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Abstract
The merge-and-shrink framework has been introduced as a general approach for defining ab-

stractions of large state spaces arising in domain-independent planning and related areas. The
distinguishing characteristic of the merge-and-shrink approach is that it operates directly on the
factored representation of state spaces, repeatedly modifying this representation through transfor-
mations such as shrinking (abstracting a factor of the representation), merging (combining two
factors), label reduction (abstracting the way in which different factors interact), and pruning (re-
moving states or transitions of a factor).

We provide a novel view of the merge-and-shrink framework as a “toolbox” or “algebra” of
transformations on factored transition systems, with the construction of abstractions as only one
possible application. For each transformation, we study desirable properties such as conservative-
ness (overapproximating the original transition system), inducedness (absence of spurious states
and transitions), and refinability (reconstruction of paths in the original transition system from the
transformed one). We provide the first complete characterizations of the conditions under which
these desirable properties can be achieved. We also provide the first full formal account of factored
mappings, the mechanism used within the merge-and-shrink framework to establish the relationship
between states in the original and transformed factored transition system.

Unlike earlier attempts to develop a theory for merge-and-shrink, our approach is fully compo-
sitional: the properties of a sequence of transformations can be entirely understood by the properties
of the individual transformations involved. This aspect is key to the use of merge-and-shrink as a
general toolbox for transforming factored transition systems. New transformations can easily be
added to our theory, with compositionality taking care of the seamless integration with the exist-
ing components. Similarly, new properties of transformations can be integrated into the theory
by showing their compositionality and studying under which conditions they are satisfied by the
building blocks of merge-and-shrink.

1. Introduction

Many problems in artificial intelligence can be cast as state-space search, where the objective is
to find a sequence of transitions from an initial state to a state satisfying a goal condition, or to
prove the absence of such a transition sequence (Pearl, 1984). Classical planning (Ghallab, Nau, &
Traverso, 2004) is such an area where state spaces are specified in a compact representation because
the number of states in most practically interesting problem instances is too large for explicit rep-
resentations. A common approach for dealing with such large state spaces is to abstract them, i.e.,
to map them to smaller, more manageable state spaces that serve as the basis of distance heuristics
(e.g., Culberson & Schaeffer, 1998; Katz & Domshlak, 2010; Yang, Culberson, Holte, Zahavi, &
Felner, 2008) or refinement methods (e.g., Knoblock, 1994; Bäckström & Jonsson, 2013).
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Merge-and-shrink abstractions (Dräger, Finkbeiner, & Podelski, 2009) are a general class of
abstractions that subsumes the abstractions underlying the well-known pattern database heuristics
(e.g., Culberson & Schaeffer, 1998; Edelkamp, 2001) and has been successfully applied in the con-
text of optimal classical planning (e.g., Helmert, Haslum, & Hoffmann, 2007; Nissim, Hoffmann,
& Helmert, 2011; Katz, Hoffmann, & Helmert, 2012; Hoffmann, Kissmann, & Torralba, 2014;
Helmert, Haslum, Hoffmann, & Nissim, 2014; Sievers, Wehrle, & Helmert, 2014; Fan, Müller,
& Holte, 2014). In recent work, merge-and-shrink has increasingly been used not just to provide
abstractions in classical planning, but as a general framework for reasoning about factored transi-
tion systems and their properties, for example to prove unsolvability (Hoffmann et al., 2014), to find
symmetries (Sievers, Wehrle, Helmert, Shleyfman, & Katz, 2015) and state dominance relationships
(Torralba & Hoffmann, 2015), for symbolic search (Torralba, Linares López, & Borrajo, 2018), and
as an alternative representation for planning tasks (Torralba & Sievers, 2019).

The merge-and-shrink framework operates on a factored transition system, i.e., a set of explicitly
represented transition systems (called factors) which together represent a joint transition system. For
example, the state space of a SAS+ planning task (Bäckström & Nebel, 1995) can be described by
a factored transition system where each factor is an atomic transition system, describing how the
operators of the planning task affect a single state variable. The given factored transition system
is then iteratively modified through transformations such as merging, shrinking, pruning or label
reduction in order to achieve a given computational objective, such as computing an abstraction of
the original factored transition system or identifying symmetries.

There is a substantial body of prior work on merge-and-shrink, including past attempts to de-
velop a comprehensive theory for the framework (Helmert et al., 2014). However, the existing
theory does not allow us to fully understand the properties of merge-and-shrink through the prop-
erties of its components. A given transformation might be conservative (over-approximating) in
isolation, but not in the context of other transformations, leading to a complex interplay between
transformations and elaborate restrictions on allowable combinations of transformations that limit
the use of merge-and-shrink as a general toolbox.

Our main contribution in this paper is to develop a solid theoretical foundation for merge-and-
shrink as a compositional theory of transformations of factored transition systems. The framework
as a whole can be understood by understanding its components. For example, a combination of
conservative transformations is always conservative, and if we introduce a new conservative trans-
formation to the framework, none of the existing theory needs to be revisited.

In more detail, we make the following contributions:

• In Section 3, we provide a theory of transformations of (non-factored) transition systems
and define desirable properties of such transformations. For example, transformations can
exactly preserve the behavior of the transition system, overapproximate it, or preserve or
overapproximate it on the set of reachable states only. We show that transformations can be
composed in a natural way and that composed transformations inherit the common properties
of the component transformations. We further analyze the effect that transformations with
certain properties have on the structure of the transformed transition systems and show how
these properties allow us to derive state-space search heuristics with certain properties such
as admissibility or perfection. While our development of the theory is (and needs to be)
different, it shares many aspects with a theory of abstractions of state spaces developed by
Bäckström and Jonsson (2012a, 2013), from which we draw significant inspiration.
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• In Section 4, we discuss how factored representations can be used to represent states, transi-
tion systems, and mappings between states compactly. Using these representations, we can
lift our treatment of transformations to a factored setting. This leads to a view of the merge-
and-shrink framework as factored transformations of factored transition systems. We also
explain how classical planning is an example application naturally giving rise to the kind of
factored representations we consider. While the idea of describing merge-and-shrink in terms
of transformations and factored transition systems is not novel, we provide a more compre-
hensive treatment than earlier works. Our treatment of factored mappings (Section 4.3) is
entirely novel in this form.

• The following sections describe the four core transformations of the merge-and-shrink frame-
work: shrinking (Section 5), merging (Section 6), label reduction (Section 7), and pruning
(Section 8). Compared to earlier work discussing these transformations in the literature, our
treatment is more rigorous because it is rooted in the theory of transformations discussed in
the preceding sections and more fine-grained because we consider a wider range of transfor-
mation properties than earlier work. We also close some gaps in earlier results, for example
by providing a complete characterization of the conditions under which shrinking is an exact
transformation.

Of the four transformations, label reduction plays a central role because it has been the main
obstacle to a compositional theory of merge-and-shrink in the past (cf. Helmert et al., 2014).
Our treatment here is a significantly extended version of a conference paper (Sievers et al.,
2014). The earlier paper only considered what we call atomic label reductions and only
provided a partial characterization of the properties of atomic label reductions. We extend
this to a complete characterization of atomic label reductions and prove that analyzing the
properties of non-atomic label reductions involves coNP-complete decision problems.

Our formal treatment of the pruning transformation is entirely new. Earlier work on merge-
and-shrink at most contains a brief mention of this transformation with no theory (e.g.,
Helmert et al., 2014, Section 4.3).

• Section 9 provides an extensive discussion of related literature on merge-and-shrink and be-
yond. Starting from the evolution of merge-and-shrink and its use for computing abstraction
heuristics, it covers a wide range of other applications of the framework, both existing ones
and possible future research directions. It also discusses more far-reaching connections of
merge-and-shrink to the computer science literature, including automata theory, computer-
aided verification, constraint programming, and knowledge representation.

We refrain from presenting experimental results due to the already significant length of this
paper. However, Section 9.1 discusses many papers that experimentally evaluate different instanti-
ations of the merge-and-shrink approach and demonstrate its usefulness.

2. Background

In this section we provide the necessary background on concepts used to model state-space search
problems. We begin by recalling some basic notations and terminology about functions.
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Definition 1 (Inverse of a Function). Let f : X → Y be a function. For y ∈ Y , the inverse of f is
defined as the set f−1(y) = {x ∈ X | f(x) = y}. We extend this definition to subsets Y ′ ⊆ Y by
defining f−1(Y ′) = {x ∈ X | f(x) ∈ Y ′}.

For notational convenience it will be useful to formally define partial functions from a set X to
a set Y , i.e., functions defined on some subset of X that map into the set Y .

Definition 2 (Partial Function). Let X and Y be sets. We say that f is a partial function from X to
Y , in symbols f : X 7→ Y , if f is a function from some subset X ′ ⊆ X to Y . We write dom(f) for
X ′, the domain of f . If dom(f) = X , f is called a total function.

For x ∈ X with x /∈ dom(f), we say that f(x) is undefined. All expressions involving undefined
values are undefined. For example, if f : X × Y 7→ Z and g : X 7→ X and g(x) is undefined, then
f(g(x), y) is undefined for all y ∈ Y .

We will frequently consider the composition g◦f of two partial functions, defined as (g◦f)(x) =
g(f(x)). It is easy to see that dom(g◦f) = dom(f)∩f−1(dom(g)), i.e., g◦f is defined for a given
value x iff x ∈ dom(f) and f(x) ∈ dom(g) (which is equivalent to saying x ∈ f−1(dom(g))).

Next, we define labeled transition systems as a natural way to represent state spaces, and we
consider heuristic search as a technique for finding solutions.

Definition 3 (Labeled Transition System). A labeled transition system (or transition system for
short) is a tuple Θ = 〈S,L, c, T, SI, SG〉 where S is a finite set of states, L is a finite set of transition
labels, c : L → R+

0 is a label cost function, T ⊆ S × L× S is a set of labeled transitions, SI ⊆ S
is the set of initial states and SG ⊆ S is the set of goal states.

A transition system can be viewed as a directed graph whose nodes correspond to states of the
state space and whose arcs correspond to transitions between states. Transitions are labeled, and the
label typically identifies the cause of the transition in the state space, such as an event happening
in a discrete-event system or an action executed by a planning agent. Labels can induce multiple
transitions of a transition system, and they are associated with a cost incurred by the transition.

The following definition introduces some notation and terminology.

Definition 4 (Paths, Costs, Plans). Let Θ = 〈S,L, c, T, SI, SG〉 be a transition system. We write
s `−→ s′ to denote a transition 〈s, `, s′〉 from s to s′ with label `, and we may write s `−→ s′ ∈ Θ for
s `−→ s′ ∈ T , and similarly, s ∈ Θ for s ∈ S, whenever Θ is not specified further.

A path from s ∈ S to s′ ∈ S is a sequence π = 〈t1, . . . , tn〉 of transitions such that there exist
states s = s0, . . . , sn = s′ with ti = (si−1

`i−→ si) ∈ T for all 1 ≤ i ≤ n. As a special case, the
empty path 〈〉 is a path from s to s for all s ∈ S. The cost c(π) of such a path is the accumulated
cost of the labels of the transitions, i.e., c(π) =

∑n
i=1 c(`i). We allow empty paths π = 〈〉 iff s = s′.

The cost of π is 0 in this case.
A path from some state s to some goal state s′ ∈ SG is also called an s-plan. An s-plan for some

initial state s ∈ SI is also called a plan. If a plan (or s-plan) has minimal cost among all plans (or
s-plans), it is called optimal.

Our definition of transition systems is a slight generalization of the usual definition of transition
systems in automated planning and related areas because it permits a set of initial states rather
than exactly one initial state. The merge-and-shrink framework does not actually require transition
systems with multiple initial states, but it can be formalized more cleanly if we permit (empty)
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Figure 1: Example of a transition system. Also: induced transition system Θ(Π) of the example
planning task Π of Figure 4.

transition systems with no initial states, and having a set of initial states is an easy way to make this
possible. A side advantage is that definitions for initial and goal states can often look more similar
if they are both defined as sets. The transition systems that we consider as inputs to our algorithms
generally have exactly one initial state, and we will refer to it simply as the initial state. However,
our algorithms work equally well with multiple initial states, with the semantics that a plan for any
initial state counts as a plan for the transition system.

Figure 1 shows an example transition system. Ignore the dashed boxes for the moment. States
are denoted by circles, goal states by double circles, and the (only) initial state (i.e., AB) has an
unlabeled incoming arrow. We draw only one transition with two arrows to denote that there are
transitions in both directions between the two states, and each of the two labels of such transitions
only corresponds to one direction. We will give some intuition for the transition system in Section 4
where we discuss planning tasks and factored transition systems and show that this transition system
is induced by a planning task. For now, we just use it as an opaque example of a transition system.

A common approach for finding plans in transition systems is by heuristic search, which ex-
plores the states of a transition system with the help of distance estimators called heuristics. We
briefly recall the concept of heuristics (e.g., Pearl, 1984).

Definition 5 (Heuristic). Let Θ be a transition system with states S and label cost function c. A
heuristic for Θ is a function hΘ : S → R+

0 ∪ {∞}. A heuristic hΘ is called

• perfect if hΘ(s) = h∗Θ(s) for all states s of Θ, where h∗Θ(s) is the cost of an optimal s-plan
or∞ if no s-plan exists.

• goal-aware if hΘ(s) = 0 for all goal states s of Θ.

• consistent if hΘ(s) ≤ c(`) + hΘ(t) for all transitions s `−→ t ∈ Θ.
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• admissible if hΘ(s) ≤ h∗Θ(s) for all states s of Θ.

We denote heuristics by h instead of hΘ if the transition system is clear from context. The value
h(s) produced by a heuristic for state s ∈ S is called the heuristic estimate or heuristic value for
this state. Heuristic search algorithms use heuristic estimates as approximations of the actual cost
(also called perfect heuristic) h∗(s) of reaching a goal state from s.

The perfect heuristic is clearly of interest because it produces the best possible estimates. Ad-
missible heuristics result in optimal solutions when used within search algorithms like A∗ (Hart,
Nilsson, & Raphael, 1968) or IDA∗ (Korf, 1985). For admissible heuristics, higher heuristic values
mean better approximations of h∗ because heuristic values are bounded from above by h∗ and hence
underestimation is the only possible form of inaccuracy. If a heuristics is admissible and consistent,
then A∗ never needs to reopen a state (Dechter & Pearl, 1985). In this setting, higher heuristic
values are generally preferable because they lead to less search effort, with some caveats (Dechter
& Pearl, 1985; Holte, 2010). Goal-awareness together with consistency implies admissibility. As
we will see in the following section, we can use transformations defined on a transition system to
derive heuristics.

3. Transformations of Transition Systems

At the core of the merge-and-shrink approach is the notion of transformations, which relate a given
transition system to a transformed one through state and label mappings. In this section, we study
such transformations, in particular discussing desirable properties of transformations which trans-
late into desirable properties of heuristics based on such transformations, such as admissibility or
perfection.

Definition 6 (Transformation). Let Θ be a transition system with states S and labels L, and let
Θ′ be a transition system with states S′ and labels L′. A transformation of Θ into Θ′ is a tuple
τ = 〈Θ′, σ, λ〉, where Θ′ is called the transformed transition system, σ : S 7→ S′ is called the state
mapping, and λ : L 7→ L′ is called the label mapping. We call Θ the original transition system of τ .

Transformations provide mappings between transition systems, specified by the transformed
transition system, a state mapping relating the states of the original transition system to the states
of the transformed one, and analogously a label mapping relating the label sets. Our definition
of transformations permits partial state and label mappings, i.e., the transformation is allowed to
remove certain states and labels. For example, this can be used to prune irrelevant states and labels.
A common use of transformations is to define abstractions of transition systems, which can be used
to derive a heuristic for the original transition system (among other uses).

Definition 7 (Heuristic Induced by a Transformation). Let τ = 〈Θ′, σ, λ〉 be a transformation of
a transition system Θ into transition system Θ′. The heuristic for Θ induced by τ , hτΘ (or hτ for
short), is defined as hτΘ(s) = h∗Θ′(σ(s)) for all states s ∈ dom(σ) and hτΘ(s) = ∞ for all other
states s ∈ Θ.

In other words, the heuristic value of a state s of Θ is the perfect heuristic value of the trans-
formed state σ(s) in the transformed transition system Θ′, or∞ if σ(s) is undefined.
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3.1 Properties of Transformations

We now define desirable properties of transformations of transition systems.

Definition 8 (Properties of Transformations). Let τ = 〈Θ′, σ, λ〉 be a transformation of a transition
system Θ = 〈S,L, c, T, SI, SG〉 into a transition system Θ′ = 〈S′, L′, c′, T ′, S′I, S′G〉. The follow-
ing list defines properties that τ may have, along with a short-hand name for each property. For
example, we say that τ satisfies CONSS if τ is state-conservative, as defined in the first list entry.

CONSS τ is state-conservative if dom(σ) = S, i.e., σ is a total function.

CONSL τ is label-conservative if dom(λ) = L, i.e., λ is a total function.

CONSC τ is cost-conservative if ∀` ∈ L: ` ∈ dom(λ)→ c′(λ(`)) ≤ c(`).

CONST τ is transition-conservative if
∀s `−→ t ∈ T : s ∈ dom(σ) ∧ t ∈ dom(σ) ∧ ` ∈ dom(λ)→ σ(s) λ(`)−−→ σ(t) ∈ T ′.

CONSI τ is initial-state-conservative if ∀s ∈ SI: s ∈ dom(σ)→ σ(s) ∈ S′I.

CONSG τ is goal-state-conservative if ∀s ∈ SG: s ∈ dom(σ)→ σ(s) ∈ S′G.

INDS τ is state-induced if σ is surjective, i.e., if ∀s′ ∈ S′ ∃s ∈ S: s ∈ σ−1(s′).

INDL τ is label-induced if λ is surjective, i.e., if ∀`′ ∈ L′ ∃` ∈ L: ` ∈ λ−1(`′).

INDC τ is cost-induced if ∀`′ ∈ L′ ∃` ∈ L: ` ∈ λ−1(`′) ∧ c(`) = c′(`′)

INDT τ is transition-induced if
∀s′ `′−→ t′ ∈ T ′ ∃s `−→ t ∈ T : s ∈ σ−1(s′) ∧ t ∈ σ−1(t′) ∧ ` ∈ λ−1(`′).

INDI τ is initial-state-induced if ∀s′ ∈ S′I ∃s ∈ SI: s ∈ σ−1(s′).

INDG τ is goal-state-induced if ∀s′ ∈ S′G ∃s ∈ SG: s ∈ σ−1(s′).

REFC τ is cost-refinable if ∀`′ ∈ L′ ∀` ∈ λ−1(`′): c(`) = c′(`′).

REFT τ is transition-refinable if
∀s′ `′−→ t′ ∈ T ′ ∀s ∈ σ−1(s′) ∃s `−→ t ∈ T : t ∈ σ−1(t′) ∧ ` ∈ λ−1(`′).

REFG τ is goal-state-refinable if ∀s′ ∈ S′G ∀s ∈ σ−1(s′): s ∈ SG.

Based on these basic properties, we define the following derived properties. In general, A =
B + C means that τ has property A if it has properties B and C, and we group together related
properties like CONSX + CONSY by writing them as CONSX+Y.

• conservative: CONS = CONSS+L+C+T+I+G

• induced: IND = INDS+L+C+T+I+G

• refinable: REF = REFC+T+G
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Conservative transformations (CONS) are also called abstractions or homomorphisms. Ab-
stractions that are also induced (CONS + IND) are called induced abstractions or strict homomor-
phisms. Abstractions that are refinable (CONS + REF) are called exact transformations. An exact
induced transformation combines all three properties (CONS + IND + REF).

Informally speaking, a transformation τ of a transition system Θ into transition system Θ′ is an
abstraction (homomorphism) if all behaviors possible in Θ are preserved by τ : every state or label
of Θ has a corresponding state or label in Θ′ (CONSS+L), every transition of Θ has a corresponding
abstract transition in Θ′ (CONST) of the same or lower cost (CONSC), and every initial or goal
state has a corresponding abstract initial or goal state (CONSI+G). As we will show (in Theorem 3),
this is sufficient for deriving admissible and consistent heuristics from τ .

Among these abstractions, induced abstractions (strict homomorphisms) are in some sense the
most accurate ones. They must not contain any abstract states (INDS) or labels (INDL) beyond
those that the state and label mappings map to. While they include all transitions, initial states and
goal states that an abstraction must include, they do not include any additional ones beyond those
required by the abstraction property (INDT+I+G). Finally, transformed label costs must correspond
to the cost of some original label (INDC), which together with cost-conservativeness implies that
the cost of a transformed label must be the minimum cost of its preimage labels. It is not difficult to
show that for every total state mapping σ and total label mapping λ, there exists a unique transition
system Θ′ such that τ = 〈Θ′, σ, λ〉 is an induced abstraction. Hence, induced abstractions are
uniquely described by their state and label mappings, and we say that Θ′ is the transition system
induced by σ and λ. Induced abstractions are practically desirable because they provide the largest
possible heuristic values (and hence, because of admissibility, the most accurate possible heuristics)
among all abstractions with the same state and label mappings. They are also theoretically desirable
because they can be fully understood and analyzed in terms of the state and label mappings.

Exact transformations are conservative “in both directions”: intuitively, refinability means that
all behaviors possible in Θ′ are also possible in Θ. All transformed transitions s′ `′−→ t′ can be
mapped back to original transitions s `−→ t for all preimages s of s′ (REFT), all preimages of goal
states are goal states (REFG), and the label mapping does not affect the label costs (REFC). To-
gether with the abstraction property, this implies that Θ and Θ′ behave in essentially the same way.
To make this formal, we will prove (in Theorem 5) that heuristics based on exact transformations
are perfect.

We remark that we define transition-refinability in such a way that given a transition s′ `′−→ t′

of Θ′, Θ has a corresponding transition for all preimages s of s′ and some preimage t of t′. One
could alternatively consider a definition where Θ must have a transition for all t and some s. Both
definitions give rise to notions of abstract paths being refinable to concrete paths, but the alternative
definition does not lead to a perfect heuristic. One could of course also require corresponding
transitions to exist for all s and all t, but this is unnecessarily restrictive as our weaker property
already leads to a perfect heuristic.

In a similar vein, one could define an initial-state-refinable property REFI analogous to REFG,
requiring that all preimages of initial states are initial states. But this property would not be useful
for any of the applications of transformations that we describe in this paper. We ultimately aim
to construct abstractions for forward search which allow us to compute distance estimates from
arbitrary states to the goal states. If instead we considered abstractions for backward search, we
would need to compute distance estimates from the initial state(s) to arbitrary (subgoal) states. For
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Figure 2: Four different transformations of the transition system in part (a).

this purpose, we would need REFI instead of REFG and a variant of REFT that quantifies over all
t and some s. In the interest of brevity in an already long paper, we do not study these properties.

3.1.1 EXAMPLE

Figure 2 illustrates four example transformations with different properties. The original transition
system is shown in part (a) of the figure. The other parts of the figure show transformations of this
transition system. We use undecorated numbers and letters to denote states and labels of the original
transition system and overlined symbols to denote states and labels of the transformed transition
systems. If a state s of the original transition system is mapped to some state of the transformed
transition system, then the name of the state includes s. For example, a transformed state whose
preimage consists of states 0 and 3 is denoted by 03. We proceed analogously for labels. All
transformations are state-induced and label-induced, so there are no transformed states and labels
other than those that the original states and labels map to.

Figure 2(b) shows the first transformation, an example of a non-abstraction transformation.
Indeed, it satisfies only two of the six properties of a conservative transformation, as it is label-
conservative and initial-state-conservative. It is not state-conservative because the state mapping is
undefined for state 2 (no abstract state includes 2). It is not goal-state-conservative because 3 is not
a goal state even though 3 is. It is not transition-conservative because the transformed transition
system has no transition corresponding to 0 x−→ 3. Finally, it is not cost-conservative because the
cost of yz is higher (5) than the costs of y and z (4 and 3).
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Figure 2(c) shows an abstraction: all states and labels have corresponding transformed states
and labels, all transitions induce transformed transitions, all initial/goal states induce transformed
initial/goal states, and all labels are mapped to labels of the same or lower cost. The abstraction
is not induced because the transition 03 yz−→ 03 is not induced by any original transition (violating
INDT) and also because the label cost 2 of x differs from the cost 4 of its only preimage label x
(violating INDC).

Figure 2(d) shows an induced abstraction: all states, labels, transitions, initial/goal states and
label costs are induced by the original transition system. The transformation is not exact for several
reasons: for example, it is not transition-refinable because the transition 01 z−→ 01 has no matching
original transition for the preimage 0 of 01, as neither 0 z−→ 0 nor 0 z−→ 1 are transitions of the
original transition system. The transformation is also not cost-refinable because the cost of label xy
(3) is lower than the cost of x (4).

Finally, Figure 2(e) shows an exact induced transformation: it is conservative, induced and
refinable.

3.1.2 RELATIONSHIP TO BÄCKSTRÖM AND JONSSON

Bäckström and Jonsson (2013) describe a framework that models abstractions as transformations
from a labeled digraph G to a labeled digraph G′. As in our case, transformations must specify
how the states and labels of the two digraphs are related. A major difference is that we relate the
states and labels of the two digraphs by (partial) functions, while Bäckström and Jonsson consider
more general relations. A transformation in their setting is represented by a set-valued function f
that maps states of G to sets of states of G′ (with further constraints that essentially specify that f
defines a bijection between equivalence classes of the states of G and G′) and an arbitrary relation
R between the labels of G and the labels of G′.

For example, this notion of transformation allows mapping a single state to multiple states,
and it is reversible in the sense that for each transformation from G to G′, there exists an inverse
transformation from G′ to G. We restrict ourselves to (functional) state and label mappings because
these are simpler and sufficient for our purposes. A further difference is that the transition graph
formalism used by Bäckström and Jonsson does not include notions of initial states, goal states or
label costs, although of course these can be associated with transition graphs externally.

Bäckström and Jonsson also study properties of transformations, some of which are quite similar
to properties we define, the main difference being that most of their properties do not consider labels
but only depend on the relationship between states. In some more detail, Bäckström and Jonsson
define several “method properties” for the state mapping f , including M↑, meaning that f is a total
function (rather than set-valued); R↑, meaning in our notation that if s `−→ t ∈ G, then there is
s′ `′−→ t′ ∈ G′ such that R(`, `′); and C↑, meaning in our notation that if R(`, `′) and s `−→ t ∈ G,
then there is s′ `′−→ t′ ∈ G′ such that s′ ∈ f(s) and t′ ∈ f(t). They call a transformation a
homomorphism if it satisfies M↑R↑C↑.1 Our properties CONSS+L+T correspond to this notion of
homomorphism, while our definition of abstraction/homomorphism requires additional conditions
on initial and goal states and label costs, which are not present in their formalism.

Bäckström and Jonsson further define the converse properties R↓ and C↓ in the obvious way
(e.g., a transformation from G to G′ satisfies C↓ if it semantically corresponds to a transformation

1. Bäckström and Jonsson use concatenation to denote the combination of properties where we use the “+” symbol.
Moreover, for any symbol X where X↑ and X↓ are properties, their combination is abbreviated as Xl.
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from G′ to G which satisfies C↑) and call a transformation satisfying M↑RlCl a strong homomor-
phism. This corresponds to adding INDT to CONSS+L+T. Again, for a transformation to be an
induced abstraction/strict homomorphism in our sense, we require additional conditions on initial
and goal states and label costs. Interestingly, the strong homomorphisms of Bäckström and Jonsson
do not have analogues of INDS and INDL. For example, according to their definition, a strong ho-
momorphism may introduce an arbitrary number of additional states with no incident transitions. In
our setting, this would violate INDS. Their strong homomorphisms may also introduce additional
labels and transitions for these labels, for example by mapping each original transition s `−→ t to two
transitions s `1−→ t and s `2−→ t, where `1 and `2 act as two independent copies of `. In our setting,
this would violate INDL.

Despite these differences the approach by Bäckström and Jonsson is very similar in spirit and
execution to ours. Indeed, it was one of the major inspirations for our definition of transformations
between transition systems as well as for the more general idea of studying the merge-and-shrink
framework in terms of a family of transformation properties.

3.2 Composition of Transformations

An important property of transformations is that they compose: if τ is a transformation of Θ into Θ′

and τ ′ is a transformation of Θ′ into Θ′′, then τ and τ ′ can be combined into a single transforma-
tion of Θ into Θ′′. In this section we prove this composition property and show that the composed
transformation inherits all common properties (such as conservativeness or inducedness) of its com-
ponents. This is a key result because it permits us to understand the joint behavior of any sequence
of transformations in terms of the properties of the individual transformation steps. Later, we will
introduce the merge-and-shrink framework as a family of transformations. It follows that we can
understand the properties of merge-and-shrink by understanding the individual transformations in
the family. We begin by defining the composition of transformations.

Definition 9 (Composition of Transformations). Let τ = 〈Θ′, σ, λ〉 be a transformation of a tran-
sition system Θ into a transition system Θ′, and let τ ′ = 〈Θ′′, σ′, λ′〉 be a transformation of Θ′ into
a transition system Θ′′. The composition of τ ′ and τ is the transformation of Θ into Θ′′ defined as
τ ′ ◦ τ = 〈Θ′′, σ′ ◦ σ, λ′ ◦ λ〉.

We remind the reader that state and label mappings can be partial and refer to Definition 2 for
the composition of partial functions. It is easy to verify that the composition of two transformations
is indeed a transformation. The following theorem shows that a composed transformation inherits
the common properties of its component transformations. All proofs for this section can be found
in Appendix A.

Theorem 1. Let X be any of the properties of transformations from Definition 8. Let τ be a transfor-
mation of transition system Θ into transition system Θ′ with property X, and let τ ′ be a transforma-
tion of Θ′ into transition system Θ′′ with property X. Then the composed transformation τ ′′ = τ ′ ◦ τ
also has the property X.

3.3 Effect of Properties of Transformations on Heuristics

The properties of transformations affect the properties of heuristics induced by these transforma-
tions. In this section we study this relationship, with an emphasis on admissible and consistent
heuristics and on perfect heuristics.
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If π = 〈s0
`1−→ s1, . . . , sn−1

`n−→ sn〉 is a path in a transition system Θ and τ = 〈Θ′, σ, λ〉 is a
transformation of Θ, we write τ(π) for the transformation 〈σ(s0) λ(`1)−−−→ σ(s1), . . . , σ(sn−1) λ(`n)−−−→
σ(sn)〉 of π. Note that τ(π) is not necessarily a path of Θ′. In particular, by our general convention
for functions that refer to undefined values, τ(π) is undefined if any σ(si) or λ(`i) is undefined.
Moreover, even if τ(π) is defined, it can include transitions that are not transitions of Θ′. We call
τ(π) a legal path in Θ′ if it is defined and a path in Θ′. We extend the definition of the cost of a path
as the sum of the costs of the labels in the sequence to all cases where τ(π) is defined, whether or
not it is legal. If π = 〈〉 is the empty path from state s to itself, we consider τ(π) legal iff σ(s) is
defined. That is, for empty paths, the legality of τ(π) depends on which state s we associate with
the path. (This is a slight abuse of notation because the state s is not explicit from the notation of
π.)

Conversely, if π′ = 〈s′0 `′1−→ s′1, . . . , s
′
n−1

`′n−→ s′n〉 is a path in Θ′, by τ−1(π′) we denote the
refinements of π′, i.e., τ−1(π′) = {〈s0

`1−→ s1, . . . , sn−1
`n−→ sn〉 | si ∈ σ−1(s′i) for all 0 ≤ i ≤

n and `i ∈ λ−1(`′i) for all 1 ≤ i ≤ n}. Similarly to the preceding discussion, transition sequences
in τ−1(π′) may include transitions that are not transitions of Θ. An element of τ−1(π′) is called a
legal path in Θ if it is actually a path in Θ.

3.3.1 FORMAL RESULTS

The first result of this section is concerned with conservative transformations.

Theorem 2. Let Θ be a transition system with states S and label costs c, and let τ = 〈Θ′, σ, λ〉 be
a transformation of Θ into transition system Θ′ with label costs c′. Let π be a path in Θ. Then:

1. If τ is state- and label-conservative (CONSS+L), then τ(π) is defined.

2. If τ is transition-conservative (CONST) and τ(π) is defined, then τ(π) is a legal path in Θ′.

3. If τ is transition- and goal-state-conservative (CONST+G), π is an s-plan and τ(π) is defined,
then τ(π) is a σ(s)-plan for Θ′.

4. If τ is state-, label-, transition-, initial-state- and goal-state-conservative (CONSS+L+T+I+G)
and π is a plan for Θ, then τ(π) is a plan for Θ′.

5. If τ is cost-conservative (CONSC) and τ(π) is defined, then c′(τ(π)) ≤ c(π).

This theorem shows that conservative transformations preserve the existence of paths and plans
and do not lead to an increase in plan cost. This directly translates to admissibility and consistency
of heuristics based on such transformations.

Theorem 3. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced by
τ is

1. goal-aware if τ is state- and goal-state-conservative (CONSS+G),

2. consistent if τ is state-, label-, cost- and transition-conservative (CONSS+L+C+T), and

3. admissible if τ is state-, label-, cost-, transition- and goal-state-conservative
(CONSS+L+C+T+G).
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In summary, conservative transformations (abstractions) give rise to admissible and consistent
heuristics. We remark that the only conservativeness property we do not need is initial-state-
conservativeness (CONSI), as induced heuristics do not depend on the initial state. Initial-state-
conservativeness will become important in Section 8, which also shows that goal-awareness, con-
sistency and admissibility already hold under slightly weaker conditions (Theorem 22 on page 837).
Strictly speaking, this later result makes Theorem 3 redundant, but we think it is useful to already
state this simpler result here to keep some more complicated concepts limited to Section 8.

In the following, we explore conditions under which transformations give rise to perfect heuris-
tics. As a first step, we study some key properties of refinable transformations.

Theorem 4. Let Θ be a transition system with label costs c, and let τ = 〈Θ′, σ, λ〉 be a transfor-
mation of Θ into transition system Θ′ with label costs c′. Let π′ be a path from state s′ to state t′ in
Θ′, and let s ∈ σ−1(s′). Then:

1. If τ is transition-refinable (REFT), then there exists a legal path π ∈ τ−1(π′) from s to some
state t ∈ σ−1(t′) in Θ.

2. If τ is transition-refinable and goal-state-refinable (REFT+G) and π′ is an s′-plan for Θ′, then
there exists an s-plan π ∈ τ−1(π′) for Θ.

3. If τ is cost-refinable (REFC), then c(π) = c′(π′) for all π ∈ τ−1(π′).

The theorem shows that with refinable transformations, plans in the transformed transition sys-
tem can be “transformed back” into plans of the original transition system, at the same cost. This
result is roughly converse to Theorem 2, and it implies that the shortest path costs in the transformed
transition system under a refinable transformation can never be lower than the corresponding short-
est path costs in the original transition system. This leads to the following result.

Theorem 5. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced by
τ is

1. lower-bounded by h∗ (h∗(s) ≤ hτ (s) for all states s) if τ is refinable (REF) and

2. perfect if τ is exact (CONS + REF), or more generally if τ is CONSS+L+C+T+G + REF.

The main message of this theorem is that exact transformations give rise to perfect heuristics.
(The slightly more general variant of the second result takes into account that among the six con-
servativeness properties, initial-state-conservativeness is not required.) Of course, this is no coinci-
dence: we chose the name “exact” for conservative and refinable transformations precisely for this
reason.

3.3.2 RELATIONSHIP TO BÄCKSTRÖM AND JONSSON

Earlier, we discussed the relationship of our definition of transformations and their properties to
earlier work by Bäckström and Jonsson (2013). Similar relationships can be identified for the results
in this section.

Bäckström and Jonsson study several “metric” properties for concepts related to path costs. Be-
cause their notion of transition systems does not include costs, for the discussion of metric properties
they augment transition systems with cost functions c between arbitrary pairs of states. Their cost
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functions are unrelated to the transition labels and only loosely related to the transition structure:
in principle, they consider arbitrary cost functions with the only requirement that c(s, t) = ∞ iff
there is no path from state s to state t. In particular, there is no requirement that path costs are based
on transition costs; it is permissible to have c(s, s) > 0 or for c to violate the triangle inequality.
However, all their results relevant to this discussion are with respect to a more limited class of cost
functions induced by weights on transitions in the natural way, which is much closer to our model.
The main difference is that we associate costs with transition labels, while Bäckström and Jons-
son associate costs directly with transitions. Having transition labels as an intermediary between
transitions and their costs is important for factored representations of transition systems, which we
discuss in the following section.

Bäckström and Jonsson do not include goal states in their formalization, so they study notions of
admissibility and consistency for distances between arbitrary pairs of states rather than from a given
state to the nearest goal state. Their main result on admissibility and consistency is that their notion
of homomorphisms (transformations with property M↑R↑C↑ in their notation, corresponding to our
property CONSS+L+T as discussed in Section 3.1) gives rise to admissible and consistent heuristics
if we additionally require the equivalent of property CONSC for their way of modeling transition
costs. This result (Theorem 15 in their paper) is analogous to our Theorem 3.

Of course, the observation that homomorphisms induce admissible and consistent heuristics is a
very well-known basic property of abstractions, so at a high level, this is neither a new contribution
by Bäckström and Jonsson nor is it a new contribution by us. Rather, in both works the value of the
results comes from the way that these well-known observations are connected to a general model of
transformations. In this sense, proving that abstractions induce admissible and consistent heuristics
in both works acts as a sanity test that (in both cases) the notions of “abstractions” and “induced
heuristics” were defined in a reasonable way.

Bäckström and Jonsson do not discuss conditions for perfect heuristics, so their work does
not contain a result equivalent to Theorem 5, which establishes that exact transformations induce
perfect heuristics. However, they do cover several notions of refinability, leading to results with
some similarity to our Theorem 4.2 Specifically, they consider properties of transformations under
which every path in the transformed transition system is downward state refinable (in the following
refinable for short).

They study several variants of refinability. Expressed in our notation, the three main variants
can be described as follows for a given transformation τ = 〈Θ′, σ, λ〉 of transition system Θ:

• trivial refinability (PT↓ in the notation of Bäckström and Jonsson): for every path from s′ to
t′ in Θ′, there exists a path from some s ∈ σ−1(s′) to some t ∈ σ−1(t′) in Θ.

• weak refinability (PW↓): for every path s′0 → · · · → s′k in Θ′, there exist states s0 ∈
σ−1(s′0), . . . , sk ∈ σ−1(s′k) such that there exist paths from si−1 to si in Θ for all 1 ≤ i ≤ k.

• strong refinability (PS↓): for every path s′0 → · · · → s′k in Θ′ and for all states s0 ∈
σ−1(s′0), . . . , sk ∈ σ−1(s′k), there exist paths from si−1 to si in Θ for all 1 ≤ i ≤ k.

Bäckström and Jonsson (2012a) show that strong refinability implies weak refinability, which
in turn implies trivial refinability, while the converse statements do not hold. (Note that strong

2. Some of the following results are due to an earlier, more detailed treatment of refinement by the same authors
(Bäckström & Jonsson, 2012a).
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refinability only implies weak refinability if σ is surjective. Only then can “∀s ∈ σ−1(s′) : ϕ”
imply “∃s ∈ σ−1(s′) : ϕ” for a property ϕ. In the work of Bäckström and Jonsson, state mappings
are always total and surjective, i.e., our properties CONSS and INDS hold by definition.)

One major difference between trivial/weak/strong refinability and our notion of refinability em-
ployed in Theorem 4 is that Bäckström and Jonsson treat transition systems as unlabeled digraphs
for the purposes of refinement; transition labels are ignored. Also, their notions are centered on
paths, not transitions, which in particular means that a single transition may be refined into an
arbitrarily long path.

Both of these choices mean that their notion of refinement cannot be used for quantitative prop-
erties of heuristics like the relationship hτ (s) ≥ h∗(s) that holds for our notion of refinement.
However, refinement in the style of Bäckström and Jonsson can in principle be used for a qualita-
tive variation of this property based on reachability, namely that hτ (s) =∞ whenever h∗(s) =∞,
i.e., perfect dead end detection. Of the above three notions of refinability, only strong refinability
guarantees perfect dead end detection: weak refinability (and by implication trivial refinability) is
too weak because of the existential quantification over s0 ∈ σ−1(s′0). Strong refinability does guar-
antee perfect dead end detection, but is more restrictive than necessary for this purpose: it suffices
to require that for every path from s′ to t′ in Θ′ and all s ∈ σ−1(s′), there exists a path from s to
some t ∈ σ−1(t′) in Θ. This condition is equivalent to a fourth (unnamed) variant of refinability in
the work of Bäckström and Jonsson (2012a, 2013), which they denote by P↓.

3.4 Summary

We conclude our discussion of transformations with a brief summary of the main results. We in-
troduced the concept of transformations and their properties. We showed that transformations can
be composed and that this composition inherits the common properties of the component transfor-
mations. We have seen that conservative transformations (abstractions) give rise to admissible and
consistent heuristics, while exact (conservative and refinable) transformations give rise to perfect
heuristics. These relationships between transformation properties and heuristic properties, together
with the earlier observation that induced abstractions are in a formal sense the “most informative”
abstractions, are the reason why we consider conservativeness, inducedness and refinability de-
sirable properties of transformations. In Sections 5–8, we will come back to these properties of
transformations in the context of the merge-and-shrink framework. In particular, this will allow us
to conclude under which conditions the merge-and-shrink transformations give rise to admissible or
perfect heuristics.

4. Factored Representations

In the previous section, we defined a theory of transformations of transition systems and their prop-
erties and showed how such transformations can be composed. In this section, we describe how to
use factored representations of transition systems and transformations. Such factored representa-
tions have the great advantage of being more compact than “flat” (nonfactored) representations, so
that they can serve as the basis of efficient algorithms.

In particular, we define factored transition systems, which are represented as tuples of com-
ponent transition systems (factors), as a compact representation of a single nonfactored transition
system. We also define factored mappings, which can serve as a compact representation of state
mappings and of heuristic functions. Together with label mappings as defined previously (which
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do not need a factored representation), these factored representations can be used to define factored
transformations as transformations operating directly on factored representations.

The key insight underlying factored representations is that large sets can be compactly described
as “products” of small components. We will refer to these components as variables. Variable-based
representations are for example used to describe states in planning formalisms such as STRIPS
(Fikes & Nilsson, 1971) or SAS+ (Bäckström & Nebel, 1995), to describe assignments in constraint
satisfaction problems (Dechter, 2003), or to describe the joint state of a system of components in
model checking (Clarke, Grumberg, & Peled, 1999). We will refer to a collection of finite-domain
variables of this kind as a variable space.

Definition 10 (Variable Space). A variable space is a tuple V = 〈v1, . . . , vn〉 of variables with a
finite domain. We write dom(v) for the domain of v, which can be an arbitrary finite set of values.

We assume throughout the paper that all variables in a variable space have a separate identity
(i.e., V does not contain duplicate variables), so that we can also treat variable spaces as sets (rather
than tuples) of variables where convenient. For example, we will write v ∈ V to denote that V
contains the variable v. It would of course be possible to define variable spaces as sets of variables in
the first place, but having a total order on the variables is often convenient for specifying algorithms
that work on variable spaces in an unambiguous way, for example when we want to iterate over the
variables in a variable space.

The main purpose of variable spaces is to compactly represent the set of assignments to the
variables. For example, n variables with domains of size k compactly describe kn possible assign-
ments. In this sense, we can think of a variable space as a factored set. We now formalize the notion
of assignments and some related concepts.

Definition 11 (Assignment, Partial Assignment, Consistent Assignments). Let V = 〈v1, . . . , vn〉 be
a variable space. A partial assignment for V is a valuation of some subset V ⊆ V , i.e., a function
α defined on V that maps each element v ∈ V to some element in dom(v). We write α[v] for this
element of dom(v) to visually distinguish assignments from other mappings. We write vars(α) to
denote the set of variables on which α is defined.3

Two partial assignments α and α′ are consistent if α[v] = α′[v] for all v ∈ vars(α)∩ vars(α′).
A partial assignment with vars(α) = V is called an assignment for V . We will also write

assignments as tuples of assigned values, i.e., use the notation 〈d1, . . . , dn〉 for the assignment
{v1 7→ d1, . . . , vn 7→ dn}. We write A(V) for the set of all assignments for V .

Equipped with these basic concepts, we can now study factored representations of transition
systems and their transformations in detail. We introduce factored transition systems in Section 4.1
and show how classical planning tasks induce factored transition systems in Section 4.2. In Sec-
tion 4.3 we define factored mappings, describe how they can be used to represent state mappings
of factored transition systems, and show how they can be composed efficiently. Finally, we put
the pieces together in Section 4.4 where we define factored transformations, discuss their use for
deriving heuristics, and give a high-level account of the merge-and-shrink framework.

3. Partial assignments can of course be viewed as partial functions (Definition 2). In this view, vars(α) is simply the
domain of definition of α, which we denote by dom(α) for partial functions in general. But we believe that using
dom(α) could lead to confusion with the notation dom(v) for the domain of variables, which is an unrelated use
of the word “domain”. (Both dom notations are firmly established conventions, one used in mathematics in general
and the other used in areas of artificial intelligence that deal with variable spaces, such as automated planning and
constraint programming.)
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Figure 3: Example of a factored transition system. Also: induced factored transition system of the
example planning task of Figure 4.

4.1 Factored Transition Systems

We first define factored transition systems.

Definition 12 (Factored Transition System). A factored transition system is a tuple F = 〈Θ1, . . . ,
Θn〉 of transition systems where each transition system Θi has the same set of labels L and the same
label cost function c, i.e., Θi = 〈Si, L, c, T i, SiI , SiG〉 for all 1 ≤ i ≤ n.

A factored transition system consists of transition systems, also called factors, sharing the same
labels with the same cost. Figure 3 shows an example factored transition system with two factors
Θ1 and Θ2. Ignore the dashed boxes for the moment. We intentionally avoid providing detailed
intuition for the example now because we want to use it to show how factored transition systems
work at a mechanical level. We will give some intuition for the example in the next subsection,
where we discuss planning tasks.

The purpose of factored transition systems is to provide a concise representation of large transi-
tion systems by means of their product systems, which we define next.

Definition 13 (Product). Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system with Θi = 〈Si, L, c,
T i, SiI , S

i
G〉 for all 1 ≤ i ≤ n. The product (also: product system, synchronized product) of F is

the transition system defined as
⊗
F = 〈S⊗, L, c, T⊗, S⊗I , S⊗G 〉, where S⊗ =

∏n
i=1 S

i, T⊗ =
{〈s1, . . . , sn〉 `−→ 〈t1, . . . , tn〉 | si `−→ ti ∈ T i for all 1 ≤ i ≤ n}, S⊗I =

∏n
i=1 S

i
I , and S⊗G =∏n

i=1 S
i
G.4

The product system is the transition system which is implicitly represented through the synchro-
nized behavior of its factors. We can think of a factored transition system F as a variable space with
additional structure. In this view, each factor Θi ∈ F is a variable whose domain consists of the
states Si of the factor, and the states of the product system are exactly the assignments of F , i.e.,
A(F ). In other words, a product state is defined by specifying the component state of each factor.
Following our general conventions for variable spaces, we can write such states using assignment
notation {Θi 7→ si | 1 ≤ i ≤ n} or as tuples 〈s1, . . . , sn〉.

Labels are used to synchronize the factors of the factored transition system via the labeled
transitions: there is a transition between two states in the product system iff all factors have a

4. The notation
∏n
i=1A

i stands for the Cartesian product of the sets Ai, i.e.,
∏n
i=1A

i = A1 × · · · ×An.
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transition between the corresponding component states labeled with the same label. A state is an
initial/goal state in the product if all its components are initial/goal states in the respective factors.
This implies that a sequence of labels corresponds to a plan in the factored transition system iff it
corresponds to a plan in all factors.

Consider the factored transition system with the two factors shown in Figure 3, again ignoring
the dashed boxes. The product system of this factored transition system is the transition system
shown in Figure 1 on page 785, apart from the “names” of states: for example, state AB should
formally be written as 〈A,B〉 to properly refer to a state of the product system. In the following,
we will treat transition systems as equivalent if they only differ in the names of states. With this
convention, the product operation is associative and commutative. To exemplify the definition of the
product, we see that in the first factor there is a transition A DRIVE-A-B−−−−−−→ B, and in the second factor
there is a self-looping transition B DRIVE-A-B−−−−−−→ B, and hence in the product there must be a transition
AB DRIVE-A-B−−−−−−→ BB. Figure 1 indeed shows such a transition. The goal states of the product system
are all those where the second component reads C because only state C is a goal state in the second
factor, and all states are goal states in the first factor.

4.2 Classical Planning

While the concepts we present in this work apply to arbitrary factored transition systems, we illus-
trate them through their application to classical planning (e.g., Ghallab et al., 2004), one of the areas
in which factored representations of transition systems arise. Planning deals with finding plans, i.e.,
paths from an initial state to some goal state, in transition systems induced by planning tasks.

We consider planning tasks in the SAS+ formalism (Bäckström & Nebel, 1995), augmented
with action costs.

Definition 14 (Planning Task). A planning task is a tuple Π = 〈V,O, sI, sG〉 with the following
components:

• V is a variable space. The variables in V are called state variables, and the (partial) assign-
ments for V are called (partial) states.

• O is a finite set of operators, where each operator o ∈ O has an associated partial state
pre(o) called the precondition of o, an associated partial state eff (o) called the effect of o,
and an associated non-negative value cost(o) ∈ R+

0 , called the cost of o.

• sI is a state called the initial state.

• sG is a partial state called the goal.

A planning task Π induces a transition system Θ(Π), which gives it its semantics. The states of
Θ(Π) are the assignments for the variables V of Π, labels and their costs correspond to operators
of Π, and there is a transition s `−→ t in Θ(Π) if pre(`) is consistent with s, and t is the state that is
consistent with eff (`) and satisfies t[v] = s[v] for all v /∈ vars(eff (`)). There is exactly one initial
state in Θ(Π), namely sI. The goal states of Θ(Π) are all states that are consistent with the goal of
Π. A plan for Π is a plan for Θ(Π) (cf. Definition 4). Optimal planning is the problem of finding
an optimal plan for a given planning task or showing that no plan exists.

Figure 4 shows a simple logistics planning task with one truck T and one package P . There are
three locations A, B, and C. The truck T can move from and to all locations via drive operators.
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Π = 〈V,O, sI, sG〉 with
V = 〈vT , vP 〉 with dom(vT ) = {A,B,C} and dom(vP ) = {A,B,C,T}
O = {DRIVE-A-B : pre(DRIVE-A-B) = {vT 7→ A}

eff (DRIVE-A-B) = {vT 7→ B}
cost(DRIVE-A-B) = 1,

DRIVE-A-C : pre(DRIVE-A-C) = {vT 7→ A}
eff (DRIVE-A-C) = {vT 7→ C}
cost(DRIVE-A-C) = 1,

DRIVE-B-A : pre(DRIVE-B-A) = {vT 7→ B}
eff (DRIVE-B-A) = {vT 7→ A}
cost(DRIVE-B-A) = 1,

DRIVE-B-C : pre(DRIVE-B-C) = {vT 7→ B}
eff (DRIVE-B-C) = {vT 7→ C}
cost(DRIVE-B-C) = 1,

DRIVE-C-A : pre(DRIVE-C-A) = {vT 7→ C}
eff (DRIVE-C-A) = {vT 7→ A}
cost(DRIVE-C-A) = 1,

DRIVE-C-B : pre(DRIVE-C-B) = {vT 7→ C}
eff (DRIVE-C-B) = {vT 7→ B}
cost(DRIVE-C-B) = 1,

LOAD-A : pre(LOAD-A) = {vT 7→ A, vP 7→ A}
eff (LOAD-A) = {vP 7→ T}
cost(LOAD-A) = 1,

LOAD-B : pre(LOAD-B) = {vT 7→ B, vP 7→ B}
eff (LOAD-B) = {vP 7→ T}
cost(LOAD-B) = 1,

LOAD-C : pre(LOAD-C) = {vT 7→ C, vP 7→ C}
eff (LOAD-C) = {vP 7→ T}
cost(LOAD-C) = 1,

UNLOAD-A : pre(UNLOAD-A) = {vT 7→ A, vP 7→ T}
eff (UNLOAD-A) = {vP 7→ A}
cost(UNLOAD-A) = 1,

UNLOAD-B : pre(UNLOAD-B) = {vT 7→ B, vP 7→ T}
eff (UNLOAD-B) = {vP 7→ B}
cost(UNLOAD-B) = 1,

UNLOAD-C : pre(UNLOAD-C) = {vT 7→ C, vP 7→ T}
eff (UNLOAD-C) = {vP 7→ C}
cost(UNLOAD-C) = 1}

sI = {vT 7→ A, vP 7→ B}
sG = {vP 7→ C}

Figure 4: Simple logistics planning task with one truck, one package and three locations.
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The package P can be loaded into T if it is at the same location as T , and it can be unloaded to the
location of T if it is in the truck. All operators have the same cost 1. The induced transition system
Θ(Π) is shown in Figure 1 on page 785. States are labeled with two letters, the first denoting the
position of the truck (i.e., the value of vT ), the second denoting the position of the package (the
value of vP ). The initial state, marked with an unlabeled incoming arrow, is the state AB, i.e., the
state where the truck is at A and the package is at B. All states whose second component reads C are
goal states because the package is at C in such states. Looking at the transition labeled DRIVE-A-B
from state AB to BB, it is clear that the corresponding operator is applicable in the state AB because
the truck is at A, and that the state BB is the successor state because the truck is at B and the position
of the package remains the same.

A planning task Π also induces a factored representation of Θ(Π) in a natural way. The factors
of this representation are called the atomic factors of Π.

Definition 15 (Atomic Factor). Let Π = 〈V,O, sI, sG〉 be a planning task. The atomic factor for
variable v ∈ V of Π is the transition system Θv = 〈dom(v),O, c, T v, SvI , SvG〉 where c maps each
label ` ∈ O to the cost cost(`) of the operator, T v = {d `−→ d′ | (v /∈ vars(pre(`)) ∨ pre(`)[v] =
d) ∧ ((v /∈ vars(eff (`)) ∧ d′ = d) ∨ eff (`)[v] = d′)}, SvI = {sI[v]}, and SvG = {sG[v]} if
v ∈ vars(SvG) and SG = dom(v) otherwise.

An atomic factor represents the behavior of a single state variable of a planning task, with states
of the factor corresponding to possible values of its associated state variable. Breaking down the
rather complicated definition of the transitions of an atomic factor, two conditions must be met for a
transition 〈d, `, d′〉 to exist. Firstly, the operator ` either has no precondition on v, or it requires the
value d of v as a precondition. Secondly, the operator either does not affect v and we have d′ = d,
or the operator sets v to d′ in its effect. Atomic factors are closely related to the concept of domain
transition graphs (Jonsson & Bäckström, 1998), with the difference that atomic factors have initial
and goal states and that they represent all operators of the planning task, including self-looping
transitions for operators that do not change the value of the variable.

Using atomic factors, we can now define the induced factored transition system of a planning
task.

Definition 16 (Induced Factored Transition System). The induced factored transition system of a
planning task Π with state variables V = 〈v1, . . . , vn〉 is the factored transition system F (Π) =
〈Θv1 , . . . ,Θvn〉.

The factored transition system shown in Figure 3 is the induced factored transition system of
the example planning task of Figure 4. The transition system shown in Figure 3(a) is the atomic
factor for variable vT , and the one in Figure 3(b) is the atomic factor for variable vP . Note that for
our running example, we use the shorter notation ΘT and ΘP rather than ΘvT and ΘvP .

An important observation is that the product system of the induced factored transition system of
a planning task is identical (apart from names of states) to the induced transition system of the plan-
ning task.5 We have already seen this in our example: the product of the induced factored transition
system shown in Figure 3 corresponds to the induced transition system shown in Figure 1. Hence
F (Π) faithfully represents all aspects of the planning task Π. This is one of the major motivations
for using transformations of factored transition systems as the basis of a planning algorithm: we

5. This result was first established by Helmert et al. (2007); see their Theorem 8 and following discussion.
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obtain all the compactness benefits of factored representations while preserving all aspects of the
planning task.

4.3 Factored Mappings

In order to use factored representations in a transformation-based approach, we do not just need
factored representations of transition systems but also of state mappings. For example, if we want
to use transformations to derive an abstraction of a factored transition system, we need a way to
map states in the original factored transition system (“concrete states”) to corresponding states in
the transformed factored transition system (“abstract states”).

For this purpose we define factored mappings, a tree-like data structure that can represent arbi-
trary functions defined on variable spaces, such as the states of a planning task. As discussed in the
previous section, factored transition systems can naturally be viewed as variable spaces where each
factor is a variable ranging over the component states of the factor, so factored transition systems
and factored mappings work together naturally.

Factored mappings have previously also been called “cascading tables” (Helmert et al., 2014;
Torralba, 2015) and “merge-and-shrink representations” (Helmert, Röger, & Sievers, 2015). The
following two definitions are based on the treatment of merge-and-shrink representations by Helmert
et al. (2015).

Definition 17 (Factored Mapping). Factored mappings (FMs) over a variable space V are induc-
tively defined as follows. An FM σ has an associated finite value set vals(σ) 6= ∅ and an associated
table σtab. σ is either atomic or a merge.

• If σ is atomic, then it has an associated variable v ∈ V . Its table is a partial function
σtab : dom(v) 7→ vals(σ).

• If σ is a merge, then it has a left component FM σL and a right component FM σR. Its table
is a partial function σtab : vals(σL)× vals(σR) 7→ vals(σ).

In words, FMs can be viewed as binary trees with merges as inner nodes and atomic FMs as
leaves. Leaves have an associated variable and define mappings from values of this variable to some
set of values. Inner nodes determine how the mappings of their children are combined.

Definition 18 (Represented Function). Let σ be an FM over a variable space V . σ represents the
function JσK : A(V) 7→ vals(σ) which is inductively defined as follows:

• If σ is atomic with associated variable v, then JσK(α) = σtab(α[v]).

• If σ is a merge, then JσK(α) = σtab(JσLK(α), JσRK(α)).6

An FM σ over a variable space V represents a (partial) function defined on the assignments for
V . To compute the function value of a merge FM, the FM recursively computes the values computed
by its component FMs and uses these values to index its associated 2-dimensional table to look up
the result. The recursion ends at atomic FMs, which look up the values stored for the assignment to
their associated variable in their associated 1-dimensional table. It is easy to see that FMs over V
can represent arbitrary functions defined on assignments for V .

6. We remind the reader that this expression is undefined if JσLK(α) or JσRK(α) is undefined (Definition 2).
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dom(vT ) A B C
0 0 1

σT

dom(vP ) A B C T
0 0 1 2

σP

σT

σP 0 1 2

0 0 1 2
1 3 1 4

σTP

Figure 5: An FM representing an abstraction mapping of the induced transition system of the ex-
ample planning task of Figure 4.

Our definition of FMs is slightly more general than earlier definitions (Helmert et al., 2015),
which require that an FM may only contain one atomic FM for each variable. That is, in the tree
representation of the FM, all leaves refer to different variables. FMs that follow this restriction are
called orthogonal. We permit non-orthogonal FMs because there is no strong reason to disallow
them, even though existing work on merge-and-shrink only considers the orthogonal case. A small
exception is Section 7.1 of Helmert et al. (2014), which briefly mentions representing additive
heuristic ensembles as a non-orthogonal merge-and-shrink heuristic.

Consider the (orthogonal) example FM shown in Figure 5. We generally illustrate an FM by
drawing its underlying tree structure, labeling each node with the FM it corresponds to and con-
necting it to its table via a dotted line. Leaf nodes correspond to atomic FMs and as such do not
have children in the tree. Inner nodes correspond to merge FMs and hence have two child nodes,
representing their component FMs, connected to them by solid lines. When a table entry is unde-
fined, we generally write this as ⊥. (Undefined values are not used in this example; they are first
used in Section 8.) As can be seen from the two leaf FMs, the FM is defined over the variable space
〈vT , vP 〉 with dom(vT ) = {A,B,C} and dom(vP ) = {A,B,C,T}. The visualization does not
show the value sets, which can be inferred from the tables if we assume that there are no unused
values: vals(σT ) = {0, 1}, vals(σP ) = {0, 1, 2}, and vals(σTP ) = {0, 1, 2, 3, 4}.

To illustrate the represented function of the example, consider the assignment α = {vT 7→
A, vP 7→ T}. We can compute JσTP K(α) as follows:

JσTP K(α)

1
= σtab

TP (JσT K(α), JσP K(α))

2
= σtab

TP (σtab
T (α[vT ]), σtab

P (α[vP ]))

3
= σtab

TP (σtab
T (A), σtab

P (T))

4
= σtab

TP (0, 2)

5
= 2

In the first step, the assignment is passed down to the components of σTP . In the second step,
the computation of the represented functions of σT and σP is resolved to table lookups in their
one-dimensional tables because both FMs are atomic. In the third step, the values assigned to the
associated variables of the atomic FMs are evaluated. In the fourth step, the values of the tables are
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looked up and returned, concluding the recursion. Finally, in the fifth step, the returned values are
used to index the two-dimensional table of σTP , which gives 2 as the final result.

The FM σTP shown in Figure 5 represents an abstraction of the example planning task of
Figure 4 on page 799. The dashed boxes in Figures 1 and 3 on pages 785 and 797 aggregate states
that the example FMs map to the same abstract state. For example, JσT K(A) = JσT K(B) = 0, and
hence states A and B are included in a dashed box annotated with the number 0 in Figure 3(a). To
continue the example of the computation above, the merge FM σTP maps the value 0 computed by
σT and the value 2 computed by σP to the value 2, which means that all states where the truck is at A
or B (specified through σT ) and the package is in the truck (specified through σP ) are aggregated, as
indicated by the dashed box around the states AT and AB in Figure 1. The dashed box is annotated
with the number 2 to show that JσTP K(AT) = JσTP K(AB) = 2.

When using FMs to represent abstraction mappings, each component FM can be viewed as an
individual abstraction, so that the overall mapping is defined as a combination of many abstractions.
In the example, we cannot distinguish whether truck T is at A or B because σT maps them to
the same value, and similarly we cannot distinguish whether P is at A or B because σP drops
this distinction. The merge FM σTP then further abstracts these two abstractions by dropping the
distinction of the truck being at A, B, or C if the package is at the goal location C (both 〈0, 1〉 and
〈1, 1〉 are mapped to the same value 1).

4.3.1 RELATIONSHIP TO PATTERN DATABASES

We now briefly discuss the relationship of FMs to pattern databases (PDBs) (Culberson & Schaef-
fer, 1998; Edelkamp, 2001). PDBs are lookup tables that store one entry for each possible variable
assignment for a subset P (called the pattern) of the variables. They can be represented as FMs by
using one leaf for each variable in the pattern, combining these leaves with merges in any way (the
precise shape of the tree does not matter), and using bijective table functions for every component
FM except the root FM, whose table function encodes the heuristic function.

The main difference between the two representations is that PDBs only involve a single table
lookup, whereas FMs use nested lookups. The overall space complexity of the representations and
the lookup time are of the same magnitude in both cases. In particular, the lookup time for a PDB
is O(|P |) because we need to compute a perfect hash value for the given assignment to P , and the
FM requires |P | table lookups for the leaves and |P | − 1 table lookups for the merges, each taking
constant time. With suitably efficient implementations (e.g., Sievers, Ortlieb, & Helmert, 2012),
PDBs can be expected to have an advantage in terms of the constant factors involved.

The advantage of FMs becomes apparent when we do not use bijective table functions, which
makes it possible to apply abstractions “along the way” and hence obtain potentially much smaller
representations for the same abstraction heuristic compared to a PDB. For example, a PDB-style
abstraction heuristic that uses information about all state variables in a complex planning task is
practically infeasible because it requires computing and storing heuristic values for all states of the
task. In contrast, merge-and-shrink heuristics based on FMs commonly use information about all
state variables by using an FM representation. It is not difficult to prove that FMs are more general
than PDBs in the sense that there exist functions that FMs can compactly represent but PDBs cannot
(e.g., Nissim et al., 2011; Helmert et al., 2014). For a more comprehensive discussion of the general
representational power and the required size of FMs, we refer to Helmert et al. (2015).
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4.3.2 FACTORED-TO-FACTORED MAPPINGS

So far, we have only considered factored mappings that map to a “flat” value set: the input to such
factored mappings is factored, but the output is not. We now consider a more general notion of
factored mappings where the output is also factored. Such “factored-to-factored” mappings allow
mapping from one variable space to another variable space. This makes them particularly suitable
for representing mappings between states of factored transition systems.

A factored-to-factored mapping that maps to a variable space with k variables can simply be
defined as k individual mappings to “flat” sets, one for each output variable. This is completely
analogous to other contexts such as multivariate calculus. For example, a function f : Rn → Rm
can be defined by m functions f1, . . . , fm : Rn → R, one for each output component.

Definition 19 (Factored-to-Factored Mapping). Let V = 〈v1, . . . , vn〉 and V ′ = 〈v′1, . . . , v′m〉 be
variable spaces. Let σ1, . . . , σm be FMs where each σj is defined over V and maps to dom(v′j).
Σ = 〈σ1, . . . , σm〉 is called a factored-to-factored (F2F) mapping from V to V ′. It represents the
partial function JΣK : A(V) 7→ A(V ′) defined as JΣK(α) = 〈σ1(α), . . . , σm(α)〉.7

In the following, we will use the word factored mapping both for the original class of FMs from
Definition 17 and the factored-to-factored variant. When we want to emphasize that we do not have
an F2F mapping, we will refer to it as factored-to-nonfactored (F2N). We use capital Greek letters
such as Σ to denote F2F mappings, and (as before) lower-case Greek letters such as σ for F2N
mappings.

As in the F2N case, orthogonal F2F mappings are of particular interest. Recall that an F2N
mapping is called orthogonal if all its atomic components refer to different variables. We extend
this definition to F2F mappings by requiring that all atomic components of all F2N mappings that
make up the F2F mapping refer to different variables, i.e., all F2N mappings are orthogonal and use
disjoint sets of variables.

Because F2N mappings can represent arbitrary functions from variable spaces to nonfactored
sets, F2F mappings can represent arbitrary functions from variable spaces to variable spaces. Per-
haps the simplest F2F mapping is the identity mapping, whose k-th component is a projection of the
input to its k-th component.

Definition 20 (Projection F2N Mapping and Identity F2F Mapping). Let V = 〈v1, . . . , vn〉 be a
variable space, and let 1 ≤ i ≤ n. The projection of V to vi is an atomic FM πVi that is defined
over V , has the associated variable vi, the value set dom(vi), and a table function mapping di to
di for all di ∈ dom(vi). The identity mapping for V is the F2F mapping idV = 〈πV1 , . . . , πVn 〉. We
omit V from the notation and write πi and id where V is clear from context.

It is easy to see that projections and identity mappings are FMs with compact representations
that follow the usual semantics: we have JπiK(α) = di and JidK(α) = α for all assignments α =
〈d1, . . . , dn〉. The identity mapping considers each variable exactly once and is therefore an example
of an orthogonal F2F mapping.

4.3.3 COMPOSITION OF FACTORED MAPPINGS

An important property of F2F mappings is that they are composable: if Σ is an F2F mapping from
V toW and Γ is an F2F mapping fromW to U , then we can construct an F2F mapping ∆ = Γ ◦ Σ

7. Again, following Definition 2, JΣK(α) is undefined as soon as any σi(α) is undefined.
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from V to U such that J∆K = JΓK ◦ JΣK, i.e., J∆K(α) = JΓK(JΣK(α)) for all α ∈ A(V). We now
describe how Γ ◦ Σ can be efficiently constructed from Γ and Σ.

In the following, we write Merge(σ′, σ′′, T ) to denote a merge FM σ with σL = σ′, σR = σ′′

and σtab = T , and we write Atomic(v, T ) to denote an atomic FM σ with variable v and σtab = T .

〈γ1, . . . , γk〉 ◦ Σ = 〈γ1 ◦ Σ, . . . , γk ◦ Σ〉 (1)

Merge(γL, γR, γ
tab) ◦ Σ = Merge(γL ◦ Σ, γR ◦ Σ, γtab) (2)

Atomic(wj , γ
tab) ◦ 〈σ1, . . . , σm〉 = apply(γtab, σj) (3)

apply(T,Merge(σL, σR, σ
tab)) = Merge(σL, σR, T ◦ σtab) (4)

apply(T,Atomic(v, σtab)) = Atomic(v, T ◦ σtab) (5)

Equations 1–5 describe how to compose FMs. We provide an example in Figure 6 below, after
explaining the equations in detail. The first equation describes that two F2F mappings Γ and Σ can
be composed by composing each component of Γ individually with Σ. This leaves the problem of
composing an F2N mapping γ with an F2F mapping Σ, which is described in Equation 2 for the case
where γ is a merge and in Equation 3 for the case where γ is atomic. If γ is a merge (Equation 2), we
simply recurse over the components. If γ is atomic (Equation 3), we must select the component of Σ
that corresponds to the variable of γ and then apply the table function of γ to the value computed by
this component. We write apply(T, σ) for the FM which first computes the same value as σ and then
applies the function T to this result. (Formally, Japply(T, σ)K(α) = T (JσK(α)) for all assignments
α.) Equations 4 and 5 show how apply(T, σ) can be computed, with Equation 4 covering the case
where σ is a merge and Equation 5 covering the case where it is atomic. In both cases, the key
operation is to combine the table T with the table of σ, which is the normal function composition
T ◦ T ′, where in this case T is a partial function from values to values and T ′ is either a partial
function from pairs of values to values (in Equation 4) or from values to values (in Equation 5).
Because T and T ′ are simply represented as tables, the combined table can be computed in linear
time in the number of table entries of T by computing T (d) for each table entry d of T ′.

It is easy to verify from the semantics of FMs that Equations 1–5 indeed describe the compo-
sition of two FMs. The equations give rise to an obvious recursive algorithm for computing the
composition. To bound the runtime of this algorithm, we make the following observations. Firstly,
Equations 3–5 can be processed in linear time in the size of their inputs. Secondly, the combined
effect of Equations 1 and 2 is to “push” the composition with Σ into each leaf of all component FMs
of Γ, at which point we apply Equations 3–5 to each leaf. Together with the first observation this
implies that we can compute Γ ◦ Σ in time O(‖Γ‖ · ‖Σ‖), where ‖ · ‖ denotes the representation
size of an FM, which is defined as the total number of table entries in all component FMs (Helmert
et al., 2015).

If Γ is an orthogonal F2F mapping, the runtime bound can be tightened: in this case, the right-
hand side of Equation 3 selects each F2N mapping σj of Σ at most once in the overall computation,
and therefore the runtime for computing Γ ◦ Σ can be bounded by O(‖Γ‖ + ‖Σ‖), i.e., is linear in
the size of the inputs. Moreover, it is easy to see that Γ ◦Σ is orthogonal if Γ and Σ are orthogonal.
Of course, from the runtime bounds we can also derive identical size bounds for Γ ◦ Σ because an
output of size N cannot be computed in fewer than N computation steps.

We conclude this discussion with an example. Let V = 〈v1, v2, v3〉 be a variable space where
each variable has domain {0, 1}. Let W = 〈w1, w2, w3〉 be a variable space with dom(w1) =
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L R 0 1
0 0 1
1 0 1

σ1

πV
1 πV

3

L R 0 1
0 0 1
1 1 0

σ2

πV
2 πV

3

L R 0 1
0 0 1
1 2 3

σ3

πV
1 πV

2

(a) Σ: F2F mapping from V toW .

L R 0 1
0 0 1
1 2 3

γ1

πW
1 πW

2

dom(w3) 0 1 2 3
0 1 2 2

γ2

(b) Γ: F2F mapping fromW to U .

L R 0 1
0 0 1
1 2 3 δ1

L R 0 1
0 0 1
1 0 1

ρ1
L R 0 1
0 0 1
1 1 0

ρ2

πV
1 πV

3 πV
2 πV

3

L R 0 1
0 0 1
1 2 2 δ2

πV
1 πV

2

(c) Γ ◦ Σ: F2F mapping from V to U .

Figure 6: Composing F2F mappings.

dom(w2) = {0, 1} and dom(w3) = {0, 1, 2, 3}. Finally, let U = 〈u1, u2〉 be a variable space with
dom(u1) = {0, 1, 2, 3} and dom(u2) = {0, 1, 2}. Consider the example shown in Figure 6. Recall
that πVi denotes the projection FM to the variable with index i of a variable space V . For readability,
we omit tables of projection FMs in all illustrations of the figure. For tables of merge FMs, we use L
and R to denote their left and right components; for tables of atomic FMs, we give their associated
variable.

Part (a) of the figure shows the three component F2N mappings of an F2F mapping Σ =
〈σ1, σ2, σ3〉 from V to W . All three FMs are merge FMs with two (different) projection FMs as
components. Since the variables of the FMs are not disjoint, Σ is an example of a non-orthogonal
FM. Part (b) of the figure shows the two component F2N mappings of an F2F mapping Γ = 〈γ1, γ2〉
fromW to U . γ1 is a merge with components πW1 and πW2 , and γ2 is atomic with variable w3 and
represents an abstraction of the domain of w3.

Part (c) of the figure shows the composed F2F mapping ∆ = Γ◦Σ from V to U obtained through
Equations 1–5. The FM on the left in the figure, δ1, is the result of composing γ1 with Σ. Since γ1

is a merge FM, Equation 2 applies:

Merge(πW1 , πW2 , γtab
1 ) ◦ Σ = Merge(πW1 ◦ Σ, πW2 ◦ Σ, γtab

1 )

We obtain that the resulting FM, δ1, is a merge FM with the same table function as γ1, but with the
components πW1 and πW2 recursively composed with Σ. Because both πW1 and πW2 are atomic with
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variables w1 and w2, Equation 3 applies to both:

Atomic(w1, idw1) ◦ 〈σ1, . . . , σm〉 = apply(idw1 , σ1)

Atomic(w2, idw2) ◦ 〈σ1, . . . , σm〉 = apply(idw2 , σ2)

We get that the two resulting FMs, ρ1 and ρ2 (the components of δ1), are FMs which correspond
to the FMs σ1 and σ2 of Σ, but with the table functions of πW1 and πW2 combined with their tables
according to Equation 4 since σ1 and σ2 are merges:

apply(idw1 ,Merge(πV1 , π
V
3 , σ

tab
1 )) = Merge(πV1 , π

V
3 , combine(idw1 , σtab

1 ))

apply(idw2 ,Merge(πV2 , π
V
3 , σ

tab
2 )) = Merge(πV1 , π

V
3 , combine(idw2 , σtab

2 ))

Because the tables of πW1 and πW2 are identity functions, the resulting combined tables are just the
tables of σ1 and σ2. Note that idw1 is a function defined on dom(w1) and σ1 represents a function
from V to w1, so this is well-defined. We remark that σ1 and ρ1 are equivalent in the sense that they
represent the same functions, and similarly for σ2 and ρ2.

The FM on the right of part (c) of the figure, δ2, is the result of composing γ2 with Σ. Since γ2

is an atomic FM with variable w3, Equation 3 applies:

Atomic(w3, γ
tab
2 ) ◦ 〈σ1, . . . , σm〉 = apply(γtab

2 , σ3)

Because σ3 is a merge, we apply Equation 4:

apply(γtab
2 ,Merge(πV1 , π

V
2 , σ

tab
3 )) = Merge(πV1 , π

V
2 , combine(γtab

2 , σtab
3 ))

Put together, we obtain that the resulting FM, δ2, is a merge FM with the table of γ2 combined with
the table of σ3 and the same components πV1 and πV2 as σ3.

4.4 Factored Transformations

We are now ready to put the pieces together to define factored transformations of factored transi-
tion systems. They are a natural generalization of (nonfactored) transformations: they consist of
the same components (a transformed transition system, a state mapping, and a label mapping), but
use factored transition systems in place of nonfactored ones and F2F mappings as a factored repre-
sentation of state mappings. Since labels are nonfactored also in factored transition systems, label
mappings can be used as in nonfactored transformations.

Definition 21 (Factored Transformation). A factored transformation of a factored transition system
F with label set L into a factored transition system F ′ with label set L′ is a tuple τF = 〈F ′,Σ, λ〉,
where

• F ′ is called the transformed factored transition system,

• Σ is an F2F mapping from F to F ′ called the state mapping, and

• λ : L 7→ L′ is called the label mapping.

The transformation induced by τF is a transformation of
⊗
F into

⊗
F ′ which is defined as

τ = 〈⊗F ′, JΣK, λ〉.
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Figure 7: Composition of transformations, composition of factored transformations, and the rela-
tionship between (compositions of) nonfactored and factored transformations.

In the following, we may refer to factored transformations as transformations where this does
not lead to ambiguity. Like nonfactored transformations, factored transformations can be composed
naturally, since the only nontrivial part of such a composition is the composition of the F2F map-
pings, which we defined in the previous subsection.

To summarize the concepts of factored and nonfactored transformations, Figure 7 illustrates the
relationship between nonfactored and factored transformations, and the compositions of both. It
shows factored transformations and their compositions on the left and the induced transformations
and their compositions on the right. We conclude that for the final result, it does not matter whether
we work on a factored representation or a nonfactored representation of a transition system; in the
end, we can always obtain a transformation of the original transition system (or the product of the
original factored transition system) into the transformed transition system.

4.4.1 A FACTORED TRANSFORMATION FRAMEWORK

We now present a generic framework to compute arbitrary factored transformations of a given fac-
tored transition system through repeated composition of “basic” factored transformations. Later, we
will discuss how the merge-and-shrink framework can be understood as a particular instantiation of
this generic framework.

Algorithm 1 shows pseudocode for the framework. The main invariant of the algorithm is that
τF = 〈F ′,Σ, λ〉 is a factored transformation of the input factored transition system F into the current
factored transition system F ′. This invariant is first established in lines 2–4, which initializes τF to
〈F, idF , idL〉, whereL is the label set of F . Hence, τF initially represents the identity transformation.

The algorithm continues with the main loop (lines 5–10), where in each iteration, it selects a
transformation 〈F ′′,Σ′, λ′〉 of the current factored transition system F ′ using the user-specified SE-
LECTTRANSFORMATION function (line 6). It then applies this transformation to F ′, which means
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Algorithm 1 Factored Transformation Framework
Input: Factored transition system F , function SELECTTRANSFORMATION that selects the next

basic transformation to apply, function TERMINATE that decides when to terminate.
Output: Factored transformation 〈F ′,Σ, λ〉 of F into F ′.

1: function FACTOREDTRANSFORMATIONFRAMEWORK(
F , SELECTTRANSFORMATION, TERMINATE)

. Set the current transformation τF = 〈F ′,Σ, λ〉 to the identity tranformation of F .
2: F ′ ← F
3: Σ← idF

4: λ← idL, where L is the set of labels of F
5: while not TERMINATE(〈F ′,Σ, λ〉) do
6: 〈F ′′,Σ′, λ′〉 ← SELECTTRANSFORMATION(〈F ′,Σ, λ〉)

. Update the current transformation τF = 〈F ′,Σ, λ〉 to be the composition of τF
with the selected transformation 〈F ′′,Σ′, λ′〉.

7: F ′ ← F ′′

8: Σ← Σ′ ◦ Σ
9: λ← λ′ ◦ λ

10: end while
11: return 〈F ′,Σ, λ〉
12: end function

to compose it with τF (lines 7–9), restoring the invariant. The main loop stops if the user-specified
TERMINATE criterion triggers (line 5), at which point the algorithm returns τF (line 11).

As discussed in the previous section, the resulting factored transformation induces a nonfactored
transformation τ = 〈⊗F ′, JΣK, λ〉 of

⊗
F into

⊗
F ′. Our theory of nonfactored transformations

shows that τ has all properties, such as conservativeness or inducedness, that are shared by all basic
transformations chosen by SELECTTRANSFORMATION (Theorem 1 in Section 3.2). Therefore, we
can understand the properties of τ in terms of the basic transformations from which it is composed.
Furthermore, we know how these transformation properties relate to properties of heuristics induced
by τ , such as admissibility and exactness (Theorems 3 and 5 in Section 3.3). In the following, we
study some further properties of the induced heuristics that are specific to factored transformations.

4.4.2 LOCAL AND GLOBAL HEURISTICS

There are two ways to derive heuristics from factored transformations τF = 〈F ′,Σ, λ〉 of a factored
transition system F . The first way, which we focused on above, is to study the heuristic induced by
the nonfactored transformation of

⊗
F induced by τF. In the following, we refer to this heuristic

as the global heuristic of τF. The advantage of the global heuristic is that it takes into account
all information available in τF. The disadvantage is that actually computing the global heuristic
requires the computation of the product

⊗
F ′, which is often not computationally feasible.

A less expensive alternative is to observe that each factor Θ′ ∈ F ′, along with the corresponding
component state mapping σ ∈ Σ, can be used to define a heuristic in its own right. Given a state
s of F , we can compute s′ = σ(s) and then use the perfect heuristic for s′ in Θ′ as a heuristic
value. This heuristic only takes into account the information of one of the components of τF, but
can be computed efficiently. We will refer to these component-based heuristics as local heuristics.
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Computing local heuristics involves two conceptually different computational steps: first, we use
τF to map F to F ′, and then we use a single factor of F ′ to approximate the “global” goal distance
within

⊗
F ′.

Definition 22 (Factor Heuristics and Local Heuristics). Let F = 〈Θ1, . . . ,Θn〉 be a factored tran-
sition system. The factor heuristic for Θi ∈ F is defined as hi(s) = h∗Θi(s[Θi]) for all s ∈ A(F ).
The max-factor heuristic of F is defined as hmf

F = max1≤i≤n hi.
Let τF = 〈F ′,Σ, λ〉 be a factored transformation of a factored transition system F . The local

heuristic for F induced by τF is defined as hloc,τF
F (s) = hmf

F ′(JΣK(s)) for all s ∈ A(F ). (If s /∈
dom(JΣK), we define hmf

F ′(JΣK(s)) =∞.)

Note that, rather than defining separate local heuristics for each component of τF, we only
define a single local heuristic as the maximum of these individual heuristics. This is sufficient for
our purposes and reduces notational clutter.

The application of the factored transformation framework to heuristic search that we describe
in the following ultimately returns the local heuristic of the final transformation as its result. In
this context, it is desirable to only apply transformations that do not reduce the quality of the local
heuristic. Otherwise, we might unnecessarily end up with a heuristic that is worse than a previously
computed intermediate result. To make these observations more formal, we now define properties
that describe the effect of a factored transformation on the local heuristic.

Definition 23 (Locally Conservative Factored Transformations). Let τF be a factored transforma-
tion of a factored transition system F . The following list defines properties that τF may have, along
with a short-hand name for each property (analogously to Definition 8).

LOC≤ τF is locally nonincreasing if hloc,τF
F (s) ≤ hmf

F (s) for all states s ∈ A(F ).

LOC≥ τF is locally nondecreasing if hloc,τF
F (s) ≥ hmf

F (s) for all states s ∈ A(F ).

LOC= τF is locally equal if hloc,τF
F (s) = hmf

F (s) for all states s ∈ A(F ).

In other words, LOC= = LOC≤ + LOC≥.

In comparison to the CONS, IND, and REF properties introduced in Section 3, which con-
junctively imply that the global heuristic is perfect, these local properties are somewhat less critical.
However, they are certainly of interest, as seen by the fact that they have been discussed in the
literature before, for example in the context of h-preserving shrink strategies (cf. Section 5).

In the context of the factored transformation framework of Algorithm 1, let τF be the current
factored transformation, and let τ ′′F be the next factored transformation computed as τ ′′F = τ ′F ◦ τF,
where τ ′F is the basic transformation selected in a given iteration of the main loop. If τ ′F is locally
nondecreasing, we obtain hloc,τF

F ≤ h
loc,τ ′′F
F , and similarly for the locally nonincreasing and locally

equal case. Therefore, the properties of τ ′F dictate how the local heuristic evolves as Algorithm 1
proceeds.

When dealing with transformations that give rise to admissible heuristics, it is therefore desir-
able for τ ′F to be locally nondecreasing, as this avoids a loss of heuristic information. If τ ′F is locally
equal, the local heuristic does not change at all from one iteration to the next. Therefore, from
the perspective of the local heuristic, the most desirable basic transformations are those that are
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Algorithm 2 Merge-and-shrink Heuristics

Input: Planning task Π, function SELECTTRANSFORMATION that selects the next basic transfor-
mation to apply, function TERMINATE that determines when to stop applying transformations.

Output: Merge-and-shrink heuristic hM&S
Π for Π.

1: function MERGEANDSHRINK(Π, SELECTTRANSFORMATION, TERMINATE)
. Compute the induced factored transition system of Π.

2: F ← F (Π)
. Call the factored transformation framework.

3: 〈F ′,Σ, λ〉 ← FACTOREDTRANSFORMATIONFRAMEWORK(
F, SELECTTRANSFORMATION, TERMINATE)

. Compute the merge-and-shrink heuristic, where τF = 〈F ′,Σ, λ〉.
4: hM&S

Π ← hloc,τF
F

5: return hM&S
Π

6: end function

locally nondecreasing, but not locally equal, which implies that the new local heuristic dominates
the previous one.

We conclude the discussion of local heuristics by showing that the properties affecting the local
heuristic compose.

Theorem 6. Let X be any of the properties of transformations from Definition 23. Let τF be a
factored transformation of F into F ′ with property X , and let τ ′F be a factored transformation of F ′

into F ′′ with property X . Then τ ′F ◦ τF has the property X .

The proof can be found in Appendix B.

4.4.3 MERGE-AND-SHRINK HEURISTICS

The factored transformation framework of Algorithm 1 is also called the merge-and-shrink frame-
work, named after the two transformations that were introduced first (Dräger, Finkbeiner, & Podel-
ski, 2006), although not under these names. Its most common use is to derive heuristics for planning
tasks, which are consequently called merge-and-shrink heuristics. Algorithm 2 shows pseudocode
for the computation of merge-and-shrink heuristics.

The function MERGEANDSHRINK takes a planning task Π as its input (line 1). It first com-
putes the factored transition system induced by Π (line 2) and then uses the factored transformation
framework to compute a factored transformation of F (Π). This factored transition system serves as
the basis for computing the merge-and-shrink heuristic for Π, which is defined as the local heuristic
induced by the factored transformation from F (Π) to F ′. Formally, the factored transformation
τF = 〈F ′,Σ, λ〉 induces the merge-and-shrink heuristic hM&S

Π = hloc,τF
F .

From the definition of local heuristics, computing hM&S
Π involves three steps. Firstly, JΣK maps

the given state s of F (Π) to a state s′ of F ′. This step is represented by the F2F mapping Σ.
Secondly, the factor heuristics map the components of s′ to a tuple of heuristic values, one for each
factor of F ′. This can also be represented by an F2F mapping, where each contained F2N mapping
is atomic, mapping states of one factor to their goal distances. Finally, the resulting heuristic value
is the maximum of this tuple. Because the first two steps involve two F2F mappings applied in
sequence, they can be combined into a single F2F mapping representing the composition of JΣK

811



SIEVERS & HELMERT

and the factor heuristics (Section 4.3.3). In the common case where F ′ consists of a single factor,
the third step trivializes and the merge-and-shrink heuristic can be represented as a single F2N
mapping.

4.4.4 MERGE-AND-SHRINK STRATEGIES

Both the factored transformation framework (Algorithm 1) and its use for the computation of heuris-
tics (Algorithm 2) leave two important choice points unspecified, namely when to terminate FAC-
TOREDTRANSFORMATIONFRAMEWORK (function TERMINATE) and how to select the basic trans-
formations (function SELECTTRANSFORMATION).

To resolve the latter, the algorithm must make two kinds of decisions. Firstly, it must decide
which general type of the available four types of basic transformation to use in each iteration: shrink
transformations apply abstractions to one of the factors of F ′; merge transformations combine two
factors of F ′ into one, reducing the size of F ′ by 1; label reductions map the label set of F ′ to a
smaller set; and prune transformations discard (a subset of the) states. We describe these four types
of transformations in detail in Sections 5–8. Secondly, it must decide how to instantiate the given
transformation type (i.e., how to shrink, merge, etc.).

We refer to the first kind of decisions as the general strategy and to the second kind of decisions
as transformation strategies, which are subdivided into shrink strategies, merge strategies, label
reduction strategies, and pruning strategies. As the literature on merge-and-shrink heuristic shows,
there are many possible ways of defining these strategies (e.g., Sievers, 2017). We will discuss the
most important aspects of the transformation strategies in Sections 5–8, with an emphasis on how
the transformation strategy affects the properties (such as conservativeness, exactness etc.) of the
resulting transformation.

For merge-and-shrink heuristics, a natural choice for SELECTTRANSFORMATION is to only use
exact transformations. A natural choice for TERMINATE is to continue applying transformations
until only a single factor remains. The combination of these two ideas guarantees that the resulting
heuristic is perfect. However, common planning benchmarks are so large that reduction to a sin-
gle factor while only using exact transformations is usually infeasible (but cf. Nissim et al., 2011).
Practical general strategies therefore sacrifice both desiderata when necessary. In particular, they
impose size limits on intermediate factors, applying non-exact shrink transformations when neces-
sary, and they use a time limit to terminate early when the merge-and-shrink computation takes too
long. For a more detailed discussion of these and other aspects of general strategies, we refer to
Sievers (2018).

Each of the following four sections studies one of the four merge-and-shrink transformation
types in detail. All sections are structured in a similar way. Firstly, we define the factored transfor-
mations in terms of their transformed factored transition systems, state mappings, and label map-
pings. Secondly, we discuss aspects of efficient implementation. In particular, we describe special-
purpose in-place implementations of the composition step of Algorithm 1 (lines 7–9) for the specific
transformation type. Finally, we investigate the formal properties of the transformations.

5. Shrink Transformation

In this section, we define the shrink transformation of the merge-and-shrink framework. Proofs of
theorems can be found in Appendix C.
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For a transition system Θ = 〈S,L, c, T, SI, SG〉 and a (total) state mapping α defined on S, the
transition system induced by Θ and α is defined as Θα = 〈α(S), L, c, {〈α(s), `, α(t)〉 | 〈s, `, t〉 ∈
T}, α(SI), α(SG)}〉. When Θ is a factor of some factored transition system, we also call α a local
abstraction.8

Definition 24 (Shrink Transformation). Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system. Let
α be a local abstraction for Θk for some 1 ≤ k ≤ n. The shrink transformation for α and Θk is the
factored transformation τF = 〈F ′,Σ, λ〉 of F where:

• F ′ = 〈Θ′1, . . . ,Θ′n〉 with Θ′i = Θi for all i 6= k and Θ′k = Θα
k .

• Σ = 〈σ1, . . . , σn〉 where σi = πi for all i 6= k, and σk is an atomic FM with variable Θk and
σtab
k (sk) = α(sk) for all sk ∈ Θk.

• λ = id is the identity label mapping.

In words, a shrink transformation maps the given factored transition system to a transformed
system that is exactly the same, except that one factor Θ is replaced by Θα, where α is a local
abstraction.

We call such a transformation shrinking because we usually choose a local abstraction α that
maps the states of Θ to some smaller set, hence reducing the number of states in the transformed
(factored) transition system. Shrinking offers a controlled way of reducing the size of the factors of
a factored transition system. The details of how the local abstraction α reduces the states of a factor
determines the qualitative loss of information, hence offering a trade-off between heuristic quality
and size of individual factors.

5.1 Efficient Computation

Recall that a shrink transformation will always be composed with any previous transformation
within the factored transformation framework (Algorithm 1, lines 6–9). We discussed how to com-
pose FMs in general in Section 4.3 (Equations 1–5). In the following, we briefly discuss how this
can be done more efficiently as an in-place modification of the previous transformation. This is a
purely computational optimization.

It is easy to see that all aspects of the previous transformation other than the modified factor and
the corresponding FM are unchanged and thus can be reused. The local abstraction α of factor Θk

can be used for an in-place modification of Θk and its F2N mapping σk: states of the factor that
are mapped to the same abstract state by α are collapsed and their transitions are combined, which
can be done efficiently with appropriate data structures. In the implementation of merge-and-shrink
heuristics in the Fast Downward planner (Helmert, 2006), all transitions of a transition system are
stored in a single list grouped by labels. With this representation, it suffices to replace each transition
s −→ t by α(s) −→ α(t) and remove the duplicates in the resulting list. The F2N mapping σk can
also be updated in-place by simply applying the state mapping α to the table of its root FM.

5.2 Example

Figure 8 shows an example of how a shrink transformation affects a given F2F mapping. Part (a)
shows the F2F mapping Σ before shrinking. Part (b) shows the F2F mapping Γ that represents the

8. Until now we used α to denote assignments. In the following we use α to denote abstractions. Both are established
notations and we think that it is clear from context if α stands for an assignment or an abstraction.
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(a) Σ = 〈σ1, σ2, σ3〉: a given F2F mapping from V toW .

γ1 = π1 γ2 = π2
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(b) Γ = 〈γ1, γ2, γ3〉: F2F mapping fromW to U for a shrink transformation.
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(c) Γ ◦ Σ = 〈δ1, δ2, δ3〉: composition F2F mapping from V to U .

Figure 8: Composing an F2F mapping for a shrink transformation with a previous transformation.
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Figure 9: Example of a shrink transformation based on a local abstraction α for the factor ΘP of the
induced factored transition system of the example planning task of Figure 4, where α maps states 0
and 1 to state 0 and renames states 2 to 1 and 3 to 2.

shrink step. We see that the first two components are trivial projections because the shrink trans-
formation only affects the third component. The third component illustrates the local abstraction α
applied to the third component with α(0) = 0, α(1) = 1 and α(2) = α(3) = 2. Part (c) shows the
resulting F2F mapping Γ ◦Σ. We see that Γ ◦Σ is very similar to the original F2F mapping Σ, with
the only difference that α has been applied to each entry of the table at the root of the shrunk factor.
Hence, while Γ ◦ Σ can in principle be computed with the generic algorithm for composing F2F
mappings described in Section 4.3.3, we can more efficiently compute it by modifying Σ in place.

To illustrate the effect of shrinking on transition systems, consider the factored transition system
induced by the example planning task of Figure 4. Figure 9(a) shows the atomic factor ΘP (top)
and the F2N mapping σP representing the identity state mapping (bottom). An example shrink
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transformation τ based on a local abstraction α for the atomic factor ΘP combines states 0 and 1
(which correspond to values A and B of variable vP ). In Figure 9(b), we see the shrunk transition
system τ(ΘP ) (top) and the transformed F2N mapping τ(σP ) (bottom). The former can be obtained
from the original factor by collapsing states 0 and 1 into a new state 0, and renaming state 2 to 1 and
state 3 to 2 (for continuous numbering). The transitions of the original states 0 and 1 are combined
at the new state 0, and everything else is unchanged. The transformed F2N mapping maps both
values A and B to the new state 0 of the shrunk transition system, and maps C to 1 and T to 2. It
can be obtained by applying α to the table of σP .

5.3 Properties

We now investigate the formal properties of shrink transformations.

Theorem 7. All shrink transformations are induced abstractions, i.e., they satisfy CONS + IND.
They are also cost-refinable, i.e., satisfy REFC, and locally nonincreasing, i.e., satisfy LOC≤.

Because shrink transformations are (induced) abstractions, heuristics based on them are admis-
sible and consistent (Theorem 3). The theorem also states that shrink transformations preserve
label costs and cannot increase maximum local heuristic values. This means that a shrink transfor-
mation cannot lead to an immediate improvement of heuristic values within the merge-and-shrink
framework. Rather, the motivation for shrinking is to reduce the representation size of the factored
transition system.

Besides the properties mentioned in Theorem 7, we introduced four further transformation prop-
erties in Definitions 8 and 23: transition-refinable (REFT), goal-state-refinable (REFG), locally
nondecreasing (LOC≥) and locally equal (LOC=). It is easy to see that shrink transformations
guarantee none of these properties in general. For example, regarding LOC≥, shrink transforma-
tions can be arbitrarily bad: in the extreme case, if there is only one factor (with at least one goal
state) and we abstract all its states into the same state, we end up with the zero heuristic. In the
following, we give a sufficient criterion for shrink transformations to be LOC≥ (and hence also
LOC=, because Theorem 7 guarantees LOC≤) as well as exact characterizations for REFT and
REFG.

Theorem 8. Consider a shrink transformation τF based on a local abstraction α of factor Θ such
that α(s1) = α(s2) implies h∗Θ(s1) = h∗Θ(s2) for all states s1, s2 ∈ Θ. Then τF is locally nonde-
creasing (LOC≥) and hence locally exact (LOC=).

Shrink transformations that satisfy the requirements of Theorem 8, i.e., only combine states with
the same (local) goal distance, are called h-preserving in the literature (Helmert et al., 2007). As
discussed in the previous section, transformations without this property can result in heuristics that
are worse than the intermediate local heuristics that were already previously available during the
merge-and-shrink construction, which is highly undesirable. As a consequence, non-h-preserving
shrinking has only been considered in the literature in cases where it is absolutely necessary, i.e.,
when the general merge-and-shrink strategy needs to enforce a size limit on abstract transition
systems that is smaller than the number of distinct h-values in the local abstraction (Helmert et al.,
2007). Note, however, that the condition of Theorem 8 is sufficient but not necessary for local
exactness: because the local heuristic is based on the maximum of the heuristics provided by the
individual factors, it is possible that the loss in heuristic information for one factor does not affect
the overall local heuristic value.
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(b) Shrunk factored transition system F ′.

Figure 10: h-preserving shrink transformation based on local abstraction α: part (a) shows a fac-
tored transition system F with factors Θ1 (top) and Θ2 (bottom), and part (b) shows the shrunk
factored transition system F ′ with factors Θ′1 = Θ1 (top) and Θ′2 the transition system induced by
Θ2 and α (bottom).

Even locally exact shrink transformations are in general not refinable and can hence lead to loss
in accuracy for the global heuristic. For example, consider the transformation shown in Figure 10:
part (a) shows the original factored transition system, and part (b) shows a transformed factored
transition system under an h-preserving shrink transformation. Despite the local equivalence of the
factor heuristics, the global heuristic deteriorates under this transformation. For example, assuming
all labels to have cost 1, we have h∗F (〈s1, t1〉) = 4 (from the plan 〈`3, `1, `4, `2〉), but h∗F ′(〈s1, t

′〉) =
2 for the corresponding abstract state (from the plan 〈`1, `2〉).

The reason why the heuristic can get worse is that the transformation is not transition-refinable.
For example, consider the transition 〈s1, t

′〉 `1−→ 〈s2, t
′〉 of

⊗
F ′. This transition can not be refined

for all preimages 〈s1, t1〉, 〈s1, t2〉 of 〈s1, t
′〉 because there is no transition labeled with `1 from

〈s1, t1〉 in
⊗
F . Hence, the transformation is not REFT. (It is, however, goal-state-refinable. It is

easy to see that h-preserving shrink transformations must be goal-state-refinable if all labels have
nonzero cost.)

Because REFT and REFG are the only properties missing from Theorem 7 for shrink trans-
formations to be exact (perfectly preserving the global heuristic), shrink transformations with these
properties are of particular interest. We will now show that these refinability properties are related
to the concept of bisimulation (Milner, 1980).

Definition 25 (Bisimulation). Let Θ = 〈S,L, c, T, SI, SG〉 be a transition system. An equivalence
relation ∼ on S can have the following two properties:

BISIM1 s1 ∼ s2 implies that either s1, s2 ∈ SG or s1, s2 /∈ SG.

BISIM2 for all pairs of states s1, s2 ∈ S with s1 ∼ s2 and all s1
`−→ t1 ∈ T , there exists a state

t2 ∈ S with s2
`−→ t2 ∈ T and t1 ∼ t2.

We call ∼ a bisimulation for Θ if it satisfies both BISIM1 and BISIM2.

For every transition system, there exists a unique coarsest bisimulation, i.e., a bisimulation ∼
that satisfies s ∼ t whenever s ∼′ t for any bisimulation relation ∼′ (Milner, 1980). We call states
s and t bisimilar if s ∼ t under the coarsest bisimulation.
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s

t

u

v

w

`1

`2

`3

`3

(a) Transition system Θ with bisimilar states u and v.
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t′

x′ w′
`1

`2
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(b) Transition system Θα induced by Θ and α.

Figure 11: Transition system Θ and transition system Θα induced by local abstraction α based on
bisimulation which maps states u and v to x′.

Intuitively, states are bisimilar if they are both goal states or both non-goal states, and outgoing
transitions labeled with the same label lead to bisimilar states. Figure 11(a) shows an example
transition system Θ where states u and v are bisimilar, i.e., u ∼ v, because both have outgoing
transitions labeled with the same label (`3) that lead to bisimilar states (here: the same state w). On
the other hand, s and t are not bisimilar (s 6∼ t) because their outgoing transitions, although leading
to bisimilar states, are labeled with different labels.

Equivalence relations ∼ over a set of states S (whether they are bisimulations or not) naturally
induce an abstraction mapping α∼ on S, where every state s is mapped to its equivalence class.
Under such a mapping, we have α∼(s1) = α∼(s2) iff s1 ∼ s2. Nissim et al. (2011) introduced
shrink transformations based on bisimulation, i.e., where the local abstraction combines states that
are bisimilar. They proved that shrinking based on bisimulation is “information-preserving” in the
sense that merge-and-shrink heuristics where all shrink transformations are based on bisimulation
are perfect. The following result provides a more fine-grained view of this result within our trans-
formation framework.

Theorem 9. Let τF be a shrink transformation based on the local abstraction α of factor Θ where
α is induced by the equivalence relation ∼ on the states of Θ. Then:

1. If ∼ has the property BISIM1, then τF has the property REFG.

2. If ∼ has the property BISIM2, then τF has the property REFT.

3. If ∼ is a bisimulation, then τF is exact induced (CONS + IND + REF) and locally equal
(LOC=).

Consider again the transition system Θ shown in Figure 11(a). Figure 11(b) shows the transition
system Θα induced by Θ and the local abstractionα based on bisimulation. It is not difficult to verify
that the states and transitions of the induced transition system can be refined to the corresponding
states and transitions of the original transition system Θ. In particular, for the transition x′ `3−→ w′,
we have that for all preimages v, u of x′, there exist transitions labeled with `3 that lead to w, a
preimage of w′: both v `3−→ w and u `3−→ w are transitions of Θ. The example also demonstrates that
bisimilar states have the same perfect heuristic value.

To complete our discussion of the properties of shrink transformations, we now show that,
bisimulation provides not just a sufficient criterion, but a characterization of exact shrink trans-
formations. If a shrink transformation is REFG and REFT, it must be based on a bisimulation (not
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necessarily the coarsest one). This claim comes with a small technical caveat: it is not true for
factored transition systems that are trivially unsolvable or that contain dead labels in the sense of
the following definition. However, we will see that these restrictions are not limiting.

Definition 26 (Trivially Unsolvable Transition Systems, Dead Labels). A transition system Θ is
trivially unsolvable if Θ has no goal states. A factored transition system F is trivially unsolvable if⊗
F is trivially unsolvable.
A label ` is dead in a transition system Θ if Θ has no transition with the label `. A label ` of a

factored transition system F is dead if it is dead in
⊗
F .

From the definition of
⊗
F , it is easy to see that F is trivially unsolvable iff at least one of its

factors is trivially unsolvable and that ` is dead in F iff it is dead in at least one of its factors. We
can now state the converse result of Theorem 9.

Theorem 10. Let τF be a shrink transformation of a factored transition system F based on the local
abstraction α of factor Θ, where α is induced by the equivalence relation ∼ on the states of Θ.
Then:

1. If τF has the property REFG and F is not trivially unsolvable, then ∼ has the property
BISIM1.

2. If τF has the property REFT and F has no dead labels, then ∼ has the property BISIM2.

3. If τF is exact, F is not trivially unsolvable and F has no dead labels, then∼ is a bisimulation.

The restriction to factored transition systems that are not trivially unsolvable in the first part of
the theorem is necessary because in a trivially unsolvable transition system, all transformations are
(trivially) goal-state-refinable due to the absence of goal states, but of course not all equivalence
relations have the property BISIM1. The restriction is no real limitation: as the name suggests, triv-
ially unsolvable transition systems never have solutions, and this is easily and efficiently detectable
within the merge-and-shrink framework (for example, by shrinking each factor to a single state).

Similarly, dead labels must be ruled out for the second part of the theorem: if ` is dead, all
transitions labeled with ` are refinable (because there are none), but ` might still cause BISIM2 to
be violated. Again, this restriction is not a limitation: if ` is a dead label of F , we can remove all
transitions with label ` from all factors of F without changing

⊗
F (which means that this is an

exact transformation). After this transformation, because ` is now dead in all factors, it no longer
affects the bisimulation properties.

We remark that the previous literature on merge-and-shrink abstractions contains no equivalent
result to Theorem 10. We believe that this is largely because it is difficult to formulate a result like
Theorem 10 without the language of transformation properties introduced in this paper. Indeed, be-
ing able to precisely and concisely state results like Theorems 7–10 is one of the major motivations
for introducing the transformation framework in this paper.

We conclude this section by summarizing our results on the properties of shrinking.

Theorem 11. Let τF be a shrink transformation of a factored transition system that is not trivially
unsolvable and has no dead labels. Let∼ be the equivalence relation on which the local abstraction
of τF is based. Then:
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• τF satisfies CONS + IND + REFC + LOC≤.

• If τF is h-preserving, then it additionally satisfies LOC≥ (and hence also LOC=).

• τF satisfies REFG iff ∼ satisfies BISIM1.

• τF satisfies REFT iff ∼ satisfies BISIM2.

• τF is exact iff ∼ is a bisimulation.

• If ∼ is a bisimulation, then τF is h-preserving.

6. Merge Transformation

In this section, we discuss merge transformations, which together with shrink transformations de-
fined in the previous section form the backbone of the merge-and-shrink framework. Proofs of
theorems can be found in Appendix D.

Formally defining merge transformations requires defining subtuples of a tuple. To facilitate the
notation of such subtuples, given a set X of indices, we write indices(X) for the tuple that contains
all elements of X exactly once and in ascending order. For example, we have indices({1, . . . , 6} \
{2, 4}) = indices({1, 3, 5, 6}) = 〈1, 3, 5, 6〉.

Definition 27 (Merge Transformation). Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system. The
merge transformation for j 6= k with 1 ≤ j, k ≤ n is the factored transformation τF = 〈F ′,Σ, λ〉 of
F into the factored transition system F ′ where:

• F ′ = 〈Θi1 , . . . ,Θin−2 ,Θ⊗〉 with i1, . . . , in−2 = indices({1, . . . , n} \ {j, k}) and Θ⊗ =
Θj ⊗Θk.

• Σ = 〈πi1 , . . . , πin−2 , σ⊗〉 with i1, . . . , in−2 = indices({1, . . . , n} \ {j, k}), where σ⊗ is a
merge FM with left component πj , right component πk, and σtab

⊗ (sj , sk) = 〈sj , sk〉 for all
states sj ∈ Θj and sk ∈ Θk.

• λ = id is the identity label mapping.

The merge transformation replaces two factors of the given factored transition system by their
product system, leaves all other factors unchanged, and does not change the set of labels. The
state mapping consists of projection FMs for all unchanged factors (representing the identity func-
tion for these factors) and of a merge FM that maps pairs of states of the replaced factors to their
corresponding product state.

It is easy to see that if we apply a sequence of merge and shrink transformations, each atomic
factor contributes to exactly one factor in the resulting factored transition system. Alternatives that
allow atomic factors to contribute to multiple resulting factors are discussed in the literature under
the name non-orthogonal merging (Helmert et al., 2007, 2014), which is related to the concept of
fluent merging (van den Briel, Benton, Kambhampati, & Vossen, 2007a; van den Briel, Kambham-
pati, & Vossen, 2007b). We discuss this further in Section 9.2.6.
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(a) Σ = 〈σ1, σ2, σ3〉: a given F2F mapping from V toW .
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(b) Γ = 〈γ1, γ2〉: F2F mapping fromW to U for a merge transformation merging σ1 and σ2.
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(c) Γ ◦ Σ = 〈δ1, δ2〉: composition F2F mapping from V to U .

Figure 12: Composing an F2F mapping for a merge transformation with a previous transformation.

6.1 Efficient Computation

Like we did for shrink transformations, we now discuss how we can compose merge transformations
with other transformations more efficiently than with the general approach described in Section 4.3
(Equations 1–5). That is, we discuss how to efficiently compute the composed factored transforma-
tion τ ′F ◦ τF when τ ′F is a merge transformation.

It is easy to see that all aspects of τF other than the two removed factors and the corresponding
FMs are unchanged and can thus be reused. Regarding the product factor, we cannot avoid comput-
ing it from scratch. However, the new F2N mapping σ⊗ can easily be obtained from the two F2N
mappings of the two removed factors: use the two previous F2N mappings as components of σ⊗
and construct the table function σtab

⊗ .
In Definition 27, we define σtab

⊗ (sj , sk) = 〈sj , sk〉, i.e., the states of the new factor Θ⊗ are
represented as pairs, which is a clean and simple mathematical definition. However, in an imple-
mentation, it is wasteful to use composite data structures like pairs to denote such states. (After
several merging steps, we would end up with deeply nested pairs of pairs.) The “names” of local
states can be chosen arbitrarily, and hence it is advisable to use the simplest possible representation.
In our implementation, we always represent states of factors as integers, consecutively numbered
from 0. Assuming that the states of Θj and Θk are already numbered in this fashion and that Θk

has Nk states, we can achieve the desired consecutive numbering for the states of Θ⊗ by defining
σtab
⊗ (sj , sk) = sj ·Nk + sk.
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6.2 Example

Figure 12 shows an example of how a merge transformation affects a given F2F mapping. As
described in the preceding discussion, we use integers for factor states throughout, rather than rep-
resenting states of a factor obtained by merging as pairs.

Part (a) shows the F2F mapping Σ before merging. Part (b) shows the F2F mapping Γ that
represents the merge step, merging the first two components. We see that the first component is a
trivial projection because the merge transformation only affects the first two components of V and
hence the third component of V remains as the first component ofW . The second component is a
merge FM with projection FMs (onto the first and second component of V) as its children. Part (c)
shows the resulting F2F mapping Γ ◦ Σ. It has two components: the first one is identical to the
third component of the first transformation, reflecting that Γ does not change this component. The
second component can be efficiently constructed by taking the first and second component of Σ
and combining them into a merge FM in the same way that the second component of Γ merges its
children.

To illustrate the effect of merging on transition systems, consider the factored transition system
derived from the example planning task of Figure 4 that consists of the atomic factor ΘT and the fac-
tor σ̃P , which corresponds to the shrunk atomic factor τ(ΘP ) of the shrinking example in Figure 9.
Figures 13(a) and 13(b) show the two factors (top) and the F2N mappings σT and σ̃P (bottom). Fig-
ure 13(c) illustrates the result of merging the two components. The top part shows the transformed
factored transition system that consists of a single factor, which is the product Θ⊗ = ΘT ⊗ Θ̃P (cf.
the illustration of computing products in Section 4 on page 795). The bottom part shows the F2N
mapping σ⊗.

As a remark on how shrinking and merging interact, we observe that Θ⊗ differs from the induced
transition system Θ(Π) shown in Figure 1. The difference, apart from names of states, stems from
the merge transformation being performed on the shrunk factor. The same result could have been
obtained by shrinking Θ(Π), combining each pair of states where the truck is at one specific location
and the package is at A or B into a single state.

6.3 Properties

We now investigate the formal properties of merge transformations.

Theorem 12. All merge transformations are exact induced, i.e., they satisfy CONS + IND + REF.

Together with Theorem 1, an immediate consequence is that we can recover the entire state
space of an underlying planning task from merging all individual transition systems of the induced
factored transition system. That is, the global transition system

⊗
F of the induced factored transi-

tion system F of a planning task Π equals Θ(Π), apart from names of states. This result was already
shown in previous work (e.g., Helmert et al., 2014).

Besides the properties mentioned in Theorem 12, we also consider the properties exclusive to
factored transformations (Definition 23). The following theorem shows that merge transformations
are locally nondecreasing.

Theorem 13. All merge transformations are locally nondecreasing, i.e., they satisfy LOC≥.

It is easy to see that merge transformations do not necessarily satisfy LOC≤ (and hence LOC=)
because the local heuristic values of the product can be larger than the local heuristic values of the
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Figure 13: Example of a merge transformation applied to the factored transition system that is the
result of the shrink transformation of Figure 9.
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component factors. In the example of Figure 13, the maximum local heuristic of the initial state
s before the merge is hmf

F (s) = max{h∗
ΘT

(0), h∗
τ(ΘP )

(0)} = max{0, 2} = 2. After merging the

two factors, we have hmf
F ′(s) = max{h∗Θ⊗(0)} = 3. Not being locally nonincreasing is of course a

strength of merge transformations: they can improve the local heuristic, in principle all the way to
the perfect heuristic if all factors can be merged with the given computational resources.

7. Label Reduction Transformation

In this section, we define label reduction transformations. Proofs can be found in Appendix E.
For a transition system Θ = 〈S,L, c, T, SI, SG〉, a (total) label mapping λ defined on L, and a

label cost function c′ defined on λ(L), the transition system induced by Θ, λ, and c′ is defined as
Θλ,c′ = 〈S, λ(L), c′, {〈s, λ(`), t)〉 | 〈s, `, t〉 ∈ T}, SI, SG〉.

Definition 28 (Label Reduction Transformation). Let F = 〈Θ1, . . . ,Θn〉 be a factored transition
system with label set L and label cost function c. Let λ be a total label mapping defined on L.
The label reduction transformation (label reduction for short) for λ is the factored transformation
τF = 〈F ′,Σ, λ〉 of F into a factored transition system F ′ with label set λ(L), where:

• F ′ = 〈Θλ,c′

1 , . . . ,Θλ,c′
n 〉, where c′(`′) = min`∈λ−1(`′) c(`) for all `′ ∈ λ(L).

• Σ is the identity mapping, i.e., Σ = 〈π1, . . . , πn〉.

τF is called atomic if λ only combines two labels, i.e., if there exist `1, `2 ∈ L with `1 6= `2 such
that λ(`1) = λ(`2) = `12 (where `12 /∈ L is a fresh label) and λ(`) = ` for all ` ∈ L \ {`1, `2}. It
is called general otherwise.

Informally speaking, a label reduction relabels all transitions of all factors, replacing every label
` with the label λ(`). If λ maps multiple labels to the same label, then the cost of the resulting
label is the minimum of the original label costs. This keeps label costs as large as possible while
remaining cost-conservative. For applications that are not aimed at deriving admissible heuristics, a
more general notion of label reduction with flexible new label costs might be useful.

We consider two variants of label reductions based on λ: if it only combines two labels and
leaves all others unchanged, the label reduction is called atomic. Otherwise, it is called general.
It is easy to see that general label reductions can be understood as compositions of atomic ones.
We define atomic label reductions because they are central to our analysis of the properties of label
reductions in Section 7.3.

We call the transformation a label reduction because λ usually maps the labels of F to some
smaller set. (Otherwise, the transformation would just “rename” labels, with no meaningful impact
on the transition system.) Hence, a label reduction potentially collapses parallel transitions of pre-
viously different labels to identical transitions under the new labeling, thus reducing the number of
transitions in the transformed (factored) transition system.

Label reduction is somewhat analogous to shrinking: where shrinking combines states of a
factor to reduce the size of the factored transition system representation (potentially at the cost
of overapproximating the possible behaviors), label reduction analogously combines labels. Unlike
shrinking, label reduction is a global transformation of the factored transition system, i.e., it impacts
all factors simultaneously. This global perspective is needed because the main purpose of labels in a
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Figure 14: Example of a label reduction τ applied to the induced factored transition system of the
example planning task of Figure 4. FMs are not shown for simplicity. Top two figures: factors of
the induced factored transition system. Bottom two figures: transformed factors after applying τ
which maps all labels LOAD-* onto a new label LOAD, all labels UNLOAD-* onto UNLOAD, and
all labels DRIVE-*-* onto DRIVE.

factored transition system is to specify the synchronization between factors, i.e., to define the joint
behavior of the factored transition system in terms of the local behaviors of the factors.

One might consider alternative names for shrinking and label reduction that make this similarity
clearer. For example, shrinking could be called state abstraction, and label reduction could be
called label abstraction. We prefer the terminology used in this paper due to its widespread use in
the literature.

Label reduction has a positive synergy with bisimulation-based shrinking (Nissim et al., 2011).
Bisimulation-based shrinking is an exact transformation that can reduce the size of the factored tran-
sition system representation (Theorem 9), and applying label reduction can increase the potential for
bisimulation-based shrinking. A common general merge-and-shrink strategy therefore applies label
reductions before shrink transformations (based on bisimulation) to leverage this synergy (Sievers,
2018).

7.1 Efficient Computation

Composing label reductions with previous transformations is straightforward: label mappings are
nonfactored functions that can directly be composed. Furthermore, the state mapping of label re-
ductions is the identity, and therefore the given FM can be reused with no change. Regarding the
factored transition system, it suffices to replace each transition s `−→ t by s λ(`)−−→ t, taking care to
remove duplicate transitions that may arise.
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In the implementation of merge-and-shrink in the Fast Downward planner (Helmert, 2006), each
factor keeps track of an equivalence relation over the labels, with two labels belonging to the same
class if they induce exactly the same set of transitions. For each equivalence class, its transitions are
represented only once. This representation is more compact than a more naive alternative and also
allows for faster implementations of many operations, including label reductions. For more details,
we refer to Sievers (2018).

7.2 Example

Consider the induced factored transition system of the example planning task of Figure 4 (page 799).
Figures 14(a) and 14(b) show the two atomic factors. Below, in Figures 14(c) and 14(d), we see
the label-reduced factors after applying a label reduction τ that maps all labels LOAD-* onto a new
label LOAD, all labels UNLOAD-* onto UNLOAD, and all labels DRIVE-*-* onto DRIVE. (All
new labels LOAD, UNLOAD, and DRIVE cost 1 since the example is unit-cost.) From the reduced
number of labels labeling the transitions in the figure, we observe that the label-reduced factors
require far fewer transitions because many originally parallel transitions are collapsed into single
transitions.

For the remainder of this section we use an additional example (Figure 15) to illustrate the
properties that label reductions can have. There are two factors Θx and Θy which encode a position
on the x-axis (Figure 15(a)) and on the y-axis (Figure 15(b)). The first one uses labels `1, `2, `3
for state-changing transitions, and the second one uses labels `4, `5, `6. In both cases, the other
labels only induce self-looping transitions. Figure 15(c) shows the product of the two factors. If
we first apply a label reduction for λ that maps `1, `2, and `3 to r (“right”) and `4, `5, and `6
to d (“down”), then, after merging the two label-reduced factors, the product contains more state-
changing transitions (Figure 15(d)): in particular, the product now is the complete grid because all
state-changing transitions of either factor now synchronize with all self-looping transitions of the
other factor. The example illustrates that label reduction is not in general an exact transformation
and can introduce spurious transitions. One of the main questions discussed in the rest of this section
is under which conditions label reduction is or is not exact.

7.3 Properties

We begin our study of the transformation properties of label reduction by discussing the properties
that every label reduction has.

Theorem 14. All label reduction transformations are abstractions, i.e., they satisfy CONS. They
also satisfy INDS+L+C+I+G, are goal-refinable, i.e., satisfy REFG, and are locally nonincreasing,
i.e., satisfy LOC≤.

Together with Theorem 3, an immediate consequence is that the heuristic induced by a label
reduction is admissible and consistent. However, as the example above already illustrated, label
reduction is not in general exact or induced. There are four desirable properties that do not hold in
general: REFC, LOC≥ (and hence LOC=), INDT and REFT.

It is easy to see that label reductions do not necessarily satisfy REFC: every label mapping that
combines two labels with different cost violates this property. As a consequence, it is also easy to
construct counterexamples to LOC≥. For example, in a factored transition system with a single
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Figure 15: Example with two factors Θx (a) and Θy (b). Part (c) shows the product Θx ⊗Θy. Parts
(d)–(f) show products of label-reduced factors Θλ,c′

x ⊗Θλ,c′
y for different label mappings λ indicated

in the captions of the parts. All labels have unit cost.
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factor, any label mapping that maps a label ` to a label of cheaper cost violates LOC≥ if ` is part of
a shortest path.

To see that label reductions do not satisfy INDT and REFT in general, consider again the ex-
ample shown in Figure 15. In the product after applying the label reduction for λ(`1) = λ(`2) =
λ(`3) = r and λ(`4) = λ(`5) = λ(`6) = d (Figure 15(d)), consider, e.g., A1 d−→ A2. In the orig-
inal product (Figure 15(c)), there exists no transition from A1 to A2, which means that this label
reduction is neither transition-induced nor transition-refinable.

In the following, we discuss under which restrictions these four properties hold. We first discuss
the cost-related properties REFC and LOC≥, which are comparatively simple.

Theorem 15. Consider a label reduction transformation τF of a factored transition system with cost
function c for label mapping λ. τF is cost-refinable (REFC) iff λ only combines labels of the same
cost, i.e., λ(`) = λ(`′) implies c(`) = c(`′) for all `, `′.

Theorem 16. Consider a label reduction transformation τF of a factored transition system with
cost function c for label mapping λ. If λ only combines labels of the same cost, then τF is locally
non-decreasing (LOC≥).

Both results are straightforward: if we want to obtain cost-refinability and a locally equal heuris-
tic, we should only combine labels of the same cost. Note that the second result is only a sufficient
condition, not a necessary condition, as reducing the cost of a label does not necessarily increase
the max-factor heuristic. It is easy to see that label reduction preserves all local heuristic values
in a given factor iff no costs are reduced below their saturated costs, as discussed in the work on
saturated cost partitioning (Seipp, Keller, & Helmert, 2020).

For the transition-related properties INDT and REFT, the situation is more complicated. We first
introduce a notation that allows us to reason about these properties at a higher level of abstraction.

Definition 29 (Transition Set). Let Θ be a transition system, and let ` be a label of Θ. The transition
set for Θ and ` is defined as T (Θ, `) = {〈s, s′〉 | s `−→ s′ ∈ Θ}.

In words, T (Θ, `) denotes the set of transitions (represented as pairs of states) with the label
` in the transition system Θ. For a factored transition system F = 〈Θ1, . . . ,Θn〉, from the def-
inition of synchronized products (Definition 13), it is easy to see that T (

⊗
F, `) corresponds to∏n

i=1 T (Θi, `), except that the transition set of the product consists of pairs of tuples of the form
〈〈s1, . . . , sn〉, 〈t1, . . . , tn〉〉, while the product of the transition sets consists of tuples of pairs of the
form 〈〈s1, t1〉, . . . , 〈sn, tn〉〉. We can now characterize when INDT and REFT hold in terms of the
transition sets of the factors. As a side result, we see that the two properties are equivalent to each
other for label reductions.

Theorem 17. Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system with labels L. Consider the
label reduction transformation τF of F for label mapping λ. Then τF satisfies INDT iff τF satisfies
REFT, and it satisfies these properties iff for all transformed labels `′ ∈ λ(L):

⋃

`∈λ−1(`′)

n∏

i=1

T (Θi, `) =

n∏

i=1

⋃

`∈λ−1(`′)

T (Θi, `).

Intuitively, a label reduction is transition-induced if it does not introduce any spurious transi-
tions, i.e., all transitions in

⊗
F ′ are already present in

⊗
F . For a given transformed label `′,

827



SIEVERS & HELMERT

the left-hand side
⋃
`∈λ−1(`′)

∏n
i=1 T (Θi, `) is the union of all transitions in the (original) prod-

uct whose new label is `′, i.e., the exact set of transitions that should receive the label `′ under a
transition-induced transformation. The right-hand side

∏n
i=1

⋃
`∈λ−1(`′) T (Θi, `) denotes the tran-

sitions with label `′ that are actually present in the product after label reduction. This may in general
include spurious transitions because combining transition labels before forming the product (= mov-
ing the set union into the set product) can allow synchronization between transitions with different
original labels, as in the example of Figure 15(d).

Geometrically, we can interpret the left-hand side as a union of hypercubes (Cartesian products),
while the right-hand side corresponds to computing the projection of these hypercubes to each
dimension (forming the union of the projections), and then taking the product of these projections.
For equality to hold, the hypercubes on the left-hand side must fully cover the product of their
projections. A closely related problem was studied by Hoffmann and Kupferschmid (2005), and the
following complexity result follows a similar idea as their analysis.

Definition 30 (LABELREDUCTION-INDT). The decision problem LABELREDUCTION-INDT is
defined as follows:

Given: a factored transition system F and label mapping λ
Question: Does the label reduction of F for λ have the property INDT?

Theorem 18. LABELREDUCTION-INDT is coNP-complete.

The same result can of course also be stated for REFT instead of INDT due to the equivalence
of the two properties for label reductions. This complexity result is bad news in the sense that we
cannot expect to find an efficiently verifiable characterization of exact induced label reductions.
Therefore, we next consider the more restricted case of atomic label reductions where only two
labels are combined at a time, and general label reductions must be expressed as a sequence of
atomic steps. For atomic label reductions, we will be able to provide a complete and efficiently
verifiable characterization of transition-inducedness, which is based on the following definition.

Definition 31 (Properties of Labels). Let F be a factored transition system with label set L, let
`, `′ ∈ L be labels, and let Θ ∈ F be a transition system.

• Label ` locally subsumes label `′ in Θ if T (Θ, `′) ⊆ T (Θ, `).

• Label ` globally subsumes label `′ in F if ` locally subsumes `′ in all Θ′ ∈ F .

• Labels ` and `′ are locally equivalent in Θ if they locally subsume each other in Θ, i.e.,
T (Θ, `) = T (Θ, `′).

• Labels ` and `′ are Θ-combinable in F if they are locally equivalent in all transition systems
Θ′ ∈ F with Θ′ 6= Θ. (It does not matter whether or not they are locally equivalent in Θ.)

Rephrased in natural language, a label ` globally subsumes another label `′ if (in all factors) all
transitions labeled with `′ have corresponding transitions labeled with `. It is evident that transitions
with label `′ are not necessary to find plans in such factored transition systems, as we can always
use transitions with label ` instead. (However, `′ may still be useful if it has lower cost than `.)

Θ-combinability is a more unusual property. Two labels are Θ-combinable if they are equivalent
in all factors except possibly one. In our running example (Figure 14), all labels DRIVE-*-* are
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ΘT -combinable because these labels are locally equivalent in the atomic factor ΘP , which is the
only factor other than ΘT .

We can now characterize under which conditions atomic label reductions are transition-induced.
In addition to the new properties, it also matters whether the labels involved in a label reduction are
dead. Recall from Definition 26 on page 818 that a label ` is dead in transition system Θ if it labels
no transition in Θ, i.e., T (Θ, `) = ∅.

Theorem 19. Let F be a factored transition system with label set L. Let λ be a label mapping
defined on L with λ(`1) = λ(`2) = `12 for `1, `2 ∈ L, `12 /∈ L, and λ(`) = ` for all ` ∈ L\{`1, `2}.
The (atomic) label reduction of F for λ satisfies INDT (equivalently, REFT) iff

1. `1 globally subsumes `2, or

2. `2 globally subsumes `1, or

3. `1 and `2 are Θ-combinable for some Θ ∈ F , or

4. there exists Θ ∈ F such that `1 and `2 are dead in Θ.

Intuitively, if `1 globally subsumes `2 or vice versa, then the subsumed label is redundant and
label reduction is effectively the same as discarding the redundant label (apart from label cost con-
siderations). If two labels are Θ-combinable, they behave the same in all factors except possibly
Θ. In this case, label reduction cannot introduce spurious transitions: a spurious transition can only
arise via “false synchronization” if there exists one factor in which a transition is labeled by `1 but
not `2 and another factor in which a transition is labeled by `2 but not `1. But this would require
the two labels to be non-equivalent in at least two factors, which cannot happen for Θ-combinable
labels. Finally, if both labels are dead in the same factor, then the combined label is also dead and
hence induces no transitions in the product.

It is important to point out that the theorem is again an exact characterization, i.e., whenever
an atomic label reduction does not have one of the listed properties, it is not transition-induced.
Moreover, all properties referenced in the theorem are easily checkable in polynomial time in the
size of the factored transition system. Hence the theorem provides a complete understanding of
atomic label reductions, which is good news to complement the bad (coNP-completeness) news for
general label reductions.

Figure 15 shows two examples that illustrate the theorem. Figure 15(c) shows the product
of two factors without label reduction. Figure 15(e) shows the product after applying an atomic
label reduction where we combine `1 and `2 with `1 globally subsuming `2. Figure 15(f) shows
the product after applying an atomic label reduction where the Θy-combinable labels `5 and `6
are combined. We see that all transitions in Figures 15(e) and Figure 15(f) are indeed induced by
transitions in Figure 15(c).

Let us call two labels `1 and `2 exactly combinable if c(`1) = c(`2) (for Theorem 15) and they
satisfy any of the conditions of Theorem 19. We denote this with `1 4 `2.9 The results of this
section imply that combining two exactly combinable labels is an exact induced transformation.

9. We avoid a notation like `1 ∼ `2 because it suggests an equivalence relation, and while exact combinability is reflex-
ive and symmetric, it is not transitive. Some of the individual conditions in Theorem 15 are equivalence relations,
specifically conditions 3. or 4. for a fixed factor Θ, but 1. and 2. are not equivalence relations, and neither is the
combination of the four properties.
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As noted earlier, a general label reduction can always be expressed as the composition of atomic
label reductions. However, not every exact label reduction involving more than two labels can be
expressed as the composition of exact label reductions of two labels. One source of difficulty are
situations where `1 4 `2, `1 4 `3 and `2 4 `3, so any two labels in {`1, `2, `3} can be exactly
combined, but combining all three together is not necessarily exact because, e.g., after combining
`1 and `2 into `12, we may have `12 64 `3.

Fortunately, things are simpler if we consider the conditions in Theorem 19 individually. If the
three labels in the above example (or any larger set of labels) are exactly combinable for the same
reason (i.e., one label globally subsumes all others, or they are Θ-combinable for the same factor
Θ, or they are dead in the same factor), then all labels can be exactly combined. In this case, it
does not make a difference if they are combined in a single step or two at a time because combining
two labels will preserve the relevant condition of the theorem for the new label with respect to the
remaining labels. For example, all DRIVE-*-* labels in Figure 14 can be exactly combined because
they are all ΘT -combinable. The merge-and-shrink algorithms based on label reduction described
in the literature (Sievers et al., 2014; Sievers, 2017, 2018) exploit this fact. Roughly speaking, they
identify all labels that are Θ-combinable for a given factor Θ, combine them, then iterate (possibly
for different factors Θ) until no more exact label reductions due to Θ-combinability are possible.10

The following theorem summarizes the results of this section.

Theorem 20. A label reduction transformation of a factored transition system F with labels L and
label costs c that only combines two labels `1, `2 ∈ L is an exact induced transformation, i.e.,
satisfies CONS + IND + REF, iff c(`1) = c(`2) and

1. `1 globally subsumes `2, or

2. `2 globally subsumes `1, or

3. `1 and `2 are Θ-combinable for some Θ ∈ F , or

4. there exists Θ ∈ F such that `1 and `2 are dead in Θ.

General label reductions always satisfy CONS +INDS+L+C+I+G +REFG and LOC≤. They sat-
isfy REFC iff they only combine labels of the same cost. Cost-refinable label reductions additionally
satisfy LOC=. Testing INDT and REFT is coNP-complete for general label reductions.

Conditions 1.–4. are easily checkable in polynomial time, so there is a sharp contrast in com-
plexity between the properties of atomic and general label reductions.

7.4 Relationship to Previous Work

Implementations of merge-and-shrink heuristics have leveraged some variations of the concept of
label reduction since the first paper on merge-and-shrink abstractions in the planning literature
(Helmert et al., 2007). This first incarnation of label reduction (HHH label reduction in the fol-
lowing) was not described in the original papers and treated as an implementation detail.

Early papers on merge-and-shrink in the planning literature only considered so-called linear
merge strategies. Nissim et al. (2011) gave the first formal account of HHH label reduction, but only

10. The conditions from Theorem 19 other than Θ-combinability have not yet been experimentally explored because
checking subsumption is considerably more expensive, and dead labels are believed to be rare.
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Figure 16: Two merge trees for a factored transition system with 8 factors. HHHN label reduction
allows reducing labels in the merge steps marked with an “L” when Θ1 is the pivot.

discussed linear merging. When planning researchers first considered general merge strategies, such
as those used earlier in the model-checking literature (Dräger et al., 2006, 2009), it turned out that
HHH label reduction breaks admissibility of merge-and-shrink heuristics. (Indeed, it often leads to
heuristics that assign ∞ to all states.) Helmert et al. (2014) identified the problem of HHH label
reduction with non-linear merge strategies. Their variant of label reduction (HHHN label reduction)
guarantees admissibility, but can only be applied in restricted scenarios.

Figure 16 shows two examples of merge trees. Merge trees illustrate the merge strategy, i.e., the
order in which different factors of a factored transition system are merged by a merge-and-shrink
algorithm. Transformations affecting single factors, such as shrinking or the prune transformation
described in the next section, are not shown. The left merge tree gives an example of a linear
merge strategy, which can be described by a linear ordering 〈Θ1, . . . ,Θn〉 of factors: first Θ1 is
merged with Θ2, then the merged (and possibly further transformed) factor is merged with Θ3, and
so on. The right merge tree cannot be fully characterized by an ordering of the original factors.
For example, Θ1 and Θ2 are merged, Θ3 and Θ4 are merged, and then the two merged factors
are merged. (Often, there would be shrinking transformations in between the merges.) This is an
example of a non-linear merge strategy.

HHHN label reduction requires choosing one of the factors as a pivot. Label reduction transfor-
mations are then only allowed right before merge transformations that directly or indirectly involve
the pivot. In Figure 16, these merge transformations are marked with an “L”. This means that la-
bel reduction is limited to a single branch of the merge tree, which is a significant restriction for
non-linear merge strategies (right example), but not for linear ones (left example). The use of piv-
ots in HHHN label reduction can be viewed as a special case of our more general result that label
reduction based on Θ-combinability (and equal label costs) is exact. Put briefly, at every stage of
the merge-and-shrink computation, the current factored transition system contains exactly one fac-
tor that resulted from merges involving the pivot, and the HHHN label reduction conditions imply
Θ-combinability with respect to this factor Θ.

Besides limiting the opportunities for simplification due to label reduction, the restriction to one
branch of the merge tree hints at a more serious conceptual problem of HHHN label reduction. In the
HHHN framework, label reduction cannot be understood as a generally applicable transformation
that can be composed with other transformations: in order to determine in which cases labels can be
safely reduced and in which cases they cannot, the merge-and-shrink process needs to be considered
as a whole, with complex dependencies between merge and label reduction transformations that
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happen far apart during the overall transformation process. In other words, the HHHN theory is not
compositional.

Moreover, HHHN label reduction does not allow treating factored transition systems as a self-
contained representation. While all other transformations can be understood purely at the level of
factors and opaque labels (i.e., labels do not have any semantic meaning), HHHN label reduction
requires additional information about the “underlying meaning” of a label that must be derived from
syntactic information in a separate representation, for example as a planning task. This loses much
of the appeal of the merge-and-shrink framework. For example, if we obtain the same factored
transition system in two different contexts, HHHN label reduction cannot treat them the same way
due to this dependence on external representations.

Finally, HHHN label reduction is very complex and at the same time much more limited than
the compositional label reduction transformation described in this section. As a consequence, it
has never been used in an implementation. Before compositional label reduction was introduced,
the planning literature only considered linear merge strategies and used HHH label reduction. (The
original papers on merge-and-shrink in the model checking literature used non-linear merge strate-
gies, but no label reduction.)

The compositional label reduction transformation described in this section was originally intro-
duced by Sievers et al. (2014), and this section can be considered an extended version and further
development of this paper. Enabled by the new theory, Sievers et al. first considered non-linear
merge strategies in the planning literature, adapting ideas of Dräger et al. (2006, 2009). Since then,
several further papers have focused on merge strategies, and non-linear merging has become the
norm (e.g., Fan et al., 2014; Sievers et al., 2015; Sievers, Wehrle, & Helmert, 2016).

The main theoretical result of Sievers et al. (2014) is a slightly weaker version of Theorem 19:
while we give a full characterization of exact label reductions combining two labels, the earlier
paper treats the absence of dead labels as an additional requirement. The coNP-completeness result
in this section is new, as is the treatment of label reduction as a factored transformation and its study
in terms of transformation properties.

8. Prune Transformation

In this section we study prune transformations. Proofs of theorems can be found in Appendix F.
Pruning has only been treated as a side note previously (e.g., Helmert et al., 2014, Section 4.3),
but like label reduction (Section 7) it has been an important ingredient of the merge-and-shrink
framework since its introduction for planning. The goal of pruning is to remove a subset of “unin-
teresting” states of a transition system. In all experiments with merge-and-shrink heuristics in the
literature, pruning has been used to remove states that the merge-and-shrink construction algorithm
recognizes as dead, i.e., not part of any solution.

However, there are contexts in which dead states cannot be safely pruned. For example, the
orbit search algorithm (Domshlak, Katz, & Shleyfman, 2015) for exploiting structural symmetries
in planning tasks loses its optimality guarantees when using merge-and-shrink heuristic that prune
dead states. In this section we refine our study of transformation properties to better explain this and
related phenomena. Similarly to the previous sections, we develop a compositional understanding
of prune transformations that allows us to explain exactly which local transformation properties are
necessary to preserve global properties such as admissibility and consistency of heuristics.
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Figure 17: Example of a prune transformation. Only the affected factor and its associated state
mapping are shown. Recall that we use ⊥ to denote undefined values.

Like shrinking, pruning is a transformation that affects a single factor of a factored transition
system. It discards a set of states, along with their incident transitions, which are pruned by the
transformation, while not touching the remaining states, which are kept.

Definition 32 (Pruned Transition System). Let Θ = 〈S,L, c, T, SI, SG〉 be a transition system.
Given a subset K ⊆ S of the states of Θ, the transition system Θ pruned to K is defined as
ΘK = 〈K,L, c, {〈s, `, s′〉 | 〈s, `, s′〉 ∈ T and s, s′ ∈ K}, SI ∩K,SG ∩K〉. We call K the set of
kept states and S \K the set of pruned states.

We can now define a factored transformation based on this notion of pruning.

Definition 33 (Prune Transformation). Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system, let
Sk be the set of states of Θk for some 1 ≤ k ≤ n, and let K ⊆ Sk. The prune transformation for K
and Θk is the factored transformation τF = 〈F ′,Σ, λ〉 of F where:

• F ′ = 〈Θ′1, . . . ,Θ′n〉 with Θ′i = Θi for all i 6= k and Θ′k = ΘK
k .

• Σ = 〈σ1, . . . , σn〉 where σi = πi for all i 6= k, and σk is an atomic FM with variable Θk,
σtab
k (sk) = sk for all sk ∈ K, and σtab

k (sk) is undefined for all sk /∈ K.

• λ = id is the identity label mapping.

Prune transformations are our first examples of transformations where the state mapping is not
total. Recall from Definition 7 that for a transformation τ = 〈Θ′, σ, λ〉, we have hτΘ(s) =∞ if σ(s)
is undefined. For the factored transition system this means that we obtain infinite heuristic values
for pruned states in the corresponding factor heuristic.

Efficiently composing a prune transformation with a previous transformation within the factored
transformation framework is analogous to the case of shrink transformations: only one factor and
the corresponding component F2N mapping need to be updated, which can be done in place as
discussed in Section 5.1.
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dom(vT ) A B C D E
0 1 2 ⊥ ⊥

σT

dom(vP ) A B C D E T
0 1 2 3 4 5

σP

σT

σP 0 1 2 3 4 5

0 0 1 2 3 4 5
1 6 7 8 9 10 11
2 12 13 14 15 16 17

σTP

Figure 18: An FM representing the state mapping from the induced transition system of the modi-
fied example planning task to the transition system pruned with the prune transformation shown in
Figure 17.

8.1 Example

Consider the running example planning task, this time extended with new locations D and E from
which the truck T can move to A but to which it cannot move. Figure 17(a) shows the atomic factor
for ΘT (top) and the F2N mapping σT representing the identity state mapping (bottom). (As in
previous examples, we represent symbolic values like A and B as consecutive integers to match the
common implementation.)

Figure 17(b) illustrates a prune transformation τ for the atomic factor ΘT . Only the affected
factor is shown. We keep the factor states {0, 1, 2}, corresponding to the locations {A,B,C}, and
prune the factor states {3, 4}, corresponding to the locations {D,E}.

To illustrate non-atomic FMs that involve pruning, consider an FM for the running example,
modified to reflect the additional locations D and E. Figure 18 shows the FM that results when we
first prune D and E from vT and then merge the resulting factor with the factor for vP . The only
aspect that changes when computing the function value of such an FM is that whenever the result
for a component FM is undefined, the result for the parent FM is also undefined. For example, for
α = {vT 7→ D, vP 7→ T} we can compute JσTP K(α) as follows:

JσTP K(α)

= σtab
TP (JσT K(α), JσP K(α))

= σtab
TP (σtab

T (α[vT ]), σtab
P (α[vP ]))

= σtab
TP (σtab

T (D), σtab
P (T))

= σtab
TP (⊥, 5)

= ⊥
We also remark that in the resulting merged factor, all abstract states corresponding to D ∈

dom(vP ) and E ∈ dom(vP ) (abstract states 3, 4, 9, 10, 15, 16 in Figure 18) are dead and therefore
could be pruned in a further prune transformation.

8.2 Reachability and Heuristic Properties

Prune transformations are especially useful in cases where they prune states that cannot possibly
be part of any solution. In Section 2, we introduced admissible and consistent heuristics, and in
Section 3.3 we discussed properties of transformations that imply these heuristic properties.
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In many cases, for example within an A∗ search, admissibility and consistency are stronger re-
quirements than necessary. For example, A∗ still produces optimal solutions if we assign infinite
heuristic values to states that cannot be reached from the initial state, even when this violates admis-
sibility. One of the most useful properties of prune transformations is that they can eliminate many
such unreachable states. For a precise discussion of this topic, we now define appropriate variants
of admissibility and consistency, along with transformation properties that imply these heuristic
properties. In Section 8.3 we then discuss the conditions under which prune transformations have
the desired properties.

8.2.1 REACHABILITY

As a first step, we formalize different notions of reachability.

Definition 34 (Forward-Reachable, Backward-Reachable, Alive, and Dead States). Let Θ = 〈S,L,
c, T, SI, SG〉 be a transition system. A state s ∈ S is called

• forward-reachable if there exists a path from some state s′ ∈ SI to s.

• backward-reachable if there exists a path from s to some state s′ ∈ SG.

• alive if it is forward- and backward-reachable.

• dead if it is not alive.

We write S→ ⊆ S for the set of forward-reachable states, S← ⊆ S for the set of backward-reachable
states, and S↔ = S→ ∩ S← ⊆ S for the set of alive states of Θ.

In other work, forward-reachable states are sometimes called reachable and backward-reachable
states are sometimes called relevant. Next, we introduce variants of the basic heuristic properties
(Definition 5 on page 785) that only consider forward-reachable states.

Definition 35 (Forward-Perfect, Forward-Goal-Aware, Forward-Consistent, Forward-Admissible).
Let hΘ be a heuristic for a transition system Θ with states S and label cost function c. The heuristic
hΘ is called

• forward-perfect if hΘ(s) = h∗Θ(s) for all states s ∈ S→.

• forward-goal-aware if hΘ(s) = 0 for all goal states s ∈ S→.

• forward-consistent if hΘ(s) ≤ c(`)+hΘ(t) for all transitions s `−→ t ∈ Θ with s ∈ S→. (Note
that this implies t ∈ S→.)

• forward-admissible if hΘ(s) ≤ h∗Θ(s) for all states s ∈ S→.

It is easy to see that for algorithms like A∗ which search in the forward direction, these “forward”
properties suffice. For example, forward-admissibility is enough for A∗ to produce optimal solutions
because states that are not forward-reachable are never encountered during search. It is also easy to
see that heuristics that are forward-goal-aware and forward-consistent are also forward-admissible:
we can think of forward-goal-awareness and forward-consistency as the regular goal-awareness and
consistency properties on a transition system restricted to the states S→. Because goal-aware and
consistent heuristics are admissible, it follows that the heuristic is admissible restricted to S→, which
is the forward-admissibility property.
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8.2.2 ADDITIONAL PROPERTIES OF TRANSFORMATIONS

As a second step, we define additional properties that transformations can have. As we will show in
Section 8.3, these are the transformation properties that imply the new forward-reachable heuristic
properties of the induced heuristics.

Definition 36 (States Between). Let Θ be a transition system with states S. For two states s, s′ ∈ S,
we write s s′ if there exists a path from s to s′ in Θ.

For S′, S′′ ⊆ S, we define the states between S′ and S′′ as the set Between(S′, S′′) = {s ∈ S |
s′  s, s s′′, s′ ∈ S′, s′′ ∈ S′′}.

Intuitively, Between(S′, S′′) is the set of all states that are visited by some path from some state
in S′ to some state in S′′. For example, we can write S→ as Between(SI, S), S← as Between(S, SG)
and S↔ as Between(SI, SG).

Definition 37 (Closure and Keep Properties). Let τ = 〈Θ′, σ, λ〉 be a transformation of a transition
system Θ = 〈S,L, c, T, SI, SG〉 into a transition system Θ′. The following list defines properties
that τ may have, along with a short-hand name for each property (analogously to Definition 8).

CLOSpred The domain of σ is closed under predecessors: Between(S, dom(σ)) ⊆ dom(σ).

CLOS→pred The domain of σ is closed under forward-reachable predecessors:
Between(SI, dom(σ)) ⊆ dom(σ).

KEEPG τ keeps goal states: SG ⊆ dom(σ).

KEEP→G τ keeps forward-reachable goal states: Between(SI, SG) ∩ SG ⊆ dom(σ).

In words, CLOSpred requires that for all states s on which the transformation is defined, it is
also defined on all states on paths leading to s. This is equivalent to saying that whenever the
transformation is defined for a state, it is also defined for its predecessors. CLOS→pred is a slightly
weaker variant of the same property that allows discarding states that are not forward-reachable,
even if they are predecessors of states for which the transformation is defined. Similarly, KEEPG
requires the transformation to be defined on all goal states and KEEP→G only requires this for goal
states reachable from an initial state.

State-conservative transformations (CONSS) clearly have all four properties. In particular, all
transformations considered in previous sections satisfy CONSS and therefore also satisfy the four
new properties. Hence, these properties can be seen as weaker forms of state-conservativeness
where some states may be discarded, but not arbitrarily. (We require some structural properties for
dom(σ).) The following relationships between these properties are obvious (without proof):

• CLOSpred ⇒ CLOS→pred

• KEEPG ⇒ KEEP→G

8.2.3 COMPOSITION OF TRANSFORMATIONS

The transformation properties we discussed in previous sections are closed under composition, i.e.,
if τ and τ ′ have a certain property, then τ ′◦τ also has it (Theorems 1 and 6). This compositionality is
a key characteristic of these transformation properties because it means that complex combinations
of merge-and-shrink transformations can be understood compositionally. Unfortunately, the new
properties are not directly compositional. However, they do compose under mild side conditions.
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Theorem 21. Let X be any of the properties of transformations from Definition 37. Let τ be a
transformation of transition system Θ into transition system Θ′ with property X , and let τ ′ be a
transformation of Θ′ into transition system Θ′′ with property X . Then the composed transforma-
tion τ ′′ = τ ′ ◦ τ also has the property X if τ additionally satisfies the following side conditions
(depending on X):

• CLOSpred: side conditions CONSL+T

• CLOS→pred: side conditions CONSL+T+I

• KEEPG: side condition CONSG

• KEEP→G : side conditions CONSL+T+I+G + CLOS→pred

In all cases, all side conditions on τ are necessary in the sense that if we drop any one of them,
the result no longer holds. For example, if we only require that τ and τ ′ are CLOS→pred and τ is
CONSL+T or CONSL+I or CONST+I, then τ ′′ is not necessarily CLOS→pred.

8.2.4 EFFECT OF PROPERTIES OF TRANSFORMATIONS ON HEURISTICS

We are now ready to generalize the results on heuristic properties from Section 3.3.

Theorem 22. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced
by τ is

1. goal-aware if τ satisfies CONSG + KEEPG,

2. forward-goal-aware if τ satisfies CONSG + KEEP→G ,

3. consistent if τ satisfies CONSL+C+T + CLOSpred,

4. forward-consistent if τ satisfies CONSL+C+T + CLOS→pred,

5. admissible if τ satisfies CONSL+C+T+G + KEEPG + CLOSpred, and

6. forward-admissible if τ satisfies CONSL+C+T+G + KEEP→G + CLOS→pred.

This result generalizes Theorem 3: the results for goal-awareness, consistency and admissibility
are strictly stronger in the sense that they require weaker conditions (CONSS is replaced by weaker
properties), and the conditions are relaxed further if we only need the “forward” versions of these
heuristic properties.

Theorem 23. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced
by τ is

1. perfect if τ satisfies CONSL+C+T+G + KEEPG + CLOSpred + REF and

2. forward-perfect if τ satisfies CONSL+C+T+G + KEEP→G + CLOS→pred + REF.

This result generalizes Theorem 5.2: again, we obtain a perfect heuristic under a weaker con-
dition than CONSS, and the required condition is weaker again if we only need a forward-perfect
heuristic.
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8.2.5 RELATIONSHIP TO BÄCKSTRÖM AND JONSSON

In Section 3.3, we discussed how our results on heuristic properties like admissibility and exactness
relate to the work of Bäckström and Jonsson (2013). In this section we extend our results to trans-
formations with non-total state mappings and to weaker heuristic properties focusing on reachable
states.

Bäckström and Jonsson do not consider distinguished initial and goal states and hence do not
have a concept of “reachable states”. However, they do discuss and prove some results for a variant
of admissibility that only applies to finite heuristic values (roughly speaking, if the heuristic value
is finite, it must be admissible, but inadmissible infinite estimates are permitted), which is at least
similar in spirit to some of the generalizations we study in this section. Specifically, they describe
conditional properties based on such infinite estimates as a way to model non-total state mappings.
Despite these similarities, there are significant differences between their formalization and ours, and
we do not see any further interesting connections beyond what was already discussed in Section 3.3.

8.3 Properties of Prune Transformations

We are now ready to study the properties of prune transformations, the last result in this section.
Theorem 21 shows under which conditions the new transformation properties introduced in this
section compose, and Theorems 22 and 23 show which transformation properties lead to desirable
heuristic properties. As a last piece of the puzzle, we now show which restrictions must be placed
on the set of pruned (or kept) states in order to achieve these desirable properties in a shrink trans-
formation as well as the other transformation properties introduced earlier.

Theorem 24. Let F be a factored transition system, let Θk ∈ F , and let Sk be the states of Θk.
The prune transformation τF of F for K and Θk has the following properties depending on K:

1. for all K: τF satisfies CONSL+C+T+I+G + IND + REF + LOC≥.

2. for K = Sk←: τF additionally satisfies KEEPG + CLOSpred + LOC=.

3. for K = Sk→ or K = Sk↔: τF additionally satisfies KEEP→G + CLOS→pred.

The first result can be briefly summarized as: prune transformations always satisfy all desirable
transformation properties from the earlier sections except CONSS. (If we can guarantee admissibil-
ity, LOC≥ is generally a desirable property because it leads to stronger heuristics.) It almost goes
without saying that prune transformation do not in general satisfy CONSS, as their only purpose is
to prune states. Formally, the only prune transformations that satisfy CONSS are those where K
consists of all states of Θk, in which case the prune transformation does nothing.

The second and third result show under which conditions we obtain the weaker versions of
CONSS from Definition 37. If we keep exactly the set of backward-reachable states, we get the
properties KEEPG and CLOSpred. These properties are sufficient for obtaining admissible or even
perfect heuristics in the merge-and-shrink framework. (Of course, admissibility or perfection can
be lost if other involved transformations lack the required properties.) We also get all properties that
are necessary for KEEPG and CLOSpred to compose.

If we keep exactly the set of forward-reachable or the set of alive states, the resulting heuris-
tics will not generally be admissible, as pruned states lead to infinite heuristic values. However,
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Figure 19: Example transformation τ of transition system Θ into transition system Θ′ that only
prunes the backward-unreachable state s, but not t, which is combined with the backward-reachable
state b.

we still get the properties KEEP→G and CLOS→pred required for forward-admissibility and forward-
perfection, as well as all conditions required for these properties to compose. Therefore, the default
pruning strategy of the merge-and-shrink implementations in the Fast Downward planner (Helmert,
2006) only keeps the alive states (i.e., prunes all dead states) with the rationale that smaller factors
are preferable. The MIASM merge strategy (Fan et al., 2014) actively prefers merging two factors
such that their product contains many dead states, which are then subsequently removed by a prune
transformation.

The results of this section also help explain why these more aggressive forms of pruning are
problematic in scenarios that go beyond a vanilla A∗ search, such as the orbit search algorithm
mentioned in the introduction to this section (Domshlak et al., 2015): for orbit search, forward-
admissibility is not sufficient to guarantee optimality, while full admissibility is. A similar comment
applies to the certificates of unsolvability by Eriksson, Röger, and Helmert (2017, footnote 4), which
require full consistency (not just forward-consistency) to form so-called inductive sets.

An important and perhaps surprising subtlety to Theorem 24.2 is that it is important that all
states that are not backward-reachable are pruned (and analogously for Theorem 24.3). If we prune
some but not all of the backward-unreachable states, the CLOSpred property is no longer guaran-
teed, and as a consequence we can obtain an inconsistent heuristic when composing this prune
transformation with other transformations.

Figure 19 shows an example transformation τ = 〈Θ′, σ, λ〉 of a transition system Θ into a
transition system Θ′. All labels have unit cost. Transformation τ is the composition of two transfor-
mations: first, we prune the backward-unreachable state s (but not the other backward-unreachable
state t), and then we shrink, mapping b and t to the same abstract state bt. We have hτ (s) = ∞
(because s /∈ dom(σ)) and hτ (t) = h∗Θ′(σ(t)) = h∗Θ′(bt) = 1, which violates the consistency
condition hτ (s) ≤ c(`) + hτ (t) for the transition s `−→ t.

9. Discussion and Related Work

At this point, we have concluded our presentation of the transformation-based merge-and-shrink
framework. As mentioned in the introduction, the purpose of this paper is to develop a solid and
extensible theory of merge-and-shrink, both to consolidate and unify existing work and to provide
a firm foundation for future developments. In the interest of maintaining focus, this paper is not
concerned with experimental evidence of the utility of merge-and-shrink, which has already been
established in the literature (e.g., Dräger et al., 2006; Helmert et al., 2007; Helmert, Haslum, &
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Hoffmann, 2008; Nissim et al., 2011; Hoffmann et al., 2014; Sievers et al., 2014; Fan et al., 2014;
Sievers et al., 2015; Torralba & Hoffmann, 2015; Torralba & Kissmann, 2015; Sievers et al., 2016;
Eriksson et al., 2017; Fan, Müller, & Holte, 2017; Eriksson, Röger, & Helmert, 2018; Fan, Holte,
& Müller, 2018; Sievers, Pommerening, Keller, & Helmert, 2020). Instead, this last section before
the conclusions highlights applications of our theory, both in relation to previously published work
and in a wider context including possible future research directions.

We structure the discussion into three parts: firstly, we discuss the most common application
of merge-and-shrink as a basis of heuristics for factored state-space search. Secondly, we discuss
applications of the framework and extensions that go beyond the use as heuristics, but stay within
the wider context of AI planning and related factored state-space search problems. Finally, we
discuss connections to other areas of AI and computer science, such as constraint programming and
automata theory.

9.1 Merge-and-Shrink for Computing Heuristics

The merge-and-shrink framework (although not under this name, which was suggested by Carmel
Domshlak in personal communications) and its use for computing heuristics were originated by
Dräger et al. (2006, 2009) for the purpose of finding error traces in model-checking problems.
They introduce composition (merge) and abstraction (shrink) operations and mention that heuristics
derived from such transformations are admissible and consistent, which we show for our more
general framework in Theorem 3 (page 792). Their (non-linear) merge strategy prefers merging
factors that need to “synchronize” close to a goal state. They use a shrink strategy that prefers to
combine bisimilar states and switches to more radical h-preserving shrinking when bisimulation
cannot sufficiently reduce the size of the factor. We theoretically justify h-preserving shrinking in
Theorem 8 (page 815) and bisimulation-based shrinking in Theorem 9 (page 817). They do not use
label reduction or pruning.

9.1.1 DEVELOPMENT OF THE MERGE-AND-SHRINK FRAMEWORK IN CLASSICAL PLANNING

Helmert et al. (2007, 2008) adapt merge-and-shrink to classical planning. They show that merge-
and-shrink abstractions are strict homomorphisms (i.e., conservative and induced). In our theoret-
ical development, this is a consequence of the properties of shrinking (Theorem 7, page 815) and
merging (Theorem 12, page 821) and the compositionality of transformation properties (Theorem 1
on page 791). They also emphasize the importance of suitable merge and shrink strategies and
provide the first discussion of the representational power of merge-and-shrink abstractions, in par-
ticular showing that they generalize projections, the form of abstractions underlying pattern database
heuristics (Culberson & Schaeffer, 1998). They consider a linear merge strategy based on the goals
and causal graph of the underlying planning task representation and introduce f -preserving shrink-
ing. As discussed in the previous two sections, their implementation also includes a limited form
of label reduction (HHH label reduction, see Section 7.4) and pruning of dead states, but these two
improvements are not discussed in the papers.

Nissim et al. (2011) study bisimulation-based shrinking in more depth. They provide the first
description of HHH label reduction and show that bisimulation-based shrinking combined with
HHH label reduction leads to perfect heuristics. They demonstrate that such perfect heuristics can
be computed in polynomial time in several standard benchmark domains from classical planning. In
our theory, Theorem 9 (page 817) shows that bisimulation-based shrinking is exact, and Theorem 20
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(page 830) shows that Θ-combinable label reduction is exact. HHH label reduction is a special case
of Θ-combinable label reduction. Of course, merging is also exact. Combining these theorems, our
theory generalizes their result on perfect heuristics. Note that HHH label reduction is not compo-
sitional, and therefore Nissim et al. cannot argue in the same way: their theorems must explicitly
discuss the interactions of merging, label reduction and bisimulation-based shrinking. Due to the
limitations of HHH label reduction, their results only apply to linear merge strategies. Specifically,
their merge strategy follows the variable order of the causal graph heuristic (Helmert, 2004). Nis-
sim et al. only show that use of bisimulation is sufficient for shrinking to be exact; we show that
shrinking is exact iff it is based on bisimulation (Theorem 11 on page 818). (Note also that the
definition of “exact” in this paper differs from earlier definitions, which were either not fully formal
or non-compositional.)

The next important development in the theory of merge-and-shrink abstractions is the journal
paper by Helmert et al. (2014), which synthesizes and extends the papers by Helmert et al. (2007,
2008) and Nissim et al. (2011). As discussed in Section 7.4, one of the major novel contributions is
the generalization of HHH label reduction to HHHN label reduction, which is not restricted to linear
merge strategies but still lacks compositionality and can only be applied in limited ways. We refer
to Section 7.4 for a more detailed discussion. The journal paper is also the first work on merge-and-
shrink abstractions that attempts to capture the general class of systems for which the framework is
applicable. Our use of the term factored transition systems (but not our exact definition) stems from
this paper. Moreover, it is the first work on merge-and-shrink to provide a real discussion of the
representation of the state mapping, which previous papers left implicit. Helmert et al.’s discussion
of merge-and-shrink trees and cascading tables is a precursor to our discussion of factored mappings
(Section 4.3). The paper also establishes that merge-and-shrink heuristics are incomparable to the
h2 critical path heuristics (Haslum & Geffner, 2000) within the heuristic compilation framework of
Helmert and Domshlak (2009). Finally, the paper includes some expressiveness results, which we
discuss in Section 9.3.

The last important step in the previous development of the merge-and-shrink framework is the
conference paper by Sievers et al. (2014), which introduces the general form of label reduction we
use in this work (Section 7). While label reduction is not one of the two eponymous transformations
in the merge-and-shrink framework, the conference paper is a critical step in the evolution of merge-
and-shrink because it first enabled the development of a clean compositional theory, without which
the transformation-based view underlying this paper would not be possible. See Section 7.4 for
a detailed discussion of the relationship between the results on label reduction in this paper and
the results of the conference paper. Sievers et al. also give experimental evidence showing that
label reduction is critical to the performance of planning algorithms based on merge-and-shrink
abstractions. The new form of label reduction finally allowed fully combining label reduction with
non-linear merge strategies. Sievers et al. introduce the non-linear Dräger, Finkbeiner, Podelski
(DFP) merge strategy based on the early work by Dräger et al. (2006) and show that it outperforms
the previous state of the art.

9.1.2 MERGE STRATEGIES, SHRINK STRATEGIES, GENERAL STRATEGIES

The generalized theory of label reduction prompted several follow-up papers studying different
(non-linear) merge strategies. Fan et al. (2014) introduce the undirected min-cut (UMC) strategy
based on minimum cuts in the (weighted) causal graph of the underlying planning task and the

841



SIEVERS & HELMERT

maximum intermediate abstraction size minimizing (MIASM) strategy, which searches in the space
of possible merges trying to minimize the size of intermediate factors in the merge tree under exact
shrinking. Sievers et al. (2015) devise merge strategies that augment an existing merge strategy by
reasoning about symmetries of factored transition systems. Their core theoretical result is a con-
nection between such symmetries and bisimulation, showing that symmetries can drive the merge
strategy to obtain more opportunities for exact shrinking. Sievers et al. (2016) systematically study
merge strategies by computing all merge strategies on small planning tasks and randomly sam-
pling merge strategies on larger ones. The analysis shows that the merge strategies in the literature
leave substantial room for improvement. They also suggest a new variant of the MIASM strategy,
tie-breaking enhancements of merge strategies, and a new non-linear merge strategy based on the
strongly connected components of the causal graph of a planning task.

Katz et al. (2012) introduce a shrink strategy based on a relaxed notion of bisimulation that
restricts the bisimulation properties to a subset K of labels in order to obtain more shrinking while
maintaining a perfect heuristic. Testing if a given label setK satisfies their requirements is PSPACE-
complete, so they study approximations. Fan et al. (2018) make two contributions. Firstly, they
present a fast to compute variant of merge-and-shrink with a random merge strategy, maximal h-
preserving shrinking and no label reduction. Secondly, they introduce a further refinement of the
MIASM strategy building on the MIASM variant by Sievers et al. (2016).

Sievers (2018) adds a time limit to the merge-and-shrink algorithm. In all previous work, the
overall planning algorithm simply failed if the merge-and-shrink computation took too much time.
If the algorithm terminates with multiple factors, the max-factor heuristic (Definition 22, page 810)
is used. The paper otherwise focuses on how to implement the merge-and-shrink framework effi-
ciently and gives a description of the general strategy (Section 4.4.4) used in the merge-and-shrink
implementation of the Fast Downward planner.

9.2 Merge-and-Shrink Beyond Heuristics

We now discuss related work that uses the merge-and-shrink framework in the context of state-space
search, but includes aspects other than the use as a heuristic. Specifically, we consider merge-and-
shrink for proving unsolvability, integration with symbolic search, cost partitioning over merge-and-
shrink heuristics, the computation of dominance relations, the use of merge-and-shrink as a task
reformulation framework, and transformations and properties that go beyond the ones considered in
this paper.

9.2.1 UNSOLVABILITY

Hoffmann et al. (2014) use the merge-and-shrink framework to prove the unsolvability of planning
tasks (e.g., Bäckström, Jonsson, & Ståhlberg, 2013; Muise & Lipovetzky, 2016). Their approach
is equivalent to running an A∗ search on a modified state space where all label costs are changed
to 0, in which case an abstraction heuristic only assigns heuristic values of 0 or ∞. Building on
the shrink strategies by Katz et al. (2012), they consider a relaxation of exact shrinking called “safe
shrinking” that only aims to preserve the existence of plans for a given state, but not the plan cost.
In the terminology of this paper, they identify Θ-combinable labels and add direct transitions for
sequences of transitions induced by such labels. This introduces strongly connected components
of transitions in the factors that lead to more opportunities for bisimulation-based shrinking. They
also experimentally evaluate a wide variety of linear merge strategies based on the goals and causal
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graph of a planning task and on a notion of synchronization similar to the one used by Dräger et al.
(2006).

Because Hoffmann et al. work with an older, non-compositional theory of merge-and-shrink ab-
stractions, they have to explicitly consider how safe shrinking interacts with other merge-and-shrink
transformations. In our framework, their results could be more easily established by introducing
safety as a new compositional property and showing that the required transformations satisfy it. Be-
cause safety is a relaxation of exactness, nothing new needs to be shown for exact transformations.

Eriksson et al. (2017, 2018) study the use of merge-and-shrink abstractions (among other tech-
niques) for certified unsolvability in classical planning, i.e., for a setting where the output of a
planning system on an unsolvable task must include a computer-verifiable proof that no plan exists.
The approach covers all conservative transformations we discuss except non-linear merging.

9.2.2 SYMBOLIC SEARCH AND SPM&S

There are several papers that connect the merge-and-shrink framework to data structures used in
symbolic search, in particular binary decision diagrams (BDDs; Bryant, 1986) and algebraic deci-
sion diagrams (ADDs; Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1997).11 Blai
Bonet first pointed out the close relationship between the factored mappings used to represent
merge-and-shrink heuristics with linear merge strategies and such symbolic data structures (per-
sonal communications, 2008).

This connection is formally discussed by Edelkamp, Kissmann, and Torralba (2012), who note
that ADD/BDD reductions can further compress factored mappings representing linear merge-and-
shrink heuristics. They also observe that BDD representations of linear merge-and-shrink heuristics
have a suitable form for the symbolic BDDA* (Edelkamp & Reffel, 1998) algorithm, a variant of
A* that can process sets of states at a time by representing them as BDDs. They explore this idea
experimentally with several linear merge strategies, including novel ones based on the BDD variable
ordering strategy of the GAMER planner (Kissmann, 2012).

Torralba, Linares López, and Borrajo (2013) introduce fully symbolic algorithms based on the
merge-and-shrink framework, originally called symbolic merge-and-shrink and renamed to sym-
bolic perimeter merge-and-shrink (SPM&S) in later papers. The key idea is to interleave a sym-
bolic backward search over the state space, as performed by traditional symbolic search planners
(e.g., Edelkamp & Helmert, 2001; Kissmann, 2012; Kissmann, Edelkamp, & Hoffmann, 2014),
with merge-and-shrink abstraction. As in the regular merge-and-shrink framework, their algorithm
maintains a factored transition system that originally consists of all atomic factors, representing
the (unabstracted) original transition system. Merge and shrink transformations on this factored
transition system are interleaved with symbolic search steps that explore the state space under the
current abstraction. Roughly speaking, an additional merge step followed by a shrink step happens
whenever the representation becomes too large to perform another symbolic search step.

An important aspect of SPM&S is that it only performs a single symbolic exploration of the
state space. Whenever the merge-and-shrink abstraction needs to be abstracted in order to continue
the symbolic exploration, the exploration process continues with the current sets of open and closed
states adjusted to account for the modified abstraction. This effectively results in an abstraction
hierarchy, where states close to the goal are not abstracted at all, and the fidelity of the abstraction
decreases as goal distance increases.

11. Throughout this paper, by BDDs and ADDs, we refer to reduced ordered BDDs and reduced ordered ADDs.
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When symbolic exploration finishes, SPM&S returns an admissible heuristic, represented as a
set of BDDs in a form suitable for symbolic search algorithms like BDDA*. By imposing size limits
on BDDs generated as intermediate results and tailoring the (necessarily linear) merge strategy to
the variable ordering used by the symbolic data structures, SPM&S can guarantee upper bounds on
the representation size of the resulting heuristic, similarly to the upper bounds on the size of factors
imposed by most work using the regular (non-symbolic) merge-and-shrink framework. In cases
where no abstraction is necessary within the given computational bounds, SPM&S is equivalent to
a standard (non-heuristic) symbolic regression search.

More elaborate accounts of the same approach are given in Torralba’s PhD thesis (2015) and
in a journal paper (Torralba et al., 2018). Torralba, Linares López, and Borrajo (2016) generalize
the approach to a bidirectional search setting. Experimental results show strong performance for
SPM&S, which is one of the ingredients of the successful SymBA* planner (Torralba, Alcázar,
Borrajo, Kissmann, & Edelkamp, 2014). However, the available evidence suggests that the heuristic
search aspects of SymBA* only play a minor role in its overall performance, and its blind symbolic
search configurations perform best in many common benchmarks (Torralba, 2015).

9.2.3 COST PARTITIONING

Fan et al. (2017) consider the use of merge-and-shrink abstractions within the framework of cost
partitioning (Katz & Domshlak, 2010). Cost partitioning is a conceptual framework for the addi-
tive combination of admissible heuristics. The key idea is to assign shares (cost partitionings) of
the label costs to different copies of the transition system in such a way that the sum of admis-
sible heuristics derived for each copy is an admissible heuristic. In general, cost partitioning for
merge-and-shrink abstractions requires reasoning over the internal structure of the abstractions in
order to derive suitable cost partitionings, so this goes beyond the simple use of a merge-and-shrink
abstraction as a (black-box) heuristic.

However, the approach of Fan et al. does not need to look “inside” merge-and-shrink abstrac-
tions, as its cost partitioning is determined entirely by the original cost function. Their motivating
observation is that merge-and-shrink abstraction benefits from cost functions with as few different
label costs as possible because this affords additional opportunities for exact label reduction (Theo-
rem 15, page 827), which in turn affords additional opportunities for exact shrinking by bisimulation
(Theorem 9, page 817). They identify the lowest non-zero label cost cmin and split off a label cost
function that assigns cost 0 to all original zero-cost labels and cost cmin to all other labels. All re-
maining costs are then recursively partitioned in the same way until only zero-cost labels remain.
They then compute a regular merge-and-shrink abstraction heuristic for each of the cost functions
and use their sum as the final heuristic.

Sievers et al. (2020) describe a tighter integration of cost partitioning into the factored trans-
formation framework. Their approach collects all factors that are computed as intermediate results
by the transformations (Algorithm 1, page 809) and computes a cost partitioning over their factor
heuristics. Cost partitioning also offers a better solution than the max-factor heuristics used by Siev-
ers (2018) in cases where it is prohibitively expensive to apply transformations until only a single
factor remains.

They also study the interaction of different kinds of transformations with the properties of cost
partitioning, for example showing that an optimal cost partitioning (Katz & Domshlak, 2010) never
needs to consider a factor obtained by shrinking the factor Θ if it already considers Θ. Their algo-
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rithm exploits these relationships to limit the set of factors to consider, even though for efficiency
reasons they primarily use the non-optimal saturated cost partitioning algorithm (Seipp et al., 2020),
which does not give the same guarantees. A useful property of saturated cost partitioning is that it
can be performed online in the sense that it processes the factors for the cost partitioning one at a
time, and after each factor is processed, its transition information can be discarded. This comes at
a price of heuristic quality compared to offline cost partitioning, where full representations of all
factors need to be in memory simultaneously. Sievers et al. (2020) consider both online and offline
versions of their approach, as well as versions that maximize over multiple cost partitionings.

9.2.4 DOMINANCE RELATIONS

Torralba and Hoffmann (2015) use concepts of the merge-and-shrink framework to define notions
of dominance between states of a factored transition system. Roughly speaking, state s (weakly)
dominates state s′ if everything useful that can be achieved from s′ can also be achieved from state s.
In particular, for every solution from state s′ there is a corresponding solution of the same or lower
cost from s. Weak dominance defines a weak partial order over the states. If a search algorithm
reaches a state that is dominated by a previously considered state reached at the same or lower cost,
the dominated state can be pruned.

Their approach is based on the concept of simulation, which is “one half” of bisimulation (Def-
inition 25, page 816). In more detail, their notion of simulation is analogous of property BISIM2,
and the additional requirement for goal-respecting simulations is analogous of property BISIM1.
They then show how goal-respecting simulations for factors in a factored transition system induce
goal-respecting simulations for their products. This can be viewed as a compositional approach
for computing simulation relations for factored transition systems. In order to obtain more general
dominance relations, the notion of dominance between states is augmented by a notion of domi-
nance between labels, which essentially combines goal-respecting simulations with a form of label
dominance analogous to our notion of locally subsuming labels (Definition 31, page 828).

In addition to informing the theoretical development of the paper, the merge-and-shrink frame-
work is also used in the experimental evaluation. Torralba and Hoffmann do not use the given
factored transition system as the input to their dominance detection algorithm, but first apply a se-
quence of exact merge-and-shrink transformations (merging using the DFP strategy, bisimulation-
based shrinking and exact label reduction) because this leads to dominance relations affording more
pruning.

Torralba and Kissmann (2015) extend this work by considering other uses of dominance rela-
tions within the merge-and-shrink framework. They introduce the notion of a subsumed transition
of a factor. Roughly speaking, a transition is subsumed if it can be safely removed without affecting
solution costs in the product. One of their contributions is to use the previously developed simu-
lation relations and label dominance relations to determine subsumed transitions. Another contri-
bution is simulation-based shrinking, which generalizes bisimulation-based shrinking (Theorem 9,
page 817).

Because simulation-based shrinking combines some states that bisimulation-based shrinking
does not, it cannot be exact (Theorem 10, page 818). However, pruning of subsumed transitions and
simulation-based shrinking are both globally h-preserving, i.e., result in the perfect heuristic when
only combined with exact transformations. This shows that there are weaker properties than exact-
ness that may still be as useful as exactness in many contexts, similar to our relaxations of exactness
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that give rise to forward-perfect heuristics (Theorem 23, page 837). Being globally h-preserving
is not presented as a compositional property, and therefore Torralba and Kissmann carefully con-
sider the interaction of the two new transformations with other merge-and-shrink transformations.
Indeed, combining pruning of subsumed transition with pruning of unreachable states (Section 8)
can result in heuristics that are not even forward-admissible. However, the A* algorithm will still
find optimal solutions with such heuristics.

Torralba and Kissmann consider two applications of the new transformations: firstly, they use
them directly in a regular merge-and-shrink heuristic computation to obtain heuristics for A*. Sec-
ondly, they use a merge-and-shrink computation with their new transformations as a preprocessing
step to determine irrelevant operators in a planning task: if a transformation results in dead labels
(Definition 26, page 818) in any factor of the factored transition system, the corresponding opera-
tors can be safely pruned from the planning task. This pruning of operators can be used together
with any planning algorithm, and Torralba and Kissmann show good results for several planning
algorithms that are unrelated to the merge-and-shrink framework.

9.2.5 TASK REFORMULATION

Using merge-and-shrink for operator pruning as in the work of Torralba and Kissmann can be
viewed as a special case of the more general idea of using merge-and-shrink transformations for
task reformulation. This idea is the topic of a paper by Torralba and Sievers (2019), who argue that
the factored transition system representation used in the merge-and-shrink framework is useful as a
planning task representation in general, not just for the purposes of deriving heuristics.

In this view, exact merge-and-shrink transformations correspond to task reformulations that
preserve the existence and cost of solutions. Together with a mechanism for converting solutions
of the transformed representation back into the original representation, such task reformulations
can be combined with arbitrary planning algorithms. Torralba and Sievers also consider non-exact
transformations that preserve the existence but not necessarily the cost of solutions. These can be
used as task reformulations for satisficing planning. This idea builds a bridge to previous work
on reducing the accidental complexity of planning tasks (Haslum, 2007), to the notion of safe ab-
straction (Wehrle & Helmert, 2009) and to planning task reformulation (Tožička, Jakubův, Svatoš,
& Komenda, 2016). Additional connections exist to the safe shrinking techniques for unsolvabil-
ity discussed in Section 9.2.1 and to a long line of research on refining abstract solutions (e.g.,
Knoblock, 1994; Bacchus & Yang, 1994; Bäckström & Jonsson, 2012b), and of course to the work
by Bäckström and Jonsson (2013) discussed throughout this paper.

Besides using merge-and-shrink as a task transformation tool that can be wrapped around an
arbitrary planning algorithm, Torralba and Sievers also modify existing search-based planning algo-
rithms to work directly with arbitrary factored transition systems. Compared to the more commonly
used SAS+ representation, such representations can be more compact and have additional expres-
siveness that can be viewed as limited forms of conditional effects and angelic nondeterminism.

9.2.6 OTHER TRANSFORMATIONS AND PROPERTIES

We conclude our overview of related work in state-space search by mentioning transformations of
factored transition systems (and their properties) not covered in this paper. Some of these have not
been directly influenced by the merge-and-shrink literature, but could be recast in our transformation
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framework. We believe that developing these connections could improve our understanding of these
techniques while also adding to the the merge-and-shrink toolbox.

We already discussed some such transformations and properties throughout this section. Ex-
amples include the safe shrinking of Hoffmann et al. (2014), the dominance pruning of Torralba
and Hoffmann (2015), the simulation-based shrinking and label pruning of Torralba and Kissmann
(2015) and the solution-preservation transformations of Torralba and Sievers (2019). As discussed
above, some of these transformations and the underlying properties are closely related to the trans-
formations we studied in depth. For example, the property of being safe in the sense of Hoffmann
et al. (2014) or solution-preserving in the sense of Torralba and Sievers (2019) is a weaker form
of the REF property we studied. Similar notions of refinability are a major focus of the work of
Bäckström and Jonsson (2013). Label pruning is directly analogous to (state) pruning discussed in
Section 8.

Wehrle, Sievers, and Helmert (2016) discuss an algorithm for splitting a state variable of a
planning task into multiple state variables whose joint behavior is equivalent to the behavior of the
original variable. In other words, they introduce a factoring transformation, which is in some sense
the opposite of our merge transformation (Section 6). The relationship is not exact: their factoring
applies to a so-called Cartesian product of transition systems, with different semantics from the
synchronized product underlying merging. Despite this difference, their work could be easily recast
within the merge-and-shrink framework. It appears that the notion of factoring by Wehrle et al. is
“almost” exact, with some technicalities related to auxiliary labels introduced by factoring.

Röger, Pommerening, and Helmert (2014) introduce the idea of context splitting for classical
planning tasks. Context splitting can be naturally viewed as a transformation in the merge-and-
shrink framework and is essentially the converse of label reduction (Section 7). Like factoring, a
complication is that a single original label can correspond to multiple transformed labels, which
would require some extensions of our theory. Apart from this aspect, context splitting is again an
exact transformation.

Fluent merging in classical planning is essentially the same idea as the merge transformation for
factored transition systems. It was introduced by van den Briel et al. (2007a, 2007b) for a planning
algorithm based on integer programming and revisited by Seipp and Helmert (2011) to improve the
quality of heuristics for satisficing search, especially ones based on delete relaxation. Bonet and
van den Briel (2014) use fluent merging to strengthen heuristics based on network flows, which are
closely related to the integer programming approach of van den Briel, Vossen, and Kambhampati
(2005). They emphasize two distinct variants of fluent merging: one where two state variables of
a planning task are replaced by their product and one where the product is added to the existing
state variables. The former directly corresponds to the merge transformation studied in this pa-
per. The latter makes it possible to construct multiple overlapping products, for example merging
factors Θ1 and Θ2 to obtain Θ12 while also merging Θ1 and Θ3 to obtain Θ13. In the merge-and-
shrink literature, such overlapping merging has been discussed hypothetically under the name of
non-orthogonal merging (Helmert et al., 2007, 2014) but is not covered by the existing theory or
implementations. A related technique somewhat more distant from the merge-and-shrink literature
is the tracking of conjunctions of state variables in the hm and hC family of heuristics (e.g., Haslum
& Geffner, 2000; Haslum, 2009, 2012; Keyder, Hoffmann, & Haslum, 2012; Fickert, Hoffmann, &
Steinmetz, 2016).

Non-orthogonal merging could be accommodated in the merge-and-shrink framework in two
different ways: either by adding a new additive merge transformation, or more minimalistically by
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adding a new clone transformation that adds a copy of a factor to the factored transition system.
An additive merge transformation can then be expressed by cloning the two factors to be merged
and then merging the clones. This view is attractive because of its minimalism: we already under-
stand the properties of the existing merge transformation, and hence we only need to analyze the
(very simple) clone transformation and appeal to the compositionality of the framework in order to
understand non-orthogonal merging.

It is easy to see that such a clone transformation is not state-induced, i.e., its state mapping
is not surjective. It is also easy to see that it does not have the properties INDT, INDI or INDG
– all this directly follows from the observation that the transformed factored transition system can
have more states (transitions, initial states, goal states) than the original system. However, cloning is
conservative and refinable. To attempt an intuitive explanation, cloning only adds spurious states, as
well as spurious transitions related to these spurious states. The spurious states and their transitions
do not affect refinability precisely because the states are spurious and hence do not have a preimage.

Domshlak, Katz, and Lefler (2010, 2012) transform planning tasks by enriching the original
set of state variables with additional variables that track the achievement of landmarks (Hoffmann,
Porteous, & Sebastia, 2004). The hope is that heuristics computed on such landmark-enriched
planning tasks may be more informative than the same heuristics computed on the original task.
Seipp and Helmert (2014, 2018) present a technique for capturing landmark information within
the framework of strictly homomorphic abstract transition systems. Landmark-enriching can be
modeled in the merge-and-shrink framework by cloning factors that contribute to a given landmark,
and then using the approach of Seipp and Helmert to capture the landmark information.

Finally, cost partitioning (Section 9.2.3) could conceivably be represented as a transformation
within the merge-and-shrink framework. One perspective of cost partitioning is that it creates mul-
tiple clones of the factored transition system, replacing each factor Θ by clones Θ1, . . . ,Θn. These
clones are then decoupled by giving each clone its own version of the labels. Essentially, label `
is replaced by labels `1, . . . , `n such that `i behaves like ` in the i-th clone of each factor but does
not affect the other clones (induces self-loops in all their states). This results in essentially indepen-
dent copies of the factored transition system, connected only by the cost partitioning constraints
c(`1) + · · · + c(`n) ≤ c(`). While this view offers no immediate advantage over the current view
of cost partitioning, it may be a useful starting point for ideas that fall in between the maximally
loose coupling of cost partitioning and the maximally tight coupling of merge transformations. For
example, one could conceive of variants of cost partitioning that loosely couple some labels but
tightly couple others. More generally, cost partitioning for abstraction heuristics can be considered
a special case of operator-counting constraints (Pommerening, Röger, Helmert, & Bonet, 2014;
Pommerening, Helmert, Röger, & Seipp, 2015), and it would be interesting to explore the connec-
tions between the merge-and-shrink framework and operator counting more deeply.

9.3 Beyond Planning

As the last part of our literature discussion, we widen the scope again and discuss connections of
the merge-and-shrink framework to other areas of computer science, both within and outside of
artificial intelligence.

The merge-and-shrink framework is essentially automata-theoretic. Individual transition sys-
tems correspond to finite-state automata, and merge transformations correspond to computing prod-
uct automata. Finite-state automata capture the regular languages, and in this view synchronized
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products correspond to language intersection. Because the semantics of a factored transition sys-
tem is given by the product of its factors, finding plans is the same problems as finding words in
the intersection of regular languages. Kozen (1977) proved that the problem of testing whether the
language intersection of n finite automata is empty is PSPACE-complete. Taking into account the
equivalence of the propositional STRIPS and SAS+ planning formalisms, this result already showed
that classical planning in such formalisms is PSPACE-complete, predating the seminal work of By-
lander (1994) by almost two decades. Similar connections to automata theory can be drawn for
other parts of the merge-and-shrink framework. In particular, there are close connections between
bisimulation-based shrinking and automata minimization, which can be traced back to the work of
Moore (1956).

Automata-based approaches are very common in the area of computer-aided verification, specif-
ically for the problem of model checking (Clarke et al., 1999, Chapter 9). Systems under analysis
are often modeled as communicating automata. Properties to be verified are typically expressed in
a temporal logic such as LTL (Pnueli, 1977) or CTL (Clarke, Emerson, & Sistla, 1986), which can
also be converted into automata. A system then satisfies a given property if all words corresponding
to possible behaviors of the system satisfy the property. This is essentially a language entailment
check that can be tested by a combination of automata complementation, intersection, and empti-
ness testing. Against this background, it perhaps comes as no surprise that the merge-and-shrink
framework originates from model checking, as discussed before (Dräger et al., 2006, 2009). Clearly,
fruitful interactions between merge-and-shrink and computer-aided verification are possible in both
directions. For example, the concepts of bisimulation in this paper and earlier works on merge-and-
shrink and of simulation in the work of Torralba and Hoffmann (2015) both originate from the area
of computer-aided verification.

In the constraint programming community, Pesant (2004) introduced the regular global con-
straint, which encodes that a given sequence of symbols (represented as a sequence of variables of
the constraint program) is accepted by a given finite automaton. In its basic form, the constraint ap-
plies to fixed-length sequences and deterministic automata, but generalizations have been described
in the literature, including ones incorporating notions of cost (e.g., Demassey, Pesant, & Rousseau,
2006). Using a set of such global constraints, one per factor of a factored transition system, it is
easy to express that an assignment to the variables V1, . . . , Vn must correspond to the operators in a
length-n plan for the factored transition system. The connection to classical planning and hence fac-
tored state-space search in general was first explored in a workshop paper by Zanarini, Pesant, and
Milano (2006). In recent years, these connections between the planning and constraint program-
ming research communities have received increasing attention (e.g., Babaki, Pesant, & Quimper,
2020), partially inspired by the development of the merge-and-shrink framework in the classical
planning community (Beck, Magazzeni, Röger, & van Hoeve, 2018, Section 4.3).

Finally, factored mappings12 (Section 4.3) can be viewed as a general knowledge compilation
formalism in the sense of Darwiche and Marquis (2002). We already partially discussed the rela-
tionship to BDDs and ADDs above. Helmert et al. (2014) showed a form of equivalence between
BDDs and factored mappings with linear merge trees. They also showed that non-linear factored
mappings can be converted to BDDs with a (super-polynomial, but subexponential) representational
increase from ‖σ‖ to O(‖σ‖Θ(HS(σ))), where HS(σ) is the Horton-Strahler number (Horton, 1945)
of the merge tree underlying σ, which is in turn within a multiplicative constant of the pathwidth

12. For brevity, in the following we silently assume that the factored mappings considered are orthogonal.
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of the merge tree (Helmert et al., 2015, footnote 3). Helmert et al. (2015) later showed that this
bound is tight, proving that factored mappings are strictly more compact than BDDs. This suggests
that factored mappings might be useful as a knowledge representation formalism beyond the use in
the merge-and-shrink framework. Intuitively, the increase in compactness can be explained by the
ability to partition a mapping with respect to a variable tree, which generalizes the variable orders
underlying BDDs. In the knowledge compilation literature, Deterministic Decomposable Negation
Normal Form (d-DNNF, Darwiche, 2001) and Sentential Decision Diagrams (Darwiche, 2011) are
also generalizations of BDDs that are based on variables trees rather than variable orders. So far, the
relationship between factored mappings and these two formalisms has not been explored in depth.
The same is true for the computational properties of factored mappings as a knowledge compilation
formalism.

10. Conclusions

We reframed the merge-and-shrink framework, which dates back to work by Dräger et al. (2006)
on deriving abstraction heuristics for model-checking problems, as a compositional theory of trans-
formations of factored transition systems. Our work cleans up and generalizes earlier attempts to
develop a theory of merge-and-shrink abstractions in the papers by Helmert et al. (2007, 2014) and
Sievers et al. (2014). As a consequence of these generalizations, we no longer view merge-and-
shrink primarily as a mechanism for deriving abstraction heuristics, but more generally as a toolbox
and theory for transforming and reasoning about factored transition systems. Recent work in the
literature, such as Torralba and Hoffmann’s (2015) paper on dominance pruning and Torralba and
Sievers’s (2019) paper on task reformulation are examples that already embody this research direc-
tion. We believe that the theory developed in this paper will allow future work in this direction to
be conducted more easily and more cleanly. Moreover, due to the compositionality of the approach,
which allows different transformations and different properties to be studied fully independently
from each other, we believe that our theory will make it significantly easier to integrate existing and
future algorithms that operate on factored transition systems.
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Appendix A. Proofs of Theorems in Section 3

Theorem 1. Let X be any of the properties of transformations from Definition 8. Let τ be a transfor-
mation of transition system Θ into transition system Θ′ with property X, and let τ ′ be a transforma-
tion of Θ′ into transition system Θ′′ with property X. Then the composed transformation τ ′′ = τ ′ ◦ τ
also has the property X.
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Proof. Let Θ = 〈S,L, c, T, SI, SG〉, Θ′ = 〈S′, L′, c′, T ′, S′I, S′G〉, and Θ′′ = 〈S′′, L′′, c′′, T ′′, S′′I ,
S′′G〉. Let τ = 〈Θ′, σ, λ〉 and τ ′ = 〈Θ′′, σ′, λ′〉. Then τ ′′ = 〈Θ′′, σ′′, λ′′〉 with σ′′ = σ′ ◦ σ and
λ′′ = λ′ ◦ λ.

We remind the reader that dom(σ′′) = dom(σ)∩ σ−1(dom(σ′)) (cf. Definition 2). This means
that s ∈ dom(σ′′) implies s ∈ dom(σ) and σ(s) ∈ dom(σ′). Analogously, we have dom(λ′′) =
dom(λ) ∩ λ−1(dom(λ′)) and therefore ` ∈ dom(λ′′) implies ` ∈ dom(λ) and λ(`) ∈ dom(λ′).

CONSS The composition of total functions is total.

CONSL The composition of total functions is total.

CONSC Consider ` ∈ dom(λ′′). This implies ` ∈ dom(λ), and because τ has property CONSC,
c′(λ(`)) ≤ c(`). It also implies λ(`) ∈ dom(λ′), and because τ ′ has property CONSC,
c′′(λ′(λ(`)) ≤ c′(λ(`)). Hence c′′(λ′′(`)) = c′′(λ′(λ(`)) ≤ c′(λ(`)) ≤ c(`), which
shows that τ ′′ has property CONSC.

CONST Consider s, t ∈ dom(σ′′) and ` ∈ dom(λ′′) with s `−→ t ∈ T . We get s, t ∈ dom(σ),
σ(s), σ(t) ∈ dom(σ′), ` ∈ dom(λ), and λ(`) ∈ dom(λ′). Because τ has property
CONST, we get σ(s) λ(`)−−→ σ(t) ∈ T ′. Because τ ′ has property CONST, we get
σ′(σ(s)) λ′(λ(`))−−−−−→ σ′(σ(t)) ∈ T ′′, which is σ′′(s) λ′′(`)−−−→ σ′′(t) ∈ T ′′, showing that
τ ′′ has property CONST.

CONSI Consider s ∈ SI with s ∈ dom(σ′′). We get s ∈ dom(σ) and σ(s) ∈ dom(σ′). Because
τ has property CONSI, we get σ(s) ∈ S′I. Because τ ′ has property CONSI, we get
σ′′(s) = σ′(σ(s)) ∈ S′′I , which shows that τ ′′ has property CONSI.

CONSG Consider s ∈ SG with s ∈ dom(σ′′). We get s ∈ dom(σ) and σ(s) ∈ dom(σ′). Because
τ has property CONSG, we get σ(s) ∈ S′G. Because τ ′ has property CONSG, we get
σ′′(s) = σ′(σ(s)) ∈ S′′G, which shows that τ ′′ has property CONSG.

INDS The composition of surjective functions is surjective.

INDL The composition of surjective functions is surjective.

INDC Consider `′′ ∈ L′′. Because τ ′ has property INDC, there exists `′ ∈ λ′−1(`′′) with c′(`′) =
c′′(`′′). Because τ has property INDC, there exists ` ∈ λ−1(`′) with c(`) = c′(`′). Put
together, there exists ` ∈ λ−1(λ′−1(`′′)) = λ′′−1(`′′) with c(`) = c′′(`′′), which shows
that τ ′′ has property INDC.

INDT Consider s′′ `
′′−→ t′′ ∈ T ′′. Then, because τ ′ has property INDT, there exists s′ `

′−→ t′ ∈ T ′
with s′ ∈ σ′−1(s′′), t′ ∈ σ′−1(t′′) and `′ ∈ λ′−1(`′′). Because s′ `′−→ t′ ∈ T ′ and
τ has property INDT, there exists s `−→ t ∈ T with s ∈ σ−1(s′), t ∈ σ−1(t′) and
` ∈ λ−1(`′). Putting everything together, we obtain that given s′′ `′′−→ t′′ ∈ T ′′, there
exists s `−→ t ∈ T with s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), t ∈ σ−1(σ′−1(t′′)) = σ′′−1(t′′)
and ` ∈ λ−1(λ′−1(`′′)) = λ′′−1(`′′), which shows that τ ′′ has property INDT.

INDI Consider s′′ ∈ S′′I . Because τ ′ has property INDI, there exists s′ ∈ S′I with s′ ∈ σ′−1(s′′).
Because s′ ∈ S′I and τ has property INDI, there exists s ∈ SI with s ∈ σ−1(s′). Put
together, we obtain that there exists s ∈ SI with s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), which
shows that τ ′′ has property INDI.
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INDG Consider s′′ ∈ S′′G. Because τ ′ has property INDG, there exists s′ ∈ S′G with s′ ∈
σ′−1(s′′). Because s′ ∈ S′G and τ has property INDG, there exists s ∈ SG with s ∈
σ−1(s′). Put together, we obtain that there exists s ∈ SG with s ∈ σ−1(σ′−1(s′′)) =
σ′′−1(s′′), which shows that τ ′′ has property INDG.

REFC Consider `′′ ∈ L′′. If λ′′−1(`′′) = ∅, the property is vacuously true. (We universally
quantify over an empty set.) Otherwise, consider `′ ∈ λ′−1(`′′) and ` ∈ λ−1(`′). Then,
because τ ′ has property REFC, c′(`′) = c′′(`′′), and because τ has property REFC,
c(`) = c′(`′). Put together, we obtain that given `′′ ∈ L′′, for all ` ∈ λ−1(λ′−1(`′′)) =
λ′′−1(`′′), c(`) = c′′(`′′), which shows that τ ′′ has property REFC.

REFT Consider s′′ `
′′−→ t′′ ∈ T ′′. If σ′′−1(s′′) = ∅, the property is vacuously true. (We univer-

sally quantify over an empty set.) Otherwise, consider s′ ∈ σ′−1(s′′) and s ∈ σ−1(s′).
Then, because τ ′ has property REFT, there exists s′ `′−→ t′ ∈ T ′ with t′ ∈ σ′−1(t′′) and
`′ ∈ λ′−1(`′′). Because s′ `

′−→ t′ ∈ T ′ and τ has property REFT, there exists s `−→ t ∈ T
with t ∈ σ−1(t′) and ` ∈ λ−1(`′). Putting everything together, we obtain that given
s′′ `′′−→ t′′ ∈ T ′′, for all s ∈ σ−1(σ′−1(s′′)) = σ′′−1(s′′), there exists s `−→ t ∈ T with
t ∈ σ−1(σ′−1(t′′)) = σ′′−1(t′′) and ` ∈ λ−1(λ′−1(`′′)) = λ′′−1(`′′), which shows that
τ ′′ has property REFT.

REFG Consider s′′ ∈ S′′G. If σ′′−1(s′′) = ∅, the property is vacuously true. (We universally
quantify over an empty set.) Otherwise, consider s′ ∈ σ′−1(s′′) and s ∈ σ−1(s′). Then,
because τ ′ has property REFG, we have s′ ∈ S′G, and because τ has property REFG, we
have s ∈ SG. Put together, we obtain that given s′′ ∈ S′′G, for all s ∈ σ−1(σ′−1(s′′)) =
σ′′−1(s′′), we have s ∈ SG, which shows that τ ′′ has property REFG.

Theorem 2. Let Θ be a transition system with states S and label costs c, and let τ = 〈Θ′, σ, λ〉 be
a transformation of Θ into transition system Θ′ with label costs c′. Let π be a path in Θ. Then:

1. If τ is state- and label-conservative (CONSS+L), then τ(π) is defined.

2. If τ is transition-conservative (CONST) and τ(π) is defined, then τ(π) is a legal path in Θ′.

3. If τ is transition- and goal-state-conservative (CONST+G), π is an s-plan and τ(π) is defined,
then τ(π) is a σ(s)-plan for Θ′.

4. If τ is state-, label-, transition-, initial-state- and goal-state-conservative (CONSS+L+T+I+G)
and π is a plan for Θ, then τ(π) is a plan for Θ′.

5. If τ is cost-conservative (CONSC) and τ(π) is defined, then c′(τ(π)) ≤ c(π).

Proof. 1. Obvious.

2. Let π = 〈s0
`1−→ s1, . . . , sn−1

`n−→ sn〉 be a path in Θ. Because τ(π) is defined, we have
si ∈ dom(σ) for all 0 ≤ i ≤ n and `i ∈ dom(λ) for all 1 ≤ i ≤ n, and we get τ(π) =
〈σ(s0) λ(`1)−−−→ σ(s1), . . . , σ(sn−1) λ(`n)−−−→ σ(sn)〉. Because τ is transition-conservative, all
elements of τ(π) are transitions of Θ′, and hence τ(π) is a legal path in Θ′.
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3. Let π be an s-plan for Θ such that τ(π) is defined. Let t be the goal state in which π ends.
From the previous part, we obtain that τ(π) is a legal path in Θ′ beginning in state σ(s) and
ending in state σ(t). Because τ(π) is defined and π ends in state t, we get t ∈ dom(σ).
Because τ is goal-state-conservative and t ∈ dom(σ), σ(t) is a goal state in Θ′, and hence
τ(π) is a σ(s)-plan for Θ′.

4. Because π is a plan for Θ, it is an s-plan for some initial state s ∈ SI. Because of 1., τ(π)
is defined, and because of 3., it is a σ(s)-plan. Because τ is initial-state-conservative and
s ∈ dom(σ), we get σ(s) ∈ S′I, showing that τ(π) is a plan for Θ′.

5. Let π = 〈s0
`1−→ s1, . . . , sn−1

`n−→ sn〉 such that τ(π) is defined. Then τ(π) = 〈σ(s0) λ(`1)−−−→
σ(s1), . . . , σ(sn−1) λ(`n)−−−→ σ(sn)〉, and we get c′(τ(π)) =

∑n
i=1 c

′(λ(`i)) ≤
∑n

i=1 c(`i) =
c(π), where the inequality holds because τ is cost-conservative. (In this step, we use that
`i ∈ dom(λ) for all 1 ≤ i ≤ n because τ(π) is defined.)

Theorem 3. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced by
τ is

1. goal-aware if τ is state- and goal-state-conservative (CONSS+G),

2. consistent if τ is state-, label-, cost- and transition-conservative (CONSS+L+C+T), and

3. admissible if τ is state-, label-, cost-, transition- and goal-state-conservative
(CONSS+L+C+T+G).

Proof. Let Θ = 〈S,L, c, T, SI, SG〉 and Θ′ = 〈S′, L′, c′, T ′, S′I, S′G〉.

1. Let s be a goal state of Θ. Then s ∈ dom(σ) due to CONSS and σ(s) is a goal state of Θ′

due to CONSG. Therefore, hτ (s) = h∗Θ′(σ(s)) = 0.

2. Let s `−→ t be a transition of Θ. We have s ∈ dom(σ) and t ∈ dom(σ) due to CONSS
and ` ∈ dom(λ) due to CONSL. We get hτ (s) = h∗Θ′(σ(s)) ≤ c′(λ(`)) + h∗Θ′(σ(t)) ≤
c(`) + h∗Θ′(σ(t)) = c(`) + hτ (t), where the first inequality holds because σ(s) λ(`)−−→ σ(t) is
a transition of Θ′ (due to CONST) and the perfect heuristic h∗Θ′ is consistent, and the second
inequality holds because c′(λ(`)) ≤ c(`) (due to CONSC).

3. Follows from 1. and 2. because goal-awareness and consistency imply admissibility.

Theorem 4. Let Θ be a transition system with label costs c, and let τ = 〈Θ′, σ, λ〉 be a transfor-
mation of Θ into transition system Θ′ with label costs c′. Let π′ be a path from state s′ to state t′ in
Θ′, and let s ∈ σ−1(s′). Then:

1. If τ is transition-refinable (REFT), then there exists a legal path π ∈ τ−1(π′) from s to some
state t ∈ σ−1(t′) in Θ.

2. If τ is transition-refinable and goal-state-refinable (REFT+G) and π′ is an s′-plan for Θ′, then
there exists an s-plan π ∈ τ−1(π′) for Θ.

3. If τ is cost-refinable (REFC), then c(π) = c′(π′) for all π ∈ τ−1(π′).
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Proof. 1. The proof is by induction over the length of π′, denoted by |π′|. Base case: |π′| = 0,
which implies π′ = 〈〉 and s′ = t′. Set t = s. Then π = 〈〉 ∈ τ−1(π′) is a legal path
from s ∈ σ−1(s′) to t = s ∈ σ−1(s′) = σ−1(t′). Inductive step: assume that the property
holds for some s′-plan π′u′ that ends in state u′ and which has length |π′u′ | = n. Consider
the plan |π′| = π′u′ ◦ 〈u′ `′−→ t′〉, i.e., π′ consists of a length-n path from s′ to some state u′,
followed by a transition from u′ to t′ with label `′.13 Clearly, π′ has length |π′| = n+ 1. By
the induction hypothesis, there exists a legal path πu ∈ τ−1(π′u′) in Θ from s to some state
u ∈ σ−1(u′). Because of REFT, Θ has a transition u `−→ t with ` ∈ λ−1(`′) and t ∈ σ−1(t′).
Let π = πu ◦ 〈u `−→ t〉. We observe that π ∈ τ−1(π′) and π is a path from s to t ∈ σ−1(t′) in
Θ, concluding the proof.

2. Because of part 1., there exists a legal path π ∈ τ−1(π′) from s to some state t ∈ σ−1(t′) in
Θ. Because π′ is a plan, t′ is a goal state of Θ′. With REFG and t ∈ σ−1(t′), we obtain that t
is a goal state of Θ, and hence π is an s-plan.

3. Let 〈`′1, . . . , `′n〉 be the sequence of labels in π′. From the definition of refinements, the
sequence of labels in π is of the form 〈`1, . . . , `n〉 with `i ∈ λ−1(`′i) for all 1 ≤ i ≤ n.
From REFC, we get c(`i) = c′(`′i) for all 1 ≤ i ≤ n. We obtain c(π) =

∑n
i=1 c(`i) =∑n

i=1 c
′(`′i) = c′(π′), concluding the proof.

Theorem 5. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced by
τ is

1. lower-bounded by h∗ (h∗(s) ≤ hτ (s) for all states s) if τ is refinable (REF) and

2. perfect if τ is exact (CONS + REF), or more generally if τ is CONSS+L+C+T+G + REF.

Proof. Let τ = 〈Θ′, σ, λ〉. Part 1. follows directly from Theorem 4: for states s with hτ (s) = ∞,
there is nothing to show. If hτ (s) = k < ∞, then Θ′ has a σ(s)-plan π′ of cost k. Because
s ∈ σ−1(σ(s)), Theorem 4.2 shows that Θ has an s-plan π ∈ τ−1(π′), and Theorem 4.3 shows that
the cost of this plan is k. Therefore h∗(s), the cost of an optimal s-plan, is at most k.

Part 2. follows because h∗(s) ≤ hτ (s) (part 1.) and hτ (s) ≤ h∗(s) (admissibility; Theorem 3.3)
imply hτ (s) = h∗(s).

Appendix B. Proofs of Theorems in Section 4

Theorem 6. Let X be any of the properties of transformations from Definition 23. Let τF be a
factored transformation of F into F ′ with property X , and let τ ′F be a factored transformation of F ′

into F ′′ with property X . Then τ ′F ◦ τF has the property X .

Proof. We first show the claim for property LOC≤. We must show h
loc,τ ′′F
F (s) ≤ hmf

F (s) for all
s ∈ A(F ). Using the definition of LOC≤ for τF and τ ′F, we have

hloc,τF
F (s) ≤ hmf

F (s) for all s ∈ A(F ) (6)

h
loc,τ ′F
F ′ (s′) ≤ hmf

F ′(s
′) for all s′ ∈ A(F ′) (7)

13. We use the symbol “◦” to denote concatenation of sequences.
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We then get:

h
loc,τ ′′F
F (s)

Def. 22
= hmf

F ′′(JΣ′′K(s))
Σ′′=Σ′◦Σ

= hmf
F ′′(JΣ′K(JΣK(s))) Def. 22

= h
loc,τ ′F
F ′ (JΣK(s))

(7)

≤ hmf
F ′(JΣK(s)) Def. 22

= hloc,τF
F (s)

(6)

≤ hmf
F (s).

For property LOC≥, we can use the same proof with “≤” replaced by “≥” everywhere. The
result for LOC= follows because LOC= = LOC≤ + LOC≥.

Appendix C. Proofs of Theorems in Section 5

Theorem 7. All shrink transformations are induced abstractions, i.e., they satisfy CONS + IND.
They are also cost-refinable, i.e., satisfy REFC, and locally nonincreasing, i.e., satisfy LOC≤.

Proof. Let F = 〈Θ1, . . . ,Θn〉 and F ′ = 〈Θ′1, . . . ,Θ′n〉 be factored transition systems. Let τF =
〈F ′,Σ, λ〉 be a shrink transformation of F into F ′ based on a local abstraction α of Θk for some
1 ≤ k ≤ n.

By the definition of shrink transformations, we have Θ′i = Θi for all i 6= k, Θ′k = Θα
k , Σ =

〈σ1, . . . , σn〉where σi = πi for all i 6= k, σk is an atomic FM with variable Θk and σtab
k (sk) = α(sk)

for all sk ∈ Θk, and λ = id. Let τ = 〈⊗F ′, JΣK, λ〉 be the transformation of
⊗
F into

⊗
F ′

induced by τF.
Since λ = id, we simplify the notation by dropping the use of λ and λ−1 throughout. Further-

more, as a general remark, we observe that σk represents the function α applied to the local state
of Θk in a given state of F , i.e., JσkK(s) = α(s[Θk]). Thus we can reason about σk by reasoning
about α.

We must show that τ satisfies CONSS, CONSL, CONSC, CONST, CONSI, CONSG, INDS,
INDL, INDC, INDT, INDI, INDG, REFC, and that τF satisfies LOC≤.

• CONSS: JΣK is a total function.

• CONSL, CONSC, INDL, INDC, REFC: It is easy to see that τF satisfies these properties
because λ = id and hence labels (and their costs) are not changed.

• CONST: Consider a transition s `−→ t ∈ ⊗
F . By the definition of products, s[Θi]

`−→
t[Θi] ∈ Θi for all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i and thus
JσiK(s) `−→ JσiK(t) ∈ Θ′i because JσiK is the projection onto Θi (and thus the identity function
on Θi). For i = k, we also have that JσkK(s) `−→ JσkK(t) ∈ Θα

k because Θα
k is the transition

system induced by Θk and α. Put together, we have that JσiK(s) `−→ JσiK(t) ∈ Θ′i for all
1 ≤ i ≤ n, and hence by the definition of products, JΣK(s) `−→ JΣK(t) ∈⊗

F ′, which shows
that τ satisfies CONST.

• CONSI: Consider an initial state s ∈⊗
F . By the definition of products, s[Θi] is an initial

state of Θi for all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i and thus JσiK(s) is
an initial state of Θ′i because JσiK is the projection onto Θi (and thus the identity function on
Θi). For i = k, we also have that JσkK(s) is an initial state of Θα

k because Θα
k is the transition

system induced by Θk and α. Put together, we have that JσiK(s) is an initial state of Θ′i for all
1 ≤ i ≤ n, and hence by the definition of products, JΣK(s) is an initial state of

⊗
F ′, which

shows that τ satisfies CONSI.
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• CONSG: same as the proof for CONSI, replacing “initial” with “goal” everywhere.

• INDS: Consider a state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′i] is a state of Θ′i for

all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i, and hence s′[Θ′i] is a state
of Θi. For i = k, there exists a state sk of Θk with α(sk) = s′[Θα

k ] because α is surjective.
Put together, by setting s = {Θi 7→ s′[Θ′i] | 1 ≤ i ≤ n, i 6= k} ∪ {Θk 7→ sk} for some
sk ∈ α−1(s′[Θα

k ]), we have that s is a state of
⊗
F with JΣK(s) = s′, which shows that JΣK

is surjective and thus τ satisfies INDS.

• INDT: Consider a transition s′ `−→ t′ ∈ ⊗
F ′. By the definition of products, s′[Θ′i]

`−→
t′[Θ′i] ∈ Θ′i for all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i and thus
s′[Θ′i]

`−→ t′[Θ′i] ∈ Θi. For i = k, there exist sk ∈ α−1(s′k) and tk ∈ α−1(t′k) with sk `−→ tk ∈
Θk because Θα

k is induced by Θk and α. Put together, by setting s = {Θi 7→ s′[Θ′i] | 1 ≤ i ≤
n, i 6= k} ∪ {Θk 7→ sk} and t = {Θi 7→ t′[Θ′i] | 1 ≤ i ≤ n, i 6= k} ∪ {Θk 7→ tk} for some
sk ∈ α−1(s′[Θα

k ]) and tk ∈ α−1(t′[Θα
k ]) with sk `−→ tk ∈ Θk, we have that s `−→ t ∈ ⊗

F
with JΣK(s) = s′ and JΣK(t) = t′, which shows that τ satisfies INDT.

• INDI: Consider an initial state s′ ∈ ⊗
F ′. By the definition of products, s′[Θ′i] is an initial

state of Θ′i for all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i, and hence s′[Θ′i]
is an initial state of Θi. For i = k, there exists an initial state sk of Θk with α(sk) = s′[Θα

k ]
because Θα

k is induced by Θk and α. Put together, by setting s = {Θi 7→ s′[Θ′i] | 1 ≤ i ≤
n, i 6= k} ∪ {Θk 7→ sk} for some initial state sk ∈ α−1(s′[Θα

k ]), we have that s is an initial
state of

⊗
F with JΣK(s) = s′, which shows that τ satisfies INDI.

• INDG: same as the proof for INDI, replacing “initial” with “goal” everywhere.

• LOC≤: We need to show hloc,τF
F (s) ≤ hmf

F (s) for all states s ∈ A(F ), which translates to
showing hmf

F ′(JΣK(s)) ≤ hmf
F (s) by the definition of local heuristics. By the definition of

max-factor heuristics, we have hmf
F ′ = max1≤i≤n h

′
i where h′i(s

′) = h∗Θ′i
(s′[Θ′i]) and hmf

F =

max1≤i≤n hi where hi(s) = h∗Θi(s[Θi]). Thus, we need to show max1≤i≤n h
′
i(JΣK(s)) ≤

max1≤i≤n hi(s). It suffices to show h′i(JΣK(s)) ≤ hi(s) for all 1 ≤ i ≤ n.

For i 6= k, we have h′i(JΣK(s)) = hi(s) because Θ′i = Θi and JΣK(s)[Θ′i] = s[Θi]. For i = k,
we have h′i(JΣK(s)) = h∗Θαk

(α(s[Θk])) ≤ h∗Θk(s[Θk]) = hi(s), where the inequality holds
because Θα

k is the transition system induced by Θk and α and therefore the shortest path costs
in Θα

k cannot exceed the corresponding shortest path costs in Θk (cf. properties CONST and
CONSC of induced abstractions). Together, this shows that that τF satisfies LOC≤.

Theorem 8. Consider a shrink transformation τF based on a local abstraction α of factor Θ such
that α(s1) = α(s2) implies h∗Θ(s1) = h∗Θ(s2) for all states s1, s2 ∈ Θ. Then τF is locally nonde-
creasing (LOC≥) and hence locally exact (LOC=).

Proof. We prove LOC=, which implies LOC≥. The proof follows the same structure as the proof
for LOC≤ in Theorem 7. Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system, and let τF =
〈F ′,Σ, λ〉 be the shrink transformation from F into F ′ = 〈Θ′1, . . . ,Θ′n〉, where Θ′k = Θα

k is induced
by Θk and α and Θ′i = Θi for all i 6= k.

We need to show hloc,τF
F (s) = hmf

F (s) for all states s ∈ A(F ), which translates to showing
hmf
F ′(JΣK(s)) = hmf

F (s) by the definition of local heuristics. By the definition of max-factor heuris-
tics, we have hmf

F ′ = max1≤i≤n h
′
i where h′i(s

′) = h∗Θ′i
(s′[Θ′i]) and hmf

F = max1≤i≤n hi where
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hi(s) = h∗Θi(s[Θi]). Thus, we need to show max1≤i≤n h
′
i(JΣK(s)) = max1≤i≤n hi(s). It suffices

to show h′i(JΣK(s)) = hi(s) for all 1 ≤ i ≤ n.
For i 6= k, we have h′i(JΣK(s)) = hi(s) because Θ′i = Θi and JΣK(s)[Θ′i] = s[Θi]. For i = k,

we have h′i(JΣK(s)) = h∗Θαk
(α(s[Θk]))

(∗)
= h∗Θk(s[Θk]) = hi(s), where (*) holds because Θα

k is the
transition system induced by Θk and α, where α only combines states with the same goal distance.
Under such an abstraction, the goal distance of a state in Θk and of its image in Θα

k must be the
same, which is easy to see by contradiction. Together, this shows that that τF satisfies LOC=.

Theorem 9. Let τF be a shrink transformation based on the local abstraction α of factor Θ where
α is induced by the equivalence relation ∼ on the states of Θ. Then:

1. If ∼ has the property BISIM1, then τF has the property REFG.

2. If ∼ has the property BISIM2, then τF has the property REFT.

3. If ∼ is a bisimulation, then τF is exact induced (CONS + IND + REF) and locally equal
(LOC=).

Proof. Let F = 〈Θ1, . . . ,Θn〉 and F ′ = 〈Θ′1, . . . ,Θ′n〉 be factored transition systems. Let τF =
〈F ′,Σ, λ〉 be a shrink transformation of F into F ′ based on a local abstraction α of factor Θk for
some 1 ≤ k ≤ n, where α is induced by the bisimulation relation ∼ on the states of Θk.

By the definition of shrink transformations, we have Θ′i = Θi for all i 6= k, Θ′k = Θα
k , Σ =

〈σ1, . . . , σn〉where σi = πi for all i 6= k, σk is an atomic FM with variable Θk and σtab
k (sk) = α(sk)

for all sk ∈ Θk, and λ = id. Let τ = 〈⊗F ′, JΣK, λ〉 be the transformation of
⊗
F into

⊗
F ′

induced by τF.
Since λ = id, we simplify the notation by dropping the use of λ and λ−1 throughout. Further-

more, as a general remark, we observe that σk represents the function α applied to the local state
of Θk in a given state of F , i.e., JσkK(s) = α(s[Θk]). Thus we can reason about σk by reasoning
about α.

1. REFG given BISIM1: Consider a goal state s′ ∈⊗
F ′. By the definition of products, s′[Θ′i]

is a goal state of Θ′i for all 1 ≤ i ≤ n. Furthermore, for all i 6= k, we have Θi = Θ′i,
and hence s′[Θ′i] is a goal state of Θi. Because Θα

k is induced by Θk and α, at least one
sk ∈ α−1(s′[Θα

k ]) is a goal state of Θk. Because ∼ (on which α is based) has property
BISIM1, this implies that all such sk are goal states of Θk.

The preimages of s′ under JΣK are exactly the states of the form s = {Θi 7→ s′[Θ′i] | 1 ≤ i ≤
n, i 6= k} ∪ {Θk 7→ sk}, where sk ∈ α−1(s′[Θα

k ]). By the above reasoning, all component
states s[Θi] of these states are goal states of Θi, and therefore all states s are goal states of⊗
F . Therefore τ satisfies REFG.

2. REFT given BISIM2: Consider a transition s′ `−→ t′ ∈⊗
F ′ and a state s ∈ JΣK−1(s′). We

must show that there exists a state t ∈ JΣK−1(t′) with s `−→ t ∈⊗
F .

By the definition of products, we have s′[Θ′i]
`−→ t′[Θ′i] ∈ Θ′i for all 1 ≤ i ≤ n. Furthermore,

for all i 6= k, we have Θi = Θ′i and thus s′[Θ′i]
`−→ t′[Θ′i] ∈ Θi. Because Θα

k is induced by Θk

and α, there exist states sk ∈ α−1(s′[Θα
k ]) and tk ∈ α−1(t′[Θα

k ]) such that sk `−→ tk ∈ Θk.
Consider any state s̃k ∈ α−1(s′[Θα

k ]). Because α is based on ∼, we have s̃k ∼ sk. Because
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∼ has property BISIM2, there exists a state t̃k ∼ tk with s̃k `−→ t̃k ∈ Θk. Because α is
based on∼, we have t̃k ∈ α−1(t′[Θα

k ]). Therefore, the transition s′k
`−→ t′k is induced by some

transition of Θk for all preimages of s′k.

The preimages of s′ `−→ t′ under JΣK are exactly the transitions s `−→ t where si `−→ ti ∈ Θi for
all 1 ≤ i ≤ n. By the above reasoning, such component transitions exist for all preimages si
of s′i, and hence s′ `−→ t′ has a preimage transition for all s ∈ JΣK−1(s′). Therefore τ satisfies
REFT.

3. Exact induced and LOC= given bisimulation: Due to Theorem 7, τF satisfies CONS+IND+
REFC. The previous two parts of the theorem show that τF also satisfies REFT and REFG
and is therefore exact induced. For LOC=, we show that shrink transformations based on
bisimulation are h-preserving and apply Theorem 8.

We say that a solution for a state sk ∈ Θk is the sequence of labels along some path from sk
to a goal state of Θk. We show that bisimilar states admit the same solutions: if sk ∼ s̃k and
π is a solution for sk, then π is a solution for s̃k. From this it follows that h∗Θk(sk) = h∗Θk(s̃k)
whenever sk ∼ s̃k, i.e., whenever α maps sk and s̃k to the same state.

The proof is by induction over the length of π. For the base case, let π be a solution for sk
with |π| = 0. Then sk is a goal state. With sk ∼ s̃k and BISIM1, it follows that s̃k is a goal
state and hence π is a solution for s̃k.

For the induction step, let π be a solution for sk with |π| = n+1. Then there exists a transition
sk

`−→ tk ∈ Θk such that π = 〈`〉 + π′, where π′ is a solution for tk with |π′| = n. Using
sk ∼ s̃k, sk `−→ tk ∈ Θk and BISIM2, there exists a state t̃k with tk ∼ t̃k and s̃k `−→ t̃k ∈ Θk.
Because tk ∼ t̃k and π′ is a solution for tk of length n, the induction hypothesis shows that
π′ is a solution for t̃k. Therefore, π is a solution for s̃k.

Theorem 10. Let τF be a shrink transformation of a factored transition system F based on the local
abstraction α of factor Θ, where α is induced by the equivalence relation ∼ on the states of Θ.
Then:

1. If τF has the property REFG and F is not trivially unsolvable, then ∼ has the property
BISIM1.

2. If τF has the property REFT and F has no dead labels, then ∼ has the property BISIM2.

3. If τF is exact, F is not trivially unsolvable and F has no dead labels, then∼ is a bisimulation.

Proof. Let F = 〈Θ1, . . . ,Θn〉 and F ′ = 〈Θ′1, . . . ,Θ′n〉 be factored transition systems. Let τF =
〈F ′,Σ, λ〉 be a shrink transformation of F into F ′ based on a local abstraction α of factor Θk for
some 1 ≤ k ≤ n, where α is induced by the equivalence relation ∼ on the states of Θk. Since
λ = id, we simplify the notation by dropping the use of λ and λ−1 throughout.

1. BISIM1 given REFG: Consider two states sk, s̃k ∈ Θk with sk ∼ s̃k. We show: if sk is a
goal state of Θk, then s̃k is a goal state of Θk. This implies that ∼ has the property BISIM1.
So let sk be a goal state of Θk.

Because
⊗
F is not trivially unsolvable, it has a goal state. The goal states of

⊗
F are exactly

the states where every component is a goal state of the corresponding factor, all factors of F
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have at least one goal state. For all i 6= k, let si be a goal state of Θi. Then s = 〈s1, . . . , sn〉
is a goal state.

Let s′ = JΣK(s). This state is a goal state of
⊗
F ′ because shrink transformations have the

property CONSG. Let s̃ = 〈s1, . . . , sk−1, s̃k, sk+1, . . . , sn〉. Because τF is based on α, α is
based on ∼ and sk ∼ s̃k, Σ maps s and s̃ to the same abstract state. Therefore, we also have
s′ = JΣK(s̃) and hence s̃ ∈ JΣK−1(s′). Using REFG, we get that s̃ is a goal state, from which
it follows that s̃k is a goal state of Θk.

2. BISIM2 given REFT: Consider a label ` and states sk, s̃k, tk ∈ Θk with sk ∼ s̃k and
sk

`−→ tk ∈ Θk. We must show that there exists t̃k ∈ Θk with s̃k `−→ t̃k ∈ Θk and tk ∼ t̃k.

Because ` is not dead in
⊗
F , ` is not dead in any of the factors of F , and therefore there

exist transitions with label ` in every factor of F . For all i 6= k, let si `−→ ti ∈ Θi. Let
s = 〈s1, . . . , sn〉 and t = 〈t1, . . . , tn〉. Then s `−→ t ∈⊗

F .

Let s̃ = 〈s1, . . . , sk−1, s̃k, sk+1, . . . , sn〉. As in the previous part of the proof, Σ maps s and
s̃ to the same abstract state s′ = JΣK(s) = JΣK(s̃). Let t′ = JΣK(t). Because of REFT, there
exists a state t̃ such that s̃ `−→ t̃ ∈⊗

F and t̃ ∈ JΣK−1(t′). Let t̃k be the k-th component of t̃.

From the definition of transitions in products and s̃ `−→ t̃ ∈⊗
F , we get s̃k `−→ t̃k ∈ Θk. From

t̃ ∈ JΣK−1(t′) and the fact that Σ is based on ∼, we get t̃k ∼ tk.

3. Bisimulation given exact: If τF is exact, it satisfies REFG and REFT. Together with the
previous two parts of the theorem, this shows that ∼ is a bisimulation.

Theorem 11. Let τF be a shrink transformation of a factored transition system that is not trivially
unsolvable and has no dead labels. Let∼ be the equivalence relation on which the local abstraction
of τF is based. Then:

• τF satisfies CONS + IND + REFC + LOC≤.

• If τF is h-preserving, then it additionally satisfies LOC≥ (and hence also LOC=).

• τF satisfies REFG iff ∼ satisfies BISIM1.

• τF satisfies REFT iff ∼ satisfies BISIM2.

• τF is exact iff ∼ is a bisimulation.

• If ∼ is a bisimulation, then τF is h-preserving.

Proof. Follows from Theorems 7–10.

Appendix D. Proofs of Theorems in Section 6

Theorem 12. All merge transformations are exact induced, i.e., they satisfy CONS + IND + REF.

Proof. Let F and F ′ be factored transition systems with the same label sets and label costs. Let τF
be a merge transformation of F into F ′.

From
⊗
F being defined as the product over all transition systems in F and ⊗ being a commu-

tative and associative operator, it is clear that replacing two factors from F by their product does
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not change
⊗
F , i.e.,

⊗
F and

⊗
F ′ are equivalent. (The underlying graphs are isomorphic in the

sense that the only differences are the names of states.) With λ = id and Σ mapping corresponding
states of

⊗
F and

⊗
F ′, we immediately have that τF is exact induced.

Theorem 13. All merge transformations are locally nondecreasing, i.e., they satisfy LOC≥.

Proof. Consider a merge transformation τF of F into F ′ that merges factors Θj and Θk, and let
s ∈ A(F ) be a state. We must show hloc,τF

F (s) ≥ hmf
F (s). Let Θ⊗ = Θj ⊗ Θk. By the def-

inition of local and max-factor heuristics and of merge transformations, this holds trivially if the
factor maximizing the factor heuristic in hmf

F (s) is different from Θj and Θk because these factors
are preserved unchanged and with the same state mapping by τF. Therefore, it remains to show
h∗Θ⊗(〈s[Θj ], s[Θk]〉) ≥ max{h∗Θj (s[Θj ]), h

∗
Θk

(s[Θk])}.
Let π = 〈`1, . . . , `n〉 be a minimum-cost path in Θ⊗ from 〈s[Θj ], s[Θk]〉 to some goal state

sG
⊗ = 〈sG

j , s
G
k 〉 of Θ⊗. By the definition of products, π is also a path in Θj from s[Θj ] to sG

j , which
is a goal state of Θj , and a path in Θk from s[Θk] to sG

k , which is a goal state of Θk. Therefore,
the minimum-cost paths of Θj and Θk cannot have larger cost than π. This immediately gives us
h∗Θ⊗(〈s[Θj ], s[Θk]〉) ≥ max{h∗Θj (s[Θj ]), h

∗
Θk

(s[Θk])} for all states s ∈ A(F ) as desired.

Appendix E. Proofs of Theorems in Section 7

Theorem 14. All label reduction transformations are abstractions, i.e., they satisfy CONS. They
also satisfy INDS+L+C+I+G, are goal-refinable, i.e., satisfy REFG, and are locally nonincreasing,
i.e., satisfy LOC≤.

Proof. Let F = 〈Θ1, . . . ,Θn〉 and F ′ = 〈Θ′1, . . . ,Θ′n〉 be factored transition systems, and let L be
the label set and c be the label cost function of F . Let τF = 〈F ′,Σ, λ〉 be a label reduction of F into
F ′.

By the definition of label reductions, we have Θ′i = Θλ,c′

i for all 1 ≤ i ≤ n, where c′(`′) =
min`∈λ−1(`′) c(`) for all `′ ∈ λ(L). Furthermore, Σ = 〈π1, . . . , πn〉 is the identity mapping.
We simplify the notation by dropping the use of Σ and Σ−1 throughout. Let further

⊗
F =

〈S,L, c, T, SI, SG〉 and
⊗
F ′ = 〈S′, L′, c′, T ′, S′I, S′G〉.

Let τ = 〈⊗F ′, JΣK, λ〉 be the transformation of
⊗
F into

⊗
F ′ induced by τF. We must show

that τ satisfies CONSS, CONSL, CONSC, CONST, CONSI, CONSG, INDS, INDL, INDC, INDT,
INDI, INDG and REFG, and that τF satisfies LOC≤.

CONSS JΣK is the identity function.

CONSL λ is a total function.

CONSC Consider ` ∈ L. By the definition of c′, c′(λ(`)) = min˜̀∈λ−1(λ(`)) c(
˜̀). Because ` ∈

λ−1(λ(`)), we get c′(λ(`)) ≤ c(`), which shows that τ satisfies CONSC.

CONST Consider a transition 〈s1, . . . , sn〉 `−→ 〈t1, . . . , tn〉 ∈
⊗
F . By the definition of products,

we have si `−→ ti ∈ Θi for all 1 ≤ i ≤ n. From Θ′i = Θλ,c′

i and the definition of Θλ,c′

i ,
we get si λ(`)−−→ ti ∈ Θ′i for all 1 ≤ i ≤ n. Finally, again by the definition of products, we
have 〈s1, . . . , sn〉 λ(`)−−→ 〈t1, . . . , tn〉 ∈

⊗
F ′, which shows that τ satisfies CONST.

CONSI JΣK is the identity function and S′I = SI.
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CONSG JΣK is the identity function and S′G = SG.

INDS JΣK is the identity function.

INDL λ is surjective (L′ = λ(L)).

INDC Consider `′ ∈ L′. By the definition of label reductions, c′(`′) = min`∈λ−1(`′) c(`), and
hence c′(`′) = c(`) for some label ` ∈ λ−1(`′), which shows that τ satisfies INDC.

INDI JΣK is the identity function and S′I = SI.

INDG JΣK is the identity function and S′G = SG.

REFG JΣK is the identity function and S′G = SG.

LOC≤ We need to show hloc,τF
F (s) ≤ hmf

F (s) for all states s ∈ A(F ), which translates to showing
hmf
F ′(JΣK(s)) ≤ hmf

F (s) by the definition of local heuristics. Again note that JΣK is the
identity function. By the definition of max-factor heuristics, we have hmf

F ′ = max1≤i≤n h
′
i

where h′i(s) = h∗Θ′i
(s[Θ′i]) and hmf

F = max1≤i≤n hi where hi(s) = h∗Θi(s[Θi]). Thus, we
need to show max1≤i≤n h

′
i(s) ≤ max1≤i≤n hi(s). It suffices to show h′i(s) ≤ hi(s) for

all 1 ≤ i ≤ n.

It is easy to see that this holds: every s-plan π with label sequence 〈`1, . . . , `k〉 in Θi

has a corresponding s-plan π′ with label sequence 〈λ(`1), . . . , λ(`k)〉 in Θλ,c′

i . With
c′(λ(`)) ≤ c(`) (because of CONSC, shown above), we get c′(π′) ≤ c(π), from which
h′i(s) ≤ hi(s) follows.

Theorem 15. Consider a label reduction transformation τF of a factored transition system with cost
function c for label mapping λ. τF is cost-refinable (REFC) iff λ only combines labels of the same
cost, i.e., λ(`) = λ(`′) implies c(`) = c(`′) for all `, `′.

Proof. Immediate from the definitions of label reduction transformations and REFC.

Theorem 16. Consider a label reduction transformation τF of a factored transition system with
cost function c for label mapping λ. If λ only combines labels of the same cost, then τF is locally
non-decreasing (LOC≥).

Proof. As discussed in the proof for LOC≤ (Theorem 14), the only differences between the local
heuristics before and after label reduction are due to the changed label costs. If only labels of the
same cost are combined, we have h′i(s) = hi(s) in that proof, which shows LOC≥ (and of course
also LOC=).

Theorem 17. Let F = 〈Θ1, . . . ,Θn〉 be a factored transition system with labels L. Consider the
label reduction transformation τF of F for label mapping λ. Then τF satisfies INDT iff τF satisfies
REFT, and it satisfies these properties iff for all transformed labels `′ ∈ λ(L):

⋃

`∈λ−1(`′)

n∏

i=1

T (Θi, `) =
n∏

i=1

⋃

`∈λ−1(`′)

T (Θi, `).
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Proof. Recall F = 〈Θ1, . . . ,Θn〉, and let F ′ = 〈Θ′1, . . . ,Θ′n〉. By the definition of label reductions,
we have Θ′i = Θλ,c′

i for all 1 ≤ i ≤ n for a cost function c′ that is not relevant for this proof. Let
Θ =

⊗
F = 〈S,L, c, T, SI, SG〉 and Θ′ =

⊗
F ′ = 〈S′, L′, c′, T ′, S′I, S′G〉. The transformation

induced by τF is τ = 〈Θ′, λ, σ〉, where σ = id from the definition of label reductions.
From Definition 8, we recall:

(A) τ satisfies INDT iff ∀s′ `′−→ t′ ∈ T ′ ∃s `−→ t ∈ T : s ∈ σ−1(s′) ∧ t ∈ σ−1(t′) ∧ ` ∈ λ−1(`′).

(B) τ satisfies REFT iff ∀s′ `′−→ t′ ∈ T ′ ∀s ∈ σ−1(s′) ∃s `−→ t ∈ T : t ∈ σ−1(t′) ∧ ` ∈ λ−1(`′).

Because σ = id, we can simplify these definitions: we must have s = s′ and t = t′ in both
properties and can therefore drop s ∈ σ−1(s′) (t ∈ σ−1(t′)) and replace s by s′ (t by t′). We obtain
the same simplified condition in both cases, namely ∀s′ `′−→ t′ ∈ T ′ ∃s′ `−→ t′ ∈ T : ` ∈ λ−1(`′).
In particular, this shows that a label reduction is transition-induced iff it is transition-refinable. We
rewrite the condition into the following more idiomatic form:

(C) τ satisfies INDT (= REFT) iff ∀s′ `′−→ t′ ∈ T ′ ∃` ∈ λ−1(`′): s′ `−→ t′ ∈ T .

We still need to show that (C) is equivalent to the characterization in the theorem, i.e., (C) holds
iff for all `′ ∈ λ(L), we have LHS(`′) = RHS(`′), where LHS(`′) =

⋃
`∈λ−1(`′)

∏n
i=1 T (Θi, `)

and RHS(`′) =
∏n
i=1

⋃
`∈λ−1(`′) T (Θi, `). One of these inclusions is trivial: LHS(`′) ⊆ RHS(`′)

always holds by basic set theory. (This is analogous to the logical entailment ∃x∀yP (x, y) |=
∀y∃xP (x, y).) Therefore, it remains to show that condition (C) holds iff ∀`′ ∈ λ(L): RHS(`′) ⊆
LHS(`′). We show this in two parts.

1. Proof that if (C) holds, then ∀`′ ∈ λ(L): RHS(`′) ⊆ LHS(`′):

Consider `′ ∈ λ(L) and p ∈ RHS(`′). We must show p ∈ LHS(`′).

From the definition of RHS(`′), we have p = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉 with 〈si, ti〉 ∈⋃
`∈λ−1(`′) T (Θi, `) for all 1 ≤ i ≤ n. From the definition of label reduction, we have
〈si, ti〉 ∈ T (Θ′i, `

′) for all 1 ≤ i ≤ n. From the definition of synchronized products, this
implies 〈s′, t′〉 ∈ T (Θ′, `′), where s′ = 〈s1, . . . , sn〉 and t′ = 〈t1, . . . , tn〉. In other words,
we get s′ `′−→ t′ ∈ T ′. Applying (C), we get ∃` ∈ λ−1(`′): s′ `−→ t′ ∈ T . Let ` ∈ λ−1(`′)
be a label such that s′ `−→ t′ ∈ T . From the definition of synchronized products, we ob-
tain 〈si, ti〉 ∈ T (Θi, `) for all 1 ≤ i ≤ n. By definition of Cartesian products, this means
p ∈ ∏n

i=1 T (Θi, `) (recall that p = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉). Because ` ∈ λ−1(`′), this
implies p =

⋃
`∈λ−1(`′)

∏n
i=1 T (Θi, `) = LHS(`′).

2. Proof that if (C) does not hold, then it is not the case that ∀`′ ∈ λ(L): RHS(`′) ⊆ LHS(`′):

We can use that a counterexample to (C) exists and must show that there exists `′ ∈ λ(L)
such that RHS(`′) 6⊆ LHS(`′)), i.e., we must find an element p ∈ RHS(`′) with p /∈ LHS(`′).

Because (C) does not hold, there exists a transition s′ `
′−→ t′ ∈ T ′ such that for all ` ∈ λ−1(`′),

s′ `−→ t′ /∈ T (*). Let s′ `′−→ t′ ∈ T ′ be such a transition. Let s′ = 〈s1, . . . , sn〉 and t′ =
〈t1, . . . , tn〉. Let p = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉. We will show p ∈ RHS(`′) and p /∈ LHS(`′).

(a) Proof that p ∈ RHS(`′):
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Because s′ `
′−→ t′ ∈ T ′, we have 〈s′, t′〉 ∈ T (Θ′, `′). From the definition of synchronized

products, this means 〈si, ti〉 ∈ T (Θ′i, `
′) for all 1 ≤ i ≤ n. From the definition of

label reduction, this means that for all 1 ≤ i ≤ n, there exists `i ∈ λ−1(`′) with
〈si, ti〉 ∈ T (Θi, `i). Hence, for all 1 ≤ i ≤ n, we have 〈si, ti〉 ∈

⋃
`∈λ−1(`′) T (Θi, `).

From the definition of Cartesian products and recalling that p = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉,
we get p ∈∏n

i=1

⋃
`∈λ−1(`′) T (Θi, `) = RHS(`′).

(b) Proof that p /∈ LHS(`′):
Consider any ` ∈ λ−1(`′). From (*) above, we know that s′ `−→ t′ /∈ T , and therefore
〈s′, t′〉 /∈ T (Θ, `). From the definition of synchronized products, there must exist a
factor Θi such that 〈si, ti〉 /∈ T (Θi, `). From the definition of Cartesian products, we
obtain p = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉 /∈

∏n
i=1 T (Θi, `). Because this is true for any ` ∈

λ−1(`′), we get p /∈ ⋃
`∈λ−1(`′)

∏n
i=1 T (Θi, `) = LHS(`′).

Theorem 18. LABELREDUCTION-INDT is coNP-complete.

Proof. LABELREDUCTION-INDT ∈ coNP:
Let F be the given factored transition system, let λ be the given label mapping, and let F ′ be the

factored transition system of the label reduction of F for λ. We provide a polynomial guess-and-
check algorithm for counterexamples to inducedness (in other words, a guess-and-check algorithm
for finding spurious transitions). This shows membership in coNP. We guess states s and s′ and
a label ` of F and verify that s `−→ s′ /∈ ⊗

F and s λ(`)−−→ s′ ∈ ⊗
F ′. Note that verifying if

a given transition is or is not present in the product (
⊗
F or

⊗
F ′) does not require computing

the product: it is sufficient to check if the corresponding component transitions are present in the
individual factors or not.

LABELREDUCTION-INDT is coNP-hard:
Let SAT denote the propositional satisfiability problem for formulas in CNF. SAT is known

to be NP-hard (Cook, 1971; Karp, 1972), and therefore its complement is coNP-hard. The com-
plement of SAT is the problem TAUT of deciding whether a given DNF formula is a tautology:
ϕ is unsatisfiable iff ¬ϕ is a tautology, and if ϕ is in CNF, then ¬ϕ can easily be transformed to
DNF. To prove that LABELREDUCTION-INDT is coNP-hard, we provide the polynomial reduction
TAUT ≤p LABELREDUCTION-INDT.

We assume that DNF formulas ϕ are given by a set of propositional variables X = {X1, . . . ,
Xn} and a set of conjunctions C = {C1, . . . , Cm}, where each conjunction Cj is a set of literals
over X , i.e., a set of elements of the form Xi or ¬Xi. For example, {X3,¬X5,¬X7} represents the
conjunction X3 ∧ ¬X5 ∧ ¬X7.

Without loss of generality, we require that each literal is absent in at least one conjunction Cj .
For example, it is not the case that ¬X3 ∈ Cj for all 1 ≤ j ≤ m. If ¬X3 were contained in all
conjunctions, then ϕ could not be a tautology because all satisfying assignments must map X3 to F.
Such cases can be easily detected and mapped to any input to LABELREDUCTION-INDT for which
the answer is false.

Given such a DNF formula ϕ, we construct the input 〈F, λ〉 for LABELREDUCTION-INDT as
follows:

• F = 〈Θ1, . . . ,Θn〉, where Θi = 〈Si, L, c, T i, SiI , SiG〉 with

– Si = {Ui,Fi,Ti}
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(a) Factor Θ1.

U2
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`1 , `2 , `3

(b) Factor Θ2.

U3

F3

T3

`1, `
2, `3
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(c) Factor Θ3.

U1U2U3

F1T2F3

F1T2T3

T1T2F3

`1, `
2

`1

`2

(d)
⊗
F (without states with no transitions).

U1U2U3

F1F2F3

F1F2T3

F1T2F3

F1T2T3

T1F2F3

T1F2T3

T1T2F3

T1T2T3

` ′
`′

′̀

`′

′̀
`′

` ′
`′

(e)
⊗
F ′ (without states with no transitions).

Figure 20: Illustration of the reduction in Theorem 18 for ϕ = (¬X1 ∧X2)∨ (X2 ∧¬X3)∨ (X1 ∧
¬X1 ∧X3). Top: factored transition system F with three factors Θ1, Θ2, and Θ3. Middle:

⊗
F .

Bottom:
⊗
F ′, where F ′ is obtained from F by the label reduction mapping all labels to `′. For

better readability, the products only show states with incident transitions and use rectangles instead
of the usual circles for states.

– L = {`1, . . . , `m}
– c = {`j 7→ 1 | 1 ≤ j ≤ m}
– T i = {Ui `j−→ Fi | 1 ≤ j ≤ m,Xi /∈ Cj} ∪ {Ui `j−→ Ti | 1 ≤ j ≤ m,¬Xi /∈ Cj}
– SiI = {Ui}
– SiG = {Fi,Ti}

• λ = {`j 7→ `′ | 1 ≤ j ≤ m}, i.e., all labels are mapped to the same (new) label `′.

Clearly, F and λ can be computed from ϕ in polynomial time. Let τF = 〈F ′,Σ, λ〉 be the label
reduction of F for λ.

Many of the details of the construction do not matter. For example, the initial and goal states
are not important, and also the local states of the factors are not really relevant. The only property
of the factors that is important for the reduction is that each factor can have two kinds of transitions
(in our case, Ui −→ Fi and Ui −→ Ti), and the key aspect of the reduction is defining with which
labels these possible transitions occur. Specifically, the reduction is designed in such a way that the
local transition Ui `j−→ Fi exists iff conjunction Cj is consistent with Xi being false (i.e., Xi occurs
negatively in Cj or does not occur at all in Cj). Similarly, the local transition Ui `j−→ Ti exists iff
conjunction Cj is consistent with Xi being true.

To illustrate the construction, consider the following example. Let X = {X1, X2, X3} and let
C = {C1, C2, C3} with C1 = {¬X1, X2}, C2 = {X2,¬X3}, and C3 = {X1,¬X1,¬X3}. In
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other words, ϕ = (¬X1 ∧X2) ∨ (X2 ∧ ¬X3) ∨ (X1 ∧ ¬X1 ∧X3). Figure 20 shows the factored
transition system F (top), the product

⊗
F (middle) and the product

⊗
F ′ after label reduction

(bottom).
We write truth assignments like {X1 7→ T, X2 7→ T, X3 7→ F} with the short-hand notation

TTF. Each truth assignment corresponds to a product state in an obvious way. For example, TTF
corresponds to T1T2F3. Figure 20(d) shows that

⊗
F has transitions from the central state U1U2U3

to the three states F1T2F3, F1T2T3, and T1T2F3. These correspond to the truth assignments FTF,
FTT, and TTF, which are exactly the satisfying assignments of ϕ. Moreover, the transition labels
in Figure 20(d) show why the given states correspond to satisfying assignments. For example, the
incoming transitions of F1T2F3 have the labels `1 and `2 because FTF satisfies the two conjunctions
C1 and C2 in ϕ.

We see that Figure 20(e) has additional transitions not corresponding to ones in
⊗
F . All

eight states that correspond to truth assignments have an incoming transition, so there are five spu-
rious transitions. Consequently, this label reduction is not transition-induced, which is as desired
by the construction because ϕ is not a tautology. More generally, every spurious transition (coun-
terexample to INDT) in

⊗
F ′ corresponds to a non-satisfying assignment of ϕ (counterexample to

tautology).
It remains to formally prove this relationship. Specifically, we show the reduction property: ϕ

is a tautology iff τF is transition-induced. Recalling Definition 8 and taking into account that the
state mapping of label reductions is the identity, τF is transition-induced iff ∀s′ `′−→ t′ ∈⊗

F ′ ∃` ∈
λ−1(`′): s′ `−→ t′ ∈⊗

F .

• (⇒): If ϕ is a tautology, then τF is transition-induced.

Consider s′ `′−→ t′ ∈ ⊗
F ′. We must show that the transition is not spurious, i.e., that

∃` ∈ λ−1(`′): s′ `−→ t′ ∈⊗
F .

From the definition of the factors, it is easy to see that all transitions of
⊗
F ′ are of the form

U1 . . .Un `′−→ A1 . . . An, where each Ai is either Ti or Fi. For a given transition of this form,
we define the truth assignment α as follows: α(Xi) = T if Ai = Ti and α(Xi) = F if
Ai = Fi.

Because ϕ is a tautology, α satisfies ϕ, which means that α satisfies at least one conjunction of
ϕ. Let Cj be such a conjunction, and consider the label `j . To complete this part of the proof,
we show that U i `j−→ Ai ∈ Θi for all 1 ≤ i ≤ n, and therefore U1 . . .Un `′−→ A1 . . . An ∈⊗
F .

Consider any factor Θi. If Ai = Ti, then α(Xi) = T. Because α satisfies Cj , this means that
the literal ¬Xi does not occur in Cj . From the definition of T i, we get Ui `j−→ Ti ∈ T i, as
desired. The case Ai = Fi is symmetric.

• (⇐) by contraposition: If ϕ is not a tautology, then τF is not transition-induced.

Because ϕ is not a tautology, there exist truth assignments that fail to satisfy ϕ. Let α be such
a truth assignment. For 1 ≤ i ≤ n, set Ai = Ti if α(Xi) = T and Ai = Fi if α(Xi) = F. We
prove that τF is not transition-induced by showing that (A) U1 . . .Un `′−→ A1 . . . An ∈⊗

F ′,
but (B) U1 . . .Un `j−→ A1 . . . An /∈⊗

F for all 1 ≤ j ≤ m.

For (A), we must show Ui `′−→ Ai ∈ Θ′i for all 1 ≤ i ≤ n, where Θ′i is the transition system
induced by Θi and λ. Let Li be the literal over Xi that is inconsistent with α on Xi, i.e.,
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Li = Xi if α(Xi) = F and Li = ¬Xi if α(Xi) = T. Because of our restriction to ϕ, no
literal is contained in every conjunction of ϕ. Let Cj be a conjunction that does not contain
Li. By the definition of T i, we obtain Ui `j−→ Ai ∈ Θi and therefore Ui `′−→ Ai ∈ Θ′i.

For (B), for any j ∈ {1, . . . ,m}, consider the conjunction Cj . Because α does not satisfy ϕ,
it does not satisfy Cj . Therefore, there exists a literal L ∈ Cj not satisfied by α. In the case
where L is a negative literal ¬Xi, it follows that α(Xi) = T (because L is not satisfied by α)
and therefore Ai = Ti. Consider the factor Θi. Because ¬Xi ∈ Cj , we have Ui `j−→ Ti /∈ Θi

from the definition of Ti. With Ai = Ti, this implies U1 . . .Un `j−→ A1 . . . An /∈ ⊗
F ,

concluding the proof. The case where L is a positive literal is symmetric.

Theorem 19. Let F be a factored transition system with label set L. Let λ be a label mapping
defined on L with λ(`1) = λ(`2) = `12 for `1, `2 ∈ L, `12 /∈ L, and λ(`) = ` for all ` ∈ L\{`1, `2}.
The (atomic) label reduction of F for λ satisfies INDT (equivalently, REFT) iff

1. `1 globally subsumes `2, or

2. `2 globally subsumes `1, or

3. `1 and `2 are Θ-combinable for some Θ ∈ F , or

4. there exists Θ ∈ F such that `1 and `2 are dead in Θ.

Proof. Let F = 〈Θ1, . . . ,Θn〉 and F ′ = 〈Θ′1, . . . ,Θ′n〉. Let c be the label cost function of F . Let
τF = 〈F ′,Σ, λ〉 be the given label reduction. By the definition of label reductions, we have Θ′i =

Θλ,c′

i for all 1 ≤ i ≤ n, where c′(`′) = min`∈λ−1(`′)(c(`)) for all `′ ∈ λ(L). Furthermore, Σ =
〈π1, . . . , πn〉 is the identity mapping. Let τ = 〈⊗F ′, id, λ〉 be the (nonfactored) transformation
induced by τF. We distinguish four cases:

(A) If neither 1. nor 2. nor 3. nor 4. holds, then τ does not satisfy INDT.

(B) If 1. or 2. holds, then τ satisfies INDT.

(C) If 3. holds, then τ satisfies INDT.

(D) If 4. holds, then τ satisfies INDT.

Using Theorem 17, τ satisfies INDT iff
⋃
`∈λ−1(`′)

∏n
i=1 T (Θi, `) =

∏n
i=1

⋃
`∈λ−1(`′) T (Θi, `)

for all transformed labels `′ ∈ λ(L). It is easy to see that the only label `′ for which this condi-
tion could possibly be violated is the fresh label `12 because the set union trivializes for the other,
unchanged labels. Substituting `12 into the condition means that INDT is equivalent to

LHS =
n∏

i=1

T (Θi, `1) ∪
n∏

i=1

T (Θi, `2) =
n∏

i=1

(T (Θi, `1) ∪ T (Θi, `2)) = RHS.

On (A): Because 3. does not hold, we have T (Θ, `1) 6= T (Θ, `2) for at least two factors Θ.
Because 1. and 2. do not hold, among the factors with T (Θ, `1) 6= T (Θ, `2), there must be at least
one factor Θu with T (Θu, `1) 6⊆ T (Θu, `2) and a different factor Θv with T (Θv, `2) 6⊆ T (Θv, `1).
Choose any local transition (in the sense of pair of local states) tu ∈ T (Θu, `1) \ T (Θu, `2) and
any local transition tv ∈ T (Θv, `2) \ T (Θv, `1). Because 4. does not hold, for all factors Θi other
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that Θu and Θv, we can choose a local transition ti ∈ T (Θi, `1) ∪ T (Θi, `2) (the union cannot be
empty).

Consider the composite transition t = 〈t1, . . . , tn〉. By construction, for each 1 ≤ i ≤ n, we
have ti ∈ T (Θi, `1) or ti ∈ T (Θi, `2). This implies t ∈ RHS. Because tu /∈ T (Θu, `2), we have
t /∈∏n

i=1 T (Θi, `2). Because tv /∈ T (Θv, `1), we have t /∈∏n
i=1 T (Θi, `1). This implies t /∈ LHS,

concluding this part of the proof.
On (B): As discussed in the proof of Theorem 17, we always have LHS ⊆ RHS, so we must

show RHS ⊆ LHS. In Case 1., where `1 globally subsumes `2, we have:

RHS =

n∏

i=1

(T (Θi, `1) ∪ T (Θi, `2))

(∗)
=

n∏

i=1

T (Θi, `1)

⊆
n∏

i=1

T (Θi, `1) ∪
n∏

i=1

T (Θi, `2)

= LHS,

where (*) uses T (Θi, `2) ⊆ T (Θi, `1). Case 2. is symmetric.
On (C): Choose the factor Θj such that `1 and `2 are Θj-combinable, which means T (Θi, `1) =

T (Θi, `2) for all other factors Θi. We show RHS = LHS:

RHS =
n∏

i=1

(T (Θi, `1) ∪ T (Θi, `2))

=

j−1∏

i=1

(T (Θi, `1) ∪ T (Θi, `2))× (T (Θj , `1) ∪ T (Θj , `2))×
n∏

i=j+1

(T (Θi, `1) ∪ T (Θi, `2))

(∗)
=

j−1∏

i=1

T (Θi, `1)× (T (Θj , `1) ∪ T (Θj , `2))×
n∏

i=j+1

T (Θi, `1)

(∗∗)
=

j−1∏

i=1

T (Θi, `1)× T (Θj , `1)×
n∏

i=j+1

T (Θi, `1) ∪

j−1∏

i=1

T (Θi, `1)× T (Θj , `2)×
n∏

i=j+1

T (Θi, `1)

(∗∗∗)
=

j−1∏

i=1

T (Θi, `1)× T (Θj , `1)×
n∏

i=j+1

T (Θi, `1) ∪

j−1∏

i=1

T (Θi, `2)× T (Θj , `2)×
n∏

i=j+1

T (Θi, `2)

=

n∏

i=1

T (Θi, `1) ∪
n∏

i=1

T (Θi, `2)
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=LHS,

where (*) and (***) use T (Θi, `1) = T (Θi, `2) for all Θi 6= Θj and (**) is basic set algebra.
On (D): Let Θ be a factor in which `1 and `2 are dead. It is easy to see that LHS = ∅ = RHS

because Cartesian products involving empty sets are empty and the union of two empty sets are
empty.

Theorem 20. A label reduction transformation of a factored transition system F with labels L and
label costs c that only combines two labels `1, `2 ∈ L is an exact induced transformation, i.e.,
satisfies CONS + IND + REF, iff c(`1) = c(`2) and

1. `1 globally subsumes `2, or

2. `2 globally subsumes `1, or

3. `1 and `2 are Θ-combinable for some Θ ∈ F , or

4. there exists Θ ∈ F such that `1 and `2 are dead in Θ.

General label reductions always satisfy CONS +INDS+L+C+I+G +REFG and LOC≤. They sat-
isfy REFC iff they only combine labels of the same cost. Cost-refinable label reductions additionally
satisfy LOC=. Testing INDT and REFT is coNP-complete for general label reductions.

Proof. This follows from Theorems 14, 15, 16, 18, and 19.

Appendix F. Proofs of Theorems in Section 8

Theorem 21. Let X be any of the properties of transformations from Definition 37. Let τ be a
transformation of transition system Θ into transition system Θ′ with property X , and let τ ′ be a
transformation of Θ′ into transition system Θ′′ with property X . Then the composed transforma-
tion τ ′′ = τ ′ ◦ τ also has the property X if τ additionally satisfies the following side conditions
(depending on X):

• CLOSpred: side conditions CONSL+T

• CLOS→pred: side conditions CONSL+T+I

• KEEPG: side condition CONSG

• KEEP→G : side conditions CONSL+T+I+G + CLOS→pred

In all cases, all side conditions on τ are necessary in the sense that if we drop any one of them,
the result no longer holds. For example, if we only require that τ and τ ′ are CLOS→pred and τ is
CONSL+T or CONSL+I or CONST+I, then τ ′′ is not necessarily CLOS→pred.

Proof. Let Θ = 〈S,L, c, T, SI, SG〉, Θ′ = 〈S′, L′, c′, T ′, S′I, S′G〉, and Θ′′ = 〈S′′, L′′, c′′, T ′′, S′′I ,
S′′G〉. Let τ = 〈Θ′, σ, λ〉 and τ ′ = 〈Θ′′, σ′, λ′〉. Then τ ′′ = 〈Θ′′, σ′′, λ′′〉 with σ′′ = σ′ ◦ σ and
λ′′ = λ′ ◦ λ.

We remind the reader that dom(σ′′) = dom(σ)∩ σ−1(dom(σ′)) (cf. Definition 2). This means
that s ∈ dom(σ′′) iff s ∈ dom(σ) and σ(s) ∈ dom(σ′). Analogously, we have dom(λ′′) =
dom(λ) ∩ λ−1(dom(λ′)) and therefore ` ∈ dom(λ′′) iff ` ∈ dom(λ) and λ(`) ∈ dom(λ′).
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CLOSpred We have to show Between(S, dom(σ′′)) ⊆ dom(σ′′). We will show that for every state
t ∈ dom(σ′′) and all transitions s `−→ t ∈ T , we also have s ∈ dom(σ′′). The result
then follows by repeating the argument.

So consider any t ∈ dom(σ′′) and s `−→ t ∈ T . From t ∈ dom(σ′′), we have t ∈
dom(σ). Because τ satisfies CLOSpred and s `−→ t ∈ T , we also have s ∈ dom(σ).
From CONSL we get ` ∈ dom(λ), and with CONST we then get (*) σ(s) λ(`)−−→ σ(t) ∈
T ′. From t ∈ dom(σ′′), we also have σ(t) ∈ dom(σ′). Because τ ′ satisfies CLOSpred,
from (*) we get σ(s) ∈ dom(σ′). Finally, from s ∈ dom(σ) and σ(s) ∈ dom(σ′), we
conclude s ∈ dom(σ′′).

CLOS→pred We have to show Between(SI, dom(σ′′)) ⊆ dom(σ′′). All states in Between(SI,
dom(σ′′)) are forward-reachable, so we consider a forward-reachable state s ∈
dom(σ′′) and show that Between(SI, {s}) ⊆ dom(σ′′).

Let s̃ ∈ Between(SI, {s}). Then there exists a path 〈s0
`1−→ s1, . . . , sn−1

`n−→ sn〉 with
s0 ∈ SI, sn = s and si = s̃ for some 0 ≤ i ≤ n. From sn ∈ dom(σ′′), we get
sn ∈ dom(σ). Because τ is CLOS→pred, we get si ∈ dom(σ) for all 0 ≤ i ≤ n. Since τ
is CONSI, we have (A) σ(s0) ∈ S′I. Since τ is CONSL, we have `i ∈ dom(λ). Since
τ is CONST, we then have (B) σ(si−1) λ(`i)−−−→ σ(si) ∈ T ′ for all 1 ≤ i ≤ n.

From sn ∈ dom(σ′′), we get σ(sn) ∈ dom(σ′). Together with (A), (B) and τ ′ satis-
fying CLOS→pred, we get σ(si) ∈ dom(σ′) for all 0 ≤ i ≤ n. With the definition of
dom(σ′′), we get si ∈ dom(σ′′) for all 0 ≤ i ≤ n and therefore s̃ ∈ dom(σ′′) as
desired.

KEEPG We have to show SG ⊆ dom(σ′′). Consider a state s ∈ SG. We need to show
s ∈ dom(σ′′). Because τ satisfies KEEPG, we get (A) s ∈ dom(σ), and because
τ satisfies CONSG, we have σ(s) ∈ S′G. Because τ ′ satisfies KEEPG, we get (B)
σ(s) ∈ dom(σ′), and hence s ∈ dom(σ′′) from (A) and (B).

KEEP→G We have to show Between(SI, SG) ∩ SG ⊆ dom(σ′′), i.e., that all forward-reachable
goal states s ∈ SG are included in dom(σ′′). Let s be such a state.

Because s is forward-reachable, there exists a path π = 〈s0
`1−→ s1, . . . , sn−1

`n−→ sn〉
in Θ with s0 ∈ SI and sn = s. Because τ satisfies KEEP→G and s is a goal state,
we get s ∈ dom(σ). Using the same argument as in the proof for CLOS→pred, the path
π is preserved by τ (including the fact that it begins in an initial state), i.e., we have
σ(s0) ∈ S′I and σ(si−1) λ(`i)−−−→ σ(si) ∈ T ′ for all 1 ≤ i ≤ n.

Because τ satisfies CONSG, we also have σ(s) ∈ S′G. Hence σ(s) is a forward-
reachable goal state in Θ′. Because τ ′ is KEEP→G , we get σ(s) ∈ dom(σ′).

Finally, from s ∈ dom(σ) and σ(s) ∈ dom(σ′), we conclude s ∈ dom(σ′′).

We now show that the side conditions on properties that τ must have are necessary. To do so,
we provide examples of τ and τ ′ as in the above proofs where we remove one of the side conditions
from τ such that τ ′′ does not have the claimed property.

Figure 21 shows the examples. Each part illustrates the three transition systems Θ (top), Θ′

(middle), and Θ′′ (bottom). The transformations τ and τ ′ are represented through their state map-
pings σ and σ′ which are indicated in the figures by dotted lines. The label mappings λ and λ′ are
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a b c d
`1 `2 `3

a′ b′ c′ d′
`1 `3

a′′ c′′

σ σ σ σ

σ′ σ′

(a) λ = λ′ = {`1 7→ `1, `3 7→
`3}. (Note `2 /∈ dom(λ).)

a b c d
`1 `2 `3

a′ b′ c′ d′
`1 `3

a′′ c′′

σ σ σ σ

σ′ σ′

(b) λ = λ′ = id.

a b c d
`1 `2 `3

a′ b′ c′ d′
`1 `2 `3

b′′ c′′
`2

σ σ σ σ

σ′ σ′

(c) λ = λ′ = id.

a b c d
`1 `2 `3

a′ b′ c′ d′
`1 `2 `3

a′′ b′′ c′′
`1 `2

σ σ σ σ

σ′ σ′ σ′

(d) λ = λ′ = id.

a b c d
`1 `2 `3

a′ b′ d′
`1

a′′ b′′
`1

σ σ σ

σ′ σ′

(e) λ = λ′ = id.

Figure 21: Each part shows example transition systems Θ,Θ′,Θ′′ (top, middle, bottom) and two
transformations τ = 〈Θ′, σ, λ〉 and τ ′ = 〈Θ′′, σ′, λ′〉, represented by dotted lines between the
transition systems indicating the state mapping. For example, in part (a), Θ has the states {a, b, c, d},
Θ′ has the states {a′, b′, c′, d′}, and σ(a) = a′. The caption of each part provides the label mapping.
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defined in the caption of each part. It is worth pointing out that in all examples except Figure 21(e)
τ trivially has all four properties of Definition 37 because σ is total. The composition “goes wrong”
due to missing side conditions that allow the second transformation, τ ′, to discard important states.

CLOSpred Side condition CONSL is required:

In Figure 21(a), τ satisfies CONST but not CONSL because `2 /∈ dom(λ). Because
`2 /∈ dom(λ), the transition b `2−→ c ∈ Θ does not need to have a counterpart in Θ′.

Transformation τ has the property CLOSpred because σ is total. Transformation τ ′

has the property CLOSpred because Between(S′, dom(σ′)) = Between({a′, b′, c′, d′},
{a′, c′}) = {a′, c′} ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the
property CLOSpred because Between(S, dom(σ′′)) = Between({a, b, c, d}, {a, c}) =
{a, b, c} 6⊆ {a, c} = dom(σ′′).

Side condition CONST is required:

In Figure 21(b), τ satisfies CONSL, but not CONST because σ(b) λ(`2)−−−→ σ(c) /∈ Θ′.

Transformation τ has the property CLOSpred because σ is total. Transformation τ ′

has the property CLOSpred because Between(S′, dom(σ′)) = Between({a′, b′, c′, d′},
{a′, c′}) = {a′, c′} ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the
property CLOSpred because Between(S, dom(σ′′)) = Between({a, b, c, d}, {a, c}) =
{a, b, c} 6⊆ {a, c} = dom(σ′′).

CLOS→pred Side condition CONSL is required:

In Figure 21(a), τ satisfies CONST+I but not CONSL because `2 /∈ dom(λ). Because
`2 /∈ dom(λ), the transition b `2−→ c ∈ Θ does not need to have a counterpart in Θ′.

Transformation τ has the property CLOS→pred because σ is total. Transformation τ ′ has
the property CLOS→pred because Between(S′I, dom(σ′)) = Between({a′}, {a′, c′}) =
{a′} ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property
CLOS→pred because Between(SI, dom(σ′′)) = Between({a}, {a, c}) = {a, b, c} 6⊆
{a, c} = dom(σ′′).

Side condition CONST is required:

In Figure 21(b), τ satisfies CONSL+I, but not CONST because σ(b) λ(`2)−−−→ σ(c) /∈ Θ′.

Transformation τ has the property CLOS→pred because σ is total. Transformation τ ′ has
the property CLOS→pred because Between(S′I, dom(σ′)) = Between({a′}, {a′, c′}) =
{a′} ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property
CLOS→pred because Between(SI, dom(σ′′)) = Between({a}, {a, c}) = {a, b, c} 6⊆
{a, c} = dom(σ′′).

Side condition CONSI is required:

In Figure 21(c), τ satisfies CONSL+T, but not CONSI because σ(a) /∈ S′I.
Transformation τ has the property CLOS→pred because σ is total. Transformation τ ′ has
the property CLOS→pred because Between(S′I, dom(σ′)) = Between(∅, {b′, c′}) = ∅ ⊆
{b′, c′} = dom(σ′). However, τ ′′ = τ ′◦τ does not have the property CLOS→pred because
Between(SI, dom(σ′′)) = Between({a}, {b, c}) = {a, b, c} 6⊆ {b, c} = dom(σ′′).
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KEEPG Side condition CONSG is required:

In Figure 21(d), τ does not satisfy CONSG because σ(d) /∈ S′G.

Transformation τ has the property KEEPG because σ is total. Transformation τ ′ has
the property KEEPG because S′G = ∅ ⊆ {a′, b′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ
does not have the property KEEPG because SG = {d} 6⊆ {a, b, c} = dom(σ′′).

KEEP→G Side condition CONSL is required:

In Figure 21(a), τ satisfies CONST+I+G and CLOS→pred but not CONSL because `2 /∈
dom(λ).

Transformation τ has the property KEEP→G because σ is total. Transformation τ ′ has
the property KEEP→G because Between(S′I, S

′
G)∩ S′G = Between({a′}, {d′})∩ {d′} =

∅ ∩ {d′} = ∅ ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property
KEEP→G because Between(SI, SG) ∩ SG = Between({a}, {d}) ∩ {d} = {a, b, c, d} ∩
{d} = {d} 6⊆ {a, c} = dom(σ′′).

Side condition CONST is required:

In Figure 21(b), τ satisfies CONSL+I+G and CLOS→pred but not CONST because
σ(b) λ(`2)−−−→ σ(c) /∈ Θ′.

Transformation τ has the property KEEP→G because σ is total. Transformation τ ′ has
the property KEEP→G because Between(S′I, S

′
G)∩ S′G = Between({a′}, {d′})∩ {d′} =

∅ ∩ {d′} = ∅ ⊆ {a′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property
KEEP→G because Between(SI, SG) ∩ SG = Between({a}, {d}) ∩ {d} = {a, b, c, d} ∩
{d} = {d} 6⊆ {a, c} = dom(σ′′).

Side condition CONSI is required:

In Figure 21(c), τ satisfies CONSL+T+G and CLOS→pred but not CONSI because σ(a) /∈
S′I.

Transformation τ has the property KEEP→G because σ is total. Transformation τ ′ has
the property KEEP→G because Between(S′I, S

′
G) ∩ S′G = Between(∅, {d′}) ∩ {d′} =

∅ ∩ {d′} = ∅ ⊆ {b′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property
KEEP→G because Between(SI, SG) ∩ SG = Between({a}, {d}) ∩ {d} = {a, b, c, d} ∩
{d} = {d} 6⊆ {b, c} = dom(σ′′).

Side condition CONSG is required:

In Figure 21(d), τ satisfies CONSL+T+I and CLOS→pred but not CONSG because because
σ(d) /∈ S′G.

Transformation τ has the property KEEP→G because σ is total. Transformation τ ′ has
the property KEEP→G because Between(S′I, S

′
G)∩S′G = Between({a′}, ∅)∩∅ = ∅∩∅ =

∅ ⊆ {a′, b′, c′} = dom(σ′). However, τ ′′ = τ ′ ◦ τ does not have the property KEEP→G
because Between(SI, SG) ∩ SG = Between({a}, {d}) ∩ {d} = {a, b, c, d} ∩ {d} =
{d} 6⊆ {a, b, c} = dom(σ′′).

Side condition CLOS→pred is required:

In Figure 21(e), τ satisfies CONSL+T+I+G but not CLOS→pred because c /∈ dom(σ).
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Transformation τ has the property KEEP→G because Between(SI, SG) ∩ SG =
Between({a}, {d})∩{d} = {a, b, c, d}∩{d} = {d} ⊆ {a, b, d} = dom(σ). Transfor-
mation τ ′ has the property KEEP→G because Between(S′I, S

′
G) ∩ S′G = Between({a′},

{d′})∩{d′} = ∅∩{d′} = ∅ ⊆ {a′, b′} = dom(σ′). However, τ ′′ = τ ′◦τ does not have
the property KEEP→G because Between(SI, SG) ∩ SG = Between({a}, {d}) ∩ {d} =
{a, b, c, d} ∩ {d} = {d} 6⊆ {a, b} = dom(σ′′).

Theorem 22. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced
by τ is

1. goal-aware if τ satisfies CONSG + KEEPG,

2. forward-goal-aware if τ satisfies CONSG + KEEP→G ,

3. consistent if τ satisfies CONSL+C+T + CLOSpred,

4. forward-consistent if τ satisfies CONSL+C+T + CLOS→pred,

5. admissible if τ satisfies CONSL+C+T+G + KEEPG + CLOSpred, and

6. forward-admissible if τ satisfies CONSL+C+T+G + KEEP→G + CLOS→pred.

Proof. Let Θ = 〈S,L, c, T, SI, SG〉 and Θ′ = 〈S′, L′, c′, T ′, S′I, S′G〉.
1. Consider s ∈ SG. We have to show that hτ (s) = 0. With KEEPG, we get s ∈ dom(σ).

Together with CONSG, we have σ(s) ∈ S′G. Therefore, hτ (s) = h∗Θ′(σ(s)) = 0.

2. Consider s ∈ SG ∩ S→. We have to show that hτ (s) = 0. Since s ∈ S→ and s ∈ SG, we
have s ∈ Between(SI, SG). Thus, with KEEP→G (Between(SI, SG) ∩ SG ⊆ dom(σ)), we get
s ∈ dom(σ). Then, with CONSG, we get σ(s) ∈ S′G. Therefore, hτ (s) = h∗Θ′(σ(s)) = 0.

3. Consider s `−→ t ∈ T . We have to show that hτ (s) ≤ c(`) + hτ (t). We distinguish two cases.

If t 6∈ dom(σ), then hτ (t) = ∞ by definition, and with that, the inequality trivially holds
independently of hτ (s).

Otherwise, t ∈ dom(σ). From s `−→ t ∈ T and CLOSpred, we get that s ∈ Between({s}, {t})
⊆ Between(S, dom(σ)) ⊆ dom(σ) and hence s ∈ dom(σ). Together with CONSL+T, we
have that σ(s) λ(`)−−→ σ(t) ∈ T ′. Hence h∗Θ′(σ(s)) ≤ c′(λ(`)) +h∗Θ′(σ(t)) because the perfect
heuristic is consistent. We further have c′(λ(`)) ≤ c(λ) due to CONSC. Put together, we get
hτ (s) = h∗Θ′(σ(s)) ≤ c(`) + h∗Θ′(σ(t)) = c(`) + hτ (t) as desired.

4. Consider s `−→ t ∈ T with s, t ∈ S→. We have to show that hτ (s) ≤ c(`) + hτ (t). We
distinguish two cases.

If t /∈ dom(σ), then hτ (t) = ∞ by definition, and with that, the inequality trivially holds
independently of hτ (s).

Otherwise, t ∈ dom(σ). From CLOS→pred, we get that Between(SI, {t}) ⊆ Between(SI,
dom(σ)) ⊆ dom(σ). Because s ∈ S→ and s `−→ t ∈ T , we have s ∈ Between(SI, {t})
and hence s ∈ dom(σ). Together with CONSL+T, we have that σ(s) λ(`)−−→ σ(t) ∈ T ′.
Hence h∗Θ′(σ(s)) ≤ c′(λ(`)) + h∗Θ′(σ(t)) because the perfect heuristic is consistent. We
further have c′(λ(`)) ≤ c(λ) due to CONSC. Put together, we get hτ (s) = h∗Θ′(σ(s)) ≤
c(`) + h∗Θ′(σ(t)) = c(`) + hτ (t) as desired.
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5. Follows from 1. and 3. because goal-awareness and consistency implies admissibility.

6. Follows from 2. and 4. because forward-goal-awareness and forward-consistency implies
forward-admissibility.

Theorem 23. Let τ be a transformation of a transition system Θ. The heuristic hτ for Θ induced
by τ is

1. perfect if τ satisfies CONSL+C+T+G + KEEPG + CLOSpred + REF and

2. forward-perfect if τ satisfies CONSL+C+T+G + KEEP→G + CLOS→pred + REF.

Proof. Let S be the states of Θ. From Theorem 5.1 we get h∗(s) ≤ hτ (s) for all states s ∈ S
because τ satisfies REF. Part 1. follows because hτ (s) ≤ h∗(s) for all s ∈ S (admissibility;
Theorem 22.5). Part 2. follows analogously with Theorem 22.6.

Theorem 24. Let F be a factored transition system, let Θk ∈ F , and let Sk be the states of Θk.
The prune transformation τF of F for K and Θk has the following properties depending on K:

1. for all K: τF satisfies CONSL+C+T+I+G + IND + REF + LOC≥.

2. for K = Sk←: τF additionally satisfies KEEPG + CLOSpred + LOC=.

3. for K = Sk→ or K = Sk↔: τF additionally satisfies KEEP→G + CLOS→pred.

Proof. Let F = 〈Θ1, . . . ,Θn〉, F ′ = 〈Θ′1, . . . ,Θ′n〉 and τF = 〈F ′,Σ, λ〉. Let Θ =
⊗
F and Θ′ =⊗

F ′, and let τ be the transformation of Θ into Θ′ induced by τF. Let S be the states of Θ, and let
S′ be the states of Θ′. Note that S′ ⊆ S and that s ∈ S belongs to S′ iff s[Θk] ∈ K (Definition 33).
Also from Definition 33, we get that τ = 〈Θ′, σ, λ〉 where Θ′ = ΘS′ (Definition 32), σ = JΣK is
the identity function on S restricted to S′, and λ is the identity function.

Since λ = id, we simplify the notation by dropping the use of λ and λ−1 throughout. We now
show the three parts of the theorem.

1. All properties in CONSL+C+T+I+G + IND + REF are trivial to verify because τ behaves like
the identity transformation except for the fact that it discards some states.

For LOC≥, we need to show hloc,τF
F (s) ≥ hmf

F (s) for all states s ∈ A(F ). We have:

hloc,τF
F (s) = hmf

F ′(σ(s)) (Definition 22)

= max
1≤i≤n

h∗Θ′i
(σ(s)[Θ′i]) (Definition 22)

≥ max
1≤i≤n

h∗Θi(s[Θi]) (*)

= hmf
F (s) (Definition 22)

where we show (*) by proving h∗Θ′i(σ(s)[Θ′i]) ≥ h∗Θi(s[Θi]) for all 1 ≤ i ≤ n. For i 6= k,
this is an equality because, for all components other than k, Σ is the identity mapping and
Θ′i = Θi.

For i = k, there are two cases. If s[Θk] /∈ K, the local state s[Θk] is pruned by τF. Then
σ(s) is undefined and we get h∗Θ′k

(σ(s)[Θ′k]) = ∞ by definition, so that the inequality holds
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trivially. If s[Θk] ∈ K, we get h∗Θ′k
(σ(s)[Θ′k])

(∗∗)
= h∗

ΘKk
(s[Θk])

(∗∗∗)
≥ h∗Θk(s[Θk]), where

the equality (**) holds because the transformed transition system Θ′k is ΘK
k (the original

transition system restricted to the states in K) and Σ is the identity on states that are not
pruned. Inequality (***) holds because shortest paths in ΘK

k can only be longer than in Θk

because the transition systems are identical except that ΘK
k misses some states and incident

transitions.

2. KEEPG We have to show SG ⊆ dom(σ), where SG are the goal states of Θ. Because the
other factors are unaffected by the transformation, it suffices to consider Θk. All
goal states of Θk are in the preserved set K = Sk← because every goal state is
trivially backward-reachable from some goal state (itself).

CLOSpred We have to show Between(S, dom(σ)) ⊆ dom(σ). Consider a state
s ∈ Between(S, dom(σ)). From the definition of Between, there exists a path
from s to some state s′ ∈ dom(σ). We must show s ∈ dom(σ), which holds
iff s[Θk] ∈ K = Sk←. From s′ ∈ dom(σ), we get s′[Θk] ∈ Sk←, so that s′[Θk]
is backward-reachable in Θk. Because s has a path to s′, s[Θk] has a path to
s′[Θk], so s[Θk] is backward-reachable in Θk, showing s[Θk] ∈ Sk← and hence
s ∈ dom(σ) as desired.

LOC= We need to show hloc,τF
F (s) = hmf

F (s) for all states s ∈ A(F ). We follow the
same arguments as in the proof of LOC≥ in part 1., except that we must now
show h∗Θ′k

(σ(s)[Θ′k]) = h∗Θk(s[Θk]).

If s[Θk] /∈ K, then h∗Θ′k
(σ(s)[Θ′k]) = ∞ by definition. Moreover, by definition

of K, s[Θk] is not backward-reachable in Θk, and therefore h∗Θk(s[Θk]) = ∞,
so the equality holds.

If s[Θk] ∈ K, we get h∗Θ′k
(σ(s)[Θ′k])

(∗∗)
= h∗

ΘKk
(s[Θk])

(∗∗∗)
= h∗Θk(s[Θk]), for the

same reasons as in part 1., with the difference that (***) is now an equality: every
path to the goal in Θk also exists in ΘK

k because the only pruned states are ones
from which the goal cannot be reached.

3. First, we consider K = Sk→:

KEEP→G We have to show Between(SI, SG) ∩ SG ⊆ dom(σ), where SI are the initial
states and SG are the goal states of Θ. Consider a goal state s of Θ such that
s ∈ Between(SI, SG). Then there exists a path from some initial state s0 via s to
some goal state s?. This implies that Θk has a path from s0[Θk] to s[Θk], where
s0[Θk] is an initial state of Θk. It follows that s[Θk] ∈ K = Sk→ and therefore
s ∈ dom(σ).

CLOS→pred We have to show Between(SI, dom(σ)) ⊆ dom(σ), where SI are the initial
states of Θ. Consider a state s ∈ Between(SI, dom(σ)). From the definition
of Between, there exists a path from some initial state s0 via s to some state
s′ ∈ dom(σ). This implies that Θk has a path from s0[Θk] to s[Θk], where
s0[Θk] is an initial state of Θk. It follows that s[Θk] ∈ K = Sk→ and therefore
s ∈ dom(σ).
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Finally, we consider K = Sk↔. For any transition system with states S, the alive states S↔
are the states that are forward-reachable after restricting to the backward-reachable states (or
vice versa), i.e., S↔ = (S←)→. Therefore, pruning to Sk↔ can be expressed as the composi-
tion τ ′′ = τ ′ ◦ τ , where τ restricts Θk to its backward-reachable states and τ ′ restricts to the
forward-reachable states. From part 2. of this proof, τ has the properties KEEPG+CLOSpred,
which imply the weaker properties KEEP→G + CLOS→pred as discussed earlier. From part 1.
of this proof, it also has the properties CONSL+T+I+G. Moreover, τ ′ has the properties
KEEP→G + CLOS→pred as just shown. From Theorem 21, it follows that the composition
τ ′′ of τ and τ ′ has the properties KEEP→G + CLOS→pred.
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