1 2 3	Host-parasite coevolution and its genomic signature
4	Dieter Ebert ^{1,2,*} & Peter D. Fields ¹
5 6 7 8	1 University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
8 9	and
10	
11 12 12	² Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
13 14 15	*e-mail: dieter.ebert@unibas.ch
16	ORCID IDs:
17	0000-0003-2653-3772 (D.E.)
18 19	0000-0003-2959-2524 (P.D.F.)
20	
21	Manuscript accepted for publication in:
22	Nature Review Genetics, Vol. 21, December 2020
23	https://doi.org/10.1038/ s41576-020-0269-1
24	
25	
26	Abstract Studies in diverse biological systems have indicated that host-parasite
27	coevolution is responsible for the extraordinary genetic diversity seen in some
28	genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates
29	and resistance genes in plants. This diversity is believed to evolve under balancing
30	selection on hosts by parasites. However, the mechanisms that link the genomic
31	signatures in these regions to the underlying coevolutionary process are only slowly
32	emerging. We still lack a clear picture of the coevolutionary concepts and of the
33	genetic basis of the coevolving phenotypic traits in the interacting antagonists.
34	Emerging genomic tools that provide new options for identifying underlying genes will
35	contribute to a fuller understanding of the coevolutionary process.
36	
5/ 20	
30 39	

40 Introduction

41 Host-parasite coevolution occurs when selection by parasites [G] triggers 42 diverse host adaptations that reduce the costs of infection, which in turn prompts 43 parasites to adapt anew to their hosts. This process may be among the most important generators of biological diversity over the past 3.5 billion years ^{1,2}, including the 44 generation and maintenance of genetic diversity within populations and species, and 45 the sharing of certain variants across species boundaries ³⁻⁹. As such, the genomes of 46 47 organisms would be expected to show signatures of this host-parasite coevolution. 48 Recognizing and characterizing these genomic signatures [G] would be expected to 49 lead to a better understanding of how diversity has evolved, and is still evolving, across 50 the tree of life. Furthermore, identifying genomic signatures of coevolution can help to 51 narrow down the loci under selection and provide mechanistic insights into host-52 parasite interactions.

Antagonistic coevolution has been defined as reciprocal selection between two closely interacting species ^{10,11}. This definition focuses on the phenotypic traits of the coevolving antagonists that negatively influence each other. It specifies that it is the traits responsible for the interaction and their underlying genes that coevolve—not the species ^{12,13}. It also sets antagonistic coevolution apart from scenarios of host parasite co-association and the resulting long-term patterns of co-speciation or cocladogenesis, which do not require adaptive processes ¹⁴.

60 The process of antagonistic coevolution can be described by two types of 61 model: models of specific coevolution, in which one host and one parasite species 62 interact (sometimes called pairwise coevolution); and models of unspecific coevolution, better known as diffuse coevolution ¹⁰, in which multiple hosts and/or 63 64 parasite species contribute to the process. Models of specific coevolution can be 65 further grouped into selective sweep [G] models, in which novel variants are selected 66 for and rise to high frequencies, and balancing selection models, in which alternative variants at specific loci fluctuate in frequency over time ^{11,15}. The different modes of 67 68 action underlying these models create different signatures in the genomes of the 69 antagonists. Thus, observation of a particular signature in a genome allows (within 70 limits) conclusions to be drawn about the evolutionary mechanism producing them 71 (Table 1).

72 A genomic perspective of coevolution considers the entire region around the 73 coevolving genes, because making use of the additional information present in the 74 flanking sites strongly increases the power of the analysis to detect genomic 75 signatures. Despite being functionally independent, sites physically tightly-linked to the 76 coevolving genes are influenced by linked selection [G], which causes genetic 77 hitchhiking [G], and, unlike unlinked sites, their fate is determined by the dynamics of the selected genes and the rate of recombination among them ^{16,17}. Thus, genomic 78 79 signatures of coevolution can be detected in populations by comparing patterns of

- 80 genetic variation in these regions with the patterns in the genomic background that
- 81 presumably evolved by neutral evolutionary processes. The genomic signatures of
- 82 models of specific coevolution have received much attention, resulting in a good
- 83 picture of the expected patterns in population samples of genomes. By contrast, the
- 84 genomic signatures expected under diffuse coevolution have not yet been
- 85 determined; nevertheless, some heuristics exist.
- In this Review, we address conceptual issues concerning host-parasite coevolution and how they manifest in the genomes of the antagonists. We highlight the differences between specific and diffuse coevolution and point out the role of spatial population structure in shaping genomic signatures. Using these concepts, we discuss the evolution of trans-species polymorphisms. Finally, we address new cogenomic [G] methods that allow coevolving loci in hosts and parasites to be directly
- 92 pinpointed and what we can learn from these recent developments.
- 93

94 Models of specific host–parasite coevolution

- 95 The two models of specific coevolution, selective sweep selection and balancing 96 selection, have different effects on genetic variation. Selective sweep coevolution is 97 arguably one of the most important generators of macroevolutionary patterns, and 98 explains differences in immune systems among lineages, drives speciation and is 99 implicated in some of the major transitions in evolution ^{2,18-20}. However, it fails to 100 explain the extraordinary genetic diversity observed at some host resistance loci. By 101 contrast, coevolution by balancing selection [G] is best known for its potential to 102 maintain high levels of genetic diversity within populations and species. The theory 103 states that hosts and parasites undergo continuous antagonistic coevolution, often 104 referred to as Red Queen dynamics or trench warfare, which results in a balance of 105 different variants at loci related to host defence and parasite offence ²¹⁻²³. Recent 106 studies have revealed that there are more genomic regions in plants and animals that
- 107 undergo balancing selection than previously thought ^{8,24-29}.
- 108 The study of coevolution by analysing patterns of genetic variation has a long 109 tradition, but has a number of limitations that make it hard to reach strong conclusions 110 about underlying evolutionary processes. For example, genomic studies on
- 111 coevolution are mostly performed separately in host and parasite genomes (but see
- 112 'Joint analysis of host and parasite genomes'). Thus, a given finding may be difficult to
- 113 attribute to host–parasite coevolution or to other processes, because the
- bioinformatic and population genetic approaches that are used to identify genomic
- 115 regions with characteristics of selective sweeps or balancing selection do not identify
- 116 the cause of selection antagonistic interactions are only one of many possibilities.
- 117 Additional efforts are needed to differentiate between these options. This issue is
- 118 particularly pronounced for balancing selection, as different mechanisms (such as
- 119 overdominance [G], local adaptation [G], direct negative frequency dependent

selection [G] (NFDS) and indirect negative frequency dependent selection [G]) can all
 produce genomic signatures of balancing selection. However, only indirect NFDS is
 associated with antagonistic coevolution, and so distinguishing among these
 mechanisms is crucial.

124

125 [H2] Selective sweep coevolution. A selective sweep describes the rapid increase in 126 frequency of a beneficial variant, such as a novel mutation. In the extreme case, the 127 variant will reach fixation, replacing alternative variants. Adaptive evolution in this 128 form is considered to be a dominant driver of protein adaptation and species divergence ^{30,31}. During host–parasite coevolution, both antagonists may experience 129 130 sweeps at loci that play a functional role in their interaction (FIG. 1) ^{11,15,32-35}. For 131 coevolution to occur, sweeps do not need to alternate between hosts and parasites. 132 Variants at multiple sites may even spread at the same time, as long as they are 133 decoupled by recombination, as otherwise selective interference [G] takes place ³⁶ 33,34 134

135 A selective sweep leaves a characteristic valley of locally reduced genetic 136 variation in population samples of genomes. These diversity valleys are formed 137 because variants that are in proximity to the sweeping variant hitchhike along and 138 replace alternative variants, which results in a corresponding pattern of increased linkage disequilibrium [G] ³⁷. Such valleys allow us to detect the approximate position 139 140 of the beneficial mutant, but the genomic signatures are rarely clear and lose their 141 distinct features over time as recombination breaks down associations and as new 142 mutations arise. Thus, ancient selective sweeps are no longer detectable, although 143 they leave their traces in signatures of positive selection that result in patterns of 144 divergence among lineages ²⁰. Likewise, sweeping mutants in the initial phase of a 145 sweep are hard to detect, as the reduction in local genetic diversity is not yet 146 pronounced (FIG. 2). Additionally, each sweep event has a different history: each one 147 is associated with a different selection coefficient [G] and may occur at a different 148 location in the genome and possibly experience different local recombination rates ³⁸. 149 Finally, signatures of sweeps strongly depend on the initial variation on which selection acted ³⁷. 150

Variants spreading to fixation in coevolving hosts and parasites may be functionally independent, other than that they each provide a benefit to their carrier and are disadvantageous to the antagonist ²³. However, when particular host or parasite proteins interact, selective sweep coevolution can occur through alternating changes to functionally important segments of these proteins. For example, the restriction factor *TRIM5*, an antiviral protein in Old World primates seems to have coevolved in tight interaction with capsid proteins in lentiviruses ³⁹.

158Due to their high rate of evolution, parasites are among the fastest changing159selecting agents host organisms experience. Therefore, the speed with which a host

160 population can respond to a new variant of a parasite is important. However, selective 161 sweep evolution from a novel mutation to fixation (that is, a hard sweep) is a rather 162 slow process. In particular, the initial increase in allele frequencies is slow: in a large 163 population, a novel mutation with a 10 % fitness advantage takes about 200 164 generations to reach a frequency of 10 %, but only about 15 generations more to 165 reach 50 % 40,41 . Thus, sweeps starting from standing genetic variation (known as soft 166 sweeps) can occur faster than hard sweeps, as the initial allele frequencies are higher. 167 Indeed, evidence is accumulating that many sweeps observed in natural populations 168 are soft sweeps ⁴¹⁻⁴³. Interestingly, standing genetic variation is often high for loci 169 related to host-parasite interactions and thus can drive faster sweeps. Although it is 170 not fully known why this is the case, the two-speed genome model ⁴⁴⁻⁴⁶ attempts to 171 explain this paradox by suggesting that specific regions in host and parasite genomes 172 have strongly elevated mutation rates, constantly re-fuelling standing genetic 173 variation, whereas housekeeping genes have lower mutation rates and evolve by 174 purifying selection.

175

176 Coevolution by balancing selection. The Red Queen model of balancing selection was 177 introduced by Clarke ⁴⁷ to explain unexpectedly high genetic diversity within 178 populations. It is based on the assumption of strong host-genotype by parasite-179 genotype interactions ⁴⁸⁻⁵⁰ (FIG. 3a), which has been finding increasing empirical 180 support ⁵¹⁻⁵³. As opposed to the selective sweep model, in which mutant alleles have a 181 general advantage over the wild type alleles, genetic variants under balancing 182 selection provide an advantage only in specific relation to a corresponding genetic 183 variant in the antagonist. These host and parasite genes are functionally coupled, forming the driving force for reciprocal selection ^{22,54-56}. According to the Red Queen 184 185 model, a parasite allele will increase in frequency when the host allele that allows it to 186 infect is common; as hosts carrying this allele succumb to increased parasitism, their 187 numbers will decline, and—with a time lag—so too do parasite genotypes that depend 188 on these particular host genotypes, that is, the loci in the host and the parasite are 189 under NFDS. As parasites with particular infectivity alleles track corresponding host 190 alleles, cyclical dynamics of host and parasite alleles might arise, with parasite cycles 191 lagging behind the corresponding host allele cycles ^{57,58}. NFDS reduces the likelihood 192 that alleles go extinct by chance because rare alleles gain an advantage; thus, genetic 193 polymorphisms in hosts and parasites can be maintained, and the frequencies of the 194 functional variants at the involved loci are balanced over time (FIG. 3b). In this form of 195 balancing selection, an allele's selection coefficient does not depend directly on its 196 own frequency, but rather depends on the frequencies of specific alleles in the 197 antagonist. Therefore, it is called indirect NFDS²¹. 198 Relative to the rest of the genome, genomic regions containing genes under

199 balancing selection are expected to show high genetic diversity and a more even

200 frequency spectrum of variants, resulting in positive Tajima's D [G] values ^{16,26,59,60} 201 (Table 2). Scans of host genomes have revealed ample evidence of regions under 202 balancing selection, with the most well-known being the MHC class 1 and 2 genes of 203 jawed vertebrates and the ABO blood group system of higher primates, but also other regions of vertebrate genomes related to immune function ^{25-28,61-64}. Scans in plants 204 205 and invertebrates have also revealed balancing selection in diverse genomic regions, 206 again often regions associated with immune function ^{8,65-71}. However, current 207 bioinformatic and population genetic methods may still miss many regions of interest. 208 To produce a recognizable genomic signature, selection should be strong and should 209 have acted for a sufficiently long time period (Fig. 2). Regions around sites under 210 selection usually show strong local linkage disequilibrium, thus local recombination 211 rate will also affect the ability to detect signatures. Ideally, the recombination rate 212 around the selected loci should be low to allow linked SNPs to hitchhike; high 213 recombination rates would reduce the region to the very site under balancing selection itself ^{16,21}. However, some level of recombination is helpful for the detection 214 215 of the sites under selection, as otherwise the entire region will be inherited as one 216 linkage block.

217 Less attention has been given to balancing selection in parasites than in hosts. 218 Mapping parasite loci is more difficult because parasites often cannot be cultured and 219 phenotyped outside the host. Furthermore, they often have no or infrequent genetic 220 recombination, have extreme population structures and demography, carry extra 221 chromosomal genetic elements (such as plasmids), and have substantial divergence in 222 gene content as a result of horizontal gene transfer: each of these features may 223 produce genomic signatures that make it more difficult to identify the signature of 224 balancing selection ^{72,73}. New bioinformatic tools for genome analysis are now being 225 developed that address some of these challenges (see Table 3 in ref ⁷³), and 226 theoretical analyses suggest that balancing selection might show stronger genomic 227 signatures in parasites than hosts ²¹. Examples of loci likely under balancing selection have been described for a range of parasites ⁷⁴⁻⁷⁹. For West Nile Virus in mosquitos and 228 229 Deformed Wing Virus in honey bees it has been suggested that genetic diversity is 230 maintained by selection from RNA interference (RNAi) in the host ^{78,80,81}. Interestingly, 231 the genes for RNAi in Drosophila were suggested to evolve by very high rates of positive selection with evidence for recent selective sweeps ⁸². Two closely-related 232 233 human pathogenic bacteria, Staphylococcus aureus and S. epidermidis ^{74,75}, show evidence for balanced polymorphisms, but for different genes. The hrpA gene of the 234 235 plant pathogen *Pseudomonas syringae*, which encodes part of the type III secretion 236 system, was found to be under balancing selection ⁷⁶. In addition, a rare example of a 237 balanced polymorphism involving structural variation, which determines the presence 238 or absence of alternative pathogenicity islands, was described in Pseudomonas viridiflava, a plant pathogen often found on Arabidopsis⁸³. Interestingly, several of 239

240 these bacteria are known for their wide host range, hinting that diffuse coevolution 241 may contribute to the observed patterns (see 'Diffuse coevolution' section). Sites with 242 high genetic diversity and polymorphisms have also been described in human malaria parasites ^{84,85}, although the signature of balancing selection here may be confounded 243 244 with processes resulting from acquired immunity. Finally, in the planktonic crustacean 245 Daphnia magna and its highly specific bacterial parasite Pasteuria ramosa, evidence 246 for balancing selection comes from both the infectivity loci in the bacteria ⁷⁹ and from 247 the resistance loci in the host ⁵³.

248 The genomic signatures of coevolution in hosts and parasites cannot be 249 expected to resemble each other, as the two antagonists experience selection in very 250 different ways. For parasites, the fitness difference between infecting and failing to 251 infect a host is very large, whereas the lifetime fitness difference between hosts that 252 resist a parasite attack or not is likely much smaller ⁸⁶. In addition, some hosts may not 253 encounter the parasite during their lifetime, reducing selection for resistance even 254 further. Hosts and parasites also may have different generation times, recombination 255 rates, effective population sizes, ploidy-levels, mutation rates, population structures 256 and demography, to name just a few dissimilarities. Therefore, the footprint of 257 coevolution and the genomic signatures of the two coevolving antagonists may look 258 very different and may sometimes only be detectable in one of the antagonists ²¹.

259 Initially, population genetic modelling of coevolution by NFDS was performed 260 for infinite population sizes, which strongly reduces the chance of extinction of host 261 and parasite variants. Real populations, however, are of finite size and subject to 262 stochastic effects, so functional variants may be lost due to genetic drift [G], bringing-263 in the most extreme case-coevolution to a halt ^{21,87-89}. These effects can substantially 264 blur the genomic signatures of coevolution in natural populations, making their 265 interpretation more difficult ²¹. However, spatial structures of host populations can 266 strongly reduce these stochastic events, as long as sub-populations are not evolving in 267 synchrony ⁹⁰⁻⁹².

268

Specific coevolution and spatial structure Simple models of host-parasite
 coevolution generally focus on evolutionary dynamics in a single, large, panmictic [G]
 population. However, populations are almost always spatially distributed, with an
 extended geographic structure and gene flow among populations. This spatial
 structuring profoundly influences coevolution and divergence ^{58,90,91,93-97} and
 accounting for it can strongly refine population genomic analyses ^{33,73,98}.

275 Research on subdivided populations has examined how coevolution influences 276 the spread of variants related to host–parasite interactions, thereby contributing to 277 patterns of genetic variation on a species-level scale (rather than a population-level 278 scale) ^{96,99,100}. In a selective sweep scenario, strong gene flow allows globally beneficial 279 mutations to spread quickly from population to population, whereas weak gene flow leads to population divergence ^{37,101}. More complex patterns of divergence may arise,
for example when gene flow is rare and unbalanced among subpopulations, when it
differs for the two antagonists, and when populations adapt locally to other
environmental factors ¹⁰². Genomic patterns of such processes are hard to study,
especially if the evolving genes are not known beforehand ^{37,101}.

285 By contrast, under balancing selection, gene flow enables alleles to persist in 286 the overall gene pool much longer, as it can bring locally extinct alleles back into the population (FIG. 3b) ^{60,93,100,103,104}. In addition, as immigrating alleles are likely to be 287 288 rare upon their arrival, they are expected to have an advantage and experience a 289 lower rate of extinction and a higher likelihood of spreading locally ^{104,105}, thereby 290 increasing their effective migration rate compared to neutral genetic variants. The 291 number of alleles maintained on a species level thus rises accordingly, and the loci 292 under NFDS are expected to show less differentiation among populations than neutral loci that do not benefit from NFDS ^{79,106}. This difference is seen when comparing 293 294 isolation-by-distance (IBD) patterns for these two groups of loci: whereas neutral loci 295 show increasing differentiation (visible, for example, as an increased fixation index [G] (F_{ST})) with increasing distance among populations, loci involved in NFDS show no or a 296 much weaker pattern of IBD ¹⁰⁷, which is the opposite of what local positive selection 297 would produce ^{104,108,109}. However, while the immigrant advantage reduces 298 299 differentiation at the loci under NFDS among populations over the long term, it may 300 drive the divergence of neighbouring populations in the short term, for example if 301 strong selection occurs at a given gene but for different variants. Such patterns have been observed in some population genetic studies of resistance genes ^{100,106,110}. Thus, 302 303 populations may show more variable pairwise F_{ST} at sites under NFDS than at neutral 304 sites.

305 Although limited gene flow causes populations to show patterns of IBD ^{111,112}, 306 the perspective described above does not include common ecological and biological 307 circumstances that may influence gene flow, such as spatially divergent selection, 308 population size and genetic drift, metapopulation and source-sink population 309 structure, and historic events. Parasites may differ in local abundance and may not be 310 present in every host population. Thus, the propensity for host-parasite coevolution 311 may vary in space and time. Host genes involved in host-parasite interactions may 312 become neutral in the absence of the parasite, or even detrimental if there are costs 313 of resistance. The combined dynamics of these and other evolutionary and ecological 314 processes that influence spatial and temporal variation have been described as the 315 geographic mosaic of coevolution, with hot spots showing strong and rapid 316 coevolutionary dynamics, and cold-spots marked by slow or no coevolution ^{113,114}. For 317 any given system, the greater the proportion of coevolutionary cold spots, the weaker 318 the overall signature of balancing selection. However, even at cold spots, one may find 319 elevated genetic diversity at loci that are under balancing selection in hot spots,

320

because gene flow from hot spots may prevent extinction of variants in cold spots.

- 321 Species-wide, the overall genomic signature of balancing selection may, therefore, be
- 322 relatively insensitive to the geographic mosaic of coevolution. However, this will
- 323 certainly depend on the interplay of migration, genetic drift and selection.
- 324

325 Trans-species-polymorphism

326 Because alleles under balancing selection are less likely to be lost from a gene-327 pool, they segregate for longer time periods than genes undergoing neutral evolution 328 or directional selection [G] ¹⁶. This theory can be tested using coalescence approaches 329 that compare regions under balancing selection with the genomic background ³⁸. In 330 extreme cases, ancient identical-by-descent genetic variants at polymorphic sites may 331 have pre-existed even before the last speciation event, so that these variants are 332 shared across closely related species (FIG. 4a). This trans-species-polymorphism (TSP) 333 is indicated when haplotypes from the two species cluster by allele and not by species 334 (FIG. 4b) ^{16,115}, as expected for neutrally evolving alleles. In the context of host-parasite 335 interactions, the signal of TSP is very clear in MHC genes, in the ABO blood group 336 system of higher primates and in several other vertebrate loci ^{25,29,64,115-117}. It has also been observed in plants ^{8,118,119}, but rarely in invertebrates ⁶⁸. Genomic regions with 337 evidence of TSP are typically enriched with immune function genes ^{6,8,26,97,105,119,120}, 338 339 suggesting that host-parasite coevolution might be the driving force behind a genomic signature of TSP ^{20,120,121}. Experimental data further support a link between TSP and 340 parasitism ^{105,122}. 341

342 Given the large time scale involved in TSP, the impact of the coevolving genes 343 on the immediate genomic neighbourhood of the selected sites will be reduced, because recombination decouples selected sites from linked neutral sites ^{16,123}. 344 345 Therefore, long-term polymorphisms of single SNPs are difficult to detect by analysing 346 genomic signatures alone. This can be seen with the SNP in the human haemoglobin 347 gene responsible for the balanced sickle-cell anaemia-malaria resistance 348 polymorphism in large parts of Africa. Long-term balancing selection can best be 349 detected when the balanced haplotypes do not recombine (for example, if they are 350 located in inverted regions of the genome or are part of a supergene [G]), or if 351 multiple polymorphisms are together under selection, so that they maintain linkage disequilibrium across polymorphic sites ^{25, 53, 123}. 352

353

354 Diffuse coevolution

355 The two models of specific coevolution described above assume that the relevant

- interactions are between one host and one parasite species. However, interactions
- 357 may include multiple parasites and/or multiple hosts. This scenario is known as diffuse
- 358 coevolution ¹⁰. Diffuse coevolution refers particularly to the interactions of functional
- 359 guilds [G], such as diverse species of herbivores and their plant hosts or parasites and

360 hosts. In its simplest form, coevolution is diffuse when a host trait and the underlying 361 genes in the genome evolve in response to at least two parasites, or a parasite trait 362 evolves in response to selection caused by more than one host. In such cases, 363 coevolution is influenced by a combination of frequency dependence (according to the 364 genetic composition of the parasite populations) and density dependence (according 365 to the abundance of the parasite species). Furthermore, the parasite composition may 366 differ in different sub-populations of the host and may change over time (owing to diversifying selection and/or spatio-temporal dynamics)¹²⁴⁻¹²⁶. The more hosts or 367 368 parasites that participate, the more complex the evolution of the participants will be 369 and the harder it will be to predict the genomic signature of the diffusely evolving 370 regions ¹³.

371 The need for consideration of diffuse coevolution is underlined by examples of 372 host loci that interact with multiple parasites. Human variants of CCR5, TRIM5 α and 373 APOBECG3 interact with HIV-1, but were suggested to have been under positive selection by other viruses with which they interacted in the past ¹²⁷⁻¹²⁹. The tomato R-374 375 gene [G] cf2 confers resistance to the parasitic nematode Globodera rostochiensis and to the fungus *Cladosporium fulvum*¹³⁰. Parasites from three kingdoms interact in part 376 with the same proteins in *Arabidopsis*¹³¹. The MHC region of diverse vertebrates are 377 well known for their interactions with many parasites ^{125,126,132,133}. 378

379 The converse, a parasite interacting with more than one host, seems also to be widespread. Sympatric species of sticklebacks are infected by the same parasites, 380 381 which interact with the host's MHC¹¹⁶. The pathogenic bacteria *Staphylococcus* 382 aureus, Pseudomonas viridiflava and Pseudomonas syringae are known to infect 383 various host species with overlapping genetic mechanisms ^{74,76,134}. Finally, hosts may even exchange immune genes to fight parasites: for example, related Arabidopsis 384 385 species have been shown to exchange resistance genes through hybridization and 386 introgression ¹³⁵. Likewise, parasites may exchange coevolving genes via horizontal 387 gene transfer to overcome host defenses ¹³⁶.

388 Coevolution may become even more diffuse when the interactions of various 389 hosts and parasite species show spatio-temporal dynamics. Coevolution in such multi-390 species scenarios is based on variable interactions between changing communities of 391 hosts and parasites. Thus, the signatures observed in the host and parasite genomes 392 cannot be attributed to one ecological setting, but result from a history with diverse 393 settings with different interactions in host and parasite communities. Each setting may 394 result in a different evolutionary trajectory and may well include temporal phases of 395 more narrowly defined coevolution by NFDS or selective sweeps between pairs of 396 antagonists ¹³⁷. The signatures of these phases of specific coevolution will not be 397 recognizable in the genome, unless the ecological setting in which they occur are 398 sufficiently stable for a given period of time.

399 Models of single hosts coevolving with multiple parasites support the idea that long term maintenance of genetic polymorphisms is possible ^{7,48,59,124,138,139}. Empirical 400 401 data from systems likely under diffuse coevolution are consistent with this idea, 402 leading to the widely held belief that the complexity of multi-species interactions maintains genetic diversity, including TSP ^{92,116,125-127,140-142}. Thus, diffuse coevolution 403 404 offers an explanation for the "missing antagonist problem" that typifies TSP studies, 405 which typically lack knowledge of the parasite that coevolved with the host in the past 406 ¹²⁰. If TSP is caused by diffuse coevolution there is no single coevolving parasite, but an 407 association with a changing pool of parasite species over time and space. Indeed, most 408 of the associations of the human MHC with parasites (such as HIV, West Nile virus, 409 dengue, hepatitis B, hepatitis C, tuberculosis and leprosy ¹³³) are believed to be rather 410 young—much younger than 5 million years, the approximate date of the last common 411 human-chimpanzee ancestor for which TSP at the MHC was observed ^{25,29,116}. Thus, 412 the parasites we see interacting with humans now may not be the same as those that 413 interacted with us some million years ago. Malaria, which is a parasite specific to 414 humans, may be an exception. Recent work suggests that human-malaria coevolution 415 could be as old as the human split from our closest living relatives ¹⁴³⁻¹⁴⁶. However, the 416 hypothesis that malaria is a missing antagonist, explaining TSP in humans, requires 417 further investigation.

418 To further our understanding of TSP it will be necessary to distinguish between 419 cases of specific long-term coevolution and diffuse coevolution. Although 420 demonstrating that TSP is the consequence of ancient specific coevolution is 421 challenging, we can make testable predictions. In the strictest case of specific 422 coevolution by balancing selection, the aim would be to demonstrate that two closely related host species with evidence of TSP are parasitized by two closely related species 423 424 of coevolving parasites (FIG. 4a) and that the genes in question play a functional role in 425 the interaction of the two pairs of antagonists (FIG. 3a). In such a scenario, an overlay 426 of long-term Red-Queen dynamics with the co-speciation of the host and the parasite 427 might be observed¹⁴(FIG. 4b). Such a strict set of conditions may not be very likely, but 428 the requirements may be relaxed to accommodate ecological, historical, 429 epidemiological and biogeographical features ^{116,138}.

430

431 Joint analysis of host and parasite genomes

Unlike the approaches described above, emerging cogenomic [G] methods
jointly analyse the genomes of hosts and those of their parasites. These methods focus
on the genes responsible for the phenotypic interactions of the antagonists and allow
subsequent analysis of their genomic signatures ^{72,147-149}.

- 436
- 437 [H2] Identifying the genes involved in host–parasite interactions. A cogenomics
- 438 approach to identify the genes that directly interact with each other in hosts and

439 parasites is best illustrated with a host-parasite matrix that shows the functional 440 specificity of variants of the antagonists that interact with each other to produce 441 phenotypes—disease (compatible) and resistance (incompatible) (FIG. 3a). Although many different matrices have been proposed ¹⁵⁰⁻¹⁵⁵, we still do not know much about 442 443 them in natural host-parasite systems. Studies of interacting host-parasite genes have 444 a long tradition in plant-pathogen systems, starting with H.H. Flor's gene-for-gene system for flax and one of its rust pathogens ¹⁵⁶ (for reviews see: ^{22,91}), but only a few 445 examples have so far been confirmed for animal systems ^{52,53}. It is widely believed that 446 447 specific interaction matrices like these underlie coevolution by NFDS and thus are 448 responsible for maintaining genetic diversity. Finding the genes underlying such 449 matrices is still cumbersome and time consuming, but this may change with the 450 development of cogenomics approaches that detect interspecies (or intergenomic) 451 linkage-disequilibrium (iLD). If the only polymorphism in a population that explains 452 variation in infection success is the interaction between the host's A-locus and the 453 parasite's B-locus, then infected individuals could only ever carry the host-parasite 454 allele combinations A/B and a/b. Other combinations (A/b and a/B) would not produce 455 infections (FIG. 3a). This non-random association between host and parasite alleles 456 produces iLD because the phenotype (infection) depends on the combination of 457 genetic variants in different species. The statistical signal of iLD is only seen at the 458 interacting loci, not at sites in the genetic background, as long as recombination 459 efficiently decouples selected loci from non-selected loci (FIG. 5a). Using iLD is a 460 powerful tool to detect interacting genes for a number of reasons. First, its presence 461 indicates that host and parasite individuals carry alleles related to each other in a 462 fitness context, that is, for a trait (infection) likely under selection. Second, it allows the 463 interacting loci of both antagonists to be pinpointed. Third, it can be used even when 464 only samples of infected hosts (such as infected patients) are available. Fourth, it is 465 free from assumptions about the shape of the interaction matrix, which is important, 466 as we currently have little understanding of how the matrix is structured. Finally, the 467 method is not limited to model species, as it does not require previous knowledge 468 about the system.

469 However, statistical limitations are apparent. The method works best when the 470 alleles in question have intermediate frequencies and when the number of tests to be 471 conducted (every host polymorphism is tested in relation to every parasite 472 polymorphism) is not too large relative to the sample size: as the number of tests, and 473 therefore false positives, increases with the product of the numbers of polymorphisms 474 in both antagonists, larger sample sizes are required for antagonists with large 475 genomes. In addition to these limitations, other factors can reduce the power to 476 detect significant iLD. For example, if genes involved in iLD have epistatic (that is, non-477 additive) interactions with other loci in the same genome, the statistical power to 478 detect them is reduced. Furthermore, simulations of different coevolutionary models

- 479 showed that the inferential power of iLD will vary over time due to the underlying
- 480 dynamics of a host-parasite interaction matrix, and relevant loci will be more
- 481 identifiable if coevolution occurs by NFDS than if by selective sweep coevolution ¹⁵⁷.
- 482 Finally, multiple infections (that is, more than one parasite genotype being involved in
- 483 the infection of individual hosts) may cause problems in the analysis. Multiple
- 484 infections of humans and animals are believed to be very common ¹⁵⁸.

485 A number of pioneering cogenomics studies have been performed with human 486 patients infected with different parasites. In genome-to-genome analyses, iLD was 487 used to test for associations between SNPs in humans with SNPs in HIV-1¹⁴⁷, hepatitis 488 C ¹⁵⁹ and *Streptococcus pneumoniae* ¹⁶⁰. These studies were able to identify previously 489 unknown interacting genes in the host and parasite, with the virus studies being more 490 powerful because they have smaller genomes than Streptococcus and require fewer 491 tests. This method is currently being further developed to increase its sensitivity and to take population stratification into account ^{161,162}. A modified version of this method 492 493 was used to test for associations of SNPs in human candidate genes with phylogenetic 494 lineages of *Mycobacterium tuberculosis*, revealing a host SNP – parasite lineage 495 association ¹⁶³.

Another cogenomics method, Analysis with a Two-Organism Mixed Model
 (ATOMM), also aims to find interacting loci in hosts and parasites (FIG. 5b)¹⁶⁴. This
 method requires experimental data for phenotypes, such as infection and disease
 symptoms, from all possible combinations of host and parasite genotypes. It allows
 researchers to map these phenotypes to host and parasite genomes, while accounting
 for confounding factors such as phylogenetic or spatial structure.

Although not yet routinely used, cogenomic methods offer exciting possibilities for future studies of host-parasite interactions. The new pairs of loci identified with these methods can then be analysed for their genomic signatures, allowing the picture of the signature of coevolution in host and parasite genomes to be fine-tuned. The use of the genome-to-genome method with non-model organisms will allow the study of systems previously out of the reach of coevolutionary research.

508

509 [H2] Using cogenomics to infer signatures of the coevolutionary process. As of yet, we 510 do not have access to analytical derivations that determine exactly how different 511 coevolutionary processes affect allele frequencies at loci across host-parasite 512 genomes. However, we can simulate much of the biological complexity that arises as a 513 result of the coevolutionary process and explore how genomic signatures might differ under particular scenarios ¹⁵⁷ (BOX 1). For example, one approach simulates 514 515 coevolutionary dynamics to generate allele frequency expectations, which can then be 516 used to look back in time to determine the coalescent properties that might generate 517 these expected allele frequencies at loci in host and parasite genomes ²¹. This general 518 idea has been adapted into an inferential framework using Approximate Bayesian

Computation [G] (ABC) ¹⁴⁹ for population genetic simulations of different 519 520 coevolutionary scenarios. The results of these simulations can be summarized by both 521 traditional population genetic summaries (Table 2) as well as novel summaries of the 522 host and parasite allele frequency spectra concurrently, which are then statistically 523 compared with polymorphism data obtained from host and parasite genomes to 524 determine their similarity. This approach enables the identification of loci that underlie 525 the coevolutionary process in both host and parasite genomes simultaneously, as well 526 as identifying important eco-evolutionary parameters such as the cost of infectivity. 527 The method can be applied to genome wide polymorphism data gathered from 528 controlled laboratory experiments or from natural populations. It may be used either 529 in concert with the iLD approach or entirely independently, as the false positive rate 530 for detecting genomic regions undergoing coevolution is rather low.

531

532 Conclusions and future perspectives

533 In a world of rapidly increasing transportation and migration, accelerating climate 534 change, de- and reforestation, altered agricultural and food handling practises, and 535 increasing human and livestock densities, host-parasite contact rates are already very 536 high and are only expected to increase, resulting in more intense reciprocal selection. 537 These changes affect many naturally coevolving systems in which humans have a 538 vested interest, such as malaria-mosquito, virus (including dengue, zika, West-Nile)-539 mosquito, Borrelia-ticks, and Mycoplasma-house finch, as well as parasites believed to coevolve with humans ^{163,165-167}. Although we still have a limited understanding of 540 how coevolution works in natural populations, the knowledge derived from the state-541 542 of-the-art population genomic methodology described here can guide and inform 543 coevolutionary research and experimentation. We are now in a position to approach 544 new questions and gain a new perspective on old ones.

545 With few exceptions, we know little about the role of structural variation, such 546 as copy number variation and inversions, in the coevolutionary process. Copy number 547 variation, which is well known in the MHC, can be maintained by balancing selection 548 (reviewed in ¹²⁵). Supergenes have also been shown to play an important part in 549 balanced polymorphisms in various traits ¹⁶⁸, and have recently been suggested to have a decisive role in host-parasite coevolution ⁵³. Although it is still cumbersome to 550 551 identify structural polymorphisms in large samples, improved methods will certainly 552 make this an important aspect of coevolutionary research.

A broad survey of the literature on coevolution would suggest a taxon-specific division between plant systems, centred on gene-for-gene infection models, and animal systems, focused on matching-allele-models without invoking costs. It is currently not clear if this division reflects a bias in our research efforts or has a biological basis. Now, cogenomic methods will enable us to move beyond a few model systems and rapidly collect more data on the type of infection matrix that 559 predominates in natural populations. This information is particularly required for 560 animal systems and non-agricultural plant systems, for which there are only a few 561 examples of interaction matrices. Understanding the costs of resistance will need 562 fitness assays in the presence and absence of the parasite.

563 Another challenge is to understand how genes within the same genome 564 interact to modify the dynamic with genes in the antagonist. Epistasis has long been 565 thought to be important in host-parasite interactions ⁴⁸, and epistasis between host resistance loci has been proposed for a number of systems ^{22,52,53,133,169}. However, the 566 generality and importance of these observations for host-parasite coevolution is not 567 568 yet clear. Epistasis is central to the theory of coevolution and of the evolution and 569 maintenance of genetic recombination. Genetic recombination works to speed up 570 evolutionary responses under antagonistic coevolution only if the recombining loci show epistatic interactions ^{48,170,171} because epistasis may create negative linkage 571 572 disequilibrium among resistance alleles.

573 Knowing which genes are functionally linked and what epistatic relationships 574 exist would allow us to predict how reciprocal selection acts, whether specific or 575 diffuse coevolution occurs, and what traces we might expect at the genome level. 576 After decades of coevolution research, we still do not have examples of temporal 577 dynamics allele frequencies and their associated phenotypes in either hosts or 578 parasites, or an understanding of how the corresponding genomic sites in the 579 antagonists are functionally linked. However, recent progress in the field promises 580 change in the near future. Finally, our understanding of the genomic signatures of 581 coevolution is still largely correlational. Rigorous experimental work, including 582 experimental evolution studies, can help us scrutinize the evidence for coevolution, link it to genomic signatures, and test specific model predictions ^{56,172-174}. 583 584 585

586

587	Refere	nces
588 589 590	1	Majerus, M., Amos, W. & Hurst, G. <i>Evolution: The Four Billion Year War</i> (Addison, Wesley Longman, 1996).
592 593 594	2	Jack, R. & Du Pasquier, L. <i>Evolutionary Concepts in Immunology</i> . (Springer Nature Switzerland, 2019).
595 596 597 598	3	Fumagalli, M. <i>et al.</i> Signatures of Environmental Genetic Adaptation Pinpoint Pathogens as the Main Selective Pressure through Human Evolution. <i>PLoS Genet.</i> 7 , doi:10.1371/journal.pgen.1002355 (2011).
599 600 601 602	4	Karasov, T. L., Horton, M. W. & Bergelson, J. Genomic variability as a driver of plant- pathogen coevolution? <i>Current Opinion in Plant Biology</i> 18 , 24-30, doi:10.1016/j.pbi.2013.12.003 (2014).
603 604 605 606	5	Apanius, V., Penn, D., Slev, P. R., Ruff, L. R. & Potts, W. K. The Nature of Selection on the Major Histocompatibility Complex. <i>Crit Rev Immunol</i> 37 , 75-120, doi:10.1615/CritRevImmunol.v37.i2-6.10 (2017).
607 608 609 610	6	Lenz, T. L., Hafer, N., Samonte, I. E., Yeates, S. E. & Milinski, M. Cryptic haplotype- specific gamete selection yields offspring with optimal MHC immune genes. <i>Evolution</i> 72 , 2478-2490, doi:10.1111/evo.13591 (2018).
611 612 613 614	7	Penman, B. S. & Gupta, S. Detecting signatures of past pathogen selection on human HLA loci: are there needles in the haystack? <i>Parasitology</i> 145 , 731-739, doi:10.1017/S0031182017001159 (2018).
615 616 617	8	Koenig, D. <i>et al.</i> Long-term balancing selection drives evolution of immunity genes in <i>Capsella. eLife</i> 8 , doi:10.7554/eLife.43606 (2019).
618 619 620 621	9	Guoy, A. & Excoffier, L. Polygenic Patterns of Adaptive Introgression in Modern Humans Are Mainly Shaped by Response to Pathogens. <i>Mol. Biol. Evol.</i> 37 , 1420-1433, doi:10.1093/molbev/msz306 (2020).
622 623 624	10	Janzen, D. H. When Is It Coevolution. <i>Evolution</i> 34 , 611-612, doi:Doi 10.2307/2408229 (1980).
625 626 627 628	11	Woolhouse, M. E. J., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. <i>Nature Genetics</i> 32 , 569-577 (2002).
629 630 631	12	Kiester, A. R., Lande, R. & Schemske, D. W. Models of coevolution and speciation in plants and their pollinators. <i>Am. Nat.</i> 124 , 220-243 (1984).
632 633 634	13	Wade, M. J. The co-evolutionary genetics of ecological communities. <i>Nat. Rev. Genet.</i> 8 , 185-195 (2007).

635 636 637 638	14	de Vienne, D. M. <i>et al.</i> Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. <i>New Phytologist</i> 198 , 347-385, doi:10.1111/nph.12150 (2013).
639 640	15	Ebert, D. Host-parasite coevolution: Insights from the Daphnia-parasite model system. <i>Curr. Opin. Mircobiol.</i> 11 , 290-301 (2008).
642 643 644 645	16	Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. <i>PLoS Genet.</i> 2 , 379-384, doi:10.1371/journal.pgen.0020064 (2006). This is an authorative review on the population genetics of balancing selection.
646 647 648	17	Zivkovic, D., John, S., Verin, M., Stephan, W. & Tellier, A. Neutral genomic signatures of host-parasite coevolution. <i>BMC Evol Biol</i> 19 , doi:10.1186/s12862-019-1556-3 (2019).
649 650	18	Maynard Smith, J. & Szathmáry, E. <i>The Major Transitions in Evolution</i> . (Oxford University Press, 1995).
652 653	19	Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant— pathogen interactions. <i>Nat. Rev. Genet.</i> 11 , 539-548, doi:10.1038/nrg2812 (2010).
655 656 657 658	20	Sironi, M., Cagliani, R., Forni, D. & Clerici, M. Evolutionary insights into host-pathogen interactions from mammalian sequence data. <i>Nat. Rev. Genet.</i> 16 , 224-236, doi:10.1038/nrg3905 (2015).
659 660 661 662	21	Tellier, A., Moreno-Gamez, S. & Stephan, W. Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics. <i>Evolution</i> 68 , 2211-2224, doi:10.1111/evo.12427 (2014).
663 664 665 666	22	Thrall, P. H., Barrett, L. G., Dodds, P. N. & Burdon, J. J. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. <i>Frontiers in Plant Science</i> 6 , doi:10.3389/fpls.2015.01084 (2016).
667 668 669	23	Ebert, D. Open questions: what are the genes underlying antagonistic coevolution? <i>Bmc Biology</i> 16 , doi:10.1186/s12915-018-0583-7 (2018).
670 671 672 673	24	Fischer, M. C., Foll, M., Heckel, G. & Excoffier, L. Continental-Scale Footprint of Balancing and Positive Selection in a Small Rodent (<i>Microtus arvalis</i>). <i>Plos One</i> 9 , doi:10.1371/journal.pone.0112332 (2014).
674 675 676 677 678 670	25	Leffler, E. M. <i>et al.</i> Multiple Instances of Ancient Balancing Selection Shared Between Humans and Chimpanzees. <i>Science</i> 339 , 1578-1582, doi:10.1126/science.1234070 (2013). This study reports on many sites with TSPs and ancient balancing selection in genomes of humans and chimpanzee.
680 681 682 683	26	Key, F. M., Teixeira, J. C., de Filippo, C. & Andres, A. M. Advantageous diversity maintained by balancing selection in humans. <i>Curr Opin Genet Dev</i> 29 , 45-51, doi:10.1016/j.gde.2014.08.001 (2014).

684 685 686 687	27	Schweizer, R. M. <i>et al.</i> Natural Selection and Origin of a Melanistic Allele in North American Gray Wolves. <i>Mol. Biol. Evol.</i> 35 , 1190-1209, doi:10.1093/molbev/msy031 (2018).
688 689 690	28	Bitarello, B. D. <i>et al.</i> Signatures of Long-Term Balancing Selection in Human Genomes. <i>Genome Biology and Evolution</i> 10 , 939-955, doi:10.1093/gbe/evy054 (2018).
691 692 693 694	29	Cheng, X. H. & DeGiorgio, M. Detection of Shared Balancing Selection in the Absence of Trans-Species Polymorphism. <i>Mol. Biol. Evol.</i> 36 , 177-199, doi:10.1093/molbev/msy202 (2019).
695 696 697	30	Enard, D., Cai, L., Gwennap, C. & Petrov, D. A. Viruses are a dominant driver of protein adaptation in mammals. <i>Elife</i> 5 , doi:10.7554/eLife.12469 (2016).
698 699 700 701	31	Schirrmann, M. K. <i>et al.</i> Genomewide signatures of selection in Epichloe reveal candidate genes for host specialization. <i>Mol. Ecol.</i> 27 , 3070-3086, doi:10.1111/mec.14585 (2018).
702 703 704 705	32	Persoons, A. <i>et al.</i> The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust. <i>Mol. Ecol.</i> 26 , 1902-1918, doi:10.1111/mec.13980 (2017).
706 707 708 709	33	Mohd-Assaad, N., McDonald, B. A. & Croll, D. Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen. <i>Genome Biology and Evolution</i> 10 , 1315-1332, doi:10.1093/gbe/evy087 (2018).
710 711 712 713	34	Badouin, H. <i>et al.</i> Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. <i>Mol. Ecol.</i> 26 , 2041-2062, doi:10.1111/mec.13976 (2017).
714 715 716 717	35	Obbard, D. J., Gordon, K. H. J., Buck, A. H. & Jiggins, F. M. The evolution of RNAi as a defence against viruses and transposable elements. <i>Phil. Trans. R. Soc. B</i> 364 , 99-115, doi:10.1098/Rstb.2008.0168 (2009).
718 719 720	36	Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. <i>Nat. Rev. Genet.</i> 14 , 827-839, doi:10.1038/nrg3564 (2013).
721 722 723 724	37	Hermisson, J. & Pennings, P. S. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. <i>Methods Ecol Evol</i> 8 , 700-716, doi:10.1111/2041-210x.12808 (2017).
725 726	38	Hahn, M. W. Molecular Population Genetics. (Sinauer Associates, 2018).
727 728 729 730 731	39	McCarthy, K. R., Kirmaier, A., Autissier, P. & Johnson, W. E. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. <i>PLoS Pathog.</i> 11 , doi:10.1371/journal.ppat.1005085 (2015).
732 733	40	Elena, S. F., Cooper, V. S. & Lenski, R. E. Punctuated evolution caused by selection of rare beneficial mutations. <i>Science</i> 272 , 1802-1804 (1996).

734		
735	41	Anderson, T. J. C. et al. Population Parameters Underlying an Ongoing Soft Sweep in
736		Southeast Asian Malaria Parasites. Mol. Biol. Evol. 34, 131-144,
737		doi:10.1093/molbev/msw228 (2017).
738		
739	42	Garud, N. R., Messer, P. W., Buzbas, E. O. & Petrov, D. A. Recent Selective Sweeps in
/40		North American Drosophila melanogaster Show Signatures of Soft Sweeps. <i>PLoS</i>
/41 742		<i>Genet.</i> 11 , e1005004, doi:10.1371/journal.pgen.1005004 (2015).
742 742	10	Sanahaz Vallet A. et al. The Conome Dieleau of Effector Cone Evolution in
743	43	Salicitez-Vallel, A. <i>et al.</i> The Genome Biology of Effector Gene Evolution in
744		phyto_080516_035303 (2018)
746		phyto-080510-055505 (2018).
747	ДД	Moxon F. R. Rainey P. R. Nowak M. A. & Lenski, R. F. Adantive evolution of highly
748		mutable loci in nathogenic hacteria <i>Curr Biol</i> 4 24-33 (1994)
749		mutable loe in pathogenie bacteria. can. blor. 4, 24 55 (1554).
750	45	Raffaele. S. <i>et al.</i> Genome Evolution Following Host Jumps in the Irish Potato Famine
751		Pathogen Lineage. <i>Science</i> 330 , 1540-1543, doi:10.1126/science.1193070 (2010).
752		
753	46	Croll, D. & McDonald, B. A. The Accessory Genome as a Cradle for Adaptive Evolution
754		in Pathogens. <i>PLoS Pathog.</i> 8 , doi:10.1371/journal.ppat.1002608 (2012).
755		
756	47	Clarke, B. C. The ecological relationship of host-parasite relationships. in Genetic
757		aspects of host-parasite relationships (eds A.E.R. Taylor & R.M. Muller) 87-104
758		(Blackwell, Oxford, 1976).
759		
760	48	Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to
761		resist parasites. <i>Proc. Nat. Acad. Sci. USA</i> 87 , 3566-3573 (1990).
762	40	
/63	49	Fenton, A., Antonovics, J. & Brockhurst, Michael A. Inverse-Gene-for-Gene Infection
/04		Genetics and Coevolutionary Dynamics. Am. Nat. 1/4, E230-E242,
765		dol:10.1086/645087 (2009).
767	50	Schmid Hompol D. Evolutionary paracitology: the integrated study of infections
768	50	immunology ecology and genetics (Oxford University Press 2011)
769		This is a comprehensive text book summarizing the field of bost-parasite evolution and
770		coevolution
771		
772	51	Ben Khalifa M. Simon V. Fakhfakh H & Moury B. Tunisian Potato virus Y isolates
773	51	with unnecessary pathogenicity towards pepper: support for the matching allele
774		model in eIF4E resistance-potyvirus interactions. <i>Plant Pathol.</i> 61 . 441-447.
775		doi:10.1111/j.1365-3059.2011.02540.x (2012).
776		
777	52	Luijckx, P., Fienberg, H., Duneau, D. & Ebert, D. A Matching-Allele Model Explains Host
778		Resistance to Parasites. <i>Curr. Biol.</i> 23 , 1085-1088, doi:10.1016/J.Cub.2013.04.064
779		(2013).
780		This study provides an early example of a well worked out matching-allele host-
781		parasite interaction matrix.
782		

783 784 785 786	53	Bento, G. <i>et al.</i> The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model. <i>PLoS Genet.</i> 13 , doi:10.1371/journal.pgen.1006596 (2017).
787 788 789 790	54	King, K. C., Jokela, J. & Lively, C. M. Parasites, Sex, and Clonal Diversity in Natural Snail Populations. <i>Evolution</i> 65 , 1474-1481, doi:Doi 10.1111/J.1558-5646.2010.01215.X (2011).
791 792 793	55	Ashby, B. & Boots, M. Multi-mode fluctuating selection in host-parasite coevolution. <i>Ecol. Lett.</i> 20 , 357-365, doi:10.1111/ele.12734 (2017).
794 795 796 797 798 799	56	Papkou, A. <i>et al.</i> The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. <i>Proc. Natl. Acad. Sci. USA</i> 116 , 923-928, doi:10.1073/pnas.1810402116 (2019). This study of experimental evolution with nematodes and a bacterial pathogen demonstrate the complexity of coevolutionary interactions emerging in seemingly simple systems.
800 801 802 803 804	57	Koskella, B. & Lively, C. M. Evidence for Negative Frequency-Dependent Selection during Experimental Coevolution of a Freshwater Snail and a Sterilizing Trematode. <i>Evolution</i> 63 , 2213-2221, doi:10.1111/J.1558-5646.2009.00711.X (2009).
805 806 807	58	Lively, C. M. Habitat Heterogeneity, Host Population Structure, and Parasite Local Adaptation. <i>J. Hered.</i> 109 , 29-37, doi:10.1093/jhered/esx100 (2018).
808 809 810 811	59	Ejsmond, M. J., Babik, W. & Radwan, J. MHC allele frequency distributions under parasite-driven selection: A simulation model. <i>BMC Evol Biol</i> 10 , doi:10.1186/1471-2148-10-332 (2010).
812 813 814	60	Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. <i>Mol. Ecol.</i> 24 , 3529-3545, doi:10.1111/mec.13226 (2015).
815 816 817	61	Bubb, K. L. <i>et al.</i> Scan of human genome reveals no new loci under ancient balancing selection. <i>Genetics</i> 173 , 2165-2177, doi:10.1534/genetics.106.055715 (2006).
818 819 820 821	62	Cagliani, R. <i>et al.</i> The signature of long-standing balancing selection at the human defensin beta-1 promoter. <i>Genome Biol</i> 9 , R143, doi:10.1186/gb-2008-9-9-r143 (2008).
822 823 824 825	63	Fumagalli, M. <i>et al.</i> Widespread balancing selection and pathogen-driven selection at blood group antigen genes. <i>Genome Research</i> 19 , 199-212, doi:10.1101/Gr.082768.108 (2009).
826 827 828	64	Segurel, L. <i>et al.</i> The ABO blood group is a trans-species polymorphism in primates. <i>Proc. Natl. Acad. Sci. USA</i> 109 , 18493-18498, doi:10.1073/pnas.1210603109 (2012).
829 830 831	65	Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. C. Evolutionary dynamics of plant R-genes. <i>Science</i> 292 , 2281-2285, doi:10.1126/science.1061337 (2001).

832 833 834 835	66	Hoerger, A. C. <i>et al.</i> Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense. <i>PLoS Genet.</i> 8 , doi:10.1371/journal.pgen.1002813 (2012).
836 837 838 839	67	Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. <i>Mol. Ecol.</i> 26 , 2430-2448, doi:10.1111/mec.14051 (2017).
840 841 842	68	Croze, M. <i>et al</i> . A genome-wide scan for genes under balancing selection in Drosophila melanogaster. <i>BMC Evol Biol</i> 17 , doi:10.1186/s12862-016-0857-z (2017).
843 844 845 846 847	69	Buckley, J., Holub, E. B., Koch, M. A., Vergeer, P. & Mable, B. K. Restriction associated DNA-genotyping at multiple spatial scales in <i>Arabidopsis lyrata</i> reveals signatures of pathogen-mediated selection. <i>Bmc Genomics</i> 19 , doi:10.1186/s12864-018-4806-7 (2018).
848 849 850	70	Wu, Q. <i>et al</i> . Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. <i>Genome Biology</i> 18 , doi:10.1186/s13059-017-1342-8 (2017).
850 851 852 853 854	71	Unckless, R. L., Howick, V. M. & Lazzaro, B. P. Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila. <i>Curr. Biol.</i> 26 , 257-262, doi:10.1016/j.cub.2015.11.063 (2016).
855 856 857 858	72	Bartoli, C. & Roux, F. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach. <i>Frontiers in Plant Science</i> 8 , doi:10.3389/fpls.2017.00763 (2017).
859 860 861 862	73	Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: lessons from human GWAS. <i>Nat. Rev. Genet.</i> 18 , 41-50, doi:10.1038/nrg.2016.132 (2017).
863 864 865 866	74	Thomas, J. C., Godfrey, P. A., Feldgarden, M. & Robinson, A. Candidate Targets of Balancing Selection in the Genome of Staphylococcus aureus. <i>Mol. Biol. Evol.</i> 29 , 1175-1186, doi:10.1093/molbev/msr286 (2012).
867 868 869 870	75	Zhang, L. F., Thomas, J. C., Didelot, X. & Robinson, D. A. Molecular Signatures Identify a Candidate Target of Balancing Selection in an arcD-Like Gene of Staphylococcus epidermidis. <i>J. Mol. Evol.</i> 75 , 43-54, doi:10.1007/s00239-012-9520-5 (2012).
870 871 872 873 874	76	Guttman, D. S., Gropp, S. J., Morgan, R. L. & Wang, P. W. Diversifying selection drives the evolution of the type III secretion system pilus of Pseudomonas syringae. <i>Mol. Biol. Evol.</i> 23 , 2342-2354, doi:10.1093/molbev/msl103 (2006).
875 876 877 878	77	Castillo, J. A. & Agathos, S. N. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. <i>BMC Evol Biol</i> 19 , doi:10.1186/s12862-019-1456-6 (2019).
879 880 881	78	Ryabov, E. V. <i>et al.</i> Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. <i>PLoS Biol.</i> 17 , doi:10.1371/journal.pbio.3000502 (2019).

882		
883 884 885 886	79	Andras, J. P., Fields, P. D., Du Pasquier, L., Fredericksen, M. & Ebert, D. Genome-wide association analysis identifies a genetic basis of infectivity in a model bacterial pathogen <i>Mol. Biol. Evol.</i> (in press), doi:10.1093/molbev/msaa173 (2020).
887 888 889 890	80	Brackney, D. E., Beane, J. E. & Ebel, G. D. RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification. <i>PLoS Pathog.</i> 5 , doi:10.1371/journal.ppat.1000502 (2009).
890 891 892 893	81	Brackney, D. E., Schirtzinger, E. E., Harrison, T. D., Ebel, G. D. & Hanley, K. A. Modulation of Flavivirus Population Diversity by RNA Interference. <i>J. Virol.</i> 89 , 4035- 4039, doi:10.1128/Jvi.02612-14 (2015).
894 895 896 897	82	Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. <i>Curr. Biol.</i> 16 , 580-585, doi:Doi 10.1016/J.Cub.2006.01.065 (2006).
898 899 900 901	83	Araki, H. <i>et al.</i> Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. <i>Proc. Natl. Acad. Sci. USA</i> 103 , 5887-5892, doi:10.1073/pnas.0601431103 (2006).
902 903 904 905	84	Nygaard, S. <i>et al.</i> Long- and Short-Term Selective Forces on Malaria Parasite Genomes. <i>PLoS Genet.</i> 6 , doi:10.1371/journal.pgen.1001099 (2010).
906 907 908 909	85	Ochola, L. I. <i>et al.</i> Allele Frequency-Based and Polymorphism-Versus-Divergence Indices of Balancing Selection in a New Filtered Set of Polymorphic Genes in Plasmodium falciparum. <i>Mol. Biol. Evol.</i> 27 , 2344-2351, doi:10.1093/molbev/msq119 (2010).
910 911 912 013	86	Salathe, M., Kouyos, R. D., Regoes, R. R. & Bonhoeffer, S. Rapid parasite adaptation drives selection for high recombination rates. <i>Evolution</i> 62 , 295-300 (2008).
913 914 915 916 917 918	87	Gokhale, C. S., Papkou, A., Traulsen, A. & Schulenburg, H. Lotka-Volterra dynamics kills the Red Queen: population size fluctuations and associated stochasticity dramatically change host-parasite coevolution. <i>BMC Evol Biol</i> 13 , doi:10.1186/1471-2148-13-254 (2013).
919 920 921	88	Schenk, H., Schulenburg, H. & Traulsen, A. How long do Red Queen dynamics survive under genetic drift? A comparative analysis of evolutionary and eco-evolutionary models. <i>BMC Evol Biol</i> 20 , doi:10.1186/s12862-019-1562-5 (2020).
923 924 925	89	MacPherson, A., Keeling, M. J. & Otto, S. P. Coevolution does not slow the rate of loss of heterozygosity in a stochastic host-parasite model with constant population size. <i>bioRxiv</i> , doi:10.1101/2020.04.07.024661 (2020).
926 927 928 929 930	90	Thrall, P. H. & Burdon, J. J. Effect of resistance variation in a natural plant host- pathogen metapopulation on disease dynamics. <i>Plant Pathol.</i> 49 , 767-773, doi:DOI 10.1046/j.1365-3059.2000.00523.x (2000).

931 932 933 934	91	Brown, J. K. M. & Tellier, A. Plant-Parasite Coevolution: Bridging the Gap between Genetics and Ecology. <i>Annu Rev Phytopathol</i> 49 , 345-367, doi:10.1146/Annurev-Phyto-072910-09530l (2011).
935 936 937 938	92	Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. <i>Trends Genetics</i> 36 , 298-311, doi:10.1016/j.tig.2020.01.008 (2020).
939 940 941 942	93	Charlesworth, B., Nordborg, M. & Charlesworth, D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. <i>Genet. Res. Camb.</i> 70 , 155-174 (1997).
943 944 945	94	Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. <i>Ecol. Lett.</i> 15 , 723-731, doi:10.1111/j.1461-0248.2012.01791.x (2012).
940 947 948 949	95	Rico, Y. <i>et al.</i> Spatial patterns of immunogenetic and neutral variation underscore the conservation value of small, isolated American badger populations. <i>Evolutionary Applications</i> 9 , 1271-1284, doi:10.1111/eva.12410 (2016).
950 951 952	96	Jousimo, J. <i>et al.</i> Ecological and evolutionary effects of fragmentation on infectious disease dynamics. <i>Science</i> 344 , 1289-1293, doi:10.1126/science.1253621 (2014).
953 954 955 956	97	Crispo, E. <i>et al.</i> The evolution of the major histocompatibility complex in upstream versus downstream river populations of the longnose dace. <i>Ecol Evol</i> 7 , 3297-3311, doi:10.1002/ece3.2839 (2017).
957 958 959 960	98	Keller, M. F. <i>et al.</i> Trans-ethnic meta-analysis of white blood cell phenotypes. <i>Human Molecular Genetics</i> 23 , 6944-6960, doi:10.1093/hmg/ddu401 (2014).
960 961 962	99	Morgan, A. D., Gandon, S. & Buckling, A. The effect of migration on local adaptation in a coevolving host-parasite system. <i>Nature</i> 437 , 253-256 (2005).
963 964 965 966	100	Thrall, P. H. <i>et al.</i> Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. <i>Ecol. Lett.</i> 15 , 425-435, doi:10.1111/J.1461-0248.2012.01749.X (2012).
967 968 969 970	101	Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. <i>Ecol. Lett.</i> 7 , 1225-1241 (2004).
970 971 972 973	102	Croll, D. & McDonald, B. A. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. <i>Mol. Ecol.</i> 26 , 2027-2040, doi:10.1111/mec.13870 (2017).
973 974 975 976 977	103	Laine, A. L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. Spatial variation in disease resistance: from molecules to metapopulations. <i>J. Ecol.</i> 99 , 96-112, doi:10.1111/J.1365-2745.2010.01738.X (2011).
978 979 980	104	Bolnick, D. I. & Stutz, W. E. Frequency dependence limits divergent evolution by favouring rare immigrants over residents. <i>Nature</i> 546 , 285-288, doi:10.1038/nature22351 (2017).

981 982 983 984		This experimental study with fish shows that rare immigrants have an advantage over resident genotypes. The study demonstrates elegantly that resistance genes have higher effective migration rates.
985 986 987 988	105	Phillips, K. P. <i>et al.</i> Immunogenetic novelty confers a selective advantage in host- pathogen coevolution. <i>Proc. Natl. Acad. Sci. USA</i> 115 , 1552-1557, doi:10.1073/pnas.1708597115 (2018).
989 990 991 992 993	106	Rico, Y., Morris-Pocock, J., Zigouris, J., Nocera, J. J. & Kyle, C. J. Lack of Spatial Immunogenetic Structure among Wolverine (<i>Gulo gulo</i>) Populations Suggestive of Broad Scale Balancing Selection. <i>Plos One</i> 10 , doi:10.1371/journal.pone.0140170 (2015).
994 995 996 997	107	Leducq, J. B. <i>et al.</i> Effect of balancing selection on spatial genetic structure within populations: theoretical investigations on the self-incompatibility locus and empirical studies in Arabidopsis halleri. <i>Heredity</i> 106 , 319-329, doi:10.1038/hdy.2010.68 (2011).
998 999 1000	108	Castric, V., Bechsgaard, J., Schierup, M. H. & Vekemans, X. Repeated Adaptive Introgression at a Gene under Multiallelic Balancing Selection. <i>PLoS Genet.</i> 4 , doi:10.1371/journal.pgen.1000168 (2008).
1001 1002 1003 1004	109	Hoban, S. <i>et al.</i> Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. <i>Am. Nat.</i> 188 , 379-397, doi:10.1086/688018 (2016).
1005 1006 1007	110	Borg, A. A., Pedersen, S. A., Jensen, H. & Westerdahl, H. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories. <i>Ecol Evol</i> 1 , 145-159, doi:10.1002/ece3.13 (2011).
1008 1009 1010 1011	111	Novembre, J. <i>et al.</i> Genes mirror geography within Europe. <i>Nature</i> 456 , 98-U95, doi:10.1038/nature07331 (2008).
1011 1012 1013 1014	112	Fields, P. D., Reisser, C., Dukic, M., Haag, C. R. & Ebert, D. Genes mirror geography in <i>Daphnia magna. Mol. Ecol.</i> 24 , 4521-4536, doi:10.1111/mec.13324 (2015).
1015 1016 1017	113	Thompson, J. N. <i>The Geographic Mosaic of Coevolution</i> . (University of Chicago Press, 2005).
1018 1019 1020 1021	114	Laine, A. L., Barres, B., Numminen, E. & Siren, J. P. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. <i>eLife</i> 8 , doi:10.7554/eLife.47091 (2019).
1021 1022 1023	115	Klein, J. <i>Immunology</i> . (Blackwell, 1990).
1024 1025 1026 1027 1028 1029 1030	116	Lenz, T. L., Eizaguirre, C., Kalbe, M. & Milinski, M. Evaluating Patterns of Convergent Evolution and Trans-Species Polymorphism at Mhc Immunogenes in Two Sympatric Stickleback Species. <i>Evolution</i> 67 , 2400-2412, doi:10.1111/evo.12124 (2013). This study demonstrates TSP in two sympatric stickleback fish sharing the same parasites. The authors were able to rule out convergent evolution as an alternative explanation for TSP.

1031 1032 1033	117	Tesicky, M. & Vinkler, M. Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? <i>J Immunol Res</i> , doi:10.1155/2015/838035 (2015).
1034 1035 1036 1037	118	Mboup, M., Fischer, I., Lainer, H. & Stephan, W. Trans-Species Polymorphism and Allele-Specific Expression in the CBF Gene Family of Wild Tomatoes. <i>Mol. Biol. Evol.</i> 29 , 3641-3652, doi:10.1093/molbev/mss176 (2012).
1038 1039 1040 1041	119	Novikova, P. Y. <i>et al.</i> Sequencing of the genus <i>Arabidopsis</i> identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. <i>Nature Genetics</i> 48 , 1077–1082, doi:10.1038/ng.3617 (2016).
1042 1043 1044 1045 1046	120	Azevedo, L., Serrano, C., Amorim, A. & Cooper, D. N. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. <i>Hum Genomics</i> 9 , doi:10.1186/s40246-015- 0043-1 (2015).
1047 1048 1049 1050	121	Lenz, T. L. Computational Prediction of Mhc Ii-Antigen Binding Supports Divergent Allele Advantage and Explains Trans-Species Polymorphism. <i>Evolution</i> 65 , 2380-2390, doi:10.1111/j.1558-5646.2011.01288.x (2011).
1051 1052 1053 1054	122	Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. <i>Nature Communications</i> 3 , doi:10.1038/ncomms1632 (2012).
1055 1056 1057 1058	123	Gao, Z. Y., Przeworski, M. & Sella, G. Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species. <i>Evolution</i> 69 , 431-446, doi:10.1111/evo.12567 (2015).
1059 1060 1061	124	Hedrick, P. W. Pathogen resistance and genetic variation at MHC loci. <i>Evolution</i> 56 , 1902-1908 (2002).
1062 1063 1064 1065	125	Eizaguirre, C. & Lenz, T. L. Major histocompatibility complex polymorphism: dynamics and consequences of parasite-mediated local adaptation in fishes. <i>J. Fish Biol.</i> 77 , 2023-2047, doi:10.1111/j.1095-8649.2010.02819.x (2010).
1060 1067 1068 1069 1070	126	Osborne, M. J., Pilger, T. J., Lusk, J. D. & Turner, T. F. Spatio-temporal variation in parasite communities maintains diversity at the major histocompatibility complex class II in the endangered Rio Grande silvery minnow. <i>Mol. Ecol.</i> 26 , 471-489, doi:10.1111/mec.13936 (2017).
1071 1072 1073 1074	127	Daugherty, M. D. & Malik, H. S. Rules of Engagement: Molecular Insights from Host- Virus Arms Races. <i>Annu Rev Genet</i> 46 , 677-700, doi:10.1146/annurev-genet-110711- 155522 (2012).
1075 1076 1077 1078 1079	128	Cagliani, R. <i>et al</i> . A Positively Selected Apobec3h Haplotype Is Associated with Natural Resistance to Hiv-1 Infection. <i>Evolution</i> 65 , 3311-3322, doi:10.1111/j.1558-5646.2011.01368.x (2011).

1080 1081	129	Davis, Z. H. <i>et al.</i> Global Mapping of Herpesvirus-Host Protein Complexes Reveals a Transcription Strategy for Late Genes. <i>Molecular Cell</i> 57 , 349-360,
1082 1083		doi:10.1016/j.molcel.2014.11.026 (2015).
1084 1085 1086	130	Lozano-Torres, J. L. <i>et al.</i> Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. <i>Proc. Natl. Acad. Sci. USA</i> 109 , 10119-10124, doi:10.1073/pnas.1202867109 (2012).
1087 1088 1089 1090	131	Wessling, R. <i>et al.</i> Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. <i>Cell Host & Microbe</i> 16 , 364-375, doi:10.1016/j.chom.2014.08.004 (2014).
1091 1092 1093 1094	132	Wegner, K. M., Kalbe, M., Kurtz, J., Reusch, T. B. H. & Milinski, M. Parasite selection for immunogenetic optimality. <i>Science</i> 301 , 1343-1343 (2003).
1095 1096 1097	133	Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. <i>Genome Biology</i> 18 , doi:10.1186/s13059-017-1207-1 (2017).
1098 1099 1100 1101	134	Karasov, T. L., Barrett, L., Hershberg, R. & Bergelson, J. Similar levels of gene content variation observed for Pseudomonas syringae populations extracted from single and multiple host species. <i>Plos One</i> 12 , doi:10.1371/journal.pone.0184195 (2017).
1102 1103 1104 1105	135	Bechsgaard, J., Jorgensen, T. H. & Schierup, M. H. Evidence for Adaptive Introgression of Disease Resistance Genes Among Closely Related Arabidopsis Species. <i>G3-Genes Genomes Genetics</i> 7 , 2677-2683, doi:10.1534/g3.117.043984 (2017).
1106 1107 1108	136	Gluck-Thaler, E. & Slot, J. C. Dimensions of Horizontal Gene Transfer in Eukaryotic Microbial Pathogens. <i>PLoS Pathog.</i> 11 , doi:ARTN e1005156
1109	10.137	1/Journal.ppat.1005156 (2015).
1111 1112 1113 1114 1115	137	Campbell, M. C., Ashong, B., Teng, S. L., Harvey, J. & Cross, C. N. Multiple selective sweeps of ancient polymorphisms in and around LT alpha located in the MHC class III region on chromosome 6. <i>BMC Evol Biol</i> 19 , 218, doi:10.1186/s12862-019-1557-2 (2019).
1116 1117 1118	138	Karasov, T. L. <i>et al.</i> The long-term maintenance of a resistance polymorphism through diffuse interactions. <i>Nature</i> 512 , 436-U472, doi:10.1038/nature13439 (2014).
1110 1119 1120 1121	139	Rabajante, J. F. <i>et al.</i> Red Queen dynamics in multi-host and multi-parasite interaction system. <i>Scientific Reports</i> 5 , doi:10.1038/srep10004 (2015).
1121 1122 1123 1124 1125	140	Kamath, P. L., Turner, W. C., Kusters, M. & Getz, W. M. Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga). <i>Proc. R. Soc. B</i> 281 , doi:10.1098/rspb.2014.0077 (2014).
1126 1127 1128 1129	141	Nadeem, A. & Wahl, L. M. Prophage as a genetic reservoir: Promoting diversity and driving innovation in the host community. <i>Evolution</i> 71 , 2080-2089, doi:10.1111/evo.13287 (2017).

1130 1131	142	Fortuna, M. A. <i>et al</i> . Coevolutionary dynamics shape the structure of bacteria-phage infection networks. <i>Evolution</i> 73 , 1001-1011, doi:10.1111/evo.13731 (2019).
1132		
1133 1134	143	Silva, J. C. <i>et al.</i> Genome sequences reveal divergence times of malaria parasite lineages. <i>Parasitology</i> 138 , 1737-1749, doi:10.1017/S0031182010001575 (2011).
1135 1136 1137 1138	144	Galen, S. C. <i>et al.</i> The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. <i>Roy Soc Open Sci</i> 5 , doi:10.1098/rsos.171780 (2018).
1139 1140 1141 1142 1142	145	Otto, T. D. <i>et al.</i> Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. <i>Nat Microbiol</i> 3 , 687-697, doi:10.1038/s41564-018-0162-2 (2018).
1143 1144 1145 1146 1147	146	Pacheco, M. A. <i>et al.</i> Mode and Rate of Evolution of Haemosporidian Mitochondrial Genomes: Timing the Radiation of Avian Parasites. <i>Mol. Biol. Evol.</i> 35 , 383-403, doi:10.1093/molbev/msx285 (2018).
1147 1148 1149 1150 1151	147	Bartha, I. <i>et al.</i> A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. <i>eLife</i> 2 , doi:10.7554/eLife.01123 (2013). This study describes a prioneering method in cogenomics, applied to interacting
1152		genomic sites in hosts and parasites.
1155 1154 1155	148	Lees, J. A., Tonkin-Hill, G. & Bentley, S. D. GENOME WATCH Stronger together. <i>Nat. Rev. Microbiol.</i> 15 , 516-516, doi:10.1038/nrmicro.2017.95 (2017).
1150 1157 1158 1159	149	Märkle, H. & Tellier, A. Inference of coevolutionary dynamics and parameters from host and parasite polymorphism data of repeated experiments. <i>PLoS Computational Biology</i> 16 , e1007668, doi:10.1371/journal.pcbi.1007668 (2020).
1160 1161 1162	150	Otto, S. P. & Nuismer, S. L. Species interactions and the evolution of sex. <i>Science</i> 304 , 1018-1020 (2004).
1163 1164 1165	151	Tellier, A. & Brown, J. K. M. Polymorphism in multilocus host-parasite coevolutionary interactions. <i>Genetics</i> 177 , 1777-1790, doi:10.1534/Genetics.107.074393 (2007).
1166 1167 1168	152	Engelstadter, J. & Bonhoeffer, S. Red Queen Dynamics with Non-Standard Fitness Interactions. <i>PLoS Computational Biology</i> 5 , doi:10.1371/Journal.Pcbi.1000469 (2009).
1170 1171 1172	153	Best, A. <i>et al</i> . The Evolution of Host-Parasite Range. <i>Am. Nat.</i> 176 , 63-71, doi:10.1086/653002 (2010).
1172 1173 1174 1175 1176	154	Fenton, A., Antonovics, J. & Brockhurst, M. A. Two-Step Infection Processes Can Lead to Coevolution between Functionally Independent Infection and Resistance Pathways. <i>Evolution</i> 66 , 2030-2041, doi:10.1111/J.1558-5646.2012.01578.X (2012).
1177 1178 1179	155	Kwiatkowski, M., Engelstadter, J. & Vorburger, C. On Genetic Specificity in Symbiont- Mediated Host-Parasite Coevolution. <i>Plos Computational Biology</i> 8 , doi:10.1371/journal.pcbi.1002633 (2012).

1180		
1181 1182 1183	156	Flor, H. H. Host-Parasite Interaction in Flax Rust - Its Genetics and Other Implications. <i>Phytopathol.</i> 45 , 680-685 (1955).
1184 1185 1186 1187	157	Märkle, H., Tellier, A. & John, S. Cross-Species association statistics for genome-wide studies of host and parasite polymorphism data. <i>bioRxiv</i> , 726166, doi:10.1101/726166 (2019).
1188 1189 1190	158	Balmer, O. & Tanner, M. Prevalence and implications of multiple-strain infections. Lancet Infect Dis 11 , 868-878, doi:10.1016/S1473-3099(11)70241-9 (2011).
1191 1192 1193 1194 1195	159	Ansari, M. A. <i>et al.</i> Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. <i>Nature Genetics</i> 49 , 666–673, doi:10.1038/ng.3835 (2017). This study describes a strong example of the application of cogenomics to find interacting loci in humans infected with hepatitis C-virus.
1196		
1197 1198 1199 1200	160	Lees, J. A. <i>et al.</i> Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. <i>Nature Communications</i> 10 , doi:10.1038/s41467-019-09976-3 (2019).
1200 1201 1202 1203 1204	161	Naret, O. <i>et al.</i> Correcting for Population Stratification Reduces False Positive and False Negative Results in Joint Analyses of Host and Pathogen Genomes. <i>Frontiers in Genetics</i> 9 , doi:10.3389/fgene.2018.00266 (2018).
1204 1205 1206 1207	162	Ansari, M. A. <i>et al.</i> Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. <i>eLife</i> 8 , doi:10.7554/eLife.42463 (2019).
1207 1208 1209 1210 1211	163	McHenry, M. L. <i>et al.</i> Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: evidence for coevolution? <i>PLoS Genet</i> 16 , e1008728, doi:10.1371/journal.pgen.1008728 (2020).
1211 1212 1213 1214 1215 1216 1217	164	Wang, M. Y. <i>et al.</i> Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. <i>Proc. Natl. Acad. Sci. USA</i> 115 , E5440-E5449, doi:10.1073/pnas.1710980115 (2018). This study describes the development of a powerful cogenomics method that utilizes data from an interaction matrix of all combinations of host and parasite genotypes to find the genomic sites that underlay the interaction.
1218 1219 1220 1221	165	Hill, A. V. S., Jepson, A., Plebanski, M. & Gilbert, S. C. Genetic analysis of host-parasite coevolution in human malaria. <i>Phil. Trans. R. Soc. B</i> 352 , 1317-1325 (1997).
1222 1223 1224	166	Heeney, J. L., Dalgleish, A. G. & Weiss, R. A. Origins of HIV and the evolution of resistance to AIDS. <i>Science</i> 313 , 462-466, doi:10.1126/science.1123016 (2006).
1225 1226 1227 1228	167	Hertz, T. <i>et al.</i> Mapping the Landscape of Host-Pathogen Coevolution: HLA Class I Binding and Its Relationship with Evolutionary Conservation in Human and Viral Proteins. <i>J. Virol.</i> 85 , 1310-1321, doi:10.1128/Jvi.01966-10 (2011).

1229 1230	168	Schwander, T., Libbrecht, R. & Keller, L. Supergenes and Complex Phenotypes. <i>Curr. Biol.</i> 24 , R288-R294, doi:10.1016/j.cub.2014.01.056 (2014).
1231		
1232	169	Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci
1233		modulate the risk of autoimmune diseases. <i>Nature Genetics</i> 47 , 1085–1090,
1234		doi:10.1038/ng.3379 (2015).
1235		
1236	170	Salathe, M., Kouyos, R. D. & Bonhoeffer, S. The state of affairs in the kingdom of the
1237		Red Queen. <i>Trends Ecol. Evol.</i> 23 , 439-445 (2008).
1238		
1239	171	da Silva, J. & Galbraith, J. D. Hill-Robertson interference maintained by Red Queen
1240		dynamics favours the evolution of sex. J. evol. Biol. 30 , 994-1010,
1241		doi:10.1111/jeb.13068 (2017).
1242		
1243	172	Kubinak, J. L. et al. Experimental viral evolution reveals major histocompatibility
1244		complex polymorphisms as the primary host factors controlling pathogen adaptation
1245		and virulence. <i>Genes Immun</i> 14 , 365-372, doi:10.1038/gene.2013.27 (2013).
1246		
1247	173	Brockhurst, M. A. & Koskella, B. Experimental coevolution of species interactions.
1248		<i>Trends Ecol. Evol.</i> 28 , 367-375, doi:10.1016/j.tree.2013.02.009 (2013).
1249		
1250	174	Retel, C. et al. The feedback between selection and demography shapes genomic
1251		diversity during coevolution. Sci Adv 5, doi:10.1126/sciadv.aax0530 (2019).
1252		
1253	175	Figueroa, F., Gúnther, E. & Klein, J. MHC polymorphism pre-dating speciation. Nature
1254		335 , 265-267, doi:10.1038/335265a0 (1988).
1255		
1256	176	Mcdonald, J. H. & Kreitman, M. Adaptive Protein Evolution at the Adh Locus in
1257		Drosophila. <i>Nature</i> 351 , 652-654, doi:10.1038/351652a0 (1991).
1258		
1259	177	Eyre-Walker, A. & Keightley, P. D. Estimating the Rate of Adaptive Molecular Evolution
1260		in the Presence of Slightly Deleterious Mutations and Population Size Change. <i>Mol.</i>
1261		<i>Biol. Evol.</i> 26 , 2097-2108, doi:10.1093/molbev/msp119 (2009).
1262		
1263	178	Cheng, X. & DeGiorgio, M. Detection of Shared Balancing Selection in the Absence of
1264		Trans-Species Polymorphism. <i>Mol. Biol. Evol.</i> 36 , 177-199,
1265		doi:10.1093/molbev/msy202 (2018).
1266		
1267	179	Nielsen, R. Molecular Signatures of Natural Selection. Ann. Rev. Genet. 39 , 197-218,
1268		doi:10.1146/annurev.genet.39.073003.112420 (2005).
1269		
1270	180	Siewert, K. M. & Voight, B. F. Detecting Long-Term Balancing Selection Using Allele
1271		Frequency Correlation. <i>Mol. Biol. Evol.</i> 34 , 2996-3005, doi:10.1093/molbev/msx209
1272		(2017).
1273		
1274	181	Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A Map of Recent Positive
1275		Selection in the Human Genome. <i>PLoS Biol.</i> 4 , e72, doi:10.1371/journal.pbio.0040072
1276		(2006).
1277		

1278 1279 1280	182	Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft selective sweeps. <i>Trends Ecol. Evol.</i> 28 , 659-669, doi:10.1016/j.tree.2013.08.003 (2013).
1281 1282 1283 1284 1285	183	DeGiorgio, M., Lohmueller, K. E. & Nielsen, R. A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data. <i>PLoS Genet.</i> 10 , e1004561, doi:10.1371/journal.pgen.1004561 (2014).
1286 1287 1288	184	Kim, Y. & Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i> 160 , 765-777 (2002).
1289 1290 1291 1292	185	Cheng, X. & DeGiorgio, M. Flexible mixture model approaches that accommodate footprint size variability for robust detection of balancing selection. <i>bioRxiv</i> , 645887, doi:10.1101/645887 (2019).
1293 1294 1295 1296	186	Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Approximate Bayesian Computation (ABC) in practice. <i>Trends Ecol. Evol.</i> 25 , 410-418, doi:10.1016/j.tree.2010.04.001 (2010).
1290 1297 1298 1299 1300 1301 1302	187	Schrider, D. R. & Kern, A. D. Supervised Machine Learning for Population Genetics: A New Paradigm. <i>Trends Genetics</i> 34 , 301-312, doi:10.1016/j.tig.2017.12.005 (2018). This paper offers an accessible description of both present applications and possible future developments of supervised machine learning for understanding signatures of selection in genomic scale data.
1303 1304 1305	188	Raynal, L. <i>et al.</i> ABC random forests for Bayesian parameter inference. <i>Bioinformatics</i> 35 , 1720-1728, doi:10.1093/bioinformatics/bty867 (2018).
1306 1307 1308 1309	189	Rasmussen, M. D., Hubisz, M. J., Gronau, I. & Siepel, A. Genome-Wide Inference of Ancestral Recombination Graphs. <i>PLoS Genet.</i> 10 , e1004342, doi:10.1371/journal.pgen.1004342 (2014).
1310 1311 1312 1313	190	Kelleher, J., Etheridge, A. M. & McVean, G. Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes. <i>PLOS Computational Biology</i> 12 , e1004842, doi:10.1371/journal.pcbi.1004842 (2016).
1314 1315 1316 1317 1318 1319 1320 1321	191	 Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W. & Ralph, P. L. Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. <i>Mol Ecol Resour</i> 19, 552-566, doi:10.1111/1755-0998.12968 (2019). This paper describes the implementation of tree-sequence recording into the already multifaceted and powerful SLiM simulation framework, and provides one of the most important schemes needed to model neutral and non-neutral dynamics on genome-scale data.
1322 1323 1324 1325 1326 1327	192	Hejase, H. A., Dukler, N. & Siepel, A. From Summary Statistics to Gene Trees: Methods for Inferring Positive Selection. <i>Trends Genetics</i> , doi:10.1016/j.tig.2019.12.008 (2020). This is an exceptionally comprehensive review of both historical and present approaches for detecting forms of positive selection. While the focus is on positive selection, many of the focal methodologies would, with some modification, be applicable for detecting the many signatures of host-parasite coevolution.

1328 Acknowledgements

1329 We thank the Ebert lab for fruitful discussion and Suzanne Zweizig for comments on the language of 1330 the manuscript. This work is supported by a grant from the Swiss National Science Foundation.

1331 Author contributions

1332 The authors contributed equally to all aspects of the article.

1333 Competing interests

- 1334 The authors declare no competing interests.
- 1335
- 1336
- 1337

1338 Table 1. Comparison of features of specific coevolution by selective sweep and

- 1339 balancing selection.
- 1340

Feature	Selective sweep coevolution	Balancing selection coevolution
Form of selection	Positive selection drives sweeps;	Negative frequency-dependent selection
	selection is directional.	gives common alleles a disadvantage;
		selection results in a balance of the
		frequencies of genetic variants.
Functional	Visible only during selective	Maintained constantly and potentially for
polymorphisms	sweeps.	very long time periods.
Underlying genetic	Beneficial mutation in host and	Frequencies of alternative alleles at a few
system	parasite at any locus in the nuclear	selected loci are balanced.
	or cytoplasmic genome may	
	sweep.	
Role of mutations	Mutations define the onset of new	Mutations are not necessary but do
	selective sweeps (hard sweeps).	create rare variants, which may be
		selected and contribute to balancing
		selection or even replace a previous
- I		variant.
lemporal continuity	Process can be highly stochastic	Process must operate continuously
	and does not need to be	because genetic variants may otherwise
	continuous; long periods without	be lost. In a spatial setting, previously lost
	sweeps are possible.	alleles may be reintroduced from other
Time coole of	Relatively clow because new	populations.
nine scale of	mutations take a long time to	Ast because genetic variants are always
phenotypic change	reach a high anough frequency to	soloction results in fast changes
	he recognized Sweens starting	selection results in fast changes.
	from standing genetic variation	
	nrogress more quickly	
Population divergence	Sweeps drive population and	Population divergence is prevented in the
r opulation aiverBenee	species divergence.	long term, though it may occur in the
		short term.
Evolutionary outcome	Creates macroevolutionary	Explains high levels of genetic diversity
,	patterns (lineage divergence).	within populations and species.
Introgression among	May introduce beneficial new	May introduce new functional variants
species	alleles that can sweep.	that can contribute to balancing
		selection, but may create a fake picture
		of trans-species polymorphism.

1342

Table 2. Genomic summaries used to determine the evolutionary process underlying agenomic signature.

1345 Signature type refers to the two models of specific coevolution that may be supported

- 1346 with this summary. Time-scale refers to the approximate period during which the
- 1347 summary is able to detect a signal for the genomic signature relative to the genomic
- 1348 background (compare Fig. 2). CLR, Composite Likelihood Ratio Test; HKA, Hudson,
- 1349 Kreitman and Aguadé test; iHS, integrated haplotype score; LD, linkage disequilibrium;
- 1350 MK, McDonald-Kreitman; NCD, Non-central deviation; SFS, site frequency spectrum;
- 1351 TSP, trans-species polymorphism.
- 1352
- 1353

Name of	Type of	Description	Signature	Time-scale	Local	Other
summary	summary		type (relative		genomic	comments
			to genomic		scale of	
	Summont	Compares	Discordant	Deen	Distinct	
Allele vs.	statistic	nhylogenetic	trees indicate	Deep	Distilict	_
discordance	statistic	relationships of	balancing		genes and/or	
175		genes to those of	selection		windows	
		species	and/or TSP		across the	
		species.			genome	
Elevated	Summary	Measures the	High values	Deep-to-	Gene	Explicit tests
ratio of	statistic	ratio of adaptive	indicate	intermediate	classes can	arise from the
adaptive to	and	to synonymous	positive		be	MK test or its
non-adaptive	likelihood	divergence	selection		compared	derivatives
divergence 176,177	method					
HKA _{trans} ¹⁷⁸	Summary	Adaptation of the	Positive	Deep-to-	Windows	_
	statistic	standard HKA	values of chi-	intermediate	across	
		test to better	squared test		genome	
		accommodate	statistic are			
		genomic data	suggestive of			
		from multiple	balancing			
NCD 28178	0	species	selection		XX 7' 1	0 1 178
NCDtrans ^{20,170}	Summary	Extension of the	Increasing	Deep-to-	windows	See also ^{1/0} .
	statistic	NCD summary	values are	intermediate	across	NCD1 summary
		accommodate	balancing		genome	which includes
		multi-species	selection			an outgroup and
		data	selection			fixed differences
		Guild				as part of the test
Taiima's D	Summarv	Excess of low	Decreased	Intermediate-	Windows	Summary can be
and HKA ¹⁷⁹	statistic	frequency class	values	to-recent	across	confounded with
		polymorphisms	indicate		genome	demography due
			positive		-	to population
			selection/			expansion
			Selective			causing similar
			sweep			measures of the
						summary statistic
		Increased values	Increased	Deep-to-	Windows	Summary can be
		indicate	values	intermediate	across	contounded with
		balancing	indicate		genome	demography due
		selection	balancing			to population
			selection			bottlenecks

						causing similar measures of the summary statistic
Perturbations from equilibrium SFS ¹⁷⁹	Summary statistic and likelihood method	Intermediate- skewed allele frequency classes	Excess derived allele frequency classes as compared to neutral expectation is indicative of balancing selection	Deep-to- intermediate	Windows across genome	Summary can be confounded with demography due to population bottlenecks causing similar measures of the summary statistic
		Excess minor and/or derived allele frequency classes	Excess minor or derived allele frequency classes as compared to neutral expectation is indicative of positive selection and seletive sweeps	Intermediate- to-recent	Windows across genome	Summary can be confounded with demography due to population expansion causing similar measures of the summary statistic
β ¹⁸⁰	Summary statistic	Measure of allele frequency correlation and overall mutation rate.	Values greater than 0 are indicative of balancing selection	Intermediate	Windows across genome	
iHS ¹⁸¹	Summary statistic	Lengths of haplotype homozygosity or the decelerated decay of LD	Increased lengths of homozygosity and the slower decay of LD compared to neutral expectations is indicative of a selective sweep	Recent	Windows across genome	
LD ¹⁷⁹	Summary statistic	Distinct increase in LD amongst a subset of adjacent loci	Elevated values above genome wide background indicate a selective sweep	Recent	Windows across genome	
H ₁ , H ₁₂ ,H ₂ 42,182	Summary statistic	Frequencies of ranked haplotypes, that is haplotype spectra	Increased frequencies of distinct, ranked haplotypes (and their relative frequencies)	Deep-to- intermediate	Windows (SNPs) across genome	

			is indicative			
			of a sween			
			(hard variaus			
			(nard versus			
TE 178	T '1 1'1 1	A 1 4 4 C 41	soft).		XX 7' 1	
T _{trans} ¹⁷⁸	Likelihood	Adaptation of the	Fit of the	Deep-to-	Windows	
	method	T statistic of ¹⁸⁵	observed data	intermediate	across	
		to specifically	to a model of		genome	
		detect TSP	long-term			
			balancing			
			selection or			
			TSP is greater			
			than that of a			
			model of			
			neutral			
			evolution			
			(CIR_{TSD})			
			(CLR(1SF))			
Estatistic 183	Libalihaad	A compacto of	Eit of the	Intermediate	Windowa	
statistic	Likelihood	Aggregate of	absorved data	to recent	willdows	
	method	summary	observed data	to-recent	across	
		statistics of			genome	
		genomic	balancing			
		diversity	selection is			
		parameterize a	greater than			
		maximum	that of a			
		likelihood-based	model of			
		comparison of	neutral			
		the fit of a	evolution			
		neutral vs.	(CLR _{Balancing}			
		balanced	$_{\rm selection}$ >			
		polymorphism	CLR _{Neutral})			
		model				
CLR 184	Likelihood	Aggregate of	Fit of the	Recent	Windows	Refers
	method	summary	observed data		across	specifically to
		statistics of	to a model of		genome	the model
		genomic	balancing		8	described in ref
		diversity	selection is			¹⁸⁴ and its
		narameterize a	oreater than			derivatives.
		maximum	that of a			while CI R is
		likelihood-based	model of			used sometime
		acmnerison of	noutrol			to refer to this
		the fit of a				specific
		neutral	(CLR _{Sweep} >			summary,
		vs.selective	CLR _{Neutral})			composite
		sweep model				likelihood ratio
						tests are a
						general statistic
						procedure for
						model
						•

1357 Figure legends

1358 1359

1360 Figure 1 | Schematic representation of selective sweep coevolution in the gene pools 1361 of a host and parasite population. For each antagonist, timelines of alleles at different 1362 loci are shown in different colours. Over the shown time period, each of the alleles is 1363 replaced at least once by a mutant, indicating selective sweeps. Genetic variation at 1364 loci, that is the presence of multiple alleles in the gene pool at a given moment in time, 1365 is only visible during the sweep. Host and parasite sweeps are not linked. Loci can be 1366 present anywhere in the genome. Other loci may undergo sweeps at the same time for reasons unrelated to the coevolutionary interactions. 1367

- 1368
- 1369

1370 Figure 2 | The temporal dynamics of genomic signatures.

1371 Approximate time scales during which genomic signatures for balancing selection 1372 (blue), positive selection and/or selective sweep (red), and interspecies linkage 1373 disequilibrium (purple) are detectable with common (though not exhaustive) 1374 population genetic tests (Table 2). While signatures of balancing selection (especially 1375 those that are associated with trans-species polymorphism (TSP) or approximations 1376 thereof; see ¹⁸⁵) and positive selection may extend quite deep into evolutionary time, 1377 patterns of very rapid evolutionary change associated with positive selection or 1378 selective sweeps will show a much more limited time depth. Concomitantly, the 1379 number of generations a given selective regime has to be in place before inference of 1380 its signature is possible may be different between balancing selection and positive 1381 selection and, on the shortest times scales and with a sample from a single population, 1382 the signatures of balancing selection and positive selection may be indistinguishable. 1383 As a selective sweep grows older, its signature will disappear and become more similar 1384 to the signature of positive selection, which is visible only as elevated ratios of 1385 adaptive to synonymous divergence. Patterns of interspecies linkage disequilibrium 1386 provide no historical record of the coevolutionary process and so additional methods 1387 (such as those described in this figure) are required to determine what (if any) 1388 selective regime has been at play at the statistically associated loci. It should be noted, 1389 the suggested time frame of inference for individual tests may differ substantially for 1390 individual datasets as a result of experimental factors, such as sample size, and as the 1391 result of species-specific factors, such as demography. Allele frequency classes may be 1392 a component of summary statistic (such as Tajima's D) or may be the specific metric of 1393 interest (for example, site-frequency spectra, or SFS). T_{TRANS} = likelihood ratio test 1394 statistics for detecting TSP; HKA_{TRANS} = modified version of the HKA test to 1395 accommodate genomic data from multiple species in order to detect TSP; NCD = non-1396 central deviation summary to determine deviation from neutral allele frequency 1397 expectations; H_1, H_2 , and H_{12} = Frequencies of the most frequent haplotype, the 1398 frequency of the second most frequent haplotype, and the frequency of the first and 1399 second most frequent haplotype, respectively; NCD_{TRANS} = version of the NCD summary statistic extended to multispecies datasets in order to detect TSP ^{28,178}; HKA = Hudson, 1400

- 1401Kreitman and Aguadé test; SFS = site frequency spectrum; iHS = integrated haplotype1402score ¹⁸¹; LD = linkage disequilibrium ¹⁷⁹; CLR = composite likelihood ratio test ¹⁸⁴; β =1403measure of allele frequency correlation ¹⁸⁰ (see Table 2).
- 1404
- 1405

1406 Figure 3 | Host resistotype and parasite infectotype interaction matrix and balancing 1407 selection. A simple matching allele model of two host resistotypes and two parasite 1408 infectotypes is sufficient to create long term balancing selection within populations. a 1409 | Haploid hosts with the H-allele have resistotype C (C for compatible interactions, that 1410 is, the host is susceptible) for parasites with the P-allele and I for incompatible (the host is resistant) for parasites with the p-allele; hosts with the h-allele have resistotype 1411 1412 I for parasites with the P-allele and C for parasites with the p-allele. The haploid 1413 parasite with the P-allele has the infectotype C for hosts with the H allele and I for 1414 hosts with the h-allele, whereas parasites with the p-allele have infectotype I for hosts 1415 with the H-allele and C for hosts with the h-allele. A mutant of an allele may produce a 1416 new allele (H', h', P' and p'), but if the function of the allele is not affected in regards 1417 to its interaction with the parasite, the resistotypes and infectotypes will stay the 1418 same. **b** | A schematic representation of balancing selection is shown in a host 1419 population that diverges into two populations. Allele colours correspond to functional 1420 types of the host. Initially, the H-allele (blue) gives rise to the h-allele (red), which has a different resistotype. Afterwards, the two allele types are maintained by balancing 1421 1422 selection. Their infection profile might resemble the matching allele model shown in 1423 part a. Further mutations in the H- and h-alleles change the genotype of these alleles, 1424 but not their resistotype. The H-allele persists until it is replaced by the H' allele (light 1425 blue) in population 1. The h-allele gives rise to the h' allele (pink) in population 2. H 1426 and H', as well as h and h', change in relative frequency independent of selection by 1427 the parasite. Gene flow between populations can introduce new alleles (h' into 1428 population 1) and reintroduce extinct alleles (h' into population 2), which can replace 1429 the resident allele.

- 1430
- 1431

Figure 4 | An idealized scenario for host-parasite coevolution by long-term balancing selection leading to trans-species polymorphisms.

a | When balancing selection maintains allelic variants over long time periods, transspecies polymorphism (TSP) may be visible, with the polymorphisms existing prior to
the split into two species. In contrast to the scenario in FIG. 3b, here, speciation
completely blocks gene flow and hybridization. If TSP results from strict long-term
coevolution, similar evolutionary histories are expected for the functionally linked
variants in hosts and parasites (FIG. 3a). b | For the scenario outlined in part a, the

1440 genes undergoing long-term balancing selection are expected to cluster by function in

- a gene tree (red and blue colour), not by species. Host and parasite genealogiesshould, however, be congruent (that is, have the same topology), indicating that
- 1443 speciation events occurred in parallel.
- 1444
- 1445

Figure 5 | Cogenomic approaches to find genes involved in host parasite interactions.
A cogenomic analysis tests for associations between polymorphisms in host and

- 1448 parasite genomes. **a** | The genome-to-genome method analyses samples of hosts
- 1449 naturally infected with a parasite to find host variants in strong interspecies linkage
- disequilibrium (iLD) with variants in the parasites. Phenotypic data are not necessary.
- 1451 The figure shows two pairs of sites in the host and parasite genomes that significantly
- 1452 associate with each other, that is, they show strong iLD. \mathbf{b} | The analysis with a Two-
- 1453 Organism Mixed Model (ATOMM) includes phenotypic data from a host-parasite1454 infection matrix, which are analysed together with polymorphism data for both the
- 1455 host and parasite isolates ¹⁶⁴. The method allows interacting loci in hosts and parasites
- 1456 to be detected. Host and parasite genomes are represented as a series of squares,
- 1457 where each square indicates the position of a polymorphism in the sampled genomes.
- 1458 Shades of blue and red indicate different host and parasite genomes, respectively.
- 1459 Unequal numbers of host and parasite isolates can be used.
- 1460
- 1461
- 1462

1463 Box 1. Emerging cogenomics methodologies

1464

1465 Likelihood-free inference

1466 The biological complexity inherent to the coevolutionary process and the distinct 1467 limitations of population genetic summary statistics, including the lack of a suitable 1468 and/or tractable likelihood function [G], for dealing with certain aspects of this 1469 complexity have driven researchers to seek new solutions ¹⁴⁹. A very successful 1470 approach for by-passing some limitations of individual summary statistics and 1471 likelihood-based inference has been Approximate Bayesian Computation (ABC). In 1472 ABC, the requirement of a likelihood function is bypassed by the use of simulated 1473 datasets. Summarization of these simulations via summary statistics followed by a 1474 statistical evaluation, or rejection procedure, identifies which simulations most closely 1475 approximate the set of summary statistic values obtained from an observed dataset, 1476 thereby allowing inference of the posterior probabilities of model parameters of 1477 interest ¹⁸⁶. Another exciting approach that allows the aggregate use of simulation and 1478 summary statistics to evaluate complex biological dynamics is supervised machine 1479 learning [G]. It works on the principle of using training sets to generate a predictive 1480 model, for example a simulated dataset of the relevant evolutionary scenarios to a 1481 given problem of interest. This predictive model is then used to determine how a set 1482 of input variables predicts a given response ¹⁸⁷. However, these different approaches 1483 should not be considered mutually exclusive¹⁸⁸.

1484

1485 Ancestral recombination graphs

1486 To identify a signature of selective sweep or balancing selection using the methods 1487 described above, a clear understanding of how a neutral coalescent differs from a non-1488 neutral one is crucial. Given that so much useful information can be gleaned from the 1489 flanking genomic regions as well as the locus experiencing selection, traditional 1490 summaries of the coalescent that rely on treating loci or genomic windows as (semi-) 1491 independent will throw away important, if not crucial, information needed to infer the 1492 dynamics of the coevolutionary process. The ancestral recombination graph [G] (ARG) 1493 provides a representation of the relationships among genomic segments, mediated through recombination, as a network ¹⁸⁹. Historically, it has been computationally 1494 1495 prohibitive to reconstruct these ARGs in even small genomic data sets. However, 1496 recent advances in the data structures required to encode the information of an ARG 1497 ¹⁹⁰, and in the simulation of complicated, non-neutral perturbations of the coalescent 1498 in the context of whole genomes ¹⁹¹, have begun to allow the inference of both 1499 selective sweeps and balancing selection from reconstructed ARGs ^{189,192}. It is perhaps 1500 not inconceivable that future advances may well allow for the direct reconstruction of 1501 the pairwise relationships of genomic segments in host and parasite, which is 1502 mediated though the reproductive processes of host and parasite, and the infection 1503 process that connects them.

1504

1505 1506	Glossary
1507 1508	PARASITES
1509 1510	Organisms, including pathogens, that take advantage of other organisms (hosts), thereby instigating a process of selection by the host to defend against the parasite.
1511 1512	GENOMIC SIGNATURES
1513 1514 1515	Characteristic patterns of genetic variation, observed at a genomic region in a sample of genomes.
1515	SELECTIVE SWEEP
1517 1518 1519	The spread of a beneficial mutant and the hitchhiking of genetic variants close to it in the genome. Beneficial mutants may have arisen de novo or were segregating in the population before the sweep and become beneficial after a change in conditions.
1520	LINKED SELECTION
1522 1523	The evolution of (nearly) neutral SNPs influenced by selection on loci physically linked to them.
1524	
1525	GENETIC HITCHHIKING The process by which a genetic variant changes in frequency because it is physically
1520 1527 1528	linked to another variant that is changing in frequency due to selection.
1529	COGENOMIC
1530 1531	The simultaneous analysis of the function, structure and evolution of pairs of associated genomes in closely-interacting organisms, such as host and parasites.
1532	
1535 1534 1535 1536 1537	Balancing selection occurs because the alleles involved have, on average, a selective advantage that correlates negatively with their frequency within a population or species. This term does not include loci that are at a balance between gaining and losing variants, such as mutation-drift and mutation-selection balance.
1538	
1539	OVERDOMINANCE
1540 1541	Describes the scenario in which heterozygotes have a more extreme phenotypic trait
1541 1542 1543	for the alleles causing the advantage for the heterozygote genotypes.
1544	
1545	If the effect of an allele is habitat specific, such that it is beneficial in one habitat and
1546 1547 1548	detrimental in another and vice versa for the alternative allele, local adaptation may evolve with directional selection within each population. Local adaption is a powerful mechanism to maintain genetic diversity within species.

1550 1551 1552 1553	DIRECT NEGATIVE FREQUENCY-DEPENDENT SELECTION Occurs when the selective benefit of an allele depends directly and negatively on its frequency, for example at sex-determining loci and plant self-incompatibility loci.
1555 1554 1555 1556	INDIRECT NEGATIVE FREQUENCY-DEPENDENT SELECTION Occurs when the selective benefit of an allele depends on the frequency of an allele in a coevolving species.
1557	SELECTIVE INTERFERENCE
1559 1560 1561 1562	In clonal, but not in sexual, populations beneficial mutations interfere with each other, such that at a given moment the fittest mutation will outcompete weaker beneficial mutations. Interference can also affect the spread of mutants in genomic regions with low recombination rates.
1563	
1564 1565 1566 1567 1568 1569	LINKAGE DISEQUILIBRIUM (LD) A statistical measure of the distribution of combinations of alleles at different loci, which is zero if this distribution follows the expectation based only on allele frequencies. Non-zero values of LD can arise due to hitchhiking, selection on allele combinations and stochastic processes and may occur among loci without physical linkage.
1570	
1572 1573	A measure of fitness of genotypes or alleles relative to a reference, such as the ancestral form.
1574	ταιιμα'ς σ
1576 1576 1577 1578	A population genetic summary statistic describing the frequency distribution of polymorphisms in a population, with <i>D</i> being zero under neutral evolution and positive under balancing selection.
15/9	
1580 1581 1582	A neutral evolutionary process that influences allele frequencies based on the random sampling of genetic variants during reproduction.
1584	ρανιμιστισ
1585 1586	Random mating within a population.
1587	FIXATION INDEX (F _{ST})
1588 1589	A measure of genetic differentiation of spatially structured populations, usually estimated from single-nucleotide polymorphism (SNP) or microsatellite data.
1591	DIRECTIONAL SELECTION
1592 1593	A mode of natural selection by which a genetic variant is predicted to spread to fixation (also known as positive selection).
1594 1595	

- 1596 SUPERGENE
- A group of tightly linked genes on a chromosome that are inherited together as ahaplotype and often have reduced recombination.
- 1599
- 1600 FUNCTIONAL GUILDS
- 1601 Groups of organisms with similar life-style characteristics that perform the same
- 1602 ecological function, such as gut-parasites, pollinators and filter-feeders.
- 1603
- 1604 R-GENE
- 1605 Resistance genes of plants that convey resistance against diseases by producing R1606 proteins.
- 1607
- 1608 APPROXIMATE BAYESIAN COMPUTATION (ABC)
- 1609 Bayesian statistical approach wherein parameter inference and model selection is
- 1610 conducted in the absence of likelihood functions. Instead, ABC relies on summary
- statistics and simulations to infer posterior distributions of parameters and/or modelsof interest.
- 1612
- 1614 LIKELIHOOD FUNCTION
- 1615 Analytical formulation of a set of parameters, which can be used to assess the fit of a 1616 given observed dataset to a predetermined model.
- 1617
- 1618 SUPERVISED MACHINE LEARNING
- 1619 Machine learning is a statistical methodology that uses artificial intelligence to
- 1620 automate inferential processes with minimal explicit instruction. Supervised machine
- 1621 learning is a type of machine learning that uses (labelled) training sets to generate a
- 1622 target function when the correspondence between the function of interest and
- 1623 response variable are known. This target function can then be applied to unclassified
- 1624 (unlabelled) data to make statistical inferences.
- 1625
- 1626 ANCESTRAL RECOMBINATION GRAPH (ARG)
- 1627 A genealogical or phylogenetic representation of the network of coalescence and
- 1628 recombination events in a collection of orthologous DNA sequences.
- 1629

1630 ToC summary

- 1631 Host-parasite co-evolution is expected to leave signatures of selection in the genome
- 1632 of both antagonists. Ebert and Fields discuss what is known about these signatures,
- 1633 how they relate to co-evolutionary processes, and how they can help identify the
- 1634 genes underlying the coevolving phenotypes.
- 1635
- 1636

Figure 1.

Ancestral populations

A beneficial host mutant (violet) arises and replaces the ancestral allele (red).

A beneficial parasite mutant (blue) arises and replaces the ancestral allele (light blue).

A further beneficial host mutant (dark violet) arises and replaces the allele (violet) that earlier swept through the population.

More sweeps occur in both the host and the parasite population.

In relatively short succession, a beneficial mutant arises and replaces the ancestral parasite allele (light green), and is then itself replaced by a further beneficial mutant (dark green).

A beneficial mutant (dark blue) sweeps very slowly in the host population, causing a long time period of a polymorphism. Figure 2.

Fig. 3.

а			Parasite	alleles
			B, B'	b, b'
	Host	Α, Α'	compatible, C	incompatible, I
	alleles	a, a'	incompatible, I	compatible, C

Fig. 4.

