edoc

Hinge modes and surface states in second-order topological three-dimensional quantum Hall systems induced by charge density modulation

Szumniak, Paweł and Loss, Daniel and Klinovaja, Jelena. (2020) Hinge modes and surface states in second-order topological three-dimensional quantum Hall systems induced by charge density modulation. Physical Review B, 102 (12). p. 125126.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/80684/

Downloads: Statistics Overview

Abstract

We consider a system of weakly coupled one-dimensional wires forming a three-dimensional stack in the presence of a spatially periodic modulation of the chemical potential along the wires, equivalent to a charge density wave (CDW). An external static magnetic field is applied parallel to the wire axes. We show that, for a certain parameter regime, due to interplay between the CDW and magnetic field, the system can support a second-order topological phase characterized by the presence of chiral quasi-1D quantum Hall effect (QHE) hinge modes. Interestingly, we demonstrate that direction of propagation of the hinge modes depends on the phase of the CDW and can be reversed only by electrical means without the need of changing the orientation of the magnetic field. Furthermore, we show that the system can also support 2D chiral surface QHE states, which can coexist with one-dimensional hinge modes, realizing a scenario of a hybrid high-order topology. Performing two-terminal transport simulations in the linear response regime, we confirm quantized QHE resistance plateaus, which are highly robust to disorder giving a clear signature of hinge and surface states.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretical Nano/Quantum Physics (Klinovaja)
UniBasel Contributors:Klinovaja, Jelena
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
ISSN:2469-9950
e-ISSN:2469-9969
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:20 Apr 2021 15:37
Deposited On:20 Apr 2021 15:37

Repository Staff Only: item control page