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Abstract

In this paper we derive quantitative estimates for the Lagrangian flow associated to a partially
regular vector field of the form

b(t, x1, x2) = (b1(t, x1), b2(t, x1, x2)) ∈ ℝ
n1 × ℝ

n2 , (x1, x2) ∈ ℝ
n1 ×ℝ

n2 .

We assume that the first component b1 does not depend on the second variable x2, and has
Sobolev W 1,p regularity in the variable x1, for some p > 1. On the other hand, the second
component b2 has Sobolev W 1,p regularity in the variable x2, but only fractional Sobolev W �,1

regularity in the variable x1, for some � > 1∕2. These estimates imply well-posedness, compact-
ness, and quantitative stability for the Lagrangian flow associated to such a vector field.

1 Introduction

The transport equation
)tu + b ⋅ ∇u = 0 (1.1)

is one of the basic building blocks for several (often nonlinear) partial differential equations (PDEs)
from mathematical physics, most notably from fluid dynamics, conservation laws, and kinetic the-
ory. In (1.1) the vector field b = b(t, x) ∶ (0, T ) × ℝ

N → ℝ
N is assumed to be given, hence (1.1)

is a linear equation for the unknown u = u(t, x) ∶ (0, T ) × ℝ
N → ℝ, with a prescribed initial

datum u(0, x) = ū(x). Physically, the solution u is advected by the vector field b. In most applica-
tions (1.1) is coupled to other PDEs, and moreover the vector field is often not prescribed, but rather
depends on the other physical quantities present in the problem. Nevertheless, a thorough understand-
ing of the linear equation (1.1) is often the basic step for the treatment of such nonlinear cases.

If the vector field is regular enough (Lipschitz in the space variable, uniformly with respect to
time) the well-posedness of (1.1) is classically well-understood and is based on the theory of charac-
teristics and on the connection with the ordinary differential equation (ODE)

⎧⎪⎨⎪⎩

d

dt
X(s, x) = b(s,X(s, x))

X(0, x) = x .

(1.2)

The map X = X(t, x) ∶ (0, T ) ×ℝ
N → ℝ

N is the (classical) flow associated to the vector field b.
When dealing with problems originating from mathematical physics, however, the regularity

available on the advecting vector field is often much lower than Lipschitz, and this prevents the ap-
plication of the classical theory. The low regularity of the vector field usually accounts for “chaotic”
and “turbulent” behaviours of the system. This is the reason why in the last few decades a systematic
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study of (1.1) and (1.2) out of the Lipschitz regularity setting has been carried out. We mention in par-
ticular the seminal papers by DiPerna and Lions [12] and Ambrosio [4], where respectively Sobolev
and bounded variation regularity have been assumed on the vector field, together with assumptions
of boundedness of the (distributional) spatial divergence and on the growth of the vector field. We
will now (briefly and informally) describe the main points of the theory, and we refer for instance to
the survey article [5] for more details.

The approach in [12, 4] is based on the notion of renormalized solution of (1.1). Formally at
least, a strategy to prove uniqueness for (1.1) consists in deriving energy estimates: multiplying (1.1)
by 2u, integrating in space, and integrating by parts, one obtains

d

dt ∫ℝN

u(t, x)2 dx ≤ ‖divb‖∞ ∫
ℝN

u(t, x)2 dx . (1.3)

If the divergence of the vector field is bounded, Grönwall lemma together with the linearity of (1.1)
implies uniqueness. However, the formal computations leading to (1.3) cannot be made rigorous
without any regularity assumptions: when dealing with weak solutions of (1.1), which do not enjoy
any regularity beyond integrability, it is not justified to apply the chain rule in order to get the identities

2u)tu = )tu
2 and 2u∇u = ∇u2 .

Following [12], we say that a bounded weak solution u of (1.1) is a renormalized solution if

)t�(u) + b ⋅ ∇�(u) = 0 (1.4)

holds in the sense of distributions for every smooth function � ∶ ℝ → ℝ. Roughly speaking, renor-
malized solutions are the class inside which the energy estimate (1.3) can be made rigorous. The
problem is then switched to proving that all weak solutions are renormalized. To achieve this, one
can regularize (1.1) by convolving with a regularization kernel �"(x), obtaining

)tu" + b ⋅ ∇u" = b ⋅ ∇u" − (b ⋅ ∇u) ∗ �" =∶ R" ,

where we denote u" = u ∗ �" and the right hand side R" is called commutator. Multiplying this
equation by �′(u") we obtain

)t�(u") + b ⋅ ∇�(u") = R" �
′(u") , (1.5)

which implies (1.4) provided the commutator R" converges to zero strongly. Such a convergence
holds under Sobolev regularity assumptions on the vector field b, as can be proved by rewriting the
commutator as an integral involving difference quotients of the vector field. This strategy has been
pursued in [12] to show uniqueness and stability of weak solutions of (1.1) in the case of Sobolev
vector fields, and extended (with several nontrivial modifications) by Ambrosio [4] to the case of
vector fields with bounded variation. The convergence to zero of the right hand side of (1.5) is more
complex in this last setting, and the convolution kernel �" has to be properly chosen in a way which
depends on the vector field itself.

An alternative approach has been developed in [10], working at the level of the ODE (1.2) and
deriving a priori estimates for a functional measuring a “logarithmic distance” between two flows
associated to the same vector field, namely

Φ�(s) = ∫ log

(
1 +

|X(s, x) − X̄(s, x)|
�

)
dx , (1.6)

where � > 0 is a small parameter which is optimized in the course of the argument. Differentiating
the functional Φ� in time one can estimate

Φ′
�
(s) ≲ ∫

|b(s,X(s, x)) − b(s, X̄(s, x))|
|X(s, x) − X̄(s, x)| dx ≲ ∫

[
MDb(s,X(s, x)) +MDb(s, X̄(s, x))

]
dx ,
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where in the second inequality we have estimated the difference quotients of bwith the maximal func-
tion of Db (see Definition 2.5 and Lemma 2.7). Changing variable along the flows X and X̄ (which
are assumed to have controlled compressibility), and recalling that the maximal function satisfies the
so-called strong inequality ‖Mf‖Lp ≲ ‖f‖Lp when 1 < p ≤ ∞ (see Lemma 2.6), we find that Φ� is
uniformly bounded in s and in � if b ∈W 1,p with 1 < p ≤ ∞. Together with the estimate

N({|X(s, x) − X̄(s, x)| > }) ≤ Φ�(s)

log
(
1 +



�

) ∀ > 0 ,

letting � → 0 implies that X = X̄ almost everywhere.
This and related estimates have been used in [10] and in several subsequent papers in order to

prove uniqueness, compactness, stability, and mild regularity for the flow. The main advantage of
this approach lies in its quantitative character. Let us mention that the same approach can also be
used in some regularity settings not covered by the approach of [12, 4], as for instance in [7, 6, 18].

We would like to remark that both approaches (renormalization and estimates for the ODE) require
information on a full derivative of the vector field, even though in a suitable weak sense (Sobolev or
BV regularity, derivative which is a singular integral of an integrable function. . . ), with an integrable
control with respect to time. This kind of assumption is in general sharp for the well-posedness, as
shown by various counterexamples ([11, 9, 1, 12, 3, 2]). However, under more special “structural”
conditions on the vector field, well-posedness can be proved even for vector fields with “less than one
derivative”, see for instance [3, 2] in the two-dimensional setting and [8] for the Hamiltonian case in
general dimension.

A further case enjoying a “special structure” is that of partially regular vector fields as in [13, 15,
14]. Let us describe this case in some more detail. We assume to have a splitting of the space as
ℝ
N = ℝ

n1 ×ℝ
n2 and we denote the variable by x = (x1, x2). We consider a vector field of the form

b = (b1, b2) , with b1 = b1(t, x1) , b2 = b2(t, x1, x2) , (1.7)

where b1 is assumed to be Sobolev (respectively, BV ) in x1, and b2 is assumed to be Sobolev (respec-
tively, BV ) in x2, but merely integrable in x1, see [13, 15] (respectively, [14]). Compared to the theory
in [12, 4], no regularity is required for b2 in the variable x1; this is due to the strong requirement that
b1 does not depend on x2. The authors in [13, 15, 14] address the PDE problem relying on the renor-
malization theory, with the additional idea to use two regularization kernels, namely �"1 = �"1(x1)

and �"2 = �"2(x2), and to eventually send "1 → 0 first, and then "2 → 0. Roughly speaking, this gives
rise to commutators “in x1 only” for b1 and “in x2 only” for b2.

In this paper we exploit the Lagrangian approach from [12] in order to derive well-posedness and
quantitative estimate for the flow associated to a vector field of the form (1.7). As in [13, 15, 14] we
exploit the anisotropy of the problem and we employ different scales in x1 and x2. However, this is
not done by convolving the PDE with the two kernels �"1(x1) and �"2(x2), but rather relying on an
anisotropic variant (introduced in [6]) of the Lagrangian functional (1.6), namely

Φ�1,�2
(s) = ∫ log

(
1 +

|X1 − X̄1|
�1

+
|X2 − X̄2|

�2

)
dx , (1.8)

where �1 ≤ �2 (see (3.5) below for the exact expression of the functional we will use).
In fact, due to the structure of the proof, we cannot send the two parameters �1 and �2 to zero

one after the other; they are however related, and �1 will be taken to be much smaller than �2. This
will reflect in the need for some regularity on b2 in the variable x1; however, we will need only a
derivative of fractional order (more specifically, higher that 1∕2, see assumption (R2) in Section 3.1
for the precise statement).

3



Let us explain the key steps in our argument. Directly differentiating Φ�1 ,�2
in time and arguing

as in [6] we get

Φ�1 ,�2
(s) ≲ ‖Dx1

b1‖ +
�1

�2
‖Dx1

b2‖ + ‖Dx2
b2‖ ,

with suitable norms on the right hand side, which depend on which exact regularity we assume on
the vector field. The ratio �1∕�2 can indeed be taken very small, but since b2 does not possess a full
derivative with respect to x1, the term ‖Dx1

b2‖ is not bounded.
We can fix this issue by regularizing b2 in the variable x1 at scale " > 0. In this way we get:

Φ�1,�2
(s) ≲

‖b"
2
− b2‖
�1

+ ‖Dx1
b1‖ +

�1

�2
‖Dx1

b"
2
‖ + ‖Dx2

b2‖ ≲ C +
"�

�1
+
�1

�2
"�−1 , (1.9)

where in the second inequality we used that

‖b"
2
− b2‖ ∼ "� and ‖Dx1

b"
2
‖ ∼ "�−1 ,

assuming that b2 possesses a derivative of order � in x1 (see Lemma 2.4). Taking �1 = �2"
1−� the

right hand side of (1.9) takes the form C + "2�−1∕�2, which can be made bounded as �2 → 0 by a
suitable choice of " provided � > 1∕2. This is the reason why, with this approach, we need some
fractional regularity of b2 in x1. From this bound on Φ�1,�2

all results on the well-posedness and
further properties of the flow follow as in [7], see Section 3.3 for the precise statements.
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2 Preliminaries

2.1 Regular Lagrangian flows

In the context of non-Lipschitz vector fields, the right concept of solution of the ordinary differential
equation (1.2) is that of regular Lagrangian flow (see [12, 4, 5]). In the following, we are going to
assume that the vector field b ∶ (0, T ) ×ℝ

N → ℝ
N satisfies the following growth condition:

(R1) ∶
b(s, x)

1 + |x| = c1(s, x) + c2(s, x) ,

with c1 ∈ L1((0, T );L1(ℝN )) and c2 ∈ L1((0, T );L∞(ℝN )) .

(2.1)

Definition 2.1 (Regular Lagrangian flow). Let b be a vector field satisfying (R1). A map

X ∈ C([0, T ];L0
loc(ℝ

N )) ∩([0, T ]; logLloc(ℝ
N ))

is a regular Lagrangian flow in the renormalized sense relative to b if:

1. The equation
)s
(
�(X(s, x))

)
= �′(X(s, x))b(s,X(s, x))

holds in ′((0, T ) × ℝ
N ), for every function � ∈ C1(ℝN ;ℝ) that satisfies

|�(z)| ≤ C(1 + log(1 + |z|)) and |�′(z)| ≤ C

1 + |z| for all z ∈ ℝ
N ,
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2. X(0, x) = x for a.e x ∈ ℝ
N ,

3. There exists a constant L ≥ 0 such that ∫
ℝN '(X(s, x))dx ≤ L ∫

ℝN '(x)dx for all continuous
functions ' ∶ ℝ

N → [0,∞). The constant L is called compressibility constant of the flow.

In the above definition, L0
loc denotes the space of measurable functions endowed with the local

convergence in measure,  denotes the space of bounded functions, and logLloc denotes the space of
locally logarithmically integrable functions.

Given a vector field satisfying (R1), we can estimate the measure of the superlevels of the asso-
ciated regular Lagrangian flow thanks to the following lemma:

Lemma 2.2. Let b ∶ (0, T ) ×ℝ
N → ℝ

N be a vector field satisfying (R1) and let X ∶ [0, T ] ×ℝ
N →

ℝ
N be a regular Lagrangian flow relative to b with compressibility constant L. Define the sublevels

of the flow as
G� = {x ∈ ℝ

N ∶ |X(s, x)| ≤ � for almost all s ∈ [0, T ]} . (2.2)

Then for all r, � > 0 it holds
N (Br ⧵ G�) ≤ g(r, �) ,

where the function g depends only on L, ‖c1‖L1((0,T );L1(ℝN )) and ‖c2‖L1((0,T );L∞(ℝN )) and satisfies
g(r, �) ↓ 0 for r fixed and � ↑ ∞.

2.2 Fractional Sobolev spaces

We will make use of fractional Sobolev spaces according to the Sobolev–Slobodeckij definition:

Definition 2.3 (Fractional Sobolev–Slobodeckij space). Let f ∶ ℝ
n → ℝ be an integrable function,

f ∈ L1(ℝn). Given 0 < s < 1 and 1 ≤ p <∞, we say that f ∈W s,p(ℝn) if

∫
ℝn ∫ℝn

|f (x) − f (y)|p
|x − y|sp+n dy dx <∞ .

The following lemma gives a rate of convergence of the convolution to the original function,
and a rate of blow-up of the derivative of the function, under the assumption of fractional Sobolev
regularity.

Lemma 2.4. Let f ∈ W s,p(ℝn) and let f " be the convolution of f with the standard mollifier '".
Then we have

‖f − f "‖Lp(ℝn) ≤ C"s‖f‖W s,p(ℝn) and ‖Df "‖Lp(ℝn) ≤ C"s−1‖f‖W s,p(ℝn). (2.3)
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Proof. For the first estimate we compute

‖f − f "‖p
Lp(ℝn)

= ∫
ℝn

|f (x) − f "(x)|pdx = ∫
ℝn

||||f (x) − ∫
ℝn

f (x − y)'"(y) dy
||||
p

dx

= ∫
ℝn

||||f (x) − ∫
ℝn

f (x − y)'
(
y

"

)
1

"n
dy

||||
p

dx = ∫
ℝn

||||f (x) − ∫
ℝn

f (x − "z)'(z)
1

"n
"ndz

||||
p

dx

= ∫
ℝn

||||f (x) − ∫
ℝn

f (x − "z)'(z) dz
||||
p

dx = ∫
ℝn

||||∫ℝn

[f (x)'(z) − f (x − "z)'(z)]dz
||||
p

dx

= ∫
ℝn

||||∫ [f (x) − f (x − "z)]'(z)dz
||||
p

dx ≤ ∫
ℝn ∫ℝn

|f (x) − f (x − "z)|p'(z) dz dx

≤ ∫
ℝn ∫ℝn

|f (x) − f (x − "z)|p
|"z|sp+n |"z|sp+n'(z) dz dx

≤ "sp+n ∫
ℝn ∫ℝn

|f (x) − f (x − "z)|p
|"z|sp+n sup

z

{|z|sp+n'(z)}dz dx

≤ C"sp+n ∫
ℝn ∫ℝn

|f (x) − f (x − "z)|p
|"z|sp+n dz dx = C"sp+n ∫

ℝn ∫ℝn

|f (x) − f (y)|p
|x − y|sp+n

1

"n
dy dx

≤ C"sp‖f‖p
W s,p ,

where in the forth line we used Jensen’s inequality applied with the measure ' ⋅ n. This proves the
first inequality in the statement.

For the second estimate we compute

‖Df "‖p
Lp(ℝn)

= ‖f ∗ D'"‖p
Lp(ℝn)

= ∫
ℝn

||||∫ℝn

f (x − y)D'"(y) dy
||||
p

dx

= ∫
ℝn

||||∫ℝn

f (x − y)Dy

(
1

"n
'

(
y

"

))
dy

||||
p

dx = ∫
ℝn

||||∫ℝn

f (x − "z)Dz'(z)
1

"n+1
"n dz

||||
p

dx

=
1

"p ∫ℝn

|||||∫B1

f (x − "z)Dz'(z) dz
|||||

p

dx =
1

"p ∫ℝn

|||||∫B1

f (x − "z)Dz'(z) dz − ∫
ℝn

f (x)Dz'(z) dz
|||||

p

dx

=
1

"p
n(B1)

p ∫
ℝn

|||||∫B1

[f (x − "z) − f (x)]Dz'(z)
dz

n(B1)

|||||

p

dx

≤ 1

"p
n(B1)

p ∫
ℝn ∫B1

||[f (x − "z) − f (x)]Dz'(z)
||p dz

n(B1)
dx

=
1

"p
n(B1)

p−1 ∫
ℝn ∫B1

||[f (x − "z) − f (x)]Dz'(z)
||p dz dx

=
1

"p
n(B1)

p−1 ∫
ℝn ∫B1

|f (x − "z) − f (x)|p
|"z|sp+n |"z|sp+n|Dz'(z)|pdz dx

≤ 1

"p
"sp+nCn ∫

ℝn ∫B1

|f (x − "z) − f (x)|p
|"z|sp+n sup

z

{|z|sp+n|Dz'(z)|p}dz dx

≤ C"p(s−1)"n ∫
ℝn ∫ℝn

|f (x) − f (y)|p
|x − y|sp+n

1

"n
dy dx

≤ C"p(s−1)‖f‖p
W s,p ,

where in the third line we used that Dz' has zero average, and in the fifth line we used Jensen’s
inequality for the measure 1

n(B1)
⋅ n.
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2.3 Maximal estimates

In the course of the proof of our main theorem we will several times need to estimate difference quo-
tients of the vector field. We will follow the strategy in [10] and rely on suitable maximal estimates.
We now briefly recall the main definitions, the most classical version of these estimates, and some
anisotropic variants proved in [6].

Definition 2.5. For any integrable function u ∶ ℝ
n → ℝ the maximal function of u is defined as

Mu(x) = sup
r>0

1

n(B(x, r)) ∫B(x,r) |u(z)| dz , x ∈ ℝ
n .

It can be shown that, for u ∈ L1(ℝn), the maximal function Mu is a.e. finite. Moreover, the
following norm estimates hold (see [16, 17] for a proof):

Lemma 2.6. For any 1 < p ≤ ∞ the strong estimate

‖Mu‖Lp(ℝn) ≤ C‖u‖Lp(ℝn)

holds, where C depends on p and n only. For p = 1 only the weak etimate

|||Mu|||M1(ℝn) ≤ C‖u‖L1(ℝn)

holds, with C depending on n only. In the above we denoted by

|||f |||M1(ℝn) = sup
�>0

{
�n({x ∶ |f | > �})} (2.4)

the weak-L1 norm.

The basic maximal estimate for the difference quotients of a Sobolev function is the following
one. We recall its classical proof for the reader’s convenience.

Lemma 2.7. Let f ∶ ℝ
n → ℝ be a function in W 1,1(ℝn). Then for a.e. x, y ∈ ℝ

n,

|f (x) − f (y)| ≤ Cn|x − y|
(
MDf (x) +MDf (y)

)
.

Proof. First we prove the estimate for f ∈ C1. We denote

A = B

(
x + y

2
,
|x − y|

2

)
At,x = tx + (1 − t)A Bt,x = B(x, (1 − t)|x − y|)
At,y = ty + (1 − t)A Bt,y = B(y, (1 − t)|x − y|) .

(2.5)

We note that At,x ⊂ Bt,x and At,y ⊂ Bt,y. We estimate

|f (x) − f (y)| = ⨍A |f (x) − f (y)| dz ≤ ⨍A |f (x) − f (z)| dz + ⨍A |f (y) − f (z)| dz

= ⨍A
|||||∫

1

0

d

dt
[f (tx + (1 − t)z]dt

|||||
dz + ⨍A

|||||∫
1

0

d

dt
[f (ty + (1 − t)z]dt

|||||
dz

≤ 1

n(A) ∫A ∫
1

0

||||
d

dt
[f (tx + (1 − t)z]

|||| dt dz +
1

n(A) ∫A ∫
1

0

||||
d

dt
[f (ty + (1 − t)z]

|||| dt dz

≤ 1

n(A)
[
∫

1

0 ∫A |Df (tx + (1 − t)z)| |x − z|dzdt + ∫
1

0 ∫A |Df (ty + (1 − t)z)| |y − z|dzdt
]

≤ 1

n(A) |x − y|
[
∫

1

0 ∫A |Df (tx + (1 − t)z)|dzdt + ∫
1

0 ∫A |Df (ty + (1 − t)z)|dzdt
]
.
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We apply a change of variable and we obtain that the last line equals

1

n(A) |x − y|
[
∫

1

0 ∫At,x |Df (w)|
dw

1 − t
dt + ∫

1

0 ∫At,y |Df (w)|
dw

1 − t
dt

]

≤ 1

n(A) |x − y|
[
∫

1

0

n(Bt,x)
1 − t

1

n(Bt,x) ∫Bt,x |Df (w)|dwdt + symmetric

]

≤ n

|x−y|n
2n

(2�)
n

2

|x − y|
⎡
⎢⎢⎣∫

1

0

(1−t)n

n
|x − y|n(2�) n2
1 − t

sup
r>0 ⨍B(x,r) |Df (w)|dwdt + symmetric

⎤
⎥⎥⎦

= 2n|x − y|∫
1

0

(1 − t)n−1dt
[
MDf (x) +MDf (y)

]

= Cn|x − y|
[
MDf (x) +MDf (y)

]
,

where we used n(B(x, r)) = rn(2�)
n
2

n
.

To conclude the proof for f ∈ W 1,1(ℝn) it suffices to approximate f with a sequence (f") ⊂

C1(ℝn) which converges to f in W 1,1(ℝn) as "→ 0.

In our main result we will deal with a vector field with partial regularity. This assumption entails
a splitting of the space as ℝN = ℝ

n1 ×ℝ
n2 (with N = n1 + n2). We will denote the variable x ∈ ℝ

N

by x = (x1, x2), where x1 ∈ ℝ
n1 and x2 ∈ ℝ

n2 . Following [6], for �1, �2 > 0 we consider the N ×N

diagonal matrix

A =

⎡⎢⎢⎢⎢⎢⎣

�1
�1

⋱

�2
�2

⎤⎥⎥⎥⎥⎥⎦

, (2.6)

where �1 appears at the first n1 entries on the diagonal, and �2 at the remaining n2. In other words,
we have

A(x1, x2) = (�1x1, �2x2) , (x1, x2) ∈ ℝ
n1 × ℝ

n2 .

The next two lemmas have been proved in larger generality in [6]. We state them in our setting
and give a simpler proof for the reader’s convenience.

Lemma 2.8. Let f ∶ ℝ
N → ℝ be a function in W 1,1(ℝN ). Let A be the matrix defined in (2.6).

Then there exists a nonnegative function U such that for a.e. x, y ∈ ℝ
N ,

|f (x) − f (y)| ≲ |A−1[x − y]| (U (x) + U (y)) ,

with

U (x) =M

(
N∑
j=1

|)jf (A⋅)|Ajj
)
(A−1x).

Proof. The result follows from Lemma 2.7 above. We denote f̃ (z) = f (Az). Then we know that, for
a.e. z, w,

|f̃ (z) − f̃ (w)| ≤ CN |z −w|
(
MDf̃ (z) +MDf̃ (w)

)
, (2.7)

where in addition we notice

MDf̃ (z) ≤M

(
N∑
j=1

|)j f̃ |
)
(z) =M

(
N∑
j=1

(|)jf (A⋅)|Ajj )
)
(z). (2.8)
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Combining (2.7) and (2.8) we have, for a.e. z,w,

|f (Az) − f (Aw)| ≤ CN |z −w|
(
M

N∑
j=1

(|)jf (A⋅)|Ajj )(z) +M
N∑
j=1

(|)jf (A⋅)|Ajj )(w)
)
. (2.9)

Now from the last inequality, taking x and y such that z = A−1x and w = A−1y, we obtain the
thesis.

Lemma 2.9 (Operator bounds). Let U be defined as in Lemma 2.8. Then we have the estimates

|||U |||M1(ℝN ) ≤ C

(
�1

n1∑
j=1

||)jf ||L1(ℝN ) + �2

N∑
j=n1+1

||)jf ||L1(ℝN )

)
(2.10)

for )jf ∈ L1, and

||U ||Lp(ℝN ) ≤ C

(
�1

n1∑
j=1

||)jf ||Lp(ℝN ) + �2

N∑
j=n1+1

||)jf ||Lp(ℝN )

)
(2.11)

for )jf ∈ Lp.

Proof. As in Lemma 2.8 we consider f̃ (z) = f (Az). We exploit the estimates in Lemma 2.6 to the
effect that

|||U |||M1(ℝN ) =

||||||

||||||

||||||
M

N∑
j=1

(|)jf (A⋅)|Ajj )(A−1
⋅)

||||||

||||||

||||||M1(ℝN )

=

||||||

||||||

||||||
M

N∑
j=1

|)j f̃ |(A−1
⋅)

||||||

||||||

||||||M1(ℝN )

≤ C

||||||

||||||

N∑
j=1

|)j f̃ |(A−1
⋅)

||||||

||||||L1(ℝN )

≤ C

N∑
j=1

‖()jf̃ )(A−1
⋅)‖L1(ℝN )

= C

N∑
j=1

‖()jf (A⋅)Ajj )(A−1
⋅)‖L1(ℝN ) = C

N∑
j=1

Ajj‖)jf‖L1(ℝN ) ,

which is equation (2.10). With similar computations we can obtain (2.11).

We close this section with the following interpolation lemma, which allows to estimate the L1

norm in terms of the weak-L1 norm defined in (2.4), with a logarithmic dependence on higher inte-
grability norms.

Lemma 2.10 (Interpolation). Let u ∶ Ω → [0,+∞) be a nonnegative measurable function, where
Ω ⊂ ℝ

n has finite measure. Then for every 1 < p < ∞, we have the interpolation estimate

‖u‖L1(Ω) ≤ p

p − 1
|||u|||M1(Ω)

[
1 + log

( ‖u‖Lp(Ω)
|||u|||M1(Ω)

n(Ω)1− 1

p

)]
,

and analogously for p = ∞

‖u‖L1(Ω) ≤ |||u|||M1(Ω)

[
1 + log

( ‖u‖L∞(Ω)

|||u|||M1(Ω)

n(Ω)
)]

.
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3 Main result and corollaries

3.1 Assumptions on the vector field

We recall that we consider a splitting of the space as ℝN = ℝ
n1 ×ℝ

n2 and that we denote the variable
by x = (x1, x2), with x1 ∈ ℝ

n1 and x2 ∈ ℝ
n2 . We are dealing with a vector field

b ∶ (0, T ) ×ℝ
n1 × ℝ

n2 → ℝ
n1 ×ℝ

n2 for which we assume the following regularity:

(R2) ∶ b(s, x1, x2) =
(
b1(s, x1), b2(s, x1, x2)

)
∈ ℝ

n1 ×ℝ
n2 = ℝ

N

b1(s, x1) ∈ L1
(
(0, T );W 1,p

x1
(ℝn1 )

)

b2(s, x1, x2) ∈ L1
(
(0, T ) ×ℝ

n2
x2
;W �,1

x1
(ℝn1)

)
∩ L1

(
(0, T ) ×ℝ

n1
x1
;W 1,p

x2
(ℝn2 )

)
,

(3.1)

for some given p > 1 and 1∕2 < � < 1.
Moreover, we will assume that

(R3) ∶ b(t, x1, x2) ∈ L
p

loc
((0, T ) ×ℝ

N ) . (3.2)

Also recall that suitable growth conditions on b have been assumed in (R1).
Let us introduce some further notation that will be used in the following.
We denote byDibj = Dxi

bj the partial derivatives in distributional sense. We setD1b1 = p(t, x1),
D1b2 = q(t, x1, x2), and D2b2 = r(t, x1, x2). Then we have

Db =

(
D1b1 D2b1
D1b2 D2b2

)
=

(
p 0

q r

)
∈

(
L1
x2,locL

p
x1

0

distribution L1
x1
L
p
x2

)
. (3.3)

3.2 Main estimate for the Lagrangian flow

Theorem 3.1. Let b and b̄ be two vector fields satisfying assumptions (R1). Assume the following:

• The second component of b̄ satisfies b̄2 ∈ L1
(
(0, T ) ×ℝ

n2
x2
;W �,1

x1
(ℝn1 )

)
,

• The vector field b satisfies (R2) and (R3).

Let X and X̄ be regular Lagrangian flows associated to b and b̄ respectively, with compressibility
constants L and L̄. Then the following holds. For every positive  , r and � there exists � > 0 and
C,r,� > 0 such that

N (
Br ∩

{|X(s, ⋅) − X̄(s, ⋅)| > }) ≤ C,r,�‖b − b̄‖L1((0,T )×B�)
+ � (3.4)

for all s ∈ [0, T ], where C,r,� depends on L, L̄, the bound for b̄2 in L1
(
(0, T )×ℝ

n2
x2
;W �,1

x1
(ℝn1)

)
, the

bound for the decomposition of b̄ as in (R1), and the various bounds for b involved in the assump-
tions (R1), (R2), and (R3).

Proof. We exploit the anisotropic functional

Φ�1 ,�2
(s) = ∫Br∩G�∩Ḡ� log

(
1 + |A−1[X(s, x) − X̄(s, x)]|) dx , (3.5)

where the matrixA has been defined in (2.6) andG� (respectively, Ḡ�) are the sublevels of the regular
Lagrangian flow X (respectively, X̄) defined as in (2.2).
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Step 1: Regularization of the vector field. We regularize b2 by convolution in x1. Let'" be a standard
mollifier in ℝ

n1 . We denote the regularization of b2 by

b"
2
(t, x1, x2) = b2(t, x1, x2) ∗x1 '

"(x1) , for t and x2 fixed,

and we further denote b" = (b1, b
"
2
). Moreover, q" and r" are associated to b" as in (3.3).

Due to standard properties of the convolution we have that b" → b and r" → r in L1
loc(ℝ

N ). Also
recall the rates of convergence and blow-up proved in Lemma 2.4.

Step 2: Time differentiation. By differentiating the functional Φ�1,�2
(s) with respect to time we get

Φ′
�1 ,�2

(s) ≤ ∫Br∩G�∩Ḡ�
|A−1[b(s,X) − b̄(s, X̄)]|

1 + |A−1[X − X̄]| dx

≤ ∫Br∩G�∩Ḡ�
|A−1[b(s,X) − b"(s,X)]|

1 + |A−1[X − X̄]| +
|A−1[b̄"(s, X̄) − b̄(s, X̄)]|

1 + |A−1[X − X̄]| +
|A−1[b"(s,X) − b̄"(s, X̄)]|

1 + |A−1[X − X̄]| dx

≤ L

�1
‖b − b"(s, ⋅)‖L1(B�)

+
L̄

�1
‖b̄ − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�
|A−1[b"(s,X) − b"(s, X̄) + b"(s, X̄) − b̄"(s, X̄)]|

1 + |A−1[X − X̄]| dx

≤ L

�1
‖b − b"(s, ⋅)‖L1(B�)

+
L̄

�1
‖b̄ − b̄"(s, ⋅)‖L1(B�)

+
L̄

�1
‖b" − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�
|A−1[b"(s,X) − b"(s, X̄)]|

1 + |A−1[X − X̄]| dx

≤ L

�1
‖b − b"(s, ⋅)‖L1(B�)

+
L̄

�1
‖b̄ − b̄"(s, ⋅)‖L1(B�)

+
L̄

�1
‖b" − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ� min

{
|A−1[b"(s,X) − b"(s, X̄)]|, |A

−1[b"(s,X) − b"(s, X̄)]|
|A−1[X − X̄]|

}
dx.

Step 3: Bounds with maximal operators. Integrating in time and recalling the definition of the ma-
trix A in 2.6 we get

Φ�1 ,�2
(�) ≤ L

�1
‖b − b"‖L1((0,�)×B�)

+
L̄

�1
‖b̄ − b̄"‖L1((0,�)×B�)

+
L̄

�1
‖b" − b̄"‖L1((0,�)×B�)

+∫
�

0 ∫Br∩G�∩Ḡ�min
{
|A−1[b"(s,X) − b"(s, X̄)]|, 1

�1

|b1(s,X) − b1(s, X̄)|
|A−1[X − X̄]|

+
1

�2

|b"
2
(s,X) − b"

2
(s, X̄)|

|A−1[X − X̄]|
}
dxds.

(3.6)

Lemmas 2.8 and 2.9 can be easily extended to vector valued functions. We would like to apply
these lemmas to b", which is only locally W 1,1 in ℝ

N , as the first component b1 does not depend
on x2. This can be done by defining a new vector field b̃" as the smooth cut-off of b" on the ball
of radius 2�, i.e. b̃" = b" ⋅ �B� = (b1 ⋅ �B� , b

"
2
⋅ �B�) = (b̃1, b̃

"
2
), where �B� is a smooth function

with value 1 on B2� and 0 on ℝ
N ⧵ B2�+1, and by using suitable truncated maximal functions in the

maximal estimates. We define p̃, q̃, r̃, q̃" and r̃" as the partial derivatives of b̃ (= b ⋅ �B�) and b̃".
Lemma 2.8 applied to b̃1 and b̃"

2
yields

|b̃1(s, x) − b̃1(s, x̄)|
|A−1[x − x̄]| ≲ Up̃(x) + Up̃(x̄), (3.7)
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and |b̃"
2
(s, x) − b̃"

2
(s, x̄)|

|A−1[x − x̄]| ≲ Uq̃",r̃"(x) + Uq̃",r̃"(x̄) (3.8)

for s ∈ [0, T ], and for a.e. x, x̄ ∈ ℝ
N .

By subadditivity of U we can estimate

Uq̃",r̃" ≤ Uq̃" + Ur̃" ,

implying that

|b̃1(s, x) − b̃1(s, x̄)|
|A−1[x − x̄]| ≲ Up̃(x) + Up̃(x̄),

|b̃"
2
(s, x) − b̃"

2
(s, x̄)|

|A−1[x − x̄]| ≲ Uq̃"(x) + Ur̃"(x) + Uq̃"(x̄) + Ur̃"(x̄).

Step 4: Estimates for the maximal operators. Let Ω = (0, �) ×
(
Br ∩ G� ∩ Ḡ�

)
⊂ ℝ

N+1. We can
estimate the last term of the sum (3.6) with

∫Ω

min
{
|A−1[b"(s,X) − b"(s, X̄)]|, 1

�1

(
Up̃(s,X) + Up̃(s, X̄)

)

+
1

�2

(
(Uq̃" + Ur̃")(s,X) + (Uq̃" + Ur̃")(s, X̄)

)}
dx ds =∶ Φ̃�1,�2

(�) .

Lemma 2.9 implies

|||Uq̃" |||M1((0,T )×B�)
≲ �1‖q̃"‖L1((0,T )×ℝN ) = �1‖q̃"‖L1((0,T )×B2�+1)

≤ �1‖q"‖L1((0,T )×B2�+1)
=∶ �1 (") .

Notice that the quantity  (") at the right hand side could a priori blow up as " → 0, as we are not
assuming that q = D1b2 is integrable.

Splitting the minima once again, we obtain

Φ̃�1,�2
(�) ≤ ∫Ω

min

{
|A−1[b"(s,X) − b"(s, X̄)]|, 1

�2

(
Uq̃"(s,X) + Uq̃"(s, X̄)

)}
dx ds

+ ∫Ω

min

{
|A−1[b"(s,X) − b"(s, X̄)]|, 1

�2

(
Ur̃"(s,X) + Ur̃"(s, X̄)

)}
dx ds

+ ∫Ω

min

{
|A−1[b"(s,X) − b"(s, X̄)]|, 1

�1

(
Up̃(s,X) + Up̃(s, X̄)

)}
dx ds

= ∫Ω

'1(s,X, X̄) dxds + ∫Ω

'2(s,X, X̄) dxds + ∫Ω

'3(s,X, X̄) dxds .

Let Ω′ = (0, �)×B� ⊂ ℝ
N+1. Using the first element of the minimum and relying on assumption

(R3) we can estimate

‖'1‖Lp(Ω) ≤ L1∕p + L̄1∕p

�1
‖b"‖Lp(Ω′) ≲

1

�1
‖b"‖Lp(Ω′) ≲

1

�1
‖b‖Lp(Ω′) ≃

1

�1
.

Exploiting the second term of the minimum, we get

|||'1|||M1(Ω) ≤ 1

�2
|||Uq̃"(X)+Uq̃" (X̄)|||M1(Ω) ≲

1

�2
|||Uq̃" |||M1(Ω′) ≲

�1

�2
‖q"‖L1((0,T )×B2�+1)

=
�1

�2
 (") .
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For '2 and '3 using assumption (R2) we have

‖'2‖L1(Ω) ≲
1

�2
‖Ur̃"‖L1(Ω′) ≲�

1

�2
‖Ur̃"‖L1((0,T );Lp(B�))

≲
�2

�2
‖r̃"

2
‖L1((0,T );Lp(ℝN )) ≲ C (3.9)

and

‖'3‖L1(Ω) ≲
1

�1
‖Up̃‖L1(Ω′) ≲�

1

�1
‖Up̃‖L1((0,T );Lp(B�))

≲
�1

�1
‖p̃2‖L1((0,T );Lp(ℝN )) ≲ C . (3.10)

Step 5: Interpolation Lemma. We can apply now Lemma 2.10 to '1, to the effect that

Φ�1 ,�2
(�) ≲�

1

�1
‖b" − b̄"‖L1(Ω′) +

1

�1
�(") +

1

�1
�̄(") +

�1

�2
 (") log

⎛⎜⎜⎝
1

�1

�2
 (")�1

⎞⎟⎟⎠
+ C

≲
1

�1
‖b − b̄‖L1(Ω′) +

1

�1

[
�(") + �̄(")

]
+
�1

�2
 (") log

⎛⎜⎜⎝
1

�1

�2
 (")�1

⎞⎟⎟⎠
+ C ,

where �(") = ‖b − b"‖L1(Ω′) and �̄(") = ‖b̄ − b̄"‖L1(Ω′) tend to 0 as "→ 0. Lemma 2.4 implies that

�(") + �̄(") ≲

(
‖b2‖L1

t,x2
W

�,1
x1

+ ‖b̄2‖L1
t,x2

W
�,1
x1

)
"� and  (") ≲

(
‖b2‖L1

t,x2
W

�,1
x1

)
"�−1. (3.11)

Therefore

N (
Br ∩

{|X(s, ⋅) − X̄(s, ⋅)| > })

≲�

‖b − b̄‖L1(Ω′)

�1 log(1 +


�2
)
+

�(") + �̄(")

�1 log(1 +


�2
)
+

�1

�2
 (") log

(
1

�1
�2
 (")�1

)

log(1 +


�2
)

+
C

log(1 +


�2
)

+ N (Br ⧵G�) + N (Br ⧵ Ḡ�)

≲
‖b − b̄‖L1((0,T )×B�)

�1 log(1 +


�2
)

+
"�

�1 log(1 +


�2
)
+

�1

�2
"�−1 log

(
1

�1
�2
"�−1�1

)

log(1 +


�2
)

+
C

log(1 +


�2
)

+ N (Br ⧵G�) + N (Br ⧵ Ḡ�)
=

‖b − b̄‖L1((0,T )×B�)

�1 log(1 +


�2
)

+ 1) + 2) + 3) + 4) + 5) .

Step 6: Choice of the parameters and conclusion. Fix � > 0. By choosing � sufficiently large we can
make 4) + 5) ≤ 2�∕5.

Define

� =
�1

�2
≪ 1 , so that �1 = ��2.

We need to choose " > 0, � > 0, and �2 > 0 in such a way that

1) + 2) + 3) =
"�

��2 log(1 +


�2
)
+
�"�−1 log

(
1

�2"�−1�2

)

log(1 +


�2
)

+
C

log(1 +


�2
)
≤ 3�

5
.
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The term 3) can be made smaller than �∕5 by choosing �2 > 0 sufficiently small. We fix 0 < � < 1 to
be determined later (depending on the exponent � > 1∕2 in assumption (R2) only) and choose " > 0

such that
"�−1 = ��−1 , that is, " = �

1−�

1−� .

In this way we get

2) =
�� log

(
1

��+1�2

)

log(1 +


�2
)

=
�� log

(
1

��+1

)

log(1 +


�2
)

+
�� log

(
1

�2

)

log(1 +


�2
)
,

which can be made smaller that �∕5 if � > 0 is chosen to be small enough.
With the above choices the term 1) becomes

1) =
�

1−�

1−�
�

��2 log(1 +


�2
)
=

�
2�−��−1

1−�

�2 log(1 +


�2
)
,

which can be made smaller than �∕5 by a suitable choice of � > 0, provided the exponent of � at the
numerator is positive, that is,

2� − �� − 1

1 − �
> 0 ⟺ � >

1

2 − �
. (3.12)

Since � > 1∕2, we see that we can choose � > 0 small enough in such a way that (3.12) holds. This
gives 1) + 2) + 3) + 4) + 5) ≤ � and therefore concludes the proof.

3.3 Well-posedness and further properties of the Lagrangian flow

Estimate (3.4) in Theorem 3.1 is the key information which guarantees existence, uniqueness, and
stability of the regular Lagrangian flow. The proof of these results as a consequence of estimate (3.4)
is by now quite standard, see the theory developed in [10, 7, 6]. We begin with the uniqueness.

Corollary 3.2 (Uniqueness). Let b be a vector field satisfying assumptions (R1), (R2), and (R3).
Then, the regular Lagrangian flow associated to b, if it exists, is unique.

It is indeed very easy to see that uniqueness follows from estimate (3.4). We consider b = b̄, then
the right hand side of (3.4) can be made arbitrarily small, for any  > 0 fixed. This readily implies
uniqueness.

Remark 3.3. We observe that, in contrast to the PDE theory in [13, 15, 14], no assumptions on the
divergence of the vector field are required for the uniqueness of the regular Lagrangian flow. The
divergence will play a role for the existence only.

The main advantage of the quantitative theory of ODEs, in contrast to the PDE theory, is that it
provides an explicit rate for the compactness and the stability, depending on the uniform bounds that
are assumed on the sequence of vector fields. The following two results can be proven arguing as
in [7], as a consequence of the main estimate (3.4).

Corollary 3.4 (Stability). Let {bn} be a sequence of vector fields satisfying assumption (R1), con-
verging in L1

loc([0, T ] × ℝ
N ) to a vector field b which satisfies assumptions (R1), (R2), and (R3).

Assume that there exist Xn and X regular Lagrangian flows associated to bn and b respectively, and
denote by Ln and L the compressibility constants of the flows. Suppose that:
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• For some decomposition bn∕(1 + |x|) = cn,1 + cn,2 as in assumption (R1), we have that

‖cn,1‖L1
t
(L1

x
) + ‖cn,2‖L1

t
(L∞

x
) is equi-bounded;

• The sequence {Ln} is equi-bounded;

• The norm of bn,2(s, x1, x2) in L1
(
(0, T ) × ℝ

n2
x2
;W �,1

x1
(ℝn1)

)
is equi-bounded.

Then the sequence {Xn} converges to X locally in measure in ℝ
N , uniformly with respect to time.

In the above corollary, the assumption in the third bullet is necessary in order to have a uniform
estimate on the quantity �n(") associated to bn (as in the proof of Theorem 3.1).

Corollary 3.5 (Compactness). Let {bn} be a sequence of vector fields satisfying assumption (R1),
(R2), and (R3), converging in L1

loc([0, T ] ×ℝ
N ) to a vector field b which satisfies assumptions (R1),

(R2), and (R3). Assume that there exist Xn regular Lagrangian flows associated to bn, and denote by
Ln the compressibility constants of the flows. Suppose that:

• For some decomposition bn∕(1 + |x|) = cn,1 + cn,2 as in assumption (R1), we have that

‖cn,1‖L1
t
(L1

x
) + ‖cn,2‖L1

t
(L∞

x
) is equi-bounded;

• The sequence {Ln} is equi-bounded;

• The norms of the vector fields {bn} involved in the assumptions (R2) and (R3) are equi-bounded.

Then the sequence {Xn} is pre-compact locally in measure in ℝ
N , uniformly with respect to time,

and converges to a regular Lagrangian flow X associated to b.

By a simple regularization procedure Corollary 3.5 implies existence of the regular Lagrangian
flow, under the assumption of boundedness of the divergence of the vector field. Such an assumption
is needed in order to have equi-boundedness of the compressibility constants for the sequence of
approximated regular Lagrangian flows Xn in Corollary 3.5.

Corollary 3.6 (Existence). Let b be a vector field satisfying assumptions (R1), (R2), and (R3). As-
sume that the (distributional) spatial divergence of b is bounded. Then, there exists a regular La-
grangian flow associated to b.

Remark 3.7. Arguing as in [7], it is also possible to develop a theory of Lagrangian solutions of the
continuity equations, that is, solutions that are transported by the regular Lagrangian flow.

3.4 Remarks and possible extensions

We conclude by listing a few remarks and questions concerning the results and the approach in this
work:

(1) The same proof for Theorem 3.1 works if we assume only local regularity bounds in assump-
tion (R2). We omitted this just for simplicity of notation.

(2) Compared to the PDE theory in [13, 15, 14], we need to assume some fractional Sobolev reg-
ularity of b2 with respect to the variable x1. This seems unavoidable for our strategy of proof,
since we cannot send to zero the two parameters �1 and �2 one after the other, but we rather
need to send them together to zero, under a condition on their ratio � = �1∕�2. Is it possible
to modify our proof and remove this assumption, that is, is it possible to derive an estimate
like (3.4) under the only assumption of integrable depencence of b2 with respect to x1?
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(3) Is it possible to treat the case p = 1 in assumption (R2)? We briefly explain here what is the
obstruction with the present approach. In the case p = 1, in Step 4 of the main proof the oper-
ators Ur̃" and Up̃ cannot be directly estimated in L1 as in (3.9) and (3.10) (recall Lemma 2.9).
One needs to argue as done in the same step for Uq̃" exploiting the equi-integrability and the in-
terpolation from Lemma 2.10. After some computations we would obtain that, for every � > 0,
there is a constant C� > 0 so that the term

C

log(1 +


�2
)

in the last estimate at the end of Step 5 is replaced by the sum

� log
(

1

���2

)

log(1 +


�2
)
+

C�

log(1 +


�2
)
.

We need to make also this sum small, exploiting the arbitrariness of �. We see that, in order
to make the first term small, we need to take � coupled to �. Choosing "�−1 = ��−1 as in the
proof of Theorem 3.1, we see that we still have � and �2 as free parameters, and eventually we
need to make small the sum

�
2�−��−1

1−�

�2 log(1 +


�2
)
+

C�

log(1 +


�2
)

(as now � is coupled to �). However, since C� blows up for � → 0 (depending on the equi-
integrability rate), with this strategy there is in general no choice of such parameters which
makes the last sum small.

(4) Can one relax the strong requirement that b1 does not depend on the variable x2, and require
instead (for instance) that b1 has a smooth dependence on x2?
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