edoc

Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

Bayramoglu, Bihter and Toubiana, David and van Vliet, Simon and Inglis, R. Fredrik and Shnerb, Nadav and Gillor, Osnat. (2017) Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective. Scientific Reports, 7. p. 42068.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/84532/

Downloads: Statistics Overview

Abstract

Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells' close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies-or bet-hedging-as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Infection Biology > Microbiology and Biophysics (Drescher) > Microbial Systems Ecology (van Vliet)
UniBasel Contributors:van Vliet, Simon
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Nature Publishing Group
e-ISSN:2045-2322
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:04 Apr 2023 03:10
Deposited On:06 Oct 2021 14:46

Repository Staff Only: item control page