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Abstract 1 

Objectives 2 

The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and 3 

show annual and seasonal variation. Increased understanding about these patterns could be informative about 4 

the epidemiology of SARS-CoV-2. 5 

Methods 6 

Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 7 

55,190 clinical samples analysed at the Karolinska University Hospital, Stockholm, Sweden, between 14 8 

September 2009 and 2 April 2020. 9 

Results 10 

Seasonal coronaviruses were detected in 2,130 samples (3.9%) and constituted 8.1% of all virus detections. 11 

OC43 was most commonly detected (28.4% of detections), followed by NL63 (24.0%), HKU1 (17.6%), and 229E 12 

(15.3%). The overall fraction of positive samples was similar between seasons, but at species level there were 13 

distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the 14 

Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season 15 

(Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics 16 

were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence 17 

was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. 18 

Conclusions 19 

Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which 20 

suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly 21 

appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2. 22 
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Introduction 23 

The world is seeing a pandemic by a new coronavirus, SARS-CoV-2, which is the cause of the disease COVID-19. 24 

The pandemic has unprecedented effects on societies globally. Although SARS-CoV-2 is new to mankind, six 25 

other coronaviruses are known to infect humans. This includes the four ͞seasonal͟ coronaviruses (CoVs): 229E, 26 

NL63, OC43 and HKU1, which are found globally and in immunocompetent hosts usually cause mild to 27 

moderate upper-respiratory tract disease [1-5]. In contrast, infections with two other coronaviruses, SARS-CoV 28 

and MERS-CoV, have severe clinical presentation and substantial mortality [6]. The human coronaviruses are 29 

found in two genera of the subfamily orthocoronavirinae. The genus Alphacoronavirus includes 229E and NL63, 30 

whereas the genus Betacoronavirus includes OC43 and HKU1 (subgenus Embecovirus), SARS-CoV and SARS-31 

CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus) [7].   32 

Here we use results from routine clinical diagnostic tests on approximately 55,000 patient samples to analyze 33 

the epidemiology of the seasonal CoVs in Stockholm, Sweden. Better knowledge about the epidemiology of the 34 

seasonal CoVs could potentially inform about the epidemiology of SARS-CoV-2. 35 

Methods 36 

Samples and metadata 37 

Data from routine diagnostics were obtained from the laboratory information system at the Department of 38 

Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden. The majority of samples analyzed 39 

were obtained from the Stockholm Region (2.2 million inhabitants), where the laboratory provides diagnostic 40 

services to six of seven major hospitals, and outpatient care to approximately to half of the population. PCR 41 

diagnostics for the seasonal CoVs were performed using accredited in-house assays [8] or the Allplex 42 

Respiratory Panels 2 and 3 (Seegene Inc., Seoul (South Korea)), see supplement for details on virus diagnostics. 43 

The associated metadata contained the laboratory results, date of sample collection, specimen type, age and 44 

sex of the patient. The study was reviewed and approved by the Swedish Ethical Review Authority (registration 45 

no. 2020-03001). 46 
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Statistical analyses  47 

Statistical analyses were performed using Stata version 15.1 (StataCorp LLC, College Station (TX, USA)). Point 48 

estimates and 95% confidence intervals (CIs) of proportions and odds ratios (ORs) were calculated using logistic 49 

regression with 200 bootstrap replications. To avoid selection bias, odds ratio for co-detections were calculated 50 

across the subset of samples with complete records and at least detection of one respiratory pathogen [9].  51 

Results 52 

Basic characteristics of samples and results from CoVs diagnostics 53 

During 14 September 2009 until 2 April 2020, a total of 135,922 samples were obtained for respiratory virus 54 

diagnostics. Of these, 55,190 samples had been analyzed for an extended virus panel which included the four 55 

seasonal CoVs. There were 2153 detections of seasonal CoVs in 2,130 of the 55,190 samples (3.9%; 95% CI: 56 

3.7%-4.0%), representing 8.1% (95% CI: 7.7%-8.4%) of all virus detections. The annual number of CoV-positive 57 

samples increased over the study period as a result of increased testing, but the fraction of positive samples 58 

decreased (Figure 1A and B, respectively). Among the 2,130 CoV-positive samples the most common species 59 

detected was OC43 (28.4%), followed by NL63 (24.0%), HKU1 (17.6%), and 229E (15.3%). In addition, 15.9% of 60 

the CoV-positive samples were positive for OC43/HKU1 in the Allplex assay, which does not distinguish 61 

between the two. In 23 samples (1.1% of all positive samples), two different species of CoVs were detected. 62 

Information about the sex of the patients was available for 55,102 samples (99.8%). CoV-positive results were 63 

significantly more common in men (55.1% of positive samples, 95% CI: 54.7%-55.5%, OR 1.16; 95% CI 1.06-64 

1.26).  65 

Alternating biennial incidence and peak incidence month of seasonal CoVs  66 

The number of samples analyzed for CoVs (and other respiratory viruses) showed seasonal variation with peaks 67 

in the winters (Figure 1A). The number of CoV positive samples showed even more pronounced winter peaks. 68 

The overall fraction of samples positive for any species did not show any marked season-to-season variation 69 

across the duration of the study (Figure 1B). This is in stark contrast to the incidence of detection of the four 70 

CoV species, which all showed distinct biennial patterns (Figure 2). Interestingly, a pattern of alternating peak 71 

seasons was observed for the two Alphacoronaviruses, 229E and NL63. This pattern was even more striking for 72 
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the two Betacoronaviruses, OC43 and HKU1. Due to the biennial alternating patterns, 229E and HKU1 had peak 73 

incidence in winter seasons starting in odd number years (2009/2010, 2011/2012, etc), whereas NL63 and 74 

OC43 peaked in seasons starting in even number years (2010/2011, 2012/2013, etc). 75 

Next, we investigated the variation of CoV detections over the calendar year by averaging over the entire study 76 

period. When all four species were combined, the lowest activity was observed from July to October. There 77 

was a steep increase in CoV detections in November, and a peak in December. However, the peaks for the 78 

individual species occurred in different months (Figure 3).  79 

In summary, there were two patterns in the incidence of the four species of seasonal CoVs appeared to show 80 

two different types of interactions. Firstly, both the two Alphacoronaviruses (229E and NL63) and the two 81 

Betacoronaviruses (OC43 and HKU1) peaked in alternating seasons. Secondly, the Betacoronaviruses peaked 82 

earlier in the winter season than the Alphacoronaviruses.  83 

Infections with seasonal CoV across age strata 84 

Information about the age of patients with CoV-positive results was available for 55,063 (99.8%) samples. For 85 

age strata with patients younger than 20 years, more than 60% of samples had been analyzed with the 86 

extended respiratory virus panel, which included the seasonal CoVs. In contrast, less than 40% of samples were 87 

tested for CoVs in all the older age strata, and in particular the oldest patients (≥90 years) (Figure 4A). The 88 

fraction of samples positive for any CoV was highest in the two youngest age strata and was the lowest in the 89 

age stratum 80-89 years; however, it is important to note that CoV infections were diagnosed in all age strata 90 

(Figure 4A). The fractions of positive samples in the different age strata also showed some variation over 91 

seasons (supplement figures S1 and S2). We separately investigated the age distributions of each of four CoV 92 

species (Figure 4B-E, and supplement figures S1, S2). NL63 and HKU1 showed a tendency to decline with age, 93 

while detection of 229E and OC43 was more similar across the age strata.  94 

Co-detection of CoVs with other respiratory viruses 95 

Of 2,130 samples positive for any CoV, matched results for analyses of the full panel of other respiratory 96 

viruses were obtained for 1,953 samples. At least one additional respiratory virus was identified in 737 samples 97 

(34.6%, 95% CI: 32.6-36.7%), and two or more other respiratory viruses were identified in 128 samples (6.0%, 98 

95% CI: 5.0-7.1%). Co-detections were most common in the two youngest age strata (0-1 and 2-5 years), 99 
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accounting for 76.1% of samples positive for CoV and a co-detected virus. The four viruses that were most 100 

commonly co-detected with CoVs were: RSV (9.2%), RV (7.2%), BoV (6.8%) and AdV (4.7%) (Figure S3); the co-101 

detections appeared less common than expected by chance. Thus, the odds ratio was significantly reduced for 102 

co-detection of CoVs with RSV (0.56, 95% CI 0.47 to 0.66) and AdV (0.52, 95% CI 0.42 to 0.66), and non-103 

significantly reduced for RV 0.83 (95% CI 0.62 to 1.12) and BoV 0.95 (95% CI 0.79 to 1.15). However, more than 104 

half (59.4%) of the samples were submitted for analysis IAV, IBV, and RSV only. In these samples, IAV was 105 

detected in 14.6% of samples, compared to detection of IAV in 4.6% of samples with request for the extended 106 

respiratory virus panel. Thus, co-detection of the seasonal CoVs with RSV and the influenza viruses might be 107 

underrepresented in this material due to selection bias.   108 

Discussion 109 

In this study we comprehensively have investigated the epidemiology of the four seasonal coronaviruses (229E, 110 

NL63, OC43, and HKU1) using PCR results from more than 55,000 clinical samples analyzed 2009–2020 in 111 

Stockholm, Sweden. We found that CoV infections were detected in around 4% of samples, but due to 112 

considerable seasonal variation the proportion positive samples varied from <1% in Aug–Sept, to close to 8% in 113 

Dec–Jan. All four seasonal CoVs showed biennial winter incidence peaks, with alternating peak seasons for the 114 

two Alphacoronaviruses, 229E and NL63, and the two Betacoronaviruses, OC43 and HKU1, respectively. This 115 

novel finding suggests some type of immunological interaction or interference. The fraction of CoV-positive 116 

samples was the highest among children aged 0-5 years, but infections occurred in all age strata, which 117 

suggests that symptomatic reinfections among adults and the elderly are not uncommon. Our results 118 

concerning the epidemiology of seasonal CoVs have implications for the likely future endemic presence of 119 

SARS-CoV-2 and extend the knowledge gained by earlier studies [9-11]. 120 

We report that the four species of seasonal CoVs appeared to show two different types of interactions. Firstly, 121 

both the Alphacoronaviruses (229E and NL63) and the Betacoronaviruses (OC43 and HKU1), respectively, 122 

peaked in alternating winter seasons. Secondly, the circulation of the Betacoronaviruses peaked earlier in the 123 

winter season than that of the Alphacoronaviruses. The biennial pattern of the seasonal CoVs that we report is 124 

in line with earlier reports from the temperate zone of the Northern Hemispere [1, 4, 11-13]. Importantly, 125 

these studies also found that Alphacoronaviruses and Betacoronaviruses, respectively, tended to peak in 126 
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alternating seasons, matching our findings. However, only Kissler et al. [11] and Nickbakhsh et al. [9] make a 127 

point of this finding and draw inference about possible immunological interactions and their implications for 128 

the future of SARS-CoV-2, but the studies did not include Alphacoronaviruses or HKU1, respectively. Thus, we 129 

extend their findings by showing that the both genera show similar interactions, which indicates that this is a 130 

general property of CoVs. Furthermore, it is reassuring that the biennial alternating pattern is found in different 131 

continents and countries in the temperate zone of the Northern Hemisphere, as this indicates that the 132 

interactions are not a local phenomenon in our study setting in Stockholm, Sweden. It should be noted that the 133 

effect may be limited to the temperate zone as biennial seasonality is not noted in a study from southern China 134 

[2]. 135 

The alternating biennial cycles of the two Alphacoronaviruses and the two Betacoronaviruses warrants further 136 

investigation. It could be a chance event, but more likely is due to some type of anti-phase synchronization 137 

[31], which could be generated even by weak cross-immunity. With regard to immunity, although IgG 138 

antibodies against CoVs are present in almost all adult individuals [14], early studies showed that CoV 139 

infections commonly occur despite a prior presence of neutralizing antibodies [13, 15, 16]. Moreover, a 140 

substantial number of reinfections of NL63 were detected in a recent study with repeated sampling over a 141 

season in community setting [17]. Indications of frequent reinfections with all four seasonal coronaviruses 142 

were also provided by a recent serological study from the Netherlands [18], as did our study, with infections 143 

occurring in all age groups. Immunologic interaction between the seasonal CoVs has been suggested as a cause 144 

of the dominance of NL63 and OC43 in infants [19].  145 

The prevalence of seasonal CoV infection worldwide and possibility of immunological interference by seasonal 146 

CoVs with each other has raised hopes of potential protective effects against SARS-CoV-2-infection or 147 

modulation of COVID-19 disease [20]. However, despite the presence of cross-reactive binding antibodies 148 

between SARS-CoV and SARS-CoV-2, cross-neutralization appears to be rare [21], even though these viruses are 149 

relatively closely related. All of these findings are interesting in the context of the SARS-CoV-2 pandemic, 150 

because T-cells reactive to SARS-CoV-2 have been detected in samples from donors sampled before the 151 

pandemic [22, 23], as well as in seronegative exposed persons [24]. This could possibly be due to cross-152 

immunity between the seasonal CoVs and SARS-CoV-2 [9, 11].  153 
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As we find a higher prevalence of seasonal CoV infections in younger age groups, recent seasonal CoV infection 154 

and some level of cross-reactive immunity with SARS-CoV-2 might at least partially explain the apparently 155 

lower attack rate of SARS-CoV-2 in young children compared to older persons [25, 26]. At the same time, 156 

reinfection by seasonal CoVs clearly occurs throughout life and any potential cross-protection might be short-157 

lived [18], implying that the magnitude of the cross-protective effect might be small. 158 

We found that OC43 was the species that was most commonly detected, which is in line with earlier studies [1-159 

4, 9, 12, 27, 28]. The odds ratio for positive samples in our study was significantly lower for females than males. 160 

This gender difference is interesting in relation to COVID-19, as male patients have a higher risk of severe 161 

disease and death than females [29, 30]. We noted CoV infections across all age strata, although the highest 162 

prevalence was observed among children. Collectively, our results indicate that symptomatic CoV reinfections 163 

among adults and elderly are not uncommon, though we did not formally exclude the possibility that they had 164 

primary CoV infections through serological testing.  165 

Our study has some limitations. In particular, it is a retrospective study that utilizes results from routine clinical 166 

diagnostics. It is difficult to exclude that there have been changes in the strategies and prioritization for 167 

diagnostics of respiratory infections over the study period. For example, there have been some changes in the 168 

platforms used for virus diagnostics during the study period that may have modified the sensitivity of CoVs 169 

detection. Also, information about clinical presentation and disease severity were not available. However, all 170 

samples were from clinical diagnostics, which means that the symptoms were severe enough to prompt 171 

sampling. Another limitation is that more than half of the adults were tested only for IAV, IBV, and RSV, and not 172 

the full virus panel. It is likely that CoV infections have been underdiagnosed among the adults and the elderly 173 

because they were not tested for. The main strengths of the study are the large sample size and the long study 174 

period. 175 

To conclude, the notable yearly alternation within genera, and the temporal spacing in peaks between genera, 176 

suggest a possible immunological interaction or interference. We further identify a distinct difference in the 177 

timing of the seasonal peaks, with the Alphacoronaviruses peaking months after the Dec-Jan peak observed for 178 

the Betacoronaviruses. Our findings have implications both for better understanding seasonality and 179 

interaction in coronaviruses generally and for the likely future endemic presence of SARS-CoV-2, and thus merit 180 

further immunological studies.  181 
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FIG. 1. Samples positive for coronaviruses. (A) The number of samples analyzed per quarter from 1 October 2009 to 31
March 2020 (red line, n = 55,017), and samples being positive for any of the endemic coronaviruses (blue line, n = 2,128).
(B) The fraction of samples positive per season for any of the seasonal coronaviruses.
*, from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020.
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FIG. 2. Fraction of samples per season being positive for each of the four CoV species. The fraction of samples
positive per season for (A) the Alphacoronaviruses (229E, NL63) and (B) the Betacoronaviruses (OC43, HKU1). The gray line
shows the fraction of samples positive for any of the CoV. Dashed lines mark CI.
*, from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020; ***, from 6 November 2017 until 2 April 2020 OC43 and
HKU1 were not analyzed separately.
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FIG. 3. Seasonal peak. The fraction of samples per calender month being positive for (A) 229E, (B) NL63, (C) OC43, and
(D) HKU1. The gray line shows the fraction of samples being positive for any of the CoV. Dashed lines mark CI.
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FIG. 4. Fraction of samples positive for each species of coronavirus per age stratum. (A) Fraction of samples positive
for any of the coronaviruses per age stratum (blue line, dash lines mark 95% CI). Bars show number of submitted samples
in total (n = 135,922), and fraction analyzed for the extended respiratory panel which includes the analysis for coronaviruses
(solid red, n = 55,190). Fraction of samples positive per age stratum for (B) 229E, (C) NL63, (D) OC43, and (E) HKU1.
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