of the LS and
assign them the same color as the corners they resemble most. Visual
inspection of Fig. 5 shows that the LS can find all the grain bound-
ary networks, in agreement with the findings of Piaggi.’' In addition,
it can also recognize differences between different grain boundaries
and find different kinds of ordered-disordered phases, as shown in
Fig. 6.

ARTICLE scitation.orgljournalljcp

In Fig. 6, we showed the first 20 corners of the LS.
Figure 6(a) shows a perfect crystalline FCC phase. Figures 6(c) and
6(r) show the defective crystalline FCC phases where one near-
est neighbor of the central atom is missing. The corners shown in
Figs. 6(e), 6(n), 6(p), and 6(s) correspond to atoms on a twisted
grain boundary. The configurations from Figs. 6(b), 6(d), 6(h), 6(1),
and 6(t) represent environments located on the boundary between
ordered and disordered phases. Finally, some corners of the LS rep-
resent atoms in disordered phases such as those shown in Figs. 6(i)
and 6()).

C. The compression of the fingerprints

In Sec. 11, we showed that once the LS is found, the original fin-
gerprints can be projected onto the LS. In this section, we will show
that these projections can be regarded as a new fingerprint whose
length is much shorter than the original fingerprint while contain-
ing most of the information of the original fingerprint. This is an
example of data compression, a problem for which many algorithms
are available, such as CUR” decomposition. Assuming that F is the
fingerprint matrix with dimension L x N’, where L is the length
of the fingerprint and N’ is the number of atomic environments
N’ = Neyy, ie., ith column of F contains the fingerprint vector of
atomic environment i, one can write F ~ CUR in which C and R con-
tain k selected columns and rows of F and U = C'FR", where A"

FIG. 4. (a) A graphite flake whose atoms are colored according to their closest corners. (b) Corner 55, (c) corner 33, (d) corner 26, (e) corner 25, (f) corner 9, and (g) corner

7 of the LS.

J. Chem. Phys. 153, 214104 (2020); doi: 10.1063/5.0030061
© Author(s) 2020

153, 214104-6


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

indicates the pseudo-inverse of A and k < r = rank(F). In
order to find the reduced selected number of rows of matrix
F, one writes its Singular Value Decomposition (SVD) as F =
UDV”, where U (left singular matrix) and V (right singular
matrix) are L x L and N’ x N’ unitary matrices and D is a
L x N rectangular diagonal matrix with non-negative real numbers
on the diagonal. The diagonal entries of D are known as the singular
values of F. Then, the leverage score for each row i is calculated as
M= 1 Z’g:l (uf)z, where uf is the ith component of th left singular
vector and k is the number of rows that should be selected. Fre-
quently, rows are selected with probability proportional to the lever-
age score. We employed a deterministic method™** and select the
row with the highest leverage score at each time. Then, the selected
row is removed from the matrix, and the rest of the rows become

(d)

ARTICLE scitation.orgljournalljcp

orthogonalized with respect to it. To select other rows, this proce-
dure is repeated. The selected rows are the most important features.
One can also select columns of the matrix F, i.e., the most important
atomic environments by following the same procedure but for F”.
The selected rows and column are stored in R and C, respectively.

In the following, we employ the LS and CUR method to reduce
the length of the fingerprint by selecting the components of the
fingerprint that contain the most important information.

In order to investigate whether the compressed fingerprint con-
serves the information encoded in the original fingerprint, we cor-
relate all the pairwise fingerprint distances obtained by the original
and compressed fingerprints.'*

Obviously, fingerprint distances that are large with the original
fingerprint should remain large with the compressed fingerprint. In

®

E =
0 . 46

FIG. 5. Nanocrystalline Al containing grain boundaries. The LS is employed to find the grain boundary networks. Atoms are assigned the same color as their closest corner
of the LS, i.e., the corner with which they have the smallest fingerprint distance. (a) View from top. (b) View from front. (c) View from left. (d) View from right. (e) Perspective
view. (f) Slice view. Software Ovito"" is used for the visualization.
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FIG. 6. The first 20 most distinctive atomic environments in the nanocrystalline Al found by the LS are shown in (a)—(t). Red atoms are the central atoms whose local
environment is one of the comners of the LS and the atoms in their vicinity are depicted in blue.
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the same way, short distances should remain short. If this is the case,
all the points in a correlation plot between the fingerprint distances
arising from the original and the compressed fingerprint will lie on
or close to the diagonal. If there are points far away from the diagonal
and, in particular, if some fingerprint distances of the compressed
fingerprint are small, whereas the original distances are large, there
is a loss of information.

In Fig. 7, we show the correlation plot between the origi-
nal fingerprints and the LS- and CUR-reduced fingerprints using
OM, SOAP,’ atom-centered Behler-Parrinello symmetry functions
(ACSF),”" and Zernike fingerprints** for our above-mentioned test
of 1000 Ceo clusters with 1000 x 60 atomic environments. We used
the same fingerprint parameters for OM as in Sec. I1I A. For SOAP,
we used the following parameters: lpax = fmax = 8, 15 = 4.0 A, and
0 =0.5A. We used the standard parameters for ACSF.° For Zernike,
we used #1qx = 20. The cutoff radius is 6 A for all the fingerprints.
The software QUIP" is used to generate the ACSF and SOAP finger-
prints. For the Zernike fingerprint, we used the software atomistic
machine-learning package (AMP)."* We reduced the length of the
fingerprints to [ = 16 in all cases. As can be seen in Fig. 7, the correla-
tion is almost diagonal in the case of LS, which indicates that vast
majority of the information of the original fingerprint is retained
in the LS-reduced fingerprint. There are, however, some deviations
from the diagonal in the correlation plot between the original fin-
gerprint and CUR-reduced fingerprint, which indicates that some
information is lost in the CUR-decomposition.

IV. CONCLUSION

We have introduced an algorithm to construct a largest sim-
plex in the space spanned by a large set of atomic environment

fingerprint vectors. The number of corners of this LS gives the effec-
tive dimension of the fingerprint vector space. The corners them-
selves represent landmark environments that can be used to analyze
structures with a large number of atoms in a fully automatic way.
Hence, in contrast to other methods, it is not necessary to include
into our analysis tool criteria that are based on human expecta-
tions of what kind of environments are expected to be encountered
in this system. We show that this analysis method can be used to
detect grain boundaries and other typical environments in multi-
grain metallic systems and to classify atomic environments in a car-
bon cluster in a way that is consistent with basic chemical intuition.
Since only those components of the fingerprint vector that are inside
the space spanned by the LS are relevant, projecting the fingerprint
into the space spanned by the LS reduces the length of the fingerprint
without any significant loss of information. Therefore, the method
can also be used as a data compression method for fingerprints.

SUPPLEMENTARY MATERIAL

See the supplementary material for the structures in Fig. 6.
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