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Abstract

Since no classical planner consistently outperforms all oth-
ers, it is important to select a planner that works well for a
given classical planning task. The two strongest approaches
for planner selection use image and graph convolutional neu-
ral networks. They have the drawback that the learned mod-
els are not interpretable. To obtain explainable models, we
identify a small set of simple task features and show that el-
ementary and interpretable machine learning techniques can
use these features to solve as many tasks as the approaches
based on neural networks.

Introduction
Automated planning is the task of finding a sequence of ac-
tions that transforms an initial state into a goal state (Ghal-
lab, Nau, and Traverso 2004). Over the last decades re-
searchers invented a large collection of planning algorithms,
also called planners. All of them exhibit different strengths
and weaknesses and therefore no single planner is prefer-
able to all others for all planning tasks (e.g., Howe et al.
1999; Seipp et al. 2012). Consequently, it is often beneficial
to combine multiple planners in a portfolio.

There are several types of portfolios, differing in whether
they run a single or multiple planners and whether the plan-
ners, their time limits and their order are chosen offline, be-
fore seeing the task or online, when the task is known. For an
overview of planning portfolios, see Vallati (2012) and Ce-
namor, de la Rosa, and Fernández (2016). The majority of
portfolio approaches from the literature learn a schedule for
multiple planners offline (e.g., Helmert, Röger, and Karpas
2011; Núñez, Borrajo, and Linares López 2015; Seipp et al.
2015). The schedule defines the order and time limits of a
set of planners run in sequence. This sequential approach
is based on the insight that a planner usually solves a task
either quickly or not at all within the given resource limits.

The disadvantage of this approach is that it splits the avail-
able time among the planners in its portfolio. It can happen
that for some tasks no planners in a portfolio solves the task
quickly. In this case, it is better to choose a single planner
with a high chance of solving the task and let it run for all
of the available time. This is the motivation for the second
main approach for planner portfolios and the one that we
consider in this work: portfolio selection. Portfolio selectors
have a collection of planners and predict for a given task how

long each planner in the portfolio requires to solve the task
or how confident the model is that a planner will solve the
task. Then, a single planner is selected and executed. The
main obstacle in this approach is finding suitable task fea-
tures for the predicting model. Fawcett et al. (2014) collect
a large set of handcrafted features and train different models
for predicting the runtimes of several planners.

To avoid handcrafting features and potentially ignoring
important features Sievers et al. (2019a) translate a given
task into a graph (Sievers et al. 2019b) which preserves all
information about the original task. They interpret the adja-
cency matrix of the graph as an image, scale the image down
to 128x128 pixels, and train a convolutional neural network
(CNN) to predict which planner will solve the given task.
The idea is that the neural network automatically detects
good features and indeed their model results in a strong plan-
ner. This is quite surprising since the 128x128 pixel image
ignores a lot of information: many entries of the adjacency
matrix are combined into the same pixel and the image does
not distinguish between different types of nodes in the orig-
inal graph. Nonetheless, the coverage scores of the resulting
portfolio selector suggests that the remaining information in
the image is sufficient for planner selection. In a follow-
up paper, the lossy transformation from graphs to images
is eliminated by using graph convolutional networks (GCN,
Kipf and Welling 2017) and feeding the graphs directly into
the neural network (Ma et al. 2020). This causes a modest
performance improvement and implies that the images al-
ready contain enough information for good predictions.

The drawback of the neural network approaches is that
the learned model is not interpretable, that is, we cannot ask
the model why it selects a certain planner for a given task
and which features are actually important for the selection
(Cybenko 1989; Rudin 2019). Only if we obtain models that
can answer these questions, we can deploy them with con-
fidence and use them to understand the relative strengths of
the component planners.

In this work, we analyze whether we actually need com-
plex black-box models such as convolutional neural net-
works for strong planner selectors. We show that even with
very basic task features and the most elementary machine
learning techniques, we can create portfolios selectors for
optimal planning that solve as many tasks as the approaches
based on neural networks. In addition, our models have the



advantage that they are explainable and fast to train.
Furthermore, we analyze which features we need and

which features we can ignore for accurate predictions. We
examine which planners our models choose and whether
they know when to choose them. Additionally, we show how
to visualize and understand the choices of a simple planner
selection model.

Background
We train machine learning models that select a suitable
planner for a given PDDL planning task (McDermott et al.
1998). Informally, a PDDL task defines a set of objects, a
set of first-order predicates, and a set of action schemas. The
objects are used when grounding the predicates and action
schemas. The task uses the grounded predicates to describe
an initial state and a goal condition. The grounded actions
determine how a state can be transformed into a new state.
A planner tries to find a sequence of actions that transforms
the initial state into a state which satisfies the goal condition.

The machine learning techniques we use are linear regres-
sion, decision trees, random forests and multi-layer percep-
trons. Each model receives as input a vector ~v ∈ RN con-
taining the values of the input features.

Linear regression (Galton 1886) learns a weight vector
~w ∈ RN that assigns a weight to each feature. The out-
put of a linear regression model is the weighted sum ~v · ~w
of the features and weights. Linear regression chooses the
weight vector that minimizes the squared error. This often
uses unimportant features and causes overfitting. Thus, we
also employ linear regression with L1 regularization (Tibshi-
rani 1996). L1 regularization adds the L1 norm of the weight
vector as penalty to the optimization process, which penal-
izes unnecessary feature weights and filters them out. The
L1 penalization can be scaled with a parameter to make the
filtering weaker or stronger.

A decision tree (Breiman et al. 1984) is a classifier which
asks a sequence of questions and at the end predicts a class.
To train a decision tree, we start with a single root node and
assign all training examples to this node. Then, the training
algorithm selects a feature and a threshold to split the train-
ing data such that some impurity metric (e.g., Gini score)
is optimized. The feature and threshold are stored for the
current node and the two parts of the split training data are
associated with the two children of the current node. The
algorithm is recursively applied to the children nodes until
all samples associated to a node belong to the same class or
some stopping criterion is reached.

Random forests (Breiman 2001) are an ensemble of de-
cision trees. Here, we optimize multiple decision trees in-
dependently and obtain the overall prediction by averaging
over the individual predictions.

The last type of machine learning model we train are
multi-layer perceptrons (MLP, Goodfellow, Bengio, and
Courville 2016). An MLP is a simple neural network con-
sisting of multiple layers of neurons. Each layer is densely
connected to the next layer. The value for each neuron is
the weighted sum of the neurons connected to it (cf. linear
regression). The value of the neuron is modified by a non-

linear function (e.g., ReLU (x) = max(0, x)) and is for-
warded to the next neurons. The output of an MLP are the
values of the neurons in the final layer.

Training
For each task in our benchmark set, we compute the values
of our features and measure the runtimes of a set of planners
for the task. Then we use supervised learning to train models
for planner selection. To be comparable to previous work,
we use the data set from Ferber et al. (2019), which contains
both a list of benchmark tasks and their planner runtimes.

Benchmarks The benchmarks in the data set stem from
the 1998–2018 classical planning tracks of the International
Planning Competition (IPC). Additionally, the set includes
the domains BRIEFCASEWORLD, FERRY, and HANOI from
the IPP benchmark collection (Köhler 1999), the GEDP do-
main (Haslum 2011), domains from the T0 conformant-to-
classical planning compilation (Palacios and Geffner 2009),
and the FSC domain (Bonet, Palacios, and Geffner 2009).
All runtime measurements are limited to 30 minutes and
7744 MiB of memory. We remove those tasks from the data
set that none of the planners below solves within these lim-
its. This leaves us with 2439 tasks, 145 of which were intro-
duced for the IPC 2018.

Features For each task in the data set we compute four
different sets of features. The first set (FAWCETT) contains
the features described by Fawcett et al. (2014). This set con-
tains features from the PDDL description of the task (e.g.,
the number of action schemas), features from its translation
to a SAS+ task (e.g., the number of mutex groups) and to
a SAT formula, features from short runs with Fast Down-
ward, and many more. These features are interpretable for
domain experts, but some take very long to compute or re-
quire additional expertise to understand them. To analyze
how complex features have to be for good planner selection,
the second feature set (FPDDL) uses only the PDDL features
of Fawcett et al. (2014). These features are very easy to in-
terpret and they only require access to the PDDL files (i.e.,
no grounding, external planner or SAT solver is needed).
The third feature set (PDDL) extends the PDDL features of
Fawcett et al. (2014) with further PDDL features such as the
minimum, mean, and maximum number of prevail condi-
tions in all actions or the ratio of initial state facts over the
number of objects. The fourth and last set (UNION) is the
union of the other three feature sets.

Planners We use the same 17 planners as Sievers et al.
(2019a) and Ma et al. (2020): SymBA∗ (Torralba et al. 2017)
and 16 Fast Downward configurations (Helmert 2006). All
Fast Downward configurations use A∗ search (Hart, Nils-
son, and Raphael 1968) and strong stubborn sets (Wehrle
and Helmert 2014). Each of the following eight heuristics
is used twice, once with DKS structural symmetries prun-
ing (Domshlak, Katz, and Shleyfman 2012; Shleyfman et al.
2015) and once with structural symmetries pruning using
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time 74.8 (8.8) 77.3 (11.9) 75.7 (11.0) 76.1 (11.5) 77.1 (10.3) 84.3 (6.8) 83.6 (7.7) 84.0 (13.9)

average 80.3 79.9 79.3 79.7 79.4 81.5 80.8 84.9

Table 1: Mean coverage and (in brackets) standard deviation (in percentage of tasks solved) over ten domain-preserving test
folds for linear regression models with different L1 regularization weights, MLPs with 3 and 5 layers, and a random forest with
50 trees trained on (FAWCETT) the features of Fawcett et al. (2014), (FPDDL) the PDDL features of Fawcett et al. (2014), (PDDL)
the extended set of PDDL features, and (UNION) the union of all features. The best setting in each column is highlighted.

orbital space search (OSS, Domshlak, Katz, and Shleyf-
man 2015): blind heuristic, LM-Cut (Helmert and Domsh-
lak 2009), iPDB (Haslum et al. 2007), a zero-one cost par-
titioning pattern database (ZO-PDB) using a genetic algo-
rithm to compute the patterns (Edelkamp 2006), and four
Merge-and-shrink (M&S) heuristics (Dräger, Finkbeiner,
and Podelski 2006; Helmert et al. 2014) using bisimu-
lation (BS) (Nissim, Hoffmann, and Helmert 2011), full
pruning (Sievers 2017), Θ-combinability (Sievers, Wehrle,
and Helmert 2014), partial abstractions (Sievers 2018), and
merging based on either DFP (Sievers, Wehrle, and Helmert
2014), strongly connected components (SCC) of the causal
graph (Sievers, Wehrle, and Helmert 2016), MIASM (Fan,
Müller, and Holte 2014), or score-based MIASM (sbMI-
ASM, Sievers, Wehrle, and Helmert 2016). All planners ex-
cept for two M&S configurations use h2 mutexes to prune
irrelevant actions (Alcázar and Torralba 2015).

Target Functions We want to train models that select a
suitable planner for a given planning task. To this end, we
compare three different target functions for the machine
learning models: time, logtime and binary. The first variant
(time) predicts for each planner the time expected for the
planner to solve the task. Then we can select the planner
with the shortest expected runtime. Because the runtime dis-
tribution is heavily skewed to short runtimes, we also train
models on the logarithmically-scaled runtimes, called log-
time. In the end, we are not interested in selecting the fastest
planner for a task, but the planner with the highest chance
to solve the task. Therefore, we also train our models on the
binary information whether a planner solves a task within
the resource limits.

Machine Learning Models We use three types of ma-
chine learning techniques. First, we train plain linear re-
gression models (Galton 1886) and models with L1 reg-
ularization (Tibshirani 1996) using regularization weights
of 0.1, 1.0, 2.0 and 5.0. Second, we train random forests
(Breiman 2001), i.e., ensembles of decision trees (Breiman
et al. 1984). Linear regression and random forests internally
train an independent model for each planner. Finally, we
train fully-connected multi-layer perceptrons (MLP) with 3
and 5 layers. Although they are one of the simplest kind
of neural networks, they are not easily explainable. We in-
clude them mainly as an intermediate approach between
Delfi, which uses a complex neural network with learned
latent features, and linear regression, which can be seen as
a single-layer network with handcrafted features. The last
layer of our MLP models contains an output neuron for ev-
ery planner. We use the Adam optimizer (Kingma and Ba
2015) with a learning rate of 0.001 to optimize the weights.
For the networks that predict the time or logtime we use the
ReLU activation function and the mean squared error. For
the networks that predict the binary label we use the Sigmoid
activation function and the cross entropy loss. In contrast to
our linear regression and random forest models, our MLP
technique learns a single model for planner selection.

Model Evaluation For training and evaluating models we
split the tasks into groups of training and test tasks. Since
neither linear regression nor random forests support valida-
tion data, we do not use validation data for the MLPs either.
Because the range of some feature values varies greatly, we
augment all feature sets by normalizing each feature to val-
ues between 0 and 1 and add these normalized features to the
original feature sets. We use only the feature values of the
training tasks to estimate the parameters for the normaliza-



Feature Degradation

requires negative preconditions 4.4 (10.0)
max params per predicate 2.7 (7.0)
mean negations per effect 2.6 (10.6)
mean predicates per effect 2.4 (10.2)
requires conditional effects 2.1 (9.1)
requires equality 1.8 (8.9)
max predicates per effect 1.8 (8.3)
#types 1.6 (9.9)
min predicates per effect 1.6 (7.7)
#actions with neg. effects / #actions 1.5 (9.8)
requires STRIPS 1.5 (7.7)
requires typing 1.4 (8.1)
mean params per predicate 1.4 (8.0)
#goals 1.2 (7.6)
has types 1.0 (7.9)
min predicates per precondition 0.9 (8.2)
#predicates 0.9 (7.2)
requires ADL 0.8 (6.9)
max negations per effect 0.8 (6.1)
min negations per effect 0.7 (8.0)
#actions 0.7 (7.4)
#initial conditions 0.6 (7.0)
max predicates per precondition 0.5 (8.6)
mean predicates per precondition 0.4 (10.3)
requires action costs 0.2 (6.8)
#initial functions 0.1 (6.9)

Table 2: Mean coverage degradation and (in brackets) stan-
dard deviation (in %), over ten domain-preserving test folds,
when ignoring a single group of highly correlated features of
the FPDDL feature set for training a linear regression model
without L1 regularization on the binary labels. Groups with-
out performance degradation are omitted.

tion. We train the model to learn for each planner a function
mapping from the features to a target function. To evaluate
the final performance of the model on the test tasks, we use
the model to predict the runtime for each planner on each test
task, respectively their likeliness to solve the task. For each
task we select the planner with the shortest runtime, respec-
tively the highest chance. Afterwards, we count how many
test tasks we would have solved with our decision. We note
that our evaluation metric, which counts the solved tasks,
differs from the training metric which optimizes a squared
error, cross entropy, or the Gini score.

Experiments
Our experiments are structured as follows. First, we eval-
uate how helpful simple machine learning techniques with
explainable features are for selecting a planner that solves a
given task. Then, we analyze which features are important
for the models. Next, we inspect which planners are favored
by our models. Afterwards, we train and visualize a decision
tree for planner selection. Finally, we compare our models to
Delfi1 (Katz et al. 2018), the winner of the IPC 2018, which
uses convolutional neural networks for planner selection.

Usage CovP CovC Planner

43.7 80.1 94.4 SymBA∗

12.3 82.4 89.9 h2 + OSS + LM-Cut
9.7 78.7 54.5 h2 + DKS + iPDB
9.4 78.8 88.5 h2 + OSS + iPDB
8.1 82.7 78.1 h2 + DKS + LM-Cut
5.4 67.9 74.8 DKS + M&S-MIASM-DFP
3.3 74.8 97.5 h2 + DKS + M&S-BS-sbMIASM
2.8 65.9 86.6 h2 + OSS + M&S-SCC-DFP
2.1 75.8 100 h2 + DKS + M&S-BS-SCC-DFP
1.0 67.7 84.0 OSS + M&S-MIASM-DFP
0.8 72.2 75.0 h2 + OSS + M&S-BS-sbMIASM
0.7 68.4 6.2 h2 + DKS + ZO-PDB
0.4 67.6 60.0 h2 + DKS + M&S-SCC-DFP
0.2 68.6 100 h2 + OSS + ZO-PDB
0.1 62.3 100 h2 + DKS + Blind
0.0 62.5 – h2 + OSS + Blind
0.0 75.2 – h2 + OSS + M&S-BS-SCC-DFP

Table 3: Planners selected by the linear regression model
without L1 regularization trained on the FPDDL features and
optimizing the binary labels. The columns show how often
each planner is chosen (in %), the coverage (in %) for the
planner on all tasks (CovP), and the coverage (in %) on tasks
for which the model chooses the planner (CovC).

All experiments — except for the comparison to Delfi1 —
use 10-fold cross-validation, that is, we split the data into ten
similarly-sized folds. We use one fold for testing and train
the model on the other nine folds and repeat this procedure
ten times. Every time a different fold is used for testing. The
final performance is the mean performance over all ten runs.
Cross-validation allows us to evaluate our approach on all
benchmark tasks instead of just a subset (e.g., the tasks from
the last IPC).

Planning tasks from the same benchmark domain share
the same structure. Therefore, if the training and test data
contain tasks from the same domain, the test performance
does not show how well the model generalizes to new un-
seen tasks, but how well the model generalizes to tasks from
known domains. Thus, we use domain-preserving splits, i.e.,
we ensure that all tasks of the same planning domain are as-
signed to the same data fold.

We cannot use cross-validation for the comparison to
Delfi1, because it is trained on all tasks available prior to
the IPC 2018 and its code is not available for retraining. For
the comparison to Delfi1, we train our models 10 times on
the same tasks that Delfi1 was trained on.

We run all experiments on single Intel Xeon Silver 4114
cores and limit memory usage to 3 GiB. All our data sets,
code, and experiment results are published online (Ferber
and Seipp 2020).

Comparison of Machine Learning Models
We begin by evaluating how useful elementary machine
learning techniques with basic features are at choosing a
planner to solve a given task. For each of the four feature sets
and each label representation (binary, logtime, and time), we



train five linear regression configurations with L1 regulariza-
tion weights from 0.0 to 5.0, a single random forest with 50
trees, and two neural network configurations with 3 resp. 5
hidden layers.

Table 1 shows the percentage of solved tasks for all mod-
els. A portfolio selector that chooses planners randomly ob-
tains a coverage of 67.2%. We see that all models surpass
this baseline. Although the models are not optimized for the
coverage metric, the ability to predict the runtimes of a plan-
ner (resp. the chance to solve a task) helps to select a good
planner for a task.

Averaging the coverage fractions of our machine learn-
ing configurations over all feature sets and target functions
reveals that the random forest is the most robust technique
(84.9%). The next best configuration are MLPs with 3 lay-
ers with an average coverage of 81.5%. The most robust lin-
ear regression configuration uses no L1 regularization and
solves 80.3% of the test tasks.

Averaging over the feature sets and the machine learn-
ing configurations reveals how useful the different target
functions are. Because we train 5 linear regression config-
urations, 2 MLP configurations, but only one random for-
est configuration, we weight the average. The binary labels
are the least informative (80.0%). The logtime (81.5%) and
the time (81.2%) labels are approximately equally informa-
tive. Although, we only need to learn if a planner solves a
given task, training the model to approximate planner run-
time helps us to improve our planner selection.

The results also show that some of the strongest models
use the FPDDL feature set, although all of its features are
also contained in all other feature sets. The larger feature
sets sometimes lead to lower coverage because they make it
easier for the models to overfit on the training data. The lin-
ear regression models in particular, but also the MLPs suffer
from overfitting: with growing feature sets, the training error
decreases, but the test error increases.

Feature Importance
Having trained well-performing models, we can now ana-
lyze how important each feature is for planner selection.
This shows which properties of a task are important for the
runtime of a planner and allows us to skip unnecessary fea-
tures to speed up the predictions.

To measure the importance of a feature, we retrain the
model without using that feature. Exploratory experiments
uncovered that some features are highly correlated (e.g., the
number of PDDL objects and the number of equality con-
ditions). Removing a feature that is highly correlated with
another one has no impact on the performance, because the
model will instead use the correlated feature. For example,
the FPDDL feature set has 49 features in 47 groups of corre-
lated features, while the FAWCETT feature set has 410 fea-
tures in 189 groups. Therefore, we retrain the base model,
but exclude groups of correlated features.

Table 2 shows the performance degradation of the best
linear regression model for FPDDL features. The most im-
portant information for the model is whether the task re-
quires negative preconditions: removing it degrades the per-
formance by 4.4%. This suggests that some planners work
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Figure 1: Mean coverage over all 10 domain-preserving
folds, on training (dashed) and test (solid) data using de-
cision trees trained on binary (blue) and time/logtime labels
(green) for increasing tree depth on the PDDL features.
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Figure 2: Example decision tree for one cross-validation
fold. The decision tree uses time labels and has two layers.

better for tasks with negative preconditions than other plan-
ners. 21 out of 47 feature groups can be removed without a
negative impact on the performance. Those 21 groups con-
tain 22 features.

Planner Selection
To understand how the models obtain high coverage scores,
we examine which planners they choose and whether the
models correctly learned when to choose them. Table 3
shows for the best linear regression model on the FPDDL fea-
ture set which planners are selected, how often those plan-
ners are selected, the coverage of those planners on all test
tasks, and the coverage of those planners only on the tasks
they have been chosen for.

We observe that the model almost always selects a planner
from a group of planners with high coverage on the test task.
Most often — for 43% of the tasks — it chooses SymBA*,
which is not the strongest planner, but almost solves as many
tasks as the strongest one. Given this data, we could suspect
that the model just detected a group of good planners and
randomly chooses one of them. We analyze in the following



why this is not the case. If the model selected a planner for
each task (weighted) randomly, then each individual plan-
ner would be used for a uniform subsample of the test tasks.
Therefore, their coverage on their subsample would be ap-
proximately equivalent to their coverage on all test tasks.
The linear regression model obtains for most planners a sig-
nificantly better coverage on the tasks it assigns to them
than the planners obtain on all test tasks. This shows that
the model indeed learned when to use which planner.

Single-Model Planner Selection
In the previous experiments, we used basic machine learning
algorithms to learn models whose predictions can be easily
interpreted. For example, the predictions of linear regression
can be explained by multiplying the learned weights with
the features of a task, then sorting those products (not the
learned weights) by absolute magnitude and finally by com-
paring the positive and negative impact of the different fea-
tures. However, our models make a prediction per planner,
instead of choosing a planner directly. Therefore, their ex-
planations answer the question “Why does the model think
that planner A solves the given task?”, but not “Why is plan-
ner A preferable to planner B?”. Models that answer the sec-
ond question make it even easier to understand which plan-
ners work well for which tasks.

To obtain such a model we train a single decision tree us-
ing the planner names as training labels. A decision tree does
not support multiple labels, i.e., planner names, for a single
sample. Thus, we duplicate each training sample for each
planner that solves it and assign one of the planner labels
to each duplicate. Because this overrepresents frequently
solved tasks, each duplicate is weighted by one over the
number of times it was duplicated. This setup corresponds
to the binary labels of previous experiments. To incorporate
the logtime or time information into the training, we add an
additional runtime factor to the weight of the duplicates. For
two duplicates x and y where the planner for x is n times
faster than the planner for y, the runtime factor for x is n
times larger than the factor for y and for all duplicates that
belong to the same task, the runtime factors sums up to one.
This lets the decision tree prefer faster planners.

The result of the training procedure is a decision tree that
directly predicts which planner to use for a given task. Obvi-
ously, the deeper the decision tree grows, the more questions
it asks and each additional layer doubles the number of leaf
nodes. Since using too many layers can lead to overfitting,
we train decision trees with different depths and compare
their performance with the same cross-validation procedure
as above. Figure 1 shows the training (dashed line) and test
(solid line) coverage of decision trees with increasing depth.
The coverage on the training data quickly approaches 100%,
while the test coverage does not vary much for different tree
depths. The trees obtained for the time and logtime labels are
identical, so they share the same color in the plot.

Figure 2 illustrates how easy it is to interpret the learned
decision trees. We show an exemplary decision tree with a
tree depth of 2 and time-weighted labels, because the tree
has a good test performance and is small enough to be visu-
alized. Each internal tree node contains the question asked.

FAWCETT PDDL Delfi Features

Seconds 0.1 0.2 10.8 0.2 0.3 11.0 0.4 0.8 50.2
MiB 16 17 200 24 25 138 26 69 3023

Table 4: Minimum/mean/maximum time and memory usage
to extract the features from the IPC 2018 tasks.

Depending on the answer for the given task, we traverse to
the first or second child. Once we reach a leaf, the prediction
is the most frequent class in the training data associated with
the leaf. The example decision tree reveals that SymBA∗ is
preferable to the other two planners in the tree only when
the number of atoms and objects is small. The authors of
SymBA∗ confirmed that this finding is aligned with their ex-
perience (personal communication).

Comparison to Delfi1
In our final experiment, we compare our models against the
current strongest portfolio selector, Delfi1. Since for Delfi1
only the model and not the code is available, we cannot re-
train it with cross-validation. Instead we retrain the best con-
figurations of our machine learning techniques on the train-
ing data of Delfi1 and evaluate all models on the tasks from
the IPC 2018. For the single decision tree approach, we use
the decision tree from Figure 2.

Delfi1 converts a given task to a graph and then to a raster
image and finally passes this image to a CNN. In Table 4 we
compare how computationally demanding these conversions
are in comparison to computing the FAWCETT and PDDL
features. On average, Delfi1 uses the most time and mem-
ory, but the mean resource requirements are small enough
to be neglected for all three variants. However, on resource-
constrained systems it might be problematic to run Delfi1
for the largest tasks.

Next, we compare the performance of the different mod-
els. Table 5 shows that all models significantly outperform
the random baseline. Delfi1 performs best and solves 86.9%
of the test tasks. However, our linear regression models per-
forms almost equally well (86.2% coverage). The single de-
cision tree learned to select almost always the planner per-
forming best on the test data (not the planner performing
best on the training data) and obtains a coverage of 82.7%.
The random forest model also achieves a high coverage
(80.4%), but the MLP solves many fewer tasks (70.8% cov-
erage). It is striking that the linear regression, decision tree,
and random forest models have a standard deviation of 0.0
over ten repetitions. This is in contrast to Delfi1, whose au-
thors note that the coverage of the Delfi approach has a high
variance and that their retrained models did not reach the
performance of the Delfi1 model that participated in the IPC
2018 (Sievers et al. 2019a).

For our models, the MLP takes the longest time for train-
ing: 111 seconds on average using a single CPU core. Sim-
ilarly, training the Delfi1 models was a matter of minutes
(personal communication with the authors). Since training
can be done offline before encountering new tasks and the
resource consumption is within reasonable limits, the time
for training is negligible. Evaluating the models requires



Random Linear Regression MLP Random Forest Decision Tree Delfi1/CNN

coverage in % 60.6 (0.3) 86.2 (0.0) 70.8 (9.0) 80.4 (0.0) 82.7 (0.0) 86.9 (N/A)
timetraining in sec. 0 0.0 (0.0) 111.1 (16.8) 38.8 (6.1) 0.5 (0.1) <3600 (N/A)
timeselecting in sec. 0 3.8 (0.2) 3.9 (0 .1) 4.1 (0.3) 4.6 (0.4) 3.7 (0.4)
memoryselecting in MB 0 275.9 (434.0) 286 .9 (131) 323.2 (110.3) 245.1 (23.5) 313.7 (0.2)

Table 5: For the best variant of each basic machine learning technique and Delfi1, we show mean coverage, training time, and
the runtime and memory usage for a single prediction on the IPC 2018 tasks. The numbers in brackets show standard deviation.
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Figure 3: (Top) For each planner in our data set a row indicates which tasks it solves from the test set. The tasks are grouped
by domain and the domains are sorted by their average coverage. (Bottom) For each model of Table 5 a row indicates for every
test task the planner chosen. Beneath each row a small green bar indicates whether the selected planner solved the task. The
final row (OptD) selects for each domain the planner with the highest coverage in that domain (breaking ties by selecting the
planner with smaller cumulative runtime in the domain). Table 3 shows which planner belongs to which color.

roughly the same time and memory for all approaches.
Again the resource requirements are negligible.1

The bottom half of Figure 3 shows for each model when
it chooses which planner and whether these choices solve
the given task. Delfi1 solves the most tasks, but in many do-
mains it uses multiple planners. This suggests that the de-
cisions of Delfi1 are not based on detecting common struc-
tures within a domain, but on some other structures. Due to
the black-box nature of the model of Delfi1, it is not easily
possible to infer what it learns.

In contrast, the linear regression model solves almost the
same number of tasks as Delfi1, but clearly learns to assign
planners to domains. Only twice it selects two different plan-
ners for a domain. Intuitively, it makes sense to learn to iden-
tify domains and which planner is good for a domain. To
verify our intuition, the last row OptD shows an oracle that
selects for each domain the planner with the highest cover-
age in that domain. Indeed, we see that selecting a single
planner per domain solves all but one test task.

The random forest model also obtains high coverage on
the IPC 2018 tasks and in most domains it solves more tasks
than the linear regression. Its worse overall performance is
only due to the difficult petri-net domain where it solves
only two tasks. The decision tree model learned to almost
always select SymBA∗ which is the planner with the high-
est coverage on the test tasks. This is more impressive than
it sounds, because SymBA∗ is not the best planner for the
training tasks.

1All variants use Python for training and evaluation, which
needs ∼3.5s just to load the Tensorflow and scikit-learn packages.

The MLP surpasses the random baseline, but has the low-
est coverage of all models. Again, we clearly see the do-
mains where it makes wrong predictions. In three out of ten
domains it solves only one task and in two domains only half
of the tasks. In all other domains it solves almost all tasks.

The top half of Figure 3 shows that there are many tasks
which are solved by almost all planners and many tasks that
are solved by almost no planner. Obviously, selecting a good
planner is much more important for hard tasks. If we check
where the models, including Delfi, fail to select a solving
planner, we see that this often happens for tasks that are
solved by almost no planner. An extreme case can be seen
for the linear regression model in agricola. The model se-
lects a single planner for the domain and solves half of the
tasks. This sounds fine until we notice that those tasks are
solved by most planners. Therefore, focusing on hard tasks
could improve future models.

Conclusions
We showed that simple and explainable machine learning
techniques like linear regression can produce strong portfo-
lio selectors. Arguably our simplest model, linear regression,
solves roughly the same number of tasks as Delfi1, the state
of the art for planner selection. In addition to obtaining high
coverage scores, the linear regression model is easy to inter-
pret and fast to train and evaluate. We also analyzed which
features are important for planner selection and presented
how a single decision tree can be trained to directly predict
a planner and showed that such a tree can visualize how the
model makes decisions.
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Núñez, S.; Borrajo, D.; and Linares López, C. 2015. Auto-
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