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A B S T R A C T

Bayesian geostatistical regression (GR) models estimate air pollution exposure at high spatial resolution,
quantify the prediction uncertainty and provide probabilistic inference on the exceedance of air quality
thresholds. However, due to high computational burden, previous GR models have provided gridded ambient
nitrogen dioxide (NO2) concentrations at smaller areas of investigation. Here, we applied these models to es-
timate yearly averaged NO2 concentrations at 1 km2 spatial resolution across 44 European countries, integrating
information from in situ monitoring stations, satellites and chemical transport model (CTM) simulations. The
tropospheric values of NO2 derived from the ozone monitoring instrument (OMI) onboard the National
Aeronautics and Space Administration’s (NASA’s) Aura satellite were converted to near ground NO2 con-
centration proxies using simulations from the 3-D global CTM (GEOS-Chem) at 0.5° × 0.625° spatial resolution
and surface-to-column NO2 ratios. Simulations from the Ensemble of regional CTMs at spatial resolution of
0.1° × 0.1° were extracted from the Copernicus atmosphere monitoring service (CAMS). The contribution of
these covariates to the predictive capability of geostatistical models was for the first time evaluated here through
a rigorous model selection procedure along with additional continental high-resolution satellite-derived pro-
ducts, including novel data from the pan-European Copernicus land monitoring service (CLMS). The results have
shown that the conversion of columnar NO2 values to surface quasi-observations yielded models with slightly
better predictive ability and lower uncertainty. Nonetheless, the use of higher resolution CAMS-Ensemble si-
mulations as covariates in GR models granted the most accurate surface NO2 estimates, showing that, in 2016,
16.17 (95% C.I. 6.34–29.96) million people in Europe, representing 2.97% (95% C.I. 1.16% - 5.50%) of the total
population, were exposed to levels above the EU directive and WHO air quality guidelines threshold for NO2.
Our estimates are readily available to policy makers and scientists assessing the burden of disease attributable to
NO2 in 2016.

1. Introduction

Ground-level nitrogen dioxide (NO2) concentrations represent a
serious public health concern. Exposure to elevated levels of NO2 are
associated with increased cardiovascular, respiratory and all-cause
mortality and respiratory morbidity (WHO, 2013; European
Environment Agency, 2014). Many early epidemiological studies used
measurements from the nearest monitoring sites to estimate NO2 ex-
posure (Hesterberg et al., 2009; Latza et al., 2009). This approach in-
troduces exposure misclassification (Jerrett et al., 2005), since it fails to
capture the sources of local spatial variability. Air quality related po-
licies require an accurate assessment of the exposures in any given area.
In practice, this is difficult to address due to the complexity of the
processes involved and due to the sparsity of the monitoring data. In

Europe, air quality monitoring is maintained by the European En-
vironment Agency’s (EEA’s) member states, and although there is a
relatively dense network of stations, when compared to other areas
globally, large parts of the continent remain unmonitored. Therefore,
predicting the spatial distribution of the outdoor air pollution is an
important research goal for environmental health.

There are a number of methods that have been used to provide
gridded NO2 estimates on large scales (like continental or global). These
include chemical transport models (CTMs) and empirical models based
on their outputs (Schaap et al., 2008; Lamsal et al., 2008; Geddes et al.,
2015), spatial interpolation, such as kriging (Beelen et al., 2009; Young
et al., 2016) and land-use regression (LUR) (Beelen et al., 2009;
Novotny et al., 2011; Vienneau et al., 2013; Knibbs et al., 2014; Bechle
et al., 2015; De Hoogh et al., 2016; Young et al., 2016; Larkin et al.,
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2017). Each of these models has both strengths and weaknesses. In
particular, the continental or global-scale dispersion models (e.g.
CTMs), which follow the principles of chemistry and physics, usually
have low spatial resolution, due to limitations related to computational
capacity and coarse resolution of the emission inventories. The latter
are typically available at 4° × 5°, 2.0° × 2.5°, 0.500° × 0.667° or
0.2500° × 0.3125° scales (Di et al., 2017); however, higher resolution
inventories, like EDGAR (Emission Database for Global Atmospheric
Research - https://edgar.jrc.ec.europa.eu/) are also becoming available
in recent time (Crippa et al., 2018). The LUR models are technically less
challenging and computationally easy to fit. They can provide predic-
tions of NO2 concentration at very high spatial resolution (Vienneau
et al., 2013), however, they don’t take into account the spatial corre-
lation present in the air pollution data, thus overestimating the sig-
nificance of the covariates. Moreover, their predictive ability is lower
when compared to more complex geostatistical or geographically
weighted regression models (Beloconi et al., 2018). Bayesian geosta-
tistical regression (GR) models capture the spatial correlation present in
the pollutant concentrations and provide estimates of the prediction
uncertainty. Furthermore, they allow a straightforward assessment of
the exposure burden through high-resolution population estimates,
since the posterior predictive distributions of NO2 can be derived for
every pixel within the study domain. However, as for any statistical
model, predictions rely on appropriate input data (i.e. monitoring sta-
tions), which is available for most of Europe but may not be available
for other regions of the world. In addition, as discussed in Shaddick
et al. (2013), the prediction of NO2 levels using this set of models at
high spatial resolution over large scales (e.g. for 15 countries of the
European Union (EU)) is computationally complex. The approximate
Bayesian inference using the stochastic partial differential equations
(SPDE) approach and integrated nested Laplace approximation (INLA)
(Rue et al., 2009; Lindgren et al., 2011) has shown to provide yearly-
averaged gridded concentrations of particulate matter at 1 km2 spatial
resolution across Europe in a reasonable computational time (Beloconi
et al., 2018).

Most of the data-driven air-quality assessments incorporate geo-
graphical covariates derived from satellite-based observations, since
they usually provide spatial coverage over the entire domain of interest.
Several previous works have used the tropospheric NO2 from the ozone
monitoring instrument (OMI), onboard the National Aeronautics and
Space Administration’s (NASA’s) Aura satellite (Levelt et al., 2006), to
estimate the corresponding surface concentrations (Lamsal et al., 2008;
Novotny et al., 2011). However, there are two main issues that should
be taken into consideration while using this data for modelling.

First, the satellite instruments measure total tropospheric columns
and therefore the NO2 proxies derived from OMI may not represent well
the corresponding surface concentrations. Aerial measurements reveal
that the concentration of NO2 in the tropospheric column is determined
primarily by NO2 in the mixed layer, as well as by NO2 in the boundary
layer (Martin et al., 2004; Richter et al., 2005; Martin et al., 2006;
Boersma et al., 2008; Bucsela et al., 2008). However, the proportion of
NO2 in these two layers varies in both space and time (Lamsal et al.,
2008; Grajales and Baquero-Bernal, 2014). Although recent works
suggested that the satellite column abundance (total concentration
within a vertical column) may be efficient to track spatial patterns in
the ground-level NO2 (Bechle et al., 2013; Knibbs et al., 2014; Bechle
et al., 2015), in which case conversion of columnar values to surface
concentrations becomes unnecessary within a LUR model, the con-
tribution of this conversion within a GR modelling framework to the
best of our knowledge has not been evaluated.

Second, although OMI’s spatial resolution (of up to 13 × 24 km at
nadir) is the highest among all available space-borne NO2 sensors (ex-
cept of the recently released data from the Sentinel 5 Precursor tropo-
spheric monitoring instrument (S5P/TROPOMI) which provides mea-
surements at 7 × 3.5 km2 resolution (Veefkind et al., 2012) from late
2017 onwards), it is still too coarse to capture near-source (e.g. near-

roadway) concentration variability (Novotny et al., 2011). Since many
parameters, including local combustion sources, land surface char-
acteristics and atmospheric conditions influence NO2 formation and
dispersion (Bechle et al., 2015; Young et al., 2016; Larkin et al., 2017),
the use of statistical models which incorporate covariates of higher
spatial-resolution could allow estimation of the local-scale variation of
the pollutant. Additionally, in the view of the new S5P/TROPOMI data,
it is of interest to evaluate whether higher resolution CTM simulations
will lead to even better predictive ability of the statistical models, when
considered as additional covariates.

Here, we applied Bayesian GR models to estimate NO2 gridded
concentrations at 1 km2 resolution across 44 European countries. For
the first time we evaluated the contribution of the tropospheric column-
to-suface conversion of satellited-based NO2 proxies within a geosta-
tistical modelling framework. We incorporated the vertical distribution
of NO2 derived from the global 3-D CTM (GEOS-Chem, Bey et al.,
2001), to quantify the corresponding tropospheric columns and to infer
quasi-observed surface concentrations from the columnar OMI mea-
surements using the estimated surface-to-column NO2 ratios. Ad-
ditionally, we included a large set of high-resolution geo-referenced
predictors available at continental scale, such as the novel pan-Eur-
opean Copernicus land monitoring products (CLMS, 2019) and me-
teorological data and tested the contribution of each predictor through
a rigorous model selection procedure. We compared the results with
simulations from the Ensemble of regional CTMs available at the Co-
pernicus atmosphere monitoring service (CAMS, 2019) at higher spatial
resolution than the OMI/GEOS-Chem estimates. The Bayesian frame-
work allowed us to quantify the uncertainty of the predictions and to
determine areas that exceed the air quality guidelines (AQGs) thresh-
olds set by the European Union (EU) and World Health Organization
(WHO), as well as to assess the number of people living in such areas.
This study provides relevant information for policy and decision-ma-
kers in Europe and can contribute to improved estimates of the burden
of disease attributable to NO2 (Lim et al., 2012; Forouzanfar et al.,
2016).

2. Materials and methods

2.1. Study area and data

The raw NO2 measurements were obtained from the Air Quality e-
Reporting database (Air Quality e-Reporting, 2019) maintained
through the European environment information and observation net-
work (Eionet). The monitoring network covers up to 38 European
Countries, including all EU member states and EEA cooperating coun-
tries. The database consists of multi-annual time series of air quality
measurements for a number of pollutants together with the meta-in-
formation on the monitoring stations involved. Here, the analysis was
based on the yearly averaged 24 h data of 2016 at sites with 75% data
capture. The station data were used for both, model building and model
validation. Fig. 1 illustrates the locations of the monitoring sites used in
this work together with the yearly averaged measured concentrations of
NO2. All data considered in this study were converted to the Lambert
Azimuthal Equal Area (ETRS89-LAEA5210) projection recommended
by the EEA (European Environment Agency, 2006) for storing raster
data, statistical analysis and mapping purposes.

The satellite-derived product of columnar NO2 derived from OMI
offers near global daily coverage of NO2 column abundance at spatial
resolution of up to 13 × 24 km at nadir. The level-3 daily data of
tropospheric NO2 concentration (OMNO2d) (Krotkov, 2013), cloud-
screened at 30% and binned into 0.25° × 0.25° grids, were accessed
from the NASA’s Goddard Earth Sciences Data and Information Services
Center (GES DISC) website (GES DISC, 2019). To obtain pollutant
concentrations at the surface, the surface-to-column NO2 ratios (Lamsal
et al., 2008, 2010; Bechle et al., 2011) derived from the global 3-D
atmospheric model (GEOS-Chem v.11-01, http://acmg.seas.harvard.
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edu/geos/) were used (see Section 2.2 for details).
Satellite-based NO2 estimates reflect contributions from all sources,

including e.g. emissions from industry, roads, airports or harbours and
are not explicitly included as covariates within statistical models
(Novotny et al., 2011). Following our previous work (Beloconi et al.,
2018), a number of additional products were used as predictors in our
models, to better assess the spatial variability of pollutant’s

concentrations across Europe. The choice of variables was guided by
literature review and data availability on continental scale. Table 1
summarizes the covariates used in this work. Detailed information on
data sources, retrieval and processing is given in the appendix.

Fig. 1. Nitrogen Dioxide. Annual average concentration of NO2 in 2016 at 2852 monitoring sites across Europe.

Table 1
Data sources and spatio-temporal resolution of the covariates used in our models

Product Temporal Resolution Spatial Resolution Source

Tropospheric cloud-screened NO2 ( O) daily (13:00–15:00 LT) 0.25° × 0.25° OMI
Surface NO2 estimates (SO) daily (13:00–15:00 LT) 0.5° × 0.625° OMI/GEOS-Chem
Surface NO2 estimates (SENS) year 2016 0.1° × 0.1° CAMS - Ensemble
Corine Land Cover (LC) year 2012 100 m × 100 m CLMS
Tree Cover Density (TCD) year 2015 20 m × 20 m CLMS
Imperviousness (IMP) year 2015 20 m × 20 m CLMS
Digital Elevation Model (DEM) year 2000 30 m × 30 m EEA
Night Time Lights (NTL) year 2013 1 km × 1 km NOAA
Land Surface Temperature Day & Night (LST) 2 acquisitions per day 1 km × 1 km MODIS Aqua and Terra
Normalized Difference Vegetation Index (NDVI) 2 acquisitions per day 1 km × 1 km MODIS Aqua and Terra
Road Density (RD) February 2016 1 km × 1 km OpenStreet Maps
Specific Humidity (SHUM) every 6 h 0.2° × 0.2° NCEP/CFSv2
Precipitation (PREC) every 6 h 0.2° × 0.2° NCEP/CFSv2
Wind Speed (WS) every 6 h 0.2° × 0.2° NCEP/CFSv2
Distance to Sea (DISS) year 2015 vector EEA
Distance to Roads (DISR) February 2016 vector OpenStreet Maps
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2.2. Chemical transport models

Conversion of the NO2 proxies derived from OMI to surface con-
centrations require information about the NO2 vertical profile in the
troposphere. Here we used the nested-grid version of the GEOS-Chem
(Wang et al., 2004; Zhang et al., 2012) model which is operated at
0.5° × 0.625° spatial resolution with 47 vertical layers and a transport
and chemistry time step of 10 and 20 min, respectively. The boundary
conditions are updated every 3 h using global simulations from a
2° × 2.5° parent model (one-way nesting). We used assimilated me-
teorological fields (Modern-Era Retrospective Analysis for Research and
Application (MERRA2)) provided by the NASA’s Global Modelling and
Assimilation Office. One year spin-up for 2015 was performed to pro-
duce simulations for 2016. Daily tropospheric NO2 columns, using 2 h
average between 13:00 and 15:00 local time (LT), corresponding to the
time of the Aura satellite overpass, were generated to compare with the
OMI retrievals. In particular, the simulated NO2 mixing ratios obtained
from GEOS-Chem at 47 vertical layers were integrated from the surface
(i.e. the lowest layer of the model, which is approximately 60 m above
ground) to the modelled tropopause for every pixel and day within the
study domain. Ideally for CTMs the inner product of the simulated
profiles and the OMI averaging kernels should be taken, before com-
paring the modeled retrieval equivalents to the OMNO2d product.
When the model profile shape is different from the a priori profile used
in the satellite retrieval, this comparison could have an impact on the
agreement between the estimates using these two approaches (Eskes
et al., 2003). However, when averaged over larger regions the aver-
aging-kernel based columns are very similar to the direct columns,
showing only a remarkably small bias when not taken into account
(Huijnen et al., 2010). Therefore, here the OMI product is directly
compared to the modelled total columns.

Additionally, CTM simulations of surface NO2 concentration were
obtained from the regional production of the Copernicus atmosphere
monitoring service (CAMS) reanalysis dataset of atmospheric compo-
sition produced by the European centre for medium-range weather
forecasts (ECMWF) (Inness et al., 2019). The CAMS regional air quality
production (CAMS, 2019) is based on the median value of 7 partner
state-of-the-art numerical air quality models (Ensemble) operated by 8
European institutes: CHIMERE from INERIS (France), EMEP from MET
Norway (Norway), EURAD-IM from University of Cologne (Germany),
LOTOS-EUROS from KNMI and TNO (Netherlands), MATCH from SMHI
(Sweden), MOCAGE from METEO-FRANCE (France) and SILAM from
FMI (Finland). Common to all models are the meteorological para-
meters’ settings (coming from the ECMWF global weather operating
system), the boundary conditions for chemical species (coming from the
CAMS IFS-MOZART global production) and the emissions coming from
CAMS (for anthropogenic emissions over Europe and for biomass
burning). The CAMS-Ensemble simulations used in this work represent
annual averages of surface NO2 concentration (in µg/m3) at 0.1° × 0.1°
spatial resolution for the year 2016, and are denoted as SENS in all the
further analyses.

2.3. Vertical correction of OMI data

The GEOS-Chem vertical profiles were used to estimate the OMI
concentrations at the surface employing the following formula (Lamsal
et al., 2008):

= ×S S
O

G

G
O (1)

where S represents the superficial level concentration, measured in
parts per billion volume (ppbv) and - the tropospheric NO2 column,
measured in molecules/cm2. The sub-indices O and G indicate OMI and
GEOS-Chem, respectively. The OMI-derived surface concentrations SO
(ppbv) represent the mixing ratio in the lowest layer of the model.

We generated daily estimates of surface NO2, based on the 2 h

average (between 13:00–15:00 LT) surface-to-column ratios.
Subsequently, annual averages of NO2 abundances were calculated for
every pixel within the study domain. The raw NO2 data obtained from
the EEA as well as the AQGs in Europe are based on measurements
expressed in mass density (µg/m3) units, therefore, the SO estimates in
ppbv were converted to µg/m3 using the following formula:

= × M NO P
RT

1 µg
m

1 ppbv ( )
3

2
(2)

where R is the gas constant (8.3144 J mol K )1 1 ), M NO( )2 is the molar
mass of nitrogen dioxide (46.0055 g mol 1), P and T are the grid level
surface pressure (in mPa), and temperature (in K), respectively. The EU
legislation (EU, 2008) specifies that, for gaseous pollutants the volume
must be standardized at a temperature of 293 K (20 °C) and an atmo-
spheric pressure of 101,3 kPa. In this case, the temperature refers to the
bench temperature of the instrument and the pressure to the internal
pressure in the measurement cell, not to ambient conditions (Sofen
et al., 2016). The use of these values resulted in a conversion factor of
1.9125 µg/m3 (ppb 1).

2.4. Geostatistical modelling

In the geostatistical framework spatial correlation is modelled by
location-specific random effects through a Gaussian process. The cov-
ariance matrix of this process assumes a correlation decay which is a
function of distance between locations. Let Ys represents the log-ob-
served annual average of NO2 concentration (calculated using daily
averaged station measurements) at site s ( = …s S D1, 2). We as-
sumed a stationary, isotropic geostatistical regression (GR) model,

= + + +XY ss s s0 (3)

where 0 is the intercept term, the ×k 1 vector of regression coeffi-
cients associated with X w,s s the spatial random effect, and s the
random error assumed to be i.i.d. from a (0, )2 . All the continuous
covariates were standardized by subtracting the mean and dividing by
the standard deviation (calculated using the yearly averaged measure-
ments from all the monitoring stations). For the estimation of model
parameters, the covariates were extracted at the locations of the sta-
tions, while for the prediction at unknown locations each covariate was
aggregated within a fixed 1 km2 grid using bilinear or nearest neighbour
interpolation methods (for continuous and categorical data, respec-
tively).

We assumed that the spatial random effect = …w w w( , , )s S
T

1 arises
from a multivariate normal distribution:

R0~ ( , )S
2 (4)

with 0S a ×S 1 vector of zeros and 2 is the spatial process variance. R
is the ×S S dense correlation matrix with elements

=R s s( ) (|| ||)ij i j , where (·) is the Matern function given by:

=d d K d( ) 1
( )2

( ) ( )ij ij ij1 (5)

where dij is the distance between stations i and j, is a scaling para-
meter, a smoothing parameter (fixed to 1 in our application) and K is
the modified Bessel function of second kind. This specification implies
that the range r (the distance at which the spatial variance becomes less
than 10%) is given by =r 8 .

The Bayesian model formulation is completed by specifying prior
distributions for the parameters and the hyperparameters. We
wanted the corresponding posterior distribution to be solely influenced
by the data, therefore we considered non-informative priors for
each unknown. Particularly, the log-gamma priors were chosen
for the ,2 2 and r parametrized on the log-scale, i.e.:

log Galog( ), ( )~log (1, 5·10 )2 2 5 and r Galog( )~log (1, 10 )2 . Normal
priors (0, 10 )3 were assigned for the regression coefficients and a
vague normal one for the intercept.
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We fitted models arising from all possible combinations of the
covariates, i.e. 16384 (= 2 )14 distinct models and ordered them ac-
cording to Bayesian model comparison criteria. Particularly, the models
with the best predictive performance were selected based on the lowest
logarithmic score (logscore) – a measure of the predictive ability of an
individual model (Ntzoufras, 2011), given by: = =L CPOlogCV s

S
s1 ,

where the leave-one-out conditional predictive ordinate (CPOs) is based
on the cross-validatory predictive densities Y Y( , )s s for each excluded
location s, i.e. =CPO Y Y( , )s s s . All the models were fitted using the R-
INLA package (Rue et al., 2013) available within the R software (R Core
Team, 2015). To reduce computational time, the fit of all possible
combinations of covariates was done in parallel on an Intel Xeon E5-
2697 CPU machine (2 × 2.60 GHz, 128 GB RAM). The fitting of 16384
models took around 2 weeks.

Subsequently, model performance was evaluated using the 5-fold-
cross-validation method. The dataset was randomly divided 5 times in
80% (training set) and 20% (validation set) splits of the total number of
NO2 sites. Then, models were trained on each of the five 80% subsets of
the data and used to predict NO2 concentrations at the corresponding
20% of the stations. In this case, each of the five 20% subsets is in-
dependent to the model building. The following performance metrics
were examined for each fold comparing the observed NO2 values to the
posterior mean estimates (on log-scale) at the validation stations: mean
absolute error (MAE), mean absolute prediction error (MAPE), root
mean squared error (RMSE) and the coefficient of determination (R2).
The average value of the metrics over the 5 folds was presented.

We assessed the contribution of the OMI tropospheric column-to-
surface conversion of NO2 (using the surface-to-column ratios from
GEOS-Chem) to the predictive ability of the GR models. In particular,
two models were fitted: one with tropospheric NO2 column densities,
i.e. O (Model 1 - SAT); and another one with surface NO2 estimates
based on Eq. 1, i.e. SO (Model 2 - SAT-CTM), as distinct covariates. The
results were compared with the models which don’t include any of the
satellite-derived or CTM NO2 proxies (Model 0). To evaluate whether
higher spatial resolution of the CTM simulations influences the pre-
dictive ability of the models, we further fitted GR models with the
CAMS-Ensemble predictor, i.e. SENS (Model 3 - ENSEMBLE), as an
additional covariate, and compared them to the above-mentioned for-
mulations.

Model fit and prediction was done using the SPDE method and INLA
algorithm for the fast approximation of the marginal posterior dis-
tributions. In the SPDE/INLA approach, the spatial process is re-
presented as a Gaussian Markov random field (GMRF) with mean zero
and a symmetric positive definite precision matrix Q (defined as the
inverse of = R2 ). First, a GMRF representation of the Matern field
was constructed on a set of non-intersecting triangles partitioning the
domain of the study area (Lindgren et al., 2011). Subsequently, the
INLA algorithm was used to estimate the posterior distribution of the
latent Gaussian process and hyperparameters using the Laplace ap-
proximation (Rue et al., 2009). More details regarding this metho-
dology are provided elsewhere (Blangiardo and Cameletti, 2015). Pre-
diction was carried out after fitting the models to the full datasets (for a
better spatial coverage and therefore for obtaining more accurate
parameter estimates and predictions).

We used simulation-based inference to estimate the concentration of
NO2 over a gridded surface of 1 km2 resolution covering the study area.
In particular, 1000 samples from the posterior predictive distribution
were drawn at the centroids of each grid cell (approximately 5.8 million
pixels). The NO2 maps display the sample-based medians, the standard
deviations and the coefficients of variation (ratios of the standard de-
viation to the mean) of the posterior predictive distribution; with the
last two representing a measure of uncertainty of the predictions. We
determined the most polluted European areas using the first-level
Nomenclature of Territorial Units for Statistics (NUTS) (EuroStat, 2019)
classification of the EU to define the regions’ borders. To evaluate
whether the NO2 concentration decreases as we move away from the

city centres (SimpleMaps, 2019) of each capital, buffer zones with areas
varying from 1 to 30 km2 surrounding the city centres were considered.
The high-resolution NO2 estimates (pixel-level posterior medians) were
first clipped by each region and buffer and then averaged over the re-
sulting sectors. For every capital, spline curves were employed to pro-
file the relationship between pollutant concentration and distance from
the city center within each buffer zone.

The Bayesian framework allowed us to make probabilistic state-
ments about areas exceeding the international AQGs. The NO2 con-
centrations exceeding the threshold limit set by the EU and WHO were
calculated at pixel level by the proportion of samples drawn from the
predictive posterior distributions of NO2 that have pollution levels
above the threshold. The exceedance maps were used to estimate the
total number of population exposed to elevated levels of NO2. In par-
ticular, we overlayed the gridded population data at 1 km2 spatial re-
solution with the threshold map and summed up all the pixels within a
particular country that have exceedance probability higher than 50%.
Repeating it for each of the 1000 samples drawn from the posterior
distribution allowed us to estimate the number of exposed population
per country together with the prediction uncertainty.

3. Results

3.1. Evaluation of GEOS-Chem and OMI tropospheric NO2 columns

Figs. 2(a)-(b) depict yearly-averaged OMI-observed tropospheric
NO2 columns and GEOS-Chem nested-grid model simulations in 2016
over the study area. In order to compare the agreement between tro-
pospheric columns for these annual averages, the OMI observations,
available at (0.25° × 0.25°) spatial resolution, were aggregated to the
extent of the nested (0.5° × 0.625°) GEOS-Chem grid. Additionally,
since the OMI observations include missing data for different days
within the year (due to clouds and large solar zenith angles) whereas
GEOS-Chem simulations have full daily coverage, for the computation
of yearly-averaged values, the GEOS-Chem estimates were extracted
only at those times that OMI data is available. Table 2 provides sum-
mary statistics for the resulting estimates (over land). There is a good
agreement between the products in terms of mean, median, as well as
25% and 75% quantiles. However, the densities of the tropospheric
columns obtained from GEOS-Chem are spreading over a wider range of
values, as indicated by a larger standard deviation as well as lower
minimum and higher maximum. Comparison of the complete GEOS-
Chem dataset to the one sampled only at the locations and days when
OMI is available shows that the maximum N available is the same,
meaning that there is at least one OMI observation within the year for
every pixel. However, the mean and the median of the full dataset is
slightly higher in case of full coverage.

The spatial patterns of the GEOS-Chem and OMI columnar abun-
dances for the study domain (i.e. over land) are highly consistent
(correlation = =R N0.88, 2193), however the tropospheric columns
simulated in GEOS-Chem tend to be higher than OMI-observations over
urban areas, especially over big European cities (Fig. 2(c)). The annual
mean ratios of NO2 integrated over the lowest layer of GEOS-Chem to
the tropospheric column, depicted in Fig. 2(d), suggest that there is a
variation in space of the vertical distribution of NO2, when averaged
over the entire year; the values across Europe vary between 0.04 and
0.33.

3.2. Surface NO2 retrieval

Fig. 4(a) shows the yearly-averaged OMI-derived surface NO2 con-
centrations obtained using Eq. 1 (SO) at the spatial resolution of the
nested-grid simulations (0.5° × 0.625°). The spatial pattern of the re-
sulting estimate is similar to that observed in the original tropospheric
OMI column ( O) (Fig. 2(a)). However, the differences for some regions
(e.g. Greater London, Madrid, Be-Ne-Lux region) are also evident. The
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surface simulations derived from GEOS-Chem and Ensemble models,
averaged over the year 2016, are illustrated in Fig. S1 (in the appendix).

3.3. Geostatistical model selection

The variable selection process for the estimation of surface NO2
concentrations revealed that not all of the tested covariates are needed
to achieve optimal predictions. The five best selected combinations of
covariates (based on the lowest logscore values) for Model 0, Model 1
(SAT), Model 2 (SAT-CTM) and Model 3 (ENSEMBLE) are shown in
Table 3. The model selection indicated that for both of the SAT and
SAT-CTM cases, the columnar proxies derived from OMI (i.e. O) and
the surface NO2 mixing ratios (i.e. SO) are among the covariates in-
cluded in the best models, with SAT-CTM slightly outperforming the
SAT formulations in terms of logscore. We also see an improvement in
logscore values compared to Model 0, in which neither of the satellite-
derived NO2 proxies is considered as predictor. The use of the SENS
covariate in the models lead to both O and SO becoming non-important

predictors. The predictive ability in this case becomes even higher (as
indicated by much lower logscore values of Model 3). The additional
covariates included in the best five model combinations are similar for
all four models (Table 3). Plotting the logscore values for every possible
combination of covariates (Fig. 3) reveals that M3, outperforms the
other models for any of those combinations, followed by M2, M1 and
M0. The same figure shows that the range in improvement for the best
model is highest between M3 and M2 and between M1 and M0.

The surface NO2 concentrations were positively associated with
both O and SO covariates, with similar estimates (i.e. posterior med-
ians) of the regression coefficients but slightly lower uncertainty (i.e.
narrower Bayesian credible interval) for SO and even lower uncertainty
for SENS (Table 4). Additionally, we found a significant positive asso-
ciation of NO2 concentration with the degree of imperviousness, night-
time light intensity, land surface temperature, road density and dis-
tance to the sea and a negative association of surface NO2 with eleva-
tion, normalized difference vegetation index, wind speed and distance
to the roads; the NO2 concentration was higher for stations situated in
areas dominated by urban structures and transport networks (i.e. over
land cover category LC1) followed by industrial (LC2), agricultural
(LC3) and forest (LC4) areas (Table 4).

The ENSEMBLE model provided the highest cross-validated R2 va-
lues of 0.724, followed by the SAT-CTM (R2 = 0.715), the SAT
(R2 = 0.713) and the one which does not include any NO2 proxy from
satellite or CTM, i.e. Model 0 (R2 = 0.711). The out-of-sample MAE,
MAPE and RMSE metrics of the predictive performance were also the
lowest for Model 3. Very similar findings were observed when the 10-
fold (instead of 5-fold) cross-validation was performed, or when the
metrics were based on the posterior median (instead of mean) point
estimates at the validation locations. The estimated range parameters
(r) as well as the variances of the spatial process ( 2) were lower in

Fig. 2. Comparison of yearly averaged tropospheric NO2 columns ( ×molecules/cm [ 10 ]2 15 ) from OMI and GEOS-Chem (GC) in 2016. a: OMI at original resolution. b:
Nested-grid GEOS-Chem model simulations sampled only at the locations and days when OMI data is available c: Difference between GEOS-Chem simulations
sampled only at the locations and days when OMI data is available and OMI resampled to the spatial resolution of the GEOS-Chem nested-grid. d: The ratios of NO2
integrated over the lowest layer of the GEOS-Chem to the tropospheric column.

Table 2
Summary statistics for tropospheric NO2 annual averages for 2016 derived from
OMI, GEOS-Chem nested grid simulations (in 10 molecules/cm15 2) extracted
only at the locations and days when OMI is available and GEOS-Chem simu-
lations with full spatio-temporal coverage (i.e. with no missing).

Product N Mean Median SD Min q0.25 q0.75 Max

OMI NO2 ( O) 2193 1.95 1.60 1.21 0.46 1.19 2.33 9.18
GEOS-Chem NO2 ( G) 2193 2.07 1.60 1.81 0.19 0.90 2.64 16.62
GEOS-Chem NO2

(with no missing)
2193 2.44 1.90 1.89 0.41 1.21 3.03 16.32
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Models 1 and 2 when compared to Model 0, indicating that inclusion of
either O or SO covariate decreases the spatial variability in the re-
siduals. However, this variability was higher in Model 3, as shown by
the higher r and 2 estimates compared to all other models. This is due
to the fact that the number of covariates resulting in optimal predic-
tions is lower for Model 3; thus, the LST and DISS covariates become
non-important (Table 4) in this case. The separate contributions of the
spatial process ( i) as well as of OMI ( O), OMI_GC (SO) and Ensemble
(SENS) covariates to the predictive ability of the models is presented in

Table A1 in the appendix. The predictive ability using only these inputs
as covariates is much lower compared to the final models that include
additional climatic and land-use/cover factors.

3.4. High-resolution model-based pollutant maps and exposed population

The above results suggest that Model 3 had the best predictive
ability. Therefore, statistical inferences (i.e. mapping NO2 concentra-
tions, exceedance probabilities and estimates of population exposure)

Table 3
First five covariate combinations with the highest predictive ability (i.e. lowest logscore) for Model 0, Model 1 (SAT), Model 2 (SAT-CTM) and Model 3
(ENSEMBLE).

Model Covariates logscore

Model 0 + + + + + + + + +IMP DEM NTL LST NDVI WS RD DISS DISR LC 3.2789
+ + + + + + + +IMP DEM NTL LST NDVI WS RD DISR LC 3.2789
+ + + + + + + + + +TCD IMP DEM NTL LST NDVI WS RD DISS DISR LC 3.2791
+ + + + + + + + + +IMP DEM NTL LST NDVI PREC WS RD DISS DISR LC 3.2792
+ + + + + + + + +TCD IMP DEM NTL LST NDVI WS RD DISR LC 3.2792

Model 1 (SAT) + + + + + + + + + +IMP DEM NTL LST NDVI WS RD DISS DISR LCO 3.2758
+ + + + + + + + +IMP DEM NTL LST NDVI WS RD DISR LCO 3.2759
+ + + + + + + + + + +TCD IMP DEM NTL LST NDVI WS RD DISS DISR LCO 3.2760
+ + + + + + + + + +TCD IMP DEM NTL LST NDVI WS RD DISR LCO 3.2760
+ + + + + + + + + + +IMP DEM NTL LST NDVI PREC WS RD DISS DISR LCO 3.2761

Model 2 (SAT-CTM) + + + + + + + + + +S IMP DEM NTL LST NDVI WS RD DISS DISR LC0 3.2752
+ + + + + + + + +S IMP DEM NTL LST NDVI WS RD DISR LC0 3.2753
+ + + + + + + + + + +S TCD IMP DEM NTL LST NDVI WS RD DISS DISR LC0 3.2754
+ + + + + + + + + +S TCD IMP DEM NTL LST NDVI WS RD DISR LC0 3.2754
+ + + + + + + + + + +S IMP DEM NTL LST NDVI PREC WS RD DISS DISR LC0 3.2755

Model 3 (ENSEMBLE) + + + + + + + +S IMP DEM NTL NDVI WS RD DISR LCENS 3.2618
+ + + + + + + + +S IMP DEM NTL NDVI WS RD DISS DISR LCENS 3.2619
+ + + + + + + + +S TCD IMP DEM NTL NDVI WS RD DISR LCENS 3.2621
+ + + + + + + + +S IMP DEM NTL NDVI WS RD PREC DISR LCENS 3.2621
+ + + + + + + + +S IMP DEM NTL LST NDVI WS RD DISR LCENS 3.2621

IMP - Imperviousness; DEM - Digital elevation model; NTL - Night time lights; LST - Land surface temperature day & night; NDVI - Normalized difference
vegetation index;
RD - Road density; DISS - Distance to sea; DISR - Distance to roads; LC - land cover; TCD - Tree cover density; PREC - Precipitation.

Fig. 3. Model selection. Predictive performance of the M0, M1, M2 and M3 models (ordered according to the logscore values) arising from all possible combinations
of covariates for each formulation. All the 16384 models (left) and zoom in on the best 1000 models (right).
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are based on Model 3 with the covariate combination giving the lowest
logscore (i.e. 1st among M3 - ENSEMBLE models in Table 3). Figs. 4(b)-
(d) depict the predictions and their uncertainty, i.e. the median, the
standard deviation and the coefficient of variation of the posterior
predictive distribution for NO2 at 1 km2 spatial resolution. The most
heavily polluted regions in terms of NO2 concentration include south-
eastern England, north-western Italy, Belgium, Netherlands, Germany
(Nordrhein-Westfalen) as well as the big European cities, such as
London, Rome and Paris. As one can see from the plots of the standard
deviation and of the coefficient of variation, higher uncertainty is es-
timated at locations with higher NO2 estimates and within areas with
fewer monitoring stations. Additionally, as a general trend, we found
that the concentration of NO2 decreases with distance away from the
centers of each European capital (Fig. S2 in the appendix). The maps of
the medians, the standard deviations and the coefficients of variation of
the posterior predictive distributions based on the other three models
are presented in the appendix (Figs. S3–S5). Density plots of the pre-
diction uncertainty (both, sd and cv) of the 4 models over the entire
study area (i.e. over ~5.8 million pixels) show that M3 has the lowest
overall uncertainty, followed by M2, M1 and M0 (Fig. 5).

Additionally, we compared estimates obtained from Model 2 with
the surface NO2 simulations from the Ensemble model. Predictions were
aligned by aggregating the higher resolution estimates of Model 2 (at
1 km2) to the lower resolution of the Ensemble (at ~ 10 km2). The
correlation of the predictions based on the two models was R = 0.837
at pixel level. At the monitoring locations, predictions based on the
Bayesian GR model (i.e. Model 2) are closer to the measured data than
the ones based on the Ensemble (Fig. 6 and Table A2). However, Model
3, that included Ensemble simulations as an additional covariate, has
higher predictive ability and even lower uncertainty than Model 2.

The Bayesian framework allowed us to make probabilistic

statements about areas exceeding the international AQGs. Particularly,
for NO2 concentrations, the yearly threshold set by the European Air
Quality Directive and WHO is 40 µg/m3 (EU, 2008; WHO, 2005). This
threshold is considered as an achievable objective to minimize the
health impact. Fig. 7 depicts the probabilities of NO2 concentrations
exceeding the threshold for each 1 km2 pixel. The vast majority of the
continent meets the requirements of the AQG threshold standards,
however, there are some small areas where the limits are still to be
reached. The exceedance probability map (i.e. Fig. 7) was used to es-
timate the number of people exposed to elevated levels of NO2 at each
pixel. The estimates were aggregated at country levels and presented in
Table 5 together with the prediction uncertainty (i.e. median and 95%
credible intervals of the posterior predictive distribution). Results show
that in 2016, 16.17 (95% C.I. 6.34–29.96) million people were exposed
to NO2 levels above the thresholds, which represent only 2.97% (95%
C.I. 1.16% - 5.50%) of the total number of people living within the
study area (Table 5).

4. Discussion

Nitrogen dioxide monitors do not provide full data coverage over
Europe, which is an obstacle to assess the attributable health effects for
the entire continent. This paper is the first to estimate surface NO2
concentrations at 1 km2 spatial resolution over 44 European countries
using a hybrid approach which combines satellite-based observations,
chemical transport model simulations, monitors and additional aux-
iliary data within a Bayesian geostatistical modeling framework.

The tropospheric columns obtained using the 3-D simulations of
NO2 concentration from the nested-grid GEOS-Chem model (at
0.5° × 0.625° spatial resolution) were found to be highly consistent
with OMI observations over the study area (correlation of =R 0.88,

Table 4
Posterior medians, 95% Bayesian credible intervals (BCI) and cross-validation performance metrics of Model 0, Model 1 (SAT), Model 2 (SAT-CTM) and Model 3
(ENSEMBLE) with covariate combinations giving the best predictive ability of surface NO2 concentrations in 2016.

Model 0 Model 1 (SAT) Model 2 (SAT-CTM) Model 3 (ENSEMBLE)
Covariates Median (95% BCI) Median (95% BCI) Median (95% BCI) Median (95% BCI)

Intercept 2.77 (2.62, 2.89) 2.91 (2.79, 3.01) 2.89 (2.78, 3.00) 2.80 (2.63, 2.94)
O 0.18 (0.12, 0.24)

SO 0.17 (0.13, 0.22)
SENS 0.19 (0.16, 0.22)
TCD – – – –
IMP 0.11 (0.09, 0.12) 0.11 (0.09, 0.12) 0.11 (0.09, 0.12) 0.11 (0.10, 0.13)
DEM −0.17 (−0.20, −0.14) −0.16 (−0.19, −0.13) −0.16 (−0.19, −0.14) −0.16 (−0.19, −0.14)
NTL 0.21 (0.18, 0.23) 0.20 (0.18, 0.23) 0.20 (0.18, 0.23) 0.19 (0.17, 0.22)
LST 0.12 (0.07, 0.16) 0.11 (0.06, 0.15) 0.10 (0.06, 0.15) –
NDVI −0.07 (−0.09, −0.05) −0.06 (−0.09, −0.04) −0.06 (−0.09, −0.04) −0.05 (−0.07, −0.03)
RD 0.06 (0.05, 0.08) 0.06 (0.05, 0.07) 0.06 (0.05, 0.07) 0.05 (0.04, 0.07)
SHUM – – – –
PREC – – – –
WS −0.06 (−0.10, −0.03) −0.06 (−0.09, −0.03) −0.06 (−0.09, −0.03) −0.06 (−0.09, −0.03)
DISS 0.09 (0.00, 0.18) 0.09 (0.02, 0.16) 0.09 (0.02, 0.16) –
DISR −0.04 (−0.06, −0.02) −0.04 (−0.06, −0.02) −0.04 (−0.06, −0.02) −0.03 (−0.05, −0.02)
LC:
LC2 −0.11 (−0.15, −0.07) −0.11 (−0.15, −0.07) −0.11 (−0.15, −0.07) −0.11 (−0.15, −0.07)
LC3 −0.15 (−0.21, −0.09) −0.16 (−0.22, −0.10) −0.16 (−0.22, −0.10) −0.16 (−0.22, −0.10)
LC4 −0.34 (−0.42, −0.26) −0.36 (−0.44, −0.28) −0.36 (−0.44, −0.28) −0.38 (−0.46, −0.30)

(1) 2 0.10 (0.09, 0.11) 0.10 (0.09, 0.11) 0.10 (0.09, 0.11) 0.10 (0.10, 0.11)

w
(2) 2 0.14 (0.11, 0.20) 0.11 (0.08, 0.15) 0.11 (0.08, 0.15) 0.13 (0.08, 0.20)

r(3) (km) 351.8 (271.4, 462.9) 286.4 (219.3, 376.5) 310.1 (236.5, 414.2) 490.9 (355.0, 684.7)

MAE(4) 0.271 0.269 0.268 0.263

MAPE(5) 0.167 0.166 0.166 0.166

RMSE(6) 0.363 0.361 0.360 0.356

R(7) 2 0.711 0.713 0.715 0.724

(1) 2- variance of the random error; w
(2) 2 - variance of the spatial process; r(3) - range (the distance at which the spatial variance becomes less than 10%);

MAE(4) - Mean Absolute Error; MAPE(5) - Mean Absolute Prediction Error; RMSE(6) - Root Mean Squared Error; R(7) 2- coefficient of determination.
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=N 2193). Huijnen et al. (2010) reported a spatial correlation of
=R 0.8 ( =N 6000) between an ensemble median of regional air quality

models and Dutch OMI tropospheric NO2 (DOMINO) v1.0.2 product
(http://www.temis.nl) for the years 2008–2009, while Vinken et al.

(2014) found a higher spatial agreement ( = =R N0.95, 9270) between
the nested-grid GEOS-Chem tropospheric column simulations and
DOMINO v2.0 product in 2005, with both studies performed over a
similar domain in Europe.

Fig. 4. Surface NO2 estimates in Europe in 2016. a: NO2 mixing ratios (SO) obtained using Eq. 1 at 0.5° × 0.625° spatial resolution. b: Predicted NO2 concentrations
(i.e. median of the posterior predictive distribution) at 1 km2 spatial resolution. c: Prediction uncertainty in terms of standard deviation (sd) of the posterior
predictive distribution of NO2. d: Prediction uncertainty in terms of coefficient of variation (cv) of the posterior predictive distribution of NO2. Locations of the
monitoring stations are overlayed on the map.

Fig. 5. NO2 prediction uncertainty. Density plot of the standard deviation (left) and the coefficient of variation (right) of the posterior predictive distribution for all
the 4 models at each 1 km2 pixel of the prediction grid.
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Comparison between the models M0, M1 and M2 showed that both,
the satellite-derived proxies of columnar NO2 from OMI ( O) as well as
the vertically corrected surface quasi-observations (SO) obtained using

surface-to-column ratios from GEOS-Chem, improved estimation of the
corresponding surface NO2 concentration and reduced prediction un-
certainty, despite of missing data present in both products. This

Fig. 6. Comparison between the SAT-CTM GR model estimates and the Ensemble CTM simulations. Scatter plot of the measured versus estimated NO2 concentration
at the location of the monitoring stations using the Bayesian GR SAT-CTM Model (at 1 km2 resolution) and Ensemble of regional CTMs (~ 10 km2).

Fig. 7. Exceedance probabilities. Probability that NO2 concentration exceeds the EU Directive and WHO air quality threshold of 40 µg/m3. The zoomed areas
represent some of the level 1 subdivisions of the Nomenclature of Territorial Units for Statistics (NUTS 1) classification of the European Union.
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important contribution of satellite-derived NO2 proxies to the estima-
tion of surface concentrations was also found using LUR models in
Europe (Vienneau et al., 2013), US (Novotny et al., 2011) and globally
(Larkin et al., 2017). Although the above-mentioned works have not
assessed the contribution of the vertical correction itself to the model
predictive ability, several recent works (Bechle et al., 2013; Knibbs
et al., 2014; Bechle et al., 2015), suggested that the satellite column
abundances from OMI ( O) may be sufficient to estimate the spatial
patterns of ground-level NO2, therefore conversion of columnar values
to surface concentrations becomes unnecessary within a LUR model. In
fact, Knibbs et al. (2014) found that the annual NO2 models that in-
cluded NO2 tropospheric column as covariate exhibited a slightly better
predictive ability compared to those that included estimates of surface
NO2 obtained by modelling surface-to-column ratios using the Weather

Research and Forecasting (WRF-Chem) chemical transport model for a
LUR study in Australia. Bechle et al. (2015) reported similar findings
using DOMINO tropospheric columns and GEOS-Chem surface-to-
column ratios for a LUR study in the US. Our results showed that this
conversion improved the predictive ability of the geostatistical models.
However, the improvement was marginal when additional predictors
were considered in the models, as indicated by the logscore values
(differences in the 4th digit) and the cross-validation performance
metrics (i.e. R MAE,2 and RMSE presented here on the log-scale).

To further evaluate, whether the vertical correction is more im-
portant at locations with large variability in the surface-to-column ratio
(Fig. 2(d)), we extracted the ratio values at the location of the stations
and re-fitted the models M0–M2 on the subset of the data with (i) large
variability (i.e. ratio smaller than 0.25th quantile or higher than 0.75th
quantile of all the ratio values) and (ii) almost constant values (i.e. ratio
higher than 0.25th and lower than 0.75th quantile of all the values).
The results (Table A3 in the appendix) revealed that, indeed, the ver-
tical correction using CTM simulations results in a higher predictive
performance when the variation in the ratio is high. Therefore, con-
version of the columnar values to surface concentrations is more im-
portant in cases when a particular spatio-temporal domain of interest
ascertains higher variation in the ratio (e.g. in case of daily or weekly,
rather than annually averaged data).

Rigorous variable selection indicated that additional high-resolution
auxiliary earth observation data such as the novel pan-European
Copernicus land monitoring products, including the impervious sur-
faces and land-use/cover datasets were important predictors in all
models. The road density and distance to the roads covariates computed
from the OpenStreetMap project as well as the distance to the sea,
elevation, night time lights intensity, NDVI, LST and wind speed in-
creased the predictive ability of the best model (based on the logscore).
The positive/negative associations of these covariates with surface NO2
measurements from monitoring stations generally agree with those
reported in the literature. In particular, the important positive asso-
ciations of surface NO2 with impervious surfaces and major roads were
also found in Novotny et al. (2011), Knibbs et al. (2014), Bechle et al.
(2015), while the negative effect of NDVI was also estimated in Larkin
et al. (2017). However, in contrast to studies in the US (Novotny et al.,
2011; Bechle et al., 2015), we found a positive effect of the distance to
the sea (or coast) on NO2 and a negative association with elevation,
which is consistent with another European study by Beelen et al.
(2009).

The comparison of the simulations from the Ensemble of regional
CTMs (i.e. SENS), available at 10 km2 resolution, with the estimates
obtained using Model 2 (SAT-CTM) aggregated at the same scale has
shown a good spatial agreement. Extracted at the locations of the sta-
tions, the 1 km2 predictions from Model 2 were closer to the NO2
measurements than the SENS simulations, implying that the higher the
resolution of the estimated NO2 concentration is (i.e. of the gridded GR
predictions or CTM simulations), the smaller the underestimation of the
exposure gets. When SENS was included as a covariate in the GR model
(i.e. Model 3), its predictive ability increased and the prediction un-
certainty reduced, granting the most accurate surface NO2 estimates.

The advantage of the geostatistical models is their ability to provide
information in areas where there is no monitoring (i.e. no stations).
Traditional statistical approaches that are used to produce gridded es-
timates (e.g. LUR or GWR) usually fail to quantify the uncertainties in
the predictions (which are necessary for studies related to health risks
assessments). For a single CTM, sensitivity analyses (Saltelli et al.,
2004) quantify uncertainty by e.g. perturbing the emissions and me-
teorological conditions. For multi-model ensembles of CTMs (Galmarini
et al., 2018; Marécal et al., 2015; Potempski et al., 2008), the analyses
from different models (varying in number) provide a composite of
model simulations (e.g. medians or percentiles). In this case, the final
estimates at the various points in space and time are more conservative,
filter the single model differences and are usually more consistent with

Table 5
Estimated number of people exposed to NO2 levels above the EU and WHO
thresholds in 2016 (median and 95% credible intervals of the posterior dis-
tributions).

Country Population1 Exposed to NO2

(AD) Andorra 67 462 0 (0, 0)
(AL) Albania 2 925 168 0 (0, 6136)
(AT) Austria 8 731 711 26 948 (3513, 71 469)
(BA) Bosnia and Herzegovina 3 817 952 0 (0, 0)
(BE) Belgium 11 469 758 209 841 (24 752, 535 658)
(BG) Bulgaria 7 153 089 0 (0, 32 782)
(CH) Switzerland 9 202 540 4980 (0, 41 116)
(CY) Cyprus 1 190 214 0 (0, 0)
(CZ) Czech Republic 10 618 625 2648 (0, 38 496)
(DE) Germany 81 848 649 1 148 965 (418 143, 2 558 156)
(DK) Denmark 5 766 524 0 (0, 0)
(EE) Estonia 1 349 753 0 (0, 0)
(EL) Greece 11 050 816 99 697 (0, 1 704 795)
(ES) Spain 44 529 778 1 895 762 (581 991, 3 196 598)
(FI) Finland 5 979 902 0 (0, 0)
(FR) France 65 346 726 3 339 836 (885 080, 5 005 125)
(GG) Guernsey 53 479 0 (0, 0)
(GI) Gibraltar 31 233 0 (0, 0)
(HR) Croatia 4 221 881 4490 (0, 108 244)
(HU) Hungary 10 027 750 0 (0, 225 219)
(IE) Ireland 4 814 831 0 (0, 0)
(IS) Iceland 330 470 0 (0, 0)
(IT) Italy 60 499 999 4 620 219 (2 964 773,

6 229 796)
(JE) Jersey 92 559 0 (0, 0)
(LI) Liechtenstein 37 363 0 (0, 0)
(LT) Lithuania 2 923 123 0 (0, 0)
(LU) Luxembourg 570 985 0 (0, 0)
(LV) Latvia 2 125 289 0 (0, 0)
(MC) Monaco 13 681 0 (0, 0)
(ME) Montenegro 664 404 0 (0, 0)
(MK) North Macedonia 2 123 204 0 (0, 3780)
(MT) Malta 420 872 0 (0, 0)
(NL) Netherlands 17 718 000 140 468 (25 726, 527 690)
(NO) Norway 5 372 166 6015 (575, 15 649)
(PL) Poland 39 149 578 70 633 (6204, 457 799)
(PT) Portugal 9 700 000 0 (0, 13 646)
(RO) Romania 19 740 811 196 024 (0, 1 253 267)
(RS) Serbia 8 995 232 96 610 (0, 475 274)
(SE) Sweden 10 521 396 0 (0, 0)
(SI) Slovenia 2 112 593 0 (0, 17 407)
(SK) Slovakia 5 486 419 0 (0, 3972)
(SM) San Marino 30 187 0 (0, 0)
(UK) United Kingdom 65 644 463 4 304 920 (1 422 934,

7 431 681)
(VA) Vatican 1970 1970 (1970, 1970)

Whole study area (44 countries) 544 472 605 16 170 026 (6 335 661,
29 955 725)

2.97% (1.16%, 5.50%)

1Estimate obtained via cubic spline interpolation of 2000, 2005, 2010, 2015
and 2020 population data at 1 km2 pixel level.
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the actual evolution of the process (Galmarini et al., 2004). On the
other hand, Bayesian inference treats the unknown NO2 concentrations
at pixel level as random quantities and estimates their predictive pos-
terior distribution, a probability distribution that incorporates the un-
certainty of the predictions via its variance. Sensitivity analysis in the
context of Bayesian modelling assesses influence the alternative dis-
tributions (for the data or the priors) have on the predictions. By
drawing samples from the predictive posterior distribution, we can
estimate the mean, median, standard deviation or any other quantity of
interest (e.g. probability of exceeding any particular threshold). The
assessment of exposure burden also becomes possible by utilizing
gridded population data.

Estimates from the posterior predictive distribution show that the
most heavily polluted regions in terms of NO2 are south-eastern
England, north-western Italy, Belgium, Netherlands, Germany
(Nordrhein-Westfalen) as well as the big European cities, like London,
Brussels, Hamburg, Berlin, Paris and Athens. Similarly to Shaddick et al.
(2013), we found that higher uncertainty of the predictions is estimated
in areas with elevated pollutant concentrations (as seen in the plot of
the predictive standard deviation, i.e. Fig. 4(c)). A plausible explanation
is that the number of stations in areas dominated by urban structures
and transport networks is usually lower, which leads to higher un-
certainty in the coefficient estimates of the land-cover covariates de-
fining these regions, and therefore to higher uncertainties in areas with
higher NO2 concentration estimates. Additionally, the map of the
coefficient of variation (Fig. 4(d)) has shown that the predictive un-
certainty is higher in regions (and countries) with fewer monitoring
stations. Thus, the results of our study can help identifying areas where
new monitoring stations are needed. In terms of population exposure,
we found that only about 3% of people living within the study domain
were exposed to NO2 values exceeding the international AQGs. This
result suggest that NO2 represents a much smaller threat to Europe,
when compared to particulate matter (both fine - PM2.5 and coarse -
PM10) concentrations. For the latter, it was estimated that more than
66% of people within the same area and year were breathing air abvove
the WHO thresholds (Beloconi et al., 2018). Our results are comparable
to findings put forth in a recent EEA Air Quality report (European
Environment Agency, 2019) based on Eionet gridded estimates (using a
completely different approach) for 2016 (Eionet, 2018). Indeed, it was
reported that 2.8% of population in almost the same area covered by
our study were exposed to NO2 concentrations above the WHO/EU
thresholds.

The EU Directive sets criteria for the minimum number of the
sampling points and for the site locations. They require Member States
to locate sampling points both ”where the highest concentrations
occur” (with traffic or industrial type stations) and in areas which are
”representative of the general population’s exposure” (with background
type stations). However, the selection of site locations involves a degree
of flexibility, which allows Member States to not necessarily measure
air quality near major industries or main urban traffic. Additionally, the
Air Quality Directive requires that Member States maintain sampling
points that have exceeded PM10, but this obligation does not apply to
other pollutants, in particular to NO2 (European Court of Auditors,
2018). Statistical models rely on the monitoring data, and therefore
they may underestimate the concentration of pollutants, particularly in
urban areas.

Our methodology can be applied to estimate NO2 concentration and
evaluate international AQGs for any specific year or spatial domain.
The operational application of the models for a different year or area of
investigation although possible, is not straightforward, since it requires
re-estimation of the regression parameters and spatial process, based on
the availability of the station data and the covariates. The dense in situ
network available in Europe allows for an accurate estimation of the
spatial correlation structure, especially over shorter distances. In other
world regions, except North America and Asia, the station coverage is
much lower (Larkin et al., 2017). Reliable estimation of the spatial

correlation is not possible due to the large distances between the sta-
tions. Therefore, we expect that the satellite/CTM covariates will im-
prove model predictions even more than in Europe.

The number of days with missing OMI varies in space. In particular,
higher proportion of missing values is observed in the northern part of
the continent and at high altitudes due to the presence of clouds, higher
surface reflectance and larger solar zenith angles. Our results have
shown, that even with missing values, the annual averaged OMI pro-
duct was a significant predictor either vertically corrected (Model 2) or
not (Model 1). In order to evaluate the impact of missing OMI data on
the predictive ability of Models 1 and 2, we re-fitted the models to the
subset of stations located in pixels with larger and with lower avail-
ability of OMI. We defined the availability of OMI as the proportion of
days with complete data and considered that this is ”large” when the
proportion is above the median of those across the stations (here 39%).
The results (Table A4 in the appendix) have shown that the contribu-
tion of OMI covariate to the predictive ability of the model was higher
when models were fitted to data from stations with large availability
(i.e. proportion of days with complete data >39%). Therefore, the
number of missing data influences the predictive ability of the models.
Methods for missing satellite-data imputation could improve estimates.
The frequentist statistical/machine learning methods (e.g. random
forests) available for filling the data gaps cannot quantify the un-
certainty in the estimates, which propagates to the NO2 outcome and
therefore complicates results interpretation. Bayesian models can esti-
mate both the missing values and the model parameters within a single
hierarchical formulation. However, this is computational not yet fea-
sible for very large surfaces such as our study region. Furthermore,
whereas the annual EEA station data were calculated based on the daily
averaged values, the daily OMI measurements and GEOS-Chem simu-
lations are confined to the OMI overpass window (~ 13–15 LT). This
may also explain the small contribution of OMI NO2 covariate to the
predictive ability of the models, given the diurnal variation (cycle) in
NO2 concentrations. For specific applications, such as those health re-
lated, it is important to estimate the total annual average, rather than
NO2 average at a particular time within the day. Another drawback is
the varying spatial resolution of the covariates. We analysed data at the
original georgraphical scales assuming homogeneity of their values
within a coarser spatial resolution. Approaches have been proposed to
address the fusion of data with different spatial supports (Nguyen et al.,
2012; Beloconi et al., 2016) and particularly for statistical downscaling
of coarse resolution CTM outputs (Fuentes and Raftery, 2005; Berrocal
et al., 2010).

While the OMI’s 15-year dataset (2004-onwards) is suitable for in-
vestigating past NO2 changes and trends, the high spatial resolution of
the recently released Sentinel 5P/TROPOMI (7 × 3.5 km2 near nadir)
(Veefkind et al., 2012) will allow detection of small-scale NO2 sources
and will increase the fraction of cloud-free observations by an estimated
70% as compared to OMI (Krijger et al., 2007). The results presented
here are very promising, especially in view of these new data. As ob-
served in this work, higher resolution CTMs lead to better estimates,
therefore we expect that the Sentinel 5P/TROPOMI measurements, ei-
ther alone, or combined e.g. with the CAMS-Ensemble model will lead
to even higher predictive ability.

5. Conclusions

We have shown the benefits of combining data from monitors, sa-
tellites and chemical transport models in a rigorous Bayesian geosta-
tistical framework to estimate the spatial distribution of NO2 in Europe.
We presented the results based on different input data (satellite, global
and regional CTMs) and evaluated the contribution of the column-to-
surface conversion of satellite products and of the effect of spatial re-
solution of CTMs to the predictive ability of the GR models. The results
indicated that the vertical correction slightly improves the predicted
estimates, whereas higher resolution CTMs improve the accuracy of the
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prediction. Based on the best model and available monitoring data, we
evaluated the AQGs and estimated the number of people living in areas
exceeding the thresholds. Due to data limitations, such as coarse
number of stations in some areas and the complexity of NO2 variability
in urban environments, the findings might underestimate the popula-
tion exposure, particularly in urban areas. However, our work is the
first to estimate the population exposure to NO2 in 44 European
countries at 1 km2 resolution based on Bayesian geostatistical model-
ling, which explicitly quantifies the prediction uncertainty.
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