
Running Head: WEARABLE DEVICES VS. STATIONARY EQUIPMENT 1 
 

 

 

 

Comparing apples and oranges or different types of citrus fruits?  

Using wearable vs. stationary devices to analyze psychophysiological data  

 

Konstantinou Pinelopi, MSc1; Trigeorgi Andria, MSc2;  Georgiou Chryssis, PhD2  Gloster Andrew T., 

PhD3, Panayiotou Georgia, PhD1 & Karekla Maria, PhD1 

 

1Department of Psychology, University of Cyprus, Nicosia, Cyprus 

2Department of Computer Science, University of Cyprus, Nicosia, Cyprus 

3Department of Psychology, University of Basel, Switzerland 

 

 

Corresponding author: Maria Karekla, Ph.D., Department of Psychology, University of Cyprus, P.O. Box 

20537, Nicosia 1678, Cyprus; TEL: 357 22 892100; mkarekla@ucy.ac.cy 

  

mailto:mkarekla@ucy.ac.cy


WEARABLE DEVICES VS. STATIONARY EQUIPMENT      2 

 

Abstract 

Wearable devices capable of capturing psychophysiological signals are popular. However, such devices 

have yet to be established in experimental and clinical research. This study, therefore, compared 

psychophysiological data (skin conductance level (SCL), heart rate (HR), and heart rate variability 

(HRV)) captured with a wearable device (Microsoft band 2) to those of a stationary device (Biopac 

MP150), in an experimental pain induction paradigm. Additionally, the present study aimed to compare 

two analytical techniques of HRV psychophysiological data: traditional (i.e., peaks are detected and 

manually checked) vs. automated analysis using Python programs. Forty-three university students (86% 

female; Mage = 21.37 years) participated in the cold-pressor pain induction task. Results showed that the 

majority of the correlations between the two devices for the mean HR were significant and strong (rs > 

.80) both during baseline and experimental phases. For the time-domain measure of mean RR (function of 

autonomic influences) of HRV, the correlations between the two devices at baseline were almost perfect 

(rs = .99) whereas at the experimental phase were significantly strong (rs > .74). However, no significant 

correlations were found for mean SCL (p > .05). Additionally, automated analysis led to similar features 

for HRV stationary data as the traditional analysis. Implications for data collection include the 

establishment of a methodology to compare stationary to mobile devices and a new, more cost efficient 

way of collecting psychophysiological data. Implications for data analysis include analyzing the data 

faster, with less effort and allowing for large amounts of data to be recorded.  

 

Keywords: wearable device; psychophysiological data; stationary equipment; heart rate variability; skin 

conductance response; Bland-Altman plots; Root Mean Square Error  
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1. Introduction 

Traditionally, measurement of psychophysiological data took place in the laboratory using 

stationary equipment. Measurement of psychophysiological data in this way contributed important 

findings in psychology, especially in the area of emotions research (Ries, Touryan, Vettel, McDowell, & 

Hairston, 2014). However, psychophysiological research had been confined to the study of signals only in 

controlled laboratory environments. Consequently, laboratory experiments have been criticized for their 

analogue nature and for placing participants in artificial settings in which all aspects are controlled by the 

researcher and are detached from the participants’ natural environment and real life (Reis & Gosling, 

2010). Findings do not represent situations, behaviors and actions from real life but instead may give a 

distorted picture of them (Vissers, Heyne, Peters, & Guerts, 2001). There is a plethora of information that 

can be learned if we explore psychophysiological signals within a persons’ environment instead of 

examining them only in analogue experimental conditions (e.g., psychophysiological responses of a 

person during stress, pain, anger, etc.). 

Recent technological advances led to the creation of new wearable devices. Wearable devices are 

technological devices which can be worn on the human body as accessories or incorporated into clothing, 

and are able to measure psychophysiological signals anywhere and anytime (Goncu-berk & Topcuoglu, 

2017). Specifically, wearable devices can measure physiological signals such as heart rate (HR), heart 

rate variability (HRV), respiration rate, skin and body temperature, electrodermal activity (EDA), 

galvanic skin response (GSR), electromyography (EEG; Taj-Eldin, Ryan, O’flynn, & Galvin, 2018), etc. 

They have the advantages of being noninvasive, mobile, unobtrusive, less costly, easy to use, and 

aesthetically appealing to the individuals wearing them, compared to stationary devices. Wearable devices 

claim to collect the same or similar psychophysiological signals as stationary equipment but in an easier, 

faster and effortless way. For example, it requires more effort and time for researchers to place the 

electrodes on participants’ arms, face and fingers, than to wear the wearable device. Importantly, they can 

measure psychophysiological signals continuously, while people go about their daily lives (Garbarino, 

Lai, Bender, Picard, & Tognetti, 2014; Ragot, Martin, Em, Pallamin, & Diverrez, 2017). 
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Despite the rise in popularity of such devices (e.g., for measuring HR during exercise, measuring 

steps taken, etc.), their use for scientific purposes and assessment of psychophysiological signals is still in 

its infancy. This is due in part to the lack of studies that experimentally examine equivalence and 

reliability between stationary and mobile means of measuring psychophysiological signals (i.e., HR, 

HRV, and EDA/GSR). Ollander (2015) used a small sample (n = 9) to compare laboratory equipment 

(Biopac) to a wearable device (Empatica E4 wristband) for detecting psychophysiological stress 

responses (HR and GSR). The E4 wristband measured mean HR similarly to laboratory equipment, but 

with a lower sampling frequency (i.e., wearable sampling frequency = 4-64 Hz vs. stationary = 1 kHz). 

However, mean GSR measurements were not analogous, probably due to differences in assessment 

sensitivity resulting from measurements occurring from differences in electrode placements (fingers in the 

case of stationary vs. wrist in the case of wearable).  

Another study by Ollander and colleagues (2016), resulted in similar promising results in 

participants (n = 7) who underwent two tasks (stressful task vs. control/stress-free task). Both wearable 

(E4 wristband) and stationary devices (Biopac) had a good estimation of mean HR and good stress 

discrimination (stress-related vs. stress-free activity). However, skin conductivity (SC) signals again 

showed low correlation between the two types of devices. Recently, Ragot and colleagues (2017) 

compared physiological data from the E4 wristband to those of laboratory equipment (Biopac) during an 

emotion recognition experiment (using emotional pictures). These authors utilized machine learning 

models for the analysis of their psychophysiological data and found that the mean responses of 

physiological data (for cardiac features of HR, AVNN, SDNN, RMSSD, pNN50, LF, HF, RF) yielded 

from the wearable device, were similar to those of the laboratory equipment. Specifically, correlations 

between the stationary and wearable devices were high for the average values of cardiac features (i.e., 

from .50 to .99). However, once again the correlations were low for mean skin conductance level (SCL; r 

= .13). Moreover, emotion recognition (i.e., machine learning algorithms trained both devices to 

recognize valence and arousal) was found to be similar between the two devices, with an accuracy of 66% 

for recognizing valence and 70% for recognizing arousal. Heathers (2013) examined HR and HRV as 
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measured via a laboratory PowerLab stationary ECG sampler and a Smartphone Pulse Rate Variability 

system, and found that there was an accurate approximation of mean HR and HRV features (i.e., 

RMSSDD, SDNN) between the two types of devices, when participants were at rest, during an attentional 

task, and during an exercise task.  

Overall, existing limited findings present promise for the accurate, reliable and comparable 

measurement of some psychophysiological indices (e.g., mean HR, HRV indices) via wearable devices 

compared to traditional stationary ones. However, some signals (e.g., mean values of EDA) present as 

problematic when ambulatorily assessed, resulting in low reliability. Some measurement reliability 

problems of wearable devices may be attributed to differences in sampling frequencies or electrode 

placement locations. More research is needed to examine concordance and discordance between 

stationary and wearable devices over time and across various conditions (e.g., rest vs. doing a task), and 

utilizing larger samples of participants. Such research will not only provide necessary information of the 

use of ambulatory devices at the present time, in daily life and for longer and continuous duration, but 

will also stimulate further research into new and improved models of such equipment.   

Furthermore, with regards to HRV indices specifically, psychophysiological data have been 

analyzed traditionally with much manual effort, with peaks of the electrocardiography signals (ECG) 

detected and manually checked for artifacts and noise and then fed into a specific software (e.g., Kubios, 

AcqKnowledge, Statistica, Artiifact) for extracting HR and HRV features. However, with the potential 

amount of data able to be harnessed via wearable devices, such traditional analysis will be impossible. 

Automated analyses using software (e.g., Python programs), have the potential to aid in the accurate 

analysis of a large volume of collected psychophysiological data (e.g., features of HRV), however, to date 

they have been largely underutilized in this specific context. 

1.1. The Present Study 

The purpose of this study was twofold. First, to compare the psychophysiological data -i.e., 

average HR, HRV features (average RR, SDNN, RMSSD, pNN50) and average SCL- captured with a 

wearable device (Microsoft Band 2; https://www.microsoft.com/en-us/band; a device different than those 

https://www.microsoft.com/en-us/band
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used in previous studies) to those of a standard stationary psychophysiological device (i.e., Biopac 

MP150) in terms of association and congruence between signals across both a resting period (baseline 

phase) and an experiment of pain induction (i.e., cold pressor task). The Microsoft Band 2 was used for 

this study’s purposes rather than other wearable devices tested in previous studies (e.g., E4) due to its 

significantly lower cost compared to E4, and its easy extraction and handling of sensor data (fewer 

limitations imposed by the manufacturers allowing for easier manipulation of sampling frequencies- a 

limitation identified in previous studies). Also, the Microsoft Band 2 is independent from intermediate 

cloud-based platforms for extracting the data from the device, which allows for a higher longevity of the 

device in case of product discontinuation; in fact, we developed our own mobile app for downloading the 

data from the device with ease. 

The second purpose of the study is to compare traditional analysis vs. automated analysis of HRV 

features. Traditionally, HR and SCL data is analyzed using software such as AcqKnowledge. Regarding 

HRV however, there is great manual data cleaning of artifacts that is involved which takes time, effort, 

and reduces the amount of data researchers can collect and analyze (Malik et al., 1996). Thus, we wanted 

to examine whether we could automate this traditionally manual analysis by developing data processing 

programs using a simple programming language such as Python. Examining the psychophysiological 

responses from wearable vs. stationary devices within a pain induction paradigm, can identify whether 

they can reliably assess emotional responses to stressors (acute pain). Also, it can allow for the 

comparison of responses captured by the two devices between a resting period and an experimental acute 

pain induction procedure. To our knowledge, this is the first study with such aims that purports to shed 

light as to the ability of wearable devices to accurately and reliably assess psychophysiological responses 

to acute pain, and examine in parallel whether automated analyses (using Python programs) can result in 

an as accurate analysis of HRV collected data as when traditionally analyzed. 
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2. Method 

2.1. Participants 

 Participants were 43 students from the University of Cyprus (Table 1). The majority of the 

participants were female (n = 37, 86%), aged 18 to 38 years (Mage = 21.37 years, SD = 3.72); single (n = 

42, 97.70%); and possessing a high-school diploma (n = 30, 69.80%) or a Bachelors’ degree (n = 11, 

25.60%). All participants were recruited from psychology classes and received course credit for 

participation. Exclusion criteria consisted of presence of any pain-related disorder, Raynaud’s disease, 

heart disease, high blood pressure, hypertension and diabetes; or taking any medication.  

"INSERT TABLE 1 ABOUT HERE" 

2.2. Self-reported and Behavioral measures 

2.2.1. Demographic Information 

Basic demographic information was collected including gender, age, marital status, and ethnicity.  

2.2.2. Visual Analogue Scale (VAS)  

A 10-point visual analogue scale was used to assess pain intensity after the termination of the 

pain inducing task (ranging from 0 indicating “no pain” to 10 indicating “worst imaginable pain”). The 

VAS is frequently used in pain induction experiments as a measure of pain intensity (Kohl, Rief, & 

Glombiewski, 2012; Moore, Stewart, Barnes-Holmes, Barnes-Holmes, & McGuire, 2015).  

2.2.3. Pain Tolerance  

Pain tolerance was defined as the total length of time that a participant kept his/her hand 

immersed in the cold water. A digital stopwatch was used to measure the time in seconds. Such 

assessment of pain tolerance has been utilized by numerous studies and is considered a reliable method 

(Keogh et al., 2005; Moore et al., 2015).  

2.2.4. Pain Threshold  

Pain threshold was established via the total amount of time from immersion until a participant 

verbally reported pain. A digital stopwatch was used to measure time in seconds (Keogh et al., 2005).  
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2.3. Physiological Measures  

2.3.1. Stationary equipment  

Physiological data (i.e., mean HR, HRV and mean SCL) were collected using BIOPAC MP150 

for Windows and AcqKnowledge 3.9.0 data acquisition software (Biopac Systems Inc., Santa Barbara, 

CA). Electrocardiography (ECG) signals were recorded via electrodes placed on each participant’s inner 

forearm. Raw ECG signals were filtered by a BIOPAC ECG100C bioamplifier, which was set to record 

HR from 40 to 180 beats per minute (BPM). HR was converted to BPM on line. Sampling frequency of 

ECG signals was set to 1kHz. For the ECG signals, interbeat intervals (IBI; time intervals between 

heartbeats) were extracted from AcqKnowledge and fed into Artiifact (Kaufmann, Sütterlin, Schulz, & 

Vögele, 2011) from which four HRV time series measures (mean RR, SDNN, RMSSD, pNN50) were 

extracted and used in the present study (for description of the features and analysis see HRV analysis 

section). In regards to SCL signals, they were recorded via two silver/silver chloride (Ag/AgCI) 

electrodes with Velcro straps placed on each participant’s second digit of the index and middle fingers on 

the non-dominant hand. SCL signals were recorded continuously using a BIOPAC GSR100C transducer 

amplifier in micro-Siemens (𝜇𝑆) and sampling frequency 250Hz.  

2.3.2. Wearable device  

The second method used to collect psychophysiological data was a wearable psychophysiological 

monitor bracelet, namely the “Microsoft band 2” (https://www.microsoft.com/en-us/band). Microsoft 

band measured similar peripheral psychophysiological indices to those recorded with the stationary 

device from the wrist of the participant (e.g., mean HR in BPM, mean IBI).  

The Microsoft band is a wearable wireless multisensor device designed for real-time data 

acquisition. It can store over 48 hours of data and is reported by the manufacturers to provide accurate 

data (https://www.microsoft.com/en-us/band/features). It is equipped with Photoplethysmography (PPG) 

sensor that measures blood volume pulse (BVP) from which HR, HRV and other cardiovascular features 

can be derived. This sensor uses optical measurements to record and calculate the volume variance of the 

blood through time (Allen, 2007). For HR, the PPG sensor extracts an individual’s BPM whereas for 
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HRV, the IBIs are extracted. It should be worth mentioning that the IBIs are reported to be the same with 

RR intervals extracted from the stationary equipment (Ahmed, Begum, & Islam, 2010). Microsoft band 2 

also measured skin resistance through a GSR sensor. Transformations were made to the collected data 

from skin resistance to SCL with the appropriate formulas (for details see the HR and SCL analyses 

section), in order to be comparable between the two device-types. The sampling frequency of HR as set 

by its developers was 1Hz, whereas for SCL, there was a choice between 0.2 Hz and 5Hz; we chose the 

0.2 Hz in order to more closely simulate out-of-the-lab conditions of measurement and conserve battery 

life (higher sampling frequencies result in higher battery consumption). Measurement unit of SCL signals 

was kohms whereas HR was measured in BPM and HRV in IBI.  

For purposes of this study, an Android app was used (Galazis, 2017; see the Supplementary 

Material Figure 1 for a view of the app; available from the authors upon request). This app allows the 

researcher to select which of the sensors he/she wants to connect to and receive stream data from. The 

Microsoft band 2 must be first paired with the smartphone through the Bluetooth connection. The data 

collected from the Microsoft band 2 was stored on the external SD of the smartphone and saved as CSV 

comma-separated files and then transferred to a PC for processing.  

2.4. Cold Pressor Task (CPT) 

A pain task was used to induce physiological sensations that would allow for the comparison of 

stationary with wearable devices. Pain sensations are experienced by everyone and are associated with 

increased psychophysiological arousal (Birnie, Noel, Chambers, Von Baeyer, & Fernandez, 2011; Birnie, 

Petter, Boerner, Noel, & Chambers, 2012). In particular, the Cold Pressor Task (CPT) was selected as the 

method of inducing pain experimentally, since it is a widely established task which allows for a simple 

yet effective analogue way to induce and examine physiological reactions in the laboratory allowing for 

the direct comparison of measures assessed via the two different devices (stationary vs. wearable). Some 

of its most important advantages over other laboratory-based tasks (Birnie et al., 2011, 2012; Von Baeyer, 

Piira, Chambers, Trapanotto, & Zeltzer, 2005) include: a) it allows researchers to observe individual 

differences on pain experience with a minimally threatening nature for the participants (no psychological 
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trauma or tissue damage occurs); b) it is free of potentially confounding variables such as fatigue and 

anxiety; c) it predicts clinical and real-world outcomes, such as increased risk for developing a chronic 

health condition; and d) participants have control over their exposure to the stimulus by removing their 

hand from the water. Overall, it is considered a safe method for inducing acute pain with good reliability 

and validity (Keogh et al., 2005; Von Baeyer et al., 2005).  

The CPT consisted of a plastic cooler, filled with cold water and ice and maintained at a 

temperature range of 0-2oC. In order to monitor the water temperature, a KT-300 digital thermometer was 

used measuring temperatures ranging from −50ºC to +300ºC. A wire screen was also used to separate the 

ice from the water and keep ice away from the participants’ hand. This experiment and the pain induction 

method received approval by the Cyprus National Bioethics Committee (reference: EEBK/ΕΠ/2019/45) 

and was in accordance with the ethical guidelines of the International Association for the Study of Pain 

(Charlton, 1995).  

2.5. Procedure 

 Psychology class instructors provided study information to their students. Interested students 

contacted the primary author via email. Eligibility was then established, and date and time for the 

experiment was arranged. When the participants came to the laboratory, they received an explanation of 

the experiment, provided informed consent, completed the demographics questionnaire, and were then 

seated in a chair. The skin on the arms and fingers was prepared for fitting the stationary equipment 

electrodes, where for SCL measurement two electrodes were placed on the non-dominant hand (one on 

the second digit of the index finger and one in the middle finger). For the HR and HRV measurements, 

two electrodes were placed on the inner forearm of the non-dominant hand and one electrode was placed 

on the inner forearm of the dominant hand (stationary measurement). Additionally, participants wore on 

the non-dominant wrist the wearable device.  

After checking the physiological signals of both devices, participants were instructed to listen to 

some music for five minutes and relax (baseline phase) so as to stabilize the physiological recordings and 

to familiarize participants with their surroundings. After baseline, participants proceeded to the cold 
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pressor pain task (cooler situated next to their chair) and were instructed to immerse their dominant hand 

into the cooler. Participants were asked to keep their hand immersed until they could no longer tolerate 

the pain. Unknown to participants, the maximum duration of immersion was limited to two minutes (this 

limit was set so as not to create any skin damage; Keogh et al., 2005), at which point participants were 

asked to remove their hand from the cooler. On completion of the task, all electrodes and the Microsoft 

band were removed, participants completed the VAS scale and were debriefed. 

2.6. Heart Rate Variability (HRV) Scoring and Analysis  

Stationary data was analyzed in two ways: traditionally and automatically; whereas, data from the 

wearable device was analyzed only automatically due to the nature of the data (i.e., stationary equipment 

collects ECG signals that present with clearly visible peaks vs. Microsoft band 2 collects PPG signals 

whose wave pattern does not show clear peaks). See Figure 1 for the procedures followed for each device 

for analyzing HRV.  

"INSERT FIGURE 1 ABOUT HERE" 

For the traditional manual analysis of stationary HRV data, AcqKnowledge 3.9.0 and Artiifact softwares 

were used. Firstly, data was visually examined for artifacts with the noise being manually corrected in 

AcqKnowledge. Then, the IBI intervals extracted by AcqKnowledge were fed into Artiifact 

(http://www.artiifact.de/; Kaufmann, Sütterlin, Schulz & Vögele, 2011) in which irregular RR intervals 

were deleted and time-domain measures of HRV extracted and saved into Excel. Participants with a large 

number of deleted artifacts (i.e., 5% of RR intervals), were excluded from analyses (n = 11). In particular, 

the time-domain measures extracted from the stationary device were: 1) Mean RR interval (mean distance 

of intervals between heartbeats); 2) SDNN (standard deviation of intervals between heartbeats); 3) 

RMSSD (root mean square of successive differences between adjacent intervals); and 4) pNN50 

(proportion of differences greater than 50ms). All time-domain measures were calculated for the 5-minute 

baseline phase and for the experimental phase (at most two minutes).  

http://www.artiifact.de/
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The second approach to analyzing both stationary and wearable HRV data, consisted of an 

automated analysis using Python, where a Python program was used to automate the traditional analysis 

(i.e., bypass manual checks and corrections). Automated analyses of stationary vs. wearable HRV data 

deviated from each other, on the algorithm used for detecting the R-peaks. Hamilton's R-peak detection 

algorithm was used for stationary equipment, compared to Microsoft band 2 which uses its own detection 

algorithm (its name is not reported by its developers). However, although a different R-peak detection 

algorithm was used in each device, counting peaks cannot be that different across algorithims and a recent 

study (Reinerman-Jones, Harris, & Watson, 2017) supports that the accuracy of the Microsoft Band 2’s 

R-peak detector algorithm is very close to the Hamilton's algorithm (used in this study for stationary 

equipment analysis). 

For the R-peak detection in the stationary equipment, the Python package BioSPPy 

(https://biosppy.readthedocs.io/en/stable/) was used to apply Hamilton’s ECG R-peak algorithm 

(Hamilton, 2002). Hamilton’s algorithm takes into account the height of the peak, peak position, and 

maximum derivative (function used for R-peak detection = biosppy.signals.ecg.ecg). At first, the raw 

signal was filtered to reduce noise and then the filtered signal was given as input to the function 

“biosppy.signals.ecg.hamilton_segmenter” in order to find the positions of R peaks. The filtering function 

applies band pass filter to the signal using the cutoff frequencies Hz [3, 45] and the absolute value of the 

signal was calculated over windows of 80ms. Then, QRS complexes were enhanced and the noise was 

suppressed. The peaks detected in the filtered signal were classified either as a QRS complex or as noise. 

The detection threshold was determined using the QRS positive peaks (equivalent to RR) and heights of 

the noise peaks. Regarding the Microsoft band 2, as discussed above, it provided R-peaks by applying its 

own internal R-peak detection algorithm. After detecting the peaks in both devices, the given files of the 

stationary and wearable automated methods were read and processed using the Python program we 

developed, in order to compute the time-domain measures of HRV (see Figure 1). 
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2.7. Heart Rate (HR) and Skin Conductance Level (SCL) Scoring and Analyses 

Stationary HR and SCL data were analyzed traditionally and automatically, whereas wearable 

data was analyzed only automatically. Commonly used traditional analysis of stationary SCL and HR 

data, was conducted in AcqKnowledge based on its internal algorithm (name not reported by developers). 

Then, their mean values (SCL in 𝜇𝑆 and HR in BPM) were extracted into Excel. For the automated 

analysis, the Acq files of the raw stationary HR and SCL data were read by our Python program, and their 

mean values were computed. For the wearable device, the HR and SCL raw data was computed internally 

by the Microsoft band 2 and then their mean values were computed using the same Python program as in 

the stationary automated analysis. The mean HR (in BPM) and mean SCL (in 𝜇𝑆) were calculated for an 

interval of every 10 seconds for each of the phases, for both the wearable and stationary devices. 

However, in order to compare skin conductance (𝐺) measured by the stationary device (in 𝜇𝑆) with the 

skin resistance (𝑅) measured by the wearable device (in 𝑘𝑜ℎ𝑚𝑠 (𝛫𝛺)), the units of the wearable device 

were converted to conductance (in 𝜇𝑆). For this, the formula for electrical resistance and electrical 

conductance, 𝐺 = 1 𝑅⁄  was used; where 𝐺 is measured in 𝑆𝑖𝑒𝑚𝑒𝑛𝑠 (𝑆)and 𝑅 is measured in 𝛺. 𝑆 were 

then converted to 𝜇𝑆, where 1𝑆 = 106𝜇𝑆.  

2.8. Statistical Analyses 

Data collected from the self-reported (i.e., demographics, pain intensity) and behavioral measures 

(i.e., pain tolerance, pain threshold) were coded and analyzed with IBM SPSS v.23. After analyzing and 

scoring the psychophysiological data from both devices, we conducted Pearson product-moment 

correlations between the data of Microsoft band 2 and Biopac (for HR, HRV and SCL) as well as between 

the two ways of analyzing and scoring HRV stationary data (i.e., traditionally vs. automated). The 

traditional analysis of HR and SCL data uses the AcqKnowledge software (hand scoring of data is not 

necessary), which utilizes a similar procedure to the Python program. Thus, we expected the correlations 

between the two types of analyses to be very high and are not reported. Correlations between devices 
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were firstly examined on the mean HR and SCL per 10-second intervals and by phase (relaxation vs. 

experimental pain induction).  

Additionally, because Pearson’s correlation may be misleading when comparing two devices (i.e., 

high correlation might not represent high agreement), the Bland-Atman scatterplots were created to 

graphically present the agreement between stationary and wearable devices (Bland & Altman, 1986) for 

each phase and psychophysiological feature (mean HR, mean RR, SDNN, RMSSD, pNN50, mean SCL) 

in Excel and SPSS. Specifically, in the Bland-Altman scatterplots, the differences between two 

measurements are plotted (on the vertical axis) against their average values (on the horizontal axis). On 

the plot, three reference lines are presented (i.e., the 95% upper [+1.96 SD] limit of agreement [LoA], the 

mean difference between the two measurements [Mean Diff.] and the lower [-1.96 SD] LoA). If there is a 

perfect agreement between the two methods, the mean difference will be close to 0 (and fall on the solid 

line). If the values remain between the dashed lines (i.e., between upper and lower LoA), the two methods 

are considered to be in measurement agreement. The Root mean square errors (RMSE) of mean HR, HRV 

indices, and mean SCL were also calculated to evaluate the spread of errors between predicted (in this 

case wearable device) and observed values (stationary traditional and automated analyses methods). 

Finally, differences on the physiological data (mean HR, HRV indices, mean SCL) between baseline and 

experimental phases of stationary and wearable devices were examined using paired samples t-tests in 

SPSS. 
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3. Results 

3.1. Pain Outcomes  

Across all participants (n = 43), ten (23.30%) tolerated pain for the maximum duration (two 

minutes), 15 (34.90%) tolerated more than a minute but less than two, and 18 (41.90%) tolerated less than 

one minute. On average, the total sample tolerated pain for 70.98 seconds (SD = 35.36). Pain threshold 

was 36.02 seconds (SD=28.12) and mean pain intensity (VAS scale) 7.05 (SD = 1.51).  

3.2. Comparison of Psychophysiological Indices Between Stationary and Wearable Devices  

3.2.1. Heart Rate (HR) 

3.2.1.1. Baseline phase 

The average HR based on stationary (traditional) analyses was 80.81 (SD = 14.97), on the 

stationary (automated analysis) was 77.41 (SD = 13.30) and on wearable (automated analysis) device 

77.01 (SD = 12.65; see Figure 2).  

"INSERT FIGURE 2 ABOUT HERE" 

There were significant correlations (Pearson product-moment correlation coefficients) between the 

traditional analyses of the stationary and automated analyses of the wearable data for the average HR for 

all time intervals. In particular, a strong association was observed between stationary (traditional) and 

wearable (automated) devices for the second intervals from 10 to 300 seconds whereas a moderate 

association was observed only for the first interval of 0-10 seconds. Similar and even stronger correlations 

were found for stationary data analyzed automatically in association with wearable (automated analysis) 

HR data. A strong association was observed between stationary (automated) and wearable (automated) 

devices for all 10 second intervals. Correlations are presented on Table 2.  

"INSERT TABLE 2 ABOUT HERE" 

Bland-Altman plots comparing stationary with wearable devices for the baseline phase are shown also in 

Figure 3.  
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"INSERT FIGURE 3 ABOUT HERE" 

The Bland-Altman plots showed a good agreement between the stationary and wearable devices, with 

almost all of the participants falling between the 95% LoAs and close to 0. This was further supported 

with the RMSE error. In particular, the RMSE of HR was low between stationary (when analyzed using 

both methods) and wearable devices (see Table 3).  

"INSERT TABLE 3 ABOUT HERE" 

3.2.1.2. Experimental phase 

The average HR based on stationary traditional analyses was 88.13 (SD = 15.98), on stationary 

automated analysis was 85.65 (SD = 15.15) and on wearable (automated analysis) device was 81.94 (SD 

= 11.73; see Figure 2). Correlations between stationary (traditional analysis) and wearable (automated 

analysis) devices for mean HR were significant for the majority of the intervals. Strong associations were 

observed for the intervals of 0-10, 20-30, 80-90, 90-100, 100-110 and 110-120. Moderate relationships 

were observed for the intervals of 10-20 and 30-40 seconds (see Table 2). Comparable results were also 

observed when stationary data was analyzed automatically; with strong associations for intervals: 0-10, 

10-20, 20-30, 30-40, 70-80, 80-90, 90-100, 100-110 and 110-120 seconds. No significant correlations 

were observed for the intervals 40-50, 50-60 and 60-70 seconds. Inspection of the Bland-Altman plots 

(Figure 3) for the experimental phase showed a good agreement between the stationary and wearable 

devices, with almost all of the participants falling between the 95% LoAs and particularly they were close 

to 0. Similar results were found based on the RMSE. In particular, low error was observed to the 

measurement of HR between stationary (when analyzed using both methods) and wearable devices (see 

Table 3).   
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3.2.2. Heart Rate Variability (HRV) 

3.2.2.1. Baseline phase 

The mean values of each time-domain measure for stationary and wearable devices are presented 

in Figures 4a-d (i.e., mean RR [Figure 4a], SDNN [Figure 4b], RMSSD [Figure 4c] and pNN50 [Figure 

4d]).  

"INSERT FIGURE 4 ABOUT HERE" 

When stationary data was analyzed traditionally, a significantly almost perfect positive correlation was 

found between stationary (traditional) and wearable (automated) for the mean RR measure (r = .99, p < 

.001), whereas for the rest of the indices, the correlations were significantly strong: RMSSD (r = .89, p < 

.001), SDNN (r = .85, p < .001), and pNN50 (r = .83, p < .001). Similar results were found when 

stationary equipment psychophysiological signals were analyzed automatically: mean RR (r = .99, p < 

.001), pNN50 (r = .85, p < .001), RMSSD (r = .56, p < .001) and SDNN (r = .55, p < .001). Further 

inspection of the Bland-Altman plots (Figures 5-8) showed a good agreement for all HRV features 

between the stationary and wearable devices, with the majority of the participants (n=29; 91%) falling 

between the 95% LoAs and were close to 0 (for mean RR, SDNN and RMSSD).  

"INSERT FIGURES 5-8 ABOUT HERE" 

Moreover, inspection of the errors between stationary and wearable devices with RMSE, for mean RR a 

relatively low error was observed (see Table 3). For SDNN, the RMSE was moderate whereas for 

RMSSD and pNN50 was high.  

When comparing the two ways of analyzing the stationary data (mean values on Figures 4a-d), all 

correlations of the time-domain measures of HRV were significantly strong: mean RR: r = .99, p < .001; 

SDNN: r = .63, p < .001; RMSSD: r = .63, p < .001; and pNN50: r = .99, p < .001. These findings were 

further supported by the Bland-Altman plots which indicated a good agreement between traditional and 

automated analyses methods for stationary collected HRV data (especially for mean RR, SDNN and 
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RMSSD), with almost all of the participants falling between the upper and lower 95% LoA, were close to 

0 and having low spread (Figures 5-8). 

3.2.2.2. Experimental phase 

The mean values of each time-domain measure of stationary and wearable devices are shown in 

Figures 4a-d (i.e., mean RR [Figure 4a], SDNN [Figure 4b], RMSSD [Figure 4c] and pNN50 [Figure 

4d]). A significant strong correlation was found between stationary equipment (when analyzed 

traditionally) and wearable (automated analysis) device for mean RR (r = .74, p < .001) and moderate 

correlation was observed for pNN50 (r = .40, p < .05). No significant correlation was found between the 

two devices for SDNN and RMSSD. Comparable results were observed when stationary data was 

analyzed automatically with significantly strong positive correlations for mean RR (r = .76, p < .001), and 

pNN50 (r = .53, p < .001) between the two devices. Moderate positive correlation was observed for 

RMSSD (r = .35, p < .05), whereas no significant correlation was found for SDNN. Further inspection of 

the Bland-Altman plots (Figures 5-8) showed a good agreement for mean RR between the stationary and 

wearable devices, with the majority of the participants falling between the 95% LoAs and having low 

spread. However, for RMSSD, SDNN and pNN50 the agreement between the two devices was weaker. 

Similarly, when the error between stationary and wearable devices was inspected with RMSE, it was 

observed to be relatively low for mean RR (stationary [traditional] = 58.09ms; stationary [automated] = 

19.03ms). For the rest time-domain measures, the RMSE was high (see Table 3).  

Regarding the correlations between traditional and automated ways of analyzing the stationary 

psychophysiological data, significant strong associations were observed for mean RR (r = .82, p < .001), 

pNN50 (r = .86, p<.001) and RMSSD (r = .54, p < .01), and a moderate association for SDNN (r = .35, p 

< .05). The Bland-Altman plots further corroborate these findings and indicate good agreement between 

the two analyses methods especially for mean RR and SDNN, with almost all of the participants falling 

between the upper and lower 95% LoA, close to 0 and having low spread (Figures 5-8). However, the 

agreement between the two ways of analyzing the stationary data for RMSSD and pNN50 was weaker 

with high spread presented.  
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3.2.3. Skin Conductance Level (SCL) 

3.2.3.1. Baseline phase 

The mean SCL (in 𝜇𝑆) of stationary (traditional analysis) was 5.20 (SD = 2.49), the stationary 

(automated analysis) 5.20 (SD = 2.49) and of the wearable (automated analysis) device was .21 (SD = 

.26; see Figure 9 for each 10 second interval values).  

"INSERT FIGURE 9 ABOUT HERE" 

No significant correlations were found between stationary (analyzed using both ways) and wearable 

(automated analysis) for any of the 10sec intervals. Additionally, according to the Bland-Altman plots 

(Figure 10), the agreement between stationary (analyzed using both ways) and wearable (automated) 

devices for the baseline phase was observed to be limited. Error was also found to be high (based on 

RMSE) between stationary and wearable devices (see Table 3). 

"INSERT FIGURE 10 ABOUT HERE" 

3.2.3.2. Experimental phase 

The mean SCL (in 𝜇𝑆) of stationary (traditional analysis) was 7.11 (SD = 3.33), stationary 

(automated analysis) 7.11 (SD = 3.33) and of the wearable (automated analysis) device was .32 (SD = 

.30). The values of mean SCL data for each 10 second interval of the two devices are shown in Figure 9. 

The correlations between stationary (analyzed using both ways) and wearable (automated analysis) data, 

presented with no significant associations. These findings were further supported by the Bland-Altman 

plots which indicated a limited agreement between stationary (analyzed using both ways) and wearable 

(automated analysis) devices (Figure 10). High error was also observed (based on RMSE) between 

stationary and wearable devices (see Table 3). 

3.3. Comparison of Physiological Responses between Baseline and Experimental Phases 

Paired t-tests comparing physiological responses between baseline and experimental phases for 

stationary (analyzed using both methods) and wearable (automated analysis) devices, presented with 
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significant increases for mean HR, HRV measurements of SDNN and RMSSD, and mean SCL at the 

experimental phase (Supplementary Table 2). There was also a significant difference in both devices, 

between baseline and experimental phase for mean RR, with means decreasing at the experimental phase. 

For pNN50, significant increases at the experimental phase were observed only in the wearable 

(automated analysis) device (Supplementary Table 2).   
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4. Discussion 

The primary objective of this study was to establish a methodology and compare congruence of 

psychophysiological data collected via two types of devices (stationary vs. wearable) in an experimental 

acute pain induction task. At the baseline phase, significant correlations (and agreement based on Bland-

Altman’s method) were found between stationary and wearable devices for mean HR and all of the HRV 

features (i.e., mean RR, pNN50, SDNN, RMSSD). This held mostly for the experimental phase as well, 

where significant correlations and agreement were observed for mean HR and most of the HRV features 

(i.e., mean RR, RMSSD). No significant correlations (and worse agreement than the other HRV features) 

were observed however, for the HRV time-domain measure of SDNN during the experimental phase. 

Additionally, the RMSE showed high errors between stationary and wearable devices on the measurement 

of specific time-domain HRV measurements (RMSSD, pNN50) especially during the experimental phase. 

As a result, findings suggest that when it comes to measuring distances there is equivalency between the 

two devices, but when it comes to variances and SDs there are differences in the way these are calculated. 

Additionally, it is advisable to future researchers who would like to use wearable devices for data 

collection to measure mean HR and mean RR as they showed greater stability and were very reliable 

especially in absence of motion artifacts (see Table 4 for recommendations for future researchers).  

"INSERT TABLE 4 ABOUT HERE" 

RMSSD should be preferred to SDNN and pNN50, as it estimates better short-term HRV and is capable 

of reflecting cardiac vagal tone than the other two time-domain measures. Moreover, according to the 

Task Force of HRV (Malik et al., 1996) and the recommendations of Laborde and colleagues (2017), 

SDNN is not a well-defined statistical quantity measure due to its dependence on the duration of the 

recording period.  

In fact, duration of HRV assessment (i.e., maximum of 2 minutes) was one of the main factors 

contributing to the significantly smaller correlations between stationary and wearable HRV measurements 

during the experimental pain induction phase. Based on the recommendations of the Task Force of HRV 
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(Malik et al., 1996) and of Laborde, Mosley and Thayer (2017), HRV should be ideally recorded for the 

duration of five minutes in order to ensure signal stability. However, in the present study the total 

duration of the experimental phase was at most two minutes due to the nature of the experiment (i.e., it is 

impossible and unethical for the participants to have their hand in the cold water for five minutes as skin 

damage might be caused). Despite the 5-minute recommendation, there are studies that report that 

recordings of only a few minutes are sufficient for the calculation of certain HRV parameters (Hamilton, 

Mckechnie, & Macfarlane, 2004; Migliaro, Canetti, Contreras, & Hakas, 2003; Schäfer & Vagedes, 2013) 

and this is why we decided to proceed with the HRV analysis during the experimental phase. Future 

studies should however explore differences between wearable and stationary devices in all HRV signals 

during lengthier emotion and physical sensation induction procedures.   

The second factor contributing to small differences in correlations between the assessed signals 

from the two devices during the experimental phase, may be related to the nature of the experiment. There 

was some movement involved when participants inserted their arm in the water, and this may have 

introduced some motion artifacts and noise into the psychophysiological assessments. This was further 

supported by the RMSE error which was much higher in all physiological measurements during the 

experimental phase. Indeed, there have been reports that the PPG sensor, used to measure HR and HRV in 

wearable devices is susceptible to motion noise (Baek & Shin, 2017). As motion increases, correlations 

decrease due to motion artifacts (Georgiou et al., 2018). This is an important issue that developers of 

wearable devices need to address, since the purpose of these devices are to be worn while a person goes 

about their daily life, which involves a multitude of movements. Both wearable devices minimizing 

motion artifacts and algorithms removing artifacts during intense motions are thus greatly needed (Table 

4 for recommendations). 

Findings were not very encouraging for SCL measurements. Similar to previous research 

(Heathers, 2013; Ollander, 2015; Ollander et al., 2016; Ragot et al., 2017), no significant correlations 

were observed between stationary and wearable devices for the mean SCL for both the baseline and the 

experimental phases. It is believed that the differences in location from where the data are collected (wrist 
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in wearable vs. fingers in stationary equipment), what has been collected (electrical resistance in wearable 

vs. electrical conductance in stationary equipment), and the lower sampling frequency of wearables 

(0.2Hz vs. 250Hz in stationary) that need to conserve battery life compared to stationary equipment that 

are continuously plugged into a power supply, contribute to these differences. The cost of increasing 

sampling frequencies is decreased battery life, so this is another problem that wearable developers need to 

solve so as to improve accuracy. However, the influence of lower sampling frequency is minor based on 

previous studies (Ollander, 2015; Ollander et al., 2016) and positioning of the measuring sensors is the 

major contributor to lack of measurement concordance. Measurement of EDA is traditionally assessed in 

the laboratory via finger placement because the resulting signal resolution is more sensitive and accurate 

compared to that from other bodily locations (e.g., wrist; Bergstrom, Duda, Hawkins, & McGill, 2014). In 

particular, based on the introductory guide to EDA of BIOPAC (BIOPAC, n.d.) and findings of previous 

studies (Ollander, 2015; Ollander et al., 2016), SCL measurements of the wrist and fingers are dissimilar 

due to the different capacitive properties of the two locations and the higher number of eccrine 

sudoriferous glands (which regulate EDA) in fingers compared to the wrist. Therefore, this is another 

challenge for wearable device developers to find a way to more accurately and sensitively measure SCL. 

Though correlations between stationary and wearable data for SCL were non-significant, showing a 

possible lack of congruence, SCL as measured via both devices still resulted in fluctuations between the 

two study phases. This may suggest that though SCL measured via wearables is not exactly equivalent to 

that of the stationary equipment, it may still be able to detect changes in SCL as a result of being exposed 

to a stressor (acute pain). Future researchers should also be very careful when assessing skin conductance 

and prefer wearable devices collecting the same data (skin conductance and not skin resistance) as 

stationary devices.  

This study also examined different ways of analyzing psychophysiological data for HRV, 

comparing the traditional means of analysis to an automated analysis (the Python program implementing 

Hamilton’s algorithm in this case). For both phases (baseline and experimental), all correlations between 

means of analysis for HRV were significant. These were further supported with the Bland-Altman plots 
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which indicated a good agreement between the automated and traditional stationary analyses. Therefore, 

analyzing stationary HRV data with computer-run algorithms results in similar data as when traditionally 

analyzed.  

4.1. Limitations 

This study has several limitations that need to be considered in the interpretation of findings. 

First, the generalizability of findings to other non-clinical and clinical populations might be limited 

because this study included only university students. Though this study utilized a larger sample size than 

previous research (Ollander, 2015; Ollander et al., 2016; Ragot et al., 2017), the sample size may still be 

limited. Second, this study was conducted in a highly controlled laboratory setting, limiting thus the 

generalization of the results to real life situations. However, to be able to assess wearable measurement 

accuracy and validity, this laboratory ground-proof is needed, and the problems identified with 

measurement (e.g. movement artifacts and noise, electrode placement) need to be resolved. 

Third, this study was limited to the calculation only of time-domain measures of HRV. This is 

due to the limitation that the wearable device has, of providing PPG signals and not raw ECG signals 

where RR peaks are clearly visible. In addition, the Microsoft band 2 used its own algorithms (names not 

reported) for analyzing HR, SCL and for detecting R-peaks for HRV. In the present study, the Hamilton’s 

algorithm was used to analyze the HRV data, which is considered to be very close to the one used by 

Microsoft band 2 (Reinerman-Jones, Harris, & Watson, 2017). Researchers should be careful when 

making decisions on the wearable device they choose to use in future studies, to ensure that these devices 

provide raw signals and allow for the extraction of the data (see Table 4).  

Another limitation consists of the sampling frequency of the Microsoft band 2. Specifically, the 

sampling frequency of HR and HRV was set to 1Hz by the wearable developers and for SCL at 0.2Hz. 

The configuration used, was one provided by the manufacturers’ options and is the recommended one for 

daily life wear and the ideal so as to conserve battery life. Sampling frequencies of wearable devices 

range for SCL from 0.02Hz to 64Hz, whereas for HR and HRV from 1Hz to 100Hz (but typically ranges 

from 1Hz to 10Hz), placing thus the chosen frequencies within this range (Chen, Hu, & Lin, 2018; 
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Ollander, 2015). In contrast, stationary equipment do not have such limitations and the Biopac sampling 

frequency used in research tend to be set to 1kHz for ECG signals and 250Hz for SCL. Though we 

transformed the sampling frequencies for analysis purposes, the data collected via larger sample 

frequencies is richer and more sensitive. A solution to this could be the development of analysis 

techniques that would take into consideration this limitation by using, for example, data explosion 

methods (Demosthenous, 2019). Wearable developers should consider ways of improving sampling 

frequencies while extending battery life, so as to make these devices more usable for extended field wear. 

4.2. Implications for Researchers and Future Directions 

This study is the first to compare psychophysiological data recorded using a wearable device 

(Microsoft band 2) to standard stationary equipment (Biopac MP150) in an experiment inducing acute 

physical pain. This is also the first study directly comparing different means of analyzing HRV 

psychophysiological data (traditional vs. automated means). Therefore, this study consists of an important 

first step in establishing the methodology for comparing stationary to wearable devices and providing the 

basis so as to be able to utilize wearables in the accurate and reliable assessment of psychophysiological 

signals in real-life situations.  

Findings showed relative equivalence in HR and HRV between the devices (stationary and 

wearable). The lower equivalence in some parameters such as SDNN could in theory be remedied by 

extracting the RR intervals from the ambulatory device, and then feeding them into an algorithm like 

Artiifact, as is done typically for stationary equipment. However, SCL presented as problematic, as 

equivalence was not established between the two types of devices, yet differences between the baseline 

and experimental phases were evident suggesting that the wearable was able to capture differences in 

SCL but at different levels of measurement. More research is needed in regard to SCL, to be able to 

establish equivalency and congruence in measurement via wearable devices. Future research should 

especially focus on finding solutions regarding the measurement of SCL and on establishing sampling 

frequency equivalency for wearable devices. Further, additional algorithms can be examined or trained in 

the analysis of psychophysiological data and especially in how to identify and remove noise when 
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assessing HRV. Developers of wearable devices are recommended to provide the raw signals of 

psychophysiological data, in order to allow for the examination not only of time-domain measures of 

HRV but also of frequency-domain measures. Once the identified issues are resolved, there can be 

expansion of the field in the real-time assessment of psychophysiological data within each persons’ 

environment and life situations.  

Overall, this study demonstrated the promise of using wearable devices for capturing 

psychophysiological indices (especially HR and HRV) in an as accurate, reliable, and sensitive way 

similar to stationary means of measurement. Additionally, algorithmic approaches can be used to analyze 

the data faster and with less cost and effort on behalf of researchers, allowing for large amounts of data to 

be recorded and more efficiently analyzed. Establishing wearable data collection as equally reliable, 

sensitive, and accurate as laboratory stationarily collected data, will open the field in new paths of 

research and application, and especially lead to the real-time within-a-persons’ context assessment of 

psychophysiological reactions.  

 

 

  



WEARABLE DEVICES VS. STATIONARY EQUIPMENT      27 

 

5. References 

Ahmed, M. U., Begum, S., & Islam, M. S. (2010). Heart rate and inter-beat interval computation to 

diagnose stress using ECG Sensor Signal. MRTC Report, 4. 

Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. 

Physiological Measurement, 28(3), 1–39. https://doi.org/10.1088/0967-3334/28/3/R01 

Baek, H. J., & Shin, J. W. (2017). Effect of missing inter-beat interval data on heart rate variability 

analysis using wrist-worn wearables. Journal of Medical Systems, 41(10). 

https://doi.org/10.1007/s10916-017-0796-2 

Bergstrom, J. R., Duda, S., Hawkins, D., & McGill, M. (2014). Physiological response measurements. 

In Eye Tracking in User Experience Design (pp. 81-108). Morgan Kaufmann.  

https://www.doi.org/10.1016/B978-0-12-408138-3.00004-2 

Birnie, K. A., Noel, M., Chambers, C. T., Von Baeyer, C. L., & Fernandez, C. V. (2011). The cold 

pressor task: Is it an ethically acceptable pain research method in children? Journal of Pediatric 

Psychology, 36(10), 1071–1081. https://doi.org/10.1093/jpepsy/jsq092 

Birnie, K. A., Petter, M., Boerner, K. E., Noel, M., & Chambers, C. T. (2012). Contemporary use of the 

cold pressor task in pediatric pain research: A systematic review of methods. Journal of Pain, 13(9), 

817–826. https://doi.org/10.1016/j.jpain.2012.06.005 

Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of 

clinical measurement. The Lancet, 327(8476), 307-310. 

Charlton, E. (1995). Ethical guidelines for pain research in humans. Committee on ethical issues of the 

International Association for the Study of Pain. Pain, 63(3), 277-278. 

Chen, H. K., Hu, Y. F., & Lin, S. F. (2018). Methodological considerations in calculating heart rate 

variability based on wearable device heart rate samples. Computers in Biology and Medicine, 102, 

396-401. https://doi.org/10.1016/j.compbiomed.2018.08.023 

Demosthenous G. (2019). Machine learning for the prediction of emotional coping using 

psychophysiological signals (Unpublished master thesis). University of Cyprus, Nicosia, Cypris. 

https://www.doi.org/10.1016/B978-0-12-408138-3.00004-2
https://www.doi.org/10.1016/B978-0-12-408138-3.00004-2


WEARABLE DEVICES VS. STATIONARY EQUIPMENT      28 

 

Forsyth, L., & Hayes, L. L. (2014). The effects of acceptance of thoughts, mindful awareness of 

breathing, and spontaneous coping on an experimentally induced pain task. Psychological Record, 

64(3), 447–455. https://doi.org/10.1007/s40732-014-0010-6 

Galazis, C. (2017). Non-intrusive physiological wearable devices for identifying individual difference 

parameters using supervised classification learning algorithms (Unpublished bachelor thesis). 

University of Cyprus, Nicosia, Cyprus. 

Garbarino, M., Lai, M., Bender, D., Picard, R. W., & Tognetti, S. (2014). Empatica E3-A wearable 

wireless multi-sensor device for real-time computerized biofeedback and data acquisition. 

Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and 

Healthcare-“Transforming Healthcare Through Innovations in Mobile and Wireless Technologies”, 

MOBIHEALTH 2014, 39–42. https://doi.org/10.1109/MOBIHEALTH.2014.7015904 

Georgiou, K., Larentzakis, A. V., Khamis, N. N., Alsuhaibani, G. I., Alaska, Y. A., & Giallafos, E. J. 

(2018). Can wearable devices accurately measure heart rate variability? A systematic review. Folia 

Medica, 60(1), 7–20. https://doi.org/10.2478/folmed-2018-0012 

Goncu-berk, G., & Topcuoglu, N. (2017). A healthcare wearable for chronic pain management. Design of 

a smart glove for rheumatoid arthritis. The Design Journal, 20(1), S1978–S1988. 

https://doi.org/10.1080/14606925.2017.1352717 

Hamilton, P. (2002, September). Open source ECG analysis. In Computers in Cardiology (pp. 101-104). 

IEEE. http://doi.org/10.1109/CIC.2002.1166717  

Hamilton, R. M., Mckechnie, P. S., & Macfarlane, P. W. (2004). Can cardiac vagal tone be estimated 

from the 10-second ECG? International Journal of Cardiology, 95(1), 109–115. 

https://doi.org/10.1016/j.ijcard.2003.07.005 

Hayes, S. C., Bissett, R. T., Zettle, R. D., Cooper, L. E. E. D., & Grundt, A. M. (1999). The impact of 

acceptance versus control rationales on pain tolerance. The Psychological Record, 49, 33–47. 

http://dx.doi.org/10.1007/BF03395305  

Heathers, J. A. J. (2013). Smartphone-enabled pulse rate variability: An alternative methodology for the 



WEARABLE DEVICES VS. STATIONARY EQUIPMENT      29 

 

collection of heart rate variability in psychophysiological research. International Journal of 

Psychophysiology, 89(3), 297–304. https://doi.org/10.1016/j.ijpsycho.2013.05.017 

Kaufmann, T., Sütterlin, S., Schulz, S. M., & Vögele, C. (2011). ARTiiFACT: A tool for heart rate 

artifact processing and heart rate variability analysis. Behavior Research Methods, 43(4), 1161–

1170. https://doi.org/10.3758/s13428-011-0107-7 

Keogh, E., Bond, F. W., Hanmer, R., & Tilston, J. (2005). Comparing acceptance- and control-based 

coping instructions on the cold-pressor pain experiences of healthy men and women. European 

Journal of Pain, 9(5), 591–598. https://doi.org/10.1016/j.ejpain.2004.12.005 

Kohl, A., Rief, W., & Glombiewski, J. A. (2012). How effective are acceptance strategies ? A meta-

analytic review of experimental results. Journal of Behavior Therapy and Experimental Psychiatry, 

43(4), 988–1001. https://doi.org/10.1016/j.jbtep.2012.03.004 

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in 

psychophysiological research - Recommendations for experiment planning, data analysis, and data 

reporting. Frontiers in Psychology, 8(FEB), 1–18. https://doi.org/10.3389/fpsyg.2017.00213 

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). 

Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. 

European Heart Journal, 17(3), 354-381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868 

Masedo, A. I., & Rosa Esteve, M. (2007). Effects of suppression, acceptance and spontaneous coping on 

pain tolerance, pain intensity and distress. Behaviour Research and Therapy, 45(2), 199–209. 

https://doi.org/10.1016/j.brat.2006.02.006 

Migliaro, E. R., Canetti, R., Contreras, P., & Hakas, M. (2003). Heart rate variability: Short-term studies 

are as useful as holter to differentiate diabetic patients from healthy subjects. Annals of Noninvasive 

Electrocardiology, 8(4), 313–320. https://doi.org/10.1046/j.1542-474X.2003.08409.x 

Moore, H., Stewart, I., Barnes-Holmes, D., Barnes-Holmes, Y., & McGuire, B. E. (2015). Comparison of 

acceptance and distraction strategies in coping with experimentally induced pain. Journal of Pain 

Research, 8, 139–151. https://doi.org/10.2147/JPR.S58559 



WEARABLE DEVICES VS. STATIONARY EQUIPMENT      30 

 

Ollander, S. (2015). Wearable sensor data fusion for human stress estimation (Unpublished doctoral 

dissertation). Technical University of Linköping University, Sweden. 

Ollander, S., Godin, C., Campagne, A., & Charbonnier, S. (2016). A comparison of wearable and 

stationary sensors for stress detection. 2016 IEEE International Conference on Systems, Man, and 

Cybernetics (SMC). http://dx.doi.org/10.1109/SMC.2016.7844917 

Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and 

systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 9(21), 

1–17. https://doi.org/10.1186/1743-0003-9-21 

Ragot, M., Martin, N., Em, S., Pallamin, N., & Diverrez, J. (2017). Emotion recognition using 

physiological signals: Laboratory vs. wearable sensors. In International Conference on Applied 

Human Factors and Ergonomics (pp. 15–22).  

Reis, H. T., & Gosling, S. D. (2010). Social psychological methods outside the laboratory. Handbook of 

Social Psychology, 585, 82–114. https://doi.org/10.1002/9780470561119.socpsy001003 

Reinerman-Jones, L., Harris, J., & Watson, A. (2017). Considerations for using fitness trackers in 

psychophysiology research. In International Conference on Human Interface and the Management 

of Information (pp. 598-606). Springer, Cham. https://doi.org/10.1007/978-3-319-58521-5_47 

Ries, A. J., Touryan, J., Vettel, J., McDowell, K., & Hairston, W. D. (2014). A comparison of 

electroencephalography signals acquired from conventional and mobile systems. Journal of 

Neuroscience and Neuroengineering, 3(1), 10–20. https://doi.org/10.1166/jnsne.2014.1092 

Schäfer, A., & Vagedes, J. (2013). How accurate is pulse rate variability as an estimate of heart rate 

variability?: A review on studies comparing photoplethysmographic technology with an 

electrocardiogram. International Journal of Cardiology, 166(1), 15–29. 

https://doi.org/10.1016/j.ijcard.2012.03.119 

Taj-Eldin, M., Ryan, C., O’flynn, B., & Galvin, P. (2018). A review of wearable solutions for 

physiological and emotional monitoring for use by people with autism spectrum disorder and their 

caregivers. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124271 



WEARABLE DEVICES VS. STATIONARY EQUIPMENT      31 

 

Vissers, G., Heyne, G., Peters, V., & Guerts, J. (2001). The validity of laboratory research in social and 

behavioral science. Quality and Quantity, 35(2), 129–145. 

https://doi.org/10.1023/A:1010319117701 

Von Baeyer, C. L., Piira, T., Chambers, C. T., Trapanotto, M., & Zeltzer, L. K. (2005). Guidelines for the 

cold pressor task as an experimental pain stimulus for use with children. Journal of Pain, 6(4), 218–

227. https://doi.org/10.1016/j.jpain.2005.01.349 



WEARABLE DEVICES VS. STATIONARY EQUIPMENT      32 

 

6. Author Notes 

6.1. Conflict of Interest 

The authors declare no potential conflict of interest.  

 

6.2. Name and Email address for reprints 

Maria Karekla, Ph.D., Department of Psychology, University of Cyprus, P.O. Box 20537, Nicosia 1678, 

Cyprus; TEL: 357 22 892100; mkarekla@ucy.ac.cy 

mailto:mkarekla@ucy.ac.cy


WEARABLE DEVICES VS. STATIONARY EQUIPMENT      33 

 

Titles and Captions for Figures 

Figure 1. Procedure followed by each method for analyzing the HRV data. 

 

Figure 2. Mean HR (BPM) values of stationary and wearable devices (N = 32). 

Figure 3. Bland-Altman plots comparing mean HR across two phases: a) baseline and b) experimental, 

each for two analyses: 1) stationary (automated) vs. wearable (automated analysis); 2) stationary 

(traditional) vs. wearable (automated analysis). 

Figure 4. HRV values of stationary and wearable devices (N = 32) for time-domain measures a) Mean 

RR b) SDNN c) RMSSD and d) pNN50. 

Figure 5. Bland-Altman plots comparing mean RR across two phases: a) baseline and b) experimental, 

each for three analyses: 1) stationary (automated) vs. wearable (automated analysis); 2) stationary 

(traditional) vs. wearable (automated analysis); 3) stationary (traditional) vs. stationary (automated). 

Figure 6. Bland-Altman plots comparing SDNN across two phases: a) baseline and b) experimental, each 

for three analyses: 1) stationary (automated) vs. wearable (automated analysis); 2) stationary (traditional) 

vs. wearable (automated analysis); 3) stationary (traditional) vs. stationary (automated). 

Figure 7. Bland-Altman plots comparing RMSSD across two phases: a) baseline and b) experimental, 

each for three analyses: 1) stationary (automated) vs. wearable (automated analysis); 2) stationary 

(traditional) vs. wearable (automated analysis); 3) stationary (traditional) vs. stationary (automated). 

Figure 8. Bland-Altman plots comparing pNN50 across two phases: a) baseline and b) experimental, each 

for three analyses: 1) stationary (automated) vs. wearable (automated analysis); 2) stationary (traditional) 

vs. wearable (automated analysis); 3) stationary (traditional) vs. stationary (automated). 

Figure 9. Mean SCL values of stationary and wearable devices (N = 30). 

 

Figure 10. Bland-Altman plots comparing mean SCL across two phases: a) baseline and b) experimental, 

for stationary (traditional) vs. wearable (automated analysis). 

 

 


