
Automatic Configuration of Benchmark Sets for Classical Planning

Álvaro Torralba,1 Jendrik Seipp,2 Silvan Sievers2

1Aalborg University, Denmark
2University of Basel, Switzerland

alto@cs.aau.dk, jendrik.seipp@unibas.ch, silvan.sievers@unibas.ch

Abstract

The benchmarks from previous International Planning Com-
petitions are commonly used to evaluate new planning algo-
rithms. Since this set has grown organically over the years,
it has several flaws: it contains duplicate tasks, unsolvable
tasks, trivially solvable domains, and domains with modelling
errors. Also, diverse domain sizes complicate aggregating re-
sults. Most importantly, however, the range of task difficulty
is very small in many domains. We propose an automated
method for creating benchmarks that solves these issues. To
find a good scaling in difficulty, we automatically configure
the parameters of benchmark domains. We show that the re-
sulting benchmark set improves empirical comparisons by al-
lowing to differentiate between planners more easily.

1 Introduction
Domain-independent planning aims to develop general
solvers that find solutions to arbitrary sequential decision-
making problems. This makes the evaluation of planners an
essential part of planning research. The International Plan-
ning Competition (IPC) has set some evaluation standards
and triggered the development of tools that compare plan-
ners in terms of different metrics (Linares López, Celorrio,
and Helmert 2013; Seipp et al. 2017; Vallati, Chrpa, and Mc-
Cluskey 2018). The most popular metric is coverage, i.e.,
the number of solved benchmark instances within certain
time and memory limits. Typically, there are two main goals
for the evaluation: (1) analyze the impact of the novel algo-
rithms by comparing their performance against a baseline,
and (2) compare the performance against the state of the art
to evaluate the progress in the area.

Evaluating planners on different benchmark sets may pro-
duce different results, leading to different conclusions from
the evaluation. Not only is it important which domains we
choose, but also how we model the domains (Riddle, Holte,
and Barley 2011), and which instances of a domain we se-
lect. Therefore, having a standardized benchmark set is im-
portant to increase the comparability of results across differ-
ent papers, and to avoid the use of benchmarks tailored for
the proposed technique.

We focus on classical planning where the current standard
benchmark set has grown across the nine editions of the IPC
so far, from 1998 to 2018 (e.g., Hoffmann and Edelkamp
2005; Linares López, Celorrio, and Olaya 2015). Numerous

researchers have contributed to this set by carefully design-
ing new domains (e.g., Hoffmann et al. 2006), so it features
a diverse set of domains that pose interesting challenges for
planning algorithms. However, there are several issues with
this benchmark set (Moraru and Edelkamp 2019). For ex-
ample, it uses a different number of instances per domain,
which reduces the value of statistics aggregated over differ-
ent domains. Moreover, instances in the current benchmark
set were scaled to be useful for the evaluation of planners at
the respective IPC. Some of the domains are trivially solved
by modern planners, making it impossible to show any cov-
erage advantages over a baseline. On the other hand, early
IPC editions did not have a specialized track for optimal
planning, and some of their instances are too hard even for
state-of-the-art optimal planners.

This paper deals with the question of how to generate in-
stances of a domain to evaluate planning algorithms. Our
goal is to improve the empirical evaluation of future plan-
ning papers by (1) providing an algorithm for automatically
constructing interesting benchmark sets and by (2) using this
algorithm to construct a new benchmark set where differ-
ences in performance are better reflected in coverage than
under the current standard. We aim to generate a set of in-
stances that range from very easy (solved by most planners)
to very hard (out of reach for current state-of-the-art plan-
ners) allowing future approaches to show benefits with re-
spect to the harder instances. This definition necessarily de-
pends on the algorithms being evaluated.

We identify which properties are desirable for a bench-
mark set and propose an automatic method that generates
a set of instances, given an instance generator, a baseline
planner that represents the expected minimum performance
of any planner, and a set of state-of-the-art planners. The
instance sets generated by our method fulfill the desirable
properties by design. To avoid overfitting to the sets of plan-
ners used and not introduce a bias in our benchmark set, our
method does not select a set of instances directly, but rather
performs a search on the space of possible parameters for the
generator to obtain a set of instances of adequate difficulty.
We use our tool to design two separate sets of benchmarks,
for optimal and satisficing planning, and show their advan-
tages over the current standard IPC benchmark set.



2 Background
Informally, a classical planning task is defined by an ini-
tial state, a set of actions and a goal description. Given a
planning task, a planner finds a plan, that is, a sequence of
actions that can be applied in the initial state to achieve the
goal. A plan is optimal if it minimizes the summed-up cost
of the actions among all plans. If the planner is guaranteed to
find an optimal solution, it is an optimal planner, otherwise
it is a satisficing planner. In both settings, we only consider
solvable planning tasks.

Since its inception in 1998, the International Planning
Competition (IPC) has set the standards for the evaluation of
planners such as the planner input language PDDL (McDer-
mott et al. 1998). The IPC also introduced numerous plan-
ning tasks from different problem settings, called domains.

A planning task is typically divided into a domain and
an instance file. The domain file defines the types of ob-
jects, their properties, and the action schemas. Each instance
file can have a different number of objects, initial state and
goals. Most domains have an instance generator, a program
that, given certain parameters and a random seed, will gen-
erate a new instance of the domain. Even though many in-
stance generators are available,1 most planning papers use
the benchmarks introduced for the IPCs, since a standard-
ized benchmark set makes research more reproducible.

As an example, consider the Nomystery domain, where a
truck must deliver a set of packages to certain locations. To
do that, there is a limited amount of fuel that is consumed by
drive actions. Instances differ in the amount of fuel available,
the number of locations and their connections, the number
of packages, and their initial and final location. The instance
generator for Nomystery accepts several parameters that al-
low the benchmark designer to control the difficulty of the
generated instances: the number of locations, the number of
packages, the number of edges between locations, the maxi-
mum fuel consumption between two locations, and the con-
strainedness C ≥ 1, so that the amount of fuel in the initial
state is set to C times the minimum fuel consumption re-
quired to solve the instance.

3 Benchmark Design Principles
The purpose of a benchmark set is to evaluate planners and
compare their performance on a diverse class of problems.
Ideally, one should select a diverse set of domains that are
representative of real-world scenarios where different users
apply planning to solve their problems. However, in addi-
tion to selecting interesting domains, one must select a set
of concrete instances from each domain to evaluate the plan-
ners on. This selection of instances is an important step in
the design of the benchmark set, since different instance sets
of a domain may lead to different conclusions about which
planner is better at solving instances of a given domain. Our
goal is that, for any two planners A and B (possibly un-
known at the time when the instance set is generated) if A is
consistently faster than B on the instances of a domain, the
probability that this is reflected on the coverage score should
be as high as possible.

1https://github.com/AI-Planning/pddl-generators

IPC New’14

L D O L D O

Nomystery 11 20 12 25 30 24
Rovers 40 40 40 22 18 21
Woodworking 50 50 50 18 27 30
Total 101 110 102 65 75 75

Table 1: Coverage of LAMA (L), and two IPC 2018 agile
planners Decstar (D) and OLCFF (O) on three domains.

For aggregated statistics to be meaningful, not only
should all domains have the same number of instances, but
their difficulty should also scale similarly. Otherwise, con-
clusions taken from the empirical evaluation may be biased.
Table 1 shows an example comparing 3 planners in 3 do-
mains when using the IPC instances and our New’14 bench-
mark set, as described in the evaluation section. A paper
evaluating these planners with IPC instances would reach
the conclusion that Decstar is clearly superior to the other
two planners in these domains, both in total coverage and on
a per-domain basis since it has better or equal coverage in
all domains. However, this conclusion is biased because in-
stances are not well scaled. Instances in Rovers and Wood-
working are way too easy and therefore they do not show
any differences between the planners. Using our New’14
instances leads to a different conclusion: all three planners
are complementary. Of course, no strong conclusions can be
taken out of only 3 domains. However, using more domains
will help to alleviate this issue only if the instances are well
scaled.

A good scaling must meet three conditions: (1) have easy
instances that are solved by all planners, (2) have hard in-
stances that are not solved by any current planner, and (3)
the instance difficulty should grow smoothly.

Condition (1) is necessary for experiments to be infor-
mative at all: if some planners do not solve any instance,
no conclusions can be obtained about their relative perfor-
mance. This happens in some domains of the IPC bench-
mark set for optimal planning. E.g., Fišer, Torralba, and Sh-
leyfman (2019) write that “In childsnack, [they] measured
about twice as many expanded states per second. However,
no planner solved any instance in this domain.”.

Condition (2) is necessary for new algorithms to show that
they can deal with instances that previous planners could
not, as shown by our example in Table 1.

Condition (3) is necessary for differences between the
planners’ performance to be reflected in coverage. To see
why, consider an idealized setting where a baseline planner
A, whose runtime scales exponentially (t(A, x) = xC for
some constant C), is compared to an improved planner ver-
sion B which is always faster than A by at least a factor of
K > 1, i.e., t(B, x) ≤ t(A,x)

K . Given these assumptions,
there is a guaranteed difference in coverage if and only if
(1) some instances are solved by B, (2) not all instances are
solved by A, and (3) K ≥ C. Otherwise, there may be cases
where both planners solve the same number of instances,



10−2

10−1

100

101

102

103
uns.

Ti
m

e
(s

)

Complementary 2, IPC
Delfi-blind, IPC
Complementary 2, New’14
Delfi-blind, New’14

Figure 1: Runtime of two IPC 2018 optimal planners in the
Barman domain using the IPC and New’14 instance sets.

and the difference in performance by a factor ofK is missed
by the coverage analysis. If these conditions do not hold, it
is possible to choose runtimes for A and B that are compati-
ble with these exponential scalings, so that their coverage is
equal. For example, if K = 2 and C = 3, then (3) does not
hold. So for any time limit (e.g., 300 seconds), if the runtime
of the last instance solved by A is close enough to the time
limit (e.g., 250 seconds), the next instance cannot be solved
by B below the time limit (e.g., 250·3

2 > 300).
Real distributions of planner runtimes over sets of in-

stances differ from this idealized example in that they usu-
ally involve constant factors, the runtime scaling of different
planners may be completely different, and even for a sin-
gle planner it may be impossible to obtain instances that
scale according to the desired runtimes in some domains.
But ideally, all domains should consist of a collection of in-
stances of increasing difficulty, ranging from very easy to
very hard for current planners. Therefore, we aim for a col-
lection where the easiest instance is quickly solved by most
planners; all domains have instances that are not solved by
current planners; and difficulty scales by approximately a
factor of 1.5–2 between consecutive instances.

Figure 1 exemplifies why a smooth scaling is important in
practice. The plot shows the runtimes of two optimal plan-
ners on the Barman domain from IPC 2011 and our New’14
benchmark set. In the IPC instances the difficulty does not
grow smoothly. Instead, for each group of four instances the
difficulty increases visibly and the runtime of all planners
increases by about one order of magnitude. This is undesir-
able since we cannot observe differences in performance for
some planners by inspecting their coverage. In contrast, the
difficulty on the new benchmark set grows more smoothly,
there are instances of more varied difficulty for all plan-
ners, and fewer jumps in their runtime. Accordingly, now
we can observe that Complementary 2 is able to solve some
instances that are not solved with Delfi-blind in this domain.

Given our definition of an ideal benchmark set as one that
meets conditions (1), (2), and (3) described above, the in-
stance selection necessarily depends on the planning algo-
rithms being evaluated. As our objective is to generate a
benchmark set to evaluate future planners that do not ex-
ist yet, one cannot directly select instances that are useful to

compare planner’s right now. However, selecting an instance
set that scales well for current planners may generalize well
for planners that are introduced in the next few years. In-
deed, our New’14 instance set featured in our examples of
Table 1 and Figure 1 was configured without using any plan-
ner after 2014, so it did not use any information regarding
the IPC’18 planners mentioned in our examples.

One must be careful not to “overfit” the benchmark set
to match the set of selected planners, so that the difficulty
scales well for the selected planners but not for future plan-
ners. To avoid overfitting, we impose two restrictions on the
benchmark configuration process. On the one hand, the op-
timization process does not consider concrete instances, but
rather only decides which overall characteristics they should
have (e.g. the number of objects in each instance). The fi-
nal benchmark set is then generated with a random seed dif-
ferent from the one used during our optimization process.
On the other hand, we do not consider the individual results
of all planners available for the optimization. In each do-
main, we require a baseline planner that represents the ex-
pected minimum performance of any planner to ensure that
some instances are solved by all planners. Also, to ensure
that some instances remain unsolved, we estimate the per-
formance of state-of-the-art planners by taking the minimum
runtime of any of the available planners on each instance.
This makes our instance selection as objective as possible
since it does not depend on the concrete set of planners avail-
able to the benchmark designer, as long as the best planner
for the given domain is considered.

4 Configuration of Planning Benchmarks
We consider domains that have an instance generator with
several parameters to control the hardness of the generated
instances.

4.1 Framework
We model the problem of generating the instances of a
benchmark set as follows. Our tool takes as input a tuple
(spec, G,A,B), where spec is a domain specification; G is
an instance generator; A is a set of state-of-the-art planners;
and B is a set of baseline planners. The output will be a set
of instances of that domain.

The domain specification describes the instance genera-
tor parameters and their constraints and it is discussed in
detail in the next section. The instance generator G is a
function that takes as input a tuple of parameter values
ρ = 〈ρ1, . . . , ρk〉 and a random seed seed ∈ N+ and out-
puts a planning task. Let p ∈ A ∪ B be a planner, and Π a
planning task produced by G(ρ, seed) for some seed ∈ N+.
We define t(p,Π) as the runtime of planner p to solve task
Π. For every instance we characterize the performance of a
set of planners A on an instance Π as the minimum runtime
of any planner, t(A,Π) = minp∈A t(p,Π).

Given a parameter configuration ρ, we define t(p, ρ) as
the average runtime over all possible tasks that the generator
may output for different random seeds. We estimate t(p, ρ)
by sampling k tasks Π1, . . . ,Πk from the distribution and
taking the average running time

∑
i∈[1,k] t(p,Πi)

k . In practice,



a small k is sufficient for most domains. In our experiments
we used k = 1, which was enough to produce robust results.

Our goal is to select a set of parameter configura-
tions ρ1, . . . , ρn such that the running time t(A, ρi) scales
smoothly with i, as described in our general design princi-
ples. Note that our automatic tool is not allowed to hand-pick
the random seed, but rather the final benchmark set is cre-
ated by sampling these distributions of instances with new
random seeds. This helps to avoid overfitting. An assump-
tion is that the variance of the runtimes t(A,Πi) for tasks
generated with the same parameter configuration is not too
high, since otherwise the parameters provided to the gener-
ator are irrelevant for obtaining a smooth difficulty scaling.
This is a reasonable assumption in practice, following analy-
ses made in the context of predicting planner runtimes (de la
Rosa, Cenamor, and Fernández 2017). Out of 10 domains
analyzed by de la Rosa, Cenamor, and Fernández, most of
them had a very low variance. The one with highest variance
was Barman, where 90% of the instances were still relatively
close to the average runtime, especially for our purposes.

4.2 Domain Specification
In order to use our benchmark configuration tool, the bench-
mark designer must specify how to call the instance gener-
ator, what parameters are available, as well as which values
are appropiate for each parameter.

We distinguish between two types of parameters. Lin-
ear parameters can be assigned arbitrary non-negative nu-
meric values, where larger values usually result in harder
instances. They are typically used to specify the number of
objects of a given type. Each generator should have at least
one linear parameter that helps to control the difficulty of
the generated instances. In contrast, enumerated parameters
have a finite set of values, and we do not make any assump-
tion about their impact on instance hardness. All other pa-
rameters are fixed to a predefined constant value.

We define the instances of a domain as a set of se-
quences of instances. A sequence consists of a list of plan-
ning tasks Π1,Π2, . . . of increasing difficulty. To ensure
that difficulty increases, all instances in the sequence have
a fixed value for all enumerated parameters, whereas the
value of linear parameters increases linearly across the se-
quence. We specify this via the base value b that the lin-
ear parameter takes for Π1 and the slope m. For example,
suppose that a domain has two linear parameters that de-
fine the number of packages (b = 2,m = 1), and trucks
(b = 1,m = 0.5). Then, the sequence will generate in-
stances with the following numbers of packages and trucks:
(2, 1), (3, 1), (4, 2), (5, 2), (6, 3), etc.

Considering sequences of instances allows us to choose
the parameters that generate instances which current plan-
ners fail to solve within reasonable time. A limitation of this
approach is that not all combinations of parameters are pos-
sible. In the example above, a single sequence cannot con-
tain both (3, 2) and (2, 3) because that would require to de-
crease one of the parameters, which is not allowed by our
linear scaling. In most cases, this is not a problem because
we can use multiple sequences of instances for a single do-
main. A notable exception are parameters that define the

generator_command = "nomystery -l {locations}

-p {packages} -n {edgefactor} -m {edgeweight}

-c {constrainedness} -s {seed} -e 0"

domain_attributes = [

LinearAttr("locations", lower_b=3, upper_b=5,

lower_m=0.1, upper_m=1),

LinearAttr("packages", lower_b=2, upper_b=10),

ConstantAttr("edgefactor", "1.5"),

ConstantAttr("edgeweight", "25"),

EnumAttr("constrainedness", [1.1, 1.5, 2.0])]

Figure 2: Example of a domain specification with the gen-
erator command and the specification of the corresponding
parameters.

width and height of a grid, because they have a strong in-
teraction, i.e., the number of cells is the product of both pa-
rameters. In that case, we consider them a single parameter
so that the number of tiles in the grid scales linearly.

The snippet from Figure 2 shows the domain specification
for the nomystery domain. For each linear parameter, lower
and upper bounds for the base and slope values should be
provided. This allows the domain modeller to specify pref-
erences on which parameters to scale (e.g., by restricting the
slopem for the number of locations to be between 0.1 and 1,
they indicate their preference to increase difficulty by scal-
ing the number of packages). Note that this is important,
since a property of a good benchmark set is that instances
reflect problems that are “interesting in practice”, and this is
a subjective matter that the configuration tool cannot decide
on its own. If the benchmark designer has no such prefer-
ence, all parameters can be left with a default interval.

Often, instance generators impose constraints on the
range of parameter values or their combination. Those con-
straints must be enforced by adding a postprocessing func-
tion that updates the value of the parameters passed to the
generator. This is an arbitrary function provided by the
benchmark designer which receives the parameters that were
automatically chosen and outputs the final parameters that
will be provided to the generator. For example, if the num-
ber of packages has to be greater than the number of loca-
tions, instead of directly selecting the number of packages,
our linear scaling will consider the number of locations and
the number of additional packages. All of these adjustments
must be done on a per-domain basis, since they depend on
the specific characteristics of the domain and generator.

Given this framework, our automatic tool decides which
sequences of instances are suitable for each domain. This
is done in two phases: the first phase designs a set of can-
didate sequences (Sequence Optimization), and the second
phase performs a final selection that adheres to our design
principles as much as possible (Sequence Selection).

4.3 Sequence Optimization
The first phase generates sequences of 30 instances by op-
timizing sequence parameters. To guide the search towards
sequences that scale the instance difficulty as smoothly as
possible, we compute a penalty score for each sequence and



search for the sequence that minimizes this score.
Sequences are evaluated by running hand-picked state-of-

the-art (A) and baseline (B) planners on their instances, us-
ing a time limit of 180 seconds per instance. We ignore in-
stances that are solved under 10 seconds, considering that
differences of±5 seconds are not meaningful enough. Since
the sequences are generated with increasing values of the
linear parameters, we assume that the runtimes will always
increase, so we can stop our evaluation as soon as one in-
stance is not solved under the time limit. In cases where
this does not hold, we enforce it by sorting the runtimes of
the instances. Our assumption is that these anomalies stem
from using different random seeds for the instance gener-
ator and the results will be different with different random
seeds.2 The runtime of a set of planners is the minimum of
the runtimes of the individual planners. For evaluating a se-
quence we consider the first five instances with a minimum
runtime above 10 seconds. We ignore harder instances be-
cause they will usually incur runtimes above the 180 sec-
onds time limit. Let t(X, 1), . . . , t(X, 5) be the runtimes
of the set of planners X on the first five instances with a
runtime above 10 seconds. The penalty score is defined as∑

i∈[2,5] S(B, i) + S(A, i) where S(X, i) =

3− 2t(X, i)

t(X, i− 1)
if 1 ≤ t(X, i)

t(X, i− 1)
≤ 1.5

0 if 1.5 <
t(X, i)

t(X, i− 1)
≤ 2

1− 2t(X, i− 1)

t(X, i)
if 2t(X, i− 1) ≤ t(X, i) ≤ 180

2 if t(X, i) > 180

This penalty is lower for sequences whose runtime scales
smoothly, assigning a minimum score of 0 to any sequence
where the runtimes of both the baseline and state-of-the-art
planners scale exponentially with a factor between 1.5 and
2, e.g., 〈10, 15, 23, 35, 52, . . . 〉, or 〈10, 20, 40, 80, 160, . . . 〉.
If not enough instances are solved in the [10, 180] second
interval, the sequence gets a penalty of 2, and otherwise we
assign it a penalty between 0 and 1. To avoid generating se-
quences where all instances are solved by the state-of-the-
art planners, we also add a penalty of 1 for each instance
solved by them beyond 20 instances. To guarantee that all
valid sequences contain some instances solvable within the
time limit and to speed up the evaluation we require the first
three instances to be solved within 10, 60, and 180 seconds,
respectively. Otherwise, we discard the sequence, unless all
linear parameters are at their minimum value.

The concrete choice of penalty values is arbitrary. What
matters is that sequences that minimize this score adhere
more to the design principles introduced in Section 3 than
those that do not, thereby guiding the parameter optimiza-
tion towards good sequences.

2Note that any parameter that has an unpredictable influence
on the runtime of a planner should be considered an enumerated
parameter and remain constant for a given sequence.

4.4 Sequence Selection
After performing one or more optimization runs for a do-
main (using different random seeds) as described above, we
collect all sequences seen during the optimization process.
Since this set can be very large, we only keep the 100 se-
quences with the lowest penalty score per value of the enu-
merated parameters. For each group of sequences where the
planners solves the same instances, we only keep one mem-
ber of the group. This filtering ensures that we keep a set of
diverse sequences with a good penalty score.

For each sequence, we collect the runtimes of all instances
solvable in 180 seconds from the sequence optimization
phase. For the rest of the instances, we estimate the runtime
by assuming that runtimes will increase according to the av-
erage increasing factor t(A, i)/t(A, i − 1) observed on the
instances solved between 5 and 180 seconds. This is a very
rough estimate but it is accurate enough for the purposes of
choosing up to when a sequence should be continued (see
below).

We model the problem of selecting a suitable set of sub-
sequences as a Mixed-Integer Programming (MIP) problem,
where constraints directly aim to model the design principles
of Section 3. The decision variables model the start and end
points of each sub-sequence of instances. The selection must
satisfy the following hard constraints that model properties
desirable for a good set of instances:

(H1) The number of selected instances must be exactly 30.

(H2) There must be at least one instance solvable by the
baseline under 30 seconds.

(H3) All sequences must start with an instance that is solv-
able by a state-of-the-art planner and end with an in-
stance whose estimated runtime is higher than 2000
seconds.

(H4) Each parameter configuration must be used (with dif-
ferent random seeds) at most twice, and only once
for domains whose generators do not admit a random
seed.

The objective is to minimize the summed-up penalty score
of all sequences used, plus the penalty incurred for violating
any of the following soft constraints:

(S1) The number of instances solved by the baseline under
30 seconds must be between 2 and 6 (with a penalty of
2x2 where x is the deviation with respect to the con-
straint).

(S2) The number of instances solved under 180 seconds
must be between 8 and 15 (with a penalty of 2x2 where
x is the deviation with respect to the constraint).

(S3) All sequences must end with an instance whose esti-
mated runtime is between 18 000 and 180 000 seconds
(that is, 1–2 orders of magnitude larger than the typ-
ical time limit of 30 minutes). Larger times t incur
a penalty of 100t/180000 and smaller times incur a
penalty of 100(18000/t).

(S4) If a parameter configuration is used more than once,
there is a penalty of 100.



Optimal Satisficing

Configuration New’14 blind search (baseline), all four components of the FDSS 1
portfolio from IPC 2011 (Helmert et al. 2011) and SymBA∗

1

from IPC 2014 (Torralba et al. 2014)

greedy best-first search with FF heuristic (baseline,
Hoffmann and Nebel 2001), LAMA (Richter and
Westphal 2010) and Madagascar (Rintanen 2012)

Configuration New’20 union of Configuration New’14 and Evaluation union of Configuration New’14 and Evaluation

Evaluation five components of Delfi1 portfolio from IPC 2018 us-
ing symmetry pruning and partial order reduction (blind
search, iPDB, LM-Cut and two M&S variants, see Katz
et al. 2018) and three vanilla IPC 2018 planners: Comple-
mentary2 (Franco, Lelis, and Barley 2018), DecStar (Gnad,
Shleyfman, and Hoffmann 2018), Scorpion (Seipp 2018b)

eight vanilla IPC 2018 planners: Cerberus (Katz
2018), BFWS-PREF, DUAL-BFWS and POLY-
BFWS (Francès et al. 2018), DecStar (Gnad, Sh-
leyfman, and Hoffmann 2018), OLCFF (Fickert and
Hoffmann 2018), Fast Downward Remix (Seipp
2018a) and Saarplan (Fickert et al. 2018)

Table 2: Choice of planners for benchmark generation and evaluation.

For domains where all instances in the sequence are
solved by state of the art planners under 180 seconds (be-
cause the domain is solvable in polynomial time and it is
impossible to fulfill our criteria with state-of-the-art plan-
ners), we consider the runtimes of the baseline instead of
those of the state of the art planners in our constraints de-
scribed above.

Constraints (H2), (S1) and (S2) ensure that the instance
set contains some easy instances, so that any future planning
algorithms are expected to solve at least some instances, al-
lowing researchers to analyze the behaviour of their algo-
rithms in the domain. Constraints (H3) and (S3) ensure that,
whenever possible, at least some of the instances are ex-
pected to be out of reach for state-of-the-art planners. To-
gether with minimizing the penalty score of the selected
sequences, they aim to obtain a smooth scaling, since se-
quences must interpolate between easy and hard instances
and sequences with smoother scaling are preferred. Finally,
constraints (H4) and (S4) are needed to avoid duplicate in-
stances and instances that are very similar to each other.

The penalties are set arbitrarily, but they scale quadrati-
cally with respect to the deviation because it is better to not
fulfill several soft constraints entirely than to completely ig-
nore one of the constraints.

5 Experiments
We implemented the first phase, i.e., sequence optimization,
using the automatic configurator SMAC (Hutter, Hoos, and
Leyton-Brown 2011). We test our approach by running two
completely separated optimizations for optimal and satisific-
ing planners. As baseline planners, we use blind search for
optimal planning and greedy best-first search with the FF
heuristic (Hoffmann and Nebel 2001) for satisficing plan-
ning, both implemented in Fast Downward (Helmert 2006a).

Both for optimal and satisficing planning, we generate
two separate benchmark sets, New’14 and New’20, that dif-
fer in the set of state-of-the-art planners available for opti-
mization. The New’14 set consists of a heterogeneous set of
planning algorithms from IPCs 2011 and 2014. The New’20
set is trained using the same planners plus the ones used in
the evaluation. Therefore, for New’14, the configuration and
evaluation sets are disjoint, while for New’20, the sets over-
lap. Table 2 gives an overview of the planners used.

Since we limit each planner run during the optimization to

3 minutes, we adapt the planners for the configuration phase
by breaking portfolios into components and by adapting pre-
processing time limits. For optimization in each domain, we
hand-pick 1–3 planners that perform best in that domain,
which is sufficient to approximate the minimum time of any
planner in each instance. We run SMAC 10 times using dif-
ferent random seeds. Each run is limited to 10 hours. Af-
ter the first phase finishes, we consider all sequences en-
countered during optimization for the second phase, i.e.,
sequence selection. We filter the instances as described in
Section 4.4 and solve the MIP for sequence selection using
CPLEX 12.10, which finishes in under 30 seconds for each
domain.

We evaluate the new benchmark sets using the aforemen-
tioned planners, limiting each run to 30 minutes and 3.5
GiB. In Table 3 we compare the IPC benchmarks to the
new benchmark sets for optimal and satisficing planning. We
compare benchmark sets according to two metrics: the range
of coverage scores per domain, which allows us to see how
many instances are solved by all planners and how many re-
main unsolved by any of the planners; and the number of
pairwise comparisons in which a planner had higher cover-
age than another, which quantifies how many differences in
the performance of planners are reflected by the coverage
score.

In optimal planning the difference between the bench-
mark sets is rather subtle because difficulty typically scales
very fast with increasing instance size. Therefore, the IPC
set has some interesting instances in all domains. Also, it can
be very hard to generate instance sequences whose difficulty
scales smoothly, since often increasing one of the parame-
ters of a generator by a unit has a big impact on runtime.

The results are more pronounced for satisficing planners,
where the IPC set scales very poorly for some domains. Only
in the Elevators domain the IPC set is superior in terms of
comparisons detected by the coverage score compared to
both new benchmark sets. In contrast, with the new bench-
mark sets, we observe differences in performance in do-
mains like Blocksworld, Driverlog or Zenotravel, where all
planners solve all instances in the IPC set. Overall, New’14
uncovers more differences in coverage between pairs of
planners than the IPC set in 21 out of 26 domains, while
the opposite is the case in only 4 domains.

The comparison between New’14 and New’20 reveals



coverage range comparisons

Optimal #IPC IPC ’14 ’20 IPC ’14 ’20

barman 34 4–11 9–13 9–12 12 21 19
blocksworld 35 18–30 5–12 5–12 18 24 24
childsnack 20 0–6 9–20 6–21 12 18 22
data-network 20 6–14 5–12 5–16 27 25 27
depot 22 5–14 9–25 8–16 26 26 24
driverlog 20 7–15 6–30 5–18 22 26 25
elevators 50 28–44 7–14 10–18 26 26 23
floortile 40 16–34 9–18 8–17 21 21 22
grid 5 1–3 6–26 4–21 19 28 27
gripper 20 8–20 11–30 11–30 7 7 7
hiking 20 12–18 7–9 5–16 23 15 25
logistics 63 13–34 5–17 5–14 27 27 25
miconic 150 56–142 4–28 3–30 25 27 28
nomystery 20 8–20 3–27 5–21 18 28 27
openstacks 130 42–71 4–11 3–7 24 18 7
parking 40 0–15 11–18 12–21 28 24 23
rovers 40 6–13 4–26 6–19 25 22 7
satellite 36 7–14 8–30 4–27 22 25 26
scanalyzer 50 21–33 6–16 7–15 27 24 24
snake 20 7–14 5–20 7–19 22 24 21
storage 30 15–18 9–25 2–19 21 27 26
tpp 30 7–20 7–30 2–7 24 24 21
transport 70 24–35 5–30 8–19 21 18 22
visitall 40 12–30 6–21 5–20 27 27 27
woodworking 50 38–50 16–25 10–14 22 26 24
zenotravel 20 8–13 6–30 3–13 23 26 28

coverage range comparisons

Satisficing #IPC IPC ’14 ’20 IPC ’14 ’20

barman 40 39–40 7–25 9–30 7 24 27
blocksworld 35 35–35 7–24 4–22 0 27 28
childsnack 20 1–20 14–30 2–19 27 25 28
data-network 20 9–19 10–30 13–30 24 27 25
depot 22 21–22 12–20 11–26 7 27 22
driverlog 20 20–20 29–30 9–19 0 12 24
elevators 50 49–50 30–30 30–30 7 0 0
floortile 40 4–40 1–12 1–11 17 25 24
grid 5 5–5 4–20 9–21 0 26 24
gripper 20 20–20 26–30 26–30 0 7 7
hiking 20 10–20 2–22 3–26 24 28 27
logistics 63 51–63 5–30 5–26 17 27 26
miconic 150 150–150 30–30 30–30 0 0 0
nomystery 20 12–20 19–30 2–30 23 18 26
openstacks 160 99–160 12–21 14–23 21 27 25
parking 40 36–40 14–20 13–16 7 24 21
rovers 40 38–40 10–22 6–30 7 26 27
satellite 36 26–36 5–30 6–14 23 17 23
scanalyzer 50 48–50 9–16 13–14 12 21 12
snake 20 3–17 6–30 5–14 27 28 26
storage 30 21–30 6–26 7–17 26 27 26
tpp 30 29–30 10–26 6–21 15 27 27
transport 70 65–70 22–30 15–23 7 24 26
visitall 40 36–40 4–30 4–29 7 24 26
woodworking 50 28–50 6–30 5–30 13 27 27
zenotravel 20 20–20 6–29 5–17 0 23 25

Table 3: Comparison of the IPC and new benchmark sets for optimal and satisficing planning. The #IPC column shows the
number of tasks per domain in the IPC benchmark set, which is always 30 for the new sets. The coverage range shows the
minimum and maximum coverage of any planner. In the “comparisons” columns we list how many pairs of planners yield
different coverage scores for each benchmark set.

that our technique is not very sensitive to the set of state-
of-the-art planners. The reason is that the state of the art has
not advanced enough in the last six years to make a set of
instances trained with our method in 2014 outdated.

6 Discussion
Our paper deals with the problem of generating instances
that are adequate to evaluate planning algorithms. The goal
is to select instances that scale well, so that differences in
algorithm performance are reflected in the number of prob-
lems solved within a certain time limit. It must be remarked
that no benchmark set can replace a careful analysis of the
results. Aggregating results from different domains without
further analysis may be misleading and an empirical analysis
only based on total coverage should be discouraged. Never-
theless, coverage is a useful metric to summarize experimen-
tal data and it is used by most planning papers. As shown by
our experiments, the coverage metric is more meaningful for
the benchmark sets generated with our approach than with
the previous standard. Our main result is a new benchmark
set, as well as a set of generators and tools that can be used
in the future to automatically generate new instances.

In other communities like SAT, there has been a lot

of research on how to construct random instances (Sel-
man, Mitchell, and Levesque 1996; Achlioptas et al. 2000;
Giráldez-Cru and Levy 2015; Xu et al. 2005) around the
phase transition (Cheeseman, Kanefsky, and Taylor 1991).
Our approach is orthogonal to any approach that can gener-
ate new instances, e.g., around the phase transition of plan-
ning problems (Rintanen 2004; Rieffel et al. 2014), or with
suitable initial states and goals for Sokoban (Bento, Pereira,
and Lelis 2019). Those approaches provide an instance gen-
erator that adjusts the instance difficulty for a given problem
size, but to generate an instance set still requires to select the
value of certain parameters. Our approach is complemen-
tary, since it can be used to select suitable values that are
useful to evaluate a given set of solvers. Our tool can also
be adapted to generate benchmarks with different character-
istics, e.g., with smaller instances that are solved in a few
seconds (Ruml 2010). Future work could also consider rela-
tions among different domains theoretically (Helmert 2003,
2006b) or empirically (Cenamor and Pozanco 2019).

Acknowledgments
We thank Florian Pommerening for helping us set up the ex-
periments and we thank the anonymous reviewers for their



helpful comments. We have received funding for this work
from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement no. 817639). Álvaro Torralba was
employed by Saarland University and the CISPA Helmholtz
Center for Information Security during part of the develop-
ment of this paper.

References
Achlioptas, D.; Gomes, C. P.; Kautz, H. A.; and Selman, B.
2000. Generating Satisfiable Problem Instances. In Kautz,
H.; and Porter, B., eds., Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence (AAAI 2000),
256–261. AAAI Press.
Bento, D. S.; Pereira, A. G.; and Lelis, L. H. S. 2019. Proce-
dural Generation of Initial States of Sokoban. In Kraus, S.,
ed., Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI 2019), 4651–4657. IJCAI.
Cenamor, I.; and Pozanco, A. 2019. Insights from the 2018
IPC Benchmarks. In ICAPS 2019 Workshop on the Interna-
tional Planning Competition (WIPC), 8–14.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991.
Where the Really Hard Problems Are. In Mylopoulos, J.;
and Reiter, R., eds., Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI 1991),
331–337. Morgan Kaufmann.
de la Rosa, T.; Cenamor, I.; and Fernández, F. 2017. Per-
formance Modelling of Planners from Homogeneous Prob-
lem Sets. In Barbulescu, L.; Frank, J.; Mausam; and Smith,
S. F., eds., Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling (ICAPS
2017), 425–433. AAAI Press.
Fickert, M.; Gnad, D.; Speicher, P.; and Hoffmann, J. 2018.
SaarPlan: Combining Saarland’s Greatest Planning Tech-
niques. In Ninth International Planning Competition (IPC-
9): planner abstracts, 11–16.
Fickert, M.; and Hoffmann, J. 2018. OLCFF: Online-
Learning hCFF. In Ninth International Planning Competition
(IPC-9): planner abstracts, 17–19.

Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator
Mutexes and Symmetries for Simplifying Planning Tasks. In
Proceedings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI 2019), 7586–7593. AAAI Press.
Francès, G.; Geffner, H.; Lipovetzky, N.; and Ramiréz, M.
2018. Best-First Width Search in the IPC 2018: Complete,
Simulated, and Polynomial Variants. In Ninth International
Planning Competition (IPC-9): planner abstracts, 23–27.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Com-
plementary2 Planner in the IPC 2018. In Ninth International
Planning Competition (IPC-9): planner abstracts, 32–36.
Giráldez-Cru, J.; and Levy, J. 2015. A modularity-based ran-
dom SAT instances generator. In Yang, Q.; and Wooldridge,
M., eds., Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), 1952–1958.
AAAI Press.

Gnad, D.; Shleyfman, A.; and Hoffmann, J. 2018. DecStar
– STAR-topology DECoupled Search at its best. In Ninth
International Planning Competition (IPC-9): planner ab-
stracts, 42–46.

Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. Artificial Intelligence 143(2):
219–262.

Helmert, M. 2006a. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Helmert, M. 2006b. New Complexity Results for Classi-
cal Planning Benchmarks. In Long, D.; Smith, S. F.; Bor-
rajo, D.; and McCluskey, L., eds., Proceedings of the Six-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2006), 52–61. AAAI Press.

Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast Downward Stone Soup. In IPC 2011 planner abstracts,
38–45.

Hoffmann, J.; and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research 24: 519–579.

Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; dos
Santos Liporace, F.; and Trüg, S. 2006. Engineering Bench-
marks for Planning: the Domains Used in the Deterministic
Part of IPC-4. Journal of Artificial Intelligence Research 26:
453–541.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial Model-Based Optimization for General Algorithm Con-
figuration. In Coello, C. A. C., ed., Proceedings of the
Fifth Conference on Learning and Intelligent OptimizatioN
(LION 2011), 507–523. Springer.

Katz, M. 2018. Cerberus: Red-Black Heuristic for Planning
Tasks with Conditional Effects Meets Novelty Heuristic and
Enchanced Mutex Detection. In Ninth International Plan-
ning Competition (IPC-9): planner abstracts, 47–51.

Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online Planner Selection for Cost-Optimal Planning.
In Ninth International Planning Competition (IPC-9): plan-
ner abstracts, 57–64.

Linares López, C.; Celorrio, S. J.; and Helmert, M. 2013.
Automating the evaluation of planning systems. AI Commu-
nications 26(4): 331–354.

Linares López, C.; Celorrio, S. J.; and Olaya, A. G. 2015.
The deterministic part of the seventh International Planning
Competition. Artificial Intelligence 223: 82–119.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version
1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.



Moraru, I.; and Edelkamp, S. 2019. Benchmarks Old
and New: How to compare domain independence for cost-
optimal classical planning? In ICAPS 2019 Workshop on
the International Planning Competition (WIPC), 36–39.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39: 127–177.
Riddle, P. J.; Holte, R. C.; and Barley, M. W. 2011. Does
Representation Matter in the Planning Competition? In Pro-
ceedings of the Ninth Symposium on Abstraction, Reformu-
lation, and Approximation (SARA 2011). AAAI Press.
Rieffel, E. G.; Venturelli, D.; Do, M.; Hen, I.; and Frank,
J. 2014. Parametrized Families of Hard Planning Problems
from Phase Transitions. In Brodley, C. E.; and Stone, P.,
eds., Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence (AAAI 2014), 2337–2343. AAAI
Press.
Rintanen, J. 2004. Phase Transitions in Classical Planning:
an Experimental Study. In Zilberstein, S.; Koehler, J.; and
Koenig, S., eds., Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 101–110. AAAI Press.
Rintanen, J. 2012. Planning as Satisfiability: Heuristics. Ar-
tificial Intelligence 193: 45–86.
Ruml, W. 2010. The Logic of Benchmarking: A Case
Against State-of-the-Art Performance. In Felner, A.; and
Sturtevant, N., eds., Proceedings of the Third Annual Sym-
posium on Combinatorial Search (SoCS 2010), 142–143.
AAAI Press.
Seipp, J. 2018a. Fast Downward Remix. In Ninth Inter-
national Planning Competition (IPC-9): planner abstracts,
74–76.
Seipp, J. 2018b. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): planner abstracts,
77–79.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Gen-
erating Hard Satisfiability Problems. Artificial Intelligence
81(1–2): 17–29.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A Symbolic Bidirectional
A* Planner. In Eighth International Planning Competition
(IPC-8): planner abstracts, 105–109.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What you
always wanted to know about the deterministic part of the
International Planning Competition (IPC) 2014 (but were
too afraid to ask). The Knowledge Engineering Review 33.
Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2005.
A Simple Model to Generate Hard Satisfiable Instances.
In Kaelbling, L. P.; and Saffiotti, A., eds., Proceedings of
the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI 2005), 337–342. Professional Book Center.


