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Chemin du Musée 23, CH-1700 Fribourg, Switzerland

Correspondence to be sent to: viada@math.ethz.ch

Let E be an elliptic curve without complex multiplication (CM) defined over Q. We show

that on a transverse d-dimensional variety V ⊂ Eg, the set of algebraic points of bounded

height, which are close to the union of all algebraic subgroups of Eg of codimension d + 1

translated by points in a subgroup � of Eg of finite rank, is Zariski nondense in V. The

notion of close is defined using a height function. If � = 0, it is sufficient to assume

that V is weak-transverse. This result is optimal with respect to the codimension of the

algebraic subgroups. The method is based on an essentially optimal effective version of

the Bogomolov Conjecture. Such an effective result is proven for subvarieties of Eg. If we

assume that the sets have bounded height, then we can prove that they are not Zariski

dense. A conjecture, known in some special cases, claims that the sets in question have

bounded height. We prove here a new case. In conclusion, our results prove a generalized

case of a conjecture by Zilber and by Pink in Eg.

1 Introduction

In this article all algebraic varieties are defined over Q and we consider only algebraic

points. Denote by A an abelian variety of dimension g. Consider a proper irreducible

algebraic subvariety V of A of dimension d. We say that:

• V is transverse, if V is not contained in any translate of a proper algebraic

subgroup of A.
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2 E. Viada

• V is weak-transverse, if V is not contained in any proper algebraic subgroup

of A.

Given an integer r with 1 ≤ r ≤ g and a subset F of A, we define the set

Sr(V , F ) = V ∩
⋃

cod B≥r

(B + F ),

where B varies over all abelian subvarieties of A of codimension at least r and

B + F = {b + f : b ∈ B, f ∈ F }.

Note that

Sr+1(V , F ) ⊂ Sr(V , F ).

We denote the set Sr(V , ATor) simply by Sr(V ), where ATor is the torsion of A. For conve-

nience, for r > g we define Sr(V , F ) = ∅ and for Ve a subset of V we define

Sr(V
e, F ) = Ve ∩ Sr(V , F ).

We ask for which sets F and integers r the set Sr(V , F ) has bounded height or is Zariski

nondense in V .

Depending on the choice of F , the set Sg(V , F ) appears in the literature in the

context of the Mordell–Lang, of the Manin–Mumford and of the Bogomolov Conjectures.

More recently Bombieri, Masser, and Zannier [2] proved that for a transverse curve in

a torus, the set S2(C ) is finite. They investigated intersections with the union of all

algebraic subgroups of a given codimension. This opens a vast number of conjectures

for subvarieties of semi-abelian varieties.

In this article, we consider a variety in a power of an elliptic curve. In the first

part of this work, we study the nondensity of Sd+1(V , ·); the last part is dedicated to its

height. Let E be an elliptic curve without complex multiplication (CM). Consider on Eg

the line bundle L given as tensor product of the pull backs via the natural projections

of a symmetric ample line bundle on E . We fix on Eg a semi-norm ‖ · ‖ induced by the

Néron–Tate height on E . For ε ≥ 0, we denote

Oε = {ξ ∈ Eg : ‖ξ‖ ≤ ε}.

We denote by � a subgroup of finite rank in Eg. We define �ε = � + Oε.
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Nondense Subsets of Varieties 3

Let V an irreducible algebraic subvariety of Eg of dimension d. For a non-negative

real K, we define

VK = V ∩ OK .

Our main result is:

Theorem 1.1. For every K ≥ 0 there exists an effective ε > 0 such that:

(i) If V is weak-transverse, Sd+1(VK ,Oε) is Zariski nondense in V .

(ii) If V is transverse, Sd+1(VK , �ε) is Zariski nondense in V . �

Because of the different hypotheses on the variety and the different sets in the

thesis, there are no evident implications between the statements (i) and (ii).

Let us say at once that the theorem is expected to hold for V instead of VK . This is

immediately implied by the following conjecture. Indeed Sd+1(V , ·) ⊂ Sd+1(Vu, ·) ∪ (V \ Vu).

The conjecture gives Sd+1(Vu, ·) ⊂ Sd+1(VK , ·) for some non effective K > 0.

Conjecture 1.2. There exist ε > 0 and a nonempty Zariski open subset Vu of V such

that:

(i) If V is weak-transverse, Sd+1(Vu,Oε) has bounded height.

(ii) If V is transverse, Sd+1(Vu, �ε) has bounded height. �

The method known to show that the height is bounded relies on a Vojta inequality,

unless � is trivial. This method gives optimal results for curves, while for varieties a

hypothesis stronger than transversality is needed. Let V ⊂ Eg be a variety of dimension

d such that

dim(V + B) = min(d + dim B, g) (1)

for all abelian subvarieties B of Eg. In this article, we extend the proof of Rémond of

Conjecture 1.2(ii) for V satisfying condition (1). In Theorem 6.5, we prove Conjecture 1.2(i)

for V × p where p ∈ Es is a point not lying in any proper algebraic subgroup of Es. In

Section 2, we clarify that, up to an isogeny of En, a weak-transverse variety in En has the

shape V × p for V transverse in some Eg and p a point in En−g not lying in any proper

algebraic subgroup of En−g. We can then conclude:

Theorem 1.3. For V satisfying condition (1) and p ∈ Es a point not lying in any proper

algebraic subgroup of Es, there exists ε > 0 such that:
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4 E. Viada

(i) The set Sd+1(V × p,Oε) is Zariski nondense in V × p.

(ii) The set Sd+1(V , �ε) is Zariski nondense in V . �

For the codimension of the subgroups equal to g, statements (i) and (ii) are cases

of the Bogomolov Conjecture and the Mordell–Lang plus Bogomolov Conjecture, respec-

tively. Let us emphasise that our theorem neither gives a new proof of the Bogomolov

Conjecture (as we make use of such a result), nor we get a new proof of the Mordell–Lang

Conjecture (as we use a more general Vojta inequality). On the contrary we give a new

proof of the Mordell–Lang plus Bogomolov Theorem (Poonen [7]), under the assumption

(1). In addition, part (ii) of Theorem 1.3 proves a case of a conjecture by Zilber and Pink

extended by the Bogomolov Conjecture.

In [14], we proved our main result for a curve in Eg. A naive extension of the

method in [14], would imply a weak form of Theorem 1.1, where the codimension of the

algebraic subgroups shall be at least 2d instead of d + 1. Here, we improve the method

used in [14] obtaining the optimal d + 1. In the first instance we show that Theorem 1.1

(i) and (ii) are equivalent, then we prove Theorem 1.1(ii).

Theorem 1.4. Given K ≥ 0 and a positive integer r, the following statements are equiv-

alent:

(i) For V weak-transverse, there exists ε > 0 such that Sr(VK ,Oε) is Zariski non-

dense in V .

(ii) For V transverse, there exists ε > 0 such that Sr(VK , �ε) is Zariski nondense

in V . �

We shall then prove Theorem 1.1, part (ii). Like for curves, the strategy of the

proof is based on two steps. A union of infinitely many sets is Zariski nondense if:

(1) the union can be taken over finitely many sets,

(2) all sets in the union are Zariski nondense.

Part (1) is a typical problem of Diophantine approximation; we approximate an

algebraic subgroup with a subgroup of bounded degree (see Proposition 3.3).

The second step (2) is a problem of height theory and its proof relies on an essen-

tially optimal lower bound for the normalized height of a transverse subvariety in Eg,

Theorem 1.5 below. This part is delicate. The dimension of the variety intervenes heavily

on the estimates we provide. A fundamental idea is to reduce the problem to the study

of varieties with finite stabilizer (see Section 4).
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Nondense Subsets of Varieties 5

We define μ(V ) as the supremum of the reals ε(V ) such that Sg(V ,Oε(V )) = V ∩ Oε(V )

is Zariski nondense in V . Work by Ullmo [12] and Zhang [15] proves the Bogomolov

Conjecture. This shows that μ(V ) > 0, for V transverse. A first effective lower bound for

μ(V ) is provided by David and Philippon [3] Theorem 1.2. The type of bounds we need are

an elliptic analogue of Amoroso and David [1] Theorem 1.4. Such a result is proven by

Galateau in his PhD thesis for d ≥ g − 2, and in a preprint [4] for varieties in a product

of elliptic curves with or without CM (he gives estimates the essential minimum of V

which is the square of μ(V )).

Theorem 1.5 (Bogomolov-type bound, Galateau [4]). Let V be a transverse subvariety

of Eg of codimension cod V . For η > 0, there exists a positive effective constant c(Eg, η)

depending on the ambient variety and η, such that for

ε(V , η) = c(Eg, η)

(degL V )
1

2cod V +η

the set

V ∩ Oε(V ,η)

is Zariski nondense in V . �

The bound ε(V , η) depends on the invariants of the ambient variety and on the

degree of V . The quasi-optimal dependence on the degree of V and the nondependence

on the field of definition and height of V are of crucial importance for our application.

The Zariski nondensity for transverse varieties has often been investigated with

the method introduced by Bombieri, Masser, and Zannier in [2]. To show the nondensity

property they use an essentially optimal Generalized Lehmer Conjecture. In [13] we

applied their method to a transverse curve, � = 0 and ε = 0. In [8] Rémond and the

author extended the method to transverse curves, ε = 0 and any � of finite rank. In

[9–11] Rémond generalized it to varieties satisfying a geometric property stronger than

transversality.

The main advantage of using a Bogomolov- instead of a Lehmer-type bound is that

an essentially optimal generalized Lehmer conjecture has been proven for CM abelian

varieties while it is not likely to be proven in a near future for non-CM abelian varieties.

On the contrary, the Bogomolov-type bound has been proven at least for some non-CM

abelian varieties. In addition, our method gives the nondensity for a neighborhood of

positive radius ε. At present it is not known how to obtain results of this kind in abelian

varieties using a Lehmer-type bound.
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6 E. Viada

The Zariski nondensity for a transverse subvariety in a torus and � = 0 has been

studied independently by Habegger [5]. He uses the Bogomolov-type bound proven by

Amoroso and David [1] and proves that for a transverse variety V in Gn
m, there exists

ε > 0 such that the set S2d (V ,Oε) is Zariski nondense.

In the next section, we fix the notation and recall the results we need from [14].

In Section 3, we present the four main steps of the proof of Theorem 1.1. Section 4 is

the core of this article: we prove the nondensity of the intersections. In Section 5, we

conclude the proof of the main theorem. In the final section we prove that sometimes the

height is bounded.

2 Preliminaries

In the following, we aim to be as transparent as possible, polishing statements from

technicality. Therefore, we present the proofs for a power of an elliptic curve E without

CM. Then End(E) is identified with Z. Proofs for a subvariety in a product of arbitrary

elliptic curves are slightly more technical.

2.1 Small points

On E , we fix a symmetric very ample line bundle L0. On Eg, we consider the bundle L,

which is the tensor product of the pull-backs of L0 via the natural projections on the

factors. Degrees are computed with respect to the polarization L. Usually Eg is endowed

with the L-canonical Néron–Tate height h′. Though, we prefer to define on Eg the height

of the maximum

h(x1, . . . , xg) = max
i

(h(xi)),

where h(xi) on E is given by the L0-canonical Néron–Tate height. Note that h(x) ≤ h′(x) ≤
gh(x). Hence, the two norms induced by h and h′ are equivalent. We denote by ‖ · ‖ the

seminorm induced by h on Eg.

For ε ≥ 0, we denote

Oε = {ξ ∈ Eg : ‖ξ‖ ≤ ε}.

2.2 Morphisms and their height

We denote by Mr,g(Z) the module of r × g matrices with entries in Z. For F = ( fij) ∈ Mr,g(Z),

we define the height of F as the maximum of the absolute value of its entries

H (F ) = max
i j

| fij|.



February 4, 2009 1:1

220

225

230

235

240

245

250
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A morphism φ : Eg → Er is identified with an integral matrix. Let a ∈ Z, we denote

by [a] the multiplication by a.

Note that, the set of morphisms of height less than a constant is a finite set.

2.3 Algebraic subgroups

Let B be an algebraic subgroup of Eg of codimension r. Then B ⊂ ker φB for a surjective

morphism φB : Eg → Er. Conversely, we denote by Bφ the kernel of a surjective morphism

φ : Eg → Er. Then Bφ is an algebraic subgroup of Eg of codimension r. Note that r is

the rank of φ. An easy observation (see, for instance, [13], p. 61, line 3) gives that each

of the r equations defining Bφ has degree at most H (φ)2, up to a multiplicative constant

depending on deg E and g. This directly implies:

Lemma 2.1. Let φ : Eg → Er be a surjective morphism. Then

deg Bφ ≤ c0 H (φ)2r,

where c0 is a constant depending on deg E and g. �

2.4 Subgroups

Let � be a subgroup of Eg of finite rank s. Then � is a Z-module of rank s. We call a

maximal free set of � a set of s linearly independent elements of �; in other words, a

basis of � ⊗Z Q. If � is a free module, we call integral generators a set of s generators

of �.

The division group �0 of the coordinates group of the points of �, in short of �,

is a subgroup of E defined as

�0 = {y ∈ E such that Ny ∈ π (�) for N ∈ Z∗ and π : Eg → E}. (2)

Note that, �
g
0 = �0 × · · · × �0 contains � and it is a module of finite rank. This

shows that, to prove nondensity statements for � it is enough to prove them for �
g
0.

Definition 2.2. We say that a point p = (p1, . . . , pn) ∈ En has rank s if its coordinates

group 〈p1, . . . , pn〉 has rank s. We define �p to be the division group of 〈p1, . . . , pn〉. �

Given a point p ∈ Es of rank s, we associate to p a positive real ε0(p). This value

will be used several times in the following.
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Proposition 2.3 ([14] Proposition 3.3 with τ = 1, End(E) = Z, c0(p) = c2(p, 1) and ε0(p) =
ε0(p, 1)). Let p1, . . . , ps be linearly independent points of E and p = (p1, . . . , ps). Then,

there exist positive reals c0(p) and ε0(p) such that

c0(p)
∑

i

|bi|2‖pi‖2 ≤
∥∥∥∥∥
∑

i

bi(pi − ξi) − bξ

∥∥∥∥∥
2

for all b1, . . . , bs, b ∈ Z with |b| ≤ maxi |bi| and for all ξ1, . . . , ξs, ξ ∈ E with ‖ξi‖, ‖ξ‖ ≤ ε0(p).

�

2.5 From transverse to weak-transverse

Let V be transverse in Eg and let � be a subgroup of Eg of finite rank. Let �0 be the

division group of � and let s be its rank. If s = 0 we define V ′ = V . If s > 0, we denote by

γ1, . . . , γs a maximal free set of �0 and

γ = (γ1, . . . , γs).

We define

V ′ = V × γ.

Since V is transverse and γ has rank s, then V ′ is weak-transverse in Eg+s.

2.6 From weak-transverse to transverse

Let V ′ be weak-transverse in En. If V ′ is transverse then we define V = V ′ and � = 0.

If V ′ is not transverse, let H0 be the abelian subvariety of smallest dimension g such

that V ′ ⊂ H0 + p⊥ for p⊥ ∈ H⊥
0 and H⊥

0 the orthogonal complement of H0 of dimension

s = n − g. Then En is isogenous to H0 × H⊥
0 . Furthermore, H0 is isogenous to Eg and H⊥

0

is isogenous to Es. Let j0, j1 and j2 be such isogenies. We fix the isogeny

j = ( j1 × j2) ◦ j0 : En → H0 × H⊥
0 → Eg × Es,

which sends H0 to Eg × 0 and H⊥
0 to 0 × Es and j(p⊥) = (0, . . . , 0, p1, . . . , ps). Since V ′ is

weak-transverse and defined over Q, p = (p1, . . . , ps) has rank s and is defined over Q.



February 4, 2009 1:1

290

295

300

305

310

315

320

Nondense Subsets of Varieties 9

We consider the natural projection on the first g coordinates:

π :Eg × Es → Eg

j(V ′) → π ( j(V ′)).

We define

V = π ( j(V ′))

and

� = �g
p.

Since H0 has minimal dimension, the variety V is transverse in Eg and � has rank

gs. Finally,

j(V ′) = V × p.

We remark that we have defined a bijection (V , �g
0) → V ′, which is exactly what interest

us.

2.7 Weak-transverse up to an isogeny

Statements on boundedness of heights and nondensity of sets are invariant under an

isogeny of the ambient variety. Namely, given an isogeny j of Eg, Theorem 1.1 and

Conjecture 1.2 hold for a variety if and only if they hold for its image via j. Thus, the

previous discussion shows that without loss of generality, we can assume that a weak-

transverse variety V ′ in En is of the form

V ′ = V × p,

where

(i) V is transverse in Eg,

(ii) p = (p1, . . . , ps) is a point in Es of rank s,

(iii) n = g + s.

In short we will say that V × p is a weak-transverse variety in Eg+s, to say that V

is transverse in Eg and p ∈ Es has rank s. This simplifies the setting for weak-transverse

varieties.
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2.8 Gauss-reduced morphisms

The matrices in Mr×g(Z) of the form

φ = (aIr|L) =

⎛
⎜⎜⎝

a . . . 0 a1,r+1 . . . a1,g

...
...

...
...

0 . . . a ar,r+1 . . . ar,g

⎞
⎟⎟⎠ ,

with H (φ) = a, will play a key role in this work. If r = g, simply forget L. The following

definition of Gauss-reduced is slightly more general than the one given in [14]; namely

we omit here the assumption that the entries of the matrix have no common factors. This

is a marginal simplification, overseen in that article.

Definition 2.4 (Gauss-reduced morphisms). Given positive integers g, r, we say that a

morphism φ : Eg → Er is Gauss-reduced if:

(i) There esists a ∈ N∗ such that aIr is a submatrix of φ, with Ir the r-identity

matrix,

(ii) H (φ) = a. �

A morphisms φ′, given by a reordering of the rows of a morphism φ, has the same

kernel as φ. Saying that aIr is a submatrix of φ fixes one permutation of the rows of φ.

A reordering of the columns corresponds, instead, to a permutation of the coor-

dinates. Statements will be proven for Gauss-reduced morphisms of the form φ = (aIr|L).

For each other reordering of the columns, the proofs are analogous. Since there are

finitely many permutations of g columns, the nondensity statements will follow.

There are a few easy facts that one shall keep in mind. Let ψ : Eg → Er be a

morphism and φ : Eg → Er be a Gauss-reduced morphism, then

(i) For x ∈ Eg,

‖ψ (x)‖ ≤ gH (ψ )‖x‖

and

‖φ(x)‖ ≤ (g − r + 1)a‖x‖.

(ii) For x ∈ Er × {0}g−r,

φ(x) = [a]x.
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The following lemma shows that every abelian subvariety of codimension r is

contained in the kernel of a Gauss-reduced morphism of rank r.

Lemma 2.5 ([14] Lemma 4.4(ii) with End(E) = Z). Let ψ : Eg → Er be a morphism of

rank r. Then, there exists a Gauss-reduced morphism φ : Eg → Er such that

Bψ ⊂ Bφ + (
Er

Tor × {0}g−r). �

Taking intersections with VK , the previous lemma translates immediately as:

Lemma 2.6. For any reals K ≥ 0, ε ≥ 1 and integer r ≥ 1, it holds

Sr
(
VK ,

(
�

g
0

)
ε

) =
⋃

φ:Eg→Er

Gauss-reduced

VK ∩ (
Bφ + (

�
g
0

)
ε

)
. �

2.9 Quasi-special and Special morphisms

Special morphisms play a key role in the study of weak-transverse varieties. A Special

morphism φ̃ is Gauss-reduced. In addition, the multiplication by H (φ̃) acts on some of

the first g-coordinates.

Definition 2.7 (Quasi-special and Special morphisms). Given positive integers g, s, r,

a morphism φ̃ : Eg+s → Er is Quasi-special if there exist a Gauss-reduced morphism

φ : Eg → Er and a morphism φ′ : Es → Er such that

(i) φ̃ = (φ|φ′).

The morphism φ̃ : Eg+s → Er is Special if it satisfies the further condition

(ii) H (φ̃) = H (φ). �

Note that, for g = 2 and r = s = 1, the morphism (0, 0, 1) is Gauss-reduced, but not

Special. While (1, 0, 2) is Quasi-special but not Special. In addition, for g = r = 2, s = 1,

φ = (I2|23) is Quasi-special but not Gauss-reduced.

We want to show that if a point of large rank is in the kernel of a morphism then

it is in the kernel of a Quasi-special morphism.

Lemma 2.8. Let V be an algebraic subvariety of Eg. Let p = (p1, . . . , ps) be a point in Es

of rank s. There exists ε0(p) > 0 depending on p such that for all ε ≤ ε0(p), for any subset
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Ve of V and positive integer r it holds

Sr(V
e × p,Oε) ⊂

⋃
φ̃:Eg+s→Er

Quasi-special

(Ve × p) ∩ (Bφ̃ + Oε).

�

Proof. The proof is the analog of Lemma 6.2 of [14], where we shall read Ve for C . �

3 The Proof of Theorem 1.1: The Four Main Steps

In the following, we present the four main steps for the proof of Theorem 1.1.

(0) We prove Theorem 1.4, which claims that Theorem 1.1 (i) and (ii) are equivalent.

We then shall prove Theorem 1.1(ii).

(1) In Proposition 3.2, we get rid of � by considering instead of V the weak-

transverse variety V × γ , where γ is a maximal free set of �0. The key point

is that for V × γ we consider

⋃
φ̃:Eg+s→Ed+1

Special

(VK × γ ) ∩ (Bφ̃ + Oδ),

where the union ranges only over Special morphisms (and not over all Gauss-

reduced morphisms).

(2) In Proposition 3.3, we show that the above union is contained in the union of

finitely many sets of the kind

(VK × γ ) ∩ (
Bφ̃ + O

δ′/H (φ̃)1+ 1
2n

)
.

Important is that the radius of the neighborhood of these finitely many sets is

inversally proportional to the height of the morphism (and it is not a constant

δ like in the union in step (1)).

(3) In Proposition 4.4, we show that if the stabilizer of V is finite, then there

exists ε > 0 such that, for all Special morphisms φ̃ of rank at least d + 1, the

set

(VK × γ ) ∩ (
Bφ̃ + Oδ/H (φ̃)

)

is Zariski nondense in V × γ .
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The statements (0), (1), and (2) are an immediate generalization of [14] Theorem

1.3, Proposition 10.2, and Proposition A, respectively. Part (3) is the most delicate and it

is presented in Section 4, below. It is the counterpart to [14] Proposition B. In order to

gain advantage from Theorem 1.5, we need to require that the stabilizer of the variety is

finite. In view of Lemma 5.1, this assumption will not be restrictive.

Part (0). Theorem 1.4 is an immediate consequence of

Theorem 3.1. Let V be an irreducible algebraic subvariety of Eg. Then, for ε ≥ 0 and r

a positive integer:

(i) The map x → (x, γ ) defines an injection

Sr(V , �ε) ↪→ Sr(V × γ ,Oε).

Recall that γ is a maximal free set of the division group �0 of �.

Let p ∈ Es be a point of rank s and K ≥ 0. Then, there exists ε0(p) > 0 such that:

(ii) For ε ≤ ε0(p), the map (x, p) → x defines an injection

Sr(VK × p,Oε) ↪→ Sr
(
VK ,

(
�g

p

)
εK ′

)
,

where K ′ = (g + s) max(1, g(K+ε)
c(p) ) and c(p) is a positive constant depending on p.

Recall that �p is the division group of the coordinates of p. �

Proof. The proof is the analog of the proof of [14] Theorem 9.1, where we shall read V

for C , K for K3, ε0(p) for εp and K ′ for K4. Note that the inequality ‖x‖ ≤ K is insured by

considering just points in VK (unlike in [14] where ‖x‖ ≤ K3 is due to the hypothesis r ≥ 2

and ε ≤ ε3). �
Part (1). Given a subgroup � and a real K, [14] Lemma 3.4 (with End(E) = Z) proves

that there exists a maximal free set γ1, . . . , γs of the division group �0 such that

‖γi‖ ≥ 3gK,∥∥∥∥∥
∑

i

biγi

∥∥∥∥∥
2

≥ 1

9

∑
i

|bi|2‖γi‖2
(3)

for b1, . . . , bs ∈ Z. We define

γ = (γ1, . . . , γs)

with γi satisfying the above conditions.
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Proposition 3.2. Let V be an irreducible algebraic subvariety of Eg. For r a positive

integer, K ≥ 0 and ε ≤ K
g , the map x → (x, γ ) defines an injection

⋃
φ:Eg→Er

Gauss-reduced

VK ∩ (
Bφ + (

�
g
0

)
ε

)
↪→

⋃
φ̃=(φ|φ′)
Special

(VK × γ ) ∩ (Bφ̃ + Oε).

�

Proof. The proof is the analog of Proposition 10.2 of [14], where one shall read K for K1,

V for C , VK for C (Q). Note that, here, the estimate ‖x‖ ≤ K is ensured by the assumption

that we consider points in VK (unlike in [14], where it is due to the assumptions r ≥ 2

and ε ≤ ε1). �

Part (2).

Proposition 3.3. Let V be an irreducible algebraic subvariety of Eg. Let p = (p1, . . . , ps) ∈
Es be a point of rank s. Then, for r a positive integer, K ≥ 0 and ε > 0,

⋃
φ̃:Eg+s→Er

Special

(VK × p) ∩ (
Bφ̃ + O

ε/M1+ 1
2n

) ⊂
⋃

ψ̃ :Eg+s→Er

Special, H (ψ̃ )≤M

(VK × p) ∩ (
Bψ̃ + O

(g+s+1)ε/H (ψ̃ )1+ 1
2n

)
,

where M = max(2, � K+‖p‖
ε

�2)n and n = r(g + s) − r2 + 1. �

Proof. The proof is the analog of the proof of Proposition A, part (ii) of [14], where one

shall read VK instead of C (Q), p for γ , K for K2, and M for M′. And where the estimate

‖x‖ ≤ K is ensured by the assumption that we consider points in VK (and not as in [14],

where it is due to the hypothesis r ≥ 2 and ε ≤ ε2).

Note that in the last row of the proof in [14], we estimate g − r + 1 + s + 1 with

g + s, because r ≥ 2. Here we instead estimate g − r + 1 + s + 1 with g + s + 1, because

r ≥ 1. �

4 The Proof of Theorem 1.1: Part (3)

Recall that μ(V ) is the supremum of the reals ε(V ) such that V ∩ Oε(V ) is Zariski nondense

in V . The essential minimum of V is the square of μ(V ). Using Theorem 1.5, we produce

a sharp lower bound for the essential minimum of the image of a variety under a Gauss-

reduced morphism. Unlike for curves, the stabilizer of the variety will play quite an

important role. In this section, we will often assume that V has finite stabilizer. In
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Lemma 5.1, we will see that such an assumption is not restrictive for the proof of our

main theorem.

4.1 The estimate for the essential minimum

Consider a Gauss-reduced morphism φ of codimension r = d + 1:

φ =

⎛
⎜⎜⎝

ϕ1

...

ϕr

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a . . . 0 L1

...
. . .

...
...

0 . . . a Lr

⎞
⎟⎟⎠ ,

where Li ∈ Zg−r. We denote x = (xr+1, . . . , xg).

We define the isogenies:

F :Eg → Eg

(x1, . . . , xg) → (x1, . . . , xr, axr+1, . . . , axg);

L :Eg → Eg

(x1, . . . , xg) → (x1 + L1(x), . . . , xr + Lr(x), xr+1, . . . , xg);

� :Eg → Eg

(x1, . . . , xg) → (ϕ1(x), . . . , ϕr(x), xr+1, . . . , xg).

(4)

Definition 4.1 Helping-variety. We define the variety

W = L F −1(V ).

Then

�(V ) = [a]W. �

We now estimate degrees.

Proposition 4.2. There exist positive constants c1 and c2 depending on g and deg E such

that:

(i) The degree of φ(V ) is bounded by c1a2d deg V .
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Suppose further that V has finite stabilizer. Then,

(ii) The degree of W is bounded by c2a2(g−r)|Stab V | deg V . �

Proof. For simplicity we indicate by � an inequality up to a multiplicative constant

depending on g and deg E .

Let X be an irreducible algebraic subvariety of Eg.

First we estimate the degree of the image of X under an isogeny ψ : Eg → Eg.

According to the chosen polarization

deg ψ (X) =
∑

I

Ei1 · · · · · Eid · ψ (X),

where I = (i1, . . . , id ) ranges over the possible combinations of d elements in the set

{1, . . . , g} and Eij is the coordinate subgroup given by xij = 0. Then

deg ψ (X) � max
I

(
Ei1 · · · · · Eid · ψ (X)

)
.

Let us estimate the intersection numbers on the right. By definition,

Ei1 · · · · · Eid · ψ (X) = BψI · X,

where the rows of ψI are the i1, . . . , id rows of ψ . Note that rk ψI = d and H (ψI ) ≤ H (ψ ).

Bezout’s Theorem and Lemma 2.1 (applied with φ = ψI and r = d) give

BψI · X ≤ deg BψI deg X � H (ψI )
2d deg X � H (ψ )2d deg X.

We conclude

deg ψ (X) � H (ψ )2d deg X.

For ψ = �, we deduce

deg �(V ) � H (�)2d deg V = a2d deg V. (5)

(i) In the chosen polarization, forgetting coordinates makes degrees decrease.

Note that φ(V ) = π�(V ), where π is the projection on the first r coordinates. By

(5), we conclude that

deg φ(V ) ≤ deg �(V ) � a2d deg V.

(ii) In [6] Lemma 6, part (i), Hindry proves:
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For any positive integer b,

deg[b]X = b2d

|StabX ∩ Eg[b]| deg X,

where | · | means the cardinality of a set and Eg[b] is the kernel of the multiplication [b].

Recall that �(V ) = [a]W. We deduce that

deg �(V ) = deg[a]W = a2d

|StabW ∩ Eg[a]| deg W.

Thus

deg W = |StabW ∩ Eg[a]|
a2d

deg �(V ).

By relation (5), we deduce

deg W � |StabW ∩ Eg[a]| deg V. (6)

We now estimate the cardinality of the stabilizer of W. Since W = L F −1V , we get

StabW = L F −1Stab V.

More precisely, if x ∈ Stab W then x + W ⊂ W. Recall that L is an isomorphism. Applying

F L−1 on both sides, we obtain F L−1x + V ⊂ V . Thus F L−1x ∈ Stab V and x ∈ L F −1Stab V .

On the other hand, suppose that x ∈ L F −1Stab V . Then F L−1x + V ⊂ V . Considering the

pre-image, x + ker(F L−1) + W ⊂ W. But, by definition, W is ker(F L−1) invariant, so x +
W ⊂ W and x ∈ Stab W.

By assumption, the stabilizer of V is finite. In addition, L is an isomorphism. So

|StabW| = | ker F ||Stab V | = a2(g−r)|Stab V |.

In view of (6), we conclude that

deg W � |StabW| deg V � a2(g−r)|Stab V | deg V. �

The following proposition is a lower bound for the essential minimum of the

image of a variety under Gauss-reduced morphisms. It reveals the dependence on the



February 4, 2009 1:1

615

620

625

630

635

640

645

18 E. Viada

height of the morphism. While the first bound is an immediate application of Theorem

1.5 and Proposition 4.2, the second estimate is subtle.

Proposition 4.3. Let φ be a Gauss-reduced morphism of rank d + 1 with a = H (φ). Then,

for any point y ∈ Eg and any η > 0,

(i)

μ(φ(V + y)) > ε1(V , η)
1

ad+2dη
,

where ε1(V , η) is an effective positive constant depending on V , E , g, and η.

Suppose further that V has finite stabilizer. Let � be the isogeny defined in (4). Then

(ii)

μ(�(V + y)) > ε2(V , η)a
1

g−d −2(g−d−1)η,

where ε2(V , η) is an effective positive constant depending on V , E , g, and η. �

Proof. Let us recall the Bogomolov-type bound given in Theorem 1.5; for a transverse

irreducible variety X in Eg and any η > 0,

μ(X) > ε(X, η) = c(Eg, η)

deg X
1

2cod X +η
. (7)

(i) Let q = φ(y). Then φ(V + y) = φ(V ) + q. Since V is irreducible, transverse, and

defined over Q, φ(V ) + q is so as well.

Observe that φ(V ) ⊂ Ed+1 has dimension at least 1 (because V is transverse)

and at most d (because dimension can just decrease under morphisms). Furthermore,

dimensions are preserved by translations.

The bound (7) for φ(V ) + q and g = d + 1 gives

μ(φ(V + y)) = μ(φ(V ) + q)

> ε(φ(V ) + q, η) = c(Ed+1, η)

(deg(φ(V ) + q))
1

2cod φ(V ) +η

≥ c(Ed+1, η)

(deg(φ(V ) + q))
1
2 +η

.
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Degrees are preserved by translations, hence Proposition 4.2(i) implies

deg(φ(V ) + q) = deg φ(V ) ≤ c1a2d deg V.

If follows

ε(φ(V ) + q, η) ≥ c(Ed+1, η)

(c1a2d deg V )
1
2 +η

.

Define

ε1(V , η) = c(Ed+1, η)

(c1 deg V )
1
2 +η

.

Then

μ(φ(V + y)) >
ε1(V , η)

ad+2dη
.

(ii) Let q ∈ Eg be a point such that [a]q = �(y). Let W0 be an irreducible component

of W = L F −1(V ). Then

�(V + y) = [a](W0 + q).

Therefore

μ(�(V + y)) = aμ(W0 + q). (8)

We now estimate μ(W0 + q) via the bound (7). The variety W0 + q ⊂ Eg is irre-

ducible by definition. Since V is transverse and defined over Q, W0 + q is so as well. Fur-

thermore, isogenies and translations preserve dimensions. Thus dim(W0 + q) = dim V =
d. Then,

μ(W0 + q) > ε(W0 + q, η) = c(Eg, η)

deg(W0 + q)
1

2(g−d) +η
.

Since W0 is an irreducible component of W, deg W0 ≤ deg W. Furthermore, translations

by a point preserve degrees. Thus, Proposition 4.2(ii) with r = d + 1 gives

deg(W0 + q) ≤ deg W ≤ c2a2(g−d−1)|Stab V | deg V.
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Therefore

μ(W0 + q) >
c(Eg, η)

(c2|Stab V | deg V )
1

2(g−d) +η

(
a2(g−d−1))− 1

2(g−d) −η
.

Define

ε2(V , η) = c(Eg, η)

(c2|Stab V | deg V )
1

2(g−d) +η
.

So

μ(W0 + q) > ε2(V , η)a−1+ 1
g−d −2(g−d−1)η

.

Replace in (8), to obtain

μ(�(V + y)) > ε2(V , η)a
1

g−d −2(g−d−1)η
.

�

4.2 The nondensity of the intersections

We come to the main proposition of this section: each set in the union is Zariski nondense.

The proof of (i) of case (1) is delicate. In general μ(π (V )) ≤ μ(V ) for π a projection on some

factors. We shall rather find a kind of reverse inequality. On a set of bounded height this

will be possible.

Proposition 4.4. Suppose that V ⊂ Eg has finite stabilizer. Then, for every K ≥ 0, there

exists an effective ε1 > 0 such that:

(i) For ε ≤ ε1, for all Gauss-reduced morphisms φ : Eg → Ed+1 and for all y ∈
Ed+1 × {0}g−d−1, the set

(VK + y) ∩ (
Bφ + Oε/H (φ)

)

is Zariski nondense in V .

(ii) Let s be a positive integer. For ε ≤ ε1
g+s , for all Special morphisms φ̃ = (φ|φ′) :

Eg+s → Ed+1 and for all points p ∈ Es, the set

(VK × p) ∩ (
Bφ̃ + Oε/H (φ)

)

is Zariski nondense in V × p. �
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Proof. Define

η = 1

2d
,

m =
(

K

ε2(V , η)

) g−d
1−2(g−d−1)(g−d)η

,

ε1 = min
(

K

g
,
ε1(V , η)

gmd+1

)
,

where ε1(V , η) and ε2(V , η) are as in Proposition 4.3.

Part (i).

Let a = H (φ). We distinguish two cases:

(1) a ≥ m,

(2) a ≤ m.

Case (1): If a ≥ m, (VK + y) ∩ (Bφ + Oε/H (φ)) is nondense in V .

Let x + y ∈ (VK + y) ∩ (
Bφ + Oε/a

)
, where

y = (y1, . . . , yd+1, 0, . . . , 0) ∈ Ed+1 × {0}g−d−1.

Then

φ(x + y) = φ(ξ )

for ‖ξ‖ ≤ ε/a.

Let � = φ × idEg−d−1 as in (4). Then

�(x + y) = (φ(x + y), xd+2, . . . , xg)

= (φ(ξ ), xd+2, . . . , xg).

Therefore

‖�(x + y)‖ = ‖(φ(ξ ), xd+2, . . . , xg)‖ ≤ max
(‖φ(ξ )‖, ‖x‖) .

Since ‖ξ‖ ≤ ε
a and ε ≤ K

g ,

‖φ(ξ )‖ ≤ gε ≤ K.
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Also, ‖x‖ ≤ K, because x ∈ VK . Thus,

‖�(x + y)‖ ≤ K.

We work under the hypothesis a ≥ m ≥ ( K
ε2(V ,η) )

g−d
1−2(g−d−1)(g−d)η ; then

K ≤ ε2(V , η)a
1

g−d −2(g−d−1)η
.

In Proposition 4.3(ii), we have proven

ε2(V , η)a
1

g−d −2(g−d−1)η
< μ(�(V + y)),

So

‖�(x + y)‖ ≤ K < μ(�(V + y)).

We deduce that �(x + y) belongs to the Zariski nondense set

Z1 = �(V + y) ∩ OK .

The restriction morphism �|V+y : V + y → �(V + y) is generically finite, because � is an

isogeny. Then x + y belongs to the Zariski nondense set �−1
|V+y(Z1).

We can conclude that, for every φ Gauss-reduced of rank d + 1 with H (φ) ≥ m,

the set

(VK + y) ∩ (
Bφ + Oε/H (φ)

)

is Zariski nondense.

Case (2): If a ≤ m, (VK + y) ∩ (Bφ + Oε/H (φ)) is nondense in V .

Let x + y ∈ (VK + y) ∩ (Bφ + Oε/a ), where y ∈ Ed+1 × {0}g−d−1. Then

φ(x + y) = φ(ξ )
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for ‖ξ‖ ≤ ε/a. However, we have chosen ε ≤ ε1(V , η)/gmd+1. Hence

‖φ(x + y)‖ = ‖φ(ξ )‖ ≤ gε ≤ ε1(V , η)

md+1
.

We are working under the hypothesis a ≤ m. Moreover, η = 1
2d . Then

ad+2dη ≤ md+1.

Thus

‖φ(x + y)‖ ≤ ε1(V , η)

md+1
≤ ε1(V , η)

ad+2dη
.

In Proposition 4.3(i), we have proven

ε1(V , η)

ad+2dη
< μ(φ(V + y)).

We deduce that φ(x + y) belongs to the Zariski nondense set

Z2 = φ(V + y) ∩ Oε1(V ,η)/md+1 .

Since V is transverse, the dimension of φ(V + y) is at least 1. Consider the restriction mor-

phism φ|V+y : V + y → φ(V + y). Then x + y belongs to the Zariski nondense set φ−1
|V+y(Z2).

We conclude that, for all φ Gauss-reduced of rank d + 1 with H (φ) ≤ m, the set

(VK + y) ∩ (
Bφ + Oε/H (φ)

)

is Zariski nondense.

Cases (1) and (2) prove part (i).

Part (ii). We are going to show that, for every φ̃ = (φ|φ′) Special of rank d + 1

(note that φ is Gauss-reduced of rank d + 1), there exists y ∈ Ed+1 × {0}g−d−1 such that

the map (x, p) → x + y defines an injection

(VK × p) ∩ (
Bφ̃ + Oε/H (φ)

)
↪→ (VK + y) ∩ (

Bφ + O(g+s)ε/H (φ)
)
. (9)
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We then apply part (i) of this proposition to φ and y ; since (g + s)ε ≤ ε1,

(VK + y) ∩ (
Bφ + O(g+s)ε/H (φ)

)

is Zariski nondense in V . So for ε ≤ ε1
g+s , the set

(VK × p) ∩ (
Bφ̃ + Oε/H (φ)

)

is Zariski nondense in V .

Let us prove the inclusion (9). Let φ̃ = (φ|φ′) be Special of rank d + 1. By definition

of Special, φ = (aId+1|L) is Gauss-reduced of rank d + 1.

Let y′ ∈ Ed+1 be a point such that

[a]y′ = φ′(p).

Define

y = (y′, 0, . . . , 0) ∈ Ed+1 × {0}g−d−1.

Then

φ(y) = [a]y′ = φ′(p).

Let

(x, p) ∈ (VK × p) ∩ (Bφ̃ + Oε/a ).

Then, there exists ξ ∈ Oε/a such that

φ̃((x, p) + ξ ) = 0.

Equivalently,

φ(x) + φ′(p) + φ̃(ξ ) = 0

and

φ(x + y) + φ̃(ξ ) = 0.

Let ξ ′′ ∈ Ed+1 be a point such that

[a]ξ ′′ = φ̃(ξ ).



February 4, 2009 1:1

865

870

875

880

885

890

895

900

Nondense Subsets of Varieties 25

We define ξ ′ = (ξ ′′, {0}g−d−1), then

φ(ξ ′) = [a]ξ ′′ = φ̃(ξ )

and

φ(x + y + ξ ′) = 0.

Since φ̃ is Special, H (φ̃) = a. Further, ‖ξ‖ ≤ ε
a . We deduce

‖ξ ′‖ = ‖ξ ′′‖ = ‖φ̃(ξ )‖
a

≤ (g + s)ε

a
.

In conclusion,

φ(x + y + ξ ′) = 0

with ‖ξ ′‖ ≤ (g+s)ε
a . Equivalently,

(x + y) ∈ (VK + y) ∩ (
Bφ + O(g+s)ε/H (φ)

)
,

where y ∈ Ed+1 × {0}g−d−1 and φ is Gauss-reduced of rank d + 1.

This proves relation (9) and concludes the proof. �

5 The Proof of Theorem 1.1: Conclusion

5.1 Reducing to a variety with finite stabilizer

In the following lemma, we will show that to prove Theorem 1.1 it is sufficient to prove

it for varieties with finite stabilizer. This innocent remark will allow us to use all results

of Section 4.

Lemma 5.1. They hold:

(i) Let X = X1 × Ed2 be a subvariety of Eg of dimension d. Then, for r ≥ d2,

Sr(X, F ) ↪→ Sr−d2 (X1, F ′) × Ed2 ,

where F ′ is the projection of F on Eg−d2 .
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(ii) Let V be a (weak)-transverse subvariety of Eg. Suppose that dim Stab V =
d2 ≥ 1. Then, there exists an isogeny j of Eg such that

j(V ) = V1 × Ed2

with V1 (weak)-transverse in Eg−d2 and Stab V1 a finite group.

(iii) Theorem 1.1 holds if and only if it holds for varieties with finite stabilizer. �

Proof. (i) Let (x1, x2) ∈ Sr(X, F ) with x1 ∈ X1 and x2 ∈ Ed2 . Then, there exist φ : Eg → Er

of rank r and ( f1, f2) ∈ F such that

φ((x1, x2) − ( f1, f2)) = 0. (10)

Decompose φ = (α|β) with α : Eg−d2 → Er and β : Ed2 → Er. Note that rk β = r2 ≤ d2 be-

cause of the number of columns. Then, the Gauss algorithm ensures the existence of an

invertible matrix � ∈ GLr(Z) such that

�φ =
(

φ1 0

� φ2

)
,

where φ1 : Eg−d2 → Er−r2 and φ2 : Ed2 → Er2 of rank r2.

Since r = rk φ = rk φ1 + rk φ2, we deduce rk φ1 = r − r2 ≥ r − d2. Furthermore,

relation (10) implies

φ1(x1 − f1) = 0.

Thus x1 ∈ Sr−d2 (X1, F ′).

(ii) Let Stab0V be the zero component of Stab V . Consider the projection

πS : Eg → Eg/Stab0V.

Define V ′
1 = πS(V ). Then

dim V ′
1 = dim(V + Stab0V ) − dim Stab0V = d − d2 < g − d2.

Since V is (weak)-transverse and dim V ′
1 < g − d2, then V ′

1 is (weak)-transverse in

Eg/Stab0V . Let (Stab0V )⊥ be the orthogonal complement of Stab0V in Eg and let
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j0 : Eg/Stab0V → (Stab0V )⊥ be an isogeny. Define the isogeny

j′ :Eg → (Eg/Stab0V ) × Stab0V ,

x → (πS(x), x − j0(πS(x)).

Then

j′(V ) ⊂ V ′
1 × Stab0V.

Since these varieties have the same dimension and are irreducible,

j′(V ) = V ′
1 × Stab0V.

Let i0 : Eg/Stab0V → Eg−d2 and i1 : Stab0V → Ed2 be isogenies. Define i = i0 × i1, j = i ◦ j′

and V1 = i(V ′
1). Then

j(V ) = V1 × Ed2 ,

with V1 (weak)-transverse in Eg−d2 . Finally,

StabV1 = i ◦ πS(Stab V )

is finite.

(iii) Suppose that V is (weak)-transverse in Eg and that dim Stab V = d2 > 0, then,

by part (ii), we can fix an isogeny j such that j(V ) = V1 × Ed2 with Stab V1 a finite group

and V1 (weak)-transverse in Eg−d2 of dimension d1 = d − d2. Furthermore, by part (i) with

X = j(V ), X1 = V1, r = d + 1 and F = �ε, we know that

Sd+1(V , �ε) ↪→ Sd1+1(V1, �′
ε) × Ed2 .

So, if Sd1+1(V1, �′
ε) is Zariski nondense in V1, also Sd+1(V , �ε) is Zariski nondense

in V . �

We can now conclude the proof of our main theorem. Let us recall that in view of

Theorem 1.4, it is sufficient to prove part (ii).
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Proof of Theorem 1.1(ii). In view of Lemma 5.1 (iii), we can assume that Stab V is

finite. Recall that r = d + 1, the rank of �0 is s and n = (d + 1)(g + s) − (d + 1)2 + 1. Let

γ = (γ1, . . . , γs) be a point of rank s, such that γi is a maximal free set of �0 satisfying

conditions (3).

Choose

(i) δ1 = 1
(g+s+1) min( ε1

g+s , K), where ε1 is as in Proposition 4.4,

(ii) δ = δ1M−1− 1
2n , where M = max(2, � K+‖γ ‖

δ1
�2)n.

Since �δ ⊂ (�g
0)δ, then

Sd+1(VK , �δ) ⊂ Sd+1
(
VK ,

(
�

g
0

)
δ

)
.

Lemma 2.6, with ε = δ and r = d + 1, shows that

Sd+1
(
VK ,

(
�

g
0

)
δ

) =
⋃

φ:Eg→Ed+1

Gauss-reduced

VK ∩ (
Bφ + (

�
g
0

)
δ

)
.

Note that δ < δ1 ≤ K
g . Then Proposition 3.2 with ε = δ implies

⋃
φ:Eg→Ed+1

Gauss-reduced

VK ∩ (
Bφ + (

�
g
0

)
δ

)
↪→

⋃
φ̃=(φ|φ′)
Special

(VK × γ ) ∩ (Bφ̃ + Oδ).

Note that δ1 > 0 and δ = δ1M−(1+ 1
2n ). Then Proposition 3.3, with ε = δ1, r = d + 1

and p = γ , shows that

⋃
φ̃:Eg+s→Ed+1

Special

(VK × γ ) ∩ (Bφ̃ + Oδ)

is a subset of

Z =
⋃

φ̃:Eg+s→Ed+1

Special, H (φ̃)≤M

(VK × γ ) ∩
(

Bφ̃ + O
(g+s+1)δ1/H (φ̃)1+ 1

2n

)
.

Observe that Z is the union of finitely many sets, because H (φ̃) is bounded by M.
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We have chosen δ1 ≤ ε1/(g + s + 1)(g + s); moreover, Stab V is finite. Then Propo-

sition 4.4 (ii), with ε = (g + s + 1)δ1 ≤ ε1
g+s and p = γ , implies that for all φ̃ = (φ|φ′) Special

of rank d + 1, the set

(VK × γ ) ∩ (
Bφ̃ + O(g+s+1)δ1/H (φ)

)

is Zariski nondense in V × γ . Note that H (φ) ≤ H (φ̃), thus also the sets

(VK × γ ) ∩ (
Bφ̃ + O

(g+s+1)δ1/H (φ̃)1+ 1
2n

)

are Zariski nondense. So Z is Zariski nondense, because it is the union of finitely many

Zariski nondense sets. We conclude that Sd+1(VK , �δ) is included in the Zariski nondense

set Z . �

Remark 5.2. In [14] we defined a different helping curve W′ = A−1
0 W with W as in

Definition 4.1 and A0 = (I2|a0 Ig−2). This more complicated W′ is needed because in [14]

we produced a worse bound for the degree of W′. Consequently, we proved a “weak”

Proposition 4.4: we needed to assume that the neighborhoods have radius ε/a0a. To

compensate this loss, we needed the “strong” Proposition 3.3, where the radius is ε/a0a.

This was sufficient to prove our main theorem for curves. Such a trick is not sufficient to

prove an optimal result for varieties.

In the present work, using the stabilizer, we produce a “good” bound for the degree

of W, and we can prove the “strong” Proposition 4.4 for neighborhoods of radius ε/a.

Then, to prove our main theorem in general, it is sufficient to use a “weak” Proposition

3.3, where the radius of the neighborhoods is ε/a.

If we try to combine both “strong” statements, namely Proposition 3.3 (with

ε/a0a) and the “good” bound for the degree of W, we do not get any relevant improve-

ment. Indeed, in the proof of Proposition 4.4, part (i), the inequality ‖x‖ ≤ K remains

unchanged. The advantage would only be in respect of ε in the statement of Proposition

4.4, where we could choose ε ≤ ε1m. �

6 A Special Case of Conjecture 1.2

The natural rising question is to investigate the height property for the codimension of

the algebraic subgroups at least d + 1. We expect that Conjecture 1.2 holds. The known

results regarding this conjecture are based on a Vojta inequality, unless � is trivial.
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Following Rémond’s work, we prove here a new case of Conjecture 1.2. In this section, E

is a general elliptic curve (never mind whether CM or not). In view of Proposition 5.1 of

Rémond [10], we give the following:

Definition 6.1. We say that a subset Ve of V satisfies a Vojta inequality if there ex-

ist real constants c1, c2, c3 > 0 such that for x1, . . . , xd+1 ∈ Ve with ‖xi‖ ≥ c3 and for φ

Gauss-reduced of rank r ≤ g, there exists s1, . . . , sd+1 ∈ N∗ with si ≥ c2si+1 such that

d+1∑
i=2

‖siφ(xi) − s1φ(x1)‖2 ≥ H (φ)2

c1

d+1∑
i=1

s2
i ‖xi‖2. �

Note that a Gauss-reduced morphism is a normalized projector in the sense of

[10]. Then, this definition tells us that if Proposition 5.1 of [10] holds for points in Ve

then Ve satisfies a Vojta inequality.

Theorem 6.2 (Theorem 1.2 of Rémond [10]). If Ve ⊂ V satisfies a Vojta inequality, then

there exists ε > 0 such that Sd+1(Ve, �ε) has bounded height. �

Rémond also gives a definition of a candidate Ve that satisfies a Vojta inequality

and is possibly a nonempty open subset in V . In a recent article he shows:

Theorem 6.3 (Rémond [11]). Assume that V ⊂ Eg satisfies condition (1). Then there

exists a nonempty open subset Vu of V such that Vu satisfies a Vojta inequality. �

These two theorems imply:

Theorem 6.4. Conjecture 1.2(ii) holds for V satisfying condition (1). �

Here, we extend his theorem to the associated weak-transverse case.

Theorem 6.5. Conjecture 1.2(i) holds for V × p, where V satisfies condition (1) and p is

a point in Es not lying in any proper algebraic subgroup of Es. �

For V transverse and p ∈ Es a point of rank s, we cannot embed the set Sr(V ×
p,Oε) in a set of the type Sr(V , �ε′ ), unless we know a priori that the first set has bounded

height. So, Theorem 6.2 is not enough to deduce a statement for V × p.

However, we can embed Sr(V × p,Oε) in the union of two sets Sr(V , �ε′ ) ∪ (V ∩
G p,ε,r ), where the set G p,ε,r is defined in the proof of Theorem 6.10 below. The same
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method can be used to show that, for Ve satisfying a Vojta inequality, Ve ∩ G p,ε,r has

bounded height, exactly as we do for curves in Theorem 1.2 of [14].

Let us write the details.

Definition 6.6. Let r, s positive integers and ε > 0 a real. Let p be a point in Es. We

define Gε,r
p as the set of points θ ∈ Er for which there exist a matrix A ∈ Mr,s(End(E)), an

element a ∈ End(E) with 0 < |a| ≤ H (A), points ξ ∈ Es and ζ ∈ Er of norm at most ε such

that

[a]θ = A(p+ ξ ) + [a]ζ.

We identify Gε,r
p with the subset Gε,r

p × {0}g−r of Eg. �

Lemma 6.7. Let V be a subvariety of Eg. Let Ve be a subset of V and let p ∈ Es be a

point. Then, for every ε ≥ 0, the projection on the first g coordinates

Eg × Es → Eg,

(x, y) → x,

defines an injection

Sr(V
e × p,Oε/2gs) ↪→ Ve ∩

⋃
φ:Eg→Er

Gauss-reduced

(
Bφ + (

�g
p

)
ε

) ∪ (
Bφ + Gε,r

p

)
. �

Proof. The proof is the analog of the proof of [14] Lemma 7.2, where we shall replace

C (Q) by Ve, the codimension 2 by r (as well as E2 and g − 2 by Er and g − r), the set Gε
p

by Gε,r
p . Also, we shall use Lemma 2.8 stated in this article, instead of Lemma 6.2 of [14]

to which we refer there. �

Lemma 6.8 Counterpart to Lemma 6.1 of [10]. For φ : Eg → Er Gauss-reduced of rank

r, we have the following inclusion of sets:

(
Bφ + Gε,r

p

)⊂{P + θ : P ∈ Bφ , θ ∈ Gε,r
p and max(‖θ‖, ‖P‖) ≤ 2g‖P + θ‖}. �

Proof. The proof is the analog of [14] Lemma 7.3, where one replaces Gε
p by Gε,r

p and 2

by r. �



February 4, 2009 1:1

1120

1125

1130

1135

1140

1145

1150

32 E. Viada

Note that Lemma 6.2, part (1), of [10] is a statement on the morphisms; therefore

it holds with no need of any remarks.

Lemma 6.9 Counterpart to Lemma 6.2, part (2), of [10]. Let c1 be a given constant. Let

p ∈ Es be a point of rank s. There exists ε3 > 0 such that if ε ≤ ε3 then any sequence of

elements in Gε,r
p admits a subsequence in which every two elements θ , θ ′ satisfy

∥∥∥∥ θ

‖θ‖ − θ ′

‖θ ′‖
∥∥∥∥ ≤ 1

16gc1
. �

Proof. The proof is the analog of [14] Lemma 7.4, where A, A′ ∈ Mr,s(End(E)) and A =⎛
⎜⎜⎝

A1

...

Ar

⎞
⎟⎟⎠ , with Ai ∈ M1,s(End(E)).

�

We are ready to conclude.

Theorem 6.10. Let p ∈ Es be a point of rank s. Suppose that Ve ⊂ V satisfies a Vojta

inequality. Then, there exists ε > 0 such that

Sd+1(Ve × p,Oε)

has bounded height. �

Proof. Define

�ε,r =
⋃

φ:Eg→Er

Gauss-reduced

(
Bφ + (

�g
p

)
ε

)

and

G p,ε,r =
⋃

φ:Eg→Er

Gauss-reduced

(
Bφ + Gε,r

p

)
.

In view of Lemma 6.7, Sd+1(Ve × p,Oε) ↪→ (Ve ∩ �ε,d+1) ∪ (Ve ∩ G p,ε,d+1).

Theorem 6.2 shows that there exists ε1 > 0 such that for ε ≤ ε1, Ve ∩ �ε,d+1 =
Sd (Ve, �ε) has bounded height.
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It remains to show that there exists ε2 > 0 such that for ε ≤ ε2, the set Ve ∩ G p,ε,d+1

has bounded height. The proof follows, step by step, the proof of Rémond [10], Theorem

1.2, pp. 341–43, where one shall read G p,ε,r for �ε,r, θ for γ , Ve for X(Q) \ Z (r)
X . Note that

he writes | · | for the height norm, here we write ‖ · ‖. For the morphisms he uses a norm

denoted by ‖ · ‖, here we denote the norm of a morphism by H (·). Lemmas 6.1 and 6.2 of

[10] are replaced by our Lemmas 6.8 and 6.9. The Vojta inequality, Proposition 5.1 of [10],

holds for the set Ve by assumption. �

Proof of Theorem 6.5. Thanks to Theorem 6.3, there exists a nonempty open subset Vu

of V such that Vu satisfies a Vojta inequality. Theorem 6.10 applied with Ve = Vu implies

that there exists ε > 0 such that Sd+1(Vu × p,Oε) has bounded height. �

In conclusion, Conjecture 1.2(i) and (ii) are not equivalent, but the same method

can be applied to prove both cases.
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[10] Rémond, G. “Intersection de sous-groupes et de sous-variétés 2.” Journal de l’Institut de
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