edoc

DEAD-box ATPases are global regulators of phase-separated organelles

Hondele, Maria and Sachdev, Ruchika and Heinrich, Stephanie and Wang, Juan and Vallotton, Pascal and Fontoura, Beatriz M. A. and Weis, Karsten. (2019) DEAD-box ATPases are global regulators of phase-separated organelles. Nature, 573 (7772). pp. 144-148.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/79410/

Downloads: Statistics Overview

Abstract

The ability of proteins and nucleic acids to undergo liquid-liquid phase separation has recently emerged as an important molecular principle of how cells rapidly and reversibly compartmentalize their components into membrane-less organelles such as the nucleolus, processing bodies or stress granules; 1,2; . How the assembly and turnover of these organelles are controlled, and how these biological condensates selectively recruit or release components are poorly understood. Here we show that members of the large and highly abundant family of RNA-dependent DEAD-box ATPases (DDXs); 3; are regulators of RNA-containing phase-separated organelles in prokaryotes and eukaryotes. Using in vitro reconstitution and in vivo experiments, we demonstrate that DDXs promote phase separation in their ATP-bound form, whereas ATP hydrolysis induces compartment turnover and release of RNA. This mechanism of membrane-less organelle regulation reveals a principle of cellular organization that is conserved from bacteria to humans. Furthermore, we show that DDXs control RNA flux into and out of phase-separated organelles, and thus propose that a cellular network of dynamic, DDX-controlled compartments establishes biochemical reaction centres that provide cells with spatial and temporal control of various RNA-processing steps, which could regulate the composition and fate of ribonucleoprotein particles.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Growth & Development > Biochemistry (Hondele)
UniBasel Contributors:Hondele, Maria
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Nature
ISSN:0028-0836
e-ISSN:1476-4687
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:16 Dec 2020 15:17
Deposited On:16 Dec 2020 15:17

Repository Staff Only: item control page