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Abstract

A crucial precondition for being able to test scientific theories is to clearly define
relevant constructs and to validate their assessments. The process of construct val-
idation has been divided into six aspects that focus on different domains of validity
evidence, ranging from theoretical considerations to the consequences of assessments
and respective score interpretations. In the four manuscripts presented in this dis-
sertation, I focused on several aspects of construct validation in measures of risk
preference, as well as on a particular method to investigate the structural aspect of
construct validity. Specifically, in manuscript one we investigated the content and
substantive aspects of construct validity of self-reported risk preference by focusing
on people’s cognitive representations of their risk preferences, as well as on potential
information integration processes involved during judgment formation. Our results
provide further evidence for the validity of assessing risk preference using self reports.
In manuscript two, we focused on a different approach to assessing risk preference:
behavioral tasks. Specifically, we investigated and aimed to improve the content, sub-
stantive, and external aspects of construct validity of the balloon analogue risk task
(BART). Adapting the stochastic structure of the BART by following the principles
of representative design, we were able to improve the task’s content and substantive
validity aspects, but not its external validity aspect. Manuscript three presents the
EFAtools R package that we created to facilitate (a) the process of structural val-
idation of operationalizations, and (b) the comparison of the implementations of a
popular exploratory factor analysis (EFA) procedure in R and SPSS. In manuscript
four, we then used this package to investigate why this EFA procedure produces dif-
fering results when conducted in R than when conducted in SPSS, and whether one
of the two implementations should be preferred in construct validation. We found a
total of five differences between the two implementations of the EFA procedure that
sometimes led to substantial differences in the obtained structural validity evidence.
Moreover, we were able to identify an implementation that, on average, maximizes
the structural validity evidence obtained with the investigated EFA procedure. With
these four manuscripts, this dissertation provides a small, incremental step in the
direction of valid assessments of the construct of risk preference, and of improving
one of the tools often employed to establish structural validity evidence.
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Introduction

As psychologists we strive to understand and describe how the human mind works
and how it expresses behavior. For example, we ask how people store information and
retrieve it from memory, what kind of dispositions they have and how these shape their
interactions and choices, and to what extent such attributes are genetically or envi-
ronmentally determined, fixed or alterable. To this end, we build and iteratively test
theories with the goal to cumulatively advance the science (e.g., Mischel, 2008, 2009).
We can think of theories as “specif[ying] interconnections of knowledge” (Gray, 2017,
p. 732), or as networks describing relations between observable properties or quanti-
ties (manifest variables) and/or psychological constructs (latent variables). Cronbach
and Meehl (1955) used the term nomological networks, wherein nodes are psycholog-
ical constructs or manifest variables and edges specify the relations between them.
Such nomological networks generate predictions that can be compared to empirical
observations. To this end, constructs in the network are operationalized, which is usu-
ally done by means of, for example, physiological, self-report, or behavioral measures,
that allow us to obtain scores thought to represent people’s positions on these con-
structs. Given these scores, a crucial precondition to being able to test the predictions
of a nomological network is for the measures to meet some psychometric properties
that serve as indicators that the constructs have been measured well and are indeed
usefully (or truthfully) operationalized and conceptualized. In other words, before we
can test the interrelations of constructs in the nomological network (edges), there has
to be evidence for construct validity of the nodes (Cronbach & Meehl, 1955; Messick,
1995). All four manuscripts presented in this dissertation were concerned with this
initial step of establishing construct validity. Before I turn to a discussion of what
exactly construct validity means, let me expand on ways to think about constructs,
as this has important implications for the definition of validity.

In psychological science, constructs are often (at least implicitly) conceptualized in
a reflective manner (e.g., Borsboom, Mellenbergh, & van Heerden, 2003). A reflective
construct is one that is thought to cause behavior—that is, an entity that truly
exists in the world and thus precedes any measurement of it (Borsboom et al., 2003;
Borsboom, Mellenbergh, & van Heerden, 2004). Such entities can consist of processes,
sets of processes, or properties of processes (Borsboom et al., 2003; Kovacs & Conway,
2016). A second way of thinking about constructs is in a formative manner. A
formative construct is nothing more than a summary of a set of observables or other
(reflective or formative) constructs. Therefore, it is not causing the manifestation of
scores, but is simply an aggregation or a summary thereof—in other words, a purely
mathematical entity. Hence, a formative construct does not map onto a real entity.
But why is this distinction important for my thesis?

The two interpretations of constructs lead to different definitions of validity—the
main focus of this dissertation. If we adopt a realist stance, the typical definition
of validity probably most of us would provide if asked—something along the lines of
“a test is valid if it measures what it is supposed to measure”—comes closest to the
definition applied in such a realist approach (see, Borsboom et al., 2004). Specifi-
cally, given a realist interpretation “a test is valid for measuring an attribute if and
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only if (a) the attribute exists and (b) variations in the attribute causally produce
variations in the outcomes of the measurement procedure” (Borsboom et al., 2004, p.
1061). Thus, to establish the validity of an assessment, we need to find the function
that maps a construct onto some observed score obtained via some operationaliza-
tion (see also, Kellen, Davis-Stober, Dunn, & Kalish, 2021). In this light, traditional
approaches to validation—such as establishing predictive/concurrent validity, con-
struct validity, and content validity (see, Cronbach & Meehl, 1955)—cannot be seen
as providing evidence for the validity of a reflective construct, as they are concerned
neither with the existence of a construct nor with the relation between the construct
and the obtained scores (i.e., points (a) and (b) above; for a detailed discussion, see
Borsboom et al., 2004). For the same reason, the popular definition of validity as
“an integrated evaluative judgment of the degree to which empirical evidence and
theoretical rationales support the adequacy and appropriateness of interpretations
and actions based on test scores or other modes of assessment” (Messick, 1989, p.
13) is inappropriate when adopting a realist stance. But is following these other ap-
proaches to construct validation such as proposed by Messick (1989) a waste of time?
I think not. It has to be noted that the field of psychology (and any other field)
likely has a long way ahead until we can even come close to something like validating
the operationalizations of broad constructs that we currently rely on (i.e., in a realist
sense; e.g., Kellen et al., 2021; Meehl, 1978). Until then, we need to employ another
approach to evaluate the validity of operationalizations, for example in the manner
suggested by Messick (1989). To this end, we could adopt an instrumentalist or con-
structivist stance, where we can conceptualize constructs in a way that is useful and
that can tell us something about the observable world, but that is not necessarily
truthful in the realist sense (e.g., for predictive or descriptive purposes; see Yarkoni,
2020; Yarkoni & Westfall, 2017). Even this second, much less ambitious approach
brings with it many challenges (e.g., Meehl, 1978; Yarkoni, 2020)—and it is in this
framework the manuscripts of my dissertation are positioned. Thus, the definition
of validity I will adopt for now is the second one presented above, and is focused on
the appropriateness of the interpretations and actions based on test scores (Messick,
1989).

I have briefly mentioned the different subtypes of validity that were initially
treated separately (e.g., Cronbach & Meehl, 1955). These have since been integrated
into a unified theory of validity (Messick, 1989, 1995), wherein all these subtypes are
included in the practice of construct validation. Moreover, it is important to note
that “validity is not a property of the test or assessment as such, but rather of the
meaning of the test scores [... and that ...] what needs to be valid is the meaning or
interpretation of the score; as well as any implications for action that this meaning
entails (Cronbach, 1971)” (Messick, 1995, p. 741). In his unified framework of va-
lidity, Messick (1989) distinguishes content, substantive, structural, generalizability,
external, and consequential aspects of construct validity that serve as validity criteria
(see also, Messick, 1995). Given that the manuscripts included in this dissertation
focused on four of the six aspects, I will briefly introduce them next.

The content aspect entails the specification of the boundaries and structure of
the construct, such as what kind of attributes are expected to be revealed by the
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operationalization. Moreover, it is concerned with the representativeness of an op-
erationalization for the domain it is supposed to cover (see also, Brunswik, 1955).
This first aspect is concerned mostly with theoretical considerations. In contrast, the
substantive aspect concerns more empirical considerations regarding the substantive
theory and process models of task performance, as well as response consistencies and
performance regularities (Loevinger, 1957; Messick, 1995). The structural aspect con-
cerns the consistency between measurement models and what is to be expected based
on the involved processes and their dynamic interplay as suggested by, for example,
theoretical considerations or task analyses. That is, “the internal structure of the
assessment (i.e., interrelations among the scored aspects of task and subtask perfor-
mance) should be consistent with what is known about the internal structure of the
construct domain” (Messick, 1995, p. 746). The generalizability aspect concerns the
generalizability of the properties and interpretation of scores to different populations,
settings and tasks. External aspects include the relationship between scores from one
measure and other measures of the same (in which case relations should be high), or
of different constructs (in which case relations should be low), as well as with external
criteria (such as indicators for real-life behavior). Thus, the external aspects include
what has been called convergent and discriminant validity (Campbell & Fiske, 1959),
as well as concurrent/predictive validity (Cronbach & Meehl, 1955). Finally, the con-
sequential aspect includes value implications of scores and consequences of test use
(e.g., regarding fairness or bias; Messick, 1989).

The four manuscripts presented here focused on several aspects of construct vali-
dation. Two manuscripts focused on operationalizations of the construct of risk pref-
erence and examined content, external, and substantive aspects of construct validity.
I describe these manuscripts in a first part. In a second part, I then describe the other
two manuscripts that were concerned with a procedure often employed to establish
the structural aspect of construct validity, namely exploratory factor analysis (EFA).

Part I: Construct Validation of Measures of Risk Preference

We are all faced with numerous decisions every day, most of which involve some
degree of risk and uncertainty. In extreme cases, such decisions can determine out-
comes like whether we become rich or poor, have longer or shorter lives, or find or
lose a partner. Given these profound impacts, it is not surprising that for centuries
now the study of risk-taking behaviors has received much attention in psychology
and other fields (e.g., Bernoulli, 1738; Kahneman & Tversky, 1979; von Neuman &
Morgenstern, 1944, for a historical perspective of the concept of risk, see Aven, 2012;
Y. Li, Hills, & Hertwig, 2020). During this time, many theories and models of risk-
taking behaviors have been suggested to explain interindividual differences in these
behaviors (for an overview, see He, Zhao, & Bhatia, 2020).

The question of why people take risks is often studied through the lens of risk
preference—that is, people’s willingness to take risks—which is thought to be a stable
trait (e.g., Frey, Pedroni, Mata, Rieskamp, & Hertwig, 2017; Stigler & Becker, 1977),
sometimes with domain-specific components (Frey, Duncan, & Weber, 2020; Frey
et al., 2017; Weber, Blais, & Betz, 2002; Wilke et al., 2014). To what extent risk



4

preference is viewed as a formative or reflective construct is usually not explicitly
specified, but the use of terms like enduring tastes (e.g., Stigler & Becker, 1977),
appetite for risk (e.g. Galizzi, Machado, & Miniaci, 2016), risk attitudes (e.g., Dohmen
et al., 2011) risk tolerance (e.g., Linnér et al., 2019), or also risk preference itself hints
at a mostly reflective interpretation. However, one important issue in this regard is
that multiple definitions of risk, and therefore also of risk preference, exist (for an
overview, see Aven, 2012; Aven, Renn, & Rosa, 2011), and the boundaries between risk
preference and related constructs such as impulsivity or sensation seeking are often
blurred (Eisenberg et al., 2019; Frey et al., 2017; Sharma, Markon, & Clark, 2014).
Clearly, such conceptual clutter can hinder valid operationalizations (in the sense
of both Messick, 1989, 1995, and Borsboom et al., 2004), at least regarding certain
aspects of construct validity—yet, attempting to solve this issue is beyond what I can
hope to achieve in this dissertation. We adopted a conceptualization of risk-taking
behaviors often used in psychology; that is, as behaviors that involve potential gains,
but also come with the potential for losses (e.g., Mata, Frey, Richter, Schupp, &
Hertwig, 2018), and risk preference then is a person’s willingness to engage in these
kinds of behaviors1. To operationalize risk preference, two prominent approaches
exist: the stated preferences approach, and the revealed preferences approach (for a
review, see Mata et al., 2018).

In the stated preferences approach, people’s risk preferences are assessed using self-
report measures. That is, respondents are asked to explicitly state their preferences,
usually on some rating scale. These measures have been found to exhibit high test–
retest reliabilities and evidence for the external aspect of construct validity (e.g.,
Dohmen et al., 2011; Frey et al., 2017; Galizzi et al., 2016; Lönnqvist, Verkasalo,
Walkowitz, & Wichardt, 2015; Mata et al., 2018). However, concerns have been
raised that these self-report measures might show high intercorrelations due to method
invariance (i.e., shared variance due to the same method and response sets rather than
through the same construct being assessed; cf. Cronbach, 1946) and that responses
are prone to social desirability biases (e.g., Charness, Gneezy, & Imas, 2013; Harrison
& Rutström, 2008; Holt & Laury, 2002). Addressing part of this doubt, specifically,
investigating the content and substantive aspects of construct validity of self-reported
risk preference, has been the focus of manuscript one.

In the revealed preferences approach, people’s risk preferences are inferred based
on their choices in behavioral, game-like tasks, such as monetary lotteries or virtual
slot machines. These behavioral tasks have sometimes been argued to be the gold
standard for assessing risk preference, as they include actual choices that can be in-
centivized, and are thus thought to be mostly immune to social desirability biases
(e.g., Camerer & Hogarth, 1999; Holt & Laury, 2002). Another advantage of this
approach is that these very controlled small worlds (Savage, 1954) allow for pre-

1This definition still does not provide a clear conceptualization of what constitutes risk in these
behaviors: the variability in outcomes, the magnitude of a potential loss, the probability of a loss,
a combination of these or even additional factors. In the manuscripts I present here, we focused
on measures that do not clearly distinguish between these conceptualizations. However, solving
this conceptual clutter might still be important in the long run—I will return to this issue in the
discussion.
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cisely formulated mathematical models that can be subjected to strong tests (Meehl,
1967, 1978)2. However, there are a number of issues associated with behavioral tasks,
including that they have often been found to exhibit low temporal stability and prob-
lems regarding the external aspect of construct validity in terms of low correlations
amongst each other and with self-report measures of the same constructs, as well as
with measures of relevant real-life risk taking (e.g., Eisenberg et al., 2019; Frey et al.,
2017; Lönnqvist et al., 2015; Mata et al., 2018). Addressing especially the content
and external aspects of construct validity has been the main focus of manuscript two.

In sum, the two approaches have different proponents and opponents, advantages
and disadvantages; yet they are often also combined in a multi-method approach
(Dohmen et al., 2011; Frey et al., 2017; Frey, Richter, Schupp, Hertwig, & Mata,
2020; Lejuez et al., 2002; Mishra & Lalumière, 2010). In what follows, I will first
describe manuscript one, in which we investigated content and substantive aspects of
construct validity of self-reported risk preference. Second, I will describe manuscript
two, in which we investigated whether an adaptation of one of the most popular
behavioral tasks—the balloon analogue risk task (BART; Lejuez et al., 2002)—might
lead to improvements in the content, substantive, and external aspects of the task’s
construct validity.

Manuscript One: Construct Validation of Self-Reported Risk Preference

Steiner, M. D., Seitz, F. I., & Frey, R. (in press). Through the window of my mind:
Mapping information integration and the cognitive representations underlying self-
reported risk preference. Decision. Retrieved from https://psyarxiv.com/sa834/

As alluded to above, the structural (e.g., Frey et al., 2017), generalizability (e.g.,
Mata, Josef, & Hertwig, 2016), and external aspects of construct validity of self-
reported risk preference (e.g., Dohmen et al., 2011; Galizzi et al., 2016) are relatively
well documented. However, comparatively little research has focused on the content
and substantive aspects of construct validity, and our goal in this manuscript was
to collect evidence in this regard. To this end, we investigated people’s cognitive
representations underlying these self reports, and strived to describe the possible
information integration processes at play. In many scientific studies, in large-scale
panel studies as well as in financial institutions, participants’ and customers’ risk
preference is assessed with questions like “Are you generally a person who is willing
to take risks or do you try to avoid taking risks?” (this is the general risk item of the
German Socio-Economic Panel, SOEP; e.g., Dohmen et al., 2011). We assumed that
when coming up with a response to these questions, people retrieve information from
memory which they then integrate into a judgment. This sort of internal sampling

2Whether the consequences are then actually drawn when a theory gets refuted is a different
question. For example, prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992)
has been refuted many times by strong tests, just like expected utility theory before it (e.g., Birn-
baum, 2008; Kellen, Steiner, Davis-Stober, & Pappas, 2020). Yet, it is continued to be widely
used. This may reflect the issue that confirmations of theories are often viewed as convincing, but
disconfirmations are not (see Beaujean & Benson, 2019).

https://psyarxiv.com/sa834/
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has been termed Thurstonian sampling (e.g., Fiedler & Juslin, 2005; Juslin & Olsson,
1997).

By drawing on research on judgment and decision making that focused mainly on
external sampling of information, we hypothesized that three properties of evidence
might be especially important when integrating information: First, the weight of
evidence, which refers to the amount of information pointing in the direction of a
specific judgment (Griffin & Tversky, 1992; Kvam & Pleskac, 2016). Second, the
strength of evidence, which indicates how strongly a piece of information points in
the direction of a specific judgment (note that these weights are subjective in the
case of internal sampling; Griffin & Tversky, 1992; Kvam & Pleskac, 2016). Third,
the order of evidence, which refers to the serial position of the individual pieces of
evidence (Highhouse & Gallo, 1997; Hogarth & Einhorn, 1992; Yechiam & Busemeyer,
2005). But how can one study the processes by which these kinds of information may
be integrated?

We relied on the process-tracing method of aspect listing (Johnson, Häubl, &
Keinan, 2007; Weber et al., 2007). Therein, people are presented with a judgment
or evaluation task, and are asked to concurrently list all the reasons (aspects) that
cross their minds during judgment formation. They then indicate their judgment and
finally indicate for each aspect whether and how strongly it speaks in favor of a specific
judgment (in our case, in favor of seeking risks; we labeled these pro-aspects) or
against the respective judgment (contra-aspects). Although aspect listing has mainly
been employed with judgments of external objects (Appelt, Hardisty, & Weber, 2011;
Johnson et al., 2007; Weber et al., 2007), it has also been used in one of the few
studies into the cognitive processes underlying self-report measures (Jarecki & Wilke,
2018; for other studies into self-report measures that relied on similar techniques, see
Arslan et al., 2020; Schimmack, Diener, & Oishi, 2002).

The goal of this manuscript was fourfold: First, to investigate whether and how
people’s self-reported risk preferences can be modeled with a set of cognitive models—
that is, to establish substantive validity evidence. To this end, we ran a model compar-
ison of a set of models that incorporated different combinations of the three properties
of evidence introduced above (i.e., models of potential information integration pro-
cesses). Second, to map the content of the listed aspects (i.e., what people thought
about) and thus further establish content and substantive validity evidence. Third,
to gauge the stability of both the aspects’ contents (aspect stability), and the aspects’
strength of evidence (evidence stability). Fourth, to test whether aspect and evidence
stability were related to the temporal stability of the self-reported risk preference,
which again relates to the substantive aspect of construct validity.

We ran two studies (N = 250, and N = 150) on Amazon Mechanical Turk
(MTurk), the second of which was a within-subjects retest of the first after an in-
terval of about one month. In the two studies, participants were presented with the
SOEP general risk item, completed the aspect listing procedure prior to responding to
the item, and then indicated the strength of evidence, and provided some information
regarding the content of each listed aspect.

We found that people’s self-reported risk preferences could indeed be modeled well
with a set of cognitive models that take properties of participants’ listed aspects as
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input. The averaged strength of evidence of these aspects was the best predictor, but
the weight of evidence was almost as good. The order of evidence was irrelevant for
predictions. These findings apply both to out-of-sample predictions within the same
study, as well as across studies. This finding corroborates and extends past research
(Jarecki & Wilke, 2018) and provides substantive validity evidence for the employed
measure.

Regarding the content of the listed aspects, there was a gap between pro- and
contra-aspects: As can be expected, the sentiment of the pro-aspects was much higher
(i.e., more positive) as compared to that of contra-aspects. Most participants reported
meta-level domain-general statements, often mentioning explicit risk–return tradeoffs
(see also, Weber et al., 2002; Weber & Milliman, 1997) and feelings towards taking
risks (see also, Bell, 1982; Loewenstein, Weber, Hsee, & Welch, 2001; Loomes & Sug-
den, 1982; Mellers, Schwartz, Ho, & Ritov, 1997). Moreover, and in line with previous
findings, aspects tended to describe active choices and past experiences rather than
social comparisons (Arslan et al., 2020; Schimmack et al., 2002; van der Linden, 2014;
Weber, 2006). Taken together, these findings speak to the content and substantive
validity evidence of self-reported risk preference.

Finally, we found aspect stability to be low (i.e., participants tended to report
different aspects across the two time-points), but evidence stability to be high. More-
over, evidence stability was related to the stability of the self-reported risk preference.
That is, it might be the case that participants internally sampled from a pool of ex-
periences. Although such a sampling process (especially with small samples as in our
study) might lead to different sets of aspects in terms of their contents, if participants
tended to have made experiences with similar strengths of evidence, this could explain
the evidence stability.

In sum, we found further evidence for the construct validity of self-reports of risk
preferences. There is an alignment between the properties of listed aspects and the
self-reported risk preferences, the contents of these aspects match what we would
expect based on theories of risk taking, and the stability of the properties of the
aspects matched the stability of the self-reported risk preference across a one-month
period. Although these findings speak to the content and substantive aspects of
construct validity of self-report measures of risk preference, it is yet unclear whether
we were really able to capture the ongoing information integration processes. In fact,
additional data we have meanwhile collected in this regard cast some doubt on our
findings. I will return to this issue in the general discussion.

Manuscript Two: Construct Validation of the BART

Steiner, M. D., & Frey, R. (in press). Representative design in psychological as-
sessment: A case study using the balloon analogue risk task (BART). Journal of
Experimental Psychology: General. Retrieved from https://psyarxiv.com/dg4ks/

In contrast to self-report measures of risk preference, behavioral tasks are faced
with a different criticism. Although they have been argued to be the gold standard
for the assessment of people’s risk preference (Beshears, Choi, Laibson, & Madrian,

https://psyarxiv.com/dg4ks/
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2008; Charness et al., 2013)—for example, because they are incentive compatible—
severe limitations in their test–retest reliabilities as well as the content and external
aspects of construct validity have been documented (e.g., Beauchamp, Cesarini, &
Johannesson, 2017; Berg, Dickhaut, & McCabe, 2005; Eisenberg et al., 2019; Frey
et al., 2017; Lönnqvist et al., 2015; Millroth, Juslin, Winman, Nilsson, & Lindskog,
2020). However, to be able to study risk-taking using, for example, neuroimaging
technologies, or in incentive-compatible ways, such behavioral tasks are indispensable
(Helfinstein et al., 2014; Rao, Korczykowski, Pluta, Hoang, & Detre, 2008; Schonberg,
Fox, & Poldrack, 2011; Tisdall et al., 2020).

In this manuscript, we explored whether one reason for this unsatisfactory state of
affairs might be that these tasks are usually designed without following the principles
of representative design (Brunswik, 1956; Hammond, 1966; for an overview see Araújo,
Davids, & Passos, 2007 and Dhami, Hertwig, & Hoffrage, 2004), which is part of the
content and substantive aspects of construct validity (Messick, 1995). This concept
was introduced by Brunswik and states that experimental stimuli should be sampled
or designed such that they represent the environments to which they are supposed to
generalize—for example, regarding the stochastic properties of these environments.
Based on this concept, we argued that one underlying problem of behavioral tasks
might lie in the mismatch between the stochastic structure present in the behavioral
tasks and the environments these tasks are supposed to generalize to—and thus,
that these problems in the content aspect of construct validity might impede the
external aspect of construct validity, as well as temporal stability. To investigate this
assumption, we focused on one of the most popular behavioral risk tasks, the BART
(Lejuez et al., 2002).

In the BART, participants inflate a number of virtual balloons (usually 30) by
repeatedly pressing a button. For every inflation (button press), the virtual balloon
increases in size and some fixed amount of money is transferred to a temporary
account, that is transferred to a permanent account as soon as the participant decides
to stop inflating the current balloon. The balance of this permanent account is paid
out at the end of the task. Thus, the goal is to inflate each balloon to as large a size
as possible. However, each balloon has an explosion point (i.e., a specific number of
inflations) that, when reached, will cause the balloon to explode, in which case the
money accrued in the temporary account is lost. This introduces a trade-off, where an
optimum number of inflations has to be found in order to maximize the final payoff.

The BART has been argued to exhibit a number of desirable properties also
present in real-life behaviors: (a) it is an experience-based task, where properties
of the environment have to be learned over time (see also Hertwig, Barron, We-
ber, & Erev, 2004; Wulff, Mergenthaler-Canseco, & Hertwig, 2018); (b) the risk of
a balloon explosion increases with each inflation, leading to a “sense of escalating
tension and exhilaration” (Schonberg et al., 2011, p. 16); and (c) risk and reward
are positively correlated (e.g., Pleskac, Conradt, Leuker, & Hertwig, 2020; Pleskac &
Hertwig, 2014). However, taking a closer look at the typical implementation of the
BART, we find that the explosion points are drawn from a uniform distribution—
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usually from U(1, 128)3. Now, consider if we were to inflate a number of real balloons
and inspect the distribution of explosion points: What distributional form would we
expect? Arguably we can assume some regularity (as opposed to completely random
variability) and some central value around which most balloons would explode—in
line with a normal distribution. Indeed, a brief test of this with 100 real balloons
showed that the explosion points followed something close to a normal distribution.
Hence, the BART’s design is not representative in that the stochastic structure of the
task environment does not represent the respective real-world environment.

To address this potential shortcoming, we implemented a more representative
BART version with a normal distribution of explosion points (the BARTnormal, with
three versions, all with the same mean but differing standard deviations) and com-
pared it to the task’s typical implementation with the uniform distribution of ex-
plosion points (BARTuniform, implemented with the same mean as the BARTnormal
versions). We hypothesized that the representative task version would improve the
accuracy of participants’ representations of the task’s stochastic structure, of their
beliefs about the payoff-maximizing behavior, as well as of their actual behavior in
the task. These predictions were based on two assumptions: (a) that the normal
distribution is what people expect, should they attempt to make a transfer from
their knowledge about real balloons (or given the assumption that many things in
the world are normally distributed), and (b) that a normal distribution provides a
clearer, less-noisy signal which is easier to learn, due to the more consistent feedback
around the mean breaking point. This should facilitate the expression of partici-
pants’ true preferences due to a better understanding of their current environment
(i.e., task structure), and thus improve the association with real-life risk-taking be-
haviors. Moreover, we assumed that this adaptation would lead to an improvement
in the task’s temporal stability.

To test these predictions regarding the accuracies of people’s representations, be-
liefs, and behavior, we collected data from 772 participants via MTurk to compare
the four BART versions in a between-subjects design (the N per condition ranged
between 190 and 197), with a retest after about one month (N = 632, ranging be-
tween 157 and 160 per condition). Participants first completed one of the four BART
versions, then reported whether they believed explosion points to be uniformly or
normally distributed, along with a confidence rating, followed by their beliefs about
the optimal behavior, and, finally, completed questionnaires assessing both real-life
risk-taking behaviors as well as risk propensities in different domains and risk-related
constructs.

The results confirmed the first three of our predictions: participants who had
completed the BARTnormal exhibited more accurate task representations and beliefs
about the optimal behaviors, and displayed more accurate actual behaviors (i.e.,

3The initial algorithm to determine explosion points is as follows (see, Lejuez et al., 2002): For
each balloon, a vector of 127×I (for inflation) and 1×E (for explosion) is created. At each inflation,
an element from this vector is drawn without replacement. If an I is drawn, the balloon is inflated,
otherwise it explodes. Thus, at each inflation stage where the balloon has not yet exploded on the
i− 1 preceding trials, the probability that it will explode on the next trial is p(Ei) = 1

C−i+1 , where
C is the maximal capacity of, usually, 128. This leads to a uniform distribution of explosion points.
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their scores in the task were closer to the optimal behavior). Strikingly, even in
the BARTuniform condition and after having completed the BART, most participants
believed the explosion points to be normally distributed—a clear mismatch between
their beliefs and the actual task structure and an invalidation of assumptions of
the most popular cognitive models of behavior in the BART (Wallsten, Pleskac,
& Lejuez, 2005). However, this improvement in participants’ task representations
did not translate to improvements in terms of concurrent and convergent validity
with other self-report measures of risk preference (both frequency—i.e., real-life risk-
taking—and propensity measures) and risk-related constructs, nor to improvements
in test–retest reliability. What could be possible reasons for this finding?

We can think about representative design as having to be established on two
levels: On the first level, there is the model behavior—a behavior that should be
representative of the wider class of real-life behaviors we want to generalize to and
that is then simulated in a behavioral task. In the case of the BART, the model
behavior is the inflation of real balloons in a funfair-like game. Representativeness
on this first level is established if the environmental properties—such as stochastic
structures in this model behavior—match those present in the real-life behaviors
of interest. On the second level, there is the behavioral task—a simulation of the
model behavior. This simulation should be representative of the environment in the
model behavior and thus should exhibit action fidelity—that is, performance in the
simulator (the task) should match performance in the simulated (the model behavior;
see Stoffregen, Bardy, Smart, & Pagulayan, 2003). Now, let us assume (a) a task
that is representative of its model behavior, and (b) that this model behavior is
representative of the wider class of risk-taking behaviors. In this case, the task would
also be representative of these real-life behaviors of interest.

We have arguably improved the representativeness of the BART for its model
behavior. However, it might be the case that the model behavior of inflating balloons
is not representative of the wider class of risk-taking behaviors4. But how might we
arrive at behavioral tasks that provide valid assessments of people’s risk preferences?

If our assumptions are indeed correct and the problem lies at least partly with
the model behavior, we first need to identify representative model behaviors. A
promising approach to this end is available in the form of ecological momentary
assessment techniques (see Miller, 2012; Ohly, Sonnentag, Niessen, & Zapf, 2010;
Trull & Ebner-Priemer, 2013), such as the experience sampling method (Hektner,
Schmidt, & Csikszentmihalyi, 2007). This would allow us to study the environmental
properties and psychological processes involved in the real-life behaviors we ultimately
want to predict and understand. From this set of target behaviors, some could then
be selected as model behaviors to be simulated in the lab. This way we might reach
the goal of arriving at behavioral tasks where we have positive validity evidence in
the content, substantive, structural and external aspects of construct validity, and
can thus be used to test the theories of decision making, as well as to learn more

4In the end, we would have to implement a real-life version of the BART to be sure—an under-
taking that would come with great intricacies. For example, inflating 30 real balloons (the typical
number of trials in the BART) with a bicycle pump would take about 1 hour. Moreover, a sound-
proof laboratory (or deaf colleagues) would be needed.
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about, for example, the neural underpinnings of risky decisions.

Part II: Establishing Structural Validity Evidence Using Exploratory
Factor Analysis

The first part contained two examples of how I investigated (and in one case tried
to improve) aspects of construct validity of two specific operationalizations of risk
preference, and was thus more content specific. In this second part, I describe two
manuscripts that were concerned with a method that can be used to evaluate the
structural aspect of construct validity: EFA (introduced by Spearman, 1904).

The goal in establishing structural validity evidence with EFA (and factor analysis
in general) is to explore and test the (hypothesized) latent structure of investigated
measures, and compare it to what one would expect, for example, based on a task
analysis (e.g., C. Li, 2013; Messick, 1995). To this end, most fields of psychology—
from clinical psychology (e.g., Derogatis & Cleary, 1977; Dozois, Dobson, & Ahnberg,
1998; Osman, Kopper, Barrios, Osman, & Wade, 1997) to personality psychology
(e.g., McCrae & Costa, 1987; Sharma et al., 2014), or the field of intelligence research
(e.g., Carroll, 1993; Spearman, 1904)—rely on the framework of factor analysis. For
instance, to establish the structure and subscales of the domain-specific risk-taking
scale (DOSPERT), Weber et al. (2002), and later Blais and Weber (2006) relied on
EFA (see also, Frey, Duncan, & Weber, 2020). Relatedly, to investigate whether risk
preference constitutes a uni- or multidimensional construct, Frey et al. (2017) relied
on EFA procedures. So, what does factor analysis do? How can we identify the
structure (or latent constructs) underlying a set of, for example, questionnaire items
as in Weber et al. (2002)?

Factor analysis aims to explain the variance in a larger number of manifest vari-
ables with a smaller number of latent factors. EFA constitutes a data-driven approach
to factor analysis and can broadly be divided into three substeps5: First, the number
of latent factors to extract has to be determined. A large number of methods has
been proposed to this end (for an overview and comparison, see Auerswald & Mosha-
gen, 2019), which are geared towards different goals (e.g., maximizing verisimilitude
or maximizing replicability, see Preacher, Zhang, Kim, & Mels, 2013). This deci-
sion is crucial: For example, if we take the publicly available data of Frey, Dun-
can, and Weber (2020)—which contains responses to the DOSPERT of over 3,000
participants—and subject it to some of the most popular factor-retention criteria,
parallel analysis (Horn, 1965) suggests between six and 12 factors (depending on the
type), the Kaiser-Guttmann criterion (Guttman, 1954; Kaiser, 1960, 1961) suggests
four or seven factors (again, depending on the type), and the scree test (Cattell,
1966) suggests five factors. Now, if we choose to extract, say, a five-factor solution,
we would have to test the reliability and validity evidence for each of these five factors
separately (e.g., Hubley & Zumbo, 2013). Moreover, the factor structure specifies how
the subscales will be assembled. Therefore, this initial decision leads to a great many
consequences in scale construction.

5Four substeps if we include a prior test of the suitability of a data structure for factor analysis
(e.g., Bartlett, 1951).
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The second step is to extract the chosen number of factors. A variety of algorithms
are available to this end, the most recommended ones being iterative principal axis
factoring (PAF) and maximum likelihood estimation (e.g., Costello & Osborne, 2005;
Watkins, 2018). These algorithms try to find the set of linear regression equations
that can best account for the observed scores based on factor loadings (these are the
regression coefficients) and factor scores (people’s position on the latent construct—
these are the predictors)6. In other words, “a common factor model regresses the
observed test scores (outcome variables) on the latent factor scores (predictor vari-
ables)” (C. Li, 2013, p. 89). The resulting matrix of regression coefficients is called
the loadings matrix. To predict each of p variables there is one coefficient for each of
the m factors, thus the matrix has the dimensions p ×m. Often, these loadings are
what we are interested in, as they specify the strength of the relation between latent
constructs and manifest scores. However, these obtained loadings are frequently hard
to interpret.

To facilitate the interpretation of the loadings, in a third step, a factor rotation is
performed to seek simple structure, where each variable loads saliently7 onto one, and
only one, factor. Two broad types of rotation methods can be distinguished: Orthog-
onal rotations—where the resulting factors are uncorrelated—and oblique rotations—
where the resulting factors are allowed to correlate. It is generally recommended to
rely on oblique rotations, as these can account for the complete space of factor inter-
correlations (from negative one to one, including zero), whereas orthogonal rotations
constrain factor intercorrelations to zero (i.e., orthogonal factors are a special case
of oblique factors; e.g., Fabrigar, Wegener, MacCallum, & Strahan, 1999; Gorsuch,
1974; Watkins, 2018). The most popular oblique rotations are promax (Hendrick-
son & White, 1964) and oblimin (Carroll, 1958; Jennrich & Sampson, 1966, for an
overview, see Watkins, 2018). The regression coefficients after oblique rotation are
then referred to as pattern coefficients.

There are many popular EFA procedures available through the two most pop-
ular statistics programs in psychology (Dunn, 2011): R and SPSS. Which of these
programs is used should not affect results, and indeed the interchangeable use in pub-
lications suggests that no differences between implementations of procedures in the
two programs are expected. However, there exists evidence that this interchangeable
use is not always justified (e.g., Collins, 2016; del Rio, 2017; GaryStats, 2017; Hodges,
Stone, Johnson, Carter, & Lindsey, 2020; krissen, 2018; u/kriesniem, 2018). For in-
stance, in Grieder and Grob (2020), a reviewer asked the authors to verify the EFA
results they had obtained with R by rerunning the analysis in SPSS. They followed
this suggestion and found the results to differ markedly between the two programs—
even though they had specified the same factor extraction and rotation procedure in
both programs. Thus, conclusions regarding structural validity evidence drawn from
EFA can depend on the software used. The goal of the two manuscripts I describe
next was to systematically investigate this issue with the EFA procedure applied in
Grieder and Grob (2020)—PAF and promax rotation—and to provide a solution for

6Note that the complete right-hand side of this equation is latent; that is, unobserved.
7The threshold to determine a loading as salient is usually set at .3 or .4 (e.g., Gorsuch, 1974).
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the problem in the form of a freely available, open-source software.
Specifically, the goal of manuscript three was to develop an R package that would

allow a fast and systematic test between different EFA procedures, and that would
facilitate the process of conducting an EFA by providing convenient meta-level func-
tions. This package (EFAtools) was then used in manuscript four, where we system-
atically compared the R and SPSS implementations of PAF and promax rotation
to map (a) how the implementations differ, (b) to what magnitude of differences in
results this leads, and (c) whether there exists a best way of implementing these
procedures. That is, the goal was to test to what extent we can trust the structural
validity evidence provided by these EFA procedures, and how this evidence could be
maximized.

Manuscript Three: EFAtools—A Tool for Construct Validation With R

Steiner, M. D. & Grieder, S. (2020). EFAtools: An R package with fast and flex-
ible implementations of exploratory factor analysis tools. Journal of Open Source
Software, 5 (53), 2521. doi: 10.21105/joss.02521

The EFAtools R package implements a set of EFA procedures, including tests
of suitability of a data structure for factor analysis, factor-retention criteria, factor
extraction and rotation methods, as well as the possibility to compute ω reliability
coefficients (e.g., McDonald, 1999). The goal in developing the package was fourfold.
First, to provide a collection of easily applicable and modern factor-retention criteria
such as comparison data (Ruscio & Roche, 2012), the hull method (Lorenzo-Seva,
Timmerman, & Kiers, 2011), or the empirical Kaiser criterion (Braeken & van Assen,
2016), such that the important decision of how many factors to retain could be based
on multiple state-of-the-art criteria as suggested by Auerswald and Moshagen (2019).
A summary function allows users to run all these criteria with a single function call
and shows a summary output that makes the application of this recommendation
especially easy. Our second goal was to provide flexible implementations of PAF and
promax rotation, such that many different implementations could be run and tested
against each other. This allowed us to replicate both the R psych and SPSS imple-
mentations, as well as a plethora of further ones. Moreover, we also implemented a
large set of other factor extraction and rotation methods. A third goal was to imple-
ment a model-averaging function that allows the user to run many implementations
at the same time and to obtain an averaged model output that may help gauging the
stability of a solution across many implementations. A fourth goal was to provide
C++ implementations of iterative procedures to improve the speed of the analyses,
which is especially useful when many EFAs are conducted (e.g., in simulation studies),
or when data sets are very large.

With these features, EFAtools facilitates testing the internal structure of measures
and can thus be a helpful tool for establishing the structural aspect of construct va-
lidity. Moreover, the implementation in a freely available, open-source programming
language makes it possible for others to track down details of implementations on
a code level, and makes adaptations and further developments much easier as com-
pared to proprietary software. With this package, we then set out to compare the
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implementations of PAF and promax rotation between R and SPSS in manuscript
four.

Manuscript Four: A Comparison of Implementations of an EFA Procedure
in R and SPSS

Grieder, S. & Steiner, M. D. (2020)8. Algorithmic jingle jungle: A comparison of
implementations of principal axis factoring and promax rotation in R and SPSS.
Manuscript submitted for publication. Preprint doi: 10.31234/osf.io/7hwrm

Our aim in this manuscript was to identify the reasons why the EFA implemen-
tations in R and SPSS produce differing results, as observed in Grieder and Grob
(2020)—and the implications for construct validation with these two programs. To
this end, we relied on a three-step approach, focusing on PAF and promax as these
are among the most popular and robust EFA procedures: First, we compared the
implementations on a code/algorithm level, to identify whether the differences were
due to programming errors, or valid differences in the implementations. Second, we
gauged the magnitude of differences in the results produced by the two implementa-
tions across a large collection of real data sets. Third, we ran simulation studies to
test whether one implementation outperforms the other, as well as whether there ex-
ists an even better implementation that would maximize structural validity evidence
obtainable with PAF and promax.

To compare the implementations of PAF and promax in the two programs, we
relied on the source code of the implementations in R—more specifically, of the psych
package (henceforth referred to as the R psych implementation; Revelle, 2020). As
SPSS is proprietary software, there was no source code available and we thus relied
on the technical manual wherein the algorithms are described (IBM Corp., 2020)9.
This comparison revealed three differences in the implementations of PAF and two
differences in the implementations of the promax procedures. These differences did
not constitute programming errors but were either variations in the algorithms that
had been suggested in the literature, or just slightly different ways of handling objects
and criteria, both of which ways seem valid.

To answer the second point, we factor analyzed 247 data sets from various fields—
including the fields of intelligence, personality, and decision making—with both the R
psych and SPSS implementations and compared the differences in unrotated loadings
and pattern coefficients. This analysis yielded the following main insights: First, the
differences after PAF (i.e., between matrices of unrotated loadings) were very small.
However, after promax rotation, these differences become larger and, in some cases,
substantial. Second, although even after promax rotation the absolute differences in
individual loadings often were still relatively small on average, they were large enough
to have profound implications in many data sets. Specifically, in 38.4% of these data
sets, there was at least one difference in indicator-to-factor correspondences—that is,

8Shared first authorship.
9Note that we also verified our code by comparing the solutions produced by our code to the

solutions produced by the respective implementation in R and SPSS.
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differences on which factor the variables loaded saliently (if we only look at data sets
with more than one factor extracted, this number was even higher, at 44.4%). In other
words, in 38.4% of these data sets the two methods provide diverging evidence for
the latent structure, and thus, if we were to develop scales based on these EFAs, the
subscales would look different (remember that psychometric properties like reliability
and some aspects of validity are then judged per subscale). So, differences exist and
are sometimes sizable. But is one implementation preferable over the other?

Analyses of real data sets do not allow comparisons of the two implementations
in terms of how accurately these procedures can capture a data-generating process
(i.e., the true model), as this process is not known for real data. Yet, ultimately
this is the process we try to capture using EFA. Therefore, testing how well the data-
generating process can be captured is to establish the validity of such an approach. To
overcome this issue, we ran a set of simulation analyses, wherein we created a diverse
set of 108 distinct population models (the true data-generating models to recover),
from which we then simulated data to subject to EFA. We then not only pitted the
two EFA implementations from R psych and SPSS against each other, but included
192 different implementations in a model comparison. These constituted all possible
combinations of the differences between the R psych and SPSS implementations, as
well as of some additional adaptations suggested in previous literature.

Overall, we found clear and reliable differences in how accurately the implementa-
tions were able to recover many of the population models. Regarding only the R psych
and SPSS implementations, which implementation was preferable depended on the
data structure. Therefore, we cannot make a broad statement of the sort “always use
implementation X”. A similar picture emerged when considering the complete set of
all 192 implementations: We were able to identify an implementation that performed
best on average and consists of a mix between the R psych and SPSS implementations.
However, it did not consistently perform best across all data structures.

In general we found performance to vary strongly across data structures when
comparing the average discrepancies between population models and the factor solu-
tions. This highlights the fact that some data structures are hard to recover in factor
analysis, even when we know the true number of factors and when distributional
assumptions are fulfilled. Examples are data structures with only few variables per
factor, weak pattern coefficients, highly correlated factors, cross-loadings, or variable
magnitudes of pattern coefficients (see also de Winter & Dodou, 2012; Gerbing &
Hamilton, 1996; Gorsuch, 1974; Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005;
MacCallum, Widaman, Zhang, & Hong, 1999; Mulaik, 2010; Tucker & MacCallum,
1997). That is, if such data structures are observed, one should be careful when ex-
amining and interpreting the structural validity evidence provided by factor analysis.

Our analyses in this manuscript have shown that the choice of software can im-
pact the structural validity evidence obtained from one of the most popular EFA
procedures. Moreover, we were able to identify an implementation that, on aver-
age, produces most accurate results, given the data structures considered. However,
given that there was no implementation that consistently outperformed all others, a
promising alternative approach may also be to employ model averaging to generate
an average solution—yet, this remains to be seen in future research.
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To summarize, just like the operationalization of a psychological construct, the
operationalization of a statistical procedure can influence the validity evidence we ob-
tain. Moreover, just as different scales assessing the same construct are implemented
and validated, different algorithmic procedures are implemented and should also be
validated.

General Discussion

We can think of theories as nomological networks wherein constructs are the nodes,
and the edges are the interrelations between constructs. Testing theories can then
be conceptualized as testing the match between the theorized nomological network
and the empirically observed one. Yet, only when our proposed constructs are op-
erationalized well and thus exhibit validity evidence to a sufficient degree across the
different aspects of construct validity can we tackle the next step of testing theories
beyond individual constructs. Otherwise, we risk that different measures of the al-
legedly same construct may not actually assess the same thing, and thus potentially
render tests of theories uninterpretable. Therefore, although the next steps of testing
a theory come with substantial intricacies per se (e.g., Kellen et al., 2021; Meehl,
1967, 1978; Yarkoni, 2020), successfully achieving them may be impossible if we do
not perform the initial step of construct validation carefully. For example, a test of
the risk–return framework (e.g., Weber & Milliman, 1997), where it is assumed that
someone’s risk preference is determined by their perceived risks and perceived bene-
fits, only makes sense if the involved measures exhibit sufficient evidence for construct
validity. How else could we interpret an observed relation between the scores if we
are unsure whether the scores represent what we intended to measure?

In the four manuscripts presented in this dissertation, I have focused on studying
and improving construct validity in the cases of risk preference and of EFA. The main
conclusions from these manuscripts are as follows: (a) Self-reports of risk preference
not only exhibit structural, generalizability, and external aspects of construct validity,
but also content and substantive aspects. Taken together, these findings likely render
these measures useful in an instrumentalist approach. (b) One factor impeding the
construct validity evidence of behavioral tasks assessing risk preferences may be the
lack of representative design (i.e., a lack in the content and structural aspects of
construct validity). Fixing this problem might help us to design behavioral tasks
that exhibit sufficient degrees of content, substantive, structural, and external validity
evidence. However, additional steps may be necessary for us to be able to create
such tasks and until these problems are solved, it might be a sensible approach to
refrain from using many behavioral tasks for anything beyond an interest in the
tasks themselves. (c) Which statistical software is employed can affect the obtained
structural validity evidence and, given current practices of how factor analysis is
employed, also how we conceptualize constructs. To maximize the obtained validity
evidence from the EFA procedure investigated in manuscript four, the identified best
implementation should be applied. Moreover, these differences also highlight that,
although it may be perfectly acceptable to rely on these data-driven approaches in
an instrumentalist approach in the sense of dimensionality-reduction techniques, it
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is important to keep in mind the discussed boundary conditions necessary for these
methods to properly function, as well as the kind of evidence they can (and cannot)
deliver. Future work is needed along all these lines, both in specific and broader
terms.

More specifically, future research on self-reported risk preferences is necessary
to test whether the aspects collected in manuscript one really do reflect people’s
sampling from memory that occurs when they respond to self-report items assessing
their risk preference. Although we likely studied their thoughts regarding taking risks,
it is unclear whether this information sampling and integration is also the process
naturally occurring when no aspect listing precedes the item response (in fact, initial
data we have since collected in this direction suggests otherwise). This question could
be addressed using think-aloud protocols (Ericsson & Simon, 1980, 1993), that have
been shown to not influence task responses (Fox, Ericsson, & Best, 2011). Although
our focus was on the construct of risk preference, such an approach would have
implications for many other constructs often assessed using self-reports. That is,
it could help solving the question of whether people construct judgments of how they
see themselves directly when asked, or whether they have stored some value of what
kind of person they are in memory (at least for constructs we consider important
in everyday lives)10. Our findings from manuscript one point to a construction of
preferences, however, whether this really is the process taking place has to be studied
in future research to corroborate the content and substantive validity evidence of
these measures.

Our findings in manuscript two suggested that we may first have to identify repre-
sentative model behaviors to be able to achieve valid operationalizations of risk pref-
erence by means of behavioral tasks. Given that the discussed problems of behavioral
tasks also exist in domains other than the study of risk preference (e.g., Duckworth
& Kern, 2011; Eisenberg et al., 2019), these findings may also apply to tasks in those
other fields. One way to identify representative model behaviors may be to rely on
the experience sampling method in combination with think-aloud protocols to study
the processes and environmental properties involved in real-life risk-taking behaviors.
This would also allow for a more detailed, process-based view on risk-taking behav-
iors and might thus provide new avenues for theory testing and development on the
one hand, and might be beneficial when adopting a prediction focus on the other
hand. Moreover, this approach might allow for the creation of tasks that exhibit suf-
ficient degrees of content and substantive validity evidence, which would likely also
generalize to external validity evidence.

Finally, regarding the structural validation of scales, model averaging might be a
promising alternative to the current use of EFA. Not only different implementations of
the PAF and promax procedure as studied here, but also multiple factor-retention and
rotation methods could be included in such a procedure to profit from the combination
of different properties where the respective methods excel. Moreover, that certain

10An alternative explanation that could mimic the retrieval of a stored value could lie in a con-
struction of preferences that does not occur consciously. Such a process could not be investigated
using verbal protocol approaches like think-aloud protocols, which might render our situation a
tricky one.
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data structures could not be recovered well in the EFA simulations highlights the
importance of adhering to best practices in scale construction for EFA, and factor
analysis in general, to really be able to yield structural validity evidence.

These were some immediate avenues for future research. For the remainder of
the discussion I would like to take a broader view. First, regarding the study of risk
preference (and most of the risk-related constructs): the apparent conceptual clutter
(i.e., lack of a clear, widely accepted and uniformly applied definition of risk) likely
impairs our ability to map out clear theories; that is, if we have no clear (functional)
definition of the construct, how can the theory around it be precise enough to not fall
pray to the scathing criticism offered by Meehl (1978) and to related issues (Kellen et
al., 2021; Yarkoni, 2020)? In other words, how can we arrive at a theory from which
we can derive precise predictions that help us explain behavior, and that allow for
strong tests of the theory? Clearly this problem not only exists with the construct of
risk preference and risk-related constructs like impulsivity and sensation seeking, but
also in other fields of psychology (see, Meehl, 1978). So, what can we do to address the
problems of vague definitions of constructs and theories? I think a clear statement and
discussion of our ultimate goals would be a good start, as this determines which road
to take. Specifically, if a purely descriptive map of the relations between a set of better
or worse defined constructs and/or manifest variables is our goal (cf., Yarkoni, 2020),
then the situation is probably not that grave—even though streamlining terminology
to the extent possible may still prove helpful. In this operationalist approach, a
construct would be defined completely by its operationalization in a measure and
thus, every measure would make up its own distinct construct (Borsboom et al.,
2003)—no more need for construct validation nor explanatory theories in this view.
I think little could be gained from such an approach.

In contrast, if the goal were to study and generalize to specific real-life behaviors of
interest, it might make sense to define the construct along the lines of these behaviors
and then focus on the predictive accuracy of operationalizations (e.g., Yarkoni, 2020;
Yarkoni & Westfall, 2017). I think that such an instrumentalist approach could be
sensible: It would allow us to clearly define what kind of behaviors we care about,
explore what constitute good predictors thereof, and on this basis define constructs,
identify their boundaries, processes etc.—in short, embark in construct validation
in the sense of Messick (1989, 1995). That is, these constructs would be selected
based on their usefulness for the task at hand. It is also this approach for which
the findings and methods of the manuscripts included in this dissertation could be
usefully applied. Ultimately, this might even lead to sophisticated models akin to
those we currently use to model response patterns in behavioral tasks, and therefore
could make precise point predictions and even allow for strong tests of theories to
be created (e.g., Meehl, 1967)—even though this may not tell us anything about the
true state of the world.

Finally, if the goal is to identify the true state of the world, and thus to focus on
explanation rather than prediction (even if only at some level of abstraction, given the
complexity through the multicausal nature of the world), the task is to disentangle
reflective from formative constructs, and come up with process operationalizations
based on which the functional mappings onto the measures of the reflective constructs
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can be specified. As introduced in the beginning of this dissertation, in this case
we need to adopt another definition of validity and can forget about the process of
construct validation in the sense of Messick (1989, 1995). Rather, we would have to
engage in validation in the sense of Borsboom et al. (2004)—in which case we are up
for a long and challenging (and, I think, likely unsuccessful) journey.

Now, quo vadis? I can only agree with Yarkoni and Westfall (2017) that an instru-
mentalist approach focused on prediction is very promising for advancing our field
without the need to completely having to turn everything upside down as necessary
in a realist approach. Moreover, as I hinted at above, I think adopting a top down
approach could prove beneficial, where we start with some real-life behaviors of in-
terest and conduct a task analysis thereof. In a way, that was the start of how the
different utility theories were developed—that is, scientists in the 17th and 18th cen-
tury were interested in optimal solutions to investment and choices in gambles (for
a historical overview, see Bernstein, 1996). Yet, I think we may not have performed
that step of looking at the real-life behaviors extensively enough afterwards, when
we expanded our view beyond monetary gambles. There certainly exist exceptions to
this though, and accounting for the ecology in which behaviors take place has been a
central focus of certain research programs; thus, I am obviously not the first one to
propose this (see, e.g., Brunswik, 1955; Dhami et al., 2004; Goldstein & Gigerenzer,
2002; Leuker, Pachur, Hertwig, & Pleskac, 2018; Pleskac et al., 2020; Simon, 1956).
As suggested in the discussion of manuscript two, based on this approach we could
start to build measures and study the processes involved therein to eventually arrive
at precise predictive models.

These lines of thinking also have implications for the use of factor analysis for the
structural validation of constructs. As hinted at above, only in an instrumentalist view
does it make sense to embark in construct validation, and thus to apply factor analysis
for obtaining structural validity evidence. In this view, factor analysis might provide
evidence for the usefulness of applying a specific structure to a set of measures (which
to combine and which to separate) and could thus still be beneficial in research—even
though some issues remain, such as the practice of drawing individual-level inferences
from a between subjects procedure (at least in the way it is usually applied; see
Borsboom et al., 2003; Molenaar, 2004; Molenaar & Campbell, 2009).

To conclude, validating operationalizations of hypothesized constructs can consist
of different facets, depending on the goal pursued with a given research program.
Specifying this goal is crucial, as many decisions concerning the operationalizations,
the validation process, the theory tests, and even how we conceptualize theories de-
pend on it. Future work is needed, irrespective of the goal we set and the approach
we take, to further advance psychological science.
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Abstract
A person’s risk preference may determine significant life outcomes (e.g.,
in finance or health), and people are therefore routinely asked to report
their risk preferences in various scientific and applied contexts. Yet, still
little is known concerning the cognitive underpinnings of this judgment-
formation process. We ran two studies (N = 250, and N = 150 in a
retest) implementing the process-tracing method of aspect listing, to in-
vestigate the information-integration processes underlying people’s self-
reports by means of cognitive modeling (RQ1), as well as to examine
people’s cognitive representations of their risk preferences (RQ2). Our
analyses indicate that interindividual differences in self-reported risk
preferences can be modeled well based on the listed aspects’ properties
of evidence and substantially better than using sociodemographic vari-
ables as predictors. Specifically, to render self-reports people appear
to integrate the strength of evidence of multiple aspects sampled from
memory. These aspects further revealed that people’s cognitive repre-
sentation of their risk preferences mostly relate to the magnitudes of
outcomes and often to explicit trade-offs between positive and negative
outcomes, in line with a risk–return perspective. Crucially, within par-
ticipants the strength of evidence of the listed aspects remained highly
stable across the two studies (RQ3), and changes therein were closely
related to changes in self-reported risk preference (RQ4). In sum, our
findings provide insight into the cognitive processes of how people ren-
der self-reports of their risk preferences, suggest an explanation for the
well-documented temporal stability thereof, and thus corroborate the
internal validity of this measurement approach.

Keywords: risk preference, self-report measures, process tracing, aspect
listing
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“Are you generally a person who is willing to take risks or do you try to avoid
taking risks?” Chances are that a person is confronted with this or a similar question
in numerous settings, such as when discussing private investments with a financial
advisor (Balatel et al., 2013; Ferrarini & Wymeersch, 2006) or when taking part in
one of the many panel studies that are routinely conducted around the world (e.g.,
the German Socio-Economic Panel, SOEP; Dohmen et al., 2011; Lejarraga, Frey,
Schnitzlein, & Hertwig, 2019). These measurement attempts are not surprising, given
that people’s risk preferences may shape important life outcomes, such as financial
bankruptcy as a consequence of risky investments, or addiction as a consequence of
experimenting with substance use. But how do people render judgments concerning
their own risk preferences? And can such stated preferences indeed be considered
valid?

In psychology and the behavioral sciences more generally, self-reports have a
long-lasting and successful tradition (Cronbach, 1946; Galton, 1874; Guttman, 1944;
Likert, 1932; Thurstone, 1927, 1928). For example, self-report measures were in-
strumental in the discovery of major constructs such as the Big Five personality
dimensions (e.g., McCrae & Costa, 1987) and continue to be an important tool for
studying concepts such as grit (e.g., Duckworth, Peterson, Matthews, & Kelly, 2007)
or well-being (e.g., Diener, 1984; Kahneman & Deaton, 2010). Crucially, self-report
measures not only are easy to implement (e.g., Dohmen et al., 2011; Duckworth &
Yeager, 2015) but often also exhibit desirable psychometric properties. To illustrate,
in the context of risk preference and closely related constructs, self-report measures
were found to have high convergent validity, test–retest reliability, and predictive
validity (Beauchamp, Cesarini, & Johannesson, 2017; Duckworth & Yeager, 2015;
Frey, Pedroni, Mata, Rieskamp, & Hertwig, 2017; Galizzi, Machado, & Miniaci, 2016;
Lönnqvist, Verkasalo, Walkowitz, & Wichardt, 2015; Mata, Frey, Richter, Schupp,
& Hertwig, 2018; Rohrer, 2017). By contrast, their behavioral counterparts—that
is, game-like tasks such as monetary lotteries, which may be indispensable for appli-
cations such as examining the functional neural architecture of risk preference (e.g.,
Tisdall et al., 2020; Tom, Fox, Trepel, & Poldrack, 2007)—generally tend to be more
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intricate to implement (see Andreoni & Kuhn, 2019; Pedroni et al., 2017) and often
fail to meet fundamental measurement properties (e.g., Beauchamp et al., 2017; Berg,
Dickhaut, & McCabe, 2005; Eisenberg et al., 2019; Frey et al., 2017; Lönnqvist et al.,
2015; Mata et al., 2018; Steiner & Frey, in press).

Given the widespread adoption of self-report measures of risk preference in the
behavioral sciences, it is surprising that there has been hardly any effort to sys-
tematically examine the cognitive processes and representations underlying people’s
self-reports (for exceptions, see Arslan et al., 2020; Jarecki & Wilke, 2018) and to
thus shed some light onto the potential origins of these measures’ desirable psycho-
metric properties. Hence, several important questions remain largely unaddressed:
What kind of evidence do people rely on during their judgment-formation process?
What are the qualitative and quantitative properties of this process? And do cogni-
tive explanations exist for the observation that people’s self-reported risk preferences
remain highly stable across time (e.g., Frey et al., 2017; Lönnqvist et al., 2015; Mata
et al., 2018)? The goal of this article is to address these questions and “unpack” peo-
ple’s self-reports of their risk preferences, by modeling the information-integration
processes underlying such self-reports, and thus testing the internal validity of this
measurement approach.

The Psychology of Judgment Formation

Several streams in cognitive psychology assume judgment formation to rest on
some form of internal or external information-sampling process. External informa-
tion sampling (i.e., Brunswikian sampling; Fiedler & Juslin, 2005; Juslin & Olsson,
1997) has been extensively studied, often with the finding that observed samples
predict people’s choices and behaviors well (e.g., Fiedler, Renn, & Kareev, 2010; Her-
twig, Barron, Weber, & Erev, 2006; Lindskog, Winman, & Juslin, 2013). In these
investigations, computational models constitute a tool to systematically study the
links between the external samples that participants observed and their choices or
judgments—by formalizing the cognitive processes involved in information use and
integration (e.g., Frey, Mata, & Hertwig, 2015; Frey, Rieskamp, & Hertwig, 2015;
Kellen, Pachur, & Hertwig, 2016; Yechiam & Busemeyer, 2005).

When facing the task of providing a self-report, one typically cannot rely on
external information but instead has to draw internal samples of one’s own past be-
haviors and experiences (i.e., Thurstonian sampling; Bem, 1967; Fiedler & Juslin,
2005; E. J. Johnson, Häubl, & Keinan, 2007; Juslin & Olsson, 1997). This process
may involve three broad stages, each involving different cognitive processes: First,
information has to be retrieved from memory. Although memory retrieval has been
a central assumption in models of survey cognition (e.g., Duckworth & Yeager, 2015;
Jobe, 2000, 2003; Schwarz & Oyserman, 2001), concrete properties of this process
have rarely been specified (for an overview, see Jobe & Herrmann, 1996; Koriat,
Goldsmith, & Pansky, 2000; Tourangeau, Rips, & Rasinski, 2000). Second, the infor-
mation retrieved from memory has to be integrated into an internal representation.
Third and finally, the result of this information-integration process has to be rendered
into a concrete output, for instance, mapping onto a specific response format (e.g., a
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Likert scale).
The focus of this article lies on the second stage; that is, the information-

integration processes underlying people’s self-reports. The respective cognitive pro-
cesses have only rarely been studied systematically (for an exception, see Jarecki &
Wilke, 2018) but information-integration processes are naturally paramount in re-
search on judgment and decision making more generally (e.g., Dawes & Corrigan,
1974; Gigerenzer & Goldstein, 1996; Hastie & Park, 1986; Payne, Bettman, & John-
son, 1988). This line of research has identified three basic properties of evidence,
which may also be of importance when people integrate information to render a self-
report of their risk preferences: First, in their work on confidence judgments, Griffin
and Tversky (1992) referred to the weight of evidence as the amount of information
taken into account during a particular judgment (see also Kvam & Pleskac, 2016).
Specifically, in their study design in the context of fairness assessments of biased coins
(i.e., external samples), the weight of evidence referred to how many times a coin was
spun and hence, the number of outcomes observed (i.e., sample size). Translated into
the process of self-reporting one’s risk preference, the weight of evidence may con-
sist of how many pieces of information are retrieved from memory and either speak
pro or contra risk taking. Indeed, initial evidence suggests that the weight of evi-
dence of retrieved information may play an important role in the context of rendering
self-reports (see introduction to study 1).

Second, the strength of evidence refers to the extremeness of the available in-
formation; that is, how strongly a particular piece of information supports a certain
judgment (Griffin & Tversky, 1992; Kvam & Pleskac, 2016; see also Koriat, 1993).
In the work of Griffin and Tversky (1992), the strength of evidence was defined as
how strongly the bias showed up across the entire sample of spun coins (i.e., effect
size). Whereas in this example a single coin spin always yields equally strong evidence
(i.e., in one or the other direction), in other contexts single pieces of information vary
in terms of their strength of evidence (e.g., Hertwig & Pleskac, 2010). Translated
into the process of self-reporting one’s risk preference, this implies that a single yet
“strong” piece of information may outweigh multiple “weak” pieces of information.
The strength of evidence might play a focal role in the process of rendering self-
reports, given the observations of Griffin and Tversky (1992) as well as Kvam and
Pleskac (2016) that people tend to focus on the strength of evidence rather than on
the weight of evidence when rendering judgments based on external samples. To date
it remains untested to what extent the strength of evidence of available information
is relevant in the context of rendering self-reports of risk preference.

Third, a large body of research into serial-position effects suggests that people
are highly sensitive to the order of information (e.g., Hertwig, Barron, Weber, & Erev,
2004; Hogarth & Einhorn, 1992; Yechiam & Busemeyer, 2005). For example, it has
been observed that the endowment effect may at least in part result from order effects
in the aggregation process of respondents’ internal samples, as information retrieved
in the beginning was more indicative of participants’ judgments (E. J. Johnson et al.,
2007). Whereas some research into the sequential aggregation of internal or external
samples has found such primacy effects (e.g., E. J. Johnson et al., 2007; Weber et
al., 2007), other research suggests the occurrence of recency effects (e.g., Barron &
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Yechiam, 2009; Highhouse & Gallo, 1997; Hogarth & Einhorn, 1992). Hence, to
the extent that people rely on multiple pieces of information when rendering self-
reports, accounting for order effects may be important in the sense that information
retrieved either at the beginning or at the end of the internal sampling process may
be particularly influential.

Taken together, in contrast to research on decision making based on external
samples, far less research exists on judgment formation based on internal samples—as
are potentially drawn when rendering a self-report of one’s risk preference. We aim
to take a step towards closing this gap, by fostering a better understanding of the
information-integration processes taking place when people render self-reports.

Aspect Listing: A Tool to Unpack Self-Reports

As information-integration processes typically remain hidden from direct obser-
vation, some research has employed the process-tracing method of aspect listing to
gain a window into people’s minds (E. J. Johnson et al., 2007; Weber et al., 2007;
for a review see Schulte-Mecklenbeck et al., 2017). Specifically, this methodology
entails prompting people to sequentially list their thoughts—typically referred to as
aspects—that spontaneously cross their minds when responding to judgment or val-
uation questions. That is, by not prompting people to reflect on how they rendered
a self-report in hindsight, this process-tracing method aims to avoid triggering any
unnatural metacognitive processes, including potentially distorted post-hoc rational-
izations (Nisbett & Wilson, 1977; but also see Hurlburt & Heavey, 2001).1 Instead,
and much like in research relying on think-aloud protocols, this method aims to trace
the natural information-integration process “on the fly” (Ericsson & Simon, 1980).

Previous research adopting aspect listing has yielded several important in-
sights, including into the cognitive processes underlying the endowment effect (e.g.,
E. J. Johnson et al., 2007), inter-temporal choice (e.g., Appelt, Hardisty, & Weber,
2011; Weber et al., 2007), the effect of attribute framing on choice (e.g., Hardisty,
Johnson, & Weber, 2010), or domain-specificity in evolutionary content-domains
(Jarecki & Wilke, 2018). Moreover, methods related to aspect listing (“thought-
protocols” collecting information in a somewhat less structured way and after a judg-
ment has already been provided) have also permitted several qualitative insights into
judgment formation: For example, when rendering self-reports of life satisfaction
(Schimmack, Diener, & Oishi, 2002) or risk preference (Arslan et al., 2020), people
appear to rely mostly on personal experiences rather than on social comparisons (for
details, see the introduction of study 1). Yet, contrary to the method of aspect list-
ing these latter approaches do not readily permit the quantitative modeling of any
information-integration processes, as the respective thought-protocols are typically
not broken down into “atomic components” of evidence (e.g., the weight vs. strength
of evidence).

1Aspect listing may be complemented by prompting respondents to provide additional ratings of
the aspects they had previously listed (e.g., how strongly an aspect speaks in favor of or against a
particular choice or judgment), and such additional ratings would thus classify as a metacognitive
task (Greifeneder & Schwarz, 2014; Hurlburt & Heavey, 2001; Koriat, 2007; Koriat et al., 2000).



APPENDIX A: STEINER, SEITZ, & FREY (IN PRESS) 6

Overview and Research Aims

The goal of this article is to promote a better understanding of the psychol-
ogy underlying people’s self-reports of their risk preferences: Although people are
routinely asked to provide such self-reports in scientific and applied contexts, the
underlying information-integration processes and people’s respective cognitive repre-
sentations remain largely unknown.

To this end, study 1 implemented a cognitive modeling approach to account
for people’s self-reported risk preferences based on various quantitative dimensions
of evidence—as extracted from the listed aspects. Specifically, to what extent does a
cognitive account potentially outperform various sociodemographic variables in pre-
dicting interindividual differences in self-reported risk preferences (RQ1a)? And how
influential are the three reviewed properties of evidence in people’s information-
integration processes (RQ1b)? Moreover, by analyzing the content of the listed
aspects, study 1 also permitted obtaining a range of qualitative insights into the
cognitive representations of people’s risk preferences (RQ2).

Subsequently, study 2 aimed at testing a longitudinal hypothesis that logically
follows from the assumption that people’s self-reports of their risk preferences emerge
from quantifiable information-integration processes and robust cognitive representa-
tions. Specifically, the high temporal stability of self-reported risk preference, as
observed repeatedly in previous research (e.g., Frey et al., 2017), may originate from
relatively stable cognitive representations of one’s own behaviors and experiences.
Therefore, in a retest study we examined the stability of the content of the listed
aspects (RQ3a) and the stability of the listed aspects’ strength of evidence (RQ3b),
to test whether stability and change in any of these two dimensions are systemati-
cally associated with stability and change in self-reported risk preference (RQ4a and
RQ4b).

In addressing these research aims, we attached great importance to adhering to
transparent and reproducible scientific practices and thus published a preregistration
including the full theoretical rationale, all data, and the analyses scripts at https://
osf.io/gndjw.

Study 1

Information-integration processes have long been of central interest in the lit-
erature on judgment and decision making (e.g., Dawes & Corrigan, 1974; Gigerenzer
& Goldstein, 1996; Hastie & Park, 1986; Payne et al., 1988), and a diverse set of
modeling approaches has thus emerged in this regard. For instance, in the framework
of the Brunswikian lens model the cognitive integration of external cues into a judg-
ment has been modeled descriptively by means of simple linear models (Hammond
& Stewart, 2001; Hastie & Dawes, 2001), which were also used to address norma-
tive questions concerning information integration in various judgment processes (e.g.,
the role of proper vs. improper linear models in decision making; Dawes, 1979).
Another substantive body of research has focused on noncompensatory heuristics to
examine information use and integration in the context of inferential choice (e.g., take-
the-best, TTB; Gigerenzer & Brighton, 2009; Gigerenzer & Goldstein, 1996, 1999).
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Finally, research into sequential information integration has developed sophisticated
fractional-adjustment models to study, for instance, the role of serial position effects
in information integration (e.g., Hogarth & Einhorn, 1992; Sutton & Barto, 1998).

To address RQ1 in study 1—that is, how well people’s self-reported risk prefer-
ences can be quantitatively accounted for based on the listed aspects (RQ1a), and how
influential different properties of these aspects are in people’s self-reports (RQ1b)—
we built on these different strands of research and implemented a twofold-approach.
First, we directly sampled a set of models from the literature, aimed at covering a
large model space to thus incorporate models that account for (different combina-
tions of) the strength of evidence, the weight of evidence, and the order of evidence.
As reviewed above, these dimensions constitute three key properties of evidence that
people may rely on when rendering self-reports. Our approach followed a proof-of-
concept provided by Jarecki and Wilke (2018), who used cognitive process models to
study risk taking in different evolutionary domains. Yet, our approach was different
in the sense that it focused on general risk preference, modeled continuous self-reports
(as opposed to hypothetical binary choices), and importantly, took into account the
listed aspects’ strength of evidence—a property that may be highly relevant during
information integration according to previous observations (Griffin & Tversky, 1992;
Kvam & Pleskac, 2016). Second, as some of the different models turned out to yield
similar predictions when applied to the empirical data of study 1 we also implemented
a set of Bayesian ordinal regression models using the listed aspects’ weight of evidence
and strength of evidence as direct predictors of self-reported risk preference—to thus
facilitate a direct comparison between the roles of these two properties of evidence.

Beyond analyzing quantitative aspects of the information-integration processes
(i.e., RQ1a and RQ1b), the method of aspect listing also permitted conducting a
series of more qualitative analyses, which allowed insight into people’s cognitive rep-
resentations of their risk preferences (RQ2). Specifically, these analyses characterized
the content and sources of the aspects people rely on during information integra-
tion, such as whether people predominantly tap into personal experiences or social
comparisons to render their self-reports (e.g., Arslan et al., 2020; Schimmack et al.,
2002), or how frequently people typically experience in daily life what they consider
as aspects during judgment formation. Previous research along these lines, which has
prompted respondents to explain their previously stated risk preferences, found that
people mainly considered risks that they had personally taken, which were rather vol-
untary, had known and controllable consequences, and were old and familiar (Arslan
et al., 2020). Our approach promised to corroborate and extend these findings, as we
prompted participants to concurrently list the aspects that crossed their minds dur-
ing judgment formation (i.e., as opposed to after already having provided a response,
which in principle could lead to distorted reports; Nisbett & Wilson, 1977). More-
over, as the approach of aspect listing taps into people’s cognitive representations in
a semi-structured way (i.e., collecting aspects one by one), it is possible to examine,
for instance, the content and sources separately for aspects that speak either pro or
contra risk taking (i.e., pro-aspects and contra-aspects, respectively). In addressing
RQ2, we again relied on a two-fold approach: We first analyzed the cognitive repre-
sentations based on respondents’ own ratings of their aspects. Second, we also relied
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on the evaluations of a subset of 300 aspects as provided by external raters. The lat-
ter evaluations rendered possible further insight concerning the content of the aspects
(e.g., classification to various content domains) as well as an external validation of
the aspects’ strength of evidence.

Methods

We collected data from 250 participants via Amazon MTurk (115 females; mean
age: 37.4 years; range: 18 – 73 years; mean number of years of education: 15.2;
modal income: 1,000 - 2,000 USD per month). To ensure a high data quality, only
MTurkers with an approval rate of at least 95% and who had completed at least 500
HITs (i.e., human intelligence tasks) on Amazon MTurk were eligible to participate
(Peer, Vosgerau, & Acquisti, 2014; see also Buhrmester, Kwang, & Gosling, 2011;
Casler, Bickel, & Hackett, 2013; Paolacci, Chandler, & Ipeirotis, 2010). Moreover,
participants had to pass two attention check questions and provide ratings of at least
25 out of 100 on questions asking how focused they were and how much effort they
put into the study. Data were collected in 2019. Study completion on average took
6 minutes, for which participants were reimbursed with 0.85 USD. Both studies were
approved by the ethics committee of the Faculty of Psychology of the University of
Basel (#023-18-1).

According to a prior model recovery analysis (see preregistration; cf. Gluth &
Jarecki, 2019), a sample of 250 participants was sufficiently large for the separate
models to be recovered with high recovery rates, except for two models which were
thus excluded from the model space. This sample size is also sufficient to detect small
to medium effects in a frequentist framework (f 2 of .03 with a power of 1 − β = .80;
calculated using G∗Power 3.1, Faul, Erdfelder, Buchner, & Lang, 2009) for the most
complex regression model involving three predictors (i.e., query theory, see below).
Note, however, that we conducted all analyses in a Bayesian framework and we thus
report 95% credible intervals (95% CIs) rather than p-values (unlike in a frequentist
framework, the 95% CI indicates the range that contains the population parameter
with a probability of 95%).

All analyses were performed using R (R Core Team, 2020). We used the rstan-
arm and brms packages for the regression analyses (Bürkner, 2017; Goodrich, Gabry,
Ali, & Brilleman, 2018) and implemented the default priors as provided by these
packages (see Supplemental Material, SM, section 4.3).

Procedure. After reading general instructions, participants provided in-
formed consent and sociodemographic information. They were then shown the general
risk item of the SOEP (“Are you generally a person who is willing to take risks or
do you try to avoid taking risks?”; e.g., Dohmen et al., 2011). Yet, prior to actually
providing an answer participants were prompted to think of (and list) all reasons that
crossed their minds while coming up with an answer (the exact wording is available on
https://osf.io/gndjw). Specifically, participants had to report at least one aspect
and were asked to continue reporting aspects until they could not think of any further
aspects. Once done with this task, participants provided their rating to the SOEP
general risk item on a scale ranging from 0 to 10. The procedure of first implementing
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the aspect listing followed the original protocol (E. J. Johnson et al., 2007; Weber
et al., 2007); we specifically pretested potential order effects (i.e., self-reported risk
preference first vs. aspect listing first) in a dedicated pilot study (see preregistra-
tion), which revealed no credible mean differences of self-reported risk preferences in
the two examined orders. Finally, participants were sequentially presented with the
aspects that they had previously listed (in randomized order), and were prompted to
evaluate these aspects on a series of dimensions (i.e., including the aspects’ strength
of evidence as well as dimensions tapping the content and sources of the aspects; see
Table 1 and the respective sections below).
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Procedure and analyses concerning RQ1a and RQ1b. To formally
model the information-integration processes underlying people’s self-reports (RQ1a
and RQ1b), we implemented the following steps.

Operationalization of the aspects’ properties of evidence. We opera-
tionalized the three quantitative properties of evidence reviewed above as follows (see
Table 1): First, we operationalized the strength of evidence as participants’ ratings
of how strongly each aspect supports risk-avoidance or risk-seeking, ranging from -50
to 50. Second, to determine the weight of evidence, we classified the aspects—based
on the rated strength-of evidence—as either pro-aspects (strength of evidence > 0) or
contra-aspects (strength of evidence < 0) and then counted the number of pro- and
contra-aspects for each participant. Third and finally, the order of evidence naturally
followed from the sequence by which participants listed the aspects.

Model space and model selection criteria. We initially implemented
six separate models (for a detailed description of all models, see SM section 4.1) to
cover various combinations of the three properties of evidence as reviewed above.
Specifically, the EXT model (inspired by the TTB heuristic; Gigerenzer & Goldstein,
1996, 1999) used the most extreme strength of evidence (i.e., the one the furthest
away from the center of the scale) as predictor; the FIRST model used the strength of
evidence of the aspect listed first in the sequence as predictor (for related lexicographic
models such as take-the-first; see Jarecki & Wilke, 2018; J. G. Johnson & Raab,
2003); and the LAST model used the strength of evidence of the aspect listed last
in the sequence as predictor. These three models were non-compensatory models;
the remaining three models were compensatory models. Specifically, the SUM model
(a weighted additive model; see Payne et al., 1988) used the sum of the strength
of evidence of all aspects listed by a participant as predictor; query theory (QT;
E. J. Johnson et al., 2007; Weber et al., 2007) was implemented as a linear model
with the weight of evidence (the number of pro-aspects and the number of contra-
aspects separately) and the order of evidence as predictors; and finally, the value
updating model (VUM; an instance of a fractional-adjustment model; Hertwig et al.,
2006; Hogarth & Einhorn, 1992) implemented a weighted average of the strength of
evidence as predictor, rendering possible the capture both of primacy and recency
effects.

To enable a fair model comparison—accounting for the fact that some models
(i.e., QT and VUM) had free parameters whereas others did not—we purely focused
on predictive accuracy (i.e., out-of-sample prediction). Thereby, adjustable parame-
ters only provide an advantage for a model if they actually help explain systematic
variance (e.g., Yarkoni & Westfall, 2017). To this end, we employed a five-fold cross-
validation approach. That is, we partitioned the data in five subsets (folds) and used
four folds to fit the free parameters (i.e., in the case QT and VUM) and predicted the
fifth (hold-out) fold with the obtained parameter estimate. Given our data structure
with one response per participant, all parameters were estimated across participants.
This procedure was repeated for all models until each of the five folds was predicted
once by every model. We then determined the average (i.e., across the independent
hold-out samples) Spearman rank correlations (i.e., rs) between the model predictions
and the self-reported risk preferences.
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Based on a prior model recovery analysis (see preregistration), the six initial
models were expected to yield somewhat correlated yet sufficiently distinguishable
predictions. Ultimately, however, in study 1 the models ended up making relatively
similar predictions, given the average of 3.4 aspects that participants listed (note that
this number is in line with previous studies, e.g., Jarecki & Wilke, 2018; E. J. Johnson
et al., 2007; Weber et al., 2007), and given that participants tended to list either
only pro-aspects or only contra-aspects (which also made it difficult to systematically
study order effects). To illustrate, FIRST and LAST resulted in very similar model
predictions, and a parameter recovery analysis for the VUM indicated that different
values for the weighting parameter (i.e., capturing recency or primacy effects) resulted
in very similar model predictions (see SM section 4.5).

We thus also pursued a complementary approach as a robustness check. Specifi-
cally, we employed two Bayesian ordinal regression models, using the aspects’ strength
of evidence and weight of evidence (i.e., averaged per participant; when averaging the
weight of evidence each pro-aspect was given the value 1, and each contra-aspect
was given the value -1), respectively, to predict self-reported risk preferences (see Ta-
ble 1). We relied on multiple indices to compare these models: First, we compared
their expected log predictive density (ELPD)—a statistic that provides an estimate of
the to-be-expected out-of-sample predictive performance—based on the leave-one-out
information criterion (LOOIC), which is similar to the Akaike information criterion
(AIC) but better suited for Bayesian model comparisons, as it can account for the
implemented priors (Vehtari, Gelman, & Gabry, 2017). Moreover, we compared the
models’ accuracies, their chance corrected accuracies (Cohen’s κ), as well as how
often their (correct) predictions coincided in a tournament approach (see Broomell,
Budescu, & Por, 2011).

Reference models. To compare the described models against a baseline, we
also implemented three Bayesian ordinal regression models that inferred participants’
self-reported risk preferences based on up to five sociodemographic predictors. The
first model included age as the sole predictor, the second model included sex as the
sole predictor, and the third model included age, sex, years of education, income,
and employment status as predictors. These variables have been suggested to be
systematically associated with individual differences in risk preference, and in the case
of age (e.g., Mamerow, Frey, & Mata, 2016; Mata, Josef, & Hertwig, 2016) and sex
(e.g., Byrnes, Miller, & Schafer, 1999), these associations were found to be particularly
robust (for an overview, see Frey, Richter, Schupp, Hertwig, & Mata, 2020). To
compare these reference models with the other two ordinal regression models, we
included them in the tournament approach described above, and additionally relied
on the LOOIC-based ELPD. Finally, to compare the reference models with the initial
set of models described above, we also report Spearman correlations between the
model predictions and participants’ self-reported risk preferences.

Procedure and analyses concerning RQ2. To examine the content and
sources of the aspects people rely on during judgment formation (RQ2), we imple-
mented the following steps.

Participants’ own ratings of their aspects. At the end of the study,
participants provided ratings of each aspect they had previously listed, concerning
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(a) how strongly the aspect supported risk seeking versus risk avoidance (i.e., the
strength of evidence used in the modeling analysis; see above), (b) whether the aspect
included a previous personal experience (see Arslan et al., 2020), (c) whether the
aspect included a comparison with another person (see Arslan et al., 2020; Schimmack
et al., 2002), (d) how often participants typically experience in their daily lives what
they described in the aspect (i.e., relatively common or rather rare but potentially
high-stake events; see Hertwig et al., 2004), (e) whether the aspect referred to an
active choice or a passive experience (i.e., voluntary or involuntary exposure to risks;
Fischhoff, Slovic, Lichtenstein, Read, & Combs, 1978), and (f) whether the aspect
involved something controllable or uncontrollable (see Arslan et al., 2020; Fischhoff
et al., 1978; Maccrimmon & Wehrung, 1985). Table 1 provides an overview and a
detailed description of the items used.

For each of these dimensions, we provide the distributions of participants’ rat-
ings, separately for pro- and contra-aspects, and report post-hoc mixed-effects models
to explore any systematic differences between pro- and contra-aspects. Specifically, we
ran generalized linear mixed-effects models predicting the various ratings and using
the aspects’ direction (pro or contra) as dummy coded predictors, using by-subjects
random slopes and intercepts (Barr, Levy, Scheepers, & Tily, 2013). We also quan-
tified the differences in the sentiment for pro- and contra-aspects (see SM sections 2
and 4.2).

External ratings of a subset of 300 aspects. For 300 randomly selected
aspects (i.e., about one third of the 857 aspects listed in study 1), we also collected
external ratings from three independent raters (i.e., the first author and two research
assistants; using a majority rule to integrate the three ratings; see SM section 5.5 for
further methodological details).

First, the raters inferred the listed aspects’ strength of evidence, to thus provide
an independent validation of participants’ own ratings. To this end, we provided the
same scale as participants used to evaluate their own aspects.

Second, the raters assessed a range of additional properties that were not as-
sessed by participants themselves. These properties stem from five risk categories
and have been suggested to be important drivers of and motives underlying risk-
taking behaviors, covering both stable dispositions (i.e., traits) as well as situational
characteristics (i.e., state variables), namely: (a) outcome-related properties (e.g.,
the magnitude of the positive outcomes; Kahneman & Tversky, 1979; Sitkin & Pablo,
1992), (b) goal/state-related properties (e.g., whether the goal was to keep or improve
one’s status quo; e.g., Lopes, 1984; Mishra, Barclay, & Sparks, 2017), (c) properties
related to cultural roles and personality (e.g., whether a social norm or one’s person-
ality was mentioned; Nicholson, Soane, Fenton-O’Creevy, & Willman, 2005; Sitkin
& Pablo, 1992), affect-related properties (e.g., whether a feeling of fear or thrill was
mentioned; Lerner, Gonzalez, Small, & Fischhoff, 2003; Loewenstein, Weber, Hsee,
& Welch, 2001; Zuckerman, 2002), and (d) properties related to life-history (e.g.,
whether one’s age or children were mentioned; e.g., Wang, Kruger, & Wilke, 2009).
Finally, we used an other category to classify whether an aspect just relativized (e.g.,
“that depends on the situation”), or only contained semantically invalid sequences of
letters. Please see SM section 5.5 for the complete list of properties along with some
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key references and the full description of the rating procedure.
Third, the raters inferred the life domains to which the listed aspects supposedly

belong to. To this end we provided the domains as suggested in one of the most
popular domain-specific risk-taking questionnaires (DOSPERT; Blais & Weber, 2006;
Frey, Duncan, & Weber, 2020; Weber, Blais, & Betz, 2002), those suggested in the
SOEP (e.g., Dohmen et al., 2011), as well as those of the evolutionary risk scale (ERS;
Wilke et al., 2014)—overall resulting in 19 different domains (see SM section 5.5).

Results

In line with previous observations, the self-reports of the majority of participants
(57%) indicated risk-aversion (i.e., most participants provided a rating of lower than
five on the scale ranging from 0 to 10), with an average rating of M = 4.2. The
majority of participants (81%) listed between one and four aspects (M = 3.4; range:
1 – 12). Matching participants’ overall tendency for risk-aversion, the majority of
these aspects were contra-aspects (61%). Moreover, most participants (82%) only
listed either contra-aspects or pro-aspects, directionally matching their risk preference
(i.e., risk-seeking vs. risk-averse). Participants’ ratings of their aspects’ strength of
evidence were relatively consistent within participants, with an intra-class correlation
of .76.2

Our validation of the aspects’ strength of evidence using external raters showed
a high degree of agreement: The strength of evidence as assessed by the external
raters (i.e., average across the three raters) and the strengths of evidence as indicated
by participants themselves correlated with rs = .82. Moreover, in 93% of the cases
the three raters classified the listed aspects correctly (i.e., in line with participants’
own judgments) as pro- or contra-aspects.

RQ1: Modeling self-reported risk preferences. As outlined above, we
followed a two-fold approach to modeling self-reported risk preferences. First, we
compared six separate models directly sampled from the literature on judgment and
decision making. These models were capable of predicting self-reported risk pref-
erence well, with rs ranging from .78 to .90; note that these values resulted from
out-of-sample predictions using the independent hold-out sets. Specifically, the cor-
relations between model predictions and actual self-reports were rs = .90 (VUM),
rs = .83 (EXT), rs = .78 (QT), rs = .82 (FIRST), rs = .84 (LAST), and rs = .82
(SUM). Moreover, these models clearly outperformed the three reference models, with
correlations between the predictions of the latter and the self-reports ranging from rs

= .14 to rs = .31 (see Figure 1).
Second, we compared a set of ordinal regression models using the strength of

evidence (SoE) and the weight of evidence (WoE) as direct predictors. Corroborating
the results reported above, both models performed well, with rs = .90 (SoE) and
rs = .85 (WoE). Moreover, the model including the strength of evidence as predic-
tor outperformed the model including the weight of evidence as predictor by eight

2This analysis was run with an intercept-only model, with by-subjects random intercepts pre-
dicting the aspects’ strength of evidence.
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Figure 1 . Spearman correlations between the different model predictions and self-
reported risk preference. QT = Query theory; SUM = Sum of evidence; EXT =
Most extreme evidence; FIRST = First aspect’s evidence; LAST = Last aspect’s
evidence; VUM = Value updating model. SoE = Ordinal regression model with the
average strength of evidence per participant as predictor. WoE = Ordinal regression
model with the average weight of evidence per participant as predictor. Whiskers
depict the range of rs in the five folds of the cross-validation within studies. For
the pre-/post-diction across studies, the models only used the aspects participants
listed in one study to pre-/post-dict their risk preferences in the other study. “Five
sociodemographic predictors” = Reference model using age, sex, years of education,
income, and employment status as predictors. All reference models were implemented
separately for study 1 and study 2 and their respective rss averaged for this plot.

percentage points of correct predictions (see Table 2). Also, there was robust evi-
dence that the strength of evidence was a more important predictor than the weight
of evidence according to the direct model comparison based on the two models’ to-
be-expected out-of-sample predictive performance (i.e., LOOIC-based ELPDs; see
Table 2).

Following the tournament approach proposed by Broomell et al. (2011), we also
gauged the proportion of identical model predictions of the five ordinal regression
models (i.e., the two models using the strength and weight of evidence as predictors,
and the three reference models). While some models resulted in highly similar predic-
tions (i.e., the reference models including only age or sex as predictors made identical
predictions in 97% of the cases), the two models using the different properties of
evidence as predictors were sufficiently distinguishable (see Table S2 and Figure S5;
see also Table 2).

Finally, again in line with the comparison of the models reported above, both
tested properties of evidence proved to be better predictors than any of the reference
models that used sociodemographic predictors. Specifically, the strength of evidence
model outperformed the best reference model by 18 percentage points, and the weight
of evidence model outperformed the best reference model by ten percentage points
(see Table 2).
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Table 2
Goodness of Fit Indicators of the Different Ordinal Regression Models.

Model Accuracy κ Distinct
Predictions

ELPD

Study 1
SoE .42 .37 7 0 [0, 0]
WoE .34 .28 5 -57.4 [-75.0, -39.8]
5 soc. dem. pred. .24 .16 3 -194.6 [-219.6, -169.6]
Sex .19 .11 2 -194.7 [-218.3, -171.1]
Age .20 .12 3 -195.8 [-220.0, -171.6]
Study 2
SoE .33 .27 7 0 [0, 0]
WoE .31 .24 5 -21.4 [-34.4, -8.4]
5 soc. dem. pred. .23 .16 4 -84.8 [-111.6, -58.6]
Sex .20 .12 3 -82.4 [-109.4, -55.4]
Age .21 .13 1 -82.6 [-110.2, -55.0]
Note: Results are based on ordinal regression models (not cross-validated). Accuracy
= The proportion of correctly predicted categories (ratings between 0 and 10). κ =
Cohen’s kappa, with a chance level of 1/11. Distinct Predictions = The number of
distinct/unique predictions made by a model (all numbers from 0 to 10 occurred in
the empirical data). ELPD = Estimate of the leave-one-out information criterion
based expected log predictive density for a new dataset, relative to the best model
(i.e., SoE)—where lower numbers indicate worse model fit. ± 2 standard errors
interval are given in brackets. SoE = Mean strength of evidence per participant as
predictor. WoE = Mean weight of evidence per participant as predictor. 5 soc. dem.
pred. = Age, sex, years of education, income, and employment status as predictors.
Sex = Sex as predictor. Age = Age as predictor.

RQ2: Sources and content of the listed aspects. Our analyses of peo-
ple’s cognitive representations of their risk preferences (see Figure 2) indicated that
most participants retrieved personal experiences (and less so social comparisons) when
rendering their self-reports (more so for pro- than contra-aspects: b = 1.87, 95% CI:
[0.82, 3.17]). Furthermore, the listed aspects involved mostly active choices rather
than passive experiences (more so for pro- than contra-aspects: b = 1.44, 95% CI:
[0.81, 2.22]), and situations with rather controllable outcomes (no credible differences
between pro- and contra-aspects: b = 0.24, 95% CI: [-0.52, 1.08]). Across the listed
aspects, participants’ answers to these questions were quite consistent; that is, most
participants rated their respective aspects similarly on a given question. Furthermore,
the listed aspects were typically not rare situations or experiences, but frequent en-
counters in participants’ daily lives (i.e., the categories once per day, once per week,
and once per month made up for 80.4% and 74.8% of all pro- and contra-aspects,
respectively). Finally, most aspects had a negative sentiment (see SM section 2),
but the pro-aspects less so than contra-aspects (Mpro−aspects = -0.52; Mcontra−aspects =
-1.12; b = 0.60, 95% CI: [0.40, 0.78]).

As Figure 3 illustrates, positive emotions and feelings as reflected by the words
fun or enjoy often occurred in pro-aspects, along with words describing positive out-
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Figure 2 . Distributions of the sources and content of the listed aspects from study 1
across all participants and aspects.

comes such as reward, gain, or benefit. The picture looked substantially different for
contra-aspects, where lose, money, or safe where very prominent mentions, along with
negative emotions or feelings expressed by words such as hurt, afraid, or worry.

Our additional analyses using external ratings of the listed aspects showed that
participants mostly retrieved domain-general statements (79.8%), and if domain-
specific statements were retrieved, these were mostly in the domains of health/safety
(9.8%), financial (7.1%), social (4.0%), occupation (3.4%), recreational (2.7%), and
kinship (2.0%).3 In the SM (section 5.5) we report an analysis showing that the
domains put forth by two established domain-specific risk-taking scales could be re-
covered well–––that is, in 13 out of the 15 distinct domains suggested by these two
scales, more than half of the respective items were correctly recovered, and in eight
of the 15 domains all items were correctly recovered. Regarding the potential drivers
and motives underlying risk taking, we found that participants mostly considered
the valence of the potential outcomes (i.e., positive outcomes in the pro-aspects, but
also often in combination with negative outcomes—i.e., indication of a risk-return
trade-off; and more negative outcomes in the contra-aspects). Moreover, participants
often mentioned their positive (in the case of pro-aspects) and negative feelings (in the
case of contra-aspects) towards taking risks. Finally, in pro-aspects participants often
adopted an opportunity focus, aimed at improving their status quo, while in contra-
aspects, participants often adopted a safety focus, aimed at keeping their status quo
(see also Figure S9).

3The external raters could select multiple domains per aspect, which is why these numbers do
not add up to 100%.
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Figure 3 . Word cloud of the most frequently occurring words separate for pro- and
contra-aspects. Larger fonts indicate higher frequencies of occurrence of the respective
words in the aspects listed in study 1. The words risk, take, and avoid were excluded
to increase the visibility of the other words that occurred less frequently than these
words that were also part of the formulated question and thus were often repeated
in the aspects (e.g., “I avoid taking risks because...”). The words listed in the word
cloud of pro-aspects had a clearly positive average sentiment (M = 7.07), and those
listed in the word cloud of contra-aspects had a clearly negative average sentiment
(M = -3.60)

Discussion

The listed aspects—and more precisely, different properties of evidence thereof,
particularly the strength of evidence—turned out to be highly predictive of par-
ticipants’ self-reported risk preferences: Overall the cognitive modeling approach
performed substantially better than using a series of sociodemographic indicators
as predictors (i.e., reference models), which suggests that people recruit systematic
information-integration processes when rendering self-reports of their risk preferences.
Crucially, external ratings of the aspects’ strength of evidence were closely aligned
with participants’ own ratings, thus making it unlikely that the high predictive power
of this property of evidence simply arose due to the close temporal proximity between
the respective ratings (note that we also conducted an independent cross-study anal-
ysis as a further robustness check in this regard, see below).

Although we faced some constraints when comparing the six initial models sam-
pled from the literature—particularly concerning the role of the order of evidence—a
direct evaluation of the relative importance of the aspects’ strength of evidence and
weight of evidence yielded clear and corroborating results. Furthermore, given the
structure of our data it may seem somewhat surprising that the non-compensatory
models were outperformed by the compensatory models (see Gigerenzer & Gaiss-
maier, 2011; Gigerenzer & Goldstein, 1996), yet it is important to keep in mind that
these differences in model performance were small.
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Participants’ cognitive representations of their risk preferences proved to rest
mostly on situations that involved active choices rather than passive experiences,
suggesting that most people may think of risk taking as an explicit decision. The
mostly domain-general information retrieved by participants tended to focus on the
valence of the outcomes, often referring to explicit trade-offs in line with a risk-return
framework (Weber et al., 2002; Weber & Milliman, 1997). In pro-aspects, participants
often expressed an opportunity focus, whereas in contra-aspects they often expressed
a safety focus. Moreover, in line with some conceptualizations of risks (e.g., Bell,
1982; Loewenstein et al., 2001; Loomes & Sugden, 1982; Mellers, Schwartz, Ho, &
Ritov, 1997), many aspects mentioned positive or negative feelings.

Taken together, the results of study 1 suggest that when people are prompted
to report their own risk preferences, they may retrieve information from memory
and evaluate how strongly multiple pieces of information support a specific judgment
(i.e., strength of evidence). Thus, on a quantitative level the information-integration
processes in the context of evaluating one’s own risk preferences appear to share
similarities with those of evaluating external objects (Griffin & Tversky, 1992; Kvam
& Pleskac, 2016).

Study 2

In study 2 we tested a longitudinal hypothesis that logically follows from the ba-
sic assumption that people’s self-reported risk preferences are robustly rooted in their
cognitive representations of idiosyncratic experiences and behaviors. Specifically, in
RQ3 we tested whether two particular dimensions of the retrieved information show
stability across time—that is, from study 1 to study 2—namely, (a) whether people
retrieve the identical aspects (aspect stability) and (b) whether the listed aspects
have, on average, a similar strength of evidence (evidence stability). To illustrate,
to the extent that people sample aspects from a large pool of idiosyncratic experi-
ences, they may not necessarily retrieve the exact same aspects at different occasions
(e.g., because different contexts may prime the retrieval of a particular type or class
of aspects)—yet this naturally does not preclude the possibility that the retrieved
aspects still suggest a similar degree of risk preference. Consequently, RQ4 exam-
ined whether the stability of self-reported risk preferences directly hinges on aspect
stability or on evidence stability.

Methods

Of the 250 participants in study 1, 164 accepted an invitation to complete
a retest study after an interval of one month. Of these participants, 150 passed all
quality checks and their data were used for the subsequent analyses (72 females; mean
age: 39.07; range: 19 – 70 years; mean number of years of education completed: 15.44;
modal income: 2,000 - 3,000 USD per month). We deviated from our preregistered
analysis plan on four minor points (see SM section 3).

The participants who completed both studies did not differ credibly from par-
ticipants who only completed study 1 in terms of their self-reported risk preferences,
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average strength of evidence of the listed aspects, average sentiment of the listed as-
pects, years of education, or the proportion of females (see SM section 5.6); however,
the former participants tended to be slightly older (b = 2.90, 95% CI [0.16, 5.40]) and
on average listed slightly more aspects (b = 0.73, 95% CI [0.26, 1.15]). In sum, if at
all there were only very weak indications for systematic selection effects.

Procedure. The design of study 2 was equivalent to that of study 1, with
the exception that we added two questions at the end of the study. Specifically,
we asked participants how well they could remember the aspects they had listed in
study 1, as well as concerning their intuition of how similar their listed aspects were
across studies. Both of these ratings were provided on a scale ranging from 0 to 100.
Participants again received compensation of 0.85 USD for their participation.

External similarity ratings to gauge aspect stability. To examine aspect
stability, we first obtained similarity ratings for the listed aspects. To this end, we
asked 63 independent raters (recruited via Amazon MTurk) to judge the similarities
of all possible pairs of aspects that were listed by each participant across and within
the two studies. Pairs of aspects were partitioned into packages of about 200, and
for each package three raters were asked to provide their judgments using a Likert
scale ranging from 0 to 5 (i.e., each rater rated a total of around 200 aspect pairs,
one pair at a time). To gauge the inter-rater agreement we calculated Kendall’s
coefficient of concordance (W ; Kendall, 1948) for each triplet of raters who evaluated
the similarities of the same aspects (MW = .56, range = .38 - .77).

We denoted two aspects to be “equivalent” using a very conservative cutoff of
five (i.e., mean similarity rating across the three raters, implying that all raters had to
provide the highest rating). To obtain the proportion of equivalent aspects we divided
the number of equivalent aspects by the maximal number of aspects that could be
equivalent; across studies, the maximally possible number of equivalent aspects is
equal to the smaller number of aspects listed in study 1 and study 2. As a robustness
check, we also used additional ways to aggregate similarity ratings in the analyses
concerning aspect stability (SM section 5.4).

Statistical analysis. To quantify the relation between aspect stability and
the stability of the self-reported risk preferences (RQ4a), we used a gamma regression
model with a log link function. This allowed us to account for the skewness in the
absolute difference scores of the self-reported risk preferences. For the robustness test
with the average similarity rating as predictor, we again used a gamma regression
model with a log link function.

To quantify the relation between evidence stability and the stability of the self-
reported risk preferences (RQ4b), we used a linear regression model with both the
evidence stability and the self-reported risk preferences scaled for better interpretabil-
ity. In contrast to the relation between overlaps and change in the self-reported risk
preferences in RQ4a, the variables involved in RQ4b—that is, the change in the aggre-
gated strength of evidence and the change in the self-reported risk preferences—allow
for testing a directional relationship. Therefore, we did not use the absolute differ-
ences but the directional difference scores of the variables between study 1 and study
2. We again used the default priors implemented in rstanarm.
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Figure 4 . Stability of self-reported risk preference (first panel) and stability of the
aspects’ strength of evidence (second panel). The histograms show the distributions of
within-subject differences between study 1 and study 2. The relation between changes
in the aggregated strength of evidence and changes in self-reported risk preference is
shown in the third panel (rs = .45).

Results

Just as in study 1, the self-reports of the majority of participants (60%) indi-
cated risk-aversion, with an average rating ofM = 3.81. The majority of participants
(78%) again listed between one and four aspects (M = 3.6; range: 1 – 13), and within
participants the number of listed aspects was quite similar from study 1 to study 2
(rs = .54). On average, participants indicated that they did not actively remember
the aspects they had listed in study 1 (M = 21.56, SD = 24.89; on a scale from 0 to
100). Nevertheless, participants appeared to have an intuition that the aspects they
had listed in study 1 were rather similar to those they had just listed in study 2 (M
= 65.42, SD = 22.05; again on a scale from 0 to 100). The strength of evidence of
the listed aspects again proved to be the most important predictor of participants’
self-reported risk preferences (see Figure 1).

Finally, in line with previous observations (e.g., Frey et al., 2017; Mata et al.,
2018) participants’ self-reported risk preferences were highly stable at a one-month
interval (rs = .80). The first panel of Figure 4 depicts the distribution of within-
subject differences, which is clearly centered on zero.

RQ3: Aspect stability and evidence stability. We examined aspect sta-
bility by determining the proportion of equivalent aspects across studies (see methods
section). With the strict criterion imposed for classifying aspects as equivalent, as-
pect stability was relatively low: Only every twentieth aspect pair (i.e,. a proportion
of .05) fulfilled the criterion of equivalence.

Yet, the picture was substantially different for evidence stability: Specifically,
the strength of evidence (aggregated over all aspects listed by each participant)4

4In line with our preregistered analysis plan, we used the value updating model to aggregate
evidence stability across the aspects listed by each participant, because it was the best-performing
of the original models in both studies. Yet, using the arithmetic mean to aggregate the strength of
evidence yielded an equivalent result (rs = .67).
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remained highly stable across time (rs = .68), as can be seen in the second panel of
Figure 4. A Bayesian paired t-test corroborated that there was no credible difference
between the aggregated strength of evidence of a participant’s aspects listed in the
two studies (∆M = -1.39, 95% CI [-3.48, 0.64]).

RQ4: Relationship of the stability of self-reported risk preference
with aspect stability and evidence stability. Aspect stability was not credibly
associated with the stability of self-reported risk preference (b = -1.03, 95% CI [-
2.90, 1.59]; rs = -.12) nor did a robustness test (i.e., using the average similarity
ratings instead of the proportion of equivalent aspects) indicate a credible association
between aspect stability and the stability of self-reported risk preference (b = -0.43,
95% CI [-0.95, 0.10]; rs = -.20).

Conversely, and as can be seen in the third panel of Figure 4, evidence stability
across the two studies was credibly and strongly associated with the stability of self-
reported risk preference (β = 0.63, 95% CI [0.50, 0.75]; rs = .45).

Discussion

Study 2 corroborated the results obtained in study 1, and replicated previous
observations of a high temporal stability of self-reported risk preference (e.g., Frey
et al., 2017; Mata et al., 2018). More importantly, our analyses revealed that within
participants the listed aspects’ average strength of evidence remained highly stable
across the two studies; that is, although participants did not necessarily list the exact
same aspects across the two studies (low aspect stability), they appeared to have
sampled and listed aspects from a pool of idiosyncratic experiences with comparable
strength of evidence (high evidence stability). Crucially, changes in the strength of
evidence were systematically associated with changes in self-reported risk preferences.
In sum, our analyses suggest that people’s internal sampling process results in the
retrieval of aspects that yield high evidence stability—thus providing a cognitive
explanation for why self-reported risk preferences remain stable across time.

Cross-Study Analysis

Finally, to further clarify the predictive power of the strength and weight of
evidence of the listed aspects, we repeated the analyses reported in study 1 by focusing
on cross-study pre- and post-dictions. These analyses were particularly targeted at
ruling out the possibility that the high predictive power of the aspects’ strength and
weight of evidence resulted from a methodological artifact; namely, that the respective
ratings were provided in close proximity to the self-reported risk preferences. Thus,
being able to predict (i.e., from study 1 to study 2) and post-dict (i.e., from study 2
to study 1) participants’ self-reports of their risk preferences only using the aspects
listed in the other study would constitute substantial evidence for the robustness of
our main findings. Naturally, these tests rest on the assumption that people’s risk
preferences remain at least somewhat stable across time, a finding that has repeatedly
been documented (e.g., Frey et al., 2017; Mata et al., 2018).
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Table 3
Goodness of Fit Indicators of the Different Ordinal Regression Models in the Cross-
Study Analyses.
Model Accuracy κ Distinct

Predictions
Fitting in study 1, prediction to study 2
SoE .28 .21 7
WoE .29 .22 5
5 soc. dem. pred. .26 .19 3
Sex .21 .13 2
Age .21 .13 3
Fitting in study 2, post-diction to study 1
SoE .35 .29 7
WoE .31 .25 6
5 soc. dem. pred. .24 .16 3
Sex .22 .14 3
Age .21 .14 1
Note: Predictions are based on ordinal regression models fit within study 1 and 2 (shown
in Table 2). Accuracy = The proportion of correctly predicted categories (ratings
between 0 and 10). κ= Cohen’s kappa, with a chance level of 1/11. Distinct Predictions
= The number of distinct/unique predictions made by a model (all numbers from 0 to
10 occurred in the empirical data). SoE = Mean strength of evidence per participant
as predictor. WoE = Mean weight of evidence per participant as predictor. 5 soc. dem.
pred. = Age, sex, years of education, income, and employment status as predictors.
Sex = Sex as predictor. Age = Age as predictor.

Methods

Just as in study 2, we relied on the data of the 150 participants who completed
both studies for this cross-study analysis. We again implemented the two-fold ap-
proach used in study 1; that is, we performed the cross-study analyses both with our
initial set of six models, as well as with the ordinal regression models. To this end, we
relied on the aspects (and estimated model parameters) obtained in study 1 (study
2) to generate predictions for the self-reported risk preference of study 2 (study 1).

Results

As can be seen in Figure 1, in the cross-study analyses the predictive accuracies
of the six initial models were still substantial, with rs ranging from .60 to .71. Specif-
ically, the correlations between model predictions (from study 1) and self-reports (in
study 2) were rs = .71 (VUM), rs = .62 (EXT), rs = .63 (QT), rs = .65 (FIRST),
rs = .63 (LAST), and rs = .64 (SUM). Moreover, the correlations between model post-
dictions (from study 2) and self-reports (in study 1) were rs = .70 (VUM), rs = .61
(EXT), rs = .60 (QT), rs = .64 (FIRST), rs = .60 (LAST), and rs = .64 (SUM).
Hence, the predictive performance of all six models still substantially exceeded the
predictive accuracy of the reference models.
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Regarding the ordinal regression models, using the strength of evidence as pre-
dictor again led to the best model performance even in cross-study predictions, with
correlations between model predictions (from study 1) and self-reports (in study 2)
of rs = .72 (SoE), and rs = .68 (WoE), and correlations between model post-dictions
(from study 2) and self-reports (in study 1) of rs = .68 (SoE), and rs = .65 (WoE).
Moreover, also in terms of the accuracy, the model using the strength of evidence as
predictor led to the best model performance when post-dicting from study 2 to study
1. However, when predicting from study 1 to study 2, the accuracies of the strength
of evidence and the weight of evidence models were virtually identical (see Table 3).
Finally, these two models clearly outperformed the reference models.

In the cross-study analyses, the proportion of identical predictions between these
two models was slightly higher as compared to the within study analyses (see Table
S3), yet still not at the upper bound (i.e., where each correct prediction of the worse
model aligns with those of the better model) and thus still distinct in several cases (see
also Figure S5). This is again highlighted in the larger number of distinct predictions
made by the model with the strength of evidence as predictor, as opposed to the one
with the weight of evidence as predictor (see Table 3).

Discussion

The cross-study analyses corroborated the conclusions drawn in study 1; namely,
that the aspects’ strength of evidence is the most important property of evidence for
predicting self-reported risk preferences. As such, these analyses permitted ruling out
a potential methodological confound due to the close temporal proximity between the
section during which participants listed their aspects, and the section in which they
self-reported their risk preferences.

Of note, although self-reported risk preferences showed a very high test–retest
reliability across the two studies, some degree of intraindividual variability occurred.
In light of this observation, some drop in model performance is naturally to be ex-
pected when making cross-study pre- and post-dictions. Notwithstanding this, and
crucially, the models using the properties of evidence as predictors clearly outper-
formed the three reference models.

General Discussion

In the two studies presented in this article, we aimed to shed light on the
information-integration processes underlying people’s self-reports of their risk pref-
erences, and to examine people’s cognitive representations thereof. To this end, we
made use of the process-tracing method of aspect listing and employed cognitive mod-
eling to examine the extent to which different properties of evidence of the retrieved
aspects are predictive of people’s self-reports. Moreover, we investigated the stability
of the “cognitive input” supposedly underlying people’s self-reports (i.e., aspect- and
evidence stability), the stability of the output (i.e., self-reported risk preferences), as
well as the relation between stability in input and output. The results suggest three
main take-home messages.
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First, the two studies provide evidence for the internal validity of people’s self-
reports of their risk preferences. The desirable psychometric properties of the respec-
tive measures have increasingly been documented in recent research (e.g., Frey et al.,
2017; Frey, Richter, et al., 2020; Mata et al., 2018), and the current analyses suggest
a set of reasons for these observations. Specifically, people’s self-reports appear to
be the systematic result of a quantifiable information-integration process (see also
Jarecki & Wilke, 2018): The aspects that participants retrieved from their memory
during this process proved to be highly predictive for their self-reports—within and
across the two studies reported here. Moreover, the aspects that form the input to
this judgment-formation process mostly comprise situations that people frequently
experience in their daily lives (see also Arslan et al., 2020; Schimmack et al., 2002;
van der Linden, 2014; Weber, 2006)—rather than rare and exceptional, and thus
potentially less diagnostic experiences.

Second, our model comparison unveiled several quantitative and qualitative
properties of this information-integration process. From a theoretical point of view,
people may consider three different properties of the retrieved information, namely,
the weight, strength, and order of evidence. Whereas some research has primarily
explored the weight of evidence of retrieved information (i.e., “how many pieces of
information support a particular judgment?”; Jarecki & Wilke, 2018), here we also
took into account the role of the other two dimensions. Our results indicated that
the order of evidence may be largely irrelevant in this context, and people appeared
to be particularly sensitive to the strength of evidence of retrieved information; that
is, how strongly different aspects support a particular judgment concerning their risk
preferences. This observation resonates with findings from other domains of judgment
and decision making (Griffin & Tversky, 1992; Kvam & Pleskac, 2016) and suggests
that similar information-integration processes may operate in judgment formation
based on internal and external samples.

Third, our longitudinal analyses across the two studies illustrated that the prop-
erties of the cognitive input in people’s judgments remained considerably stable (i.e.,
evidence stability), thus providing an explanation for why self-report measures of
risk preference may show a high test–retest reliability (i.e., substantially higher than
behavioral measures of the same construct; Frey et al., 2017; Lönnqvist et al., 2015;
Mata et al., 2018). Specifically, the extent to which the strength of evidence of par-
ticipants’ listed aspects changed across time was strongly associated with changes in
their self-reported risk preferences. The process of rendering self-reports arguably
involves drawing internal samples of idiosyncratic experiences and past behaviors.
According to our analyses, people retrieve aspects that are quite diverse in terms of
their specific content, but highly similar in terms of their strength of evidence—and it
was the latter dimension that people were mostly sensitive to when rendering a self-
report. The high degree of evidence stability suggests that the retrieved experiences,
albeit diverse, tend to support a similar degree of risk seeking or risk avoidance. In
short, when rendering self-reports people may internally aggregate over different sit-
uations, and because the resulting self-reports thus encompass diverse settings, they
may end up being predictive for a wide range of future behaviors and outcomes (e.g.,
Duckworth, Gendler, & Gross, 2016; Duckworth & Yeager, 2015). This interpretation
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likely extends beyond self-reports of risk preference to domain-specific conceptions of
risk preferences, and may also apply in other areas of psychological research (e.g.,
Blais & Weber, 2006; Duckworth & Kern, 2011; Eisenberg et al., 2019; Jarecki &
Wilke, 2018; Sharma, Markon, & Clark, 2014; Wilke et al., 2014).

Cognitive Modeling as a Tool to Unpack Self-Reports?

As the three take-home messages above illustrate, we believe that our approach
of using a process-tracing method—along with cognitive modeling—was highly in-
strumental in uncovering the information-integration processes and cognitive rep-
resentations underlying people’s self-reports. This approach rests on the assump-
tion that judgment and decision making typically involve information-sampling and
-integration processes, with information being sampled from either internal or ex-
ternal sources (Fiedler & Juslin, 2005; E. J. Johnson et al., 2007; Juslin & Olsson,
1997). Yet, to what extent can one be confident of having identified the true underly-
ing process? Clearly, the various models implemented here remain approximations of
the true psychological processes that may operate in people’s minds, and even good
model predictions do not guarantee that one has identified the “correct” process (see
Roberts & Pashler, 2000). Hence, by increasing the degree of observable data beyond
the self-reported aspects we used as input in our approach (e.g., reaction times, phys-
iological indicators), lower-level and more fine-grained inferences concerning specific
cognitive processes will become possible.

Nevertheless, we believe that the clear systematicity with which aspects and
self-reported risk preference were related (within and across studies), the pattern
with which stability in the aspects’ strength of evidence was associated with stability
in self-reported risk preference, and finally, the strong agreement in the strength of
evidence as indicated by participants and by external raters are all indicators for the
robustness of the approach implemented here. That said, in what follows we would
like to discuss potential limitations of our studies and suggest avenues for further
research in the future.

Limitations and Further Research

Aspect listing. One potential issue of aspect listing—at least when imple-
mented in the traditional way (i.e., within one session only)—consists of the close
temporal proximity between the listing of aspects and providing the self-report it-
self, hence potentially inflating the respective consistency. Our design with a retest
study permitted addressing this issue directly: Even in the cross-study analyses the
predictive accuracies of the various models were high and far superior compared to
those of sociodemographic predictors. This suggests that the good performance of
the cognitive models does not merely reflect a methodological artifact.

Yet, there are potentially even more fundamental issues related to the method
of aspect listing that are worthy of a careful discussion. As outlined in our intro-
duction, a basic motivation for employing aspect listing is to avoid having to prompt
respondents to engage in introspection in hindsight; that is, to reflect on how they had
rendered a previous self-report. Specifically, it has been argued that such retrospective



APPENDIX A: STEINER, SEITZ, & FREY (IN PRESS) 27

metacognitive judgments may be unreliable, as people lack sufficient insight into the
cognitive processes underlying their own judgments (Nisbett & Bellows, 1977; Nisbett
& Wilson, 1977). Thus, to avoid this potential issue, methods such as aspect listing
or think-aloud protocols aim to trace information processing on the fly (e.g., Ericsson
& Simon, 1980, 1993). Naturally, there are also some intricacies with this approach,
as it evidently rests on the assumption that people are capable of providing veridical
reports of their own, ongoing thoughts—and this assumption may not always be met,
at least not entirely: On the one hand, the task of sequentially typing in one’s ongo-
ing thoughts may alter the judgment-formation process to be more systematic, thus
potentially leading to a more structured way of rendering a self-report (see Ericsson
& Simon, 1980; Fox, Ericsson, & Best, 2011). To illustrate, the somewhat stronger
bimodal distribution of participants’ self-reports in our studies (i.e., as compared to
in previous studies; e.g., Dohmen et al., 2011; Frey et al., 2017) might be a mani-
festation of this possibility—although there were no indications for systematic mean
differences, depending on whether self-reports were provided after or before the actual
aspect listing (as investigated in a pilot study, see methods section of study 1). On
the other hand, assuming that the method of aspect listing does not overly distort the
ongoing judgment-formation process, one still cannot be entirely sure that the listed
aspects reflect fully accurate memories, as memories of everyday life events could be
altered and transformed (for reviews, see Koriat, 2007; Koriat et al., 2000). Thus,
in future research it will be useful to test whether our findings also hold for other
process-tracing methods such as think-aloud protocols, which might be more robust
in this regard (Fox et al., 2011). Relatedly, it may be worthwhile to test the extent to
which particular contexts trigger the retrieval of specific (classes of) aspects, which
could in principle explain why aspect stability (but not evidence stability) was low
across the two studies conducted here. Taken together, people may not always have
direct introspective access to the processes involved in their judgments and decisions
(i.e., particularly when being prompted to reflect on such processes explicitly and in
hindsight). Yet, under certain conditions and when using the appropriate methods
they may indeed be able to report on their current thoughts quite accurately, thus
providing reliable insight concerning the underlying cognitive processes (e.g., Adair
& Spinner, 1981; Berger, Dennehy, Bargh, & Morsella, 2016; Ericsson & Simon, 1980,
1993; Hurlburt & Heavey, 2001; White, 1980).

Modeling approach. We have sampled diverse models from the literature
on judgment and decision making that describe manifold information-integration pro-
cesses, and which cover a wide space ranging from simple heuristics to learning mod-
els. As the empirical data imposed some constraints concerning the level of detail
with which fine-grained model comparisons were possible, we additionally relied on
a more general model comparison—focusing on the distinction between the strength
of evidence and the weight of evidence. In the future, the employment of yet other
process-tracing approaches (see points discussed above) might allow for more fine-
grained analyses in this respect.

Moreover, as we modeled one self-report per participant, we estimated the free
parameters across individuals. Although this is a widespread procedure in various
applications of cognitive modeling (e.g., Birnbaum, 2008; Erev, Ert, Plonsky, Cohen,
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& Cohen, 2017; Erev et al., 2010), this approach is not without its problems. For
example, not all participants may rely on the same information-integration processes
(e.g., Frey, Rieskamp, & Hertwig, 2015; Mata, von Helversen, & Rieskamp, 2010;
Payne et al., 1988) and/or may be best described with the same parameter values (e.g.,
Kellen et al., 2016; Pedroni et al., 2017). In short, it is unclear to what extent findings
based on the interindividual level generalize to the intraindividual level (Molenaar,
2004; Molenaar & Campbell, 2009), and future research is thus needed to clarify a
potential heterogeneity between different persons’ cognitive processes.

Outcome measures. Finally, future research may also investigate to what
extent our findings extend to self-reports of domain-specific risk preferences. Jarecki
and Wilke (2018) have examined how cognitive processes potentially vary across dif-
ferent (evolutionary) content-domains (see also Wilke et al., 2014). Similar analyses,
yet including models that take into account the strength of evidence of retrieved in-
formation, could thus also be conducted for domain-specific risk preferences as are
often assessed in psychological research (Rolison & Shenton, 2020; Weber et al., 2002).
One may expect that aspects retrieved for specific domains of life (e.g., recreation,
health, finance) may be more heterogeneous across domains, but more homogeneous
within, as compared to those retrieved in response to a domain-general question as
investigated here—which may ultimately increase aspect stability.

Conclusions

Zooming out, our approach to modeling people’s self-reported risk preferences
involves several contributions that inform psychological assessment in general, and
provides theoretical and measurement-related insight into the construct of risk pref-
erence more specifically.

First, we bridged two methodological approaches that are too often employed
separately; that is, we investigated self-reported preferences (as typically employed in
psychometric research relying on questionnaires) by implementing cognitive modeling
using a range of different models. Integrating these approaches proved helpful for a
better understanding of the construct validity of self-reported risk preference, and we
hope that our approach will inspire similar applications in other areas of psychological
research in the future.

Second, our investigations provide substantial evidence that self-reports of risk
preference are robustly rooted in people’s idiosyncratic experiences, and are thus
internally valid. Specifically, the desirable psychometric properties of respective self-
report measures—here tapping risk preference, but potentially also in the case of self-
reports of other psychological constructs—may emerge as the result of an information-
integration process that aggregates multiple samples that people draw from their
autobiographical memory.

Third and finally, our findings have an important implication for applied set-
tings: Risk preferences can have a dramatic impact on important life outcomes, and
are thus frequently assessed in various real-life contexts, such as concerning health-
and safety-related matters or when designing investment portfolios. In doing so, the
tool of choice is often one of numerous self-report measures. These measures may be
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not only frugal in their application—but according to our findings also sound from a
psychological perspective.
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Representative Design in Psychological Assessment:
A Case Study Using the Balloon Analogue Risk

Task (BART)

Markus D. Steiner, Renato Frey
University of Basel

Abstract
Representative design refers to the idea that experimental stimuli
should be sampled or designed such that they represent the environ-
ments to which measured constructs are supposed to generalize. In this
article we investigate the role of representative design in achieving valid
and reliable psychological assessments, by focusing on a widely used
behavioral measure of risk taking—the Balloon Analogue Risk Task
(BART). Specifically, we demonstrate that the typical implementation
of this task violates the principle of representative design, thus conflict-
ing with the expectations people likely form from real balloons. This
observation may provide an explanation for the previously observed
limitations in some of the BART’s psychometric properties (e.g., con-
vergent validity with other measures of risk taking). To experimentally
test the effects of improved representative designs, we conducted two
extensive empirical studies (N = 772 and N = 632), finding that partic-
ipants acquired more accurate beliefs about the optimal behavior in the
BART due to these task adaptions. Yet, improving the task’s repre-
sentativeness proved to be insufficient to enhance the BART’s psycho-
metric properties. It follows that for the development of valid behav-
ioral measurement instruments—as are needed, for instance, in func-
tional neuroimaging studies—our field has to overcome the philosophy
of the “repair program” (i.e., fixing existing tasks). Instead, we sug-
gest that the development of valid task designs requires novel ecological
assessments, aimed at identifying those real-life behaviors and associ-
ated psychological processes that lab tasks are supposed to capture and
generalize to.

Keywords: representative design, BART, risk taking

Various psychological assessments are routinely performed by means of behav-
ioral tasks, including the measurement and modeling of individual differences in risk
taking (Frey, Pedroni, Mata, Rieskamp, & Hertwig, 2017; Frey, Richter, Schupp, Her-
twig, & Mata, 2020; Lauriola, Panno, Levin, & Lejuez, 2014; Lejuez, Aklin, Jones,
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et al., 2003; Mishra & Lalumière, 2011; Tisdall et al., 2020). Although such task-
based assessments of revealed preferences have been considered the gold standard in
some fields of psychology and economics (e.g., Beshears, Choi, Laibson, & Madrian,
2008; Charness, Gneezy, & Imas, 2013), recent evidence has highlighted substantial
psychometric limitations of this measurement approach (e.g., Beauchamp, Cesarini,
& Johannesson, 2017; Berg, Dickhaut, & McCabe, 2005; Eisenberg et al., 2019; Frey
et al., 2017; Lönnqvist, Verkasalo, Walkowitz, & Wichardt, 2015; Millroth, Juslin,
Winman, Nilsson, & Lindskog, 2020). Valid and reliable alternatives do exist in the
form of self-report measures (e.g., Arslan et al., 2020; Frey et al., 2017; Steiner, Seitz,
& Frey, in press), yet behavioral tasks may continue to be indispensable for certain
applications, such as in research on the functional neural architecture of risk taking,
which typically rests on the simulation of risk-taking behaviors in the fMRI scan-
ner (e.g., Helfinstein et al., 2014; Li et al., 2019; Rao, Korczykowski, Pluta, Hoang,
& Detre, 2008; Schonberg, Fox, & Poldrack, 2011; Tisdall et al., 2020). Moreover,
incorporating both revealed and stated preferences in a multimethod approach may
prove beneficial for understanding and predicting real-life behavior (e.g., Lejuez et
al., 2002; Sharma, Markon, & Clark, 2014; Wallsten, Pleskac, & Lejuez, 2005).

In this article, we build on an argument originally put forth by Brunswik and
examine the role of representative design (Brunswik, 1956; Gibson, 1986; Hammond,
1966; Stoffregen, Bardy, Smart, & Pagulayan, 2003; for an overview see Araújo,
Davids, & Passos, 2007 and Dhami, Hertwig, & Hoffrage, 2004) in behavioral mea-
sures of risk taking. Representative design (not to be confused with ecological validity;
Araújo et al., 2007) refers to the idea that experimental stimuli should be sampled
or designed such that they adequately represent the environments to which measured
constructs are supposed to generalize, and that “experimenters should avoid oversam-
pling highly improbable [...] variables in the intended behavioral setting” (Araújo et
al., 2007, p. 73). Specifically, we argue that violations of representative design may
contribute to the poor psychometric properties of behavioral risk-taking measures as
have been observed in previous research, such as low convergent validity or low test–
retest reliability (Beauchamp et al., 2017; Berg et al., 2005; Eisenberg et al., 2019;
Frey et al., 2017; Lönnqvist et al., 2015; Mata, Frey, Richter, Schupp, & Hertwig,
2018; Slovic, 1962)—and thus ultimately hamper a successful assessment of meaning-
ful individual differences. This article illustrates this argument, and systematically
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examines the potential benefits of using improved representative designs, by focusing
on the Balloon Analogue Risk Task (BART).

The BART: A Prominent Behavioral Measure of Risk Taking

The BART is one of the most prominent behavioral measures used to gauge indi-
vidual differences in risk taking, often employed in behavioral decision research (e.g.,
Lauriola et al., 2014; Lejuez et al., 2002; Wallsten et al., 2005), in clinical settings
(e.g., Bornovalova, Daughters, Hernandez, Richards, & Lejuez, 2005; Hopko et al.,
2006; Hunt, Hopko, Bare, Lejuez, & Robinson, 2005), as well as in applied contexts
(e.g., Aklin, Lejuez, Zvolensky, Kahler, & Gwadz, 2005; Lejuez, Aklin, Zvolensky, &
Pedulla, 2003). For instance, the BART has been used to predict interindividual dif-
ferences in substance use (e.g., Campbell, Samartgis, & Crowe, 2013; Hanson, Thayer,
& Tapert, 2014; Hopko et al., 2006; Lejuez, Aklin, Jones, et al., 2003), to study the
neural architecture of risk-taking behaviors in imaging studies (e.g., Helfinstein et al.,
2014; Li et al., 2019; Rao et al., 2008; Tisdall et al., 2020), and to examine the genetic
underpinnings thereof (Mata, Hau, Papassotiropoulos, & Hertwig, 2012).

When completing the BART, participants sequentially inflate virtual balloons
(typically 30) on a computer screen, earning a fixed amount of money for each suc-
cessful inflation. If a balloon explodes, the money accrued in the current trial is lost.
Participants are free to stop inflating a balloon at any time, to thus transfer their
current gain to a safe account. At the onset of the task, participants are only told
the amount of money they will earn for each successful inflation, that they will lose
the money accrued in the current trial if the balloon bursts, as well as that at most
the balloons can get as large as the whole screen. As such, participants initially face
a situation of decisions under uncertainty (see Knight, 1921; Mousavi & Gigerenzer,
2014), because the risk of an explosion at different inflation stages remains unknown.
With increasing experience, the task gradually transforms into a situation of decisions
under risk (Knight, 1921; Mousavi & Gigerenzer, 2014), as the explosion probabilities
can in principle be learned—at least approximatively.

The BART is attractive as it resembles many real-life decision problems in at
least three key aspects: On the one hand, it mirrors the fact that in many risky situ-
ations not all stochastic properties are known a priori but have to be learned through
experience (e.g., Frey, 2020; Frey, Rieskamp, & Hertwig, 2015; Hertwig, Barron, We-
ber, & Erev, 2004). On the other hand, the sequential nature of the BART creates a
“sense of escalating tension and exhilaration” (Schonberg et al., 2011, p. 16), mimick-
ing the thrill that individuals may feel in many risk-taking decisions in real life (e.g.,
whether to stay invested in stocks before a looming stock market crash). Moreover,
risk and reward are correlated in the BART, as they are in many real-life decisions
involving risk and uncertainty (Pleskac, Conradt, Leuker, & Hertwig, 2020; Pleskac
& Hertwig, 2014).

In light of these attractive features, it may be somewhat surprising that several
studies documented a relatively low convergent validity of the BART with measures
tapping various constructs related to risk taking. For instance, one study found a
maximum correlation of r = .16 between the BART and any of 38 multi-dimensional
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risk-taking measures, spanning indicators of domain-general and domain-specific risk
preference, sensation seeking, impulsivity, and concrete real-life behaviors, as well
as comprising different assessment methods (i.e., self-reported propensity measures,
behavioral measures, and frequency measures; Frey et al., 2017). Alike, meta-analyses
on the BART’s convergent validity reported similarly low correlations (i.e., r = .14 for
sensation seeking, and r = .10 for impulsivity; Duckworth & Kern, 2011; Lauriola et
al., 2014). Moreover, although multiple studies found associations of the BART with
real-life behaviors (e.g., Aklin et al., 2005; Lejuez et al., 2007; Lejuez, Aklin, Jones, et
al., 2003; Skeel, Pilarski, Pytlak, & Neudecker, 2008), this has not consistently been
the case (e.g., Frey et al., 2017; Hopko et al., 2006; Hunt et al., 2005; Lauriola et al.,
2014; Schürmann, Frey, & Pleskac, 2018)—and to date no meta-analysis exists yet to
conclusively clarify this issue. Finally, although the BART exhibits a high test–retest
reliability, especially in comparison with other behavioral tasks (Frey et al., 2017;
White, Lejuez, & de Wit, 2008), it is somewhat lower as compared to respective self-
report measures (e.g.; Frey et al., 2017; Mata et al., 2018). The question thus arises:
What obstacles hinder the BART from capturing individual differences in risk taking
more consistently, and how could such limitations potentially be fixed?

Challenges in the BART’s task design. Previous research concerning the
BART’s task design has mainly revolved around two potential issues. First, it has
been argued that learning may be difficult due to the asymmetric feedback provided
(Pleskac, Wallsten, Wang, & Lejuez, 2008). Removing learning requirements (i.e.,
either by informing participants upfront about the optimal number of inflations; or
by implementing a related task that retains the BART’s basic structure yet has no
learning demands) resulted in similar and partly stronger associations with some real-
life behaviors (i.e., polydrug use; Pleskac, 2008; Pleskac et al., 2008). That is, whether
or not the BART’s learning requirement is ultimately a useful property may also
depend on the particular real-life behaviors that are to be predicted (e.g., the extent
to which these are decisions under uncertainty that involve a learning component).

Second, there has been a debate concerning people’s representations of explosion
probabilities in the BART: Early work relying on cognitive modeling concluded that
participants may form an incorrect representation of the task’s stochastic structure by
assuming that explosion probabilities remain stationary across the sequential inflation
process (Pleskac, 2008; Wallsten et al., 2005). However, more recent research, which
has directly prompted participants to rate the probability that a balloon explodes at
different inflation stages, has challenged this conclusion: According to participants’
explicit ratings, they indeed expected a strong increase in the explosion probabilities
during the sequential inflation process (Schürmann et al., 2018).

Here we would like to draw attention to yet another and independent, but po-
tentially very fundamental issue in the BART’s task design. Specifically, in order
to trigger a sense of increasing tension during the sequential inflation process—as
outlined above, an attractive feature that mimics many real-life situations—the con-
ditional probability that a balloon explodes at inflation i (i.e., given that it has not
exploded in the preceding i−1 inflations; see the escalating purple curve in Figure 1a)
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Figure 1 . Illustration of four different task designs, each implementing a different
stochastic structure in the BART. Colors/shapes indicate different distributions of
explosion points, with purple/squared dots depicting the standard implementation of
the BART (i.e., uniform distribution) and the other colors/shapes depicting more rep-
resentative designs thereof (i.e., normal distributions). Panel a) shows the conditional
explosion probabilities. Panel b) shows the probability masses of the explosion points.
Panel c) shows the cumulative explosion probabilities. Panel d) shows the expected
payoffs across inflation stages, and the colored ticks on the x-axis show the stage
that maximizes the expected value, namely, 32, 28, 25, and 25 when explosion points
are distributed as U(1, 64) as in the BARTuniform, N (32, 18) as in the BARTnormal-H,
N (32, 12) as in the BARTnormal-M, and N (32, 6) as in the BARTnormal-L.

is defined as

p(expl i|¬expl i−1) = 1/(C − i+ 1) (1)

where C denotes the maximum capacity of the balloons, for example C = 128 (Lejuez
et al., 2002).1 Importantly, and as can be seen from the flat purple curve in Figure 1b,
this stochastic structure results in a uniform distribution of explosion points. That
is, when inflating all balloons to their explosion points, in the long run there will be
the same number of explosions at every possible inflation stage (i.e., p(expl i) = 1/C
for all inflation stages i ∈ {1, 2, . . . , C}).

Evidently, the typical implementation of the BART—hereinafter referred to
as the BARTuniform—is in stark contrast to the stochastic structure to be expected
from real balloons: Balloons of the same type can be expected to burst around one

1If only one type of balloon is employed in an experiment, all balloons have, in principle, the
same maximum capacity.
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specific inflation stage, thus resulting in a distribution of explosions with a central
tendency. To put this assumption to a simple test, we inflated 100 real balloons until
they exploded, using a regular bicycle pump, and keeping record of the number of
inflations. As to be expected, the resulting distribution of explosions (Figure 2) was
much more aligned with a normal rather than a uniform distribution.2 Hence, what
are the potential consequences if representative design is violated in a behavioral task
such as the BART?

Three issues associated with the lack of representative design in the
BART. To date, the degree of representative design and its respective effects remain
rarely tested for specific tasks, particularly in the context of psychological assessment.
Although some studies have found mixed evidence concerning whether representative
design and systematic design (i.e., the attempt to systematically design stimuli to
be able to have maximal control over experimental manipulations) generally lead to
substantially different effects (Dhami et al., 2004), in the case of the BART one can
conceive of at least three major issues.

First, and particularly in a “naturalistic” task such as the BART, participants
do not start off as tabula rasa but with some prior beliefs (see also, Pleskac, 2008;
Wallsten et al., 2005): Virtually everyone has inflated real balloons and acquired the
expectation that explosions do not occur in an entirely unpredictable way—as is the
case in the BARTuniform. Thus, in the process of turning this task from a situation of
decisions under uncertainty into one of decisions under risk, participants may aim to
learn (implicitly or explicitly) about several statistical properties, such as: “Around
which value do most of the balloons explode?” In fact, due to the linear reward
structure the expected payoffs are maximized when inflating all balloons to half of
the maximum capacity (Figure 1d); and as this reward structure is transparent (i.e.,
participants know upfront that payoffs increase linearly with each inflation; Lejuez
et al., 2002), the goal of maximizing payoffs reduces entirely to learning about the
(mean of the) distribution of explosion points. Hence, the respective need to over-learn
one’s prior expectations about the functional form of the distribution of explosions
may introduce undesirable noise in the BARTuniform, and may thus lead to distorted
task representations—which could limit not only the task’s test–retest reliability but
also its convergent validity with related measures of risk taking.

Second, over-learning one’s prior expectations may be especially challeng-
ing in the case of the BARTuniform because participants experience highly variable
feedback—precisely due to the uniform distribution of explosions, which yields very
early as well as very late explosions with the same likelihood. Furthermore, the highly
variable explosion points may also lead to problematic order effects: Previous research
has found a systematic influence of whether participants experience early or late ex-
plosions during the initial trials—requiring the order of explosions to be fixed across
participants (Schürmann et al., 2018; Walasek, Wright, & Rakow, 2014). Thus, this
second issue likely aggravates the consequences of the first issue.

Third, the payoff-maximizing behavior in the BARTuniform consists of inflating

2Note that this distribution had somewhat fat tails and some degree of skewness, both of which
may be related to the relatively small sample size of this brief experiment.
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Figure 2 . Distributions of explosion points of 100 real balloons, inflated with a bicycle
pump.

the balloons up to the mean breaking point. Yet, around the mean breaking point
there is no specific signal a participant could detect and exploit across trials—unlike in
a distribution with a central tendency of explosion points (e.g., a normal distribution),
where participants would spontaneously observe that relatively more balloons explode
around a specific inflation stage. Thus, in order to adopt the objectively optimal
behavior in the BARTuniform, participants have to obtain an estimate of C, as the
mean of a uniform distribution (with a lower bound of 0) is defined as µ = C

2 . An
estimate of C may be obtained through sequential updating of one’s prior assumption
of the balloons’ maximum capacity (Wallsten et al., 2005), but this process is difficult
due to the relatively few trials typically completed in the BART, as well as due
to the asymmetric feedback provided. As a result, unless participants commit to a
large number of purely exploratory trials, their estimates of C may be systematically
biased downwards simply due to the particular task structure (Pleskac et al., 2008).
Consequently, even individuals who differ in their willingness to take risks may show
very similar behaviors, which may lead to attenuated correlations with other measures
of risk taking.

Taken together, these three issues may provide explanations for the reviewed
limitations in the BART’s psychometric properties. Thus, in what follows we will
first report a reanalysis of five datasets, aimed at exploring the empirical evidence
concerning whether participants’ prior expectations indeed diverge from the distribu-
tion of explosion points as implemented in the BARTuniform. Then, we will report two
empirical studies that systematically tested whether an improved representative de-
sign in the BART leads to an enhanced assessment of individual differences, which (a)
may increase the convergent validity of the BART with measures of various constructs
related to risk taking and (b) potentially boosts the BART’s test–retest reliability.

Reanalysis of Five Datasets: People’s Representations of the BART’s
Stochastic Structure

To explore people’s expectations and representations concerning the stochastic
structure of the BART, we first report a reanalysis of a number of datasets that
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comprise explicit judgments of explosion probabilities. Specifically, our reanalysis
involves five datasets stemming from three studies: Frey et al. (2017) collected data
from 1507 participants, Schürmann et al. (2018) collected data from 100 participants
in study 1 and from 90 participants in study 2, and Steiner and Frey (2020) collected
data from 31 participants.3 At the end of each of these studies (i.e., after having
completed all 30 trials of the BART), participants were shown balloons inflated to
different stages and were asked: “What do you think is the probability that the
balloon will explode with one additional pump, given it is already inflated at this
size?” (Schürmann et al., 2018, p. 4). Participants then provided their probability
rating on a scale from 0% to 100%. In study 2 of Schürmann et al. (2018), participants
provided these probability ratings twice, once after the first trial—thus also permitting
some insights concerning participants’ prior expectations—and once at the end of the
task.

Schürmann et al. (2018) fitted psychometric functions to participants’ ratings
and visual inspection of the results (their Figures 3 and 5) suggests two conclusions:
First, participants might generally have reported their beliefs that a balloon can be
inflated up to different stages (i.e., cumulative probabilities; see the curves depicted in
Figure 1c) rather than their beliefs that a balloon will explode at the next stage (i.e.,
conditional probabilities; see the curves depicted in Figure 1a; for similar findings,
see Haffke & Hübner, 2019). Second and more importantly from the perspective of
representative design, the shapes of the fitted psychometric functions suggest that
participants may indeed have acquired the representation that the explosion points
are normally and not uniformly distributed: In the case of a uniform distribution,
cumulative probabilities would result in a linear function, whereas in the case of a
normal distribution cumulative probabilities would result in a sigmoid function (see
Figure 1c). The results of Schürmann et al. (2018) appear to be in line with the
latter.

Method

To formally test these hypotheses, we fitted cumulative density functions (CDF)
and conditional probability functions (CPF) of both a normal distribution and a
uniform distribution to participants’ probability ratings, and examined which function
best described the data according to the least-squares criterion. For the two CDFs,
we estimated two free parameters (i.e., mean and standard deviation in the case of
the normal distribution, and the lower and upper bound in the case of the uniform
distribution). For the two CPFs, we estimated two free parameters in the case of the
normal distribution (i.e., the mean and standard deviation), and one free parameter
in the case of the uniform distribution (i.e., the lower bound). Both CPFs used the
maximum balloon capacity C as fixed upper bound, which was 128 in Schürmann et
al. (2018) and in Frey et al. (2017), and 64 in Steiner and Frey (2020).
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Figure 3 . Reanalysis of the data from probability rating tasks. Panel a) shows the
result of the reanalysis of study 1 from Schürmann et al. (2018). Panels b) and c) show
the results of the reanalysis of study 2 from Schürmann et al. (2018) after participants
have played one trial, and all 30 trials, respectively. Panel d) shows the results of the
reanalysis of the data from Frey et al. (2017). Finally, panel e) shows the results of
the reanalysis of the data from Steiner and Frey (2020). Points represent the actual
probability ratings. Lines are the predictions made by the models that best represent
the respective participants. The line and point colors indicate the best fitting model.
CDF = Cumulative density function. CPF = Conditional probability function.

Results

Figure 3 depicts the results of our reanalysis. In all datasets, the ratings of most
participants were best described by normal distributions. Specifically, the ratings of
84%, 71% and 71% of the participants in the different datasets from Schürmann et al.
(2018), and 84% of the participants from Steiner and Frey (2020), were best described
by CDFs of normal distributions (i.e., the ratings of no participant were best described
by a CPF). In the dataset of Frey et al. (2017) the ratings of 76% of participants were
best described by a normal distribution (43% of participants by CDFs of normal
distributions, and 33% of participants by CPFs of normal distributions). The ratings
of the remaining 24% of participants were best described by a CDF of a uniform
distribution (for a potential explanation of the somewhat different pattern in the
latter dataset, see online Supplemental Material Section 1).

3This dataset stems from a pilot study of a manuscript in preparation, see https://osf.io/
kxp8t for the respective data and materials.
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Discussion

Our reanalysis of five datasets consistently indicated that participants clearly
exhibit a task representation that conflicts with the distribution of explosion points
implemented in the BARTuniform: Most participants expected a normal distribution of
explosion points—evidently the state of affairs in the real world (see Figure 2)—both
in the beginning of the task (as assessed in Schürmann et al., 2018), and even after
30 trials of learning opportunity (as assessed in all four datasets).

Study 1: Does a More Representative Design Boost the BART’s
Convergent Validity With Other Measures of Risk Taking?

The goal of study 1 was to empirically test whether enhancing representative
design in the BART improves the task’s psychometric properties, thus permitting an
improved assessment of participants’ willingness to take risks. There exist multiple
ways of implementing representative design: According to the definition of Hammond
(1966) our brief test of how the explosions of real balloons are distributed (Figure 2)
falls into the category of substantive sampling. Specifically, we have sampled real stim-
uli from the model behavior the experimental task was abstracted from. Naturally,
such a direct implementation of representative design—which mirrors Brunswik’s ini-
tial conception (Brunswik, 1956; see also Dhami et al., 2004)—is not feasible or even
desired in most assessment contexts (e.g., in online research). There is, however, an-
other form of implementing representative design: formal sampling. It implies that
formal, statistical properties of a judgment task are considered in the experimental de-
sign (Hammond, 1966). We followed this logic in study 1 by implementing the BART
with (different types of) normal distributions of explosion points (i.e., BARTnormal).
We expected this change in the task architecture to lead to several improvements:

First, because explosion points are clustered in the BARTnormal, participants
experience more consistent feedback across trials. This should facilitate the acqui-
sition of an appropriate task representation, particularly if participants expect (and
thus aim to identify) such a clustering. Moreover, the more consistent feedback as
compared to in the BARTuniform should in principle avoid the problem of systematic
order effects in learning, potentially rendering the use of a fixed order of explosion
points obsolete.

Second, unlike in the BARTuniform, in the case of a normal distribution there is
no longer a need for an accurate estimate of the balloons’ maximum capacity C to
gauge the objectively optimal behavior. Instead, as an approximation of the number
of inflations that maximizes payoffs, one can directly learn about the average explosion
point (Figure 1d). This may be a more natural process, as learning about the mean
of the balloons’ explosion points can occur directly due to a noticeable increase in
the the number of balloons that explode around a specific inflation stage. Although
the asymmetric feedback in the BART may still lead to an underestimation of the
number of inflations that maximizes payoffs, this should occur substantially less so
than in the BARTuniform.

Third, we expected that these improvements would ultimately lead to an im-
proved assessment of individual differences: On the one hand and as can be seen in
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Figure 1a, the conditional probabilities of an explosion may still create a desirable
sense of escalating tension and exhilaration in the BARTnormal. On the other hand,
participants’ overt risk-taking behavior may be a more direct expression of their will-
ingness to take risks, due to reduced interindividual differences in participants’ task
representations. Hence, the convergent validity between the adjusted BART scores
and other measures of risk taking should increase.

In our comparison of the BARTnormal with the BARTuniform, we implemented
three different normal distributions that had the same means but varied in terms of
their standard deviation (i.e., we sampled a range of plausible learning environments
for the BARTnormal). Narrower distributions should lead to a reduced variability in
participants’ task representations. Yet, in the extreme case, a too narrow distribu-
tion may result in a trivial task, thus failing to capture any meaningful individual
differences in risk taking. The distributions all had the same mean of 32, as in our
implementation of the BARTuniform (which had a maximum capacity of 64). More-
over, the standard deviation of the widest normal distribution was explicitly chosen
to match the standard deviation of the BARTuniform. To summarize, in study 1 we
tested the following four hypotheses:

Hypothesis 1: General task representation: At the end of the task, partici-
pants believe that the explosion points cluster around a mean value rather
than being uniformly distributed, irrespective of the actual distributional
form implemented (i.e., BARTuniform vs. BARTnormal). Moreover, within
the BARTnormal, we expected this belief to be increasingly stronger, the
smaller the standard deviations of the distributions become.

Hypothesis 2: Beliefs about optimal behavior: At the end of the task,
participants’ beliefs about the inflation stage that maximizes their payoffs
exhibit less variability between participants in the BARTnormal as opposed
to in the BARTuniform. Moreover, we expected these beliefs to be closer
to the value that actually maximizes payoffs in the former as compared
to in the latter.

Hypothesis 3: Overt risk-taking behavior: On average, participants’ ad-
justed BART scores are closer to the optimal value and exhibit less vari-
ability between participants in the BARTnormal than in the BARTuniform.
Within the BARTnormal, we expected that the adjusted BART scores are
increasingly closer to the optimal value and exhibit less variability, the
smaller the standard deviations of the distributions become.

Hypothesis 4: Convergent validity: As the distribution of adjusted BART
scores in the BARTnormal potentially reflects individual differences in par-
ticipants’ willingness to take risks more directly, we expected a higher
convergent validity between adjusted BART scores and various other
measures of risk taking (i.e., propensity and frequency measures) in the
BARTnormal as compared to in the BARTuniform.
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Methods

Both empirical studies of this article were preregistered on the Open Science
Framework. The preregistration, data files, and analysis scripts can be accessed via
https://osf.io/kxp8t. Both empirical studies were approved by the local institu-
tional review board (Number 020-19-1).

Participants and sample characteristics. Based on an a priori power anal-
ysis (see preregistration) we collected data of 800 participants on Amazon Mechani-
cal Turk (MTurk). We imposed the following inclusion criteria: based in the United
States, at least 18 years old, at least 500 completed tasks (HITs) on MTurk, and an
acceptance rate of at least 99%. Moreover, only data were included of participants
who passed at least one out of two attention check questions (see preregistration),
who provided a rating of at least 25 on a scale from 0 to 100 concerning how focused
they were during the study, and who confirmed to have completed the study on a
desktop computer or a laptop. Of these 800 participants, the data of 28 contained
missing values and we used list-wise deletion of these data, resulting in a final dataset
consisting of data from 772 participants (47.8% female; Mage = 38.0, SDage = 11.1;
highest completed degree: 0.8% no high school, 37.1% high school, 40.3% bache-
lor, 10.1% master, 10.5% professional, 1.3% doctor; job status: 3.5% student, 11.0%
unemployed, 82.5% working, 3.0% retired). On average, study completion took 13
minutes. Participants were reimbursed with a fixed payment of 10 cents and a per-
formance contingent bonus payment, resulting in an average reimbursement of 4.36
USD.4

Materials and procedure. The whole study was conducted online on par-
ticipants’ own devices. After providing informed consent, participants completed the
BART in one of four randomly assigned between-subjects conditions (see next para-
graph). Upon completion of the BART, participants provided their beliefs about
(a) the form of the underlying distribution (clustered explosion points vs. uniformly
distributed explosion points; using a slider ranging from 0 to 50)—a procedure that
we slightly revised and reimplemented in study 2—and (b) the optimal behavior in
the BART (in randomized order). Then, participants completed (in a randomized
order) the General Risk Propensity Scale (GRiPS; Zhang, Highhouse, & Nye, 2018),
the general and domain-specific risk items used in the German Socioeconomic Panel
(SOEP; e.g., Dohmen et al., 2011, i.e., propensity measures in which participants self-
report their risk preferences), and an assessment of real-life risk-taking behavior in
different domains (i.e., frequency measures, in which participants report the frequency
with which they engaged in different risky behaviors within the last year). Finally,
participants reported their age, sex, job status, and highest education; how focused
they were during the study, and the device they used to complete the study; and
were given the possibility to provide free-text feedback. Screenshots of the study are
provided at https://osf.io/kxp8t.

BART. Each participant was randomly assigned to one of the four between-
subjects conditions; namely BARTuniform (N = 190), BARTnormal-H (N = 195),

4We ensured a fair payment of at least 8 USD per hour even if participants would have earned
less based on their performance. Participants were not previously informed about this policy.
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BARTnormal-M (N = 197), and BARTnormal-L (N = 190). In the BARTuniform the
balloons’ explosion points were drawn from U(1, 64). In the three versions of the
BARTnormal, the explosion points were drawn from three different normal distributions
that varied in terms of their standard deviation (SD); namely, N (32, 12) representing
a high SD (BARTnormal-H), N (32, 18) representing a medium SD (BARTnormal-M), and
N (32, 6) representing a low SD (BARTnormal-L). In all four implementations, balloons
had a maximum capacity C of 64. Participants earned 1 cent per successful inflation;
that is, their bonus equalled the sum of the number of inflations of balloons that did
not explode.

Some of the previous research relying on the BARTuniform implemented a pre-
defined sequence of explosions, in order to avoid random variation of samples and
thus to reduce the risk of order effects across participants (Lejuez et al., 2002; Schür-
mann et al., 2018; Walasek et al., 2014). Although in principle this should be less
of a concern in the BARTnormal (particularly in the implementation with small stan-
dard deviations), for reasons of comparability we also generated a fixed sequence
of 30 explosion points, for each of the four conditions, that closely represented the
underlying distribution (see Figure S1; the respective R script can be accessed via
https://osf.io/kxp8t). The explosion points were ordered quasi-randomly to gen-
erate a fixed sequence of 30 trials, such that the first three balloons had explosion
points larger than ten and smaller than 54, and such that in the first ten, the second
ten, and the third ten balloons the following properties held: five explosion points
were greater or equal to the mean and five were smaller or equal to the mean; the
mean was within 32 ± 0.25 (see also, Lejuez et al., 2002, for a similar approach to
balancing the distributions).

As main dependent variable of participants’ behavior, we focused on the ad-
justed BART score that reflects the mean number of inflations across balloons that
did not explode (Lejuez et al., 2002). Although the adjusted BART score is typically
highly correlated with the BART score (i.e., the mean number of inflations across all
balloons), it is routinely used in studies on the BART as it may better reflect partic-
ipants’ intended behavior (Lejuez et al., 2002; but see, Pleskac et al., 2008). Another
dependent variable consists of the total number of explosions per participant. It has
been argued that the latter is advantageous as compared to the adjusted BART score
because it may be related somewhat more strongly to particular risk-taking behav-
iors (e.g., Schmitz, Manske, Preckel, & Wilhelm, 2016), which is why we additionally
considered this dependent variable in our analyses as a robustness check.

General task representation. We assessed participants’ general task repre-
sentation with the following question: “The question below refers to how the explosion
points of the different balloons were distributed. Do you believe that the explosion
points were clustered around a specific value, or do you believe that the explosion
points were randomly distributed across the entire range of the screen?” Partici-
pants provided their response using a slider ranging from 0 (labeled “very confident
that explosion points were distributed randomly”) to 50 (labeled “very confident that



APPENDIX B: STEINER & FREY (IN PRESS) 14

explosion points were clustered”).5 In hindsight we realized that the wording of “ran-
domly distributed” might have been ambiguous to some participants, and in study
2 we hence implemented an adapted version of assessing participants’ general task
representations.

Beliefs about optimal behavior. To assess participants’ beliefs about the
optimal behavior, we asked them to inflate a balloon to the size they expected to
yield the maximum payoff in the long run. The instructions read as follows: “Please
inflate the balloon to the size that you believe would yield the maximum payoff, were
a machine to play this game a thousand times always inflating the balloons to the
indicated size.” We prompted participants’ beliefs concerning the optimal behavior
only at the end of the task to avoid potential anchoring effects.

Propensity measures. To assess participants’ domain-general risk prefer-
ences, we used the GRiPS (Zhang et al., 2018), and the general risk item of the
SOEP (e.g., Dohmen et al., 2011). In addition, as risk preferences have been shown
to vary across domains (e.g., Weber, Blais, & Betz, 2002), we assessed participants’
domain-specific risk-taking propensity using the domain-specific risk items of the
SOEP. The exact wording of the items is provided in our preregistration.

Frequency measures. To assess participants’ real-life risk-taking behaviors,
we asked them for the frequency with which they had engaged in different activities
during the past year. The activities were smoking, drinking, speeding, investing,
gambling, and engaging in risky sports (see preregistration for the wording of the
items). These activities were chosen to cover domains often assessed in questionnaires
of risk-taking propensity (e.g., Blais & Weber, 2006). For each activity, participants
could select both the frequency of behavior (from 0 to 100 times) and the desired
time frame (per day, per week, per month, or per year).

Statistical analyses. All analyses were conducted using R version 3.6.0 (R
Core Team, 2019).

To test Hypothesis 1, we modeled participants’ responses to the question tap-
ping their general task representation (normally vs. uniformly distributed explosions
points). To this end, we ran a Bayesian regression model with the group as (non-
orthogonal) contrast-coded predictor variable, and the reported beliefs about the
distributional form as dependent variables (using the rstanarm R package; Goodrich,
Gabry, Ali, & Brilleman, 2018). The contrasts were BARTuniform vs. the three im-
plementations of BARTnormal, BARTnormal-H vs. BARTnormal-M, and BARTnormal-M vs.
BARTnormal-L.

To test Hypothesis 2, we estimated the differences in means and standard de-
viations of participants’ beliefs about the optimal behavior in a Bayesian framework.
To this end, we used the BEST R package (Kruschke, 2013; Kruschke & Meredith,
2018) to fit separate t-distributions for the four conditions to participants’ beliefs
about the optimal behavior, and then compared the posterior estimates of the means
and standard deviations.

5We preregistered to use a slider ranging from -50 to 50 but accidentally implemented a slider
ranging from 0 to 50. Note, however, that only the labels and no numbers were shown to participants.
This deviation did thus not affect the appearance of the slider or the interpretations of the results.
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To test Hypothesis 3, we estimated the differences in means and standard de-
viations of participants’ adjusted BART scores in a Bayesian framework. To this
end, we again used the BEST R package (Kruschke, 2013; Kruschke & Meredith,
2018) to fit separate t-distributions for the four conditions to participants’ adjusted
BART scores, and then compared the posterior estimates of the means and standard
deviations.

To test Hypothesis 4, we report the Pearson correlations of (a) the adjusted
BART scores and (b) the total number of explosions per participant with the other
measures of risk taking. We computed these correlations separately for the four con-
ditions of the distribution condition in a Bayesian framework using the BayesFactor
R package (Morey & Rouder, 2018). There were two deviations from our preregis-
tered analysis plan: First, in addition to the adjusted BART score, we used the total
number of explosions per participant as a second measure of risk taking, because re-
cent research suggested it to be a potentially better indicator of people’s risk-taking
behavior (Schmitz et al., 2016). Second, to make the interpretation of the results
more accessible we did not implement the regression models specified in the prereg-
istration but report correlations, which can directly be interpreted as effect sizes. As
the frequency ratings indicated some highly skewed distributions, we used binarized
versions of these measures in the analyses.

Priors and ROPEs. In the analyses, we used the default priors provided by
the rstanarm, BEST, and the BayesFactor packages. Specifically, in regression models
we used the priors N (0, 10) for the intercept, and N (0, 2.5) for the coefficients. In the
t-tests, we used the priors N (mean(y), sd(y) ∗ 1000) and U(sd(y)/1000, sd(y) ∗ 1000)
for µ and σ, and E(1/29) for ν, with ν ≥ 1. Finally, for correlations we used the prior
beta(3, 3).

As suggested by Makowski, Ben-Shachar, and Lüdecke (2019), we used the
ROPE [−0.1SDy, 0.1SDy] for testing Hypothesis 1, Hypothesis 2, and Hypothesis 3,
and the ROPE [−0.05, 0.05] for testing Hypothesis 4. When reporting parameters,
we report the median and the 95% HDI of the posterior distribution, as well as the
proportion of the posterior distribution that lies within the ROPE (pROPE; note
that we interpret the evidence to be conclusive if this value is smaller than .025).

Results

General task representation. In Hypothesis 1, we predicted that at the
end of the task participants would believe that the explosion points cluster around a
specific value (in line with a normal distribution) rather than that they are uniformly
distributed, irrespective of the experimental condition. We intended to interpret rat-
ings larger than the midpoint of the response scale (> 25) as beliefs in line with a
normal distribution of explosion points, and ratings below the midpoint of the scale
(< 25) as beliefs in line with a uniform distribution of explosions points. As we will
discuss below, we realized that this interpretation may not be entirely warranted due
to the implemented response format (a more diagnostic response format was thus
used in study 2). Yet, according to this definition, only in the BARTnormal-L did most
participants (64.61%) believe that the explosion points were normally distributed,
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Table 1
Differences in Participants’ Beliefs About Optimal Behavior Between Experimental
Conditions
Comparison ∆ [95% HDI] pROPE d

Mean beliefs about the optimal behavior
BARTnormal-H - BARTuniform 1.56 [-0.85, 4.07] .036 0.16
BARTnormal-M - BARTuniform 0.27 [-1.95, 2.39] .077 0.11
BARTnormal-L - BARTuniform 3.61 [1.54, 5.64] < .000 0.38
SD beliefs about the optimal behavior
BARTnormal-H - BARTuniform -1.81 [-4.51, 0.80] .033 -
BARTnormal-M - BARTuniform -6.03 [-8.30, -3.84] < .000 -
BARTnormal-L - BARTuniform -4.69 [-7.05, -2.38] < .000 -
Deviance of participants’ beliefs about optimal behavior from objectively
optimal behavior
BARTnormal-H - BARTuniform 5.55 [3.09, 8.00] < .000 0.47
BARTnormal-M - BARTuniform 7.27 [5.03, 9.37] < .000 0.69
BARTnormal-L - BARTuniform 10.60 [8.52, 12.62] < .000 0.97
Note: The values reported in the first column represent the medians of the poste-
rior distributions and the 95% highest density interval in brackets. The values in the
second column (pROPE) represent the proportion of the posterior distribution falling
within the region of practical equivalence. The values reported in the third column (d)
represent the effect size. Numbers in bold indicate conclusive evidence.

with an average rating of 29.01. In the other implementations, only the minority of
39.69% (BARTnormal-M), 32.26% (BARTnormal-H), and 27.72% (BARTuniform) of par-
ticipants had this belief, with average ratings below the midpoint of the scale (i.e.,
20.84 in the BARTnormal-M, 19.15 in the BARTnormal-H, and 18.06 in the BARTuniform).
As outlined above, these results have to be interpreted with caution (see discussion
section).

Furthermore, as predicted in Hypothesis 1, participants’ ratings were in-
creasingly more in line with a normal distribution of explosion points within the
BARTnormal, the smaller the SDs of the explosion points’ distributions were: Al-
though there was no conclusive evidence for a difference between participants’ rat-
ings in the BARTnormal-M and the BARTnormal-H (b = 1.70, 95% HDI: [-0.82, 4.22, ],
pROPE = .382, d = 0.17), we found conclusive evidence that participants’ ratings in
the BARTnormal-L were higher than in the BARTnormal-M (b = 8.16, 95% HDI: [5.50,
10.61], pROPE < .000, d = 0.63). Moreover, across the three implementations of the
BARTnormal there was conclusive evidence for higher ratings as compared to in the
BARTuniform (b = 4.94, 95% HDI: [2.87, 7.07], pROPE = .001, d = 0.37).

Beliefs about optimal behavior. In Hypothesis 2, we predicted that at
the end of the task, participants’ beliefs concerning the optimal behavior would con-
sist of a higher number of inflations and less variability between participants in the
BARTnormal as opposed to in the BARTuniform. In line with this prediction, partici-
pants in the BARTnormal-L believed the optimal number of inflations to be higher than
participants in the BARTuniform (see Table 1). Yet, compared to the BARTuniform,
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there was no conclusive evidence that participants had different beliefs either in the
BARTnormal-M or in the BARTnormal-H. See Figure 4 for an overview and Table S1 for
the estimates of participants’ average beliefs.

Furthermore, in line with Hypothesis 2 we found conclusive evidence that the
beliefs of participants in the BARTnormal-L and in the BARTnormal-M had a smaller
variability (i.e., across participants), as compared to the beliefs of participants in
the BARTuniform (see Table 1). Yet, there was no conclusive evidence whether or
not participants in the BARTnormal-H and in the BARTuniform differed concerning the
variability of their beliefs.

As the optimal number of inflations varied (i.e., 32, 28, 25, and 25; see Figure 1)6

across the four implemented versions of the BART, we also examined the deviance
between participants’ indicated beliefs and the objectively optimal behavior in the
respective conditions. When doing so, a similar but even more pronounced pattern
in line with Hypothesis 2 emerged. As can be seen in Figure 4, the deviance between
participants’ beliefs about the optimal behavior and the objectively optimal behavior
were consistently larger in the BARTuniform than in the three implementations of the
BARTnormal (see Table 1).

Overt risk-taking behavior. In Hypothesis 3, we predicted that partici-
pants’ adjusted BART scores would be higher and exhibit less variability across par-
ticipants in the BARTnormal as opposed to in the BARTuniform. Moreover, we predicted
that the adjusted BART scores would be higher and exhibit less variability across par-
ticipants within the BARTnormal, the lower the standard deviation of the explosion
points. In line with this prediction, we found conclusive evidence that, compared to
the BARTuniform, the adjusted BART scores were higher in all three implementations
of the BARTnormal (see Table 2; see Table S1 for the estimates of participants’ ad-
justed BART scores). Within the BARTnormal and further in line with Hypothesis
3, there was conclusive evidence that the adjusted BART scores were higher in the
BARTnormal-L than in the BARTnormal-M. Yet, there was conclusive evidence that the
adjusted BART scores in the BARTnormal-M were lower as compared to those in the
BARTnormal-H.

Also in line with Hypothesis 3, there was conclusive evidence that the adjusted
BART scores exhibited less variability between participants in the BARTnormal-M and
in the BARTnormal-L, as compared to in the BARTuniform (see Table 2). However, there
was no conclusive evidence for whether the variability between the BARTuniform and
the BARTnormal-H differed. Yet, also in line with Hypothesis 3, the variability of the
adjusted BART scores was lower in the BARTnormal-M than in the BARTnormal-H, and
lower in the BARTnormal-L than in the BARTnormal-M.

We again also examined the deviance between participants’ adjusted BART
scores and the objectively optimal behavior in the respective conditions. When doing
so, a similar but considerably stronger pattern emerged in line with Hypothesis 3: The
deviances between the adjusted BART scores and the objectively optimal behavior
were much larger in the BARTuniform as compared to the three implementations of the

6All distributions of explosion points had the same mean of 32, yet lower standard deviations in
the BARTnormal result in a slightly reduced optimal number of inflations. Therefore, the implemen-
tations of the BARTnormal have a lower optimal number of inflations than the BARTuniform.
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Figure 4 . Participants’ beliefs about the optimal behavior and their actual behavior.
Vertical lines indicate the means across participants concerning their beliefs about
the optimal behavior (solid lines) and their actual behavior (dashed lines). Shaded
areas around the vertical lines indicate the standard deviations of participants’ beliefs
about the optimal behavior and of their adjusted BART scores.

BARTnormal (see Table 2). Moreover, within the BARTnormal the deviance between
the adjusted BART scores and the objectively optimal behavior was larger in the
BARTnormal-H as compared to the in the BARTnormal-M and larger in the BARTnormal-M
as compared to in the BARTnormal-L.

Convergent validity. In Hypothesis 4, we predicted that the BARTnormal
would have a higher convergent validity as opposed to the BARTuniform. To this
end, we tested the correlations of two indicators extracted from the BART (i.e., the
adjusted BART score and the total number of explosions per participant) with 14
other measures of risk taking.

Overall, adjusted BART scores were only weakly to moderately related to the
other measures (see Figure 5 and Table S2, see Table S11 for descriptive statistics
of the different measures), with average correlations of r = .08 (BARTuniform), r =
-.05 (BARTnormal-H), r = .12 (BARTnormal-M), and r = .04 (BARTnormal-L). The total
number of explosions per participant was somewhat more strongly but still weakly
related to the other measures, with average correlations of r = .06 (BARTuniform), r =
-.03 (BARTnormal-H), r = .14 (BARTnormal-M), and r = .05 (BARTnormal-L). Moreover,
only in the BARTnormal-M was there a series of measures with conclusive evidence that
the correlations were different from 0. Specifically, there was conclusive evidence for
associations between the adjusted BART score and GRiPS (r = .23), SOEP general
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Table 2
Differences in Overt Risk-Taking Behavior Between Experimental Conditions
Comparison ∆ [95% HDI] pROPE d

Mean adjusted BART scores
BARTnormal-H - BARTuniform 4.48 [3.25, 5.70] < .000 0.71
BARTnormal-M - BARTuniform 2.94 [1.84, 4.06] < .000 0.51
BARTnormal-L - BARTuniform 7.74 [6.73, 8.73] < .000 1.21
BARTnormal-M - BARTnormal-H -1.54 [-2.64, -0.44] .002 -0.27
BARTnormal-L - BARTnormal-M 4.80 [3.98, 5.63] < .000 0.77
SD of the adjusted BART scores
BARTnormal-H - BARTuniform 0.13, [-0.90, 1.17] .078 -
BARTnormal-M - BARTuniform -1.31 [-2.37, -0.26] .004 -
BARTnormal-L - BARTuniform -3.37 [-4.28, -2.42] < .000 -
BARTnormal-M - BARTnormal-H -1.44 [-2.50, -0.46] .001 -
BARTnormal-L - BARTnormal-M -2.06 [-2.95, -1.13] < .000 -
Deviance of the adjusted BART scores from optimal behavior
BARTnormal-H - BARTuniform 8.47 [7.22, 9.70] < .000 1.36
BARTnormal-M - BARTuniform 9.94 [8.82, 11.04] < .000 1.77
BARTnormal-L - BARTuniform 7.73 [6.72, 8.74] < .000 2.53
BARTnormal-M - BARTnormal-H 1.46 [0.37, 2.57] .003 0.27
BARTnormal-L - BARTnormal-M 4.80 [3.96, 5.62] < .000 0.77
Note: The values reported in the first column represent the medians of the poste-
rior distributions and the 95% highest density interval in brackets. The values in the
second column (pROPE) represent the proportion of the posterior distribution falling
within the region of practical equivalence. The values reported in the third column (d)
represent the effect size. Numbers in bold indicate conclusive evidence.

(r = .27), and SOEP leisure (r = .24); and for associations between the total number
of explosions and GRiPS (r = .26), SOEP general (r = .30), SOEP finance (r = .23),
SOEP health (r = .20), and SOEP leisure (r = .26). For this reason, we selected the
BARTnormal-M from the three implementations of the BARTnormal as the focus of our
comparison with the BARTuniform and report the analyses for the BARTnormal-H and
BARTnormal-L in the online Supplemental Material (Section 7.1).

Compared against each other, there were some indications that the
BARTnormal-M exhibited a slightly higher convergent validity with the other mea-
sures of risk taking as compared to the BARTuniform: The adjusted BART score was
more strongly correlated with 11 of the 14 other measures in BARTnormal-M, and
the total number of explosions per participant was more strongly correlated with 12
of the 14 other measures of risk taking (see Figure 5). However, with an average
increase of .04 (adjusted BART scores) and .08 (total number of explosions per par-
ticipant) across the 14 correlations, these differences did not constitute conclusive
evidence—although in the most extreme case the correlations almost doubled (i.e.,
between adjusted BART score and SOEP general) and tripled (i.e., between num-
ber of explosions per participant and SOEP general) from the BARTuniform to the
BARTnormal-M.
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Figure 5 . Convergent validity of the BART with other measures of risk taking,
separately for the BARTuniform and the BARTnormal-M. The left panel shows the cor-
relations based on the adjusted BART scores. The right panel shows the correlations
based on the total number of explosions per participant. Propensity measures are
depicted in yellow (light gray); frequency measures are depicted in green (dark gray).
The dotted lines indicate the boundaries of the region of practical equivalence at -
.05 and .05. The bold black line connects the average correlations of the two task
implementations.

Discussion

In study 1 we implemented three new distributions of explosion points to test
the potential benefits of employing an improved representative design in the BART.
On the one hand, the newly implemented BARTnormal resulted in several improve-
ments concerning participants’ task representations and performance. On the other
hand, there was no evident improvement in the task’s convergent validity with other
measures of risk taking, and all four implemented versions of the BART resulted in
similar correlations to those found in earlier studies (e.g., Duckworth & Kern, 2011;
Frey et al., 2017; Lauriola et al., 2014; Mishra & Lalumière, 2011). If at all, only
the BARTnormal-M achieved slight improvements in this respect. Yet, the evidence for
these increases was not conclusive, and we subsequently tested the convergent validity
again in study 2 as a robustness check.

Two specific aspects of these findings warrant further discussion. First, during
the assessment of participants’ general task representation, we asked whether par-
ticipants believed the explosion points in the BART to be randomly distributed or
to cluster around a specific value. We realized that this assessment might have led
to distorted results, for the following two reasons: First, we were not explicit about
the meaning of randomly distributed. Thus, participants might not necessarily have
interpreted this term to mean uniformly distributed across the whole range. Second,
we prompted participants’ beliefs using a continuous slider, with one extreme labeled
randomly distributed and the other extreme labeled clustered around one value. Our
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intention was to interpret ratings below the midpoint of this scale as evidence that
participants’ beliefs were in line with a uniform distribution of explosions (and vice
versa). Yet, this interpretation is problematic, as any deviation from the left-most rat-
ing (i.e., randomly distributed) per definition represents some form of clustering—in
line with a normal distribution (e.g., a rating of 15 would imply a normal distribution
with very wide dispersion). We thus implemented the assessment of participants’
general task representation again in study 2, using an improved two-step format as
well as making use of visualizations (for details see study 2).

Second, we tested whether the different implementations of the BART resulted
in systematically different beliefs about the optimal behavior, as well as in system-
atically different behaviors (i.e., adjusted BART scores). To this end, we compared
these two indicators between the four BART implementations in two ways: by com-
paring the absolute values, and by comparing the deviance of these values from the
objectively optimal behavior. The latter differed substantially more across the four
BART implementations as compared to the former. Yet, although this finding could
be interpreted as a strong sign of more accurate learning in the BARTnormal, we can-
not rule out that this pattern also emerged because participants underestimated the
average explosion points.

Study 2: Does an Enhanced Representative Design Improve the BART’s
Test–Retest Reliability?

Study 2 followed our theoretical rationale introduced in study 1, and tested
whether a more representative design improves the BART’s reliability—in addition
to testing the robustness of the findings observed in study 1. Specifically, assuming
that people’s willingness to take risks remains at least somewhat stable over time
(e.g., Frey et al., 2017; Mata et al., 2018), and that people are indeed better able to
express their intended degree of risk taking in the BARTnormal as compared to in the
BARTuniform, the test–retest reliability of the former should be higher than that of
the latter. To test this assumption, we ran a retest of study 1 after about one month.
Specifically, we tested the following two hypotheses:

Hypothesis 5: Reliability of beliefs about optimal behavior: Participants’
beliefs about the optimal value exhibit a higher test–retest reliability in
the BARTnormal as opposed to in the BARTuniform. Moreover, we expected
the test–retest reliability within the BARTnormal to be higher, the lower
the standard deviations of the explosion points become.
Hypothesis 6: Reliability of overt risk-taking behavior: There is a higher
test–retest reliability of the adjusted BART scores and the total num-
ber of explosions per participant in the BARTnormal as compared to in
the BARTuniform. Moreover, we expected the test–retest reliability within
the BARTnormal to be higher, the lower the standard deviations of the
explosion points become.

Furthermore, we also used study 2 to assess the robustness of the findings observed
in study 1, particularly so concerning Hypothesis 1 (i.e., participants’ general task
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representation, where we implemented an improved response format in study 2) and
concerning Hypothesis 4 (i.e., the BART’s convergent validity with other measures
of risk taking and related constructs). Regarding the latter, in study 2 we aimed
to test the possibility that the relatively low convergent validity resulted because of
our particular selection of additional risk-taking measures, as the BART may also
capture related constructs such as impulsivity and sensation seeking (Lauriola et al.,
2014; Schmitz et al., 2016; Sharma et al., 2014). To this end, in study 2 we also ad-
ministered the UPPS scale (Whiteside & Lynam, 2001; Whiteside, Lynam, Miller, &
Reynolds, 2005), a widely used instrument to tap urgency, lack of premeditation, lack
of perseverance, and sensation seeking (for a review and meta-analysis, see Sharma
et al., 2014).

Method

Participants and sample characteristics. The 772 participants from study
1 were invited to participate in a retest after an interval of about one month (we sent a
maximum of three invitations). We imposed the same inclusion criteria as in study 1.
Of the 772 participants from study 1, 671 began with the retest. Of these, 632 met our
inclusion criteria and their data were used for the subsequent analyses (46.2% female;
Mage = 38.3, SDage = 10.9; highest completed degree: 0.5% no high school, 37.0%
high school, 40.7% bachelor, 10.0% master, 10.6% professional, 1.3% doctor; job
status: 3.3% student, 11.2% unemployed, 82.6% working, 2.9% retired). On average,
study completion took 19 minutes, and on average participants were reimbursed with
4.64 USD. Participants were assigned to the same condition as in study 1 (i.e., of the
632 participants, 157 completed the BARTuniform, 158 completed the BARTnormal-H,
157 completed the BARTnormal-M, and 160 completed the BARTnormal-L).

Procedure. The study was again conducted online and participants used their
own devices. After providing informed consent, participants completed the BART
(i.e., same experimental condition as in study 1; with the same sequence of explosion
points). Next, in randomized order, they provided their beliefs about the optimal be-
havior and reported their general task representation. Then, participants completed,
in randomized order, the GRiPS, the assessment of real-life risk-taking behavior, and
the SOEP items. At the end of the study, participants completed the UPPS scale and
then reported how focused they were during the study, as well as the device they used
to complete the study. Finally, participants had the possibility to provide free-text
feedback. Screenshots of study 2 are provided at https://osf.io/kxp8t.

General task representation. The revised assessment of participants’ gen-
eral task representations was implemented as follows. First, participants received
general instructions about the subsequent task and were then presented with two sce-
narios of distributions of explosion points (i.e., uniform and normal distribution; in
randomized order), each of which included an illustration and an explanation of how
to read the figures. They then provided a binary rating of whether they believed the
explosion points to be uniformly distributed or normally distributed. Finally, partic-
ipants reported their confidence in their choice on a slider ranging from 0 (labeled
“Not confident at all”) to 50 (labeled “Very confident”). For a detailed formulation
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of the items, see the preregistration.
Statistical analysis. The retest of Hypothesis 1 and Hypothesis 4 followed

the statistical analysis detailed in study 1. To test Hypothesis 1, we first reflected
the sign of ratings from participants who had indicated that they believed explosion
points to be uniformly distributed and then collapsed the ratings (i.e., resulting in
a scale ranging from -50 to 50, with the lower end indicating a high confidence that
explosion points were uniformly distributed, and the upper end indicating a high
confidence that explosion points were clustered). In the test of Hypothesis 4, we also
included the four dimensions of the UPPS scale.

To test Hypothesis 5, we computed the test–retest reliabilities of participants’
beliefs about the optimal behavior, separately for the different BART implementa-
tions. We then tested whether there was conclusive evidence that the test–retest
reliabilities from the three BARTnormal implementations were higher than those from
the BARTuniform. Moreover, we compared the test–retest reliabilities within the
BARTnormal to investigate whether lower variability in the underlying distribution
led to higher stability in behavior. Finally, we contrasted the test–retest reliabili-
ties with the coefficient of variation—a standardized measure of dispersion—of the
various measures (see online Supplemental Material Table S10). We conducted the
latter analysis to examine possible trade-offs between the measures’ reliability and
their potential to capture interindividual differences.

To test Hypothesis 6, we computed the test–retest reliabilities of the adjusted
BART scores and the total number of explosions per participant, separately for the
different BART implementations. We then tested whether there was conclusive evi-
dence that the test–retest reliabilities of the three BARTnormal implementations were
higher than that of the BARTuniform. Moreover, we compared the test–retest reli-
abilities within the three BARTnormal implementations to investigate whether lower
variability in the underlying distribution leads to higher stability in the behavior.
We again contrasted the test–retest reliabilities with the coefficient of variation of
the various measures, to analyze possible trade-offs between the measures’ reliability
and their potential to capture interindividual differences (see online Supplemental
Material Table S10).

We used the same priors and ROPEs in the analysis of study 2 as we did in
study 1.

Results

General task representation. In Hypothesis 1 we predicted that at the
end of the task participants would believe that the explosion points cluster around a
specific value (in line with a normal distribution) rather than that they are uniformly
distributed, irrespective of the experimental condition. As Figure 6 illustrates, this
prediction was confirmed: Specifically, 75.3.% (BARTuniform), 76.3% (BARTnormal-H),
76.4% (BARTnormal-M), and 84.2% (BARTnormal-L) of participants indicated that they
believed that the explosion points were clustered, with average confidence ratings of
17.64 in the BARTuniform, 19.22 in the BARTnormal-H, 19.98 in the BARTnormal-M, and
25.51 in the BARTnormal-L (on a scale ranging from -50 to 50).



APPENDIX B: STEINER & FREY (IN PRESS) 24

−50 −40 −30 −20 −10 0 10 20 30 40 50

BARTnormal−L

BARTnormal−M

BARTnormal−H

BARTuniform

Belief About Distributional Form
Uniform Normal

Figure 6 . Distributions of participants’ beliefs that the balloons’ explosion points
were uniformly distributed (rating of -50) vs. that they were normally distributed
(rating of 50). Beliefs were assessed at the end of the task. Vertical lines indicate
the median ratings, separately for the four experimental conditions. The dotted gray
line indicates the center of the scale, which corresponds to minimal confidence (i.e.,
indifference between the two distributional forms).

Moreover, as can be seen in Figure 6, there was a trend towards higher confidence
in this belief, the narrower the standard deviations of the BARTnormal became. Yet,
there was no conclusive evidence for differences across the tested contrasts between
the BARTuniform and the BARTnormal implementations (b = 3.91, 95% HDI: [-1.03,
8.70], pROPE = .307, d = 0.15), the BARTnormal-M and the BARTnormal-H (b = -
0.79, 95% HDI: [-6.80, 5.35], pROPE = .611, d = 0.03), and the BARTnormal-L and
the BARTnormal-M (b = -5.49, 95% HDI: [-11.39, 0.53], pROPE = .174, d = 0.21).
The pattern that almost no data points are present in the middle of the distribution
reveals that most participants were relatively confident in their beliefs about the
distributional form of the explosion points.

Convergent validity. In Hypothesis 4 we predicted that the BARTnormal
would have a higher convergent validity with other measures of risk taking than the
BARTuniform. As the respective evidence was inconclusive in study 1, we tested the
convergent validities in study 2 again to investigate whether the observed patterns
were robust. To this end, we examined the correlations of two indicators extracted
from the BART (i.e., the adjusted BART score and the total number of explosions
per participant) with 18 other measures of risk taking.

Overall, participants’ adjusted BART scores were only weakly to moderately
related to the other measures (see Table S6), with average correlations of r =
.08 (BARTuniform), r = .01 (BARTnormal-H), r = .08 (BARTnormal-M), and r = .05
(BARTnormal-L). The total number of explosions per participant exhibited about the
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same convergent validity as the adjusted BART scores, with average correlations of
r = .08 (BARTuniform), r = .03 (BARTnormal-H), r = .07 (BARTnormal-M), and r =
.06 (BARTnormal-L). Moreover, only in the BARTnormal-M and the BARTuniform was
there conclusive evidence that some correlations were different from 0. Specifically, in
the BARTuniform there was conclusive evidence for associations between the adjusted
BART scores and the GRiPS (r = .24), SOEP general (r = .22), and SOEP driving (r
= .22); and between the total number of explosions per participant and GRiPS (r =
.23), SOEP general (r = .24), and sensation seeking (r = .22). In the BARTnormal-M,
there was conclusive evidence for associations between the adjusted BART scores and
GRiPS (r = .21), SOEP leisure (r = .21), SOEP social (r = .26) and smoking (r =
-.20); and between the total number of explosions per participant and SOEP general
(r = .20), and SOEP social (r = .26). We again selected the BARTnormal-M from the
three implementations of the BARTnormal as the focus of our comparison with the
BARTuniform and report the analyses on BARTnormal-H and BARTnormal-L in the online
Supplemental Material (Tables S8 and S9).

Compared to each other, there were no indications that the BARTnormal-M had a
higher convergent validity with the other measures than the BARTuniform. Specifically,
only 8 and 7 of the 18 other measures were more strongly correlated, and 10 and 11
of the 18 other measures were less strongly correlated with the adjusted BART scores
and the total number of explosions per participant, respectively. Moreover, the aver-
age differences in convergent validity between the BARTuniform and the BARTnormal-M
where ∆r = .00 (adjusted BART scores) and ∆r = -.01 (total number of explosions
per participant) across the 18 correlations.

For the UPPS scale newly included in study 2, the correlations with the adjusted
BART scores and the total number of explosions per participant were around the same
size as found for the other measures. Specifically, the mean absolute correlations of
the four dimensions of the UPPS scale with the adjusted BART scores were r =
.07 (BARTuniform), r = .04 (BARTnormal-H), r = .08 (BARTnormal-M), and r = .06
(BARTnormal-L), and those with the total number of explosions per participants were
r = .11 (BARTuniform), r = .05 (BARTnormal-H), r = .10 (BARTnormal-M), and r = .07
(BARTnormal-L).

Test–retest reliability of beliefs about optimal behavior. In Hypothesis
5, we predicted that participants’ beliefs about the optimal behavior would exhibit
a higher test–retest reliability in the BARTnormal as opposed to in the BARTuniform,
and that within the BARTnormal implementations, the test–retest reliability would be
higher, the lower the standard deviation of the explosion points.

The test–retest reliabilities of participants’ beliefs about the optimal behavior
were medium to large with r = .40 (BARTuniform), r = .41 (BARTnormal-H), r =
.26 (BARTnormal-M), and r =.43 (BARTnormal-L; see also Figure S5 and Table S10).
Contrary to our predictions, there was no conclusive evidence for differences between
any of the test–retest reliabilities (see Table 3).

Test–retest reliability of observed risk-taking behavior. In Hypothesis
6, we predicted that there would be a higher test–retest reliability of the adjusted
BART scores and the total number of explosions per participant in the BARTnormal as
compared to in the BARTuniform, and that within the BARTnormal implementations,
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Table 3
Differences in Test–Retest Reliabilities of BART Indicators Between Experimental
Conditions
Implementation ∆r [95% HDI]
Belief about the optimal value
BARTnormal-H - BARTuniform .00 [-.17, .19]
BARTnormal-M - BARTuniform -.15 [-.34, .05]
BARTnormal-L - BARTuniform .03 [-.15, .21]
BARTnormal-M - BARTnormal-H -.15 [-.35, .04]
BARTnormal-L - BARTnormal-H .03 [-.15, .21]
BARTnormal-L - BARTnormal-M .17 [-.01, .37]
Adjusted BART score
BARTnormal-H - BARTuniform .14 [ .01, .27]
BARTnormal-M - BARTuniform .07 [-.07, .20]
BARTnormal-L - BARTuniform -.16 [-.33, -.00]
BARTnormal-M - BARTnormal-H -.07 [-.19, .04]
BARTnormal-L - BARTnormal-H -.30 [-.45, -.16]
BARTnormal-L - BARTnormal-M -.23 [-.39, -.08]
Total number of explosions per participant
BARTnormal-H - BARTuniform .19 [ .04, .33]
BARTnormal-M - BARTuniform .16 [ .01, .31]
BARTnormal-L - BARTuniform .01 [-.16, .18]
BARTnormal-M - BARTnormal-H -.03 [-.16, .10]
BARTnormal-L - BARTnormal-H -.17 [-.32, -.02]
BARTnormal-L - BARTnormal-M -.14 [-.30, .00]
Note: The reported values represent the medians of the posterior distributions and
the 95% highest density interval in brackets. Numbers in bold indicate conclusive
evidence.

the test–retest reliability would be higher, the lower the standard deviation of the
explosion points.

The test–retest reliabilities of the adjusted BART scores were high in the
BARTuniform (r = .59), the BARTnormal-H (r = .73), and the BARTnormal-M (r = .65),
and, surprisingly, somewhat lower in the BARTnormal-L (r = .42). There was conclu-
sive evidence for differences in the test–retest reliabilities between the BARTnormal-H
and the BARTnormal-L (∆r = .30, 95% HDI: [.16, .45]; pROPE < .000), and the
BARTnormal-M and the BARTnormal-L (∆r = .23, 95% HDI: [.08, .39]; pROPE = .007).
All other differences represented inconclusive evidence (see Table 3).

Regarding the total number of explosions per participant, we found high test–
retest reliabilities in the BARTnormal-H (r = .66) and the BARTnormal-M (r = .63), and
somewhat lower ones in the BARTuniform (r = .47), and the BARTnormal-L (r = .48).
There was no conclusive evidence for differences between the test–retest reliabilities,
neither between the BARTuniform and the BARTnormal implementations, nor within
the BARTnormal implementations (see Table 3).

Test–retest reliability of other measures of risk taking. The test–retest
reliabilities of the various propensity and frequency measures were similarly high,
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with average correlations of r = .68 and r = .71, respectively (see also Figure S5
for an overview of the test–retest reliabilities and the coefficients of variation of all
risk-taking measures).

Discussion

In study 2 we tested the robustness of the findings observed in study 1; namely,
concerning participants’ general task representations and the convergent validity of
the BART with other measures of risk taking and related constructs, spanning mea-
sures of domain-general and domain-specific risk preference, sensation seeking, im-
pulsivity, and the frequency of specific real-life behaviors. Moreover, we compared
the test–reliability of the BARTnormal with that of the BARTuniform. As predicted,
we observed a strong mismatch between people’s general task representation and the
stochastic structure of the BARTuniform, and this mismatch did not emerge in the
BARTnormal. This corroborates the findings of our reanalyses provided in the first
part of this article, namely, that participants’ representations of the balloons’ explo-
sion points is in line with a normal distribution.

The repeated observation of low convergent validity of the BART as well as its
relatively high test–retest reliability call for some discussion; three possibilities have
to be considered in this regard. First, low correlations between any two measures
may emerge if one of them is unreliable (i.e., the test–retest reliabilities put upper
bounds on the correlations between measures; e.g., Kane & Case, 2004). Second,
low correlations may emerge if measures fail to capture substantial variation across
individuals (i.e., variance restriction). Our results indicated that the BART as well
as the other measures performed well in these two respects, with high test–retest reli-
abilities and high coefficients of variation (i.e., a standardized measure of dispersion;
see online Supplemental Material Section 8). Third, low correlations may emerge
if measures fail to assess the same underlying constructs or processes involved. In
light of the observation that the other risk-taking measures (including measures of
impulsivity and sensation seeking) had a high convergent validity between each other
(see Figure S4), but not with the BART, our findings imply that the BART may be a
relatively reliable task, but it remains unclear what it measures (see also our remarks
on cognitive modeling in the general discussion).

General Discussion

In this article we investigated the potential benefits of employing the principles
of representative design to obtain valid and reliable psychological assessments. We
did so by focusing on a widely used behavioral measure of risk taking, the BART.
Our primary goal was to test the extent to which adapting an existing task design,
by making it more representative, would improve the task’s psychometric properties.
Such improvements are much needed in various areas of behavioral research (Frey
et al., 2017; Lauriola et al., 2014; Lönnqvist et al., 2015; Millroth et al., 2020)—for
instance, when investigating the functional neural architecture of risk taking in neu-
roimaging studies (e.g., Schonberg et al., 2012, 2011; Tisdall et al., 2020). Hence, we
reanalyzed data from three previous studies and, based on these findings, adapted
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the BART’s stochastic structure by following the principle of formal sampling (Ham-
mond, 1966). Specifically, we changed the distribution of the explosion points from a
uniform distribution to a normal distribution—the distribution to be expected from
real balloons (Figure 2). Consequently, in two empirical studies we tested whether
this adaptation would lead to improvements in participants’ beliefs about the task, as
well as in the task’s psychometric properties. Our main findings can be summarized
as follows.

First, our reanalyses of five datasets from three previous studies (Frey et al.,
2017; Schürmann et al., 2018; Steiner & Frey, 2020), as well as the results of our
experimental studies (in particular study 2; see Figure 6), largely confirmed that
the typical implementation of the BART conflicts with participants’ beliefs about
how explosion points are distributed. Specifically, both before and after having com-
pleted the BART, and irrespective of the BART implementation (i.e., BARTuniform vs.
BARTnormal), the majority of participants believed that the explosion points clustered
around a specific value—in line with a normal distribution, and in line with how real
balloons explode (Figure 2).

Second, participants who completed the BARTnormal (as compared to partic-
ipants who completed the BARTuniform) believed that the optimal behavior was
achieved at a higher inflation stage; their beliefs were more closely aligned with the
objectively optimal behavior, and also varied less across participants. In terms of
their actual behavior, participants’ adjusted BART scores were consistently higher,
closer to the objectively optimal behavior, and exhibited less variability across par-
ticipants in the BARTnormal as compared to in the BARTuniform. In short, in the
BARTnormal participants were better able to learn about the optimal behavior, and
converged more strongly in doing so—yet without leading to problematic variance
restriction—overall suggesting a less noisy learning process. Taken together, these
findings confirmed the first three of our hypotheses.

Third and contrary to our expectations, there was no conclusive evidence that
these improvements resulted in a systematic improvement of the BART’s convergent
validity with other measures of risk taking, nor of its test–retest reliability. Specif-
ically, all four BART implementations correlated only weakly with any of the other
risk-taking measures—in line with observations made in previous studies (Duckworth
& Kern, 2011; Frey et al., 2017; Lauriola et al., 2014; Mishra & Lalumière, 2011)—
whereas the other risk-taking measures (especially the propensity measures) corre-
lated highly with each other. The test–retest reliabilities were relatively high for all
implemented versions of the BART as well as for the other risk-taking measures—thus
also in line with previous research (Frey et al., 2017; White et al., 2008). This might
have left little room for improvement for the BARTnormal in this respect.

Limitations

All in all, our empirical findings suggest that the BART captures a reliable
signal. Yet, our studies indicated that this signal does not consistently tap the con-
structs of risk preference (in terms of general and domain-specific risk preferences),
impulsivity, or sensation seeking, and as such could not reveal what this signal reflects.



APPENDIX B: STEINER & FREY (IN PRESS) 29

This could be considered a limitation of our study, as yet other psychological con-
structs (e.g., intelligence; Schmitz et al., 2016) could be assessed in future research,
in order to study the role of representative design in fostering the identification of
such associations. Relatedly, although several indications suggest that the additional
criteria used here to assess risk-taking behaviors are valid (e.g., Dohmen et al., 2011;
Eisenberg et al., 2019; Frey et al., 2017; Sharma et al., 2014; Steiner et al., in press),
future research may collect further evidence concerning the BART’s external validity
using yet other measures, and potentially by focusing on extreme groups of specific
risk takers (Hopko et al., 2006; Lejuez, Aklin, Jones, et al., 2003; Lejuez, Simmons,
Aklin, Daughters, & Dvir, 2004).

Moreover, in previous work people’s representations of the stochastic structure
of the BART have been studied by means of cognitive modeling. This work has put
forth important insights and triggered essential discussions on the BART’s task design
(e.g., concerning whether people may incorrectly adopt a stationary representation
of explosion probabilities; Pleskac, 2008; Wallsten et al., 2005, but see Schürmann
et al., 2018). In our approach, we did not implement any cognitive modeling analy-
ses but directly prompted participants about their subjective beliefs concerning the
distributions of explosion points—following a proof-of-concept recently provided by
Schürmann et al. (2018). We followed this route because current models of the BART
do not directly account for the underlying task structure at the level we have focused
on (i.e., representative design in terms of normal vs. uniform distributions of ex-
plosion points), as well as due to a debate concerning parameter recoverability of
the state-of-the-art models of the BART (van Ravenzwaaij, Dutilh, & Wagenmak-
ers, 2011). That said, recent developments appear to mitigate the latter issue (Park,
Yang, Vassileva, & Ahn, 2019), and in future work such models (and promising novel
variants thereof; Pleskac & Wershbale, 2014) may render possible further insights into
the cognitive processes involved in the new BART versions presented here.

The Role of Representative Task Design in Psychological Assessment

As introduced in the beginning, representative design refers to “the arrange-
ment of conditions of an experiment so that they represent the behavioral setting
to which the results are intended to apply” (Araújo et al., 2007, p. 71). In other
words, the experimental stimuli in a task should follow the same stochastic principles
(e.g., distributions, intercorrelations) to represent the same or similar cues that are
operating in the situations the task is supposed to generalize to (see also, Dhami
et al., 2004). In the ideal case, representative tasks should therefore also tap into
the same psychological processes as are present in real-life situations. In the context
of risk-taking behaviors, these processes may involve a sensitivity to rewards (e.g.,
expected benefits, risk conception etc.; Dohmen, Quercia, & Willrodt, 2019; Gray,
1982; Kahneman & Tversky, 1979; Weber et al., 2002) and losses (e.g., loss aversion,
punishment sensitivity, regret etc.; Gray, 1982; Kahneman & Tversky, 1979; Loomes
& Sugden, 1982)—and, depending on the situation, potentially many more factors
(e.g., amount of knowledge, affective state, peer influence, competitive pressure; Fis-
chhoff, Slovic, Lichtenstein, Read, & Combs, 1978; Frey, 2020; Jellison & Riskind,
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1970; Loewenstein, Weber, Hsee, & Welch, 2001; Morrongiello & Lasenby-Lessard,
2007; Phillips, Hertwig, Kareev, & Avrahami, 2014).

What does the current observation—that is, that an improved representative
design in the BART does not substantially increase its convergent validity with other
measures of risk taking—then imply for valid psychological assessments more gener-
ally? We see two possibilities in this respect; specifically, representative design may
need to be established on two separate levels: First, the behavioral task (here: the
BART) needs to be representative of its intended model behavior (here: inflating
balloons in real life), requiring adequate abstractions to be used in lab (or online)
assessments. Second, the chosen model behavior needs to be representative of the
wider class of behavior that is of interest (here: risk-taking behaviors), which relates
to the non-trivial issue of selecting an adequate reference class (Hoffrage & Hertwig,
2006).

Concerning representativeness at the first level, it may be helpful to draw on
two concepts that have been used in research into virtual environments (e.g., flight
simulators). The concept of action fidelity describes the match between performance
in the simulation and performance in the simulated environment (Stoffregen et al.,
2003).7 Action fidelity implies that stochastic processes and relationships between
variables are similar in the simulated and the real environment—only then will simu-
lated behavior generalize to the respective behavior in reality.8 Hence, our adaptation
of the BART primarily targeted its action fidelity: Specifically, we employed formal
sampling (Dhami et al., 2004; Hammond, 1966) to close a gap between how the ex-
plosions of balloons are distributed in the task and how they are distributed in the
real world, making a transfer from task performance to real-life performance more
likely in the BARTnormal. To some extent, this transfer from the abstract virtual en-
vironment to the real world may also rest on experiential fidelity, which is thought to
be present if a person has the feeling of actually being in the simulated environment
(Stoffregen et al., 2003). Despite improvements in representative design, even the
BARTnormal might thus have failed to capture relevant psychological processes and
respective subjective experiences sufficiently strongly. Although experiential fidelity
may not be a necessary requirement to achieve action fidelity (Araújo et al., 2007;
Moroney, Hampton, Biers, & Kirton, 1994; Stoffregen et al., 2003), implementing the
BART with loud explosion sounds, or even implementing a BART version with real
balloons, may trigger substantially stronger physiological reactions. Yet, it is impor-
tant to keep in mind the ethical and practical intricacies of such implementations,
making their adoption in future assessment contexts unlikely.

Concerning representativeness at the second level, a model behavior (e.g., in-
flating balloons in real life) needs to be representative of the wider class of behaviors

7Task performance can be measured, for example, in terms of transfer effects of training, of
completion time needed, or of the variance in performance across trials (e.g., Kozak, Hancock,
Arthur, & Chrysler, 1993; Roccio, 1995).

8Note that this need not necessarily be the case for a complete real-life behavior from start to
end, but can also be the case only for subcomponents of interest. For example, in the case of a flight
simulator training, only specific take-off and landing maneuvers may constitute the target behavior,
and not necessarily the entire flight.
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that are of interest (e.g., risk-taking behaviors more generally). It has previously
been argued that the sequential process of inflating balloons might exhibit properties
that are relevant in many risk-taking behaviors, such as the requirement to learn
in dynamic environments, the feeling of escalating tension when pursuing additional
rewards, and correlated risk-reward structures (Lejuez et al., 2002; Leuker, Pachur,
Hertwig, & Pleskac, 2018; Pleskac et al., 2020; Pleskac & Hertwig, 2014; Schonberg
et al., 2011). The absence of substantial improvements in the BART’s external valid-
ity (i.e., in response to the elementary stochastic adaptions implemented here) thus
hints at another possibility: The model behavior of inflating balloons may simply
not represent a wider class of risk-taking behaviors in real life well, thus failing to
capture sufficiently many of the psychological processes that are relevant therein.
In line with Brunswik’s original idea of representative design, we thus believe that
in future work it will be indispensable to first systematize the real-life behaviors
of interest—including the involved psychological and structural properties—to then
identify promising model behaviors.

A look ahead: Implications for developing new task designs. Our
analyses led to two insights for the future development of behavioral tasks. First,
under the assumption that the model behaviors of most current tasks (e.g., inflating
balloons) do not represent the targeted risk-taking behaviors well, nor capture suffi-
ciently well the relevant psychological processes therein, new model behaviors have
to be identified. To this end, ecological analyses will be required to map the actual
properties and processes involved in the real-life behaviors of interest, for example, us-
ing ecological momentary assessment techniques (e.g., Miller, 2012; Ohly, Sonnentag,
Niessen, & Zapf, 2010; Trull & Ebner-Priemer, 2013). To illustrate, such momentary
assessments could be used to investigate the risks people (have to) take in their lives,
what information they consider while doing so, and what the structural properties of
the respective environments look like (e.g., Frey, 2020; Pleskac et al., 2020). Based
on these insights, respective tasks could be developed with an emphasis on ensuring
that the same stochastic structures are present as in the intended model behaviors.

Second, when it comes to the abstraction from identified model behaviors to
implementing a behavioral task, it will be important to ensure a sufficiently high
level of action fidelity. First and foremost, this implies that the stochastic structure
and probabilistic relationships reflect those in the real world. While previous research
suggests that very realistic implementations of the model behaviors may not be critical
(see Araújo et al., 2007; Moroney et al., 1994; Stoffregen et al., 2003), too abstract
tasks might impede action fidelity, such as if they fail to immerse participants in
the task (i.e., lack of experiential fidelity). Current behavioral tasks vary widely in
this respect, ranging from highly abstract tasks such as multiple price lists (Holt &
Laury, 2002) to relatively vivid tasks, such as a driving simulations making use of
video clips (Vienna risk-taking test traffic; Hergovich, Arendasy, Sommer, & Bognar,
2007). Further research is needed to examine the extent to which such properties are
indeed necessary in order for a task to generalize well to the intended model behavior.
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Conclusion

There will be a continued need for behavioral tasks in psychological assessment,
including the study of risk-taking behaviors. For instance, in neuroimaging studies
behavioral measures are a crucial element to draw valid inferences on the functional
neuroanatomy of risk taking. In this article, we reanalyzed five datasets and con-
ducted two experimental studies, aimed at improving the representativeness of the
BART. We were arguably successful in doing so with a simple but important adapta-
tion of one of the BART’s most fundamental dimensions: the distribution of explosion
points. However, the associated increase in the task’s action fidelity—one aspect of
representativeness—did not improve its convergent validity, nor its test–retest relia-
bility.

Thus, as long as the model behaviors of current risk-taking tasks do not suffi-
ciently tap the psychological processes that are relevant in real-life risk taking, there
is little hope that these tasks can easily be “repaired”, by more closely aligning the
task performance with the performance in model behaviors. Therefore, we suggest
that future research should aim at developing new behavioral measures by adhering
to the principles of representative design at two levels: in terms of actual task design,
and potentially even more importantly, in terms of an ecologically-guided selection of
model behaviors.
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Summary

In the social sciences, factor analysis is a widely used tool to identify latent constructs un-
derlying task performance or the answers to questionnaire items. Exploratory factor analysis
(EFA) is a data-driven approach to factor analysis and is used to extract a smaller number
of common factors that represent or explain the common variance of a larger set of manifest
variables (see, e.g., Watkins, 2018 for an overview). Several decisions have to be made in
advance when performing an EFA, including the number of factors to extract, and the extrac-
tion and rotation method to be used. After a factor solution has been found, it is useful to
subject the resulting factor solution to an orthogonalization procedure to achieve a hierarchical
factor solution with one general and several specific factors. This situation especially applies
to data structures in the field of intelligence research where usually high, positive factor inter-
correlations occur. From this orthogonalized, hierarchical solution, the variance can then be
partitioned to estimate the relative importance of the general versus the specific factors using
omega reliability coefficients (e.g., McDonald, 1999).
EFAtools is an R package (R Core Team, 2020) that enables fast and flexible analyses in an
EFA framework, from tests for suitability of the data for factor analysis and factor retention
criteria to hierarchical factor analysis with Schmid-Leiman transformation (Schmid & Leiman,
1957) and McDonald’s omegas (e.g., McDonald, 1999). The package’s core functionalities
are listed in Table 1.

Statement of Need

Compared to other R packages with which EFA can be performed, EFAtools has several
advantages, including fast implementations using Rcpp (Eddelbuettel & Balamuta, 2017; Ed-
delbuettel & Sanderson, 2014), more flexibility in the adjustment of implementation features,
the ability to reproduce the R psych (Revelle, 2020) and SPSS (IBM, 2015) implementations
of some analyses methods (see vignette Replicate SPSS and R psych results with EFAtools), as
well as the inclusion of recommended implementations for these methods based on simulation
analyses (Grieder & Steiner, 2020). Finally, the package includes the implementation of the,
as of yet, most comprehensive set of factor retention criteria in R, including recently developed
criteria such as the Hull method (Lorenzo-Seva, Timmerman, & Kiers, 2011), comparison data
(Ruscio & Roche, 2012), and the empirical Kaiser criterion (Braeken & van Assen, 2016).
As recommended by Auerswald & Moshagen (2019), multiple factor retention criteria should
be examined simultaneously to check their convergence, which now is easily possible with a
comprehensive function in EFAtools incorporating all implemented factor retention criteria for
simultaneous application. Minor advantages over and above the existing implementations in R
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include that when intending to perform a Schmid-Leiman transformation, this can be done on
an obliquely rotated solution obtained with functions from the EFAtools or the psych package
instead of being forced to perform the whole EFA procedure again. Moreover, our implemen-
tation of McDonald’s omegas calculations include the possibility of manual variable-to-factor
correspondences (as are needed for variance partitioning for predetermined / theoretical com-
posites) in addition to automatically determined variable-to-factor correspondences (as done,
for example, in the psych package). Further, the EFAtools function to compute McDonald’s
omegas can easily be applied on EFAtools and psych Schmid-Leiman solutions as well as on
lavaan (Rosseel, 2012) second-order, bifactor, and single factor solutions (including solutions
from multiple group analyses).

Development and Purpose

EFAtools was designed for use in the social sciences in general and is especially suitable
for research on cognitive abilities or other hierarchically organized constructs as well as for
more time-consuming applications such as in simulation analyses. Its development arose
from the need for a tool for easy replication and comparison of EFA solutions from different
programs, namely R and SPSS (Grieder & Steiner, 2020), and has already been used in another
publication (Grieder & Grob, 2019). The package was then expanded for a broader, easy, fast,
and flexible use of EFA tools such that it is now suitable for most projects within the EFA
framework.

Table 1: Core functionalities of EFAtools.

Topic Method Function
Suitability for factor analysis Bartlett’s test of sphericity BARTLETT()

Kaiser-Meyer-Olkin criterion KMO()
Factor retention criteria Comparison data CD()

Empirical Kaiser criterion EKC()
Hull method HULL()
Kaiser-Guttman criterion KGC()
Parallel analysis PARALLEL()
Scree plot SCREE()
Sequential model tests SMT()
RMSEA lower bound criterion SMT()
AIC criterion SMT()

Factor extraction methods Principal axis factoring EFA()
Maximum likelihood EFA()
Unweighted least squares EFA()

Rotation methods Orthogonal: Varimax, equamax,
quartimax, geominT, bentlerT,
bifactorT

EFA()

Oblique: Promax, oblimin,
quartimin, simplimax, bentlerQ,
geominQ, bifactorQ

EFA()

Factor scores Different methods for calculating
factor scores

FACTOR_SCORES()

Hierarchical factor analysis Schmid-Leiman transformation SL()
McDonald’s omegas OMEGA()

Note. All functions for suitability for factor analysis and factor retention criteria can be called
in any desired combination using the N_FACTORS() function.
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Installation

The EFAtools package can be installed from CRAN using install.packages("EFAtools
"). Moreover, the development version can be installed from GitHub (https://github.com/
mdsteiner/EFAtools) using devtools::install_github("mdsteiner/EFAtools", buil
d_vignettes = TRUE).
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Promax Rotation in R and SPSS
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Abstract
A statistical procedure is assumed to produce comparable results across
programs. Using the case of an exploratory factor analysis procedure—
principal axis factoring (PAF) and promax rotation—we show that this
assumption is not always justified. Procedures with equal names are
sometimes implemented differently across programs: a jingle fallacy.
Focusing on two popular statistical analysis programs, we indeed dis-
covered a jingle jungle for the above procedure: Both PAF and promax
rotation are implemented differently in the psych R package and in
SPSS. Based on analyses with 247 real and 216,000 simulated data sets
implementing 108 different data structures, we show that these differ-
ences in implementations can result in fairly different factor solutions
for a variety of different data structures. Differences in the solutions
for real data sets ranged from negligible to very large, with 38% dis-
playing at least one different indicator-to-factor correspondence. A
simulation study revealed systematic differences in accuracies between
different implementations, and large variation between data structures,
with small numbers of indicators per factor, high factor intercorrela-
tions, and weak factors resulting in the lowest accuracies. Moreover,
although there was no single combination of settings that was supe-
rior for all data structures, we identified implementations of PAF and
promax that maximize performance on average. We recommend re-
searchers to use these implementations as best way through the jungle,
discuss model averaging as a potential alternative, and highlight the
importance of adhering to best practices of scale construction.

Keywords: software comparison, exploratory factor analysis, principal
axis factoring, promax rotation

Psychological research is mainly conducted using quantitative methods.
Whereas in the early days of psychology statistical procedures had to be imple-
mented by hand, today a variety of programs exists for this purpose. Generally,
implementations of statistical procedures are thought to produce equivalent results



APPENDIX D: GRIEDER & STEINER (2020) 2

across programs; at least their interchangeable use in scientific publications suggests
as much. However, to date, detailed comparisons of these implementations (i.e., on
a code or output level) are scarce (for exceptions, see, e.g., Hodges, Stone, John-
son, Carter, & Lindsey, 2020; Kotenko, 2017; Stanley, 2015), and it is thus unclear
whether this interchangeable use of programs is justified (for meta-level comparisons,
see, e.g., Gosh, 2019; Klinke & Härdle, 2010; MacCallum, 1983; Marr-Lyon, Gupchup,
& Anderson, 2012).

Our attention was drawn to this topic in the course of the review process of
Grieder and Grob (2020), where the authors conducted exploratory factor analyses
(EFA). A reviewer of Grieder and Grob (2020) suggested testing the robustness of
results using a second program. It became apparent that although the same statisti-
cal methods were applied, results were not comparable between these programs, and
even led to different interpretations and conclusions. As it turned out, this case was
no exception (e.g., Collins, 2016; del Rio, 2017; GaryStats, 2017; Hodges et al., 2020;
krissen, 2018; u/kriesniem, 2018, see also Newsom, 2020 on EFA). As Ershova and
Schneider (2018) point out, results from a specific statistical method can even differ
between different versions of the same program if the implementation of algorithms
are changed, which often happens without explicit notification of the users1. Given
the instances referenced above, it seems likely that most people assume implemen-
tations of the same method in different programs to yield equivalent—or at least
highly comparable—results. As a consequence, a researcher reporting results based
on one program might be criticized if these results are not reproducible by another
researcher employing another program. This might become more of an issue with
increasing popularity and promotion of the open science movement (see Gernsbacher,
2018), as data may be shared more often, and it might also contribute to one of
the most pressing contemporary issues in psychology—the replication crisis (Ershova
& Schneider, 2018; Munafò et al., 2017; Open Science Collaboration, 2015), for ex-
ample when it comes to ongoing construct validations (see Flake, Pek, & Hehman,
2017) or direct replication studies (Hodges et al., 2020). In factor analysis, the worst
consequence of differences in implementations could be a misalignment of which indi-
cator was classified to be part of which latent construct across results obtained from
different implementations. This is exactly what happened in the personal example
mentioned above, and it might seemingly yield evidence against the validity of a scale

1Such changes are often listed in a changelog or news file, but this still requires users to actively
consult the changelog after every software update.
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in ongoing scale validation (Flake et al., 2017), even though the differences might be
due to the implementation of the same statistical procedure used.

The case where different concepts (in our case: different implementations of a
statistical procedure) are referred to by the same name is known as the jingle fallacy
(Thorndike, 1904). The present work provides a first step to gauging the extent to
which a “jingle jungle” exists in the implementations of some statistical procedures
across different programs. Moreover, we map this jungle by revealing different ways
through it and gauge the resulting implications by looking at the size of possible
differences in results. Finally, we try to navigate through the jungle by identifying
the implementation that renders the most accurate results. In the present study, we
focus on implementations of a specific procedure within a frequently used statistical
framework—EFA—in two of the most often used programs for statistical analyses in
psychological research (Dunn, 2011): SPSS (IBM Corp., 2020) and R (R Core Team,
2020).

Exploratory Factor Analysis

Factor analysis is a widely used tool to identify latent constructs underlying
task performance or responses to questionnaire items. In factor analysis, the variance
in a larger number of variables or indicators is sought to be accounted for by a smaller
number of latent factors. A data-driven approach to factor analysis is EFA, which
was originally developed by Spearman (1904, 1927) as a method to extract a common
factor—a mathematical entity that accounts for the interrelations of test scores from
different cognitive tasks (i.e., for the positive manifold of cognitive performances).
This common entity, the general factor, is the construct thought to underlie manifest
variables, such as subtest scores from intelligence tests. In EFA, intercorrelations
between a given set of indicators are analyzed and a smaller number of factors is
extracted that explain a maximum of the common variance between these indicators.

Two crucial decisions have to be made in advance when performing an EFA.
First, the number of factors to retain needs to be determined. It is recommended to
use multiple retention criteria for this purpose. Auerswald and Moshagen (2019), for
example, suggest to use sequential χ2 model tests in combination with either parallel
analysis (PA; Horn, 1965), the empirical Kaiser criterion (Braeken & Van Assen,
2017), or the Hull method (Lorenzo-Seva, Timmerman, & Kiers, 2011). In addition
to quantitative criteria, qualitative criteria, such as theoretical considerations and the
plausibility of the factor solution (Fabrigar, Wegener, MacCallum, & Strahan, 1999;
Hayton, Allen, & Scarpello, 2004; Watkins, 2018), should also be considered.

Second, the factor extraction method and the rotation method used to seek
simple structure—that is, a solution where each indicator loads substantially onto
one, and only one, factor—need to be chosen. One of the most commonly used factor
extraction methods is iterative principal axis factoring (PAF). Compared to another
frequently used and recommended method, maximum likelihood estimation (ML),
PAF has several advantages. First, it has no distributional assumptions, whereas ML
requires the data to follow a multivariate normal distribution (e.g., Fabrigar et al.,
1999). Second, it is more robust in the case of unequal factor loadings, few indicators
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per factor, and small sample sizes (Briggs & MacCallum, 2003; De Winter & Dodou,
2012). Finally, it is better able to recover weak factors (Briggs & MacCallum, 2003;
De Winter & Dodou, 2012). This means that PAF is less likely to produce Heywood
cases (that is, negative variances/standardized variances ≥ 1) and non-convergence
in the aforementioned data structures compared to ML (Briggs & MacCallum, 2003;
De Winter & Dodou, 2012; Fabrigar et al., 1999). On the other hand, ML enables
the computation of multiple fit indices and of significance tests for the factor loadings
(e.g., Fabrigar et al., 1999). In our study, we focus on PAF as a factor extraction
method.

Once the specified number of common factors is extracted, the solution is typi-
cally rotated in an attempt to obtain simple structure. Rotations can be categorized
into orthogonal and oblique rotations. In an orthogonally rotated solution, the re-
sulting factors are uncorrelated. The most popular orthogonal rotation method is
varimax (Kaiser, 1958; Watkins, 2018). In most cases, however, the resulting fac-
tors are assumed to be at least somewhat correlated and thus an oblique rotation is
more appropriate. Many oblique rotation procedures also start with an orthogonal
rotation, but then the orthogonality constraints are lessened and the factors are al-
lowed to correlate. In the case of correlated factors, this results in a solution that
approaches simple structure even further than an orthogonal solution. If the factors
are uncorrelated in reality, an oblique rotation will produce orthogonal factors as well.
This is why oblique rotations are generally recommended over orthogonal rotations
(Fabrigar et al., 1999; Gorsuch, 1983; Watkins, 2018). The most popular oblique ro-
tation methods are promax (Hendrickson & White, 1964) and oblimin (Carroll, 1958;
Jennrich & Sampson, 1966; Watkins, 2018). If an oblique factor solution contains sub-
stantial factor intercorrelations, this implies that a hierarchical structure is present
(i.e., one or more constructs can be assumed that explain these intercorrelations).
In this case, it is useful to make the hierarchical nature explicit by transforming the
oblique solution accordingly, for example using the Schmid-Leiman transformation
(Schmid & Leiman, 1957). In this article, we focus on oblique factor solutions after
promax rotation, as this can be used with both hierarchical and nonhierarchical data
structures. The implementations of PAF and promax rotation in R and SPSS are
described below.

Present Study

The major aim of this study is to compare implementations and results of a
commonly used EFA procedure—PAF and promax rotation—in R, version 4.0.3 (R
Core Team, 2020) and in SPSS, version 27 (IBM Corp., 2020)2. In R, we used the
psych package, version 2.0.12. (Revelle, 2020; henceforth referred to as R psych), a
very popular and extensive R package that has also influenced EFA implementations
in python (Biggs, 2019) and has been recommended to be used with the R plugin in

2Our results are also valid for SPSS version 23, and probably versions 24 to 26, as the algorithms
for the investigated procedures did not change from version 23 through 27 according to the algorithms
manuals (IBM Corp., 2014, 2016, 2017) and we found results to be identical between versions 23
and 27 for these procedures.
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SPSS for some calculations (IBM Support, 2020). We first compared the implemen-
tations in R psych and SPSS on a code-level. As the source code for SPSS is not
publicly available, we relied on the algorithms manual in which the formulas of the
implementations are provided (IBM Corp., 2017). As a next step, we were interested
to see how the identified differences between the two implementations would impact
results. To this end, we compared results from the two implementations for a large
set of real data. Finally, we wanted to see whether there is an implementation of
PAF and promax rotation that renders more accurate results in general, or at least
for certain data structures. To this end, we compared the ability to recover a set
of true population models across all possible combinations of the considered settings
for PAF and promax rotation—including the two combinations used in R psych and
SPSS—in a simulation study based on a large set of population models (varying, e.g.,
factor intercorrelations and the number of indicators per factor). This also allowed us
to determine whether the implementation or the data structure is more important for
accurate results. Thus, our goal was to explore whether a jingle jungle indeed exists
for the investigated procedure, try to map it, and seek the best way through it.

To facilitate comparisons, we first ran analyses in the programs mentioned above
and then reproduced results from both programs using our own functions included in
a dedicated R package—EFAtools (Steiner & Grieder, 2020). We then conducted all
further analyses with our own functions that enable a flexible use of all combinations
of settings needed for the simulation analyses and that are faster due to C++ imple-
mentations of the iterative procedures. Results on how well our functions reproduced
the original implementations in R psych and SPSS are provided below. Supplemental
material (SM) to this study, as well as all analysis scripts and many of the data sets
used for the real data analyses, are available at https://osf.io/a836q.

Implementations in R psych and SPSS

Principal Axis Factoring

PAF is a least squares fitting approach in EFA. It uses the variances and covari-
ances of a given set of indicators to reduce dimensionality by extracting a prespecified
number of factors such that they explain a maximum of the common variance in these
indicators (often, a correlation matrix is used to this end). The standard way of per-
forming PAF in R is with the fa function in the psych package, and in SPSS with the
FACTOR algorithm. We now briefly describe the differences in PAF implementations
in the two programs; these are also listed in Table A1. A more detailed description
of PAF and its implementation in R psych and SPSS is included in the SM (section
1).

In a first step, both in R psych and SPSS, the correlation matrix is tested for
different properties. If the correlation matrix is not positive definite, R psych will
perform smoothing to produce a highly similar positive definite matrix to proceed
with. In contrast, SPSS will throw an error and abort if a non-positive definite
matrix is entered.
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In a next step, initial communalities3 are estimated and used to replace the diag-
onal of the correlation matrix. Several approaches exist for deriving initial estimates;
three of them being (a) unity (i.e., each initial communality is set to one, thus the cor-
relation matrix remains unchanged), (b) the maximum absolute correlation (MAC)
of an indicator with any other indicator, and (c) the squared multiple correlations
(SMCs; Gorsuch, 1983; Harman, 1976). It has been advocated to rely on SMCs as
initial estimates (Dwyer, 1939; Guttman, 1956; Roff, 1936; Wrigley, 1957)—which is
what both the R psych and SPSS implementations do by default. When SMCs are en-
tered into the diagonal of the correlation matrix, it is often the case that the matrix is
no longer positive semidefinite; that is, some of its eigenvalues are negative. The PAF
procedure, however, involves taking the square root of the m largest eigenvalues and
therefore cannot be executed if any of these m eigenvalues—where m is the number of
factors to extract—are negative. When SMCs cannot be used, R psych suggests using
unity as initial communality estimates, which may lead to convergence, but may also
lead to inflated final communality estimates (Gorsuch, 1983). It has therefore been
recommended to use MACs instead of unity when SMCs fail (Gorsuch, 1983)—which
is what SPSS supposedly does (IBM Corp., 2017). However, using SMCs rarely fails
in SPSS, as SPSS takes the absolute of the eigenvalues, thereby avoiding negative
eigenvalues during the iterative PAF procedure (IBM Corp., 2017). In R psych, using
SMCs will fail whenever any of the m largest eigenvalues are negative. Thus, R psych
and SPSS deal differently with negative eigenvalues, which results in different cases
where using SMCs will fail.

After the initial communality estimates have been determined, the final com-
munalities are estimated in an iterative process (see SM section 1 for details). This
process is continued until an arbitrary convergence criterion is reached, which, by
default, is 10−3 for both R psych and SPSS. Others have suggested more strict crite-
ria, such as 10−5 (Mulaik, 2010) or 10−6 (Briggs & MacCallum, 2003). When testing
convergence—that is, testing whether the differences from one iteration to the next are
small enough and thus the current solution is considered stable—SPSS tests against
the maximum difference in any single communality estimate, whereas R psych tests
against the difference in the sum of all communalities.

To summarize, we found three differences between the R psych and SPSS PAF
implementations, namely not taking versus taking the absolute value of eigenvalues,
using unity versus MACs as initial communality estimates if SMCs fail, and using
different referents when testing convergence.

Promax Rotation

Once the specified number of factors is extracted, a rotation is typically per-
formed to achieve an interpretable solution. Promax is a fast and efficient method
for oblique factor rotation. In this procedure, a varimax rotation (usually preceded
by Kaiser normalization; Kaiser, 1958) is performed first to obtain an orthogonal

3Communality refers to the proportion of variance of an indicator that can be accounted for by
the common factors (Gorsuch, 1983) and thus provides an indication of how strongly the indicator
is related to all other considered indicators.
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solution, which is then transformed into an oblique solution (Hendrickson & White,
1964). Here, we again only briefly introduce the differences in promax implementa-
tions (see Table A1 for a summary). A more detailed description of promax and its
implementation in R psych and SPSS is included in the SM (section 1).

In SPSS, promax with Kaiser normalization is implemented as a rotation
method in the FACTOR algorithm. In R, there are at least two functions available
to perform a promax: the promax function in the stats package (R Core Team, 2020)
and the Promax function in the psych package, both enabling promax rotation with
and without Kaiser normalization. For comparability with SPSS, we used the promax
implementation with Kaiser normalization called in the R psych fa function.

As stated above, a varimax rotation is performed first in the promax procedure.
This rotation is implemented differently in R psych and SPSS. In SPSS, the original
varimax procedure from Kaiser (1958) is implemented (IBM Corp., 2017). However,
the varimax criterion seems to be slightly different from the original one (see SM,
section 1 for the original version and the adapted version implemented in EFAtools).
The varimax function called in R psych instead uses singular value decomposition for
the rotation and the sum of the singular values as varimax criterion (see also Jennrich,
2001).

Between the implementations of the subsequent steps of promax, we found only
one more difference. While R psych exactly follows the original promax procedure
reported in Hendrickson and White (1964), SPSS deviates from the original procedure
in that it performs a row normalization of the target matrix from the varimax solution
in the first step of the promax procedure (see SM, section 1 for details). Cureton
(1976) provides some evidence for promax with row normalization to outperform
unnormalized (i.e., original) promax. However, there exists no further evidence for
or against row normalization. In most studies on promax, either both versions or the
original, unnormalized version from Hendrickson and White (1964) were used (e.g.,
Jennrich, 2006; Lorenzo-Seva, 1999; Tataryn, Wood, & Gorsuch, 1999).

In promax rotation, the elements of the target matrix from the varimax rotation
are raised to a power k. Initial evidence suggested that k = 4 leads to the most
accurate results (Cureton, 1976; Hendrickson & White, 1964), and both R psych and
SPSS use this value by default. In contrast, more recent evidence based on a large
scale Monte Carlo simulation study showed that k = 3 is preferable in most cases for
unnormalized promax, and k = 2 is preferable for normalized promax (Tataryn et al.,
1999).

To summarize, we found two differences between the R psych and SPSS promax
implementations, namely the type of the varimax rotation (original versus singular
value decomposition) and the use of an unnormalized versus a row-normalized target
matrix.

We thus indeed discovered a jingle jungle regarding the implementations of the
same statistical procedure in two different programs and have begun to map it by
pointing out the differences in the implementations. Next, we were interested in
estimating the impact thereof on the resulting factor solutions. To be able to do so
in the most efficient way, we reproduced the implementations with our own functions
included in a dedicated R package (Steiner & Grieder, 2020).
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Reproduction with the EFAtools package

To facilitate comparisons between the two, we reproduced both the R psych
and SPSS implementations in the EFAtools package in R (Steiner & Grieder, 2020).
This enabled fast comparisons for multiple data sets in the same program.

We tested how well our EFA function was able to reproduce the R psych
and SPSS implementations using real and simulated data sets. As real data
sets, we used four correlation matrices also included in the real data analyses
reported below. Specifically, these included data on the Domain-Specific Risk-
Taking scale (DOSPERT), the Intelligence and Development Scales–2 (IDS-2), and
the Woodcock-Johnson IV (WJIV) on 3- to 5- and 20- to 39-year-olds (see Ta-
ble Real_data_description.xlsx in the online repository for descriptions, https://
osf.io/pcrqu/). As simulated data sets, we used correlation matrices derived from
four selected population models constructed for the simulation analyses reported be-
low: Case 18|3|6, case 6|3|6, case 18|3|46|3c, and case 18|6|369wb, all with strong
factor intercorrelations (see Table A2 for an overview of the cases, and SM, sections 5
and 6 for the detailed models). For the pattern matrices of these population models,
we apply the following naming convention throughout the manuscript: the population
pattern matrices are indicated with a code in the form p|m|λ, where p is the number
of indicators, m the true number of factors, and λ the set of unique non-zero pat-
tern coefficients without the period (e.g., Case 18|6|369wb is a pattern matrix with
18 indicators, six factors, and non-zero pattern coefficients of .3, .6, and .9, mixed
within and between factors). If cross-loadings are present, their number is indicated
in a fourth compartment, as in case 18|3|46|3c, where 3 cross-loadings are present.

With the EFAtools package, we were able to reproduce all unrotated PAF load-
ings, varimax loadings, and pattern coefficients from a promax rotation from the R
psych fa function to at least the 14th decimal (see Table S1 for detailed results).
From the SPSS FACTOR algorithm, we were able to reproduce unrotated PAF load-
ings to at least the 9th decimal, and both varimax loadings and pattern coefficients
from a promax rotation to at least the 4th decimal (see Table S1 for detailed results).

Differences between the R psych and SPSS Solutions for Real Data Sets

Our previous analyses show that a jingle jungle does indeed exist for the im-
plementations of PAF and promax in R psych and SPSS. But what impact does this
have on the resulting factor solutions? As a first means to answer this question, we
used correlation matrices from a heterogeneous collection of real data sets, mainly on
cognitive abilities. These data sets varied with respect to the number of indicators,
number of proposed first-order factors, and sample characteristics such as sample size,
age, sex, socioeconomic status, and health status.

Methods

Data Sets. We analyzed a total of 247 correlation matrices, of which 219 were
on cognitive abilities, 19 on personality, six on risk taking, and three on health and
physical variables. Sample sizes varied between 22 and 619,150 (Mdn = 180), the
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number of indicators varied between 6 and 300 (Mdn = 16), the proposed number
of first-order factors varied between 1 and 45 (Mdn = 4), the indicator-to-factor
ratio varied between 2.0 and 34.0 (Mdn = 4.2), and the sample size-to-indicator ratio
varied between 1.2 and 5,159.6 (Mdn = 9.3). For more information on the data
sets and their sources, see Table Real_data_description.xlsx in the online repository
(https://osf.io/pcrqu/).

Statistical Analyses. As a first step, we determined the number of factors
to extract. To this end, for each data set, we first determined the proposed number
of factors from the literature and second, performed a PA based on SMCs with 1,000
simulated data sets4. Based on recommendations by Crawford et al. (2010), we tested
the empirical eigenvalues of the data against the 95th percentile of the random eigen-
values for the first factor and against the mean random eigenvalues for subsequent
factors.

As is commonly done, we then used the larger of the two numbers of factors—
theoretical or data-driven—as an initial number of factors to extract for PAF with
promax rotation. If no admissible solution was found with this initial number of
factors after promax rotation, the number of factors was reduced by one and the
procedure was repeated, and so on, until an admissible solution was achieved with
both implementations (R psych and SPSS). A solution was deemed admissible if there
were no Heywood cases (defined as communalities or pattern coefficients ≥ .998) and
each factor displayed at least two salient pattern coefficients (i.e., ≥ .30; Gorsuch,
1983; Kline, 1997)5.

We recorded the number of factors for the final promax–rotated solution that
worked for both implementations and the number of factors for the first admissible
solution for both the R psych and SPSS implementations, to gauge how frequently
these differed. Then, we determined the frequencies of differences in indicator-to-
factor correspondences between the final solutions from R psych and SPSS. A different
indicator-to-factor correspondence occurs if the same indicator loads saliently onto
different factors in the two solutions, or if it only displays a salient loading in one so-
lution, but not in the other. Hence, differences in indicator-to-factor correspondences
are also possible for one-factor solutions.

Moreover, we examined overall, mean, and maximum differences in loadings/-
pattern coefficients after PAF without rotation, PAF with varimax rotation, and PAF
with promax rotation for each data set. By separating these three analysis steps, we
were able to determine which led to the largest differences in results. In addition to
differences in loadings, we also examined overall, mean, and maximum factor congru-
ence for these three analysis steps. Factor congruence is an indicator of the similarity
between factors that ranges from -1 to 1, with higher values indicating higher simi-

4This factor retention method is available in both R (packages EFAtools; nFactors, Raiche &
Magis, 2020; paran, Dinno, 2018; hornpa, Huang, 2015; and psych) and SPSS (with syntax provided
by O’Connor, 2000, updated version available at https://people.ok.ubc.ca/brioconn/nfactors/
nfactors.html)

5These admissibility criteria were administered automatically. Due to the large number of data
sets, it was not possible to manually inspect the factor solutions for plausibility, as is usually done
in EFA
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larity (Burt, 1948). Values between .85 and .94 are interpreted as fair similarity, and
values higher than .95 as good similarity (Lorenzo-Seva & Ten Berge, 2006).

Finally, we investigated a possible relationship of the mean and maximum av-
erage differences in pattern coefficients from the final promax-rotated solutions with
the indicator-to-factor ratio, as this ratio has been shown to affect the accuracy of a
factor solution (MacCallum, Widaman, Zhang, & Hong, 1999). To achieve this, we
performed Bayesian gamma regression analyses with a log-link function using the rsta-
narm R package (Goodrich, Gabry, Ali, & Brilleman, 2018) with default priors and
the bayestestR package, version 0.7.2 (Makowski, Ben-Shachar, & Lüdecke, 2019). We
determined credibility with the 95% highest density interval (HDI; Kruschke, 2018).

Results

Of the 247 data sets subjected to PAF with promax rotation, 31 produced non-
admissible solutions only and were therefore not included in further analyses. Of
the 216 data sets for which final admissible solutions were found in both R psych
and SPSS, the number of factors for the first admissible solution in R psych and
SPSS differed in 22.7% of the data sets, with the solution from one implementation
displaying up to four factors more than the solution from the other implementation.
Of this subset of data sets, the first admissible solution for SPSS more often showed a
higher number of factors compared to R psych (61.2%) than vice versa (38.8%). The
final solutions on which all further comparisons between the two implementations
were based were all achieved using SMCs as initial communalities (i.e., the m largest
eigenvalues were positive for all solutions).

Figure 1 shows the distributions of the overall, mean, and maximum absolute
differences in loadings/pattern coefficients as well as the overall, mean, and mini-
mum factor congruence between the R psych and SPSS solutions. The differences
in unrotated PAF loadings ranged overall between 0.00 and 0.24, the average mean
difference per solution (Mmean) was 0.00, and the average maximum difference per
solution (Mmax) was 0.01. After varimax rotation, the differences in loadings ranged
overall between 0.00 and 0.28 (Mmean = 0.00, Mmax = 0.01), and after promax ro-
tation, the differences in pattern coefficients ranged overall between 0.00 and 0.65
(Mmean = 0.02, Mmax = 0.11). The factor congruence for the unrotated PAF solu-
tions ranged overall from .20 to 1.00 with an average mean factor congruence per
solution (Mmean) of .998, and an average minimum factor congruence per solution
(Mmin) of .99. After varimax rotation, the factor congruence ranged overall between
.09 and 1.00 (Mmean = .999,Mmin = .99), and after promax rotation, it ranged overall
between .10 and 1.00 (Mmean = .99, Mmin = .96).

Despite the mostly small differences in loadings and pattern coefficients, the
indicator-to-factor correspondences differed between the final promax-rotated R psych
and SPSS solutions in 38.4% of all data sets and in 44.4% of the 187 data sets with
a solution with two or more factors. This mostly concerned differences for 1 to 3
indicators, but it went up to differences for 50 indicators in the most extreme case.
Finally, the mean and maximum absolute differences in pattern coefficients featured a
credible association with the indicator-to-factor ratio in a Bayesian gamma regression
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Figure 1 . Overall, mean, and maximum differences in loadings/pattern coefficients
per solution and overall, mean, and minimum factor congruence per solution from
PAF without rotation, with varimax rotation, and with promax rotation, obtained
with the R psych and SPSS implementations for 216 real data sets. The white dia-
mond represents the mean. PAF = principal axis factoring.

analysis. A lower ratio was related to higher mean (b = -0.26, 95% HDI[-0.32; -0.21],
rs = -.40) and maximum (b = -0.23, 95% HDI[-0.30; -0.16], rs = -.39) differences in
pattern coefficients.

Discussion

When comparing the R psych and SPSS factor solutions for real data sets, we
found mostly small differences in loadings and pattern coefficients and mostly large
factor congruence. Still, for 38.4% of data sets the differences in pattern coefficients
were large enough to result in different indicator-to-factor correspondences. More-
over, the number of factors for the first admissible solution in R psych and SPSS
also differed in over a fifth of all data sets. The larger differences for pattern coef-
ficients after promax rotation suggest that differences in results are mostly due to
the different implementations of promax rotation in R psych and SPSS (i.e., using
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an unnormalized versus normalized target matrix, respectively) and due to promax
rotation amplifying pre-existing differences after varimax rotation, and less due to
the different implementations of PAF and varimax rotation.

These results reveal that applying the (allegedly) same EFA procedure to the
same data in the two programs can result in considerably different factor solutions.
A researcher working with one program would thus often draw different conclusions
concerning which indicator loads on which factor or even concerning the adequate
number of factors to retain compared to a researcher working with the other program.
In applications like scale construction, such differences might ultimately even lead to
different scales.

It thus seems that the ways through the jingle jungle are indeed different enough
to call for a guide towards the best way through. As these analyses were based
on real data sets, we do not know the “true” population models behind them. It
therefore remains unclear where these differences come from and whether there is
an implementation that results in more accurate results in general. For example,
certain properties of the data sets might influence differences in solutions between
the implementations and the accuracy of results. The present results suggest that
the indicator-to-factor ratio might be one such property. As a next step, we thus
performed a simulation study comparing many different implementations of PAF
and promax, including the R psych and SPSS implementation, to approach these
questions systematically, and to find the best way through the jungle in the form of
a recommendation about which implementation to use for most accurate results.

Differences in Accuracy between Implementations for Simulated Data

To be able to compare different implementations of PAF and promax in terms
of their accuracy, a true model is needed for comparison. To this end, we simulated
data based on different population models implementing various data structures. We
then examined how well different implementations, featuring all possible combina-
tions of the above identified settings of PAF and promax rotation, would recover the
true solutions. That is, the aim of this simulation study was to search the space of
possible implementations, including the R psych and SPSS ones, to test whether we
could identify one implementation that would reliably yield more accurate solutions
and would thus be preferable overall or at least for certain data structures. In ad-
dition, we also directly compared the R psych and SPSS implementations in more
detail regarding their ability to recover the population models, as well as in terms of
differences in pattern coefficients, in a separate simulation analysis. We report this
latter analysis in the SM (section 3).

Methods

To compare the implementations regarding their ability to recover the under-
lying population model, we created 27 different pattern matrices and four different
factor intercorrelation matrices, the combination of which resulted in 108 population
models (see Table A2 for an overview, and SM, sections 5 and 6, for the pattern-
and factor intercorrelation matrices). Therein, we varied (a) the number of factors,
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(b) the number of indicators per factor, (c) the size of the pattern coefficients, (d)
whether cross-loadings were present, and (e) the magnitude of the factor intercorrela-
tions. Some of these population models were based on De Winter and Dodou (2012),
yet we also added additional ones to cover a large space of possible data structures.
For example, intelligence tests often exhibit a relatively low indicator-to-factor ratio
and strong factor intercorrelations (e.g., Frazier & Youngstrom, 2007). Other mea-
sures, such as some personality scales, tend to have higher indicator-to-factor ratios
with lower factor intercorrelations (e.g., Goldberg, 1999; Johnson, 2014). Simulating
a diverse set of data structures permitted us to compare the implementations not
only in general, but also on more specific levels, conditional on the data structure.

From each of these population models, we simulated two times 1,000 data sets
from multivariate normal distributions with sample sizes of 180 and 4506, respectively,
for the model recovery. To this end, we used the following procedure to simulate
each data set from a population model, which always consists of a combination of a
population pattern matrix and a population factor intercorrelation matrix. We first
obtained the population correlation matrix R from the population pattern matrix Λ
(see Table A2, and SM, section 5) and population factor intercorrelation matrix Φ
(see Table A2, and SM, section 6) with

R = ΛΦΛT (1)

diag(R) = 1 (2)

For simplicity, we set the variable means to zero and the SDs to 1, thus the population
covariance matrix equals R. We then sampled data (N = 180 or N = 450) from a
multivariate normal distribution based on the respective covariance matrix.

For each simulated data set, we conducted each of the different implementations
of PAF with subsequent promax rotation by extracting the true number of factors
of the population models (i.e., either three or six factors). Regarding the PAFs, we
varied the following settings: Three initial communality estimates—unity, MAC, and
SMCs; whether the absolute of the eigenvalues should be used or not; whether the
convergence criterion is tested against the maximum difference in any single commu-
nality estimate, or against the difference in the sum of all communalities; and two
different convergence criteria, namely 10−3 and 10−6. Regarding the promax rotation,
we varied the following settings: the two varimax types; whether the target matrix
is normalized or not; and two different k parameters, namely (a) 4 in all cases versus
(b) 3 in the case of unnormalized promax and 2 in the case of normalized promax (see
Tataryn et al., 1999). This resulted in 192 possible implementations which we com-

6These sample sizes correspond to a ratio of sample size (N ) to number of indicators p of 10
and 25 for our baseline model (18|3|6), respectively. According to MacCallum et al. (1999), a
sample size of 180 is rather small for conditions like the ones in our baseline model. The smaller
sample size and N:p ratio corresponds with the median values for our real data sets (see Table
Real_data_description.xlsx, https://osf.io/pcrqu/). Conversely, a sample size of 450 should be
sufficient also for more “problematic” data structures like those with low indicator-to-factor ratios
and weak factors, as we simulated in some of our population models.
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pared against each other in terms of their ability to recover the underlying population
model.

Statistical Analyses. We compared the 192 different implementations in
terms of the root mean squared errors (RMSE, i.e., the deviance of the fitted sam-
ple pattern matrix from the true population pattern matrix), the probability for the
occurrence of Heywood cases, and the number of incorrect indicator-to-factor cor-
respondences. The RMSE between the population pattern matrix Λ and a fitted
sample pattern matrix Λ̂ was computed with

RMSE =

√√√√trace[(Λ − Λ̂)T (Λ − Λ̂)]
pm

(3)

where p is the number of indicators, and m is the number of extracted factors.
We performed the following analyses separately for each of the 216 different

models (108 population models times the two sample sizes). Moreover, for each
of these models, we analyzed simulated data sets for which any of the m largest
eigenvalues were negative during the PAF procedure for any of the implementations
separately from those where all m largest eigenvalues were always positive.

We first ordered the different implementations from best to worst (i.e., lowest to
highest), according to the average RMSE (MRMSE), proportion of Heywood cases,
and number of incorrect indicator-to-factor correspondences, respectively. Next, we
compared the best and the second best implementation with Bayesian regressions
with a dummy coded identifier for the implementations as predictor. The regression
model with the RMSE as dependent variable was implemented with a Gaussian fam-
ily and an identity link function; the one with the probability of Heywood cases was
implemented with a binomial family with a logistic link function; and the one con-
cerning the number of incorrect indicator-to-factor correspondences was implemented
with a negative binomial family with a log link function. All models were run using
the rstanarm package (Goodrich et al., 2018) with default priors and results were
inspected using the bayestestR package, version 0.7.2 (Makowski et al., 2019).

To test the credibility of effects, we employed the region of practical equivalence
(ROPE) plus 95% HDI rule (Kruschke, 2018) for the linear and logistic regressions.
That is, if the 95% HDI of a parameter fell completely outside the ROPE, we regarded
this as conclusive evidence for an effect. If less than 95% of the HDI fell outside or
inside the ROPE, we regarded this as inconclusive evidence for an effect. Finally,
if the 95% HDI fell completely inside the ROPE, we regarded this as conclusive
evidence that there was no effect. These analyses permitted us to judge whether
one implementation was generally better suited for particular data structures. We
defined the ROPE to be [−0.1 ∗ SDdv, 0.1 ∗ SDdv] for linear regression models and
[−0.18, 0.18] for logistic regression models (in line with Kruschke, 2018; Makowski et
al., 2019). Because there is no standard for choosing a ROPE for negative binomial
regressions, we simply relied on the 95% HDI rule to gauge whether an effect was
credible.

For analyses of data sets where allm largest eigenvalues were positive, regression
analyses were only run if at least ten of the 1,000 simulated data sets per population
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model resulted in all-positive m largest eigenvalues. Conversely, for analyses of data
sets with some negative m largest eigenvalues, regression analyses were only run
if at least ten of the 1,000 simulated data sets per population model resulted in
some negative m largest eigenvalues. Moreover, a logistic regression was only run if
additionally at least 1% of the data sets of the current population model contained a
Heywood case, and a negative binomial regression was only run if additionally there
were at least two unique numbers of incorrect indicator-to-factor correspondences
present. This was to ensure that the models could be run and did not result in errors
(e.g., due to no variance in the dependent variable).

If there was conclusive evidence for a difference between the best and second-
best implementation, the procedure was stopped and counted as conclusive evidence
for a difference between settings in the respective population model. If the evidence
was inconclusive or there was conclusive evidence for equality of the solutions found
by the two implementations, the best solution was compared to the third-best solu-
tion, and so on, either until conclusive evidence for a difference was found or until
all 191 other implementations were compared against the best one. If after this pro-
cedure there was conclusive evidence for equality between the best and the worst
implementation, we counted this as conclusive evidence for the absence of relevant
differences between the implementations in the respective population model. If there
was conclusive evidence neither for a difference nor for equality, the evidence was
counted as inconclusive. Moreover, if no regression models could be run (e.g., be-
cause not a single Heywood case occurred for any implementation in a population
model), differences were gauged descriptively. In these cases, we counted a complete
match between all implementations (e.g., when none of the implementations resulted
in a Heywood case) as conclusive evidence for equality, whereas an imperfect match
was counted as inconclusive evidence.

To analyze the simulation results, we first descriptively compared the different
implementations regarding their MRMSE, proportion of Heywood cases, and incorrect
indicator-to-factor correspondences. Moreover, to determine which implementation
on average produced the best results, we used the proportion across the 108 population
models with which a given implementation was among the best ones (i.e., was the best
implementation, had conclusive evidence for equality with the best implementation, or
had inconclusive evidence for a difference to the best implementation) as determined
with the regression analyses above.

Results

Results from our regression analyses revealed conclusive differences between at
least some of the 192 implementations for the majority of the population models
regarding RMSE and the probability of Heywood cases, and for about half of the
population models regarding the correctness of indicator-to-factor correspondences
(see Table 1). Although the differences in accuracies were mostly small, there were
some population models—namely those with very low indicator-to-factor ratios as well
as those with mixed or high factor intercorrelations—where differences were larger.

Moreover, there was no single implementation that was best across all con-
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Table 1
Evidence for Differences in Accuracy, Proportion of Heywood Cases, and Correctness
of Indicator-to-Factor Correspondences Between Implementations

N = 180 N = 450
Property Inc Eq Diff Inc Eq Diff
Data sets without negative eigenvalues
RMSE 18 0 90 10 1 97
Heywood 20 22 66 13 44 51
Ind-to-Fac Corres 28 29 51 12 37 59
Data sets with negative eigenvalues
RMSE 0 0 10 0 0 9
Heywood 0 0 10 0 0 9
Ind-to-Fac Corres 5 1 3 2 0 7
Note: Tally of type of evidence for the 216 different models (108 population
models times 2 sample sizes) derived from Bayesian regression analyses. The row
sum for the rows concerning data sets with negative eigenvalues are smaller than
216 because data sets with negative eigenvalues occurred only for some models.
RMSE = Root mean squared error. Heywood = Probability of the occurrence
of a Heywood case. Ind-to-Fac Corres = Difference in indicator-to-factor corre-
spondence from found solution to population model. Inc = Inconclusive evidence.
Eq = Conclusive evidence for no relevant difference between the implementations
(equality). Diff = Conclusive evidence for a difference between at least some
implementations.

ditions and regarding all three considered accuracy criteria. However, there were
some settings that were clearly superior, namely sum for criterion type and a con-
vergence criterion of 10−3 (both in the PAF procedure). A description and compar-
ison of the implementations that produced the best results in one of the considered
criteria is included in Table 2 and, for a larger set of implementations, in Table
best_implementations.xlsx in the online repository, https://osf.io/6prcz/).
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Table 2
Proportion of Population Models for Which the Two Best Implementations and the
R psych and SPSS Implementations Were Among the Best

Best Bestkaiser Psychunity PsychSMC SPSS
RMSE
N = 180, pos. eigen. .70 .70 .46 .58 .68
N = 180, neg. eigen. .53 .53 .00 .00 .53
N = 450, pos. eigen. .72 .72 .45 .59 .69
N = 450, neg. eigen. .56 .56 .00 .00 .44

Heywood Cases
N = 180, pos. eigen. .56 .56 .69 .46 .53
N = 180, neg. eigen. .07 .07 .33 .00 .07
N = 450, pos. eigen. .63 .63 .81 .64 .62
N = 450, neg. eigen. .44 .44 .67 .00 .44

Ind.-to-Fac. Corres.
N = 180, pos. eigen. .95 .95 .71 .83 .93
N = 180, neg. eigen. .64 .64 .43 .00 .57
N = 450, pos. eigen. .93 .94 .70 .76 .89
N = 450, neg. eigen. .89 .89 .22 .00 .89

Settings
PAF
Communality method SMC SMC unity SMC SMC
Criterion type sum sum sum sum max. ind.
Absolute eigenvalues yes yes no no yes
Convergence criterion 10−3 10−3 10−3 10−3 10−3

Promax rotation
Varimax type svd kaiser svd svd kaiser
P type norm norm unnorm unnorm norm
k 4 4 4 4 4

Note: For positive eigenvalues, the proportion of the 108 population models for which the
respective setting combination was among the best setting combinations is shown. For neg-
ative eigenvalues, the proportion of the population models including data sets that resulted
in negative eigenvalues for which the respective setting combination was among the best
setting combinations is shown. The top row contains the identifiers of the implementations,
their settings are listed in the bottom part of the table. Boldface indicates that this im-
plementation was most frequently among the best implementations for the respective data
sets. Best/Bestkaiser = implementations with best results overall, with varimax type svd
and kaiser, respectively; Psychunity/PsychSMC = R psych implementation with unity/SMC
as initial communality estimates; SPSS = SPSS implementation; RMSE = root mean square
error; pos. eigen. = all-positive eigenvalues; neg. eigen. = some negative eigenvalues; Ind.-
to-Fac. Corres. = indicator-to-factor correspondences; PAF = principal axis factoring; P
type = target matrix type; k = power in promax; MAC = maximum absolute correlation;
SMC = squared multiple correlation; sum = deviance of the sum of all communalities; max.
ind. = maximum absolute deviance of any communality; unnorm = unnormalized; norm =
normalized; svd = singular value decomposition.

Regarding RMSE, the implementations that produced the most accurate results
differed for the sample sizes of 180 and 450. For PAF, the best implementations in
the case of N = 180 all used MACs as initial communality estimates, sum as criterion
type, and a convergence criterion of 10−3 (both treatments of eigenvalues produced
equally accurate results). For the promax rotation, they used an unnormalized target
matrix with k = 3 (both varimax types produced equally accurate results). When
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the sample size was 450, SMCs were used as initial communality estimates instead of
MACs, and only absolute eigenvalues were used—the other settings were the same.
For the promax rotation, the best implementations then used a normalized target
matrix with k = 4 (again, both varimax types produced equally accurate results).

Regarding Heywood cases, unity as initial communality estimates produced the
best results. The other PAF settings were the same as the best settings regarding
RMSE. Moreover, using SMCs as initial communality estimates tended to result in
more Heywood cases compared to using MACs. For promax, a normalized target ma-
trix with k = 2 produced the lowest proportion of Heywood cases—again irrespective
of the varimax type.

Finally, regarding indicator-to-factor correspondences, the best implementations
for PAF were again ones that used sum as criterion type and a convergence criterion
of 10−3 as initial communality estimates. Together with MACs, it did not matter
whether absolute eigenvalues were used or not. Together with SMCs, it was clearly
better to use absolute eigenvalues. For promax, a normalized target matrix with k =
4 was best—also irrespective of the varimax type used.

On average, the impact of the different implementations, although in many
cases statistically robust (see Table 1), tended to be smaller than that of the data
structures—that is, the population models (see Figure 2 and Figure S6). To gauge
the impact of the data structures, we computed the differences between the best-
and worst-performing implementation in a given population model, separately for
every population model.7 Conversely, to gauge the impact of the implementations,
we computed the differences between the population models leading to the best and
worst performance in a given implementation, separately for each implementation. In
this analysis we focused on the data sets with N = 450.

Based on this approach, we found that across all implementations the differences
in MRMSE ranged from .00 to .09 (Mdn = .01; M = .02). In contrast, across
the population models, the differences in MRMSE ranged from .18 to .28 (Mdn
= .21; M = .22). Moreover, the difference in the proportion of Heywood cases
across all implementations ranged from .00 to .92 (Mdn = .01; M = .17), and the
difference in proportion of Heywood cases across the population models ranged from
.28 to .98 (Mdn = .87; M = .80; see also Figure 3 and Figure S7). Finally, across
the implementations the differences in the proportion of solutions with at least one
incorrect indicator-to-factor correspondence ranged from .00 to .50 (Mdn = .01; M =
.05), while, across population models, this difference in proportions was always 1.00
(see also Figure 4 and Figures S8–S10).

Overall, the different implementations resulted in solutions with larger discrep-
ancies for population models with high factor intercorrelations, with low pattern
coefficients, with cross-loadings, and with low indicator-to-factor ratios; that is, ex-
actly the data structures that also led to larger errors and to higher proportions of
Heywood cases. In the other data structures, the implementations converged more

7Note that therefore no single implementation was used as best for every population model, but
the respective implementation that in the current population model, across the 1,000 simulated data
sets, resulted in the lowest MRMSE, proportion of Heywood cases, or proportion of solutions with
at least one incorrect indicator-to-factor correspondence.
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Figure 2 . Distributions of RMSE of three different implementations, separately for
the different population models, based on data sets simulated with N = 450. A
population model is always a combination of a pattern matrix (on the x-axis) and
a factor intercorrelation matrix (the facets). Bars indicate the mean RMSE, the
whiskers indicate ±1SD, and dots represent the mean of the 5% largest RMSE. Best
= implementation with best results overall; R psych = R psych implementation with
SMC as initial communality estimates when no negative eigenvalues occurred and
R psych implementation with unity as initial communality estimates when negative
eigenvalues occurred; SPSS = SPSS implementation. See Table 2 for more information
on these implementations. An overview of the population models is provided in
Table A2. The detailed population pattern- and factor intercorrelation matrices are
provided in the SM, sections 5 and 6.

strongly.

Discussion

Our simulations to compare many possible implementations of PAF and pro-
max led to two main insights. First, we found that many statistically robust dif-
ferences between implementations occurred and were able to pinpoint properties of
implementations that led to the best results regarding RMSE, Heywood cases, and
indicator-to-factor correspondences. The best trade-off seems to be to use SMCs as
initial communality estimates, sum as criterion type, absolute eigenvalues, and a con-
vergence criterion of 10−3 for PAF; and a normalized target matrix with k = 4 for
promax with any of the two varimax types (best and bestkaiser in Table 2). One of
these implementations—the one named best in Table 2—is implemented as default
in the EFAtools R package (Steiner & Grieder, 2020), along with the possibility of
varying the settings as done in this simulation study.

With smaller samples, using MACs instead of SMCs and an unnormalized tar-
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Figure 3 . Proportions of solutions per implementation out of the 1000 simulated data
sets in which Heywood cases occurred, separately for the different population models,
based on data sets simulated with N = 450. A population model is always a combi-
nation of a pattern matrix (on the x-axis) and a factor intercorrelation matrix (the
facets).Best = implementation with best results overall; R psych = R psych imple-
mentation with SMC as initial communality estimates when no negative eigenvalues
occurred and R psych implementation with unity as initial communality estimates
when negative eigenvalues occurred; SPSS = SPSS implementation. See Table 2 for
more information on these implementations. the population models is provided in
Table A2. The detailed population pattern- and factor intercorrelation matrices are
provided in the SM, sections 5 and 6.

get matrix with k = 3 could be beneficial to maximize the accuracy of the pattern
coefficients. However, this comes at the cost of a higher probability for erroneous
indicator-to-factor correspondences. If the aim is to minimize the chance of Heywood
cases, one could try with the above-mentioned implementation first and if this imple-
mentation leads to Heywood cases, try again with MACs as initial communalities and
if this still leads to Heywood cases, try again with unity and with k = 2. However,
although the latter will minimize the chance for the occurrence of Heywood cases, it
will likely come with the cost of less accurate pattern coefficients and a larger number
of erroneous indicator-to-factor correspondences.

The second main insight is that the data structures had a large impact on the
recovered factor solutions. For example, a low indicator-to-factor ratio often led to
problems such as worse fit, the occurrence of Heywood cases, and problems in the
identification of the correct indicator-to-factor correspondences. Moreover, solutions
with weak factors also displayed worse fit. Finally, large factor intercorrelations and
weak factors led to severe problems in recovering the correct indicator-to-factor corre-
spondences, which might limit the robustness of EFA (or at least of PAF and promax
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Figure 4 . Proportions of solutions per implementation out of the 1’000 simulated
data sets with at least one incorrect indicator-to-factor correspondence, separately
for the different population models, based on data sets simulated with N = 450. A
population model is always a combination of a pattern matrix (on the x-axis) and a
factor intercorrelation matrix (the facets). Best = implementation with best results
overall; R psych = R psych implementation with SMC as initial communality esti-
mates when no negative eigenvalues occurred and R psych implementation with unity
as initial communality estimates when negative eigenvalues occurred; SPSS = SPSS
implementation. See Table 2 for more information on these implementations. An
overview of the population models is provided in Table A2. The detailed population
pattern- and factor intercorrelation matrices are provided in the SM, sections 5 and
6.

rotation) for this kind of data structures.
To sum up, we succeeded in finding a best way through the jingle jungle in

the form of the best implementation identified here. Another approach might be to
incorporate the full jungle into one’s analyses by using model averaging. We further
discuss this possibility below.

General Discussion

We compared an EFA procedure with PAF and promax rotation between the
two most prominently used programs in psychological research (Dunn, 2011): R (using
the popular psych package) and SPSS. We indeed discovered a jingle jungle for the
investigated EFA procedure and the programs considered: Equal names do not mean
equal implementations, and with this do not necessarily mean comparable results.
But how different are the results? And is there a best way through the jungle?

Our main findings can be summarized in three points. First, we found many
systematic differences in pattern coefficients and in accuracy between the tested im-
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plementations, including the R psych and SPSS implementations. Although most
differences in (the accuracy of) pattern coefficients were small, very large ones oc-
curred for some data sets and population models, and many led to differences in
(the accuracy of) indicator-to-factor correspondences. Second, neither of the two
implementations—R psych or SPSS—consistently resulted in more accurate solu-
tions than the other across all population models. The implementations producing
the most accurate results for PAF and promax rotation are combinations of the R
psych and SPSS implementations. Third, the data structure is at least as important
as the implementation for the accuracy of results. For some data structures, the
accuracy is very low, regardless of the implementation.

Mostly Small, But Systematic Differences

As is evident from results from both the real data analysis and the simula-
tion study, the different implementations—including R psych and SPSS—will lead to
comparable results in many cases. Nevertheless, we found pattern coefficients differed
systematically between implementations, with differences in accuracy for 88% of the
population models. Moreover, for the real data sets, the average maximum difference
between the R psych and SPSS solutions was a non-negligible 0.10. Perhaps even
more importantly, the indicator-to-factor correspondences differed between R psych
and SPSS for 38% of the real data sets (44% of those with at least two factors), and
their accuracy differed between implementations for 51% of the population models in
our simulation study. Due to the use of thresholds, even small differences in pattern
coefficients might affect indicator-to-factor correspondences and with this even deci-
sions on which solution to retain. A strict use of thresholds is of course questionable.
Nevertheless, thresholds are applied and they may be used to too strongly defend a
more or less arbitrary choice about which solution to retain, especially if this solution
is in accordance with a favored theory.

Overall, our results demonstrate that different implementations of PAF and
promax rotation—with promax rotation likely having the greater impact—can lead
to fairly different solutions, and in many cases also to different conclusions regarding
the factor structure of the investigated construct. Given the amount and impact of
these differences, a natural question to ask is whether there is one implementation
of PAF and promax rotation that renders the most accurate results under different
conditions.

Best PAF and Promax Implementations

As stated above, none of the considered implementations—including R psych
and SPSS—consistently outperformed all others. Yet, our simulation analyses still
permitted us to identify specific settings that seem to be advantageous and allowed
us to make a general recommendation for implementations of PAF and promax ro-
tation. These implementations constitute a combination of the R psych and SPSS
implementations. Specifically, for PAF, one should take the absolute eigenvalues (as
SPSS does), compute initial communalities with SMCs, use 10−3 as convergence cri-
terion, and apply the convergence criterion to the sum of all communalities (as R
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psych does). For promax rotation, a row-normalization should be done on the target
matrix of the varimax solution (row-normalized promax rotation, as done in SPSS)
and k = 4 should be used as the power to which to raise the elements of the tar-
get matrix. These combinations of settings are implemented as default for PAF and
promax rotation in the EFAtools package.

Although a general recommendation for these implementations is justified, our
results also reveal that the choice of one implementation over the other will prob-
ably have a major impact on results only in certain cases. Our recommended im-
plementation will therefore maximize the verisimilitude probably especially for more
“problematic” data structures like the ones discussed in the next paragraph.

Data Structure Is At Least As Important As Implementation

Our simulation analyses revealed that the data structure had a strong influence
on the accuracy of a solution. For cases with a low indicator-to-factor ratio, weak
factors, and large factor intercorrelations (independent of each other), the accuracy
of results was often very limited, to the point that, for some cases, all of the 1,000
solutions had at least one incorrect indicator-to-factor correspondence (see Figure 4).

The finding that a low indicator-to-factor ratio can be problematic in EFA is in
line with previous research (e.g., MacCallum et al., 1999). Specifically, a low indicator-
to-factor ratio results in less stable and less replicable factor solutions (Gorsuch, 1983;
MacCallum et al., 1999; Mulaik, 2010; Tucker & MacCallum, 1997). Regarding factor
intercorrelations, it has been shown that a positive manifold (i.e., exclusively positive
intercorrelations) leads to better recovery of factor solutions (Tucker & MacCallum,
1997). Our results somewhat contradict these findings: In our simulation study, factor
structures with mixed (.30, .50, .70) and with high (.70) factor intercorrelations re-
sulted in a less accurate recovery of the true factor solutions, while orthogonal factors
caused the least problems. This is true for both investigated sample sizes. However,
others have also proclaimed (Gorsuch, 1983) and shown (Gerbing & Hamilton, 1996)
that too high factor intercorrelations can be problematic in factor analysis, especially
for the recovery of weak factor loadings (De Winter & Dodou, 2012). These findings
are corroborated by our analyses, where factors with low pattern coefficients (.30)
were also worse recovered compared to factors with higher pattern coefficients (.60
or .90), especially if factor intercorrelations were high. Previous studies focusing ex-
clusively on orthogonal factor structures have also demonstrated worse recovery of
weak compared to stronger factors (Hogarty, Hines, Kromrey, Ferron, & Mumford,
2005; MacCallum et al., 1999). Finally, the data structure also influences the sample
size necessary for a stable factor solution. That is, a stable solution can be achieved
with smaller samples if the indicator-to-factor ratio is high, if communalities are high
(strong factors), and if the factors are correlated (Hogarty et al., 2005; MacCallum
et al., 1999; Tucker & MacCallum, 1997).

Despite these findings, problematic data structures, such as a low indicator-to-
factor ratio, became increasingly common in factor-analytic research, especially on
intelligence tests (Frazier & Youngstrom, 2007) and are still quite common to date
(Goretzko, Pham, & Bühner, 2019). It is therefore important that simulation studies
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in a factor-analytic framework take these problematic data structures into account.

Model Averaging: An Alternative Way Through the Jungle?

Given that the variation in factor solutions across implementations was larger
for problematic data structures, the amount of variability between different implemen-
tations might be useful to judge the stability of the factor solution for a particular
data set. Thus, applying multiple implementations of the same procedure, and possi-
bly also different extraction and rotation methods8, could serve as a robustness check
for a factor structure. A larger variation in the factor solutions across the different
implementations or methods would indicate a more unstable factor structure for this
particular data set and could render it more likely that the data structure is prob-
lematic. Researchers could then use this as a guide to judge whether more indicators
or more participants should be sampled.

Applying multiple implementations or methods with a common purpose also
allows to calculate an average factor solution across all different implementations and
methods, which could be preferable to results from a single implementation as it takes
model uncertainty into account. With this, we get in the realm of model averaging,
which Fletcher (2018) defines as “a means of allowing for model uncertainty in esti-
mation which can provide better estimates and more reliable confidence intervals than
model selection” (p. 1). It typically involves calculating a weighted average of the
model parameters, with stacking as the preferred method of weighting for frequentist
model averaging, and another common method being AIC weights (Fletcher, 2018).
Model averaging has mainly been used in regression frameworks and on models with
different sets of predictor variables (Fletcher, 2018; Schomaker & Heumann, 2011;
Steel, 2020). For EFA, there are some studies using averaging to get more robust
estimates (e.g., Gerbing & Hamilton, 1996 who averaged across different rotation
methods), and one study used model averaging with AIC weights across ML esti-
mated solutions with different numbers of factors (Schomaker & Heumann, 2011). To
our knowledge, however, there is no study that investigated model averaging across
different settings or methods within the EFA framework.

In sum, model averaging might be a possibility not only to provide a straight
path through the jingle jungle ignoring the surroundings, like our identified best im-
plementation, but rather to produce a full map of the jungle, and possibly also an even
better way out of it in the form of an average factor solution. For an easy application
and first step towards model averaging we include a function in the EFAtools package
to flexibly perform and average across different implementations of PAF, varimax,
and promax rotation, as well as different extraction and rotation methods with unit-
weighting. Clearly, future research is needed to investigate how model averaging is
best implemented for EFA to maybe result in more stable and reliable parameter
estimates compared to using a single EFA model. One challenge in this will be to
identify which weights to use for averaging. For PAF, AICs cannot be used sensibly,
and stacking is not practicable for EFA, either. Until these questions are answered,

8For rotation methods this would, of course, only make sense for the same type of rotation; that
is, either multiple orthogonal methods or multiple oblique methods.
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this kind of model averaging may mainly be useful for testing the robustness of a
factor solutions across different implementations, and researchers may want to rely
on the best implementation identified here as a best guess for the model parameters.

Implications

One implication of our study is that researchers should not assume that proce-
dures with the same name are implemented the same way and necessarily lead to com-
parable results. A consequence of such incomparable results from factor-analytical
methods is that different researchers might draw different conclusions about the la-
tent structure of their data, depending on which program they used. This could be
especially problematic if EFA is used to create new instruments or as a tool in the-
ory building. Moreover, it could lead to results appearing not to be replicable as a
consequence and as such might even contribute to the replication crisis (see Ershova
& Schneider, 2018; Flake et al., 2017). If different programs are thought to lead to
comparable results, differences in implementations might not be considered as an ex-
planation for the failure to replicate an analysis. This bears the potential for waste
of money and time to find conceptual or methodological explanations for differences
that might actually just be an artifact of the procedure used.

To counteract possible misconceptions and to facilitate comparisons of imple-
mentations of the kind performed here, we advocate the use of free and open-source
software (e.g., R, python, or julia) and the sharing of analysis scripts. Doing so em-
powers other researchers to track the analyses and, if questions arise, to dig into the
code of the actual procedures. Such comparisons are harder to do with proprietary
software as one needs to have the appropriate license and even then one has to rely on
reconstructions of the procedures in most cases because the source-code is not pub-
licly available. Another advantage of the use of open-source software is that newly
developed or enhanced procedures can be shared immediately.

Our results also demonstrate that researchers should be cautious when inter-
preting their EFA results. They might be overconfident in their factor-analytical
results and what these tell them about the “real” structure of the assumed under-
lying latent construct (see Yarkoni, 2019). However, especially for data structures
like those often present in intelligence tests (low indicator-to-factor ratio, high factor
intercorrelations, and weak first-order factors), EFA seems to have difficulties recov-
ering the data structure, even when there exists a “true” underlying model and data
are simulated from multivariate normal distributions, as in our simulations. Future
studies could vary more properties of both real and simulated data sets. For example,
it would be interesting to see how the presence of ordinal data or departures from
(multivariate) normality, in combination with different correlation methods, might
influence results.

Given these issues, researchers might be tempted to attribute these to the ex-
ploratory nature of EFA and to instead put their trust in (presumably) less data-
driven methods, such as confirmatory factor analysis (CFA). However, the same kind
of data structure that poses difficulties to EFA is problematic for CFA as well (e.g.,
Marsh, Hau, Balla, & Grayson, 1998; Ximénez, 2006, 2009). This is not surprising,
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given that EFA and CFA are not that different after all and neither is necessarily
more data- or more theory-driven than the other (Schmitt, 2011).

Researchers intending to use factor-analytic methods should therefore design
their tests and questionnaires such that the data are suitable for factor analysis; that
is, ensure a large enough indicator-to-factor ratio (probably at least 5:1 or 6:1; e.g.,
Goretzko et al., 2019; Gorsuch, 1983) and a sufficiently large sample size (at least
400) that should be larger the smaller the indicator-to-factor ratio is, and if weak
factors are expected, especially when paired with high expected factor intercorrela-
tions (De Winter & Dodou, 2012; Goretzko et al., 2019; Gorsuch, 1983; Hogarty et
al., 2005; MacCallum et al., 1999; Tucker & MacCallum, 1997). Thus, ensuring an
appropriate data structure is a prerequisite for a stable and replicable factor solution.
Last but not least, a factor structure identified with factor-analytic methods should
always be tested against external criteria to ensure its validity.

Limitations

One limitation of our work is that we only investigated a specific procedure
within one statistical framework—one extraction method and one rotation method
out of many, even though they are among the most prominent ones within EFA. But
even within this narrow selection of procedures we found several differences in the im-
plementations and the resulting solutions. Future research could investigate to what
extent these issues apply to other factor-analytical methods (e.g., ML estimation)
and statistical procedures. Similar jingle jungles have already been found between
R and SPSS, for example, for linear regression (krissen, 2018; u/kriesniem, 2018),
cox regression (GaryStats, 2017), multinomial logistic regression (Collins, 2016), and
ANOVA (del Rio, 2017). Our guess is that many further jingle jungles might be found
for other programs and statistical procedures. In fact, similar jungles have already
been discovered for nonparametric statistical procedures across the four programs
SPSS, SAS, Stata, and R, where the authors also point to the consequences of such
variations for replication attempts (Hodges et al., 2020).

We could also only compare a selection of the various programs available to
perform these analyses. As we chose the programs that are probably the most used
in psychological research (Dunn, 2011), and as the psych package has also influenced
the implementation of the EFA framework in python (Biggs, 2019), our findings are
likely relevant for many researchers performing EFA. Moreover, we also went beyond
the implementations of these two programs and included all possible combinations of
the identified settings for PAF and promax in our simulation analysis.

Another limitation is that we did not have access to the source code of SPSS
and were therefore only able to reproduce its implementations by implementing math-
ematical formulas from the algorithms manual (IBM Corp., 2017) and comparing the
original output from SPSS with the one from our reconstruction of the SPSS imple-
mentation. Especially for the varimax implementation, it was difficult to find out how
exactly the procedure is implemented in SPSS, as results with the implementation
based on the formulas in the algorithms manual were not comparable enough to the
original SPSS results. After some adjustments to the varimax criterion, we managed
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a closer reproduction of original SPSS results. However, without access to the source
code, it was impossible for us to determine the exact deviations of the implemen-
tation from the formulas provided in the algorithms manual. Nevertheless, we were
able to reproduce results from SPSS with high accuracy and therefore believe that
we reconstructed its algorithms well enough for the purpose of our analyses.

Finally, as is always the case for simulation studies, it is unclear how results
from our simulation analyses generalize to other data structures and sample sizes not
simulated here. However, we varied many different characteristics of the data struc-
tures which reflect many data structures occurring in EFA research (e.g., Goretzko
et al., 2019). Similarly, it is unclear to what extent results from simulation studies
generalize to real data analyses, where there is no true model underlying the data,
“everything is correlated with everything” (Meehl, 1990, , p. 123), and thus an in-
finitely large number of constructs may influence a correlational structure (Cudeck &
Henly, 1991; MacCallum, 2003; Meehl, 1990; Preacher, Zhang, Kim, & Mels, 2013).
This caveat is one reason why we also analyzed real data sets. The agreement of the
results from our real data analyses, where we included a large number of diverse data
sets, and from the simulation study might at least indicate some generalizability of
results from our simulation study to real-world problems.

Conclusion

Our results show that a jingle fallacy is indeed apparent in the investigated
EFA procedure. That is, EFA methods named the same are actually implemented
differently in the programs considered. The jingle jungle we discovered does have im-
portant implications, with different implementations frequently leading to different
conclusions regarding the factor structure. We advocate the search for and exploration
of further jingle jungles to gauge the extent of this issue for other statistical proce-
dures and to enable researchers to make an informed decision about which program
or implementation to use best. Moreover, we encourage researchers to state which
version of a program they used for a particular analysis—as details in the implementa-
tions might be subject to change over time—as well as to familiarize themselves with
default values provided in software packages to understand which specifications are
used in their analyses. With the present work, we hope to raise awareness of possible
differences in implementations of statistical procedures in different programs, and we
advise researchers to use our recommended settings for PAF and promax rotation as
the best way through the jungle, at least until other, potentially better ways through
it—such as model averaging—have been tested sufficiently.
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Table A2
Description of Population Models used for Simulation Analyses

a) Pattern Matrices
Pattern Matrices m Indicators

per Factor
Size of Pattern
Coefficients

Notes

Case 18|3|6 3 6 .60 Same baseline model as used in
De Winter and Dodou (2012)

Case 6|3|6 3 2 .60
Case 9|3|6 3 3 .60 Case 5 in De Winter and Dodou

(2012)
Case 12|3|6 3 4 .60
Case 15|3|6 3 5 .60
Case 18|3|3 3 6 .30
Case 18|3|9 3 6 .90
Case 18|3|369b 3 6 .30, .60, .90 Different pattern coefficients

between factors. Case 7 in
De Winter and Dodou (2012)

Case 18|3|369w 3 6 .30, .60, .90 Different pattern coefficients
within factors (each factor two
each). Similar to cases 8/9 in
De Winter and Dodou (2012)

Case 18|3|46|1c 3 6 .60 One cross-loading of .40.
Similar to case 10 in De Winter
and Dodou (2012)

Case 18|3|46|3c 3 6 .60 Three cross-loadings of .40 (One
factor with 2 and one with 1
cross-loading). Similar to case
10 in De Winter and Dodou
(2012)

Case 12|3m|6 3 2, 4, 6 .60 Similar to cases 11/ 12 in
De Winter and Dodou (2012)

Case 18|3|6n 3 6 .60 Random variation in pattern
coefficients added, drawn from a
uniform distribution [-.2, .2].
Case 13 in De Winter and
Dodou (2012)

Case 6|3|369wb 3 2 .30, .60, .90 Different pattern coefficients
within one of the factors

Case 9|3|369wb 3 3 .30, .60, .90 Different pattern coefficients
within and between factors

Case 12|3|369wb 3 4 .30, .60, .90 Different pattern coefficients
within and between factors

Case 15|3|369wb 3 5 .30, .60, .90 Different pattern coefficients
within and between factors

Case 12|6|6 6 2 .60
Case 18|6|6 6 3 .60
Case 24|6|6 6 4 .60
Case 30|6|6 6 5 .60
Case 36|6|6 6 6 .60
Case 12|6|369wb 6 2 .30, .60, .90 Different pattern coefficients

within and between factors
(continued)



APPENDIX D: GRIEDER & STEINER (2020) 37

Case 18|6|369wb 6 3 .30, .60, .90 Different pattern coefficients
within and between factors

Case 24|6|369wb 6 4 .30, .60, .90 Different pattern coefficients
within and between factors

Case 30|6|369wb 6 5 .30, .60, .90 Different pattern coefficients
within and between factors

Case 36|6|369w 6 6 .30, .60, .90 Different pattern coefficients
within factors

Note: A population model is always a combination of a population pattern matrix and
a population factor intercorrelation matrix. m = Number of factors. All population
models are available in the EFAtools package.

b) Factor Intercorrelations
Factor Inter-
correlations

Size of Inter-
correlations

Notes

Zero .00 Same intercorrelations as used in De Winter and
Dodou (2012)

Moderate .30
Mixed .30, .50, .70
Strong .70 Same intercorrelations as used in De Winter and

Dodou (2012)
Note: A population model is always a combination of a population pattern matrix
and a population factor intercorrelation matrix. All population models are available
in the EFAtools package.
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