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Abstract
Archetypes represent extreme manifestations of a population with respect to specific characteristic traits or features. In linear
feature space, archetypes approximate the data convex hull allowing all data points to be expressed as convex mixtures of
archetypes.Asmixingof archetypes is performeddirectly on the input data, linearArchetypalAnalysis requires additivity of the
input, which is a strong assumption unlikely to hold e.g. in case of image data. To address this problem, we propose learning
an appropriate latent feature space while simultaneously identifying suitable archetypes. We thus introduce a generative
formulation of the linear archetypemodel, parameterized by neural networks. By introducing the distance-dependent archetype
loss, the linear archetype model can be integrated into the latent space of a deep variational information bottleneck and
an optimal representation, together with the archetypes, can be learned end-to-end. Moreover, the information bottleneck
framework allows for a natural incorporation of arbitrarily complex side information during training. As a consequence,
learned archetypes become easily interpretable as they derive their meaning directly from the included side information.
Applicability of the proposed method is demonstrated by exploring archetypes of female facial expressions while using
multi-rater based emotion scores of these expressions as side information. A second application illustrates the exploration of
the chemical space of small organic molecules. By using different kinds of side information we demonstrate how identified
archetypes, along with their interpretation, largely depend on the side information provided.

Keywords Dimensionality reduction · Archetypal analysis · Deep variational information bottleneck · Generative modeling ·
Sentiment analysis · Chemical autoencoder

1 Introduction

Colloquially, both the words “archetype” and “prototype”
describe templates or original patterns from which all later
forms are developed. However, the concept of a prototype is
more common in machine learning and for example encoun-
tered as cluster-centroids in classification, where a query
point x is assigned to the class of the closest prototype. In an
appropriate feature space such a prototype is a typical repre-
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sentative of its class, sharing all traits of the class members,
ideally in equal proportion. By contrast, archetypes are char-
acterized as being extreme points of the data, such that the
complete data set can be well represented as a convex mix-
ture of these extremes or archetypes. Archetypes thus form
a polytope approximating the data convex hull. Based on the
historic Iris flower data set (Anderson 1935; Fisher 1936),
Fig. 1 illustrates the different perspectives both approaches
provide in exploring the data. In Fig. 1a the cluster means
as well as the decision boundaries in a 2-dimensional fea-
ture space are shown. The clustering was calculated using
the k-Means algorithm. Each cluster mean is an average
representative of its respective class, the aforementioned pro-
totype. According to this clustering, the prototypical Iris
virginica has a sepal width of 3.1cm and a sepal length of
6.8cm. On the other hand, Fig. 1b shows the positions of
the three archetypal Iris flowers, which represent extreme
manifestations of the Iris species of the respective classes.
The archetypal Iris virginica has a sepal width of 3.0cm
and a sepal length of 7.8cm. All flowers within the simplex
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Fig. 1 Result of a clustering procedure as well as an Archetypal Analy-
sis, performed on the Iris data set. For clustering, the k-means algorithm
was used, which is an unsupervised clustering algorithm identifying
the average representatives of a data set, i.e. the cluster-centroids or
prototypes. Archetypal Analysis on the other hand, seeks to identify
extremes in the data set with the goal to represent individual data points
as weighted mixtures of these extreme points, the so-called archetypes

are characterized as convex mixtures of these archetypes.
As flowers outside of that simplex will also be described as
convex mixtures, the linear archetype model will approxi-
mate their location in feature space by normal projections
onto the simplex’ surface. With an increasing number of
archetypes the approximation of the data convex hull will
improve but interpretation of the individual archetypes might
become more difficult. In general, a clustering approach is
more natural if the existence of a cluster structure can be
presumed. Otherwise, Archetypal Analysis might offer an
interesting perspective for exploratory data analysis.

2 Exploring Data Sets Through Archetypes

Archetypal analysis (AA) was first proposed by Cutler and
Breiman (1994). It is a linear procedure where archetypes are
selected byminimizing the squared error in representing each
individual data point as a mixture of archetypes. Identifying
the archetypes involves theminimization of a non-linear least
squares loss.

2.1 Archetypal Analysis

Linear AA is a form of non-negative matrix factorization
where a matrix X ∈ R

n×p of n data vectors is approximated
as X ≈ ABX = AZ with A ∈ R

n×k , B ∈ R
k×n , and usually

k < min{n, p}. The so-called archetype matrix Z ∈ R
k×p

contains the k archetypes z1, . . . , z j , . . . , zk with the model
being subject to the following constraints:

ai j ≥ 0 ∧
k∑

j=1

ai j = 1, b ji ≥ 0 ∧
n∑

i=1

b ji = 1 (1)

Constraining the entries of A and B to be non-negative
and demanding that both weight matrices are row stochas-
tic implies a representation of the data vectors xi=1...n as a
weighted sum of the rows of Z while simultaneously repre-
senting the archetypes z j=1...k themselves as a weighted sum
of the n data vectors in X :

xi ≈
k∑

j=1

ai jz j = ai Z , z j =
n∑

i=1

b jixi = b j X (2)

Due to the constraints on A and B inEq. 1 both the representa-
tion of xi and z j in Eq. 2 are convex combinations. Therefore
the archetypes approximate the data convex hull and increas-
ing the number k of archetypes improves this approximation.
The central problem of AA is finding the weight matrices A
and B for a given data matrix X and a given number k of
archetypes. The non-linear optimization problem consists in
minimizing the following residual sum of squares:

RSS(k) = min
A,B

‖X − ABX‖2 (3)

= min
a,b

n∑

l=1

∥∥∥∥∥∥
xl −

k∑

j=1

ai j

n∑

i=1

b jixi

∥∥∥∥∥∥

2

(4)

In their original publication, Cutler and Breiman (1994) pro-
pose an alternating least squares approach for finding the
archetypes: After a random initialization of the b’s, Eq. 4 is
solved for the a’s. Then, given the a’s, Eq. 4 is solved for
the b’s. This alternating optimization, which provably con-
verges towards a local minimum, can be implemented using
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common solvers for quadratic programming. Using an active
set algorithm, together with smarter initialization strategies,
higher convergence rates are achieved by the archetype algo-
rithm proposed by Bauckhage and Thurau (2009). TheRapid
Archetypal Analysis algorithm by Bauckhage et al. (2015)
is based on a greedy Frank-Wolfe procedure and avoids,
unlike the previously mentioned algorithms, the rather costly
quadratic optimization routines. The example shown in Fig.
1b was calculated based on our own implementation of this
algorithm, which is—to our knowledge—the most efficient
algorithm for solving the linear archetype problem available
today.

A probabilistic formulation of linear AA is provided by
Seth and Eugster (2016) where it is observed that AA fol-
lows a simplex latent variable model and normal observation
model. The generative process for the observations xi in the
presence of k archetypes with archetype weights ai is given
by

ai ∼ Dirk (α) ∧ xi ∼ N
(
ai Z , ε2I

)
, (5)

with uniform concentration parameters α j = α for all j ,
and weights summing up to ‖ai‖1 = 1. That is, the observa-
tions xi are distributed according to isotropic Gaussians with
means μi = ai Z and variance ε2.

2.2 A Biological Motivation for Archetypal Analysis

Conceptionally, the motivation for Archetypal Analysis is
purely statistical but themethod itself always implied the pos-
sibility of interpretations with a more evolutionary flavour.
By representing an individual data point as a mixture of pure
types or archetypes, a natural link to the evolutionary devel-
opment of biological systems is implicitly established. The
publication by Shoval et al. (2012) entitled ’Evolutionary
Trade-Offs, Pareto Optimality, and the Geometry of Phe-
notype Space’ made this connection explicit, providing a
theoretical foundation of the ’archetype concept’. In gen-
eral, evolutionary processes are multi-objective optimization
problems and as such subject to unavoidable trade-offs: If
multiple tasks need to be performed, no (biological) sys-
tem can be optimal at all tasks at once. Examples of such
trade-offs include those between longevity and fecundity
in Drosophila melanogaster where long-lived flies show
decreased fecundity (Djawdan et al. 1996) or predators that
evolve to be fast runners but eventually have to trade-off their
ability to subdue large or strong prey, e.g. cheetah versus
lion (Garland 2014). Such evolutionary trade-offs are known
to affect the range of phenotypes found in nature (Tendler
et al. 2015). In Shoval et al. (2012) it is argued that best-
trade-off phenotypes are weighted averages of archetypes
while archetypes themselves are phenotypes specialized at

Fig. 2 Phenospace of different species of Microchiroptera. The domi-
nant food habit of each species, and thereby the ability to procure this
food source, is linked to the morphology of the animals, e.g. a higher
WingAspect Ratio correspondswith the greater aerodynamic efficiency
needed to chase high flying insects. Archetypes are extreme types, opti-
mized to perform a single task. Proximity of a species to an archetype
quantifies the level of adaptation this species has undergonewith respect
to the optimization objective or task. Reprinted fromShoval et al. (2012)
with permission

performing a single task optimally. An example of an evo-
lutionary trade-off in the space of traits (or phenospace) for
different species of bats (Microchiroptera) is shown in Fig. 2.
Based on a study of bat wings by Norberg et al. (1987), each
species is represented in a two-dimensional space where the
axis depict Body Mass and Wing Aspect Ratio. The latter is
the square of the wingspan divided by the wing area.

Table 1 gives an account of the task the archetypes indi-
cated in Fig. 2 have evolved to performing optimally. The
trade-off situation can be interpreted using Pareto optimality
theory (Steuer 1986), which was recently used in biology to
study trade-offs in evolution (Schuetz et al. 2012; El Samad
et al. 2005). All phenotypes that have evolved over time lie
within a restricted part of the phenospace, the so-calledPareto
front, which is the set of phenotypes that cannot be improved
at all tasks simultaneously. If there were a phenotype being
better at all tasks than a second phenotype, then the latter
would be eliminated over time by natural selection. Conse-
quently phenotypes on the Pareto front are the best possible
compromise between the different requirements or tasks.

3 RelatedWork

Linear “Archetypal Analysis” (AA) was first proposed by
Cutler and Breiman (1994). Since its conception, AA has
known several advancements on the algorithmic side: In
Stone and Cutler (1996) the authors propose an archetype
model able to identify archetypes in space and time, named
“Archetypal Analysis of spatio-temporal dynamics”. A sim-
ilar problem is addressed in “Moving archetypes” by Cutler
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Table 1 Inferred specialization
of the archetypal species of
Microchiroptera indicated in
Fig. 2

Archetype Phenotype Specialization

1 Low aspect ratio, small body Hunting small insects near vegetation

2 High aspect ratio, medium body Hunting high flying large insects

3 Low aspect ratio, large body Hunting animals near vegetation

From an evolutionary perspective, the phenotype is a consequence of the specialization, for details see (Shoval
et al. 2012)

andStone (1997).Model selection is the topic of Prabhakaran
et al. (2012), where the authors are concerned with the opti-
mal number of archetypes needed to characterize a given
data set. An extension of the original Archetypal Analysis
model to non-linear kernel Archetypal Analysis is proposed
by Bauckhage and Manshaei (2014); Mørup and Hansen
(2012). In Kaufmann et al. (2015), the authors use a copula
based approach to make AA independent of strictly mono-
tone transformations of the input data. The reasoning is that
such transformations should in general not influence which
points are identified as archetypes. Algorithmic improve-
ments by adapting a Frank–Wolfe type algorithm to speed-up
the calculation of archetypes are made by Bauckhage et al.
(2015). A probabilistic version of Archetypal Analysis was
introduced by Seth and Eugster (2016), lifting the restric-
tion of Archetypal Analysis to real–valued data and instead
allowing other observation types such as integers, binary, and
probability vectors as input. Efficient “coresets for Archety-
pal Analysis” are proposed by Mair and Brefeld (2019)
in order to reduce the high computational cost due to the
additional convexity-preserving constraints when identify-
ing archetypes.

Although AA did not prevail as a commodity tool for
pattern analysis, several applications have used it very suc-
cessfully. In H P Chan et al. (2003), AA is used to analyse
galaxy spectra which are viewed as weighted superpositions
of the emissions from stellar populations, nebular emissions
and nuclear activity. For the human genotype data studied
by Huggins et al. (2007), inferred archetypes are interpreted
as representative populations for the measured genotypes. In
computer vision, AA has for example been used by Bauck-
hage and Thurau (2009) to find archetypal images in large
image collections or by Canhasi and Kononenko (2015) to
perform the analogous task for large document collections.
In combination with deep learning, archetypal style analysis
(Wynen et al. 2018) applies AA to learned image represen-
tations in order to realize artistic style manipulations.

Our work is based on the variational autoencoder model
(VAE), arguably one of the most popular representatives of
the class of “DeepLatentVariableModels”.VAEswere intro-
duced by Kingma and Welling (2013); Rezende et al. (2014)
and use an inference network to perform a variational approx-
imation of the posterior distribution of the latent variables.
Importantwork in this direction includeKingma et al. (2014);

Rezende and Mohamed (2015) and Jang et al. (2017). More
recently, Alemi et al. (2016) have discovered a close connec-
tion between VAE models and the Information Bottleneck
principle (Tishby et al. 2000). Here, the Deep Variational
Information Bottleneck (DVIB) is a VAEwhere not the input
X is reconstructed (i.e. decoded) but rather a datum Y , about
which X is known to contain information. Subsequently, the
DVIB has been extended in multiple directions such as spar-
sity (Wieczorek et al. 2018), causality (Parbhoo et al. 2020)
or invariant subspace learning (Wieser et al. 2020).

Akin to our work, AAnet is a model proposed by van
Dijk et al. (2019) as an extension of linear Archetypal
Analysis on the basis of standard, i.e. non-variational, autoen-
coders. In their work two regularization terms, applied to
an intermediate representation, provide the latent archety-
pal convex representation of a non-linear transformation of
the input. In contrast to our work, which is based on prob-
abilistic generative models (VAE, DVIB), AAnet attempts
to emulate the generative process by adding noise to the
latent representation during training. Further, no side infor-
mation is incorporated which can—and in our opinion
should—be used to constrain potentially over-flexible neural
networks and guide the optimisation process towards learn-
ing a meaningful representation. The work presented here is
an extension of a conference paper by Keller et al. (2019).
The extension highlights the wide scope of application of
the proposed method by including extensive experiments on
“Archetypes in Image-based Sentiment Analysis”. Further-
more, detailed discussions of the methodology have been
added, in particular the sections on “Selecting the Number
of Archetypes” and “The Necessity for Side Information”.

4 Present Work

Archetypal analysis, as proposed by Cutler and Breiman
(1994), is a linear method and cannot integrate any addi-
tional information about the data, e.g. labels, that might be
available. Furthermore, the feature space in which AA is per-
formed is spanned by features that had to be selected by the
user based on prior knowledge. In the present work an exten-
sion of the original model is proposed such that appropriate
representations can be learned end-to-end, side information
can be incorporated to help learn these representations and
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non-linear relationships between features can be accounted
for.

4.1 DeepVariational Information Bottleneck

We propose amodel to generalise linear AA to the non-linear
case based on the Deep Variational Information Bottleneck
framework since it allows to incorporate side information Y
by design and is known to be equivalent to the VAE in the
case of Y = X , as shown in Alemi et al. (2016). In contrast to
the data matrix X in linear AA, a non-linear transformation
f (X) giving rise to a latent representation T ∈ R

d of the data
suitable for (non-linear) Archetypal Analysis is considered.
I.e. the latent representation T takes the role of the data X in
the previous treatment.

The DVIB combines the information bottleneck (IB) with
the VAE approach (Tishby et al. 2000; Kingma and Welling
2013). The objective of the IB method is to find a random
variable T which, while compressing a given random vector
X , preserves as much information about a second given ran-
dom vector Y . The objective function of the IB is as follows

minp(t|x) I (X; T ) − λI (T ; Y ), (6)

where λ is a Lagrange multiplier and I denotes the mutual
information. Assuming the IB Markov chain T − X − Y
and a parametric form of Eq. 6 with parametric conditionals
pφ(t|x) and pθ (y|t), Eq. 6 is written as

max
φ,θ

−Iφ (t; x) + λIφ,θ (t; y) . (7)

As derived in Wieczorek et al. (2018), the two terms in Eq.
7 have the following forms:

Iφ (t; x) = DKL (p(t|x)p(x)‖p(t)p(x))
=

∫
p(t, x) log pφ(t|x)dx dt

−
∫

p(x|t)p(t) log p(t)dx dt

=
∫

pφ(t|x)p(x) log pφ(t|x)
p(t)

dx dt

= Ep(x)DKL
(
pφ(t|x)‖p(t))

(8)

and

Iφ,θ (t; y) = DKL

([∫
p(t|y, x)p(y, x) dx

]
‖p(t)p(y)

)

=
∫

pφ(t|x, y)p(x, y) log pθ (y|t)p(t)
p(t)p(y)

dt dx dy

= Ep(x,y)

[∫
pφ(t|x, y) log pθ (y|t) dt

]

−Ep(x,y)

[
log p(y)

∫
pφ(t|x, y) dt

]

≥ Ep(x,y)Epφ(t|x) log pθ (y|t) + h(Y ). (9)

Here h(Y ) = −Ep(y) log p(y) denotes the entropy of Y in
the discrete case or the differential entropy in the continuous
case. Themodels in Eqs. 8 and 9 can be viewed as the encoder
and decoder, respectively. Assuming a standard prior of the
form p(t) = N (t; 0, I ) and a Gaussian distribution for the
posterior pφ(t|x), the KL divergence in Eq. 8 becomes a KL
divergence between two Gaussian distributions which can
be expressed in analytical form as in Kingma and Welling
(2013). I (T ; X) can then be estimated on mini-batches of
size m as

Iφ (t; x) ≈ 1

m

∑

i

DK L
(
pφ (t|xi ) ‖p(t)) . (10)

As for the decoder,Ep(x,y)Epφ(t|x) log pθ (y|t) in Eq. 9 is esti-
mated using the reparametrisation trick proposed by Kingma
and Welling (2013); Rezende et al. (2014):

Iφ,θ (t; y) = Ep(x,y)Eε∼N (0,I )

∑

i

log pθ (yi |ti )

+ const.

(11)

with the reparametrisation

ti = μi (x) + diag (σ i (x)) ε. (12)

As mentioned earlier, in the case of Y = X the original
VAE is retrieved (Alemi et al. 2016). In our applications,
we would like to predict not only the side information Y
but also reconstruct the input X . Similar to the approach
proposed in Gomez-Bombarelli et al. (2018), we use an addi-
tional decoder branch to predict the reconstruction X̃ . This
extension requires an additional term Iφ,ψ(t; x̃) in the objec-
tive function Eq. 7 and an additional Lagrange multiplier ν.
The mutual information estimate Iφ,ψ(t; x̃) is obtained anal-
ogously to Eq. 11.

4.2 Deep Archetypal Analysis

Deep Archetypal Analysis can then be formulated in the fol-
lowing way. For the sampling of ti in Eq. 11 the probabilistic
AA approach as in Eq. 5 can be used which leads to

ti ∼ N
(
μi (x) = ai (x)Z , σ 2

i (x)I
)

, (13)

where the mean μi given through ai and variance σ 2
i are

non-linear transformations of the data point xi learned by
the encoder. We note that the means μi are convex combina-
tions of weight vectors ai and the archetypes z j=1..k which
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in return are considered to be convex combinations of the
means μi=1..m and weight vectors b j .1 By learning weight
matrices A ∈ R

m×k and B ∈ R
k×m which are subject to the

constraints formulated in Eq. 1 and parameterised by φ, a
non-linear transformation of data X is learned which drives
the structure of the latent space to form archetypes whose
convex combination yield the transformed data points. A
major difference to linear AA is that for deep AA we can-
not identify the positions of the archetypes z j as there is no
absolute frameof reference in latent space.We thus position k
archetypes at the vertex points of a (k−1)-simplex and collect
these fixed coordinates in the matrix Zfixed. These require-
ments lead to an additional distance-dependent archetype
loss of

	AT = ||Zfixed − BAZfixed||22 = ||Zfixed − Zpred||22, (14)

where Zpred = BAZfixed are the predicted archetype posi-
tions given the learnedweight matrices A and B. For Zpred ≈
Zfixed the loss function 	AT is minimized and the desired
archetypal structure is achieved. The objective function of
deep AA is then given by

max
φ,θ

−Iφ (t; x) + λIφ,θ (t; y) + ν Iφ,ψ

(
t; x̃) − 	AT. (15)

A visual illustration of deep AA is given in Fig. 3. The con-
straints on A and B canbeguaranteedbyusing softmax layers
and deep AA can be trained with a standard stochastic gradi-
ent descent technique such as Adam (Kingma and Ba 2014).
Note that the model naturally allows to be relaxed to the VAE
setting by omitting the side information term λIφ,θ (t; y) in
Eq. 15.

4.3 Selecting the Number of Archetypes

In the proposedmodel the dimension d of the latent space and
the number of archetypes k are related through the equation
k = d+1. The coordinates of the k archetypes coincide with
the vertices of a regular d-simplex located on the unit sphere
centered around the origin. Therefore, every vertex of the
simplex has the same distance to the origin. Together with a
spherical Gaussian prior p(t) = N (t; 0, I ), this geometric
construct ensures that no latent space directions is preferred
over any other. Thus, in the absence of prior knowledge, this
agnostic setting makes all archetypes equally important.

In principal, decoupling k and d is a valid option. But
by increasing the number of archetypes k in a latent space
of fixed dimension, every data set can be explained in an
increasingly trivial manner. The idea of Archetypal Analysis,
however, is to tolerate some noise in the generative process

1 Note that i = 1..m (and not up to n), which reflects that deep neural
networks usually require batch-wise training with batch size m.

and to approximate the convex hull with only a limited num-
ber of vertex points. Within the framework of a variational
information bottleneck, choosing k = d + 1 thus allows to
identify the most compact latent code for a given data set.
Consequently, model selection is performed by observing at
which latent dimensionality the predictive mutual informa-
tion, i.e. the reconstruction loss, saturates. In Sect. 5.3, we
demonstrate themodel selection process using a held-out test
set in the experiments based on the QM9 data set of small
organic molecules. Additionally, in Sect. 5.4, we explore an
alternative prior conceptually closer to the original formula-
tion of Archetypal Analysis.

4.4 The Necessity for Side Information

The goal of deep AA is to identify meaningful archetypes
in latent space which will subsequently enable an informed
exploration of the given data set. The meaning of an
archetype, and thereby the associated interpretation, can be
improved by providing so-called side information, i.e. infor-
mation in addition to the input data. For non-linear latent
variable models parametrized by neural networks, an inter-
pretation of the latent space structure—depending on the data
set—is often difficult, as input dimensions can be mapped
to arbitrarily complex non-linear curves in latent space. In
general, more non-linearity leads to more flexibility in the
mapping of an input onto its latent code, which in turn leads
tomore ambiguitywhen interpreting that latent code. Supple-
menting the training process with additional information—
which we call side information—can facilitate the interpre-
tation. Consequently, the function of the side information
is that of a regularizer as it restricts the class of potential
mappings. If the input datum is for example an image, addi-
tional information could simply be a scalar- or vector-valued
label.Using richer side information, e.g. additional images, is
of course possible. In more general terms, the fundamental
idea is that information about what constitutes an archety-
pal representative might not be information that is readily
present in the input X but dependent on—or even defined
by—the side information. Taking a data set of car images
as an example, what would be an archetypal car? Certainly,
the overall size of a car would be a good candidate, such
that smaller sports cars and larger pick-ups might be iden-
tified as archetypes. But introducing the fuel consumption
of each car as side information would put sports cars and
pick-ups closer together in latent space, as both car types
often consume above average quantities of fuel. In this way,
side information guides the learning of a latent representa-
tion which is informative with respect to exactly the side
information provided. Consequently, whether a data point
is identified as an archetype, is not an inherent property of
the data alone, but rather a function of the side information
made available during training. And the selection of appro-
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Fig. 3 Illustration of the deep AA model. Encoder side: Learning
weight matrices A and B allows to compute the archetype loss 	AT
in Eq. 14 and sample latent variables t as described in Eq. 13. The
constraints on A and B in Eq. 1 are enforced by using softmax layers.
Decoder side: Zfixed represent the fixed archetype positions in latent
space while Zpred are given by the convex hull of the transformed data

point means μ during training. Minimizing 	AT corresponds to mini-
mizing the red-dashed (pairwise) distances. The input is reconstructed
from the latent variable t. In the presence of side information, the latent
representation allows to reproduce the side information Y as well as the
input X

priate side information can only be linked to the questions
the user of a deep AA model is interested in answering.

5 Experiments

5.1 Archetypal Analysis: DealingWith Non-linearity

Data generation. For this experiment, data X ∈ R
n×8 is

generated that is a convex mixture of k archetypes Z ∈ R
k×8

with k � n. The generative process for the datum xi follows
Eq. 5, where ai is a stochastic weight vector denoting the
fraction of each of the k archetypes z j needed to represent the
data point xi . A total of n = 10000 data points is generated,
of which k = 3 are true archetypes. The variance is set to
σ 2 = 0.05 and the linear 3-dim data manifold is embedded
in a n = 8 dimensional space. Note that although linear
and deep Archetypal Analysis is always performed on the
full data set, only a fraction of that data is displayed when
visualizing results.

LinearAA—non-linear data.Data is generated as described
above and an additional non-linearity is introduced by apply-
ing an exponential to one dimension of X which results in
a curved 8-dimensional data manifold. Linear Archetypal
Analysis is then performed using the efficient Frank-Wolfe
procedure proposed by Bauckhage et al. (2015). For visual-
ization, PCA is used to recover the original 3-dimensional
data submanifold which is embedded in the 8-dimensional
space. The first three principal components of the ground
truth data are shown in Fig. 4a as well as the computed

archetypes (connected by dashed lines). The positions of the
computed archetypes occupy optimal positions according to
the optimization problem in Eq. 3 but due to the non-linearity
in the data it is impossible to recover the three ground truth
archetypes.

Deep AA—non-linear data. For data that has been gener-
ated as described in the previous paragraph, a strictly mono-
tone transformation in form of an exponentiation should
in general not change which data points are identified as
archetypes. But this is clearly the case for linear AA as it
is unable to recover the true archetypes after a non-linearity
has been applied. Using that same data to train the deep AA
architecture presented in Fig. 3 generates the latent space
structure shown in Fig. 4b, where the three archetypes A, B
and C have been assigned to the appropriate vertices of the
latent simplex.Moreover, the sequence of color stripes shown
has been correctly mapped into the latent space. Within the
latent space data points are again described as convex linear
combinations of the latent archetypes. Latent data points can
also be reconstructed in the original data space through the
learned decoder network. The network architecture used for
this experiment was a simple feedforward network (2 layered
encoder and decoder), training for 20 epochswith a batch size
of 100 and a learning rate of 0.001.

5.2 Archetypes in Image-Based Sentiment Analysis

The Japanese Female Facial Expression (JAFFE) database
was introduced by Lyons et al. (1998) and contains 213
images of 7 facial expressions (6 basic facial expressions
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Fig. 4 While linear Archetypal Analysis is in general unable to approx-
imate the convex hull of a non-linear data set well, deep AA learns an
appropriate latent representation where the ground truth archetypes can
correctly be identifie

+ 1 neutral). The expressions are happiness, sadness, sur-
prise, anger, disgust and fear. All expressions were posed by
10 Japanese female models. Each image has been rated on
6 emotion adjectives by 60 Japanese subjects on a 5 level
scale (5-high, 1-low) and each image was then assigned a
6-dimensional vector of average ratings. For the following
experiments the advice of the creator of the JAFFE data set
was followed to exclude fear images and the fear adjective
from the ratings, as the models were not believed to be good
at posing fear. All experiments based on the JAFFE data set
are performed on the following architecture2:

2 The code is available via https://github.com/bmda-unibas/
DeepArchetypeAnalysis

Encoder:

Input: image x (128 × 128)

→ 3 ×
[
64Conv. (4 × 4) + Max-Pool.(2 × 2)

]

→ Flatten + FC100

→ A, B, σ 2

Decoder (Image Branch):

Input: latent code t

→ FC49

→ 3 ×
[
64Conv. Transpose(4 × 4)

]

→ Flatten + FC128 × 128

→ FC128 × 128 → 128 × 128reconstruction x̃
Decoder (Side Information Branch):

Input: latent code t

→ FC200-5 → side information ỹ

ReLU activations are used in-between layers and sigmoid
activations for the image intensities. The different losses are
weighted as follows: we multiplied the archetype loss by
a factor of 80, the side information loss by 560, and the KL
divergenceby40. In the settingwhere only two labels are con-
sidered, theweight for archetype loss is increased to 120. The
network was trained for 5000 epochs with a mini-batch size
of 50 and a learning rate of 0.0001. For training a NVIDIA
TITAN X Pascal GPU was used, where a full training ses-
sions lasted approximately 30 min.

5.2.1 JAFFE: Latent Space Structure

Emotions conveyed through facial expressions are a suitable
case to demonstrate the interpretability of learned latent rep-
resentation in deep AA. First, the existence of archetypes
is plausible as there clearly are expressions that convey
a maximum of a given emotion, i.e. a person can look
extremely/maximally surprised.

Second, facial expressions change continuously with-
out having a clearly defined cluster structure. Moreover,
these expressions lend themselves to being interpreted as
mixtures of basic (or archetypal) emotional expressions—a
perspective also enforced by the averaged ratings for each
image which are essentially weight vectors with respect
to the archetypal emotional expressions. Figure 5a shows
the learned archetypes “happiness”, “anger” and “surprise”
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Fig. 5 Deep AA with k = 3 archetypes identifies sadness as a mixture
mostly between happiness and anger while disgust lies between the
archetypes for anger and surprise

while expressions linked to the emotion adjective “sadness”
are identified as mixtures between archetype 1 (happiness)
and archetype 2 (anger). Figure 5b shows the positions of the
latent means where the color coding is based on the argmax
of the emotion rating, which is a 5-dimensional vector. An
analogous situation is found in case of “disgust”, which,
according to deep AA, is a mixture between archetype 2
(anger) and archetype 3 (surprise). Towards the center of the

simplex, expressions are located which share equal weights
with respect to the archetypes and thus resemble amore “neu-
tral” facial expression.

Section S1 of the supplement contains an additional exper-
iment based on 40 independent bootstrap runs using the
JAFFE data set. It highlights the stability of the inferred
archetypes, where the predominant combination of inferred
archetypes contains the emotions “surprise”, “happiness”
and “anger”, as shown in Fig. 5b.

Side Information for JAFFE. The JAFFE data set con-
tains facial expressions posed by 10 Japanese femalemodels.
Based solely on the visual information, i.e. disregarding the
emotion scores, these images couldmeaningfully be grouped
together in a variety of ways, e.g. head shape, hair style,
identity of the model posing the expressions etc. The inter-
pretability of archetypes, in general, rests on providing side
information with respect to which the learned representation
shall be informative.

The latent space shown in Fig. 8 has been learned while
providing only the emotion ratings for “sadness” and “dis-
gust”. This result illustrates how side information is shaping
the structure of the learned latent representation: Comparing
Fig. 8 with Fig. 5a, where the emotion ratings for “anger”,
“surprise” and “sadness” were provided as side information
during training, makes clear that archetypes are not neces-
sarily a property of the data. The final structure of the latent
space is determined to a large extend by the side informa-
tion and thus by the intent of the user when selection which
information to provide.

While it is obvious to learn typical emotion expressions in
case of JAFFE, most applications are arguably more ambigu-
ous. In Sect. 5.3, a chemical experiment is discussed, where
eachmolecule canbedescribedby avariety of properties. The
side information introduced to the learning process will ulti-
mately be the property the experimenter is interested in, and
the learned representation will be informative with respect to
that property.

5.2.2 JAFFE: Expressions As Weighted Mixtures

One advantage of deep AA compared to the plain Variational
Autoencoder (VAE) is a globally interpretable latent struc-
ture. All latent means μi will be mapped inside the convex
region spanned by the archetypes. And as archetypes rep-
resent extremes of the data set which are present to some
percentage in all data points, these percentages or weights
can be used to explore the latent space in an informed fashion.
This might be especially of advantage in case of higher-
dimensional latent spaces. For example, the center of the
simplex will always accommodate latent representations of
input data that are considered mean samples of the data set.
Moreover, directions within the simplex have meaning in the
sense that when “walking” towards or away from a given
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Fig. 6 Knowing the archetypes allows for an informed exploration of
the latent space by not directly sampling latent space coordinates but
by specifying a desired mixture with respect to the known archetypes

archetype, the characteristics of that archetype will either be
enforce or diminished in the decoded datum associated with
the actual latent position. This is shown in the Hinton plot
in Fig. 6 where mixture 1 is a mean sample, i.e. with equal
archetype weights. Starting at this position and moving on
a straight line into the direction of archetype 3 increases its
influence while equally diminishing the influence of both
archetypes 1 and 2. This results in mixture 2 which starts to
look surprised, but not as extremely surprised as archetype 3.
In the same fashionmixture 3 and 4 are the results of walking
straight into the direction of archetypes 2 or 1which results in
a sad face (mixture 3) and a slightly happy facial expression
(mixture 4).

5.2.3 JAFFE: Deep AA Versus VAE

DeepAA is designed to be amodel that simultaneously learns
an appropriate representation and identifiesmeaningful latent
archetypes. This model can be compared to a plain VAE
where a latent space is learned first and subsequently lin-
ear AA is performed on that space in order to approximate
the latent convex hull. Figure 7a shows the interpolation in
the deep AA model between two images, neither of them
archetypes, from “happy” to “sad”. Compared to Fig. 7b,
which shows the same interpolation in a VAE model with
subsequently performed linear AA, the interpolation based
ondeepAAgives amarkedly better visual impression. In case
of deep AA, this is explained by the fact that all data points
are mapped into the simplex which ensures a relatively dense
distribution of the latent means. On the other hand, the latent

Fig. 7 Interpolation between the two input images marked in red. The
interpolation in the latent space of the deep AA model is qualitatively
better compared to the VAE model as latent points are mapped more
densely due to the simplex constraints

space of the VAE model has no hard geometrical restrictions
and thus the distribution of the latent representatives will be
less dense or even “patchy”, i.e. with larger empty areas in
latent space. Especially with small data sets such as JAFFE,
of which less than 200 images are used, interpolation qual-
ity might be strongly affected by the unboundedness of the
latent space of VAE models.
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Fig. 8 Latent structure of the JAFFEdata setwhen trained on a subset of
the side information containing only the emotion ratings for “sadness”
and “disgust”

5.3 The Chemical Universe Of Molecules

In the following section the application of deep AA to the
domain of chemistry is explored. Starting with an initial set
of chemical compounds, e.g. small organic molecules with
cyclic cores (Visini et al. 2017), and iteratively applying a
finite number of reactions, will eventually lead to a huge col-
lection of molecules with extreme combinatorial complexity.
But while the total number of all possible small organic
molecules has been estimated to exceed 1060 (Kirkpatrick
and Ellis 2004), even this number pales in comparison to
the whole chemical universe of organic chemistry. In gen-
eral, the efficient exploration of chemical spaces requires
methods capable of learning meaningful representations and
endowing these spaces with a globally interpretable struc-
ture. Prominent examples of chemistry data sets include the
family of GDB-xx data sets (generic database), e.g. GDB-13
(Blum and Reymond 2009), which enumerates small organic
molecules of up to 13 atoms, composed of the elements C,
N, O, S and Cl, following simple chemical stability and syn-
thetic feasibility rules.Withmore than 970million structures,
GDB-13 is the largest publicly available database of small
organic molecule to date.

Exploring the Chemical Space.
As discussed in Sect. 2.2, Archetypal Analysis lends itself

to a distinctly evolutionary interpretation. Although this is
certainly a more biological perspective, the basic principle is
applicable to other fields. In chemistry, the principle of evolu-
tive abiogenesis describes a process in which simple organic

Fig. 9 Model selection on the QM9 data set: Mean absolute error
(reconstruction loss) vs. number of archetypes on the test set

compounds increase in complexity (Miller 1953). In the fol-
lowing experiment a structured chemical space is learned
using as side information the heat capacity Cv which quanti-
fies the amount of energy (in Joule) needed to increase 1Mol
of molecules by 1 K at constant volume. A high Cv num-
ber is important e.g. in applications dealing with the storage
of thermal energy (Cabeza et al. 2015). In the following, all
experiments are based on the QM9 data set (Ramakrishnan
et al. 2014; Ruddigkeit et al. 2012), which contains molecu-
lar structures and properties of 134k organicmolecules. Each
molecule is made up of nine or less atoms, i.e. C, O, N, or
F, without counting hydrogen. The QM9 data set is based on
ab-initio density functional theory (DFT) calculations.

Experiment Setup. A total of 204 features were extracted
for every molecule using the Chemistry Development Kit
(Steinbeck et al. 2003). The neural architecture used has 3
hidden FC layers with 1024, 512 and 256 neurons, respec-
tively, and ReLU activation functions. For all experiments,
themodel was trained in a supervised fashion by reconstruct-
ing the molecules and the side information simultaneously.
In Experiment 1, model selection was performed by continu-
ously increasing the number of latent dimensions. Based on
the knee of the mean absolute error (MAE), the appropriate
number of latent archetypes was selected. In Experiments
2 and 3, the number of latent dimensions was fixed to
19, corresponding to the optimal number of 20 archetypes
from the model selection procedure. During training, the
Lagrange multiplier λ was steadily increased by increments
of 1.01 every 500 iterations. For training, theAdamoptimizer
(Kingma and Ba 2014) was used, with an initial learning rate
of 0.01. A learning rate decay was introduced, with an expo-
nential decay of 0.95 every 10k iterations. The batch size
was 2048 and the model was trained for a total of 350k iter-
ations. The data set is divided in training and test set with a
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Fig. 10 Both panels illustrate a comparison between archetypal
molecules, where the underlying latent representation is informative
with respect to the molecular property heat capacity. Each row con-
tains the three molecules of the test set that have been mapped closest
to a specific vertex of the latent simplex. Panel a compares archetypal

linear molecules characterized by a short chain structure versus long
chained molecules. Panel b compares archetypal molecules with simi-
lar masses but different geometric configuration, i.e. with and without
a cyclic structure

Fig. 11 Interpolation between two archetypal molecules produced by deep AA. The labels display the heat capacity of each molecule. Here, only
a single example is shown but similar results can be observed for other combinations of archetypes

90%/10% split. For visualization, the 3-dimensional molec-
ular representations haven been created with Jmol (2019).

Experiment 1:Model Selection.Themean absolute error is
assessed while varying the number of archetypes. The result
is shown in Fig. 9.Model selection is performed by observing
for which number of archetypes the MAE starts to converge.
The knee of this curve is used to select the optimal num-
ber of archetypes, which is 20. Obviously, if the number of
archetypes is smaller, it becomesmore difficult to reconstruct
the data. This is explained by the fact that there exists a large
number of molecules with very similar heat capacities but at
the same time distinctly different geometric configurations.
As a consequence, molecules with different configurations
aremapped to archetypeswith the similar heat capacity,mak-
ing it hard to resolve the many–to–one mapping in the latent
space.

Experiment 2: Archetypal Molecules. Archetypal mole-
cules are identified along with the heat capacities associated
with them. A fixed number of 20 archetypes is used for opti-
mal exploration-exploitation trade-off, in accordance with
the model selection discussed in the previous section. In
chemistry, the heat capacity at constant volume is defined as

Cv = dε

dT

∣∣
v=const where ε denotes the energy of a molecule

and T its temperature. This energy can be further decom-
posed into different parts, such that ε = εTr +εR +εV +εE .

Each part is associated with a different degree of freedom of
the system.Here, Tr stands for translational, R for rotational,
V for vibrational and E for the electronic contributions to
the total energy of the system (Atkins and de Paula 2010;
Tinoco 2002). With this decomposition in mind, the differ-
ent archetypal molecules associated with a particular heat
capacity are compared in Fig. 10. In both panels of that fig-
ure, the rows correspond to the three molecules in the QM9
data set (test set) that have been mapped closest to a ver-
tex of the latent simplex and have thus been identified as
being extremes with respect to the heat capacity. Out of a
total of 20 vertices, molecules in close proximity to four of
them are displayed here. Panel 10a shows the configuration
of six archetypal molecules. The upper three are all associ-
ated with a low heat capacity while the lower three all have
a high heat capacity. This result can easily be interpreted,
as the lower heat capacity can be traced back to the shorter
chain length and the higher number of double bonds of these
molecules, which makes them more stable and results in a
lower vibrational energy V and subsequently in a lower heat
capacity. The inverse is observed for the linear archetypal
molecules with higher heat capacities, which show, relative
to their size, a lower number of double bonds and a long lin-
ear structure. Panel 10b shows both linear (lower row) and
non-linear archetypal molecules (upper row) but with simi-
lar atomic mass. Here, the non-linear molecules containing a
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Fig. 12 Panels a and b compare archetypal molecules identified using different side information: Here, the labels correspond to the heat capacity
(panel a) and the band gap energy (panel b). The rows contain the three molecules of the test set closest to the given archetype

cyclic structure in their geometry, are more stable and there-
fore have an overall slightly lower heat capacity compared
to their linear counterparts of the same weight, shown in the
second row.

Experiment 3: Interpolation Between Two Archetypal
Molecules. Interpolation is performed by plotting the sam-
ples from the test set which are closest to the connecting line
between the two archetypes. As a result, one can observe a
smooth transition from a molecule with a ring structure to
a linear chain molecule. Both the starting and the end point
of this interpolation is characterized by a similar heat capac-
ity, such that these archetypes differ only in their geometric
configuration but not with respect to their side information.
As a consequence, any molecule in close proximity to that
connecting line can differ only with respect to its structure,
but must display a similarly high heat capacity. Figure 11
shows an example of such an interpolation.

Experiment 4: TheRole of Side Information and theExplo-
ration of Chemical Space. Deep AA structures latent spaces
both according to the information contained in the input to the
encoder as well as the side information provided. As a conse-
quence, any molecule characterized as a truemixture of two
or more archetypes, given a specific side information such
as heat capacity, might suddenly be identified as archetypal
should the side information change accordingly. In the fol-
lowing, archetypal molecules with respect to heat capacity
as the side information are compared to archetypes obtained
while providing the band gap energy of each molecule as the
side information. In Fig. 12a archetypal molecules with both
the highest and the lowest heat capacities are displayed while
12b shows archetypes with highest and lowest band gap ener-
gies. The archetypes significantly differ in their structure as
well as their atomic composition. For example, archetypal
molecules with low heat capacity are rather small, with only
few C and O atoms, while archetypal molecules with a low
band gap energy are characterized by ring structures con-
taining N and H atoms. This illustrates the essential role of

side information for learning and subsequently enabling the
interpretation of the latent representation.

5.4 Alternative Priors For Deep Archetypal Analysis

The standard normal distribution is a common choice for
the prior distribution p(t) due to its simplicity and closed
form expression for the KL divergence. However, alternative
priors might influence the inferred archetypes or prove bene-
ficial when learning the structure of the latent space. Leaving
aside thewide range ofwell explored priors for vanilla VAEs,
we explore a hierarchical prior that directly corresponds to
the generative model of linear AA presented in Eq. 5, i.e.
isotropic Gaussian noise around a linear combination of the
archetypes:

m ∼ Dirk(α = 1) ∧ t ∼ N (mZfixed, I) (16)

The estimation of the KL divergence given in Eq. 8 is based
on Monte-Carlo sampling. In order to qualitatively compare
the standard normal prior and the sampling Dirichlet prior,
we train the respective deep AA model on the JAFFE data
set with k = 4 archetypes, implying a 3-dimensional latent
space. The architecture used is similar to the previous exper-
iments but we additionally learn the variance of the decoder.
The Lagrange parameters or weights in Eq. 15 are set to 1e3
for the archetype loss and to 1e2 for the KL divergence.

Finally, Fig. 13 shows examples of the inferred archetypes
for the standard normal prior (upper row) and the sampling
Dirichlet prior (lower row). In conclusion, different priors
do not seem to strongly affect the inferred archetypes. How-
ever, the structure of latent spaces do differ, which can be
seen when projecting them onto the first two principal com-
ponents as shown in Fig. 14. As a reference, a uniformly
filled simplex would result in a triangular shaped projection.
The difference seen here is caused by large gaps in the higher-
dimensional simplexwhenusing thehierarchical prior,which
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Fig. 13 Deep AA with k = 4 archetypes using two different priors,
which both identify similar archetypes

we assume is mainly due to the high variance estimation of
the KL divergence.

In our experience, the choice of the prior is not of pri-
mary concern for finding meaningful archetypes, as long as
it encourages the latent space to be spread out inside the sim-
plex, be that via a standard normal, a uniform or—as in this
case—a hierarchical prior.

6 Practical Considerations for Using Deep AA

In the following, we provide general aspects worth consid-
ering when deciding whether the use of deep AA might be
appropriate, given a specific data set.
Linear Archetypal Analysis relies on the additivity assump-
tion, as data points are described as a weighted sum of the
archetypes, with the weights constrained to be non-negative.
This mixing procedure is performed directly on the input
data. In deep AA, on the other hand, the mixing is performed
only on the latent representation of the input data. This allows
more flexibility regarding the type of input data, e.g. text,
images etc., but it also relaxes the additivity assumption, as
the encoder learns a representation on which this assumption
is (approximately) valid. Nevertheless, for the interpretation
of the archetypes, convex mixing should a priori be a justifi-
able assumption. In general, for data without explicit cluster
structure (deep) AA poses an interesting possibility. On the
ten digits in MNIST for example, a clustering might be more
appropriate while deep AA could provide additional insight
when applied on a single digit class. The goal of deep AA
is to optimize for the most compact latent code such that
interpretability of the archetypes—on a qualitative level—
remains possible. Having too many archetypes would likely
obfuscate the meaning of an individual archetype. Further-
more, as deepAA relies on the latent simplex as a geometrical
structure, Euclidean distances need to be meaningful with

Fig. 14 Latent spaces for the two different priors projected onto the
first two principal components. The explained variances are: a 0.74 and
b 0.757

respect to the dimensionality of the latent space, generally
encouraging low dimensionality. But this is of course true for
all flavors ofAA. In practice, inspecting the local data density
in the neighborhood of the inferred archetypes in latent space
is an important post-processing step. If an archetype appears
to have no latent samples close to it, it might be considered
an outlier.

123



International Journal of Computer Vision (2021) 129:805–820 819

7 Conclusion

We have presented in this paper an extension of linear
Archetypal Analysis, a technique for exploratory data anal-
ysis and interpretable machine learning. By performing
Archetypal Analysis in the latent space of a deep infor-
mation bottleneck, we have demonstrated that the learned
representation can be structured in a way that allows it to be
characterized by its most extremal or archetypal represen-
tatives. As a result, each observation in the data set can be
described as a convex mixture of these extremes. Endowed
with such a structure, a latent space can be explored by vary-
ing the mixture coefficients with respect to the archetypes,
instead of exploring the space by uniform sampling. Fur-
thermore, we have demonstrated the need for including side
information into the process of learning latent archetypal
representations. Extremeness can only be understood with
respect to a given property. Therefore, providing such a prop-
erty through side information is essential in order to learn
interpretable latent archetypes. In contrast to the original
archetype model, our method offers three advantages: First,
our model learns representations in a data-driven fashion,
thereby reducing the need for expert knowledge. Second,
our model can learn appropriate transformations to obtain
meaningful archetypes, even if non-linear relations between
features exist. Third, the incorporation of side information.
The application of this newmethod is demonstrated on a sen-
timent analysis task, where emotion archetypes are identified
based on female facial expressions, for which multi-rater
based emotion scores are available as side information. A
second application illustrates the exploration of the chemi-
cal space of small organic molecules and demonstrated how
crucial side information is for interpreting the geometric con-
figuration of these molecules.
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