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reformulation as a local differential equation allows to study the solution u using
pseudodifferential techniques developed for boundary problems on singular spaces
[4]. The idea to extend to R3

+ goes back to Caffarelli and Silvestre (2007), but its
use for a precise regularity theory seems to be new.
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A wavelet-based approach for the optimal control of nonlocal
operator equations

Helmut Harbrecht

(joint work with Stephan Dahlke and Thomas M. Surowiec)

1. Introduction

We are concerned with a wavelet-based approach for the optimal control of a class
of nonlocal operator equations. Namely, we consider a quadratic cost functional
where the state equation involves the fractional Laplace operator in integral form.
When discretizing this nonlocal operator with standard finite element basis func-
tions, one arrives at a densely populated system matrix. This imposes serious
obstructions to the efficient numerical treatment of such problems. Therefore, we
use a wavelet basis for discretizing the state equation and its adjoint and apply
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wavelet matrix compression to arrive at a solver that has linear complexity. In
particular, we show how to include box constraints to the optimal control.

2. Optimal control problem

We consider the following optimal control problem which is constrained by a non-
local state equation:

(1)

inf
1

2
‖Cu− ud‖2H +

ν

2
‖z‖2Z over (z, u) ∈ Zad × V

such that Lu = Bz + f on Ω,
u = 0 on Ωc := Rn \ Ω.

Here, H and Z are a real Hilbert spaces, Zad ⊂ Z is a nonempty, closed, and convex
set, ν > 0, C is a bounded linear operator whose image represents the observation
of the state u, and B is a bounded linear operator that maps the control z into
the nonlocal equation. For Ω ⊂ Rn, n ≥ 1, being an open and bounded domain,
the fractional Laplacian L = (−∆)s, 0 < s < 1, for some function u : Ω → R is
given by

(Lu)(x) := 2

∫

Rn

u(y)− u(x)

|x− y|n+2s
dy, x ∈ Ω.

The associated state space V is given by

V := {v ∈ Hs(Rn) : v = 0 on Ωc} .
In the present situation, it holds V ∼= Hs(Ω)/R for 0 < s < 1/2 and V ∼= Hs

0(Ω)

for 1/2 < s < 1. In the limit case s = 1/2, it holds V ∼= H
1/2
00 (Ω), where H

1/2
00 (Ω)

is obtained from interpolation between L2(Ω) and H1
0 (Ω), compare [2].

The following theorem is a consequence of the standard theory for optimal
control problems, see for example [3].

Theorem 1. Under the standing assumptions, the optimal control problem (1)
admits a unique solution z⋆ ∈ Zad. Furthermore, there exists an adjoint state
λ⋆ ∈ V such that

Lu⋆ = BP
(
− 1

ν
B⊺λ⋆

)
,(2a)

Lλ⋆ = C⊺(ud − Cu⋆).(2b)

Here, P : Z → Zad is the usual metric projection onto the closed convex set Zad.

Note that in case of Z = L2(Ω) and Zad ⊂ Z resulting from the box constraints

(3) zmin(x) ≤ z(x) ≤ zmax(x), x ∈ Ω,

the projection Pz is given by

Pz(x) =





zmin(x), if z(x) < zmin(x),

z(x), if zmin(x) ≤ z(x) ≤ zmax(x),

zmax(x), if z(x) > zmax(x).
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3. Wavelet matrix compression

The fractional Laplacian is a nonlocal operator. Its discretization will thus amount
to a dense system matrix, the assembly of which would require large amounts
of time and computation capacities. Especially, as the fraction Laplacian is an
operator of order 2s, preconditioning becomes an issue.

We shall hence employ wavelet matrix compression. It employs that the wave-
lets’ vanishing moments lead, in combination with the fact that the integral kernel
becomes smoother when getting farther away from the diagonal, to a quasi-sparse
system matrix. Moreover, by applying a diagonal scaling, the condition number
stays uniformly bounded. Since the number of relevant entries in the system
matrix for maintaining the convergence rate of the underlying Galerkin method
scales only linearly, wavelet matrix compression leads to a numerical approach
that has linear over-all complexity, compare [4] for the details.

4. Primal-dual active set strategy

In case of H = Z = L2(Ω) and box constraints (3), we can rewrite the optimal
control problem (2) as an equivalent KKT system of the following form:

Lu⋆ = Bz⋆ Lλ⋆ = C⊺(ud − Cu⋆) in Ω,

u⋆ = 0 λ⋆ = 0 in Ωc,

λ⋆ + νz⋆ − µ⋆min + µ⋆max = 0 in Ω,

µ⋆min ≥ 0, zmin − z⋆ ≤ 0, µ⋆min(zmin − z⋆) = 0 in Ω,

µ⋆max ≥ 0, z⋆ − zmax ≤ 0, µ⋆max(z
⋆ − zmax) = 0 in Ω.

Here, µmin and µmax are Lagrange multipliers. In order to compute the solution to
this KKT system, we apply the primal-dual active set strategy as introduced in [1].
The essential idea of this iterative solution strategy is to replace successively the
inequality constraints by the related equality constraints for all the indices where
the constraint becomes active. Since it can be reinterpreted as a semi-smooth
Newton method, the primal-dual active set strategy converges superlinearly, see [5].

Figure 1. The domain Ω under consideration with mesh on level
4. The operator C is the projection onto the interior square.
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Numerical results in case of Ω being the unit circle and s = 1/4 are given in
Figure 2. Here, we computed the solution for about 80 000 piecewise constant
ansatz functions each for the state and for the control (indeed, we use Haar wavelets
for the discretization), where zmin = −0.1, zmax = 0.1, ν = 10−3, B is the identity,
and C is the projection onto the square (− 1√

2
, 1√

2
)2, which is the interior patch

seen in Figure 2.

Figure 2. The desired state (left), the optimal state u (middle),
and the optimal control z (right) in case of s = 1/4.
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Electromagnetic Force Computation in the Boundary Element Method

Ralf Hiptmair

(joint work with Piyush Panchal)

Electrostatic boundary value problem. As a simple model problem we con-
sider a conducting body in the interior of a metallic box. A fixed voltage drop
U0 between both is imposed so that the electrostatic potential u in the space Ω
between both objects can be recovered as the solution of the Dirichlet boundary
value problem

∆u = 0 in Ω , u = g on ∂Ω , g :=

{
U0 on conductor ,

0 on box.
(1)




