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Abstract. We study the numerical solution of forward and inverse acoustic scat-

tering problems by randomly shaped obstacles in three-dimensional space using a

fast isogeometric boundary element method. Within the isogeometric framework,

realizations of the random scatterer can efficiently be computed by simply up-

dating the NURBS mappings which represent the scatterer. This way, we end up

with a random deformation field. In particular, we show that the knowledge of

the deformation field’s expectation and covariance at the surface of the scatterer

are already sufficient to model the surface Karhunen-Loève expansion. Leveraging

on the isogeometric framework, we utilize multilevel quadrature methods for the

efficient approximation of quantities of interest, such as the scattered wave’s ex-

pectation and variance. Computing the wave’s Cauchy data at an artificial, fixed

interface enclosing the random obstacle, we can also directly infer quantities of

interest in free space. Adopting the Bayesian paradigm, we finally compute the

expected shape and the variance of the scatterer from noisy measurements of the

scattered wave at the artificial interface. Numerical results for the forward and

inverse problem are given to demonstrate the feasibility of the proposed approach.

1. Introduction

The reliable computer simulation of phenomena where acoustic waves are scattered

by obstacles is of great importance in many applications. These include for example

the modelling of sonar and other methods of acoustic location, as well as outdoor

noise propagation and control, especially stemming from automobiles, railways or

aircrafts. Since an analytical solution of scattering problems is in general impossible,

numerical approaches are called for.

Most acoustic scattering problems may be formulated in the frequency domain by

employing the Helmholtz equation: assume an acoustic wave encounters an impen-

etrable, bounded obstacle D ⊂ R3, having a Lipschitz smooth boundary S := ∂D,

and, as a consequence, gets scattered. Then, describing the incident plane wave

uinc(x) = eiκ〈d,x〉 with known wavenumber κ and direction d, where ‖d‖2 = 1, the
1
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total wave

u = uinc + us

is obtained by solving the exterior boundary value problem

(1.1)

∆u+ κ2u = 0 in R3 \D,

u = 0 on S,

√
r

(
∂us

∂r
− iκus

)
→ 0 as r = ‖x‖2 →∞.

The homogeneous Dirichlet condition at S corresponds to a sound-soft obstacle,

whereas a homogeneous Neumann condition would correspond to a sound-hard ob-

stacle. The function us = u− uinc is called the scattered wave. Although we restrict

ourselves to the sound-soft case, the presented concepts are also suitable to treat

sound-hard obstacles as well as for penetrable obstacles, i.e. objects described by a

different diffractive index to the free space.

In this article, we consider the situation of a randomly shaped obstacle D = D(y),

where y ∈ Γ ⊂ RN is some random parameter. This shape uncertainty might for

example issue from measurement or modelling errors. As a consequence, the to-

tal wave itself becomes a random field u(y). Our goal is to compute the first and

second order statistics of the scattered wave, these are the expectation E[us] and

the variance V [us]. We especially demonstrate how to compute the scattered wave’s

second moment in a deterministic fashion from its Cauchy data’s second moment

on an artificial, fixed interface T , which almost surely encloses the domain D(y).

In combination with low-rank techniques, this drastically reduces the high dimen-

sionality of the random scattering problem, compare [25]. In order to speed up the

computations of the Cauchy data’s statistics even further, we employ the multilevel

quadrature method, see e.g. [2, 19, 29,32].

Our approach lies in the domain mapping category as it transfers the shape uncer-

tainty onto a fixed reference domain, and allows to deal with large deformations

(see [1, 37]). In contrast, perturbation techniques resort to shape derivatives to lin-

earize fields for small deviations with respect to both wavelength and scatterers’

shape from a nominal, reference geometry. By Hadamard’s theorem, the resulting

linearized equations for the first order shape sensitivities are homogeneous equations

posed on the nominal geometry, with inhomogeneous boundary data only. Using

first-order shape Taylor expansions, one can derive deterministic tensor first-kind

boundary integral equations for the statistical moments of the scattering problems

considered. These are then approximated by sparse tensor Galerkin discretizations

via the combination technique (cf. [17] and references therein). Though successfully
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applied to three-dimensional Helmholtz Dirichlet, Neumann, impedance and trans-

mission problems [17], and even for diffraction gratings [43], therein random pertur-

bations are required to be sufficiently small. High-order approaches [11, 27] lead to

at least third order accurate approximations with respect to the perturbation am-

plitude of the domain variations. Finally, in [7] a hybrid between domain-mapping

and perturbation methods was presented.

For the numerical realization of random obstacles, we employ the methodology from

isogeometric analysis (IGA). IGA has been introduced in [35] in order to incorpo-

rate simulation techniques into the design workflow of industrial development and

thus allows to deal with domain deformations in a straightforward manner. By rep-

resenting the geometry and domain deformations by non-uniform rational B-splines

(NURBS), realizations of the random scatterer can efficiently be computed by simply

updating the NURBS mappings which represent the scatterer. In addition, the natu-

rally emerging sequence of nested approximation spaces can directly be employed in

multilevel quadrature methods. With regard to the isogeometric boundary element

approach for the scattered wave computations, compare [14,18,44,45], we show that

all computations can directly be performed at the boundary of the deformed scat-

terer. This particularly applies to the random deformation field which only needs

to be computed with respect to a reference surface. This way, we can model large

deformations without having to deal with very fine volume meshes, which would oth-

erwise be necessary to properly resolve the deformation field within the scatterer.

Moreover, the meshing of the unbounded free space is avoided. Therefore, the isoge-

ometric boundary element method is the method of choice for the problem at hand.

For the numerical computations, we rely on the fast isogeometric boundary element

method developed in [13–16,26], which is available as C++ library bembel [12,13]. In

order to speed up computations, bembel utilizes H2-matrices with the interpolation

based fast multipole method [20–22].

To our knowledge, the present work constitutes the first fast IGA implementation for

time-harmonic acoustic wave scattering for shape uncertainty quantification. Having

this fast forward solver at our disposal, we also consider acoustic shape inversion

by Bayesian inference: Given noisy measurements of the scattered wave at certain

locations in free space, we determine statistics of the uncertain scatterer’s shape.

To this end, we employ the multilevel ratio estimator, see [10] and the references

therein, and compute the expected shape and its variance.
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The rest of article is organized as follows: Section 2 is concerned with the modelling

of random domains and their parametrization by means of a Karhunen-Loève expan-

sion. In Section 3, we perform the efficient discretization of the random deformation

field by means of isogeometric analysis. In Section 4, we introduce the boundary

integral formulation of the problem under consideration and discuss the use of the

artificial interface for the representation of the scattered wave and its statistics.

Section 5 briefly recalls the multilevel quadrature method, whereas Section 6 deals

with its application to Bayesian inference. Finally, Section 7 is devoted to numerical

examples showcasing the ideas discussed.

2. Random domain model

2.1. Modelling of random domains. In what follows, let Dref ⊂ R3 denote a

Lipschitz domain with piecewise smooth surface Sref := ∂Dref and let (Ω,F ,P) be

a complete probability space. We assume that the uncertainty in the obstacle is

encoded by a random deformation field, cf. [30]. We hence assume the existence of

a uniform C1-diffeomorphism χD : Dref × Ω→ R3, i.e.

(2.1) ‖χD(ω)‖C1(Dref ;R3), ‖χ−1
D (ω)‖C1(D(ω);R3) ≤ Cuni for P-a.e. ω ∈ Ω,

such that

D(ω) = χD(Dref , ω).

Particularly, since χD ∈ L∞
(
Ω; [C1(Dref)]

3
)
⊂ L2

(
Ω; [C1(Dref)]

3
)
, the deformation

field χD can be expressed by a Karhunen-Loève expansion [38] which has the form

(2.2) χD(x̂, ω) = E[χD](x̂) +
∞∑
k=1

√
λD,kχD,k(x̂)YD,k(ω), x̂ ∈ Dref .

Herein,

E[χD](x̂) :=

∫
Ω

χD(x̂, ω) dP(ω)

is the field’s expectation, while (λD,k,χD,k) are the eigenpairs of the covariance

operator CD :
[
L2(D)

]3 → [
L2(D)

]3
,

(CDU)(x̂) :=

∫
Dref

Cov[χD](x̂, x̂′)U(x̂′) dx̂′,(2.3)

where the matrix valued covariance function is given by

Cov[χD](x̂, x̂′) :=

∫
Ω

(
χD(x̂, ω)− E[χD](x̂)

)(
χD(x̂′, ω)− E[χD](x̂′)

)ᵀ
dP(ω).
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It holds that

(2.4) YD,k(ω) :=
1√
λD,k

∫
Dref

(
χD(x̂, ω)− E[χD](x̂)

)ᵀ
χD,k(x̂) dx̂.

The family {YD,k}k of random variables is therefore uncorrelated and centred. We

remark that in uncertainty quantification problems typically only the spatial quan-

tities E[χD] and Cov[χD] are known, such that the distribution of the random vari-

ables cannot be inferred via (2.4). Instead, their common distribution has to be

appropriately modelled.

2.2. Modelling of random surfaces. The numerical computation of a Karhunen-

Loève expansion as outlined in the previous subsection will generally requires a

volume finite element mesh for Dref . Moreover, the data E[χD] and Cov[χD] need

to be known for the entire reference domain Dref . In contrast, for our boundary

element-based approach, we only require realizations of the perturbed boundary.

The following exposition shows that, for the computation of surface realizations, the

knowledge of E[χD] and Cov[χD] at the boundary Sref = ∂Dref is sufficient.

Given a function g : Dref → R3, let

(γint
0 g)(x̂) := lim

x̂′3Dref→x̂∈Sref

g(x̂′)

denote the interior trace operator and let χS := γint
0 χD. Since

γint
0 :

[
C1
(
Dref

)]3 ⊂ [H1(Dref)
]3 → [

H1/2(Sref)
]3

is a continuous operator and the Bochner integral commutes with continuous oper-

ators, [33], it holds

(γint
0 E[χD])(x̂) = γint

0

∫
Ω

χD(x̂, ω) dP(ω) =

∫
Ω

χS(x̂, ω) dP(ω) = E[χS](x̂)

as well as

(γint
0 ⊗ γint

0 )Cov[χD](x̂, x̂′)

=

∫
Ω

(
(γint

0 χD)(x̂, ω)− (γint
0 E[χD])(x̂)

)
·
(
(γint

0 χD)(x̂′, ω)− (γint
0 E[χD])(x̂′)

)ᵀ
dP(ω)

=

∫
Ω

(
χS(x̂, ω)− (E[χS])(x̂)

)(
χS(x̂′, ω)− E[χS](x̂′)

)ᵀ
dP(ω)

= Cov[χS](x̂, x̂′).
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Therefore, the the spatial structure of the random deformation field at S, i.e.

χS(x̂, ω), is fully encoded by the boundary quantities

(γint
0 E[χD])(D) and (γint

0 ⊗ γint
0 )Cov[χD](x̂, x̂′).

For the numerical computation of the deformation field, it is therefore sufficient to

only compute the eigenpairs (λS,k,χS,k) of the surface covariance operator

CS :
[
L2(Sref)

]3 → [
L2(Sref)

]3
given by

(CSref
U)(x̂) :=

∫
Sref

(γint
0 ⊗ γint

0 )Cov[χD](x̂, x̂′)U(x̂′) dσx̂′ ,(2.5)

to obtain

(2.6) χS(x̂, ω) = γint
0 E[χD](x̂) +

∞∑
k=1

√
λS,kχS,k(x̂)YS,k(ω)

with

YS,k(ω) :=
1√
λS,k

∫
S

(
χS(x̂, ω)− γint

0 E[χD](x̂)
)ᵀ
χS,k(x̂) dσx̂.

Similar to the volume case, the common distribution of the YS,k(ω) needs to be

appropriately estimated.

We remark that the computation of the eigenpairs of (2.5) is significantly cheaper

than the computation of the ones of (2.3) since the latter only relies on a surface

mesh for Sref rather than on a volume mesh for Dref . Thus, the discrete system will

be significantly smaller. However, the corresponding eigenfunctions will in general

not be traces of the eigenfunctions of the Karhunen-Loève expansion (2.2) and,

therefore, also the distribution of the random variables will change.

In the sequel, we assume that the family {YS,k}k is independent and uniformly

distributed with {YS,k}k ∼ U(−1, 1) for all k. Then, we can identify each of the

random variables by its image yk ∈ [−1, 1] and up with the parametric deformation

field

χS(x̂,y) = γint
0 E[χD](x̂) +

∞∑
k=1

√
λS,kχS,k(x̂)yk, y ∈ Γ := [−1, 1]N,(2.7)

which gives rise to the random surface

S(y) =
{
χS(x̂,y) : x̂ ∈ Sref

}
.(2.8)
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3. Isogeometric discretization of random domains

3.1. Fundamental Notions. We review the basic notions of isogeometric analysis,

restricting ourselves to spaces constructed via locally quasi-uniform p-open knot

vectors, as required by the theory presented in [4, 5].

Definition 1. Let p and k with 0 ≤ p < k. A locally quasi uniform p-open knot

vector is a tuple

Ξ =
[
ξ0 = · · · = ξp ≤ · · · ≤ ξk = · · · = ξk+p

]
∈ [0, 1]k+p+1

with ξ0 = 0 and ξk+p = 1 such that there exists a constant θ ≥ 1 with θ−1 ≤
hj · h−1

j+1 ≤ θ for all p ≤ j < k, where hj := ξj+1 − ξj. The B-spline basis {bpj}0≤j<k

is then recursively defined according to

bpj(x) =


1[ξj ,ξj+1) if p = 0,

x−ξj
ξj+p−ξj b

p−1
j (x) +

ξj+p+1−x
ξj+p+1−ξj+1

bp−1
j+1(x) else,

where 1A refers to the indicator function of the set A. The corresponding spline

space is finally defined according to Sp(Ξ) := span({bpj}j<k).

To obtain spline spaces in two spatial dimensions, we employ a tensor product

construction. More precisely, for a tuple Ξ = (Ξ1, Ξ2) of knot vectors and polynomial

degrees p = (p1, p2), we define the spaces

Sp(Ξ) := Sp1(Ξ1)⊗ Sp2(Ξ2).

Given knot vectors Ξ1, Ξ2 with knots ξki < ξki+1 for k = 1, 2, sets of the form

[ξ1
j , ξ

1
j+1]× [ξ2

j , ξ
2
j+1] will be called elements. We reserve the letter h for the maximal

diameter of all elements. For further concepts and algorithmic realization of B-

splines, we refer to [40] and the references therein.

3.2. Isogeometric boundary representation. We assume the usual isogeometric

setting for the surface Sref of the reference domain Dref , i.e. denoting the unit square

by � := [0, 1]2, we assume that the surface Sref can be decomposed into several

smooth patches

Sref =
M⋃
i=1

S
(i)
ref .

The intersection S
(i)
ref ∩ S

(i′)
ref consists at most of a common vertex or a common edge

for i 6= i′. In particular, each patch S
(i)
ref is the image of an invertible NURBS mapping

(3.1) si : �→ S
(i)
ref with S

(i)
ref = si(�) for i = 1, 2, . . . ,M,
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where si is of the form

si(x, y) :=

k1∑
0=i1

k2∑
0=i2

ci1,i2b
p1
i1

(x)bp2i2 (y)wi1,i2∑k1−1
j1=0

∑k2−1
j2=0 b

p1
j1

(x)bp2j2 (y)wj1,j2

for control points ci1,i2 ∈ R3 and weights wi1,i2 > 0. We shall further follow the

common convention that parametrizations with a common edge coincide except for

orientation.

0 1

1
si

S
(i)
ref

Figure 1. Surface representation and mesh generation.

Following the spirit of isogeometric analysis, the random surface S(y) from (2.8)

is represented by the union of NURBS patches. This is achieved by appropriately

discretizing the deformation field (2.6). More precisely, the random surface S(y) is

discretized by S(y) ≈ Sh(y), where the latter can be decomposed into M distinct

NURBS patches

Sh(y) =
M⋃
i=1

S
(i)
h (y).

Herein, the intersection S
(i)
h (y)∩ S(i)

h (y) again consists at most of a common vertex

or a common edge for i 6= i′ and each patch S
(i)
h (y) is given by the image of an

invertible mapping

si,h(·,y) : �→ S(i)(y) with S(i)(y) = si,h(�,y) for i = 1, 2, . . . ,M,

with

si,h(x̂,y) = χS,h
∣∣
i
(x̂,y).

First, we note that si,h(x̂,y) is again a NURBS mapping if χS,h
∣∣
i
(x̂,y) is discretized

by using appropriate basis functions. In fact, if these basis functions are chosen also

as NURBS, the randomness of the surface is encoded by transformations of the

control points. Second, we note that χS needs to be at least globally continuous to

obtain an admissible surface transformation. Given a tuple of knot vectors Ξ and
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polynomial degrees p, a natural choice for the discretization of χS(·,y) is thus given

by the vector valued spline space

Sp,Ξ(Sref) =
[
Sp,Ξ(Sref)

]3
where

Sp,Ξ(Sref) := {f ∈ C(Sref) : f |i ◦ si ∈ Sp(Ξ) for 1 ≤ i ≤M} .

Of course, the knot vectors and polynomial degrees could vary in each component

and on each patch, but for simplicity we opt for using the same knots and degrees

for better readability. Approximation properties for these spaces were derived in [5].

Next, we discuss how an approximation of χS,h in terms of such basis functions can

be derived by computing Karhunen-Loève expansion (2.6) of the underlying random

deformation.

3.3. Fast computation of the Karhunen-Loève expansion. The computation

of the Karhunen-Loève expansion of surface deformations from the expectation and

the covariance amounts to the solution of the eigenvalue problem

CSχS,k = λS,kχS,k.

Based on the previous discussion, it is natural to choose a B-spline-based Galerkin

discretization for the numerical solution of this eigenvalue problem. Hence, replacing[
L2(Sref)

]3
by the B-spline space Sp,Ξ(Sref) in the eigenproblem’s weak formulation

Find (λS,k,χS,k) ∈ R ×
[
L2(Sref)

]3
such that

(CSχS,k, v)[L2(Sref)]3 = λS,k(χS,k, v)[L2(Sref)]3 for all v ∈
[
L2(Sref)

]3
yields the discrete generalized eigenvalue problem

(3.2) Cχ
k

= λk,hMχ
k
.

Although the mass matrix M is sparse, the covariance matrix C is typically densely

populated, as it issues from the discretization of a nonlocal operator. Therefore, a

naive solution of this eigenvalue problem is prohibitive for a larger number of degrees

of freedom.

As a viable alternative, we assume that a low-rank factorization C ≈ LLᵀ of the

covariance matrix is known. Such a factorization can, for example, efficiently be

computed by the truncated pivoted Cholesky decomposition, see [28]. Inserting this

decomposition into (3.2) yields

(3.3) LLᵀχ
k

= λk,hMχ
k
.
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Substituting ψ
k

= M1/2χ
k

therefore results in the eigenvalue problem

(3.4) LᵀM−1Lψ
k

= λk,hψk
,

which has the same non-zero eigenvalues as (3.3), but is significantly smaller and

cheaper to compute if C has low rank. The eigenvectors of (3.3) can be retrieved

from (3.4) by making use of the relation χk = M−1Lψk.

Remark 2. Depending on the polynomial degrees p, the supports of the basis func-

tions in Sp,Ξ(Sref) can be quite large. This renders the assembly of a single matrix

entry as used for the truncated pivoted Cholesky decomposition computationally

expensive. Therefore, we rather perform the Cholesky decomposition directly on

the matrix C?, which is generated by the shape functions S?p,Ξ(Sref) of Sp,Ξ(Sref).

Then, there exists a matrix version T representing the local-to-global map such that

C = TC?T
ᵀ. Now, substituting C? ≈ L?Lᵀ? yields the low-rank factorization

C ≈ TL?(TL?)ᵀ = LLᵀ.

4. Boundary integral equations

4.1. Computing the scattered wave. We recall the solution of the boundary

value problem (1.1) by means of boundary integral equations. To this end, and for

sake of simplicity in representation, we assume for the moment that the domain D

is fixed and has a Lipschitz surface S = ∂D.

We introduce the acoustic single layer operator

V : H−1/2(S)→ H1/2(S), (Vρ)(x) :=

∫
S

Φ(x, z)ρ(z) dσz,

and the acoustic double layer operator

K : L2(S)→ L2(S), (Kρ)(x) :=

∫
S

∂Φ(x, z)

∂nz
ρ(z) dσz.

Here, nz denotes the outward pointing normal vector at the surface point z ∈ S,

while Φ(·, ·) denotes the Green’s function for the Helmholtz equation. In three spatial

dimensions, the Green’s function is given by

Φ(x, z) =
eiκ‖x−z‖2

4π‖x− z‖2

.

Considering an incident plane wave uinc(x) = eiκ〈d,x〉, ‖d‖2 = 1, the Neumann data

of the total wave u = uinc + us at the surface S can be determined by the boundary
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integral equation

(4.1)

(
1

2
+K? − iηV

)
∂u

∂n
=
∂uinc

∂n
− iηuinc on S,

with η = κ/2, compare to [8].

From the Cauchy data of u at S, we can determine the scattered wave us in any

point in the exterior of the obstacle by applying the potential evaluation

(4.2) us(x) =

∫
S

Φ(x, z)
∂u

∂nz
(z) dσz, x ∈ R3 \D.

4.2. Scattered wave representation at an artificial interface. We introduce

an artificial interface T ⊂ R3, being sufficiently large to guarantee that T encloses

all realizations of the domain D. In view of (4.2), we may compute the Cauchy data

us|T and (∂us/∂n)|T of the scattered wave at the artificial interface T . Taking the

normal derivative of (4.2) at T yields

∂us

∂nx
(x) =

∫
S

∂Φ(x, z)

∂nx

∂u

∂nz
(z) dσz, x ∈ T.

For any x ∈ R3 located outside the artificial interface, we may now either employ the

representation formula (4.2) for T rather than for S or the representation formula

(4.3) us(x) =

∫
T

{
∂Φ(x, z)

∂nz
us(z)− Φ(x, z)

∂us

∂nz
(z)

}
dσz

to compute the scattered wave us, see [8].

The major advantage of (4.3) over (4.2) is that the artificial interface is fixed in

contrast to the shape of the random obstacle later on.

4.3. Scattering at random obstacles. From now on, let the obstacle be subject to

uncertainty as introduced in Section 2. We describe the uncertain obstacle D = D(y)

by its random surface S(y), which is given by (2.8).

Having the incident wave uinc at hand, the boundary value problem for the total

field u(y) = us(y) + uinc for any y ∈ Γ reads

(4.4)

∆u(y) + κ2u(y) = 0 in R3 \D(y),

u(y) = 0 on S(y),

√
r

(
∂us

∂r
− iκus

)
→ 0 as r = ‖x‖2 →∞.

By the construction of S(y), the random scattering problem (4.4) exhibits a unique

solution for each realization y ∈ Γ of the random parameter. Moreover, it has



12 J. DÖLZ, H. HARBRECHT, C. JEREZ-HANCKES, AND M. MULTERER

been shown in [34] for the case of the Helmholtz transmission problem that the

total wave u(y) exhibits an analytic extension into a certain region of the complex

plane with respect to the parameter y ∈ Γ. This particularly allows for the use of

higher order quadrature methods, like quasi-Monte Carlo methods, see e.g. [6, 39],

or even sparse quadrature methods, see e.g. [23, 34] in order to compute quantities

of interest, such as expectation and variance. Extensions to the Maxwell case are

discussed in [1, 36,37].

4.4. Expectation of the scattered wave. The scattered wave’s expectation can

be computed for any given point x ∈ R3 by the representation formula (4.2), which

leads to

(4.5) E[us](x) = E

[ ∫
S(y)

Φ(x, z)
∂us

∂nz
(z, ·) dσz

]
.

Obviously, (4.5) only makes sense if x ∈ R3 is sufficiently far away from the random

obstacle. Otherwise, there might be instances y ∈ Γ such that x ∈ D(y), i.e. the

point x ∈ R3 does not lie outside the obstacle almost surely.

If the expectation needs to be evaluated at many locations, it is much more efficient

to introduce the artificial interface T and to consider expression (4.3). For any

x ∈ R3 lying outside the interface T , it holds

(4.6) E[us](x) =

∫
T

{
Φ(x, z)E

[
∂us

∂nz

]
(z)− ∂Φ(x, z)

∂nz
E[us](z)

}
dσz.

As a consequence, the scattered wave’s expectation is completely encoded in the

Cauchy data at the artificial interface T . This means that we only need to compute

the expected Cauchy data

(4.7) E[us](x) =

∫
Γ

{∫
S(y)

Φ(x, z)
∂u

∂n
(z,y) dσz

}
dµ(y)

and

(4.8) E

[
∂us

∂nx

]
(x) =

∫
Γ

{∫
S(y)

Φ(x, z)

∂nz
u(z,y) dσz

}
dµ(y)

of the scattered wave at the artificial interface T , which is of lower spatial dimension

than the exterior domain. Here, µ is the joint probability measure of the random

variables y coming from the Karhunen-Loève expansion (2.7).
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4.5. Variance of the scattered wave. The variance V [us] of the scattered wave

us(x) at a point x ∈ R3 outside the artificial interface T depends nonlinearly on the

Cauchy data of us at the interface. Nonetheless, we can make use of the fact that

the variance is the trace –in the algebraic sense– of the covariance, i.e.

(4.9) V [us](x) = Cov[us](x,x
′)
∣∣
x=x′

= Cor[us](x,x
′)
∣∣
x=x′
− |E[us](x)|2,

where the covariance is given by

Cov[us](x,x
′) = E

[(
us(x, ·)− E[us](x)

)(
us(x′, ·)− E[us](x′)

)]
= E

[
us(x, ·)us(x′, ·)

]
− E[us](x)E[us](x′).

Hence, it holds for the correlation

Cor[us](x,x
′) = E

[
us(x, ·)us(x′, ·)

]
.

The correlation is a higher-dimensional object which depends only linearly on the

second moment of the Cauchy data of the scattered wave at the artificial interface T .

This greatly simplifies the computation of the variance. More precisely, by defining

for x,x′ ∈ T the correlations

Cor[us](x,x
′) := E

[(∫
S(y)

Φ(x, z)
∂us

∂nz
(z,y) dσz

)(∫
S(y)

Φ(x′, z)
∂us

∂nz
(z,y) dσz

)]
,

Cor

[
∂us

∂n

]
(x,x′) := E

[(∫
S(y)

∂Φ(x, z)

∂nz
us(z,y) dσz

)(∫
S(y)

∂Φ(x′, z)

∂nz
us(z,y) dσz

)]
,

and

Cor

[
us,

∂us

∂n

]
(x,x′) = Cor

[
∂us

∂n
, us

]
(x′,x)

:= E

[(∫
S(y)

Φ(x, z)
∂us

∂nz
(z, ω) dσz

)(∫
S(y)

∂Φ(x′, z)

∂nz
us(z,y) dσz

)]
,

we find for two points x,x′ ∈ R3 lying outside of the interface T the deterministic

expression

(4.10)

Cor[us](x,x
′) =

∫
T

∫
T

{
Φ(x, z)Φ(x′, z′)Cor

[
∂us

∂n

]
(z, z′)

− Φ(x, z)
∂Φ(x′, z′)

∂nz′
Cor

[
∂us

∂n
, us

]
(z, z′)

− ∂Φ(x, z)

∂nz
Φ(x′, z′)Cor

[
us,

∂us

∂n

]
(z, z′)

+
∂Φ(x, z)

∂nz

∂Φ(x′, z′)

∂nz′
Cor[us](z, z

′)

}
dσz′ dσz.
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5. Multilevel quadrature

In order to calculate quantities of interest efficiently, we employ a multilevel quadra-

ture approach. For the computation of the expectation, we may exploit the linearity

of the expectation in formula (4.6) and rely on the Cauchy data on the spatial

refinement levels ` = 0, 1, . . . , L computed at the artificial interface T . Thus, we

obtain

(5.1) E[us](x) ≈
∫
T

{
Φ(x, z)QML

L

[
∂us

∂nz

]
(z) +

∂Φ(x, z)

∂nz
QML
L [us](z)

}
dσz

with

QML
L [ρ](z) :=

L∑
`=0

QL−`
(
ρ(`)(z, ·)− ρ(`−1)(z, ·)

)
for z ∈ T,

where Q` is a quadrature rule on level `. Moreover, the function ρ(`) is the Galerkin

projection of the density ρ evaluated at the artificial interface for the spatial refine-

ment on level ` of the scatterer, where we set ρ(−1) ≡ 0.

For the approximation error of the multilevel quadrature, there holds a sparse tensor

product-like error estimate. If ε` → 0 is a monotonically decreasing sequence with

ε` · εL−` = εL for every L ∈ N and

‖QL−`ρ− E[ρ]‖ ≤ c1εL−` and ‖ρ(`) − ρ‖ ≤ c2ε`

for some suitable norms and constants c1, c2 > 0, then

‖QML
L [ρ]− E[ρ]‖ ≤ CLεL

for a constant C > 0, given that ρ is sufficiently regular. We refer to [29] for details

on the multilevel quadrature and to [31] for the required mixed regularity estimates.

For the calculation of the variance, we employ formula (4.10) and obtain

Cor[us](x,x
′) ≈

∫
T

∫
T

{
Φ(x, z)Φ(x′, z′)QML

L

[
∂us

∂nz
⊗ ∂us

∂nz′

]
(z, z′)

− Φ(x, z)
∂Φ(x′, z′)

∂nz′
QML
L

[
∂us

∂nz
⊗ us

]
(z, z′)

− ∂Φ(x, z)

∂nz
Φ(x′, z′)QML

L

[
us ⊗

∂us

∂nz′

]
(z, z′)

+
∂Φ(x, z)

∂nz

∂Φ(x′, z′)

∂nz′
QML
L [us ⊗ us](z, z

′)

}
dσz′ dσz

with

QML
L [ρ⊗ µ](z, z′) :=

L∑
`=0

QL−`
(
(ρ⊗ µ)(`)(z, z′, ·)− (ρ⊗ µ)(`−1)(z, z′, ·)

)
,
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where (ρ ⊗ µ)(`) := ρ(`) ⊗ µ(`). In principle, it would also be possible to opt for

the multi-index quadrature, which has been proposed in [2] for the computation of

higher order moments. In this case, one ends up with

(ρ⊗ µ)(`)(z, z′,y) :=
∑̀
j=0

ρ(`−j)(z,y)µ(j)(z′,y) =
∑̀
j=0

ρ(j)(z,y)µ(`−j)(z′,y).

Finally, we remark that there holds a similar error estimate as for the expectation

and that isogeometric analysis was recently combined with a multi-index quadrature

in [3].

6. Bayesian shape inversion

Let A(y) : H1
(
S(y)

)
→ C(T ), y ∈ Γ, be the solution operator which maps the

incident wave at S(y) to the scattered wave at T . Fixing the incident wave uinc, we

denote by

G : Γ→ C(T ), y 7→ us(y)

the uncertainty-to-solution map.

In forward uncertainty quantification, the goal is to compute quantities of interest

QoI(us), with respect to the prior measure µ0, which is induced by the random vari-

ables from (2.6). Often, quantities of interest are assumed to be linear functionals.

The goal of Bayesian inversion as introduced in [9] is to incorporate noisy measure-

ments of solutions A(y)uinc, after potentially incomplete observations. This is mod-

elled by first considering a bounded, linear observation operator O : C(T ) → CN ,

which performs point measurements of the scattered wave at the artificial inter-

face T . Combining the solution operator with the observation operator yields the

uncertainty-to-observation mapping

(6.1) G : Γ→ CN , y 7→ G(y) = O
(
A(y)uinc

)
.

The measured data δ is modelled as resulting from an observation by O, perturbed

by additive Gaussian noise according to

δ = G(y?) + η,

where y? is the unknown, exact parameter. We assume that the noise η is given by

a complex, circular, symmetric Gaussian random vector with symmetric, positive

definite covariance matrix Σ ∈ RN×N , i.e. η ∼ CN (0,Σ). Note that this is equivalent

to η = ηr + iηi with independent ηr, ηi and ηr,ηi ∼ N (0,Σ/2), and respects the

physical time-harmonic model of the scattering problem, see [46].
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Within this article, we aim at predicting the shape of the random scatterer based on

observations of us at T . Concretely, we wish to compute expectation and variance of

the deformation field. To that end, we define the Gaussian potential, also referred

to as the least-squares or data misfit functional, by ΦΣ : Γ× CN → R,

(6.2) ΦΣ(y, δ) :=
1

2
‖δ − G(y)‖2

Σ−1 :=
1

2

(
δ − G(y)

)ᵀ
Σ−1

(
δ − G(y)

)
.

Given the prior measure µ0, Bayes’ formula yields an expression for the posterior

measure µδ on Γ, given the data δ with the Radon-Nikodym derivative is given by

dµδ

dµ0

(y) =
e−ΦΣ(y,δ)

Z

with

Z :=

∫
Γ

e−ΦΣ(y,δ) µ0(dy) > 0,

see [9].

Now, the expected shape of the random scatterer is given by

Eµδ [χ](x̂) :=

∫
Γ

χ(x̂,y)
e−ΦΣ(y,δ)

Z
dµ0(y), x̂ ∈ Sref ,

and its variance for x̂ ∈ Sref by

V µδ [χ](x̂) :=

∫
Γ

χ(x̂,y)χ(x̂,y)ᵀ
e−ΦΣ(y,δ)

Z
dµ0(y)− Eµδ [χ](x̂)Eµδ [χ](x̂)ᵀ.

In order to approximate these integrals numerically, we shall employ the multilevel

ratio estimator, which splits the computation of the actual integral and the nor-

malization constant and approximates each by a telescoping sum, see [10] and the

references therein. For the normalization constant, we consider

QML
L [ρ] :=

L∑
`=0

QL−`(ρ` − ρ`−1)

with

ρ` := e−ΦΣ,`(y,δ), ΦΣ,`(y, δ) :=
1

2

∥∥δ −O(A`(y)uinc

)∥∥2

Σ−1 , Z−1 := 0,

i.e. we consider a multilevel hierarchy based on approximations of the scattered wave

on different levels of refinement. Now, we may compute, for example, the expected

deformation field according to

QML,µδ
L [χ] :=

( L∑
`=0

QL−`
(
χ · (ρ` − ρ`−1)

))/
QML
L [ρ].
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We remark that Bayesian inversion employing the ratio estimator approximated by

quasi-Monte Carlo and its multilevel variants may fail to converge for concentrated a

posteriori measures. To tackle this, suitable remedies based on Markov Chain Monte

Carlo or Laplace approximations have been devised [41, 42], which can be directly

employed in the current setting but that we forgo for the sake of brevity.

7. Numerical examples

7.1. Geometries, discretization, and multilevel quadrature. We consider a

scatterer Dref given by a cuboid [0, 3]× [0, 2]× [0, 1] with six drilled holes, with an

artificial interface T given by the cuboid [−2, 5]× [−2, 4]× [−2, 3]. A visualization of

the situation may be found in Figure 7.2. The surface of the scatterer is represented

by 82 patches and the artificial interface by 52 patches. The wavenumber is chosen

as κ = 1.

We discretize the random field with globally continuous B-splines of polynomial

degree p = 2 in each spatial variable and uniform three spatial refinements, leading

to a dense covariance matrix C ∈ R19 896×19 896. For an efficient computation of

the Karhunen-Loève expansion, we proceed as outlined in Remark 2. The artificial

interface is discretized with tensor-product polynomials of degree p = 6 on each

patch. The Cauchy data on the artificial interface can then be obtained from the

values on 52 · 72 = 2 548 point evaluations on the interface by solving 52 local

interpolation problems of size 72.

For the application of the multilevel quadrature, we perform the acoustic scattering

computations with patchwise continuous B-splines of degree p = 0, 1, 2 and the

refinement levels ` = 0, 1, . . . , 4 − p, leading to the number of degrees of freedom

tabulated in Table 1.

` = 0 ` = 1 ` = 2 ` = 3 ` = 4

p = 0 82 328 1 312 5 248 20 992

p = 1 328 738 2 050 6 642 —

p = 2 738 1 312 2 952 — —
Table 1. Number of degrees of freedom of the boundary element

solver for different polynomial degrees p and refinement levels `.

The implementation of the spatial discretizations is based on the C++ library bembel

[12,13], which is easily adapted to our needs and provides fast compression schemes

for the scattering computations.
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The multilevel quadrature is either based on a quasi-Monte Carlo quadrature using

the Halton sequence, see [6], or on the anisotropic sparse grid quadrature using

Gauß-Legendre points as described in [23]. The latter is available as open source

software package SPQR1. Due to the high asymptotic convergence rate of h2p+2 of the

higher-order method for the scattering computations, the number of samples for the

multilevel quadrature has to be adapted for each level according to ∼ h−2p−2 for the

quasi-Monte Carlo quadrature (QMC) and according to the error estimates in [24]

for the sparse grid quadrature (SG). This yields the number of quadrature points as

shown in Table 2.

` = 0 ` = 1 ` = 2 ` = 3 ` = 4

p = 0
QMC 4 096 1 024 256 64 16

SG 52 509 12 017 2 513 471 61

p = 1
QMC 65 536 4 096 256 16 —

SG 809 881 52 509 2 513 61 —

p = 2
QMC 65 536 1 024 16 — —

SG 809 881 12 017 61 — —

Table 2. Number of samples on the different levels for SG and QMC.

Due to the large number of samples and the high computational costs of solving three

dimensional scattering problems, we employ a hybrid parallelization with MPI and

OpenMP to accelerate the sampling process. The computations have been carried

out with a combined hybrid parallelization with MPI and OpenMP on a total of 192

cores. Therein, 2` OpenMP threads have been dedicated to the boundary element

solver on level `, while the MPI processes were used to parallelize the sampling

of the random parameter. The computations have been carried out on a compute

cluster with four nodes equipped with a Intel(R) Xeon(R) Platinum 8268 CPU

2.90GHz processor each (hyperthreading enabled). The runtimes for a single run of

the boundary element solver in this setting are tabulated in Table 3. It is evident from

these timings that the use of a single level Monte Carlo method for the computation

of a reference solution with 105 or more samples is out of reach with the available

resources.

1https://github.com/muchip/SPQR
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4

threads 1 2 4 8 16

p = 0 0.312 8.6 61.1 125 339

p = 1 0.838 14.2 91.6 221 —

p = 2 2.2 21.5 146 — —

Table 3. Runtimes in seconds of a single run of the boundary element

solver on the given number of threads.

7.2. Forward problem. In the following, we consider domain deformations with

identity expectation E[χ](x̂) = x̂ and the covariance function given by

Cov[χS](x,y) =


1
10
e−
‖x−y‖22
2·162 0 1

106
e−
‖x−y‖22
2·642

0 1
10
e−
‖x−y‖22

2·42 0

1
106
e−
‖x−y‖22
2·642 0 1

5
e−
‖x−y‖22

2

 .
Four different realizations of the deformed scatterer and corresponding scattered

waves at the artificial interface are illustrated in Figure 7.2. The singular values of

the corresponding deformation field are illustrated in Figure 3. The Karhunen-Loève

expansion is truncated after K = 134 terms.

For demonstrating the validity of the dimension reduction via the artificial interface,

we also define 100 evaluation points outside of the artificial interface, which are

equally distributed on a sphere centered around the origin with radius r = 8. Note

that the origin is one of the corners of the reference geometry.

In order to measure approximation errors, we compare the solutions obtained by

the multilevel SG to that of the multilevel QMC on the finest level and vice versa.

The error is given in terms of the `∞-error computed with respect to the respective

evaluation points. The results for the expectation are illustrated in Figure 4. The

dashed curves indicate the convergence of the spatial approximation on the reference

domain. The corresponding results for the correlation can be found in Figure 5.

7.3. Shape inversion. For illustrating the Bayesian shape inversion, we pick a re-

alization of the random domain perturbation described by the parameter y? ∈ Γ

from the model presented in the previous subsection and consider it to be our refer-

ence solution. The measurement operator O defining G is given by point evaluations

of the scattered wave in the midpoints of the 52 patches at the artificial interface.

The noise level is set to Σ = σ2I, where σ = 0.1 · max |G(y?)|. The prior is set to

dµ(y) = dy/2K , with K being the dimension of the parameter space, yielding the
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Figure 2. Domain perturbations drawn from the random field and

scattered wave on the artificial interface.

unperturbed domain to be the prior expectation. Figure 6 illustrates the reference

solution, the prior and posterior expectation and the posterior’s 2σ confidence re-

gion in each coordinate direction obtained by a multilevel QMC on the finest level

L = 3 computed with piecewise linear basis functions. The posterior expectation as

clearly moved away from the prior and is located within the 2σ region of the actual

scatterer.
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Figure 3. Numerical approximation of the singular values of the

covariance operator under consideration.

8. Conclusions and Future work

We have introduced a fast IGA implementation for solving time-harmonic acoustic

wave scattering for shape uncertainty quantification, employing boundary integral

formulations, multi-level quadrature and state-of-the art acceleration techniques.

This allows for the analysis of large shape deformations for both forward and in-

verse problems, including shape optimization. Future work involves the extension to

Maxwell scattering.
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Figure 4. Convergence of multilevel quadratures for the expectation.

Left: Convergence of QMC towards SG. Right: Convergence of SG

towards QMC.
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Figure 5. Convergence of multilevel quadratures for the correlation.

Left: Convergence of QMC towards SG. Right: Convergence of SG

towards QMC.
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Figure 6. Left: Prior mean (yellow) and posterior mean (blue) of the

inverse problem. Right: Reference solution (red) and posterior mean

(blue) of the inverse problem with 2σ confidence intervals (crosses) in

each coordinate direction.
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