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C H E M I S T R Y

Three-dimensional graphene nanoribbons 
as a framework for molecular assembly and local  
probe chemistry
Shigeki Kawai1*, Ondřej Krejčí2, Tomohiko Nishiuchi3, Keisuke Sahara3, Takuya Kodama3, 
Rémy Pawlak4, Ernst Meyer4, Takashi Kubo3*, Adam S. Foster2,5,6*

Recent advances in state-of-the-art probe microscopy allow us to conduct single molecular chemistry via tip- 
induced reactions and direct imaging of the inner structure of the products. Here, we synthesize three-dimensional 
graphene nanoribbons by on-surface chemical reaction and take advantage of tip-induced assembly to demon-
strate their capability as a playground for local probe chemistry. We show that the radical caused by tip-induced 
debromination can be reversibly terminated by either a bromine atom or a fullerene molecule. The experimental 
results combined with theoretical calculations pave the way for sequential reactions, particularly addition reac-
tions, by a local probe at the single-molecule level decoupled from the surface.

INTRODUCTION
A chemical reaction proceeds by the impacts of more than two mol-
ecules (atoms) or reactive moieties, resulting in the recombination of 
chemical bonds between reacted atoms and resulting in a different 
molecular structure. In general, most chemical reactions are con-
ducted in bulk conditions to evenly react all molecules. Therefore, 
controlling a single molecule by hand, called local probe chemistry, 
has attracted great attention from synthesis chemists.

Atomic force microscopy (AFM) has become an important tech-
nique in the field of on-surface chemistry, since the tip terminated 
with a small carbon monoxide (CO) molecule allows us to observe 
the inner structures of molecules on surfaces (1). This direct obser-
vation has been used to study single (2, 3) and self-assembled mole-
cules (4–6), as well as the products of on-surface chemical reactions 
(7–9). Besides using AFM as a tool to identify inner structures, the 
local probe can be used to generate highly reactive radical species by 
tip-induced dehydrogenation, dehalogenation, or deoxidization on 
surfaces (10–13). However, since these organic redox reactions were 
conducted with planar molecules, the molecule-substrate interaction 
has to be reduced by inserting thin insulating films. In contrast, if a 
three-dimensional (3D) hydrocarbon is used, we can use the out-of-
plane moiety for local probe chemistry, in a similar way to recent mea-
surements of intermolecular interactions (14).

Here, we demonstrate synthesis of 3D graphene nanoribbons 
(3D-GNRs) by on-surface chemical reaction, on which local probe 
chemistry is conducted with an AFM tip at low temperature. A rad-
ical species was obtained by cleaving the out-of-plane C─Br  bond 
with applied bias voltages and was subsequently mechanically ter-
minated with a single Br atom and a C60 fullerene molecule.

RESULTS
Figure 1A shows the used chemical reaction with halo-substituted mol-
ecules (15, 16). By depositing precursor molecules on metal surfaces 
and subsequent annealing, 2D-GNRs with given widths and edge struc-
tures have been synthesized (17). Following this idea, we designed a pre-
cursor molecule; hexabromo-substituted trinaphtho[3.3.3]propellane 
(6Br-TNP) (18), in which two hydrogen atoms at the edge of each 
naphthalene moiety are substituted with bromine atoms (Fig. 1B). 
We deposited 6Br-TNP molecules on Au(111) and annealed at 180°C. 
Figure 1C shows the scanning tunneling microscopy (STM) topogra-
phy, in which 1D structures can be seen. The dissociated bromine 
atoms on the surface (inset of Fig. 1C and fig. S1) indicate that the 
chemical reaction took place (Fig. 1A). The Br atoms were desorbed 
from the surface by annealing at higher temperature (400°C), while the 
1D structure remains (Fig. 1D). After annealing at 470°C, planar struc-
tures appeared in part of the 1D structure (fig. S2). To investigate each 
structure, we obtained the close-up STM topographies (Fig. 1E). For 
each line, two bright spots are observed perpendicular to the longitudi-
nal axis of the 1D structure, which correspond to the outmost bromine 
atoms. Therefore, as designed, the molecules were connected to each 
other, while each unit adsorbs in an upright configuration (14). We also 
obtained close-up STM topography of the structure after annealing at 
400°C for 30 min (Fig. 1F). Since some of the Br atoms are missing as 
indicated by arrows, the out-of-plane C─Br bond can also be cleaved 
thermally without Au surface catalysis. The calculated bond energy is 
3.8 eV, according to our calculations, which is apparently not high 
enough to prevent bond breaking during high-temperature annealing. 
Nevertheless, both the structures are, at a glance, identical, as two Br 
atoms in each unit point vertically out. However, we found that the gap 
between units actually becomes shorter after high-temperature anneal-
ing [Fig. 1, E (1.05 nm) and F (0.90 nm)]. Our density functional theory 
(DFT) calculations and corresponding simulated STM images show 
the structures: an organometallic compound (OMC) (fig. S3) and a 
3D-GNR (fig. S4). The Br atoms of 3D-GNR are by ∼0.05 nm lower 
than those of the OMC, which also has a higher conductivity due to its 
direct chemical bonding to the Au surface. This can also be correlated 
to the apparent height difference in the STM topographies.

Figure 1 (G to I) shows the summary of the chemical reaction. The 
deposited molecule has an upright configuration on Au(111) (Fig. 1G). 
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Through a gold catalytic reaction activated at 180°C, the four C─Br 
 bonds in the surface vicinity are cleaved off, subsequently forming 
an organometallic assembly (Fig. 1H). Our DFT calculations revealed 
that Au adatoms are part of the OMC. The calculated reaction coor-
dinate for this reaction, together with discussion, can be found in the 
Supplementary Materials. The OMC is rigid enough to prevent tip- 
induced lateral manipulation (fig. S5). Annealing at 400°C leads to 
the conjugation of the units with each other, and 3D-GNR is formed 
(Fig. 1I). Since the C─Br bonding energy is 3.8 eV, most of the Br atoms 
remain in the 3D-GNR structure during brief annealing.

The out-of-plane C─Br bond in either the OMC or 3D-GNR is an 
ideal playground for tip-induced chemical reaction due to the in-line 
configuration. We first attempted the debromination by exciting the 
C─Br bond with an applied voltage. In contrast to previous work with 
a planar molecule (13), the C─Br is isolated from the substrate, so the 
charge transfer effects are negligible. Therefore, it is expected that the 
bond-cleaving mechanism is similar to that shown on insulating sub-
strates like NaCl (19, 20). First, the Au tip was positioned at the target 
Br atom site on the OMC as indicated by an arrow (Fig. 2A). Then, the 
bias voltage was swept up to 2.8 V, where an abrupt change of the tun-
neling current was detected (Fig. 2B). We found that the Br atom dis-
appeared from the molecules, and a faint contrast, related to the radical, 
appeared in the STM topography. In this debromination process, the 
Br atom often attaches to the tip apex as the contrast of the STM topog-
raphy became sharp enough to resolve the individual Br atoms (21, 22). 
With the Br-functionalized tip, the C─Br bond can also be cleaved as 
shown in Fig. 2C. In this case, the debromination is caused at 2.5 eV, 
which is slightly lower than that with the Au tip (Fig. 2D). Note that 

the minor jump at 0.8 V is most probably related to a rearrangement 
of the Br atom position at the tip apex. This process is highly reproduc-
ible and controllable (Fig. 2E and fig. S6). Alternatively, if the tip was 
scanned over the molecule at 3 V, the C─Br bonds in the scanned area 
can be easily cleaved (fig. S7). In contrast to STM topography, the cor-
responding AFM image gives a distinct contrast (dark) at the radical, 
mainly relating to the height difference between the unpaired electron 
(radical) and Br sites (Fig. 2F and fig. S8). This tip-induced debromi-
nation can also be conducted on the 3D-GNR (fig. S9).

Next, we conduct the reversed reaction, i.e., a tip-induced bro-
mination. Before the measurement, a single Au atom, as indicated by 
a blue arrow, was deposited on Au(111), as a marker, from the tip by 
gentle contact (Fig. 2G). Subsequently, two bromine atoms were re-
moved step by step (Fig. 2H). Here, we attempted to conduct an addi-
tional reaction as the long-lived radical is stabilized by the manipulated 
Br. Figure 2J shows the corresponding Z distance dependence of the 
frequency shift, in which an abrupt change of the frequency shift was 
detected and consequently the retraction curve has a different tra-
jectory. The STM topography shows that the radical was terminated 
by the Br atom again, suggesting successive tip-induced bromination 
(Fig. 2I). Since the tip loses the Br atom, the STM topography be-
came blurred. Calculating the force from the frequency shift curve 
(23), we found that the attractive interaction force becomes larger 
(Fig. 2K). The increase of the force relates to the high reactivity of 
the Au tip. Nevertheless, the Au⋯Br─C interaction is not strong 
enough to cleave the Br─C  bond by force alone.

The calculated energy potential shows that the bromination pro-
cess gains an energy of 100 meV at the measured Z separation (Fig. 2L). 
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Fig. 1. Synthesis of 3D-GNR. (A) Ullmann-type on-surface chemical reaction. (B) Chemical structure of 6Br-TNP. Scanning tunneling microscopy (STM) topographies after 
annealing at (C) 180° and (D) 400°C. Inset in (C) shows the dissociated bromines on Au(111). (E and F) Corresponding close-up STM topographies. Green arrows indicate 
the thermally disrobed bromine sites. Sketch of the on-surface chemical reaction with 6Br-TNP: (G) schematic drawings of 6Br-TNP, (H) 3D-OMC, and (I) 3D-GNR. Measure-
ment parameters: sample bias voltage, V = 200 mV. Tunneling current: I = 0.8 pA in (C) and (D), I = 1 pA in (E), and I = 0.8 pA in (F).

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of B

asel on A
pril 07, 2022



Kawai et al., Sci. Adv. 2020; 6 : eaay8913     28 February 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 6

Note that this value does not correspond to the enthalpy change in 
the chemical reaction, which would be equal to the difference of the 
two energy minima.

Besides the tip-induced bromination, the addition reaction can 
be also conducted with a foreign molecule, which is the general basis 
of reactions in chemistry. To demonstrate this at the single-molecule 
level, we used a C60 molecule (Fig. 3A). Considering the large size of 
C60 (∼1 nm), we first remove two bromines in the naphthalene moiety 
resulting in a 1,8-naphthyne derivative (Fig. 3B). Then, a C60 was 
picked up from the surface with a Au tip and was set close to the rad-
ical with a low bias voltage (Fig. 3C)—a large protrusion can be clearly 
seen at the radical part. These processes were conducted while record-
ing the tunneling current (fig. S10). Quantum chemical calculations for 
four possible bonding configurations of C60–1,8-naphthyne com-
plexes revealed that the chemical bonding energies are in the −3.0 to 
−5.6 eV range, which is approximately half of the usual carbon-carbon 
single-bond energy (ca. −7.8 eV) (fig. S11). This matches with the 
observation that the C60 molecule can easily be manipulated by scan-
ning at a lower voltage (fig. S12).

To gain deeper insight, we performed a series of DFT calculations 
to study the debromination process (Fig. 4A). The tip is positioned 
so that one (bright blue ball) of the two remaining Br atoms is just 
above the lowest gold atom of the tip, with the Br-Au vertical distance 
varying from 3.5 to 10.5 Å. For the two shortest Br-Au distances (3.5 
and 4.5 Å), we performed nudged elastic band (NEB) calculations 
(24, 25) for a Br atom moving from the molecule to the tip (Fig. 4B). 
The results reveal that the barriers for debromination (of the OMC) 
vary with the tip distance, and the calculated heights of the barrier are 
considerably lower than the applied voltage used for the experimental 
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debromination. Thus, the debromination mechanism cannot be ex-
plained in terms of a simple pumping of the energy from tunneling 
electrons to the C─Br bond mechanically overcoming the bond dis-
sociation barrier. On the contrary, the barrier for the back reaction 
(bromination) for both paths, around 0.4 to 0.5 eV, is low enough to 
be overcome at experimental conditions.

The experimental evidence of different currents, but very stable 
sample bias for the debromination reaction with given tip type, points 
toward a mechanism of electron injection into an antibonding state(s), 
similar to earlier studies for tip-induced debrominations on insu-
lating substrates (19, 20). The population of the antibonding state(s) 
weakens the bond, and Br can detach by means of current heating 
due to inelastic electron tunneling, combined with electric field po-
larization and attraction to the tip. The two measured thresholds for 
debromination depending on the tip termination can be explained 
by possible mechanisms sketched in Fig. 4D. Figure 4D (i) illustrates 
simple injection of electrons into antibonding state(s) with the metal tip. 

Figure 4D (ii) shows that a gap at the tip apexes dampens the tunneling 
around the Fermi level of tip, while Fig. 4D (iii) depicts band bending due 
to electrostatics of the negative Br-terminated tip, which shifts the 
antibonding state(s) higher in energy. These two mechanisms result 
into the need to use larger voltage to populate the antibonding 
state(s). The electron injection mechanism is supported by our DFT 
calculations, which show an empty * state at an energy of ∼2.1 eV 
above the Fermi level. The appearance and the energy of this state do 
not depend on the tip height. Another antibonding state—* state—
can be found at ∼2.4 eV, if the Au tip is close to the Br atom of OMC 
(shown in Fig. 4, E and F). Our further calculations with Br atom 
added to the tip apex promotes voltage shifting mechanisms (ii) and 
(iii): They indicate a substantial dip of the states on the last Br and Au 
atom of the tip from approximately −0.2 to +0.1 eV. They also show, 
that the * state is shifted up by approximately 0.4 eV in the presence 
of Br on the tip. Since we do not know the real tip–Br atom distance 
in the experiment, we cannot establish the exact contribution of the 

D E

F

A B C

Fig. 4. Theoretical explanation of debromination and (re)bromination. (A) Geometry of a single unit of the OMC on the Au(111) surface with four gold adatoms (de-
picted in turquoise) and Au[111] tip set 4.5 Å above the reacting Br atom (blue). (B) Energy paths for NEB calculations for sample debromination (left to right) or bromina-
tion (right to left) for two tip heights, 3.5 and 4.5 Å. The calculated mechanical barrier for the debromination is 1 to 1.5 eV. The bromination needs only about 0.4 eV for the 
reaction to proceed. (C) Product of debromination with reacted Br atom (blue) attached to the tip. (D) Schematics showing presumed mechanism for the debromination—
injection of electrons into antibonding state(s)—for (i) metal tip, (ii) a Br tip with gap around the Fermi level, and (iii) Br tip whose electrostatics are shifting the antibonding 
state to the higher energies. Both mechanisms (ii) and (iii) leads to larger bias for reaching the antibonding state(s). (E) 3D representation of electron density for unpopu-
lated * and * states with Au tip set 3.5 Å above the bromine atom. (F) Atom projected density of states (PDOS) for both Br atoms of the OMC for two cases when the tip 
is close (3.5 Å above the Br 1 atom) or far (10.5 Å). The inset shows, in detail, the density of the unpopulated antibonding states. The PDOS shows that the * state has the 
same energy for both Br atoms without any tip distance dependency, while the * state is at a slightly higher energy and appears only for a very low Br-Au distance. a.u., 
arbitrary units.
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two antibonding states to the debromination, but it is clear that they 
offer a plausible mechanism for the process. Note that the applied volt-
age to populate the antibonding states can be slightly higher than 
the calculated energy, because of final conductance of the OMC and 
known underestimation of the gap in DFT calculations.

DISCUSSION
We demonstrate controlled addition reaction in a single mole-
cule adsorbed on a surface by a local probe at low temperature. To 
dem onstrate this, we synthesized a 3D-GNR, in which brominated 
naphthalene forms a periodic out-of-plane substructure. This 
bromonaphthalene is effectively isolated from the substrate and can 
be used as an ideal playground for local probe chemistry. The long-
lived radical can be obtained by the tunneling current and stabilized 
by either a bromine atom or C60 molecule. We believe that such di-
rect addition reactions are vital to advance our chemistry toward 
synthesis of single compound atom by atom.

MATERIALS AND METHODS
Experimental
All measurements were performed with a commercially available 
Omicron low-temperature STM/AFM system and a homemade 
STM/AFM system, operating in ultrahigh vacuum at below 5 K. For 
AFM, we used a tuning fork with a chemically etched tungsten tip 
as a force sensor (26). The resonance frequency and the mechanical 
quality factor are 24,756.3 and 23,484 Hz, respectively. The high stiff-
ness of 1800 N/m realizes a stable operation with a small amplitude of 
60 pm (27). The frequency shift, caused by the tip-sample interaction, 
was detected with a commercially available digital phase-locked loop 
(Nanonis OC4 and Zurich Instruments: HF2-LI and HF2-PLL) (28). 
For the STM measurement, the bias voltage was applied to the tip 
while the sample was electronically grounded in the OMICRON STM/
AFM system and vice versa in our homemade STM/AFM system. 
To be consistent, the sample bias voltage is indicated with respect to 
the tip grounded. The tip apex was ex situ sharpened by milling with 
a focused ion beam, and the radius was less than 10 nm. Clean gold 
and silver tips were in situ formed by indenting to the Au and Ag sam-
ple surfaces, respectively, and applying a pulse bias voltage between 
tip and sample several times. Clean Au(111) and Ag(111) surfaces 
were in situ prepared by repeated cycles of standard Ar+ sputtering 
(3 × 10−6 mbar, 1000 eV, and 15 min) and annealing at 730 and 750 K. 
In this experiment, 6Br-TNP molecules were deposited on the surface 
from crucibles of a Knudsen cell, heated at 530 K. Measured images 
were partially analyzed using the WSxM software (29).

Theoretical calculations
All DFT calculations in this work were performed with the periodic 
plane-wave basis Vienna Ab-Initio Simulation Package code (30, 31). 
The spin-polarized optB86B + van der Waals (vdW)–DF functional 
(32–34) was used to accurately describe vdW interactions in the cal-
culated systems. We select this functional based on previous work, 
where it provided comparable results with commonly used DFT-D3 
(35) functional and Tkatchenko-Scheffler method (36), as well as 
experimental measurements (37, 38). The core electrons were de-
scribed using projected augmented wave method (39). For all cal-
culations, we applied a kinetic energy cutoff of 550 eV; however, 
depending on the type of calculation, we used different precision 

(PREC parameters). All the energies stated in this article are: energy 
without entropy.

For the static calculations, presented in figs. S3 (A to C) and S13 
and table S1, we used PREC = accurate. Calculations of the adsorption 
of 6Br-TNP molecules on the face-cubic centered Au(111) surface 
(fig. S11) were performed using a 6 × 6 Au slab with at least ∼9.4 Å 
of vacuum above the molecule (z cell height, 30 Å). Three to five Au 
layers were used for a systematic check of the minimal amount of Au 
layers properly describing the molecular adsorption on the Au surface. 
Already three Au layers, with two bottom layers fixed in the geometry 
optimization, gives a good enough description of the Au-molecule 
interaction. We also systematically checked k-point convergence, with 
sampling chosen according to system size. We found that 7 × 7 × 1 k 
points were enough for the calculations. The results shown in fig. S13 
and table S1 concerning molecular adsorption were calculated with an 
even more precise 9 × 9 × 1 mesh. The OMC debromination energy 
without STM tip was computed within the same framework as the 
6Br-TNP adsorption. The calculations of projected density of states 
(PDOS) for a single OMC and Br tip (Fig. 4, E and F) were performed 
also in a 6 × 6 Au(111) supercell with  point only. The results of the 
calculations were checked with a 7 × 7 × 1 k-point mesh as well, show-
ing the same PDOS spectra. Calculations with two 6Br-TNP mole-
cules, or molecular parts, were done with perpendicular 12 × 6 × 3 Au 
slabs to reduce interaction with neighboring cells. For these calcula-
tions, we used a 3 × 7 × 1 k-point mesh.

Reaction pathways shown in Fig. 4 (A to C) and fig. S14 were cal-
culated using the NEB method (24). For most of these calculations, 
we tried to estimate the energy barrier by means of climbing NEB 
approach (25), unless stated otherwise. Because of the computational 
complexity of these calculations, we used only  point for them and 
PREC = normal.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/9/eaay8913/DC1
Further discussion of theoretical results
Synthesis of 6Br-TNP
Fig. S1. Picking a single bromine atom from Au surface.
Fig. S2. Flat GNR.
Fig. S3. DFT calculation of the OMC.
Fig. S4. DFT calculation of the smallest possible 3D-GNR.
Fig. S5. Lateral manipulation of the OMC.
Fig. S6. Debromination of 3D-OMC.
Fig. S7. Multiple debromination by scanning at 3 V.
Fig. S8. Line profile along the debrominated OMC.
Fig. S9. Debromination of 3D-GNR.
Fig. S10. Manipulation of C60.
Fig. S11. Quantum chemical calculations for chemical bonding energies of four types 
C60–1,8-naphthyne complexes.
Fig. S12. Accidental removal of C60 connected to propellane.
Fig. S13. DFT calculation of the 6Br-TNP molecule on Au(111).
Fig. S14. NEB calculations of the most probable reaction coordinate from an isolated 6Br-TNP 
molecule to the OMC.
Table S1. Calculated adsorption energies.
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