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Abstract

We investigate the uniform boundedness of the fronts of the solutions to the randomized
Fisher-KPP equation and to its linearization, the parabolic Anderson model. It has been
known that for the standard (i.e. deterministic) Fisher-KPP equation, as well as for the special
case of a randomized Fisher-KPP equation with so-called ignition type nonlinearity, one has
a uniformly bounded (in time) transition front. Here, we show that this property of having a
uniformly bounded transition front fails to hold for the general randomized Fisher-KPP equa-
tion. Nevertheless, we establish that this property does hold true for the parabolic Anderson
model.

1 Introduction

We consider the random partial differential equation

wt(t, x) =
1

2
wxx(t, x) + ξ(x, ω)F (w(t, x)), (t, x) ∈ (0,∞) × R, ω ∈ Ω,

w(0, ·) = 1(−∞,0].
(F-KPP)

In our specific setting, (ξ(x))x∈R = (ξ(x, ω))x∈R, ω ∈ Ω, is a stochastic process on a probability
space (Ω,F ,P) fulfilling suitable mixing and sample path regularity conditions (see Section 2),
and the non-linearity F is generated by the probability generating function belonging to branching
Brownian motion, see condition (PROB) below (2.1).

The investigation of (F-KPP) for the homogeneous case ξ ≡ 1 has a long history, dating back
to the seminal works of Fisher [Fis37] and Kolmogorov, Petrovskii and Piscunov [KPP37]. The
equation has found a plethora of applications, such as describing the dynamics of a randomly
mating diploid population in a one-dimensional habitat, or also to model flame propagation, see
[AW75].

It is well-known, see [KPP37, Theorem 14], that in the homogeneous case ξ ≡ 1 the solution
w of (F-KPP) converges to a traveling wave solution. More precisely, there exists a function
(0,∞) ∋ t 7→ m(t) such that

w(t,m(t) + · ) −→
t→∞

g uniformly, (1.1)

for some function g : R → [0, 1] with g(x) −→
x→−∞

0 and g(x) −→
x→∞ 1, and which is unique up to

spatial translations. In this context, the function m(t) is usually referred to as the position of the
wave. The convergence in (1.1) implies that the front of the solution to (F-KPP) for the case ξ ≡ 1
is bounded, i.e. for every ε ∈ (0, 1/2) there exist x, x ∈ R, such that for all t large enough,

inf
x≤x

w(t, x+m(t)) ≥ 1 − ε and sup
x≥x

w(t, x+m(t)) ≤ ε. (1.2)
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Therefore, a question arising naturally in our context is whether a behavior similar to (1.2)
is observed in the setting of a random nonlinearity in (F-KPP) as well. It turns out that in the
investigation of this question, for a variety of reasons the linearization of (F-KPP), which goes
under the name parabolic Anderson model and which is of independent interest,

ut(t, x) =
1

2
uxx(t, x) + ξ(x, ω)u(t, x), (t, x) ∈ (0,∞) × R, ω ∈ Ω,

u(0, x) = u0(x), x ∈ R,
(PAM)

plays an important role as well.

2 Model and results

We will assume ξ = (ξ(x))x∈R to be a stochastic process on a probability space (Ω,F ,P) having
Hölder continuous paths. I.e., there exists α = α(ξ) > 0 and C = C(ξ) > 0, such that

|ξ(x) − ξ(y)| ≤ C |x− y|α ∀x, y ∈ R. (HÖL)

We will consider throughout the standard model of Ω being the space of Hölder continuous functions
and F to be the σ-algebra generated by point evaluations. Furthermore, we assume the following
conditions to be fulfilled:

• ξ is uniformly bounded away from 0 and ∞:

0 < ei := ess inf
ω

ξ(x, ω) < ess sup
ω

ξ(x, ω) =: es < ∞ for all x ∈ R; (BDD)

• ξ is stationary: For every h ∈ R,

(ξ(x))x∈R and (ξ(x+ h))x∈R have the same distribution; (STAT)

• ξ fulfills a ψ-mixing condition: Let Fx := σ(ξ(z) : z ≤ x) and Fy := σ(ξ(z) : z ≥ y), x, y ∈ R,
and assume that there exists a continuous, non-increasing function ψ : [0,∞) → [0,∞), such
that for all j ≤ k as well as integrable Fj-measurable X and integrable Fk-measurable Y, we
have

∣∣E
[
X − E[X] | Fk]∣∣ ≤ E[|X|] · ψ(k − j),

∣∣E
[
Y − E[Y ] | Fj

]∣∣ ≤ E[|Y |] · ψ(k − j), and
∞∑

k=1

ψ(k) < ∞.

(MIX)

Note that (MIX) implies the ergodicity of ξ with respect to the shift operator θy acting on Ω via
ξ(·) ◦ θy = ξ(· + y), y ∈ R.

In order to specify the initial conditions for (PAM) under consideration, for δ′ ∈ (0, 1) and
C ′ > 1 consider the condition

δ′
1[−δ′,0] ≤ u0 ≤ C ′

1(−∞,0], (PAM-INI)

and we define the class of initial conditions to (PAM) as

IPAM := IPAM(δ′, C ′) :=
{
u0 : R → [0,∞) measurable : u0 fulfills (PAM-INI) for δ′ and C ′}.

In order to describe the admissible non-linearities for (F-KPP), let (pk)k∈N be an arbitrary
sequence of reals in [0, 1] such that

∞∑

k=1

pk = 1,
∞∑

k=1

kpk = 2, and
∞∑

k=1

k2pk =: m2 < ∞. (2.1)
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Then define F : [0, 1] → [0, 1] via

F (u) := (1 − u) −
∞∑

k=1

pk(1 − u)k, u ∈ [0, 1]. (PROB)

In passing, we note that F ′(0) = 1. The reason for considering this type of non-linearity is its
suitability for being investigated using techniques from branching processes. In particular, the
solutions to (F-KPP) can then be expressed as a functionals of a branching Brownian motion, see
Proposition 5.1.

On top of the above, we need a further technical condition to be fulfilled. In order to be
able to formulate it, note that Lemma A.2 states the existence of a critical velocity vc ≥ 0 and
Proposition A.3 that of another velocity v0 > 0; here, the former pertains to the characteristics
of the Lyapunov exponent while, under suitable assumptions, the latter essentially is the speed of
the front of the solutions to (PAM) and (F-KPP). In order for our approach to be effective, we
need to perform a change of measure that requires

v0 > vc (VEL)

to be fulfilled. For the time being, we content ourselves with referring to Section 2.1, where we
argue that there do exist potentials fulfilling (VEL), alongside all other conditions required for our
results to hold. For further details and a more profound discussion of condition (VEL), as well as
for examples of potentials which do or do not entail (VEL) to be satisfied, we refer to [DS20].

In order to investigate the position of the front, we introduce for ε ∈ (0, 1), M > 0 and t ≥ 0
the quantities

mε(t) := sup{x ∈ R : w(t, x) ≥ ε},
mε,−(t) := inf{x ≥ 0 : w(t, x) ≤ ε},
mM (t) := sup{x ∈ R : u(t, x) ≥ M},

mM,−(t) := inf{x ≥ 0 : u(t, x) ≤ M}.

(2.2)

Note that all these quantities are random variables (and their distributions depend on the initial
conditions of the respective equations).

Definition 2.1. The solution to (F-KPP) is said to have a uniformly bounded transition front if
for each ε ∈ (0, 1

2) there exists a constant Cε ∈ (0,∞) such that P-a.s., for all t large enough we
have

mε(t) −m1−ε,−(t) ≤ Cε.

The solution to (PAM) is said to have a uniformly bounded transition front if for all ε,M ∈ (0,∞)
with ε < M , there exists a constant Cε,M ∈ (0,∞) such that P-a.s., for all t large enough,

mε(t) −mM,−(t) ≤ Cε,M . (2.3)

We can now state our two main results. The first one is for the solution to (PAM) and states
that its transition front stays bounded uniformly in time.

Theorem 2.2. If (HÖL), (BDD), (STAT), (MIX) and (VEL) are fulfilled, the solution to (PAM)
has a uniformly bounded transition front. Furthermore, for δ′, C ′ > 0 fixed, the corresponding
constant Cε,M in (2.3) is independent of u0 ∈ IPAM(δ′, C ′).

Our second, and more important, main result states that an analogous statement is in general
not true for the solution to (F-KPP).

Theorem 2.3. There exist potentials ξ fulfilling (HÖL), (BDD), (STAT) and (MIX) such that
the transition front of the solution to (F-KPP) is not uniformly bounded in time. More precisely,
such ξ can be chosen so that for any δ ∈ (0, 1) and any ε > 0 we find a sequence (xn, tn)n∈N in
R × [0,∞) as well as a function ϕ ∈ Θ(lnn) such that
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(a) xn, tn → ∞ as n → ∞, and (xn)n∈N ∈ Θ(n),

(b) for all n ∈ N,
δ = w(tn, xn) ≤ w(tn, xn + ϕ(n)) + ε. (2.4)

This means that, at least along a subsequence of times, the interval of transition in which the
solution changes from being locally unstable (w ≈ 0) to locally stable (w ≈ 1), grows at least
logarithmically in time as t → ∞.

While the previous result will be derived using probabilistic techniques, we will enhance it
employing analytic techniques to show that the statement of Theorem 2.3 is true even for some
“negative ε”. In particular, this entails the non-monotonicity of the solution in space.

Theorem 2.4. There exist potentials ξ fulfilling (HÖL), (BDD), (STAT) and (MIX), some ε > 0
small enough, and sequences (t′n)n∈N, (l′n)n∈N and (r′

n)n∈N in [0,∞) such that t′n, r
′
n, l

′
n ∈ Θ(n),

l′n < r′
n for all n, rn − ln ∈ Θ(lnn) and for all n ∈ N,

w(t′n, l
′
n) ≤ w(t′n, r

′
n) − ε.

Let us already mention here that at a first glance, it may seem slightly difficult to reconcile
the statement of Theorem 2.2 with the the statements of Theorems 2.3 and 2.4. In particular, it
might seem surprising given that oftentimes the linearization of a non-linear PDE is considered to
be a good approximation for the original PDE, at least in the domain where the solutions remain
small. We will address this issue in more detail towards the end of Section 2.1.

Remark 2.5. It will become apparent from the respective proofs that Theorem 2.2–2.4 have imme-
diate discrete space analogues for the respective stochastic partial difference equations. These are
obtained as follows:

(a) In equations (PAM) and (F-KPP), x ∈ R is replaced by x ∈ Z, and the Laplace operator ∆
is replaced by the discrete Laplace operator ∆df(x) = 1

2(f(x+ 1) + f(x− 1) − 2f(x)).

(b) The potential (ξ(x))x∈R is replaced by (ξ(x))x∈Z, the assumption (BDD) is replaced by

ei ≤ ξ(x) ≤ es for all x ∈ Z, and condition (STAT) is replaced by (ξ(x))x∈Z

d
= (ξ(x+ 1))x∈Z.

(c) In (2.2) and Definition 2.1, x ∈ R is again substituted by x ∈ Z.

Then the statements of Theorems 2.2, 2.3 and 2.4 still hold verbatim.

2.1 Discussion and previous results

As already explained in the Introduction, the homogeneous case of constant ξ has been well-
understood by now (and, in fact, to a much finer extent than illustrated in the Introduction, see
e.g. [Bov16] and references therein for further details). Also the heterogeneous case of random
non-linearities we are dealing with has been investigated before. Specifically, under fairly general
assumptions, the existence and characterization of the propagation speed (i.e., the linear order of
the position of the front limt→∞mε(t)/t) have been derived by Freidlin and Gärtner, see e.g. [GF79]
as well as [Fre85, Chapter VII] using large deviation principles. Incidentally, the Feynman-Kac
formula (see also Section 3.1 below), which characterizes the solution to the linearization (PAM),
also played an important role in the derivation.

In the setting described in the Introduction, second order corrections to the positionmε(t) of the
front are obtained in [DS20], where it has been shown that the suitably centered and rescaled front
fulfills an invariance principle. Again, the proof takes advantage of analyzing (PAM) first. Let us
note here that in [Nol11b], a corresponding invariance principle has been derived for non-linearities
that are either ignition type or bistable; note however, that – as will be explained below – on a
logarithmic in time scale these fronts behave quite differently from the fronts to (F-KPP) in our
context. For a different and due technical reasons restricted set of initial conditions, Nolen [Nol11a]
has derived a central limit theorem for the position of the front of the solution to (F-KPP) by
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analytic means. The initial condition w0(x, ξ) of [Nol11a] is required to depend on the randomness
of the environment.

When it comes to the boundedness of transition fronts, Nolen and Ryzhik [NR09] consider the
setting of a stationary, ergodic and bounded ξ. The nonlinearity F is assumed to be of ignition-type.
I.e., there exists θ ∈ (0, 1) such that

F (w) = 0 for all w /∈ (θ0, 1), F (w) > 0 for all w ∈ (θ0, 1), and F ′(1) < 0. (2.5)

They find that the solution to (F-KPP) has a uniformly bounded transition front, see [NR09,
Proposition 2.3]. Our main result Theorem 2.3 entails that condition (2.5) is crucial here, since
otherwise one cannot expect uniformly bounded transition fronts.

Also note that in [DS20, Theorem 1.4] it has been shown that in the setting of the current
article, the front of the solution to (F-KPP) lags behind the front of the solution to (PAM) at
most logarithmically in t. More precisely, for ε ∈ (0, 1),

mε(t) −mε(t) ∈ O(ln t), t → ∞.

Therefore, it immediately arises the question whether this upper bound is sharp. Theorem 2.3
provides the following partial affirmative answer: There exists an increasing sequence (tn) of times

with tn ∈ (0,∞) such that limn→∞ tn = ∞ and a sequence (xn) of reals such that m
1
2 (tn) − xn ≥

c0 log tn such that for all n ∈ N :

w(tn, xn) <
1

2
and (by definition) u(tn,m

1
2 (tn)) =

1

2
.

As in the homogeneous context, there are profound and interesting links to branching processes
(in random environment). In [ČD20], in the setting of discrete space, invariance principles have
been derived for the position of the front of the PAM as well as the position of the maximum
of BRWRE. Furthermore, it has been shown that the distance between these two quantities is in
O(ln t) as t → ∞. In this context, a subtle but important difference to the homogeneous setting
is that the solution to (F-KPP) and the maximum of branching Brownian motion in random
environment (BBMRE; see Section 3.2 below for the precise definition) do exhibit a slightly more
involved interrelation. In particular, neither can we directly transfer the sub-sequential tightness
result of Kriechbaum [Kri20] for the law of the maximum of branching random walk in random
environment (BRWRE) in the context of [ČD20] to the setting of (F-KPP), nor can we directly
obtain a respective non-tightness result for BBMRE from our unbounded transition fronts for
the solution to (F-KPP). Furthermore, it is trivial that the distribution function wξ≡const(t, ·)
of the maximum of a BBMRE at time t, which is the solution to (F-KPP) with ξ ≡ const, is
non-increasing in space. This again is in stark contrast to Theorem 2.4, which states that this is
not the case for the solution to (F-KPP) anymore if ξ exhibits “enough” irregularity.

As already alluded to above, Theorem 2.2 as well as Theorems 2.3 and 2.4 might seem slightly
surprising in the light of each other, since they imply that the front of (F-KPP) behaves qual-
itatively quite differently from that of (PAM). In this context, note that Theorem 2.2 requires
condition (VEL) to be fulfilled, while the potential ξ satisfying the properties stated in Theo-
rems 2.3 and 2.4 is constructed in (5.3) from the sole assumption es/ei > 2 of (5.2). In Section
B below, cf. Proposition B.2, we show that these conditions can be fulfilled simultaneously and
hence this regime of qualitatively different behaviors for the solutions of (F-KPP) and (PAM) is
non-trivial.

While from a PDE point of view we lack the experience as well as a good enough control of
the fronts that would enable us to explain this phenomenon, it becomes more tractable from a
probabilistic point of view. Indeed, we will see below, cf. Proposition 3.1, that the solution to
(PAM) can be represented in terms of expectations of a Brownian motion in random potential, i.e.
as

u(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs) ds

}
1(−∞,0](Bt)

]
.

Here, x which are of linear order in time t, such as mε(t), turn out to be probabilistically “costly”
in the sense that for large C > 0, Brownian motion in the expectation corresponding to u(t, x−C),

5



i.e. starting in x − C and being to the left of the origin at time t, has to make less of an effort
in terms of large deviations than Brownian motion starting in x and being to the left of the
origin at time t. Nevertheless, the former can still collect at least as high potential values as the
latter, since, typically between x − C and 0 there are enough locations where ξ is large. As a
consequence, u(t, x) ≪ u(t, x−C) for C large, which at least on a heuristic level explains how the
uniform boundedness of the transition fronts to (PAM) stated in Theorem 2.2 comes about.

On the other hand, regarding the solution to (F-KPP) one has a representation in terms of a
maximum of branching Brownian motion in random environment (to be introduced in Section 3.2),
see Proposition 5.1. The coupling we will construct below in Section 5.2 demonstrates that when
it comes to the displacement of this maximum from the starting site of the process, a crucial role is
played by the values of the potential in an environment of the starting point. Exploiting this fact
in a subtle manner, we arrive at the diverging sequence of times given in Theorem 2.4 at which
the front of (F-KPP) is getting wider and wider. What is more, this result can be strengthened
to even deduce the non-monotonicity stated in Theorem 2.4.

Open Questions:

(i) We expect that the front of the solution to (F-KPP) shifts from exhibiting unbounded tran-
sition fronts (essentially when es − ei large, and maybe further conditions, cf. Theorem 2.3)
to exhibiting bounded transition fronts (essentially if es − ei small, and maybe further condi-
tions, cf. (1.1)). While it is not clear if “small” means “vanishes” in this context, let us point
out here that—while periodic media are oftentimes taken to be a simple instance for hetero-
geneous or random media, cf. also [Fre85, HNRR16, LTZ20]—it is clear from our proofs that
the phenomenon of long stretches of areas of high and low potential, which is crucial in our
proof, is not observed for periodic media.

(ii) Is there a logarithmic upper bound corresponding to the result of Theorem 2.3 as well, in
the sense that mε(t) −m1−ε,−(t) ≤ C log t for all t large enough?

Organization of the article: In Section 3, we recall the well-known Feynman-Kac formula for the
solutions to (F-KPP) and (PAM), and introduce branching Brownian motion in random environ-
ment, which plays the role of a key tool in this article. Section 4 contains the proof of Theorem 2.2,
together with some preparatory results concerning the perturbation of the solution to (PAM) in
space and concentration results for the logarithmic moment generating functions. Finally, Section 5
deals with the proofs of the main results about the F-KPP equation, Theorems 2.3 and 2.4.

This article is closely related to [DS20]. While it takes advantage of some results derived in
[DS20], it also provides suitable results such as Lemma 4.1 in a natural context, and which are
also taken advantage of in [DS20].

3 Preliminaries

In this section we recall two important well-known results which are used to prove our main
theorems, and introduce the related notation.

3.1 Feynman-Kac representation

An important tool for the investigation of the solutions to (F-KPP) and (PAM) are their Feynman-
Kac representations. Here and in what follows, for x ∈ R arbitrary, we denote byEx the expectation
operator with respect to the probability measure Px under which the process (Bt)t≥0 is a standard
Brownian motion starting in x.

Proposition 3.1 (Feynman-Kac formula, [Bra83, (1.32)]). Under the assumptions of Section 2,
the (unique) non-negative solution u to (PAM) is given by

u(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs) ds

}
u0(Bt)

]
, (3.1)
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while the (unique) non-negative solution w to (F-KPP) fulfills

w(t, x) = Ex

[
exp

{ ∫ t

0
ξ(Bs)F (w(t− s,Bs))/w(t− s,Bs) ds

}
w0(Bt)

]
. (3.2)

Remark 3.2. In fact, we will take (3.1) and (3.2) as the definition of the solution to (PAM) and
(F-KPP), respectively. Indeed, while the function (3.1) is given explicitly, there exists a unique
function satisfying (3.2) (see e.g. [Fre85, Theorem 7.4.1]). If the solution to (PAM) and (F-KPP)
exist, it can be shown (see e.g. [KS91, Corollary 4.4.5] for (PAM) and [Fre85, (1.4), p. 354, and
(a), p. 355] for (F-KPP)) that they satisfy (3.1) and (3.2), respectively.

3.2 Branching Brownian motion in random environment

A key tool for proving Theorems 2.3 and 2.4 is the correspondence between the solution to (F-KPP)
and branching Brownian motion in random environment, cf. Proposition 5.1 below. Branching
Brownian motion in random environment ξ (BBMRE) started at x ∈ R is defined as follows: Con-
ditionally on the realization of ξ, we place one particle at x at time 0. As time evolves, all particles
move independently according to standard Brownian motion. In addition, and independently of
everything else, while at y, a particle splits at rate ξ(y). Once a particle splits, this particle is
removed and, randomly and independently from everything else with probability pk, replaced by k
new particles that are put at the position y of the removed particle. These k new particles evolve
independently according to the same diffusion-branching mechanism as the remaining particles.
This defines branching Brownian motion in the branching environment ξ with offspring distribu-
tion (pk). For every x ∈ R and ξ, Eξ

x denotes the corresponding expectation of the probability
measure Pξ

x of a BBMRE, starting in x.
If the respective BBMRE is evident from the context, we use N(t) to denote the set of particles

alive at time t in this BBMRE. For any particle Y ∈ N(t), we denote by (Ys)s∈[0,t] the trajectory
of itself and its ancestors up to time t. We will also call (Ys)s∈[0,t] the genealogy of Y . For t ≥ 0
and x ∈ R, we define

N≥(t, x) := {Y ∈ N(t) : Yt ≥ x} and N≤(t, x) := {Y ∈ N(t) : Yt ≤ x} (3.3)

as the number of particles in the process at time t which are located to the right or to the left of
x. Furthermore, in a slight abuse of notation, we also use N to denote an entire BBMRE process.

To complete the list of notation, for a stochastic process X = (Xt)t≥0 and some Borel set
B ⊂ R, we denote HB(X) := inf{t ≥ 0 : Xt ∈ B} and set Hx(X) := H{x}(X), x ∈ R. For a
particle Y ∈ N(t) of a BBMRE, we set HB(Y ) = inf{s ∈ [0, t] : Ys ∈ B}, where (Ys)s≥0 is the
genealogy of Y and as usual inf ∅ = ∞.

4 Boundedness of the front for PAM

In this section we show our first main result, the boundedness of the front for the equation (PAM),
that is Theorem 2.2.

4.1 A perturbation estimate

The main tool in the proof is a space perturbation result for the solution to (PAM) in a regime of
sub-linear perturbation, see Lemma 4.1 bellow.

To state this lemma we need to introduce some notation. Let ζ(x) := ξ(x) − es ≤ 0 with es

defined in (BDD). For η < 0, define the logarithmic moment generating function as well as the
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related quantities

Lζ
x(η) := lnEx

[
exp

{ ∫ H⌈x⌉−1

0
(ζ(Bs) + η) ds

}]
, x ∈ R,

L
ζ
x(η) :=

1

x
lnEx

[
exp

{ ∫ H0

0
(ζ(Bs) + η) ds

}]
, x > 0,

L(η) := E
[
Lζ

1(η)
]
,

Sζ,v
x (η) := x

(η
v

− L
ζ
x(η)

)
, x > 0, v > 0.

(4.1)

Some elementary properties of these functions are recalled in the Appendix. Here we note that,

under the assumptions (BDD), (STAT), and (MIX) on the potential ξ, we have E[L
ζ
x(η)] = L(η)

for all η < 0 and all x > 0. Further observe that using the strong Markov property one easily
shows that for any x ≥ 1,

xL
ζ
x(η) = Lζ

x(η) +

⌈x⌉−1∑

i=1

Lζ
i (η) =:

x∑

i=1

Lζ
i (η), (4.2)

where the last equality should be seen as the definition of the sum on the right-hand side. For
convenience, for 1 ≤ x ≤ y, we also define

y∑

i=x+1

Lζ
i (η) :=

y∑

i=1

Lζ
i (η) −

x∑

i=1

Lζ
i (η), and

x∑

i=y+1

Lζ
i (η) := −

y∑

i=x+1

Lζ
i (η). (4.3)

Furthermore, it essentially follows from Lemma A.1(b) that

(
η 7→ Lζ

x(η) : x ∈ R, ζ ∈ Ω with ei − es ≤ ζ ≤ 0
)

is a family of
equicontinuous functions on every compact interval I ⊂ (−∞, 0).

(4.4)

We further define tilted probability measures under which the process (Bt)t≥0 moves on average
with speed v up to time t, cf. (4.6) below. We start with introducing the family of tilted probability
measures

P ζ,η
x (·) := exp

{ − xL
ζ
x(η)} · Ex

[
exp

{ ∫ H0

0

(
ζ(Bs) + η

)
ds

}
; ·

]
, x > 0, (4.5)

on the space of continuous functions mapping the (initial) argument 0 to x and vanishing only at
their (variable) terminal argument. We denote the corresponding expectation operator by Eζ,η

x .
Then we fix a compact interval V ⊂ (vc,∞) (see Lemma A.2 (d) for the notation) containing v0 in
its interior. It is known, see Lemma A.4, that there exists a compact interval △ ⊂ (−∞, 0), such

that P-a.s., for all t large enough and all v ∈ V , there exists a unique ηζ
vt(v) ∈ △ fulfilling

E
ζ,ηζ

vt(v)
vt [H0] = vt

(
L

ζ
vt

)′
(ηζ

vt) = t. (4.6)

As consequence, there exists a P-a.s. finite random position N1 = N1(ξ, V,△) such that the event

Hx := Hx(V,△) :=
{
ηζ

x(v) ∈ △ for all v ∈ V
}

occurs for all x ≥ N1. (4.7)

Further, by Lemma A.2 (d) there exists η(v) < 0, v ∈ V , such that

L′(η(v)) =
1

v
.

Finally, we have that

η(V ) ⊂ △ and η is uniformly Lipschitz continuous on V, (4.8)

cf. [DS20, (2.22) and below (3.30)].
We can now state our main perturbation lemma.
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Lemma 4.1. Let ε(t) be a positive function such that ε(t) → 0 and tε(t)
ln t → ∞ as t → ∞. Then

for all δ > 0 there exists C = C(δ) > 0 such that P-a.s., for all u0 ∈ IPAM we have

(a)

lim sup
t→∞

sup

{∣∣∣∣
1

h
ln

(
u(t, vt+ h)

u(t, vt)

)
− L

(
η(v)

)∣∣∣∣ : (v, h) ∈ Et

}
≤ δ, (4.9)

where Et :=
{

(v, h) : v, v + h
t ∈ V, C(δ) ln t ≤ |h| ≤ tε(t)

}
.

(b) Let ε(t) be a positive function such that ε(t) → 0. Then there exists a constant C1 < ∞ and
a P-a.s. finite random variable T1 such that for all t ≥ T1, uniformly in 0 ≤ h ≤ tε(t), v ∈ V ,
v + h

t ∈ V and u0 ∈ IPAM we have

C−1
1 e−C1h u(t, vt) ≤ u(t, vt+ h) ≤ C1e

−h/C1 u(t, vt). (4.10)

Remark 4.2. Lemma 4.1 is a continuous-space version of [ČD20, Lemma 5.1] and its proof follows
similar lines. We will only need part (b) of this lemma in this paper, for the proof of Theorem 2.2.
Part (a) is required in [DS20], where an invariance principle for m(t) is proved. However, the proof
of Lemma 4.1(b) heavily builds on that of (a), which is why it is natural to provide it here.

Proof of Lemma 4.1. (a) It is shown in [DS20, (3.24)] that there exists a constant C̃ = C̃(δ′, C ′),
with δ′, C ′ from (PAM-INI), such that for all u0 ∈ IPAM, all v ∈ V, and all t large enough

C̃−1u1(−∞,0](t, vt) ≤ uu0(t, vt) ≤ C ′u1(−∞,0](t, vt). (4.11)

where uu0 denotes the solution to (PAM) with initial condition u0. Therefore, in order to establish
(4.9), it is enough to consider u0 = 1(−∞,0].

For this u0, the solution to (PAM) can be represented by the Feynman-Kac formula (see
Proposition 3.1)

u(t, vt) = Evt

[
e
∫ t

0
ξ(Bs) ds;Bt ≤ 0

]
.

If follows from [DS20, Corollary 3.8 and (3.9)] that if Hvt occurs, then, up to a universal multi-
plicative constant, this can be approximated by

Evt

[
e
∫ H0

0
ξ(Bs) ds;H0 ≤ t

]
.

We now consider t large enough such that Hvt occurs for all v ∈ V . Taking (v, h) ∈ Et and defining
v′ := v + h

t ∈ V , we see that Hv′t occurs as well. Therefore the fraction in (4.9), up to a positive
multiplicative constant, is equal to

Ev′t
[
exp

{ ∫ H0
0 ζ(Bs) ds

}
;H0 ≤ t

]

Evt
[
exp

{ ∫ H0
0 ζ(Bs) ds

}
;H0 ≤ t

] =
Ev′t

[
exp

{ ∫ H0
0

(
ζ(Bs) + ηζ

v′t(v
′)

)
ds

}
e−ηζ

v′t
(v′)H0 ;H0 ≤ t

]

Evt
[
exp

{ ∫ H0
0

(
ζ(Bs) + ηζ

vt(v)
)

ds
}
e−ηζ

vt(v)H0 ;H0 ≤ t
] .

Using that E
ζ,ηvt(v)
vt [H0] = E

ζ,ηv′t(v′)
v′t [H0] = t, recalling (4.1) and (4.5), the latter fraction can be

written as

E
ζ,ηζ

v′t
(v′)

v′t

[
e−ηζ

v′t
(v′)(H0−E

ζ,η
ζ

v′t
(v′)

v′t
[H0]);H0 − E

ζ,ηζ

v′t
(v′)

v′t [H0] ≤ 0
]

E
ζ,ηζ

vt(v)
vt

[
e−ηζ

vt(v)(H0−E
ζ,η

ζ
vt

(v)

vt [H0]);H0 − E
ζ,ηζ

vt(v)
vt [H0] ≤ 0

]
· exp

{
Sζ,v

vt (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
v′t(v

′))
}
,

Since Hvt and Hv′t occur, the first fraction is bounded from below and above by positive constants
(see [DS20, Lemma 3.6]). The logarithm of the second factor divided by h can be written as

1

h

(
Sζ,v

vt (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
vt(v))

)
+

1

h

(
Sζ,v′

v′t (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
v′t(v

′))
)
. (4.12)
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We claim that the second summand in (4.12) tends to 0 uniformly in (v, h) ∈ Et as t → ∞,
P-a.s. Indeed, by a Taylor expansion we get

Sζ,v′

v′t (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
v′t(v

′))

= (Sζ,v′

v′t )′(ηζ
v′t(v

′)) · (
ηζ

vt(v) − ηζ
v′t(v

′)
)

+
1

2
(Sζ,v′

v′t )′′(η̃)
(
ηζ

vt(v) − ηζ
v′t(v

′)
)2

(4.13)

for some η̃ ∈ △ between ηζ
v′t(v

′) and ηζ
vt(v). By (4.6) and Lemma A.1 we have (Sζ,v′

v′t )′(ηζ
v′t(v

′)) = 0.

Lemma A.2 (b) entails that (L
ζ
v′t)

′′(·) is uniformly bounded on △ and thus

(Sζ,v′

v′t )′′(η̃) = −v′t(L
ζ
v′t)

′′(η̃) ∈ [−v′tc−1
1 ,−v′tc1]. (4.14)

Furthermore, by Lemma A.5 we have

∣∣ηζ
vt(v) − ηζ

v′t(v)
∣∣ ≤ c2

|h|
vt

≤ c3
|h|
t
, (4.15)

and by [DS20, (3.31)]

∣∣ηζ
v′t(v) − ηζ

v′t(v
′)

∣∣ ≤ c4|v − v′| = c4
|h|
t
. (4.16)

Thus, for all t large enough, uniformly in (v, h) ∈ Et, we get

∣∣∣
1

h

(
Sζ,v′

v′t (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
v′t(v

′))
)∣∣∣ ≤ c5

|h|
t

≤ ε(t), (4.17)

which tends to zero by assumption.
It remains to show convergence of the first summand in (4.12). We first note that, using the

notation introduced in (4.2), (4.3),

1

h

(
Sζ,v

vt (ηζ
vt(v)) − Sζ,v′

v′t (ηζ
vt(v))

)
=

1

h

v′t∑

i=vt+1

Lζ
i (ηζ

vt(v)). (4.18)

To finish the proof, we will use the following lemma. Recall N1 from definition (4.7) and let
ε∗(t) := sups∈[⌊t⌋,⌈t⌉] ε(s).

Lemma 4.3 (cf. [ČD20, Claim 5.2]). For every δ > 0 and every q ∈ N, there exists C0 = C0(q, δ) >
0 such that for all t ≥ 1

P

(
sup

C0 ln⌊t⌋≤|h|≤⌈t⌉·ε∗(t),
v∈V

∣∣∣L(η(v)) − 1

h

vt+h∑

i=vt+1

Lζ
i (ηζ

vt(v))
∣∣∣ > δ,

(
vt ≥ N1 ∀v ∈ V

))
≤ ct−q. (4.19)

To not disturb the flow of reading, we postpone the proof of Lemma 4.3 to Section 4.2 below.
We let At be the first event and Bt be the second event on the left-hand side of (4.19). By
Lemma 4.3 with q = 2 and C0 = C0(2, δ/3),

∑
n P(An, Bn) < ∞ and thus, by the first Borel-

Cantelli lemma, P-a.s. the event An ∩Bn occurs only finitely often. Because N1 is P-a.s. finite, we
get

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣L(η(v)) − 1

h

v⌊t⌋+h∑

i=v⌊t⌋+1

Lζ
i (ηζ

v⌊t⌋(v))
∣∣∣ ≤ δ

3
(4.20)

P-a.s. for all t large enough.
To bound the right-hand side of (4.18), we need to replace v⌊t⌋ in (4.20) by vt. First note that

for all x, y, z ∈ R such that x ≤ y ≤ z, due to the strong Markov property at Hy, similarly as (4.2),

we have
∑z

i=x+1 L
ζ
i (η) =

∑y
i=x+1 L

ζ
i (η) +

∑z
i=y+1 L

ζ
i (η) and thus

v⌊t⌋+h∑

i=v⌊t⌋+1

Lζ
i (η) −

vt+h∑

i=vt+1

Lζ
i (η) = lnEvt

[
e
∫ Hv⌊t⌋

0 (ζ(Bs)+η)] − lnEvt+h

[
e
∫ Hv⌊t⌋+h

0 (ζ(Bs)+η)].
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By [BS15, (2.0.1), p. 204] we have

lnEx
[
e−cHy

]
=

√
2c|y − x|, for all c ≥ 0 and x, y ∈ R. (4.21)

Therefore, for all t large enough, for every η ∈ △ ⊂ (−∞, 0) and 0 ≥ ζ(x) ≥ −(es − ei),

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣
1

h

( v⌊t⌋+h∑

i=v⌊t⌋+1

Lζ
i (η) −

vt+h∑

i=vt+1

Lζ
i (η)

)∣∣∣ ≤ 2v
√

2(|η| + (es − ei))

C0 ln t
≤ δ

3
. (4.22)

In particular, since ηζ
v⌊t⌋(v) ∈ △ ⊂ (−∞, 0) (cf. (4.8)), (4.22) holds with η replaced by ηζ

v⌊t⌋(v).
Moreover, By Lemma A.5, there exists C > 0 such that P-a.s. for all x large enough we have
supv∈V |ηζ

x+h(v) − ηζ
x(v)| ≤ C h

x for all h ∈ [0, x]. Using the equicontinuity (4.4) of Lζ
x(·), we get

that P-a.s. for all t large enough,

sup
C0 ln t≤|h|≤tε(t),

v∈V

∣∣∣
1

h

vt+h∑

i=vt+1

(
Lζ

i (ηζ
v⌊t⌋(v)) − Lζ

i (ηζ
vt(v))

)∣∣∣ ≤ δ

3
. (4.23)

Applying the triangle inequality to the inequalities (4.20)–(4.23), the absolute value of the dif-
ference of the right-hand side of (4.18) and L(η(v)) is bounded from above by δ, uniformly in
(v, h) ∈ Et for all t large enough, completing the proof of claim (a).

(b) Analogously to the first steps in the proof of (a), it is enough to consider the case u0 =
1(−∞,0], and then to show that the expression in (4.12) is bounded from above and below by
negative constants, uniformly for all 0 < h ≤ tε(t). Performing the same calculations as in the
proof of (a), i.e. using equations (4.13) to (4.16), one can observe that the second summand in (4.12)
is contained in the interval [−c5

h
t , 0] for c5 from (4.17) uniformly for all v ∈ V and v′ := v+ h

t ∈ V
and all t large enough.

For the first summand in (4.12), we mention that due to the strong Markov property at time
Hvt, we have

Sζ,v
vt (ηζ

vt(v)) − Sζ,v′

v′t (ηζ
vt(v)) = lnEvt+h

[
e
∫ H0

0
(ζ(Bs)+ηζ

vt(v)) ds] − lnEvt
[
e
∫ H0

0
(ζ(Bs)+ηζ

vt(v)) ds]

= lnEvt+h

[
e
∫ Hvt

0
(ζ(Bs)+ηζ

vt(v)) ds]
.

Using (4.21), (BDD) and ηζ
vt(v) ∈ △ ⊂ (−∞, 0), for all t large enough, we get

−
√

2(|ηζ
vt(v)| + es − ei)h ≤ lnEvt+h

[
e
∫ Hvt

0
(ζ(Bs)+ηζ

vt(v)) ds] ≤ −
√

2|ηζ
vt(v)|h (4.24)

and we can conclude.

4.2 Proof of Lemma 4.3

To finish the proof of Lemma 4.1, we still have to provide the proof of Lemma 4.3.

Proof of Lemma 4.3. We decompose the difference in (4.19) as

L(η(v)) −
vt+h∑

i=vt+1

Lζ
i (ηζ

vt(v)) = L(η(v)) −
vt+h∑

i=vt+1

Lζ
i (η(v)) +

vt+h∑

i=vt+1

(
Lζ

i (ηζ
vt(v)) − Lζ

i (η(v))
)
. (4.25)

To bound the last summand on the right-hand side, we again recall that the family
(
Lζ

i (·) : i ∈
R, 0 ≥ ζ(·) ≥ ei − es

)
is bounded and uniformly equicontinuous on △. Therefore, by Lemma A.4,

we have

P

(
sup

ln⌊t⌋≤|h|≤⌈t⌉ε∗(t),
v∈V

∣∣∣
1

h

vt+h∑

i=vt+1

(
Lζ

i (ηζ
vt(v)) − Lζ

i (η(v))
)∣∣∣ >

δ

2
, vt ≥ N1 ∀v ∈ V

)
≤ ct−q
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for t large enough. It thus suffices to bound the first summand in (4.25), i.e. to show that there
exists C0 = C0(ε, q) > 0 such that for all t large enough we have

P

(
sup

C0 ln⌊t⌋≤|h|≤⌈t⌉ε∗(t),
v∈V

∣∣∣L(η(v)) − 1

h

vt+h∑

i=vt+1

Lζ
i (η(v))

∣∣∣ >
δ

2

)
≤ ct−q. (4.26)

Hence, for every h we write hL(η) − ∑vt+h
i=vt+1 L

ζ
i (η) =

∑⌊h⌋+2
i=1 L̃ζ,h,v

i (η), where (L̃ζ,h,v
i (η))

⌊|h|⌋+2
i=1

is a sequence of centered random variables, which are P-a.s. uniformly bounded in v ∈ V , h ∈ R,
t ∈ R and η ∈ △, as well as fulfill the mixing condition from [DS20, Lemma A.2]. Thus, we can
apply Lemma A.6 to show that there exist constants C > 0 and C0(ε, q) > 0, such that for all
v ∈ V and all h fulfilling |h| ≥ C0 ln t we have

P

(∣∣∣L(η) − 1

h

vt+h∑

i=vt+1

Lζ
i (η(v))

∣∣∣ >
δ

2

)
≤ √

e exp
{

− 1

2C⌊h⌋
( |h|ε

2

)2}
≤ ct−q−3

for all t large enough.
To get the “uniform bound” from (4.26), we first show it on the grid Vn := ( 1

nZ) ∩ V and

C
(t)
n := ( 1

nZ) ∩ [ln⌊t⌋, ⌈t⌉ε∗(t)], n ∈ N. Indeed, because |Vn| ≤ (diam(V ) + 1)n and |C(t)
n | ≤ nt, we

get

P

(
sup

|h|∈C
(t)

⌊t⌋, v∈V⌊t⌋

∣∣∣L(η(v)) − 1

h

vt+h∑

i=vt+1

Lζ
i (η(v))

∣∣∣ >
δ

2

)
≤ diam(V )C · t−q (4.27)

for all t large enough. To control all v ∈ V and |h| ∈ [ln⌊t⌋, ⌈t⌉ε∗(t)], we note that for all s ≥ 0 we
have

lnEvt+ k
n

+s

[
e
∫ Hvt

0
(ζ(Bs)+η) ds] − lnEvt+ k

n

[
e
∫ Hvt

0
(ζ(Bs)+η) ds]

= lnEvt+ k
n

+s

[
e
∫ Hvt+ k

n
0

(ζ(Bs)+η) ds] ∈
[

− s
√

2(es − ei + |η|), 0
]

where the last display is again a consequence of (4.21). Thus all h not on the grid the terms in
(4.27) differ at most by a term of order 1/t. A similar statement holds for all v ∈ V not on the
grid, because η(·) is uniformly Lipschitz continuous on V (see (4.8)). Thus the uniform bound in
(4.27) can be extended to be valid for all h such that C0 ln⌊t⌋ ≤ |h| ≤ ⌈t⌉ε∗(t). This completes the
proof.

4.3 Proof of Theorem 2.2

We can now finally return to our first main result: the boundedness of the front of (PAM). Its
proof builds on the perturbation estimate from Lemma 4.1 (b), and is rather straightforward.

Proof of Theorem 2.2. Due to (VEL), we can choose a compact interval V ⊂ (vc,∞) such that v0

is in the interior of V . Observe first that the existence of the Lyapunov exponent for the solution
of (PAM) (see Proposition A.3) directly implies that the left front mM,−(t) as well as the right
front mε(t) of the solution to (PAM) (as defined in (2.2)) satisfy, for arbitrary initial condition
u0 ∈ IPAM and every ε,M > 0, P-a.s.

lim
t→∞

mε(t)

t
= lim

t→∞
mM,−(t)

t
= v0. (4.28)

In particular, mε(t)/t ∈ V and mM,−(t)/t ∈ V for t large enough, since we assume that v0 is in
the interior of V , and at := mε(t) −mM,−(t) ∈ o(t).
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By Lemma 4.1 (b), uniformly in u0 ∈ IPAM and v ∈ V , for all t large enough such that
vt+ at ∈ V , we get

u(t, vt+ at)

u(t, vt)
=

⌊
√

t⌋∏

k=1

u(t, vt+ kat/⌊
√
t⌋)

u(t, vt+ (k − 1)at/⌊
√
t⌋)

≤ (
C1e

−at/(C1⌊
√

t⌋))⌊
√

t⌋
= e

−at/C1(1− ⌊
√

t⌋
at

·C1 ln C1)
.

(4.29)

Now we have all we need to prove Theorem 2.2. Set Cε,M := 2C1 ln
(2MC1

ε

)
and ε(t) :=

2t−1/2C1 lnC1. Assume by contradiction that the claim of the theorem does not hold. Then there
exist 0 < ε ≤ M and a (random) sequence (tn)n∈N such that tn −→

n→∞ ∞ and atn = mε(tn) −
mM,−(tn) ≥ Cε,M for all n ∈ N. Recalling that mε(t)/t ∈ V , we get for all n large enough that

ε = u(tn,m
ε(tn)) = u

(
t,mM,−(tn) + atn

) ≤ u(tn,m
M,−(tn)) · C1e

−atn /2C1 ≤ ε/2,

where in the first inequality we used Lemma 4.1 (b) if atn ≤ tnε(tn) and (4.29) if atn > tnε(tn).
This is a contradiction. As a consequence, we must have 0 ≤ mε(t) − mM (t) ≤ Cε,M for all t
large enough. Furthermore, this inequality holds uniformly for all u0 ∈ IPAM(δ′, C ′), because C1

is independent of u0 ∈ IPAM(δ′, C ′), proving the claim of the theorem.

5 Unbounded transition front for randomized F-KPP equation

In this section we show our main results about the transition front for the solution to (F-KPP),
Theorems 2.3 and 2.4. The proofs are based on the following branching process representation of
the solution.

Proposition 5.1 ([DS20, Proposition 2.1]). Let ξ : R → [0,∞) be a non-negative bounded function
satisfying (HÖL), F as in (PROB), and let f : R → [0, 1] be a function which can be pointwise
approximated by an increasing sequence of continuous functions. Then the function

w(t, x) := 1 − E
ξ
x

[ ∏

Y ∈N(t)

f(Yt)
]

solves the equation

wt =
1

2
wxx + ξ(x)F (w)

with initial condition w(0, ·) = 1 − f . In particular,

w(t, x) = P
ξ
x(N≤(t, 0) 6= ∅) (5.1)

solves this equation with f = 1(0,∞), i.e. w(0, ·) = 1(−∞,0].

Remark 5.2. Note that Proposition 5.1 slightly differs from the usual McKean representation in
homogeneous branching environment. More precisely, for ξ ≡ c being a constant function and
w(0, ·) = 1(−∞,0], the canonical representation is given by w(t, x) = Pc

0(N≥(t, x) 6= ∅). This
representation follows from Proposition 5.1 using the symmetry Pc

x(N≤(t, 0) 6= ∅) = Pc
0(N≥(t, x) 6=

∅) which is a consequence of the reflection symmetry of the Brownian motion and the homogeneity
of the environment. However, this identity fails to hold if ξ is non-homogeneous.

5.1 The potential

We start the proof of Theorem 2.3 by constructing a suitable potential ξ, for which we then show
the unboundedness of the transition front of the solution to (F-KPP). We fix two positive finite
constants es and ei such that

es

ei
> 2. (5.2)
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We further let δ1, δ2 ∈ (0, 1) be small positive constants, which will be fixed at the end of the proof
of Lemma 5.5, see the paragraph below (5.28).

It is an interesting open question whether the condition (5.2) is necessary for the unboundedness
of the front. We could not improve it using the methods of this paper, see in particular after (5.25)
where the condition (5.2) is crucially needed.

Let furthermore χ : [0,∞) → [0, 1] be a continuous non-increasing function with χ(x) = 1 for
x ≤ 1 and χ(x) = 0 for x ≥ 2, and let ω = (ωi)i∈Z be a Poisson point process on R with intensity
1 constructed on (Ω,F ,P). We then define our potential via

ξ(x) := ei + (es − ei) · sup{χ(|x− ωi|) : i ∈ Z}. (5.3)

Observe that the map x 7→ ξ(x) is a continuous function, ξ(x) ∈ [ei, es] for all x ∈ R, ξ(x) = ei

if |x − ωi| > 2 for all i, and ξ(x) = es if there exists ωi such that |x − ωi| ≤ 1. Also, using the
properties of the Poisson point process, ξ fulfills (BDD), (STAT) and (MIX). See Figure 1 for an
illustration of this potential.

xn

es

ei

ξ(x)

x0

2ϕ(n) 2ϕ(n)

Figure 1: Realization of a potential ξ (top red line) fulfilling (5.4) with ϕ(n) = c0 lnn. Here we
chose χ(x) = ((3 − 2x) ∧ 1) ∨ 0.

The crucial property of this potential is that it has long stretches where it equals ei that are
adjacent to comparably long stretches where it equals es, as is proved in the next lemma.

Lemma 5.3. There is a constant c0 > 0 such that P-a.s. there exists a (random) increasing
sequence (xn)n∈N of reals tending to infinity, such that

ξ(x) = ei ∀x ∈ [xn − 2c0 lnn, xn],

ξ(x) = es ∀x ∈ [xn + 2, xn + 2c0 lnn− 2],
(5.4)

and ξ(·) is non-decreasing on [xn − 2c0 lnn, xn + 2c0 lnn− 2]. Moreover, P-a.s.,

1 ≤ lim inf
n→∞ n−1xn ≤ lim sup

n→∞
n−1xn ≤ 2. (5.5)

Proof. The proof is an easy application of the Borel-Cantelli lemma. For k ∈ N, let Ak,n be the
event

Ak,n =

{
ω : ω ∩ [n+ (4k − 2)c0 lnn− 2, n+ 4kc0 lnn+ 2) = ∅ and

ω ∩ [n+ 4kc0 lnn+ ℓ, n+ 4kc0 lnn+ ℓ+ 1) 6= ∅ for all ℓ = 2, . . . , ⌊2c0 lnn⌋ − 3

}
.

Observe that if Ak,n occurs, then ξ satisfies (5.4) with xn = n + 4kc0 lnn, and that Ak,n only
depends on ω in the interval [n+ (4k− 2) lnn− 2, n+ 4k lnn+ ⌊2 lnn⌋ − 2). Therefore, the events
(Ak,n)k∈N are independent. Moreover,

P(Ak,n) = e−2c0 ln n−4
⌊2c0 ln n⌋−3∏

ℓ=2

(1 − e−1) ≥ α−c0 ln n = n−c0 ln α

for some α > 1 independent of c0. Therefore, using 1 − x ≤ e−x,

P

( n/(4c0 ln n)−1⋂

k=0

Ac
k,n

)
≤ (1 − n−c0 ln α)n/(4c0 ln n) ≤ exp{−n1−c0 ln α(4c0 lnn)−1}.

For c0 < 1/ lnα, the right-hand side is summable and thus by the Borel-Cantelli lemma, almost
surely for n large enough, there exists k ∈ [0, n/(4c0 lnn) − 1] such that Ak,n occurs. This implies
that P-a.s. for n large enough there is x ∈ [n, 2n] satisfying (5.4), completing the proof.

14



In the following, if not mentioned otherwise, we will always refer to the sequence (xn) as the
one the existence of which is provided by (5.3).

5.2 The coupling

In the next step towards a proof of Theorem 2.3, we construct a coupling of two BBMREs started
in the vicinity of the points xn where the potential satisfies the conditions (5.4) of Lemma 5.3.

Throughout this section, we assume that the constant c0 and the random sequence xn are as
in Lemma 5.3, and write

ϕ(n) = c0 lnn. (5.6)

In order to emphasize the dependence of the BBMRE on the starting point, we write Nx =
(Nx(t))t≥0 for the BBMRE started from x, that is for the process whose distribution is Pξ

x.
The content of the next proposition is the coupling alluded to above. Its statement is slightly

more general than needed to show Theorem 2.3, since we construct couplings for many different
starting points. This additional control will be useful in the proof of Theorem 2.4. Recall that the
(possibly small but) positive parameter δ1 is fixed below (5.28).

Proposition 5.4. For every ε > 0 there exists C2 = C2(ε) ∈ (0,∞) such that for all n large
enough, l ∈ [xn − 5δ1ϕ(n), xn − 4δ1ϕ(n)], and r ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)], there exists a

coupling Q
ξ
l,r of the BBMREs Nl and Nr such that

Q
ξ
l,r(Nl(t) ⊂ Nr(t) ∀t ≥ C2 lnn) ≥ 1 − ε. (5.7)

For an illustration of the coupling and an explanation of the strategy to show that the event
in (5.7) occurs with high probability, we refer to Figure 2.

Before proving Proposition 5.4, let us first show that it implies Theorem 2.3.

Proof of Theorem 2.3. Using the notation from Proposition 5.4 we set

tn := inf{t ≥ 0 : w(t, xn − 4δ1ϕ(n)) = δ}.

Note that tn ≥ C2 lnn for all n large enough (using xn ≥ n and the fact that the front moves
linearly, see Proposition A.3). By (5.5) and (5.6) we get ϕ ∈ Ω(lnn), xn, tn → ∞, (xn)n∈N ∈ O(n)
and it remains to show (2.4). Let us abbreviate l := xn − 4δ1ϕ(n) and r := xn + 2δ1ϕ(n). By

definition of the coupling Q
ξ
l,r and the representation w(t, x) = Pξ

x

(
N≤(t, 0) 6= ∅)

of the solution to
(F-KPP) (see Proposition 5.1), we have for all n large enough that

δ = w(tn, xn − 4δ1ϕ(n)) = P
ξ
l

(
N≤(tn, 0) 6= ∅)

= Q
ξ
l,r

(
N≤

l (tn, 0) 6= ∅)

≤ Q
ξ
l,r

(
N≤

l (tn, 0) 6= ∅, Nl(t) ⊂ Nr(t) ∀t ≥ C2 lnn
)

+ ε

≤ Q
ξ
l,r

(
N≤

r (tn, 0) 6= ∅)
+ ε = P

ξ
r

(
N≤(tn, 0) 6= ∅)

+ ε

= w(tn, xn + 2δ1ϕ(n)) + ε,

where we used (5.7) in the first inequality. Adapting the notation to that of the statement, we can
conclude.

Proof of Proposition 5.4. To construct the coupling, we endow every particle in Nl and Nr at every
time with a type. The type of the particle does not influence its dynamics within Nl or Nr, but
rather helps to encode the dependence between Nl and Nr under Q

ξ
l,r. At any given time, every

particle in Nl can have either of the types l-mirrored, l-coupled, or bad. Similarly, every particle in
Nr can have either of the types r-mirrored, r-coupled, or free. We denote LM(t), LC(t), B(t) and RM(t),
RC(t) and F(t) the sets of particles with those respective types at time t. A particle is given a type
when it is created, and its type can change only if it branches, meets another particle or hits some
special point in space, as we will describe later. The assignment of the type is a right-continuous
function in times, in the sense that if, e.g., a particle Y changes its type from l-mirrored to bad at
time t, then Y ∈ B(t) and Y ∈ LM(t−).
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L

t

Rl rm R

LM(t)

RM(t)

LC(t)

RC(t)

B(t)

F(t)

xn

Figure 2: An illustration of the coupling mechanism. l-mirrored particles are illustrated in red, r-
mirrored particles in green, while l- and r-coupled particles are illustrated in orange. Free particles
are blue and bad particles are black. The fat red (resp. green) line on the R-axis denotes the set
[xn − 5δ1ϕ(n), xn − 4δ1ϕ(n)] (resp. [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]). Note that xn is nearer to the
green domain, forcing a particle Y ∈ Nl to go a long way to reach high branching-potential. The
event in (5.7) occurs, if at time t = c lnn, all l-mirrored particles (red) are already turned into
l-coupled ones (orange) and no l-mirrored particles have crossed L yet. But then there will be no
bad particles (black) either, which already implies the event in (5.7).

In addition, under the coupling, at every time t ≥ 0, there are bijections µt : LM(t) → RM(t)
and γt : LC(t) → RC(t). The bijections µt “mirror” the positions of the particles:

If Y ∈ LM(t) and Y ′ = µt(Y ) ∈ RM(t), then m− Yt = Y ′
t −m, (5.8)

where m is the midpoint of the segment (l, r),

m :=
1

2
(l + r) ∈ [xn − 2δ1ϕ(n), xn − δ1ϕ(n)].

On the other hand, coupled particles are at the same position:

If Y ∈ LC(t) and Y ′ = γt(Y ) ∈ RC(t), then Yt = Y ′
t . (5.9)

As time evolves, the bijections µt and γt naturally follow the particles. That is, for the mirrored
particles, if Y ∈ LM(t) ∩ LM(t′), Y ′ ∈ RM(t) ∩ RM(t′) and Y ′ = µt(Y ), then also Y ′ = µt′(Y ), and
similarly for the coupled particles.

We set
L := xn − ϕ(n) and R := 2m− L. (5.10)

It will turn out that under the coupling constructed below, the l-mirrored particles will always be
in the interval (L,m), that is {Yt : Y ∈ LM(t)} ⊂ (L,m), see (A) and (C) below. As a consequence
of (5.8) and (5.10), we then have {Yt : Y ∈ RM(t)} ⊂ (m,R). In particular, in combination with
(5.4), we infer that the potential is always larger at the position of an r-mirrored particle than at
the position of the corresponding l-mirrored particle:

If Y ∈ LM(t) and Y ′ = µt(Y ), then ξ(Yt) ≤ ξ(Y ′
t ). (5.11)

We can now describe the dynamics of Nl, Nr and of the types under the coupling Q
ξ
l,r. At time

0, there is one (l-mirrored) particle at position l in Nl and one (r-mirrored) particle at position r in
Nr; this determines the bijection µ0 uniquely. Every particle in Nl (resp. Nr) performs Brownian
motion, independently of the other particles in Nl (resp. Nr). The corresponding mirrored and
coupled particles are required to satisfy (5.8) and (5.9) respectively, which is possible, since the law
of Brownian motion is invariant by reflection; besides these two conditions the motion of particles
in Nl is independent of the motion of particles in Nr.

The branching events occur according to the following rules.
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(a) At time t, every Y ∈ Nl branches with rate ξ(Yt). It is replaced by k new particles, with
probability pk, independently of remaining randomness. The type of the new particles is the
same as of Y .

If a particle Y is l-mirrored (resp. l-coupled), Y ∈ LM(t−) (resp. Y ∈ LC(t−)) before time
t, then the corresponding r-mirrored particle Y ′ = µt−(Y ) (resp. r-coupled particle, Y ′ =
γt−(Y )) branches as well. It is replaced by the same number k of particles. The newly
created particles are set to be r-mirrored (resp. r-coupled) and the bijection µt (resp. γt) is
a natural extension of µt− (resp. γt−) to the newly created particles.

(b) At time t, every r-mirrored particle Y ′ ∈ RM(t−) (mirrored with Y = µ−1
t− (Y ′)) branches

with rate ξ(Y ′
t ) − ξ(2m− Y ′

t ) = ξ(Y ′
t ) − ξ(Yt), in addition to the branching occurring in (a).

This rate is non-negative due to (5.8) and (5.11). It is replaced by k new particles, with
probability pk, independently of everything else. One of the newly created particles, say Z ′,
is set to be r-mirrored, and we set µt(Y ) := Z ′. The type of the remaining newly created
particles is free.

(c) At time t, every free particle Y ′ ∈ F(t) branches with rate ξ(Y ′
t ). It is replaced by k new

particles, with probability pk, independently of everything else. The type of the new particles
is free.

It can be easily checked that, as a result of the rules (a)–(c), every Y ′ ∈ Nr branches with rate
ξ(Y ′

t ) at time t, as it should.
Finally, the particles can change their type if one of the following events occur:

(A) If an l-mirrored particle hits m, that is Y ∈ LM(t−) and Yt = m, then, by consequence of
(5.8), the corresponding particle Y ′ = µt−(Y ) satisfies Y ′

t = m as well. We thus change the
types of Y and Y ′ to l-coupled and r-coupled, respectively, and define γt(Y ) := Y ′.

(B) If an l-mirrored particle Y ∈ LM(t−) meets a free particle at time t, that is there is Z ′ ∈ F(t−)
with Z ′

t = Yt, then we change the types of Y and Z ′ to l-coupled and r-coupled, respectively,
and define with γt(Y ) := Z ′. The type of the r-mirrored particle Y ′ = µt−(Y ) that was
mirrored with Y is changed to free.

(C) If an l-mirrored particle hits L, that is Y ∈ LM(t−) and Yt = L, then the type of Y is changed
to bad, and the type of the corresponding r-mirrored particle Y ′ = µt−(Y ) is changed to free.

To show that the coupling succeeds, i.e. that (5.7) holds, it is sufficient to show that with
probability at least 1 − ε, there are no l-mirrored and bad particles after time C2 logn. In this
vein, we define two good events:

G1(t) := {N≤
l (s, L) = ∅ ∀s ≤ t}, (5.12)

i.e., on G1(t) no particle from Nl enters (−∞, L) before time t, and

G2(t) :=
{
N≤

r (t, L) 6= ∅}
; (5.13)

i.e., there is a (necessarily free, if G1(t) occurs as well) particle to the left of L at time t. We now
need the following lemma which ensures that we can find t such that those events are typical.

Lemma 5.5. For any ε > 0 there exists t′ < 1 such that for all n large enough, with t =
t′ϕ(n)/

√
2ei,

Q
ξ
l,r

(G1(t) ∩ G2(t)
) ≥ 1 − ε. (5.14)

We postpone the proof of this lemma and complete the proof of Proposition 5.4 first. Let t be
as in Lemma 5.5. We claim that

{Nl(t) ⊂ Nr(t)} ⊃ G1(t) ∩ G2(t). (5.15)

If we show this, then the claim of Proposition 5.4 follows with C2 = t/ lnn = t′c0/
√

2ei.
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To prove (5.15), recall first that bad particles can only be created if an l-mirrored particle hits
L. As a consequence,

on G1(t) there cannot be any bad particles at time t. (5.16)

Next, we show that

on G1(t) ∩ G2(t) there are no l-mirrored particles at time t (5.17)

either. To this end define R(t) = inf{Y ′
t : Y ∈ F(t)} to be the position of the leftmost free particle,

and L(t) = sup{Yt : Y ∈ LM(t)} to be the position of the rightmost l-mirrored particle, with the
convention inf ∅ = +∞, sup ∅ = −∞; in the remaining cases, a.s., the infimum and supremum are
attained, since F(t) and LM(t) are a.s. finite sets). Let

τ := inf{t ≥ 0 : L(t) > R(t)}.

We claim that τ = ∞, Q
ξ
l,r-a.s. Indeed, we first note that L and R are right-continuous. In addition,

the only jumps that L has are downward jumps. They occur a.s. iff the rightmost l-mirrored particle
changes its type due to (A)–(C). (If one of (A)–(C) occurs, then a.s. there is only one l-mirrored
particle at position L(t). At branching events, L is unchanged, as l-mirrored particles are created
only at positions where l-mirrored particles are already present, see (a)). Similarly, with the
exception of the first jump from +∞, the only jumps that the function R has are upwards jumps,
occurring a.s. iff the leftmost free particle becomes r-coupled due to (B). Therefore, it follows that
a.s. τ ≥ inf{t ≥ 0 : L(t) = R(t)}. However, the event {∃t ∈ [0,∞) : L(t) = R(t)} cannot occur
by the construction of the coupling, since if an l-mirrored and a free particle meet, then at this
instant they become l-/r-coupled immediately. Hence, τ = ∞ almost surely, as claimed.

Assume now that G1(t) ∩ G2(t) occurs. At time t, there is thus a particle from Nr and no
particle from Nl to the left of L. From the construction, this particle is neither r-coupled (since on
G1(t) there is no corresponding l-coupled particle there), nor r-mirrored (as all r-mirrored particles
are always in (m,R)). Therefore, it must be free and thus R(t) < L. Since τ = ∞ a.s., L(t) < L
as well. However, by construction, l-mirrored particles are always located in (L,m), and thus
L(t) < L implies L(t) = −∞, that is LM(t) = ∅, establishing (5.17).

All in all, from the above it follows that on G1(t) ∩ G2(t), (5.16) as well as (5.17) hold true,
i.e., there do not exist any l-mirrored or bad particles at time t. Hence, all particles in Nl(t) are
necessarily l-coupled, which proves (5.15). This completes the proof of Proposition 5.4.

It remains to show Lemma 5.5.

Proof of Lemma 5.5. We first estimate the probability of G1(t) as a function of t ∈ [0, ϕ(n)/
√

2ei].
To this end we write N (t) for the number of particles from Nl that hit L before t; here, we only
count the first hit of L by any particle. That is, we disregard possible successive hits of L by the
same particle, and also the fact that this particle could branch between the hitting of L and the
time t, and thus produce more particles at time t that hit L. The expectation of N (t) can be
written as

E
ξ
l [N (t)] = El

[
e
∫ HL

0
ξ(Xs)ds;HL < t

]
≤ El

[
e
∫ HL

0
ξ̃(Xs)ds;HL < t

]
, (5.18)

where the potential ξ̃ is given by ξ̃(x) = es if x ≥ xn, and ξ̃(x) = ei if x < xn. To estimate the
right-hand side, note that there are two possible scenarios for a particle to hit L. Either, it stays
all the time in the interval (L, xn) where the potential equals ei and hits L (i.e., it displaces by
altogether at least l−L ≥ (1−5δ1)ϕ(n)). Or, it spends some s units of time in the interval [xn,∞),
where the potential is es, but then it should displace by at least (xn − l)+(xn −L) ≥ (1+4δ1)ϕ(n)
in t − s units of time. Ignoring prefactors which are sub-exponential in ϕ(n) and using standard
Gaussian tail bounds, we thus arrive at the following upper bound:

E
ξ
l [N (t)] . exp

{
tei − (1 − 5δ1)2ϕ(n)2

2t

}
+ sup

s≤t
exp

{
(t− s)ei + ses − (1 + 4δ1)2ϕ(n)2

2(t− s)

}

= exp
{
σ(n)

(
t′ − (1 − 5δ1)2

t′

)}
+ sup

s′<t′
exp

{
σ(n)

(
t′ + s′ es − ei

ei
− (1 + 4δ1)2

t′ − s′

)}
,

(5.19)
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where we introduced

σ(n) = ϕ(n)

√
ei

2
and t′ =

t ei

σ(n)
(5.20)

in order to put the various terms on the same scale. Using Markov’s inequality, to show that
P

ξ
l (G1(t)c) → 0, it is sufficient to show that both summands on the right-hand side of (5.19) tend

to 0. For this to be the case for the first one, it is sufficient to require

t′ < (1 − 5δ1). (5.21)

Before dealing with the second term (which we will do below (5.24)), we turn our attention to the
event G2(t).

To control the probability of the event G2, we need two claims.

Claim 5.6. For every ε > 0 there exists t0 < ∞ such that for all n large enough,

P
ξ
r

(∣∣{Y ∈ Nr(t) : Yt ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]
}∣∣ ≥ e(1−δ2)es t

)
≥ 1 − ε/2, for all t ≥ t0.

(5.22)

In order not to hinder the flow of reading, we postpone the proof of Claim 5.6 to the end of
the proof of Lemma 5.5.

Claim 5.7. Let t = t′ϕ(n)/
√

2ei with t′ < 1 and η > 0. Then for every y ∈ [xn + δ1ϕ(n), xn +
2δ1ϕ(n)] and all n large enough

P
ξ
y(N≤(t, L) 6= ∅) ≥ exp

{
σ(n)

(
t′ − (1 + 2δ1)2

t′
− η

)}
. (5.23)

Proof. Obviously Pξ
y(N≤(t, L) 6= ∅) ≥ Pei

y (N≤(t, L) 6= ∅) ≥ Pei

xn+2δ1ϕ(n)(N
≤(t, L) 6= ∅). Moreover,

by the large deviation lower bound from [CR88, Thm. 1], for every v >
√

2ei and η > 0, if t is
sufficiently large, then

P
ei

0 (N≤(t,−vt) 6= ∅) ≥ exp{t(ei − v2/2 − η)}.

Using this estimate with v = (xn + 2δ1ϕ(n) − L)/t = (1 + 2δ1)ϕ(n)/t = (1 + 2δ1)
√

2ei/t′ >
√

2ei,
and by rewriting it using the notation introduced in (5.20), the claim follows.

Using these two claims, we have that for any 0 < s′ < t′ < 1 as well as for t = t′ϕ(n)/
√

2ei and
s = s′ϕ(n)/

√
2ei, that

P
ξ
r(G2(t)c) ≤ P

ξ
r

(
|{Y ∈ Nr(s) : Ys ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]} ≤ e(1−δ2)es s

)

+ P
ξ
r

(
G2(t)c

∣∣ |{Y ∈ Nr(s) : Ys ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]}| ≥ e(1−δ2)es s
)

≤ ε

2
+

(
1 − exp

{
σ(n)

(
t′ − s′ − (1 + 2δ1)2

t′ − s′ − η
)})exp{(1−δ2)es s}

.

The second summand on the right-hand side converges to 0 as n → ∞ if

exp
{
σ(n)

(
t′ − s′ − (1 + 2δ1)2

t′ − s′ − η
)}

· exp{(1 − δ2)es s}

= exp
{
σ(n)

(
t′ + s′ es(1 − δ2) − ei

ei
− (1 + 2δ1)2

t′ − s′ − η
)}

→ ∞.

(5.24)

The factors in the exponents of (5.19) and (5.24) are both of the form t′ + As′ − B/(t′ − s′)
such that (for δ2 > 0 small) A > 0 and B > 1. For A, B and t′, fixed, this function is maximized
for s ∈ [0, t′] by

s′ =

{
t′ −

√
B/A,

0,
with a maximum value of

{
(1 +A)t′ − 2

√
AB, if t′ >

√
B/A,

t′ −B/t′, otherwise.
(5.25)

19



Ignoring for a moment the constants δ2 and η, we write A = (es − ei)/ei, B1 = (1 + 4δ1)2, and
B2 = (1 + 2δ1)2. Observe that A > 1 by (5.2). In order to satisfy (5.24) and let (5.19) tend to 0,
we must fix t′ and δ1 so that (5.21) holds, and at the same time

sup
0<s′<t′

t′ + s′A−B1/(t
′ − s′) < 0, (5.26)

sup
0<s′<t′

t′ + s′A−B2/(t
′ − s′) > 0. (5.27)

Since B2 > 1 and t′ < 1, the analysis in (5.25) implies that the supremum in (5.27) can be positive
only if

t′ > max

(√
B2

A
,
2
√
AB2

1 +A

)
=

2
√
AB2

1 +A
, (5.28)

where to obtain the equality we used the fact that A > 1. We thus fix δ1 > 0 small enough so
that 1 − 5δ1 > 2

√
AB2/(1 + A) and (5.21) as well as (5.28) can be both satisfied; this is possible

only if A > 1 which is true by assumption. We then fix t′ satisfying (5.21) and (5.28), so that the
supremum in (5.27) is positive (this is by construction), but small enough, so that the supremum
in (5.26) is negative; this is possible since B1 > B2. Finally, we fix δ2 > 0, η > 0 so that the
validity of the established inequalities is not modified. With this choice of constants, (5.24) holds
and the right-hand side of (5.19) tends to 0, as required. Hence, for t = t′ϕ(n)/

√
2ei we have

Q
ξ
r,l(G1(t)c ∪ G2(t)c) ≤ P

ξ
l (G1(t)c) + Pξ

r(G2(t)c) → 0 as n → ∞. This completes the proof.

It remains to prove Claim 5.6.

Proof of Claim 5.6. The proof follows by a comparison with branching processes split into two
phases. For the first phase we recall that by Lemma [DS20, Lemma 4.7] there exist κ > 1 and
t1 < ∞ such that, P-a.s.,

sup
x∈R

P
ξ
x

(|{Y ∈ N(t) : Yt ∈ [x− 1, x+ 1]}| ≤ κt) ≤ κ−t for all t ≥ t1. (5.29)

For the second phase we need few preparatory steps. We fix T > 0 such that

e(1− δ2
2

)es T ≤ 1

4
ees T and P0(BT > 1) ≥ 7

16
. (5.30)

We further fix K1 > 1 large enough so that

inf
x∈[−K1−1,K1+1]

Px
(
BT ∈ [−K1,K1]

) ≥ 3

8
, (5.31)

which is possible due to the second part of (5.30). Finally, we fix K2 > K1 large enough so that

sup
x∈[−K1−1,K1+1]

Px
(
Bs /∈ [−K2,K2] some s ∈ [0, T ]

) ≤ 1

16
, (5.32)

so (5.31) in combination with (5.32) entail that

inf
x∈[−K1−1,K1+1]

Px
(
BT ∈ [−K1,K1], Bs ∈ [−K2,K2] ∀s ≤ T

) ≥ 5

16
. (5.33)

Next, assume that n is large enough, so that δ1ϕ(n) > K2/2, and in particular ξ equals es on
[xn + δ1ϕ(n) −K2, xn + δ1ϕ(n) +K2]. For x ∈ [xn + δ1ϕ(n) − 1, xn + δ1ϕ(n) + 1], define

x′ =





xn + δ1ϕ(n) +K1, if x < xn + δ1ϕ(n) +K1,

xn + 2δ1ϕ(n) −K1, if x > xn + 2δ1ϕ(n) −K1,

x, otherwise,

(5.34)

and set Ii = [x′ −Ki, x
′ −Ki], i = 1, 2, so that I1 ⊂ I2.
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We now consider the BBMRE started at x and for k ≥ 1 we define

Zk = |{Y ∈ N(kT ) : YlT ∈ I1 ∀1 ≤ l ≤ K,Ys ∈ I2 ∀s < kT}|. (5.35)

Zk can be interpreted as the number of particles in the k-th generation of a multi-type branching
process; here, the type corresponds to the position of the particle in I1 at which it is born (with
exception of the initial particle which is at most at distance 1 from I1), and where the number of
offspring of a particle of type y is distributed as |{Y ∈ N(T ) : YT ∈ I1, Ys ∈ I2 ∀s ≤ T}| under
Pes

y . In particular, using the Feynman-Kac formula as well as (5.33) and then (5.30), the expected
offspring number of a particle of type y satisfies

E
es

y [|{Y ∈ N(T ) : YT ∈ I1, Ys ∈ I2 ∀s ≤ T}|]

= ees TPy(BT ∈ I1, Bs ∈ I2 ∀s < T ) ≥ 5

16
ees T ≥ e(1− δ2

2
)es T ,

(5.36)

uniformly over all admissible types y. In addition, the second moment of the same quantity
is finite, again uniformly over all admissible types, by comparison with branching process with
branching rate es. It thus follows by the standard results on multi-type branching processes that

for some ρ ≥ e(1− δ2
2

)es T finite, Zk/ρ
k converges in distribution to a non-negative random variable

W with P (W > 0) > 0 (see e.g. [Har63, Theorem 14.1], where ρ is the principal eigenvalue of the
expectation operator of the multi-type branching process; observe also that Condition 10.1 of this
theorem is easily checked for V being the Lebesgue measure). In particular, one can find ε2 > 0
and k0 large such that

P
es

x

(
Zk ≥ ε2e

(1− δ2
2

)es kT ) ≥ P
es

x (Zk ≥ ε2ρ
k) ≥ ε2 for all k ≥ k0, (5.37)

uniformly in x ∈ [xn +δ1ϕ(n)−1, xn +δ1ϕ(n)+1]. This terminates the investigation of the second
phase of comparison with BRW, and we may now proceed to the proof of Claim 5.6.

To this end, fix K such that (1 − ε2)K < ε/4 and set (for κ and t1 from (5.29))

t′ = inf{s ∈ [t1, t], κ
s > K ∨ (4/ε), t− s = kT for some k ∈ N}. (5.38)

Observe that there is c < ∞ such that t′ < c for all t ≥ c. Setting N = {Y ∈ N(t′) : Yt′ ∈
[r − 1, r + 1]}, we have, using (5.29) and (5.38) for the last inequality, that

P
ξ
r

(∣∣{Y ∈ Nr(t) : Yt ∈ [xn + δ1ϕ(n), xn + 2δ1ϕ(n)]
}∣∣ ≤ e(1−δ2)es t

)

≤ P
ξ
r(|N | < κt′

) + P
ξ
r

({|N | ≥ κt′} ∩ A) ≤ ε

4
+ P

ξ
r

({|N | ≥ κt′} ∩ A)
,

(5.39)

where A denotes the event that each particle in N produces less than e(1−δ2)es t particles in [xn +
δ1ϕ(n), xn +2δ1ϕ(n)] at time t. For a particle at position x ∈ [r−1, r+1], we then fix the intervals
I1, I2 as above, and observe that the number of its children in [xn + δ1ϕ(n), xn + 2δ1ϕ(n)] at time
t − t′ =: ktT dominates Zkt under Pes

x . Since the offspring of different particles are independent,

for t large enough such that e(1−δ2)es t ≤ ε2e
(1− δ2

2
)es ktT , we obtain

P
ξ
r

({|N | ≥ κt′} ∩ A) ≤ E
ξ
r

[ ∏

Y ∈N
PYt′

(
Zkt ≤ e(1−δ2)es t); |N | ≥ κt′]

≤ E
ξ
r

[ ∏

Y ∈N
PYt′

(
Zkt ≤ ε2e

(1− δ2
2

)es ktT )
; |N | ≥ κt′]

≤ E
ξ
r

[
(1 − ε2)|N |; |N | ≥ κt′] ≤ (1 − ε2)κt′

≤ (1 − ε2)K ≤ ε

4
,

(5.40)

where for the third inequality we used (5.37) and for the last two inequalities we applied (5.38).
Combining (5.39) with the last display completes the proof of the claim.
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5.3 Non-monotonicity of the solution to randomized F-KPP equation

In this section we prove Theorem 2.4. Its proof is based on the simple idea that if there are two
adjacent long stretches, the left one with potential ei and the right one with es, where the values
of w are comparable at some time tn, as proved in Theorem 2.3, then at some later time tn + s
the function w must be non-monotone, since it grows faster on the right stretch.

Proof of Theorem 2.4. For every ε > 0 we choose K = K(ε) such that

f(K) := eesP0

(
sup

0≤u≤1
|Bu| > K

)
≤ ε. (5.41)

Recall that by Proposition 5.4, the definition of the coupling Q
ξ
l,r and the representation w(t, x) =

Pξ
x

(
N≤(t, 0) 6= ∅)

of the solution to (F-KPP) (see Proposition 5.1), for δ ∈ (0, 1) there exist ln, rn, tn
such that tn → ∞, w(tn, ln) = δ, rn − ln −→

n→∞ ∞ and such that for all n large enough

sup
l∈[ln−K,ln+K]

w(tn, l) ≤ inf
r∈[rn−K,rn+K]

w(tn, r) + ε (5.42)

holds. We will prove the result by contradiction and therefore assume for the time being that the
claim of the theorem does not hold. Then, for all ε > 0, all n large enough and all s ∈ [0, 1], we
have

inf
l∈[ln−K,ln+K]

w(tn + s, l) ≥ sup
r∈[rn−K,rn+K]

w(tn + s, r) − ε. (5.43)

Let us choose ε ∈ (0, δ), s′ ∈ (0, 1] small enough and b ∈ (0, 1) such that for all s ∈ [0, s′],

ees s(δ + 3ε) ≤ b. (5.44)

Recall that the solution can be represented by the Feynman-Kac formula (3.2) with some F :
[0, 1] → [0, 1] fulfilling (PROB) for some sequence (pk) fulfilling (2.1). Let us abbreviate c(w) :=
F (w)

w , w ∈ (0, 1]. It is easy to see that c is strictly decreasing, can be extended continuously to
w = 0, i.e. c(0) = limw↓0 c(w) = supw∈(0,1] c(w) = 1, c(1) = 0 and the function c : [0, 1] → [0, 1]
is Lipschitz continuous with Lipschitz constant H ∈ (0,∞). Among others, due to (5.43) and
w ∈ [0, 1], for all s ∈ [0, 1] we have

sup
l∈[ln−K,ln+K]

c
(
w(tn + s, l)

) ≤ inf
r∈[rn−K,rn+K]

c
(
w(tn + s, r)

)
+Hε. (5.45)

Furthermore, by the Feynman-Kac formula (3.2) and the Markov property, for all s ≥ 0 we have

w(tn + s, ln) = Eln

[
exp

{ ∫ s

0
ξ(Bu)c

(
w(tn + s− u,Bu)

)
du

}
w(tn, Bs)

]
.

Then due to ξ ≤ es, w ∈ [0, 1], c ≤ 1, (5.42), (5.43), (5.41), and (5.44), for all n large enough we
have for all s ∈ [0, s′] that

w(tn + s, ln) ≤ ees s
(
Pln

(
sup

0≤u≤1
|Bu − ln| > K

)
+ sup

l∈[ln−K,ln+K]
w(tn, l)

)
≤ b. (5.46)

Furthermore, using ξ ≤ es, w ∈ [0, 1] and c(w) ∈ [0, 1] for w ∈ [0, 1] we get that for all s ∈ [0, 1] we
have

w(tn + s, ln) ≤ Eln

[
exp

{ ∫ s

0
ξ(Bu)c

(
w(tn + s− u,Bu)

)
du

}
w(tn, Bs); sup

0≤u≤1
|Bu − ln| ≤ K

]

+ eesP0

(
sup

0≤u≤1
|Bu| > K

)
.
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To bound the first summand, we recall (by definition of ln, rn) that ξ(l) = ei for all l ∈ [ln−K, ln+K]
and ξ(r) = es for all r ∈ [rn −K, rn +K]. Using (5.42) and (5.45), we see that the first summand
can be bounded from above by

Eln

[
exp

{
ei

es

∫ s

0
ξ(Bu − ln + rn)

(
c(w(tn + s− u,Bu − ln + rn)) +Hε

)
du

}

× (
w(tn, Bs − ln + rn) + ε

)
; sup

0≤u≤1
|Bu − ln| ≤ K

]

= eeiH εsErn

[
exp

{
ei

es

∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du

}
(w(tn, Bs) + ε); sup

0≤u≤1
|Bu − rn| ≤ K

]
.

Recall the inequality eax ≤ ex − (1 −a)x for all a ∈ [0, 1] and x ≥ 0. Then, since ei

es
∈ (0, 1), we get

w(tn + s, ln) ≤ f(K) + eeiH εs
(
εeeis + Ern

[
exp

{ ∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du

}
w(tn, Bs)

]

−(1 − ei/es)Ern

[ ∫ s

0
ξ(Bu)c(w(tn + s− u,Bu)) du w(tn, Bs); sup

0≤u≤1
|Bu − rn| ≤ K

])
.

(5.47)

Recalling (5.42), we also have infr∈[rn−K,rn+K]w(tn, r) ≥ δ− ε. Furthermore, using the properties
of c, for ε small enough such that ε+ b < 1, we have that c = c(ε, b) := infv∈[0,b+ε] c(v) > 0. Using
(5.41), ξ ≥ ei, (5.43), (5.46), the inequality ex ≤ 1 + 2x for x ≥ 0 small enough, and w ∈ [0, 1], we
get, choosing s = s′ from (5.44) and continuing the bound from (5.47),

w(tn + s′, ln) ≤ ε(1 + e(1+Hε)eis′
) + (1 + 2Hεeis′)w(tn + s′, rn) − (1 − ei/es) ei c (δ − ε)(1 − ε)s′

≤ w(tn + s′, rn) + ε(1 + 2ei(1 + 2Hε)) − (1 − ei/es) ei c (δ − ε)(1 − ε)s′

and the right-hand side can made smaller than w(tn + s′, rn) − 2ε if we choose s′ (say) of order
√
ε

and ε small enough. But this is a contradiction to (5.43), which hence proves Theorem 2.4.

A Appendix: Further auxiliary results

We collect here a couple of results needed primarily for the proof of Lemma 4.1, and start with
several lemmas concerning the logarithmic moment generating functions defined in (4.1) as well
as related objects. They are proved in [DS20] and are modifications of the corresponding discrete-
space statements proved in [ČD20].

Lemma A.1 ([DS20, Lemma A.1]). We recall that P ζ,η
x has been defined in (4.5).

(a) The functions L, Lζ
x, and L

ζ
x, for x ∈ R, defined in (4.1), are infinitely differentiable on

(−∞, 0). Furthermore, for all η < 0 we have

(
Lζ

x

)′
(η) =

Ex

[
e
∫ H⌈x⌉−1

0 (ζ(Br)+η) drH⌈x⌉−1

]

Ex

[
e
∫ H⌈x⌉−1

0 (ζ(Br)+η) dr
] = Eζ,η

x [τ⌈x⌉−1], x ∈ R, (A.1)

(
L

ζ
x

)′
(η) =

1

x
Eζ,η

x

[
H0

]
, x > 0, (A.2)

L′(η) = E

[E1
[
e
∫ H0

0
(ζ(Br)+η) drH0

]

E1
[
e
∫ H0

0
(ζ(Br)+η) dr]

]
= E

[
Eζ,η

1 [H0]
]
, (A.3)

and
(
Lζ

x

)′′
(η) = Eζ,η

x

[
τ2

⌈x⌉−1

] − (
Eζ,η

x [τ⌈x⌉−1]
)2

= Varζ,η
x (τ⌈x⌉−1) > 0, x ∈ R, (A.4)

(
L

ζ
x

)′′
(η) =

1

x
Varζ,η

x (H0), x > 0, (A.5)

L′′(η) = E

[
Eζ,η

1 [H2
0 ] − (

Eζ,η
1 [H0]

)2
]

= E
[
Varζ,η

1 (H0)
]
> 0. (A.6)
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(b) For each compact interval △ ⊂ (−∞, 0), there exists a constant C3 = C3(△) > 1, such that
the following inequalities hold P-a.s.:

−C3 ≤ inf
η∈△,x≥1

{
Lζ

⌊x⌋(η), L
ζ
x(η), L(η)

} ≤ sup
η∈△,x≥1

{
Lζ

⌊x⌋(η), L
ζ
x(η), L(η)

} ≤ −C−1
3 ,

C−1
3 ≤ inf

η∈△,x≥1

{
(Lζ

⌊x⌋)
′(η), (L

ζ
x)′(η), L′(η)

} ≤ sup
η∈△,x≥1

{
(Lζ

⌊x⌋)
′(η), (L

ζ
x)′(η), L′(η)

} ≤ C3,

C−1
3 ≤ inf

η∈△,x≥1

{
(Lζ

⌊x⌋)
′′(η), (L

ζ
x)′′(η), L′′(η)

} ≤ sup
η∈△,x≥1

{
(Lζ

⌊x⌋)
′′(η), (L

ζ
x)′′(η), L′′(η)

} ≤ C3.

Lemma A.2 ([DS20, Lemma 2.4]). (a) The function (−∞, 0) ∋ η 7→ L(η) is infinitely differen-
tiable and its derivative L′(η) is positive and monotonically strictly increasing.

(b) We have P-a.s. that

lim
x→∞L

ζ
x(η) = L(η) for all η < 0. (A.7)

(c) L′(η) ↓ 0 as η ↓ −∞

(d) For every v > vc := 1
L′(0−) (where 1

+∞ := 0), which we call critical velocity, there exists a

unique solution η(v) < 0 to the equation L′(η(v)) =
1

v
. (A.8)

η(v) can be characterized as the unique maximizer to (−∞, 0] ∋ η 7→ η
v − L(η), i.e.

sup
η≤0

(η
v

− L(η)
)

=
η(v)

v
− L

(
η(v)

)
. (A.9)

The function (vc,∞) ∋ v 7→ η(v) is continuously differentiable and strictly decreasing.

We now recall the well-known existence of the Lyapunov exponent for the solutions to (PAM).

Proposition A.3 ([DS20, Proposition A.3, Corollary 3.10]). Assume (BDD)–(PAM-INI). For all
v ≥ 0 and all u0 ∈ IPAM the limit

Λ(v) = lim
t→∞

1

t
ln uu0(t, vt) (A.10)

exists P-a.s., is non-random and independent of u0. We have Λ(0) = es, Λ is nondecreasing, linear

on [0, vc], strictly concave on (vc,∞) and limv→∞
Λ(v)

v = −∞. In particular, there exists a unique
v0 > 0 such that Λ(v0) = 0. Furthermore, the convergence in (A.10) holds uniformly on any
compact interval K ⊂ [0,∞).

Lemma A.4 ([DS20, Lemma 2.5 (b)]). (a) For every v > vc there exists a finite random vari-

able N = N (v) such that for all x ≥ N the solution ηζ
x(v) < 0 to E

ζ,ηζ
x(v)

x [H0] = x
v exists.

(b) For each q ∈ N and each compact interval V ⊂ (vc,∞), there exists C4 := C4(V, q) ∈ (0,∞)
such that

P

(
sup
v∈V

sup
x∈[n,n+1)

|ηζ
x(v) − η(v)| ≥ C4

√
lnn

n

)
≤ C4n

−q for all n ∈ N. (A.11)

Lemma A.5 ([DS20, Lemma 2.7]). There exists a constant C5 > 0 such that P-a.s., for all
x ∈ (0,∞) large enough, uniformly in v ∈ V and 0 ≤ h ≤ x,

∣∣ηζ
x(v) − ηζ

x+h(v)| ≤ C5
h

x
. (A.12)
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In the final lemma we recall a Hoeffding-type inequality for mixing random variables, which is
a consequence of [Rio17, Theorem 2.4].

Lemma A.6 ([DS20, Corollary A.5]). Let (Yi)i∈Z be a sequence of real-valued bounded random
variables, F̃k := σ(Yj : j ≥ k), and let (m1, . . . ,mn) be an n-tuple of positive real numbers such
that for all i ∈ {1, . . . , n},

sup
j∈{1,...,i}

(
‖Y 2

i ‖∞ + 2
∥∥∥Yi

i−1∑

k=j

E[Yk|F̃ i]
∥∥∥

∞

)
≤ mi,

with the convention
∑i−1

k=i E[Yk|F̃ i] = 0. Then for every x > 0,

P

(∣∣∣
n∑

i=1

Yi

∣∣∣ ≥ x
)

≤ √
e exp

{
−x2/(2m1 + · · · + 2mn)

}
.

B Appendix: Non-triviality of the regime of validity

The next lemma is used to show that there are potentials ξ that simultaneously satisfy the as-
sumptions of Theorem 2.2 as well as of Theorems 2.3 and 2.4.

Lemma B.1. Let ξ be the potential constructed in (5.3) for real numbers es and ei satisfying
0 < ei < es (with (5.2) not necessarily fulfilled). Then, making the dependence of L explicit in
writing L = Lξ, we have that the family of real numbers 1

L′
Cξ

(0−) , C ∈ [1,∞), is upper bounded

away from infinity.

Proof. Equation (A.3) and monotone convergence entail that for all C ∈ [1,∞) we have

L′
Cξ(0−) = E

[
E1

[
eC

∫ H0
0

(ξ(Br)−es) drH0
]

E1
[
eC

∫ H0
0

(ξ(Br)−es) dr]

]
.

Since the expectation in the denominator on the right-hand side of the previous display is P-a.s.
upper bounded by 1, we can continue the above to infer that for some positive constant c > 0 and
all C ∈ [1,∞) we have

L′
Cξ(0−) ≥ E

[
E1

[
eC

∫ H0
0

(ξ(Br)−es) drH0
] · 1{ξ(x)=es ∀x∈[0,2]}

]

≥ E

[
E1[H0 · 1{Br∈[0,2] ∀r∈[0,H0]}] · 1{ξ(x)=es ∀x∈[0,2]}

]
≥ c > 0,

which finishes the proof of the lemma.

Proposition B.2. There exist potentials ξ that satisfy the assumptions of Theorem 2.2 as well as
of Theorems 2.3 and 2.4.

Proof. It is sufficient to find a potential ξ as in (5.3), under the sole assumption es/ei > 2 of (5.2),
such that at the same time (VEL) holds true for the respective potential.

For this purpose, we choose an arbitrary potential ξ as in (5.3) satisfying (5.2) We then infer
that for such a potential and C ∈ (0,∞) large enough, one has—making explicit the dependence
of the respective quantities on the potential—that v0(Cξ) > vc(Cξ). Indeed, note that Lemma A.2
entails vc(ξ) = 1

L′(0−) , and Lemma B.1 implies that 1
L′(0−) is upper bounded away from infinity for

the potentials Cξ as C → ∞. Regarding v0, a comparison with the constant potentials Cei yields
that v0(Cξ) → ∞ as C → ∞, so (VEL) holds true for all C large enough, which is sufficient for
the assumptions of Theorem 2.2 to be fulfilled.

At the same time, the potential Cξ still satisfies (5.2) and hence fulfills the assumptions of
Theorems 2.3 and 2.4.
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