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Abstract 

Bryophyllum pinnatum is a succulent perennial plant used in the treatment of premature 

labour, first in anthroposophic medicine and, recently in many perinatal clinics in Switzerland, 

as a monotherapy or add-on therapy with known tocolytic agents. The good effectiveness, as 

well as the very good tolerability, have been confirmed by several studies. Earlier experimental 

evidence obtained from in vitro studies supports its use. Preterm birth is the number one cause 

of newborn mortality and morbidity, and often results from preterm labour. Since preterm 

uterine contractions are frequently associated with preterm birth, their inhibition by tocolytics 

may delay delivery long enough (24-48 h) to achieve foetal lung maturation. Currently used 

tocolytics include oxytocin (OT) receptor antagonists (e.g. atosiban), calcium channel blockers 

(e.g. nifedipine) and β-sympathomimetics, among others. Due to tocolytics’ side effects and 

insufficient therapeutic effects, additional therapeutic options are needed. For the 

administration of a phytotherapeutic, it is necessary to have knowledge not only about their 

therapeutic effect and toxicity, but also about their mode of action. This thesis describes the 

effects of B. pinnatum on human myometrium contractility.  

Because a combination of different drugs might prove to be helpful in achieving a prolongation 

of pregnancy in more patients, B. pinnatum in combination with the two tocolytics was tested 

in vitro. Myometrium strips placed under tension in an organ bath were allowed to contract 

spontaneously. The addition of B. pinnatum press juice (BPJ), atosiban, and nifedipine 

moderately reduced the strength (area under the curve (AUC) and amplitude) of contractions. 

When BPJ was added together with atosiban or nifedipine, the reduction of contraction 

strength was significantly higher than with the tocolytics alone. The inhibitory effects of BPJ 

plus atosiban and of BPJ plus nifedipine on contractions strength were concentration-

dependent and, none of the substances, alone or in combination, decreased myometrial cell 

viability. 

A previous metabolite profile study of B. pinnatum leaves showed that flavonoid glycosides and 

bufadienolides are the major classes of secondary metabolites. Fractions enriched in flavonoid 

glycosides (FEF) and bufadienolides (BEF) were therefore prepared, and their effects on human 

myometrial contractility were characterised. The repeated addition of FEF, flavonoid aglycon 

mixture (A-Mix), BEF, or BPJ to the spontaneously contracting human myometrium, led to a 
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progressive decrease of contraction strength, without jeopardising the vitality of the 

myometrium strips. None of the compounds decreased myometrial cell viability, even at higher 

concentrations than those used in the myometrium experiments. Results suggest that 

bufadienolides might be important for the inhibition of myometrium contractility. 

Finally, the effects of BPJ compounds on myometrium contractility were studied at the cellular 

level. The inhibitory effects of BPJ, BEF, FEF, A-Mix, bersaldegenin-1,3,5-orthoacetate (BO), the 

combination of BEF plus FEF and BEF plus A-Mix on the secondary intracellular effects triggered 

by OT, such as changes in intracellular calcium levels and phosphorylation of mitogen activated 

protein kinases (MAPKs) were compared. BPJ led to a concentration-dependent decrease of 

the OT-induced increase of intracellular calcium concentration ([Ca2+]i) in two myometrium cell 

lines, achieving ca. 75% inhibition. BEF, FEF, A-Mix, BO, and both combinations led to a 

concentration-dependent decrease of the OT-induced increase of [Ca2+]i in hTERT-C3 cells. BEF, 

FEF, BO, and A-Mix, at concentrations corresponding to BPJ, led to a ca. 25% decrease of the 

OT-induced increase of [Ca2+]i. The combination of BEF plus FEF led to a decrease of 55.3% 

while BEF plus A-Mix led to a decrease of 38%. In addition, BPJ significantly reduced OT-induced 

phosphorylation of MAPKs SAPK/JNK and ERK1/2 at its maximum (5 min incubation). Also, at 

the cellular level, the results suggest that bufadienolides might be mainly responsible for the 

inhibitory effect. 

The insights gained from the intensive inhibition of human myometrium contractility by B. 

pinnatum are promising and support its use as an add-on medication with therapeutic 

potential. 
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Zusammenfassung 

Bryophyllum pinnatum ist eine sukkulente, mehrjährige Pflanze, welche zur Behandlung 

frühzeitiger Wehen eingesetzt werden kann. Zunächst in der Anthroposophischen Medizin 

angewandt findet die Pflanze heutzutage in vielen Geburtskliniken in der Schweiz als 

Alleintherapie sowie in Kombination mit anderen bekannten Wehenhemmern Verwendung. 

Ihre gute Wirksamkeit sowie die ausgezeichnete Verträglichkeit konnten von mehreren Studien 

bestätigt werden. Bisherige Resultate aus in vitro-Studien unterstützen deren Gebrauch. 

Frühgeburt ist die Hauptursache für Mortalität und Morbidität und wird oft durch verfrühtes 

Eintreten der Wehen hervorgerufen. Da frühzeitige Uteruskontraktionen oftmals mit 

Frühgeburt assoziiert sind, kann deren Unterdrückung durch Wehenhemmer den 

Gebärprozess lange genug (24-48 h) hinauszögern, um die fötale Lungenreifung zu erreichen. 

Zurzeit angewandte Wehenhemmer sind unter anderem. Oxytocin (OT)-Rezeptorantagonisten 

(z.B. Atosiban), Kalziumkanalblocker (z.B. Nifedipin) und β-Sympathomimetika. Aufgrund 

vorhandener Nebenwirkungen sowie ungenügender therapeutischer Wirksamkeit besteht 

Bedarf an zusätzlichen therapeutischen Optionen. Für die Verabreichung eines 

Phytotherapeutikums ist es nötig, Kenntnisse über dessen therapeutischen Wirksamkeit, 

Toxizität sowie auch dessen Wirkmechanismus zu erlangen. Die vorliegende Arbeit beschreibt 

Effekte von B. pinnatum auf die Kontraktilität humanen Myometriums. 

Eine Kombination verschiedener Medikamente könnte für eine Verlängerung der 

Schwangerschaft in mehr Patientinnen hilfreich sein. Unter Spannung gesetzte Myometrium-

Streifen wurden in ein Organbad gelegt und deren Spontankontraktionen wurden analysiert. 

Das Zugeben von B. pinnatum-Presssaft (BPJ), Atosiban und Nifedipin führten zu einer mässig 

reduzieren Stärke der Kontraktionen (Fläche unter der Kurve (AUC) und Amplitude). Bei Zugabe 

von BPJ zusammen mit Atosiban oder Nifedipin, war die Reduktion der Kontraktionsstärke 

signifikant höher als mit den beiden Wehenhemmern allein. Die inhibitorischen Effekte von BPJ 

mit Atosiban und BPJ mit Nifedipin auf die Kontraktionsstärke waren konzentrationsabhängig 

und keine der Substanzen, ob allein oder in Kombination, führte zu einer verringerten 

myometrialen Zellviabilität.  

Eine frühere Studie zum Metabolitenprofil von B. pinnatum-Blättern zeigte, dass 

Flavonoidglykoside und Bufadienolide die Hauptklassen von Sekundärmetaboliten sind. Es 
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wurden Flavonoidglykosid- und Bufadienolid-angereicherte Fraktionen (FEF und BEF) 

hergestellt und deren Effekte auf die Kontraktilität von humanem Myometrium wurde 

charakterisiert. Wiederholte Zugabe von FEF, Flavonoidaglykonmixtur (A-Mix), BEF oder BPJ 

zum spontan kontrahierenden humanen Myometrium führte zu einer progressiven Abnahme 

der Kontraktionsstärke, ohne die Vitalität der Myometriumsstreifen zu beeinträchtigen. 

Keine der Wirkstoffe führte zu einer verminderten myometrialen Zellviabilität, nicht einmal bei 

höheren Konzentrationen als in den Myometriumsstreifen-Kontraktionsexperimenten 

verwendet. Diese Resultate suggerieren, dass Bufadienolide für die Inhibition der 

Myometriumkontraktilität von Wichtigkeit sind. 

Letztlich wurden die Effekte von BPJ-Wirkstoffen auf die Myometriumkontraktilität auf der 

Zellebene studiert. Die hemmenden Effekte von BPJ, BEF, FEF, A-Mix, Bersaldegenin-1,3,5-

Orthoacetat (BO), der Kombination von BEF und FEF sowie BEF und A-Mix auf die sekundären 

intrazellulären durch OT hervorgerufenen Effekte, wie z.B. Änderungen der intrazellulären 

Kalziumwerte ([Ca2+]i) und der Phosphorylierung von Mitogen-aktivierten Proteinkinasen 

(MAPKs) wurden verglichen. BPJ führte zu einer konzentrationsabhängigen Senkung der OT-

induzierten Steigerung der [Ca2+]i in zwei myometrialen Zelllinien und erreichte ca. 75% 

Inhibition. BEF, FEF, A-Mix, BO und beide Kombinationen führten zu einer 

konzentrationsabhängigen Senkung der OT-induzierten [Ca2+]i in hTERT-C3-Zellen. BEF, FEF, BO 

und A-Mix führten zu einer a. 25%igen Senkung des OT-induzierten Anstiegs der [Ca2+]i bei 

Konzentrationen, die denen im BPJ entsprechen. Die Kombination von BEF und FEF führte zu 

einer Senkung von 55.3%, während BEF und A-Mix zu einer Senkung von 38% führten. Zudem 

verringerte BPJ die OT-induzierte Phosphorylierung von den MAPKs SAPK/JNK und ERK1/2 an 

deren Maximum (5 min Inkubation) signifikant. Überdies suggerieren Resultate auf der 

Zellebene, dass Bufadienolide hauptverantwortlich für den hemmenden Effekt sind. 

Die aus der intensiven Hemmung von humaner Myometriumkontraktilität durch B. pinnatum 

gewonnen Erkenntnisse sind vielversprechend und bekräftigen dessen Verwendung als 

Ergänzungsmedikament mit therapeutischem Potential.  
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Resumo 

Bryophyllum pinnatum é uma planta perene suculenta utilizada no tratamento de trabalho de 

parto prematuro, primeiro na medicina antroposófica e, mais recentemente em muitas clínicas 

perinatais na Suíça, como monoterapia ou terapia complementar de agentes tocolíticos. Uma 

boa eficácia, bem como a sua ótima tolerância, foi confirmada por vários estudos. Experiências 

in vitro apoiam a sua utilização. O nascimento prematuro é a primeira causa de mortalidade e 

morbilidade de recém-nascidos e resulta maioritariamente do trabalho de parto prematuro. 

Dado que as contrações uterinas estão frequentemente relacionadas com o parto prematuro, 

a sua inibição por tocolíticos pode atrasar o parto o tempo suficiente (24-48 h) para permitir a 

maturação pulmonar do feto. Os tocolíticos utilizados atualmente incluem antagonistas dos 

recetores de ocitocina (OT) (e.g. atosiban), bloqueadores dos canais de cálcio (e.g. nifedipina) 

e β-simpatomiméticos, entre outros. Devido aos efeitos secundários dos tocolíticos e à 

insuficiência de efeitos terapêuticos, são necessárias opções terapêuticas adicionais. Para a 

administração de medicamentos fitoterapêuticos é necessário ter conhecimentos sobre o seu 

efeito terapêutico e toxicidade, mas também, sobre o seu modo de ação. Esta tese descreve 

efeitos de B. pinnatum na contractilidade do miométrio humano.  

A combinação de drogas pode ajudar a conseguir um prolongamento da gravidez num número 

maior de pacientes. Tiras de miométrio colocadas sob tensão num banho de órgãos foram 

deixadas a contrair espontaneamente. A adição de sumo de B. pinnatum (BPJ), atosiban, e 

nifedipina reduziu moderadamente a força (área sob a curva (AUC) e a amplitude) das 

contrações. Quando BPJ foi adicionado em combinação com atosiban ou nifedipina, a redução 

da força de contração foi significativamente mais elevada do que apenas com os tocolíticos. Os 

efeitos inibidores de BPJ mais atosiban e de BPJ mais nifedipina na força de contração são 

dependentes da concentração e, nenhuma das substâncias, isolada ou em combinação, 

diminuiu a viabilidade das células miometriais. 

Um estudo anterior do perfil metabólico das folhas de B. pinnatum mostrou que os flavonoides 

glicosídeos e os bufadienolideos são as principais classes de metabolitos secundários 

presentes. Foram preparadas frações enriquecidas em glicosídeos flavonoides (FEF) e 

bufadienolides (BEF), e os seus efeitos na contractilidade do miométrio humano foram 

caracterizados. A adição repetida de FEF, uma mistura de flavonoides agliconas (A-Mix), BEF, 



 

XII 

 

ou BPJ, ao miométrio humano em contração espontânea, levou a uma diminuição progressiva 

da força da contração, sem comprometer a vitalidade das tiras de miométrio. Nenhum dos 

compostos diminuiu a viabilidade das células miometriais, mesmo em concentrações mais 

elevadas do que as utilizadas nas experiências in vitro de miométrio. Os resultados sugerem 

que os bufadienolideos são importantes para a inibição da contração do miométrio. 

Finalmente, o efeito dos compostos do BPJ na contração do miométrio foi estudado a nível 

celular. Foram comparados os efeitos inibidores do BPJ, BEF, FEF, A-Mix, bersaldegenin-1,3,5-

ortoacetato (BO), a combinação de BEF com FEF e BEF com A-Mix, nos efeitos intracelulares 

secundários desencadeados pela OT, tais como alterações nos níveis intracelulares de cálcio e 

fosforilação das proteínas-quinases ativadas por mitógeno (MAPK). BPJ levou a uma 

diminuição, concentração-dependente, do aumento da concentração intracelular de cálcio 

([Ca2+]i) induzido pela OT em duas linhas celulares de miométrio, alcançando uma inibição de 

cerca de 75%. BEF, FEF, A-Mix, BO, e ambas as combinações levaram a uma diminuição 

dependente da concentração do aumento da [Ca2+]i induzido pela OT nas células hTERT-C3. 

BEF, FEF, BO e a A-Mix, em concentrações correspondentes a BPJ, levaram a uma diminuição 

da [Ca2+]i induzido por OT de cerca de 25%. A combinação de BEF mais FEF levou a uma 

diminuição de 55,3% enquanto que BEF mais A-Mix levou a uma diminuição de 38%. Além 

disso, BPJ reduziu significativamente a fosforilação induzida por OT das MAPK SAPK/JNK e 

ERK1/2 no seu máximo (5 minutos de incubação). Os resultados sugerem que os 

bufadienolideos podem ser os principais responsáveis pelo efeito inibidor. 

Os conhecimentos obtidos a partir da inibição intensiva da contração do miométrio humano 

por B. pinnatum são promissores e apoiam o seu uso como medicamento adicional com 

potencial terapêutico. 
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Motivation 

During pregnancy, mother and baby are in a vulnerable state. Since health issues or illnesses of 

the mother need to be treated and pharmacological therapies can potentially be harmful to 

the unborn child, safe alternatives should be considered. A pregnancy complication that can 

have dramatic consequences is preterm labour (PTL). Preterm is defined as birth before 37 

weeks of pregnancy, affects 5 to 18% of pregnancies, and is the number one cause of mortality 

and morbidity in newborns. PTL can be caused by many different processes, and treatments 

used in clinics address the symptoms more than the underlying cause. Since the most 

commonly recognized symptom is the contracting uterus, most treatments focus on relaxing 

the uterus (tocolysis). The inhibition of uterus contractions by tocolytics may delay delivery long 

enough (24-48h) to achieve foetal lung maturation and in uterus transfer to a unit care facility. 

So far, no maintenance or long-term tocolytic treatments have proved to be effective. Due to 

tocolytics’ insufficient therapeutic efficacy as well as their numerous and, in part, serious side-

effects, additional therapeutic options are needed. 

Bryophyllum pinnatum, a succulent perennial plant, was introduced in the 1970s as an 

alternative tocolytic agent by anthroposophic medicine in Europe. Today, B. pinnatum 

preparations are being used in many perinatal clinics in Switzerland, as a monotherapy or add-

on therapy in cases of PTL. Its good effectiveness, as well as its very good tolerability, could 

have been confirmed in several studies. Earlier in vitro experiments performed with human 

myometrium strips revealed that B. pinnatum preparations reduce contractions’ strength. 

Furthermore, experiments with myometrium cells have shown that B. pinnatum leaf press juice 

(BPJ) can prevent the increase of the intracellular calcium concentration ([Ca2+]i) induced by 

oxytocin (OT), a hormone known to trigger myometrium contractions.  

Aware of the current limitations of tocolytic treatments and with the long-term goal of reducing 

the prevalence of preterm birth (PTB), we have explored various in vitro models to gain further 

knowledge about the mechanism of action of B. pinnatum compounds.  
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Specific aims 

The overall aim of this project is to study the therapeutic effect of B. pinnatum on human 

myometrial contractility in vitro but also, toxicity and mode of action. 

To achieve the outlined research goal, this thesis has the following specific aims: 

1. To evaluate the effects of B. pinnatum in combination with atosiban and with nifedipine 

on human myometrium contractility. Chewable tablets of Bryophyllum pinnatum are often 

used in clinical practice as an add-on medication. However, we do not know if the 

combination with known tocolytic drugs brings an advantage in lowering the strength of 

myometrial contractility.  

2. To find out which are the B. pinnatum compounds that lead to a reduction of human 

myometrium contractility. The presence of several compounds in B. pinnatum was 

previously shown. In order to better determine which compound might be responsible for 

B. pinnatum’s effect on human myometrium contractility, we propose to compare the 

effect of previously prepared fractions/compounds with the inhibitory effect of B. 

pinnatum in human myometrium contractility.  

3. To gain more information on the OT-induced signalling pathways that are inhibited by B. 

pinnatum compounds. The effect of B. pinnatum leaf press juice on the [Ca2+]i was 

previously shown. However, we do not know which compound might be responsible for 

promoting this effect. Also, the information regarding the effect of B. pinnatum on other 

OT-induced signalling pathways is still unexplored. For this reason, we propose to expand 

knowledge on the effect of B. pinnatum on the MAPKs pathway, as well as that of 

previously prepared fractions/compounds. 

 

Thesis outline 

This thesis contains four chapters that, taken together, support the use of B. pinnatum 

preparations as a treatment for PTL. In Chapter 1, the history of the therapeutic use and of 

previous studies on B. pinnatum preparations are discussed. Only after understanding how 
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difficult the clinical treatment of PTL is and how the contractility of myometrium is dependent 

on the activation of several pathways, will we be able to evaluate how B. pinnatum can interfere 

with the underlying processes. 

The combination of different drugs might be needed to achieve a stronger inhibition of 

myometrium contractility and prolong pregnancy in a higher number of patients. To investigate 

this, as presented in Chapter 2, we decided to obtain myometrium biopsies from women 

undergoing a caesarean section, and place strips from this tissue under tension in an organ 

bath (myograph). Strips were allowed to contract spontaneously, and the effects of the 

combinations BPJ plus atosiban and BPJ plus nifedipine on contractions were studied. This 

effect was analysed by studying the strength (area under the curve (AUC) and amplitude) as 

well as frequency of contractions. Motivated by the discoveries, in the second part of this 

chapter we studied the effect of the major classes of secondary metabolites of B. pinnatum 

leaves in the same set up. Fractions enriched in flavonoid glycosides (FEF) and in bufadienolides 

(BEF) were prepared, and their effects on human myometrial contractility were characterised. 

FEF, a flavonoid aglycon mixture (A-Mix), BEF, or BPJ, were repeatedly added to the 

spontaneously contracting human myometrium.  

Next, eager to understand the mechanism of action behind these findings, we decided to study 

the effect of BPJ fractions/compounds on the OT-induced signalling pathways. In Chapter 3 the 

inhibitory effects of BPJ, BEF, FEF, A-Mix, bersaldegenin-1,3,5-orthoacetate (BO), the 

combinations BEF plus FEF and BEF plus A-Mix, and the OT-receptor antagonist atosiban were 

studied on the secondary intracellular effects triggered by OT, namely on changes in 

intracellular calcium levels and phosphorylation of mitogen activated protein kinases (MAPKs).  

Taken together, the main messages obtained following the various approaches are discussed 

in Chapter 4, which also comprises a section on future perspectives. We believe that this thesis 

provides a solid foundation for future research on B. pinnatum, its components and its use in 

the treatment of PTL.  
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1.1 Bryophyllum pinnatum 

Bryophyllum pinnatum (Lamarck) Oken (syn. Kalanchoe pinnata (Lamarck) Persoon), syn.: 

Bryophyllum calycinum (Salisbury) (Fig. 1A) belongs to the family of Crassulaceae and is known 

by numerous vernacular names, such as cathedral bells, life plant, air plant, love plant, miracle 

leaf, and Goethe plant [1]. B. pinnatum is a perennial succulent plant that originated in 

Madagascar, and now grows widely across tropical regions of Africa, America, India, China, and 

Australia [2]. The name Bryophyllum is based on the Greek words ‘bryon’ which means ‘sprout’ 

or ‘grow’ and ‘phyllon’ which translates to ‘leaf’. 

Figure 1. B. pinnatum plant, plantlet and blooming. 
B. pinnatum grows to about 1-1.5 m tall and the leaves are succulent and fleshy dark green (A). The 
plant has a special mode of reproduction, whereby little plantlets sprout at the edges of the leaves. 
When the leaf falls to the ground, the new plantlets grow roots and develop into a fully grown plant (B). 
The B. pinnatum plant develops pendulous flowers (C) [3-5]. 

 

This herbaceous plant has a fleshy, cylindrical stem and grows to a height of about 1-1.5 m. The 

decussate arranged leaves are succulent and fleshy dark green. At the base of the stem the 

leaves are simple, and at the top they are imparipinnate, 10-30 cm long, with three to five pairs 

of fleshy limb lobes. 

B. pinnatum plants have a rather unique mode of vegetative reproduction, whereby young 

plantlets develop on the edges of the leaves when they fall to the ground (Fig 1B).  

B. pinnatum develops gorgeous inflorescences from November to March, and fruits in April. 

The pendulous flowers are coloured violet on top, then fade from green to reddish and consist 

of a tubular and inflated calyx of 2-4 cm (Fig. 1C) [2]. 

A B C 
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1.1.1 History 

In 1783, Cotylet pinné was described for the first time by Jean-Baptiste Lamarck (1744-1829) in 

the “Encyclopédie méthodique”. After the first specimen was imported from India (Calcutta) to 

England, Christian Hendrik Persoon (1755-1837) reclassified it in the Kalanchoe, calling it 

Calanchoe pinnata (with an orthographic variant). Twenty years later, in 1805, Richard Anthony 

Salisbury (1762-1829) wrote the first description of Bryophyllum calycinum, creating the new 

genus Bryophyllum [6]. 

During the Continental Blockade (1806-1814), the exchange of knowledge was stopped and the 

plant was described independently amongst scientists. In 1907, Raymond-Hamet formally 

introduced the species from genus Bryophyllum into genus Kalanchoe [7]. In 1948/49, Pierre 

Boiteau and Octave Mannoni merged the genus Bryophyllum and Kitchingia with Kalanchoe 

and gave them the ranking of sections according to the rules of nomenclature [8]. On the other 

hand, in 1930, Alwin Berger and August Theodor Harms kept the genus Bryophyllum 

independent [9]. 

Johann Wolfgang von Goethe (1749-1832) was first acquainted with Bryophyllum calycinum in 

the Botanical Garden (Vienna, Austria) and recorded his observations in his diary for the first 

time in 1818. He began to investigate the plant extensively, and occupied himself with it until 

his death. Years after Goethe’s death, his manuscripts and studies were summarized and 

published by Georg Balzer in his book “Goethe’s Bryophyllum. Ein Beitrag zu seiner 

Pflanzenmorphologie”. 

1.1.2 Phytochemistry  

The known secondary metabolites present in B. pinnatum include bufadienolides, flavonoids, 

alkaloids, various phenolics, triterpenes, steroids, lipids, fatty acids, minerals, and vitamins [2, 

10]. Phytochemical studies have focused mostly on bufadienolides, which are cardiotoxic thus 

leading to a greater interest amongst researchers, and flavonoids, because they are rather 

abundant. 
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Bufadienolides 

Bufadienolides are a new type of natural steroid. Its derivatives include many in the form of 

bufadienolide glycosides (bufadienolides that contain structural groups derived from sugars). 

The term bufadienolides originated from ‘bufo’, a genus of toads which contain large amounts 

of bufadienolide glycosides in their venom, the suffix -adien-, which refers to the two double 

bonds in the lactone ring, and the ending -olide, which denotes the lactone structure [11, 12]. 

These are important cardiac glycosides that increase the contractile force of the heart by 

inhibiting the enzyme Na+/K+-ATPase [12]. They have many bioactive properties such as 

sedative, insecticidal, cytotoxic, antitumor, positive inotropic and cardiotonic [13-16]. Due to 

their distribution among the plant organs, it is believed that the main role of bufadienolides is 

chemical plant protection [17]. 

Eight bufadienolides (Nr. 1-8) have been identified from leaves, flowers, stems and roots of B. 

pinnatum (Fig. 2). A characteristic structural feature is the 1,3,5-orthaoacteate function that is 

present in some of the compounds. The bufadienolides identified were: bersaldegenin-1-

acetate (1), bersaldegenin-3-acetate (2), bryotoxin C (equal to bryophyllin A, 3), bryophyllin C 

(4), bersaldegenin-1,3,5-orthoactetate (BO, 5), bryophyllin B (6), bryotoxin B (7), and bryotoxin 

A (8) [10].  
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Figure 2. Bufadienolides reported in B. pinnatum.  
A total of eight bufadienolides have been reported in B. pinnatum. Figure adapted from Fürer K. et al., 
2016 [17].  

 

Flavonoids 

Flavonoids are plant pigments that are synthesised from phenylalanine. They generally display 

marvellous colours known from flower petals, mostly emiting brilliant fluorescence when 

excited by ultra violet (UV) light, and are ubiquitous to green plant cells [18]. They are 

commonly found in fruit, vegetables, nuts, seeds, flowers, tea, wine, and honey [19, 20].  

The function of flavonoids is to regulate plant growth hormones and growth regulators, as well 

as the induction of gene expression [19, 20]. Flavonoids are becoming the subject of medical 

research due to their many useful properties, including enzyme inhibition, such as reverse 

transcriptase and protease, and antimicrobial, anti-inflammatory [21], antiallergic [19], 

antioxidant and cytotoxic activity [22]. In addition, their toxicity to animals is low [23]. 

Flavonoids are the main metabolites of B. pinnatum, and include numerous flavonol derivates 

(Nr. 9-30) with kaempferol and quercetin glycosides being the most important flavonoid 

representatives, as well as some flavonoles (Nr. 31-35). The flavonoids identified were (Fig. 3): 

kaempferol (9), kapinnatoside (kaempferol 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-
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rhamnopyranoside, 10), kaempferol 3-O-β-D-xylopyranosyl-(1 → 2)- α-L-rhamnopyranoside 

(11), kaempferitrin (kaempferol 3-O,7-O-di-α-L-rhamnopyranoside, 12), kaempferol 3-O-α-L-

(2-O-acetyl) rhamnopyranoside 7-O-α-L-rhamnopyranoside (13), kaempferol 3-O-α-L-(3-O-

acetyl) rhamnopyranoside 7-O-α-L-rhamnopyranoside (14), kaempferol 3-O-α-L-(4-O-acetyl) 

rhamnopyranoside 7-O-α-L-rhamnopyranoside (15), kaempferol 3-O-α-D-glucopyranoside 7-O-

α-L-rhamnopyranoside (16), Afzelin (kaempferol 3-O-α-L-rhamnopyranoside, 17), α-

rhamnoisorobin (kaempferol 7-O-α-L-rhamnopyranoside, 18), astragalin (kaempferol 3-O-β-D-

glucopyranoside, 19), myricitrin (myricetin 3-O-α-L-rhamnopyranoside, 20), myricetin 3-O-α-L- 

arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (21), quercetin (22), 3’,4’-Di-O-

methylquercetin (23), quercetin 3-O-α-L- arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside 

(24), quercitrin (quercetin 3-O-α-L-rhamnopyranoside, 25), quercetin 3-O-α-L- 

arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside 7-O-β-D-glucopyranoside (26), isoquercitrin 

(quercetin 3-O-β-D-glucopyranoside, 27), miquelianin (quercetin 3-O-β-D-

glucuronopyranoside, 28), rutin (quercetin 3-O-rutinoside, 29), 3,5,7,3’,5’-

pentahydroxyflavone (30), luteolin (31), luteolin 7-O-β-D-glucopyranoside (32), diosmine 

(diosmetin 7-O-α-L- rhamnopyranosyl-(1 → 6)-β-D- glucopyranoside, 33), acacetin 7-O-α-L- 

rhamnopyranosyl-(1 → 6)-β-D- glucopyranoside (34), and 4’,5-7-trihydroxy-3’,8-

dimethoxyflavone 7-O-β-D-glucopyranoside (35) [10]. 
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Figure 3. Flavonoids reported in B. pinnatum.  
A total of 27 flavonoids have been reported in B. pinnatum. Figure adapted from Fürer K. et al., 2016 
[17].  

 

B. pinnatum fractionation 

To facilitate the investigation of the biological effects of bufadienolides and flavonoids, 

fractions enriched in these compounds were prepared [24, 25]. Leaves of B. pinnatum 

cultivated in Schwäbisch Gmünd, Germany (greenhouse) were harvested and kept frozen until 

processed. Frozen leaves were lyophilised and powdered in a mortar, and the leaf powder was 

extracted with methanol (MeOH) and evaporated. A portion of the MeOH extract was 

partitioned between dichloromethane (CH2Cl2) and water (H2O). The aqueous phase was 

fractionated by column chromatography to provide a fraction enriched in flavonoids (FEF) and 

a polar fraction, containing sugars and L-malic acid. Evaporation of the CH2Cl2 phase yielded a 

bufadienolide fraction [24]. The bufadienolides fraction obtained was further purified by solid-
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phase extraction to obtain a fraction enriched in bufadienolides (BEF; Fig. 4) [25]. These 

fractions were used in the experimental work described in chapters 2 and 3. 

 
 
Figure 4. Schematic representation of B. pinnatum leaf fractionation  
Leaves of B. pinnatum (from Schwäbisch Gmünd, Germany) were lyophilised and powdered in a mortar, 
and the powder was extracted with MeOH. After evaporation, a portion of the MeOH extract was 
partitioned between CH2Cl2 and H2O. The aqueous phase was fractionated by column chromatography 
on Diaion HP-20 to provide a fraction enriched in flavonoids (FEF) and a polar fraction. Evaporation of 
the CH2Cl2 phase yielded a bufadienolide fraction [24] that was further purified by solid-phase extraction 
(BEF) [25].  

 

1.1.3 Anthroposophic medicine 

Anthroposophic medicine (AM) is an integrative multimodal medical system that was 

established by the Austrian philosopher Rudolf Steiner (1861-1925). After studying empirical 

sciences, mathematics, and philosophy in Vienna, at the age of 22 Steiner was commissioned 

to publish Johann Wolfgang Goethe’s scientific writings in Kürschners Deutscher 

Nationalliteratur (German National Literature) [26]. Steiner began developing anthroposophy 

in 1901 [27]. 

In 1921, the first anthroposophic hospital was established in Arlesheim, Switzerland, by Dr. Ita 

Wegman (1876-1943). AM is practiced by physicians fully trained and qualified in university 

medicine. The main principle involves integrating conventional skills and methods with a 

holistic understanding of man and nature and of disease and treatment. From this point of 
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view, the understanding of the human being in his/her entirety means acceptance of a three-

system organisation with a physical body, a soul, and a spirit. The holistic view of the human 

being leads to an understanding of health and illness that differs from that of conventional 

medicine and to treatments that are specifically adapted to each individual [28]. 

Anthroposophy is a view of humanity and nature that is spiritual but that at the same time 

regards itself to be profoundly scientific. 

In Europe, the use of remedies prepared from B. pinnatum leaves were recommended in 1921 

by Rudolf Steiner as anthroposophic medicines to treat hysteria [17, 29]. Hysteria was 

described as a condition in which all spiritual and emotional energy is poured into an action 

and, therefore, the body is no longer capable of regulating normal physical reactions [30]. In 

1970, Dr. Werner Hassauer introduced B. pinnatum as a routine treatment to prevent 

premature labour (PTL) in AM hospitals. From an AM point of view, an imbalance in the astral 

(e.g. emotions) and etheric (physiological) organisations can lead to cramps, vaginal infections 

and, therefore, to PTL. The health interaction is supported by B. pinnatum [31].   

1.1.4 Pharmacological and clinical activities  

Various preparations of B. pinnatum are currently available commercially. A multi-centre 

observational study performed by 38 German physicians in collaboration with the Evaluation 

of Anthroposophic Medicine (EvaMed) network showed that for over six years, a total of 4038 

prescriptions were recorded in the EvaMed data bank in a broad range of therapeutic 

indications [32]. 

The application of B. pinnatum preparations is described in the German Commission C 

monographs. In Switzerland, B. pinnatum preparations are authorised by the Swiss Agency for 

therapeutic products (Swissmedic) as a medical product without any indication. B. pinnatum 

products are available in many formulations. The main commercial products used include 

“Bryophyllum 50% powder”: leaf press juice adsorbed to lactose; “Bryophyllum chewable 

tablets 350 mg 50%”: leaf press juice adsorbed to lactose; “Bryophyllum Dilutio 33%: ethanolic 

leaf extract, for oral application; and “Bryophyllum ampoules 5%”: aqueous leaf extract, for 

subcutaneous (s.c.) and intravenous (i.v.) administration. 
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In Switzerland, B. pinnatum preparations are used for the treatment of premature contractions, 

anxiety, restlessness, and sleep disorders [33, 34]. In vitro and in vivo research activities that 

have been performed are described in the following sections in chronological order.  

1.1.4.1 Tocolysis 

In 1970, the German gynaecologist, Dr. Hassauer, introduced B. pinnatum as a tocolytic agent 

when he was looking for a suitable alternative to the commonly used tocolytic fenoterol, since 

the latter was causing a great deal of adverse side effects in the treated women. His study 

showed that treatment with B. pinnatum 5% infusion (i.v.) and 50% trituration (oral 

administration (‘per os’: p.o.)) was well tolerated and successful in 84% of women, and results 

were comparable to conventional treatments. Treatment with B. pinnatum also enabled the 

dosage of conventional treatments to be reduced or even replaced [31]. These results were 

supported by two subsequent studies, where B. pinnatum showed a comparable positive 

outcome to fenoterol and no side effects were registered [35]. In addition, the incidence of 

premature deliveries decreased to 1.07% [36]. 

Some years ago, in order to collect more clinical, pharmacological and chemical information 

regarding the use of B. pinnatum as a herbal medicine, an interdisciplinary team of scientists 

joined forces in the Bryophyllum Study Group. In 2003, the first in vitro study on the effect of B. 

pinnatum on myometrial contractility was performed. The relaxing effect of B. pinnatum 

aqueous leaf was compared with that of the β-agonist fenoterol on contracting human 

myometrium strips obtained from biopsies taken from women undergoing term caesarean 

section. This study confirmed the relaxant effect of B. pinnatum and supported further research 

[37]. In 2005, a retrospective matched-pair study involving 67 pregnant women compared the 

tolerability and tocolytic activity of B. pinnatum 5% i.v. with the β-agonists fenoterol and 

hexoprenaline. The study showed similar maternal and neonatal outcomes in both treatment 

groups. However, in the group receiving B. pinnatum, maternal adverse effects (palpitation, 

dyspnoea) were significantly reduced, and the use of corticosteroids and antibiotics was lower 

[38]. 

In a different set-up, the mechanism behind the tocolytic effect of B. pinnatum was investigated 

using human myometrial cells. Leaf pressed juice of B. pinnatum (BPJ) led to a concentration-
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dependent inhibition of the oxytocin (OT)-induced increase of the intracellular calcium 

concentration ([Ca2+]i) and provided further support for the use of B. pinnatum as a tocolytic 

[39]. Next, BPJ and three fractions of B. pinnatum methanolic leaf extract were tested on 

spontaneous contractions in human myometrial strips. BPJ and a flavonoid enriched fraction 

(undiluted) significantly decreased the area under the curve (AUC) and amplitude of 

contractions. A rapid and large increase in frequency was observed with all substances tested 

[40]. 

In Switzerland, B. pinnatum is not only used in anthroposophically oriented clinics but also in 

main perinatal centres [33, 34]. At the University Hospital of Zurich, internal guidelines suggest 

the use of B. pinnatum preparations as a co-medication [34]. 

1 .1.4.2 Overactive bladder syndrome 

Overactive bladder syndrome (OAB) is, as defined by the International Continence Society (ICS), 

a urinary urgency, with or without incontinence, related to high frequency and nocturia without 

obvious pathological causes, such as urinary tract infections [41]. 

The effect of BPJ on porcine detrusor muscle contractility was investigated in an organ bath 

chamber, with oxybutynin as a reference drug. The pressed juice (5% in the chamber) 

significantly inhibited detrusor contractility by 74.6% compared to control. In addition, 10% BPJ 

had a significant relaxant effect on carbachol-induced contractions. The leaf press juice showed 

good activity, although oxybutynin inhibitory and relaxant properties were more pronounced 

[42]. In a prospective, randomized, double-blind, placebo-controlled study, 20 postmenopausal 

women suffering from OAB or urgency-dominant mixed urinary incontinence (MUI) were 

treated with B. pinnatum 50% chewable tablets or placebo. After 8 weeks of treatment, a 

positive trend for the effect of B. pinnatum on micturition frequency/24 h could be shown 

compared to placebo [43]. 

Additional in vitro studies have investigated the effect of BPJ and different fractions of B. 

pinnatum on electrically induced porcine detrusor contractility [24, 25]. The inhibitory effect of 

BPJ was confirmed, even though an initial stimulatory effect was observed. FEF reduced muscle 

contractility in a dose- and time-dependent manner [24]. Treatment with BEF and flavonoid 
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aglycon mixture (A-Mix) led to a concentration-dependent lowering of the contraction force 

[25], supporting insights provided by preceding clinical studies. 

1.1.4.3 Sleep disorders 

In a prospective, multi-centre observational study, 49 pregnant women suffering from sleep 

disorders were treated with B. pinnatum 50% chewable tablets. After 14-day treatment, results 

showed that the quality of sleep had significantly improved, and the women felt less sleepy 

during the day [44]. An additional observational study revealed improvements in sleep quality 

of cancer patients after treatment with the same tablets [45]. 

1.1.4.4 Other indications 

B. pinnatum is a well-regarded plant with a high phytotherapeutic potential. The leaves are 

particularly promising for the treatment of various disorders. Besides the applications 

mentioned, it also finds use in other indications [46]. 

Neurological disorders 

Neuropharmacological studies of the B. pinnatum leaf extract were conducted in rats and mice. 

The results demonstrated that the methanolic fraction of B. pinnatum possesses a potent 

central nervous system (CNS) depressant action. The leaf extract significantly increased brain 

γ-aminobutyric acid (GABA) content in mice. GABA is known as an inhibitory neurotransmitter 

in a number of CNS pathways  [47]. Furthermore, a B. pinnatum aqueous leaf extract also 

produced a significant neurosedative, CNS depressant, and anxiolytic effects in mice [48, 49]. 

Anticancer and antitumor activity 

The effect of bufadienolides against several tumour cells was tested in an in vitro assay with 

human lung carcinoma A-549 cells, KB cells, and colon HCT-8 tumour cells. Bryophyllin A 

showed a potent cytotoxicity in all cell lines, Bersaldegenin-3-acetate showed an effect against 

HCT-8 cells, and Bryophyllin B mainly demonstrated an effect against KB cells [50]. 
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An in vitro study showed that five bufadienolides possess anti-tumour promoting activity by 

inhibiting Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells. This investigation 

showed that the 1,3,5-orthoacetate moiety was important for the chemoprotective activity 

[51]. A few years later, an in vitro study using a B. pinnatum chloroform extract and a fraction 

containing steroidal glycosides, alkaloids, and steroids demonstrated a dose-dependent 

inhibition of human cervical cancer cell growth. The fraction was more potent than the extract 

for pro-apoptotic activity. On the other hand, the extract had higher anti-human papilloma virus 

(HPV) activity than the fraction [52]. 

Anti-inflammatory activity 

The anti-inflammatory activity of B pinnatum aqueous leaf extract was studied in the paw 

oedema of Wistar rats, and a significant decrease was observed [53]. Another  study confirmed 

this result, revealing a significant reduction of acute inflammation by the aqueous extract and 

a steroidal derivative, stigmas-4,20(21),23-trien-3-one [54]. Furthermore, the topical 

application of an ethanolic extract of B. pinnatum significantly reduced ear oedema in Swiss 

albino mice [55]. More recent work showed that differently dried extracts of B. pinnatum 

possess anti-inflammatory properties via the stabilization of human red blood cells membrane, 

inhibition of heat-induced haemolysis, and albumin denaturation. The different extracts also 

protected human erythrocytes against lipid peroxidation and increased levels of reduced 

glutathione, known markers of cellular degradation [56]. 

1.1.4.5 Tolerability and toxicity 

B. pinnatum may be an excellent therapy option due to its good tolerability. Specifically if used 

as a tocolytic, it has shown significantly fewer side effects than other treatments such as 

betamimetics, which often cause palpitations and dyspnoea [38]. In addition, the treatment of 

14 pregnant women with B. pinnatum chewable tablets demonstrated no side effects assigned 

to the medication [57]. 

A randomized, double-blind, placebo-controlled study on OAB showed that B. pinnatum 

preparations led to fewer side effects than other substances used for the treatment of OAB, 

which often go along with anticholinergic side effects [43]. In a multicentre prospective 
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observational study that considered sleep disorders and OAB as indications for B. pinnatum, 

tolerability was rated very high, and only a few adverse reactions were documented [33]. 

The toxicity of other Bryophyllum species based on the content of bufadienolides has been 

reported, and was observed with animals grazing on B. pinnatum, B. tubiflorum, and B. 

daigremontianum [16]. Cardiotoxicity of bufadienolides was investigated in vitro on isolated 

rabbit and guinea pig hearts, and a strong positive inotropic effect from two orthoacetates 

(bersaldegenin 1,3,5- orthoacetate (BO) and daigremontianin) was observed [14, 58]. On the 

other hand, toxicity was observed in mice and rats at very high doses [47, 59]. 

1.2 Human uterus 

The growth and development of a new human being in a woman’s womb is one of the most 

fascinating processes the human body is capable of. Pregnancy, also known as gestation, is an 

experience full of growth, change, enrichment, and challenge. It is the time during which one 

or more babies develop inside a woman, a process that typically occurs in approximately 40 

weeks from the start of the last menstrual period (around 14 days before the fertilisation of the 

oocyte). The uterus is the most important organ in the reproductive process. Its importance 

starts with the nesting of the fertilized egg, then carrying of the embryo and ,later, the foetus, 

providing the perfect environment for its growth and development [60, 61]. 

1.2.1 Uterus anatomy 

The uterus, or womb, is a major female hormone-responsive secondary sex organ of the 

reproductive system in humans and most mammals. It is located within the pelvic region 

immediately behind and almost overlying the bladder, and in front of the sigmoid colon. This 

human organ is pear-shaped and about 7.6 cm long, 4.5 cm broad and 3.0 cm thick [61]. The 

uterus is a thick, hollow, smooth muscle organ consisting of three well-differentiated layers: 

endometrium, the lining layer consisting of a mucous membrane; myometrium, a thick 

muscular coat, which is the main segment of the 2 cm thick uterine wall responsible for 

contractions during labour; and perimetrium, a serosal outer layer (Fig. 5) [62, 63]. The 

perimetrium protects the uterus and provides a relatively inelastic base upon which the 
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myometrium develops tension to increase intrauterine pressure. The myometrium consists of 

four muscle layers separated by a vascular zone. These layers form a web that supports and 

protects the development of the foetus. Since the uterine muscle layers have different 

embryonic origins, they have distinct hormonal responses and thus may respond differently to 

uterotonic agonists and antagonists [63]. 

  
Figure 5. Anatomy of the female reproductive system 
The female reproductive system includes the uterus, ovaries, fallopian tubes, cervix, and vagina. The 
uterus consists of three main layers: perimetrium, the outer layer; myometrium, the layer of smooth 
muscle cells; and endometrium, which lines the inside of the uterine cavity [64]. 

 

1.2.2 Smooth muscle contraction 

Uterine contractions occur throughout the menstrual cycle in the non-pregnant state as well 

as throughout pregnancy. The contractile units of the uterus are the smooth muscle cells in a 

connective tissue matrix. Movement of contractile forces along the uterus occurs through 

transmission of tension generated by individual cells to other cells and to the connective tissue 

[63].  
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Myometrial cells contain three types of protein myofilaments (actin, myosin, and intermediate 

filaments), microtubes, and protein structures called dense bodies (Fig. 6A). Actin filaments are 

composed of congregated, single monomeric actin proteins with six isoforms. The α-actin and 

γ-actin isoforms are the ones primarily involved in contraction. Actin polymerizes into long, thin 

(6 to 9 nm) filaments that originate in and are distributed between dense bodies, and slide 

along the myosin thick filaments to shorten the cell during a contraction (Fig. 6B). Myosin is a 

hexamer molecule composed of two light chains (MLC) and two heavy chains (MHC), arranged 

in a head-and-tail structure (Fig. 6C). The MLC has a regulator role in muscle contraction and 

can bind to calcium and magnesium, and becomes phosphorylated. In addition, the myosin 

head domain constitutes the ‘motor domain’ that contains an actin-binding region, as well as 

the adenosine triphosphate (ATP) hydrolysis site that provides the energy required for force 

production. Adenosine triphosphatase (ATPase) activity on the myosin head initiates the 

formation of cross-links or bonds between the actin and myosin filaments, leading to the 

rotation of myosin heads that pull the actin filaments towards each other, a process leading to 

the shortening of the cell. This is called the cross bridge cycle and leads to cell contraction [62, 

63, 65]. 
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Figure 6. Mechanism of muscle contraction 
The intracellular structure of smooth muscle cells is densely packed with components of the contractile 
machinery. These components include myosin and actin filaments, dense bodies, intermediate 
filaments and dense band. The network is specifically arranged resulting in force transduction along the 
longitudinal axis of the cell and cell shortening (A). One unit of the contractile apparatus is composed of 
two dense bodies with the actin filaments anchored. Myosin is located between the actin filaments (B). 
Myosin is composed of a head, a neck and a helical tail domain. The regulatory light chains are situated 
at the neck domain and its phosphorylation causes the formation of a cross bridge between actin and 
myosin filaments creating a change in the angle of the neck region, and causing motion of the actin 
filaments that results in shortening of the cell (C) [62]. 
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1.3 Preterm labour 

During pregnancy, both mother and baby are in a vulnerable state. It is essential for the mother 

to stay healthy, and potential health issues and illness must be treated to enable a successful 

pregnancy. On the other hand, the baby needs to be protected from harmful impacts, but also 

from therapeutic drugs taken by the mother [66]. Unfortunately, problems can arise concerning 

either the health of the mother or the baby, or in the worst case, becoming life threatening for 

both. One of the complications that has a great deal of impact, especially on the morbidity and 

mortality of the new born baby, is PTL [67]. 

1.3.1 Pathophysiology 

Preterm is defined as parturition before 37 weeks of pregnancy. Based on gestational age, 

preterm birth (PTB) can be divided into sub-categories: extremely preterm, less than 28 weeks; 

very preterm, between 28 and 32 weeks; and moderate to late preterm, between 32 and 37 

weeks [68]. The diagnosis of PTL is often based on clinical criteria of regular contractions 

accompanied by a change in cervical dilation of at least 2 cm [69]. Preterm occurs for a variety 

of reasons. Most PTBs occur spontaneously, but some are due to induction of labour or 

caesarean birth, either for medical or non-medical reasons [68]. Two thirds of PTBs are 

spontaneous and the other third is induced due to medical indications, such as high blood 

pressure, preeclampsia, prelabour premature rupture of membranes (PPROM), infection or 

undersupply of the foetus [70, 71]. However, often no cause is identified [68]. 

PTB is associated with the majority of all death and chronic disability related to pregnancy, birth 

and neonatal period [72]. It is a major cause of death and a significant cause of long-term loss 

of human potential amongst survivors all around the world. Every year, an estimated 15 million 

babies are born too early, and approximately 1 million die due to complications [68, 73]. 

Complications of PTB are the largest direct cause of neonatal deaths, and the second most 

common cause of under-5 year old deaths after pneumonia [73, 74]. Neonatal complications 

of PTL include respiratory distress syndrome (RDS), sepsis, intraventricular haemorrhage, 

necrotizing enterocolitis, hypothermia, hypoglycaemia, hyperbilirubinemia, and feeding 
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problems. Many survivors face a lifetime of disabilities, such as learning disabilities, 

neurodevelopment impairment, and cerebral palsy [68, 74]. 

1.3.2 Risks and causes 

PTL can be caused by many different processes and is mostly multifactorial [71, 74]. PTB can be 

classified into two broad subtypes: spontaneous PTB, meaning spontaneous onset of labour or 

following PPROM; and provider-initiated PTB, defined as induction of labour or elective 

caesarean birth before 37 weeks of gestation for maternal or foetal indications, or other non-

medical reasons [73]. A precise mechanism cannot be established in most cases, therefore 

several factors that are associated with PTB, but not obvious in the causal pathway, have been 

sought to explain PTL [70, 72]. 

Risk factors 

Defining risk factors for prediction of PTB allows identification of at-risk women and initiation 

of risk-specific treatment [70, 72]. Maternal history of PTB is a strong risk factor and most likely 

driven by the interaction of genetic, epigenetic and environmental risk factors. Some risk 

factors have been identified, including: maternal age (young or advanced age), short inter-

pregnancy interval, medical conditions, psychological factors, and low maternal body mass 

index (BMI). Another important risk factor is uterine overdistension with multiple pregnancy, 

which carries nearly 10 times the risk of PTB compared to singleton births [64, 70, 73, 75]. Some 

lifestyle factors can also contribute to spontaneous PTB, like stress and excessive physical work 

or long standing times. Smoking and alcohol consumption also have been associated with an 

increased risk of PTB [73, 76]. 

Causes 

Although PTL presents itself as one clinical manifestation, it cannot be treated by only one 

therapy or diagnosed by a single method, due to its different aetiologies. For instance, it is not 

clear whether the mechanism of PTL is premature activation of the common physiological 

process or a pathophysiological development that leads to an activation of the contractility 
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apparatus [72, 77]. The precursors to spontaneous PTB vary by gestational age, and social and 

environmental factors, but the cause of spontaneous PTL remains unidentified in up to half of 

cases [73, 76]. PTL can be caused by multiple pathologic processes, for example, conditions like 

short cervix, cervical diseases, preeclampsia, and placental ischaemia [77, 78]. 

One of the leading causes of PTL is both intra- and extrauterine infection. Intrauterine infection 

is accountable for at least 25% of PTBs [72, 79]. Several infections, like urinary tract infection, 

malaria, bacterial vaginosis, human immunodeficiency virus (HIV), and syphilis, are associated 

with an increased risk of PTB [71, 73, 80, 81]. The colonisation with microorganisms alone is 

mostly not enough to cause PTL, also an inflammatory response, either from the mother or the 

foetus, is needed [71]. Inflammation can lead to the activation of the contractility cascade, since 

pro-inflammatory factors play an important role in the myometrial contractility pathway [62, 

82]. 

1.3.3 Management of preterm labour 

Labour is a multifactorial process, and not all aspects of term labour and PTL mechanism are so 

far known, making the choice of treatment extremely difficult [66, 72, 83]. A delivery delay for 

at least 48 h may reduce the rate of long-term morbidity by facilitating the maturation of 

developing organs and systems, and may also permit the transfer of the foetus in utero to a 

centre with a neonatal intensive care unit (NICU). It is important to bear in mind that, between 

22 and 28 weeks of gestation, each day of delay increases survival by 3% [74, 84, 85]. 

Treatments used in clinics address the symptoms rather than the underlying cause. Since the 

contracting uterus is the most visible symptom of labour, most treatments focus on relaxing 

the uterus (tocolysis) [66, 69, 71, 86].  

1.3.3.1 Foetal lung maturation 

In the case of PTB, foetal lung immaturity often leads to RDS, which is mainly accountable for 

morbidity and mortality in preterm neonates. The administration of antenatal glucocorticoids 

(AGC) for at least 48 h leads to accelerated lung maturation and reduces the risk of RDS 

significantly. Treatment with corticosteroids is recommended for all PTL cases between 24 and 
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34 weeks of gestation [84, 87]. For PTL in pregnancies further advanced than 34 weeks, AGC 

treatment seems to have no benefit for the mother or for the baby, and is not recommended. 

Moreover, the use of AGC is not recommended in cases of chorioamnionitis, peptic ulcer (p.o.), 

and tuberculosis [87]. Besides the improvement of lung maturation, the administration of AGC 

also reduces the risk of other complications like intraventricular haemorrhage, retinopathy and 

others [87, 88]. Betamethasone and dexamethasone have been the preferred antenatal 

treatments [69]. 

1.3.3.2 Tocolytics 

Current approaches to preventing or arresting PTL have been not fully successful. This failure 

is largely based on poor understanding of the regulation of the timing and maintenance of 

parturition [89]. Most tocolytics used in clinics were not developed for this purpose and are 

therefore often not uterospecific, leading to all sorts of side effects [90]. Furthermore, 

tocolytics are often applied off-label and do not have an official approval for the purpose of 

tocolysis [85, 91]. There are several tocolytics used in the clinics: β-adrenergic agonists, 

oxytocin receptor (OTR)-antagonists, calcium-channel blockers (CCBs), prostaglandin (PG)-

synthase inhibitors, and progesterone [69, 90]. 

β-sympathomimetics/-agonists 

β-agonists bind to the β-adrenergic receptors located on cardiac/vascular muscle cells, 

bronchioles of the respiratory system and myometrium (β2-receptors). Relaxation of the 

smooth muscle occurs when these receptors are activated. β-agonists are efficient in delaying 

PTL by 48 h, however, due to lack of specificity, they promote several maternal side effects like 

tachycardia, dyspnoea, palpitation, headache, pulmonary oedema, and hyperglycaemia [66]. 

Furthermore, since these tocolytics have the ability to pass through the placenta, there is also 

the possibility that the foetus can experience side effects as well [91]. 

Oxytocin receptor antagonists 

OT is known to play a crucial role in the initiation of labour [65]. A widely used competitive 

inhibitor of the OTR is atosiban, which binds to the OTR competitively [92]. The arrest of PTL 
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with atosiban for 48 h is often effective and has fewer side effects than β-adrenergic agonists 

[93]. Some side effects related to atosiban are nausea, dizziness, headache, and tachycardia 

[92]. Atosiban is the therapy of choice in most cases, but is also more expensive compared to 

the other treatment options. However, when considering hospitalisation expenses, total costs 

are lower than when the other tocolytics are used [94]. 

Calcium channel blockers 

Smooth muscle cell contraction can be caused by the entry of extracellular Ca2+ through 

voltage-gated Ca2+ channels (VGCCs) into the intracellular compartment. When these channels 

are blocked, cells cannot contract [65, 95]. The mostly commonly used CCB to treat PTL in clinics 

is nifedipine. Nifedipine effectively delays birth for 48 h and is associated with a reduction in 

the rate of RDS on the premature baby [96]. The use of CCBs leads to fewer side effects than 

the use of β-agonists [93]. However, given its known use as an antihypertensive drug, it can 

cause adverse effects like dizziness, flushing, hypotension, and suppression of heart rate, 

compromising the supply of the foetus [66, 69, 95]. 

Prostaglandin synthase inhibitors 

PG plays a role in the initiation and maintenance of labour [97]. Since PGs are synthesized from 

arachidonic acid by the cyclooxygenase (COX) enzymes, the inhibition of these enzymes leads 

to labour inhibition [66]. Maternal side effects include gastritis, oesophageal reflux, nausea, 

and vomiting. In general, the use of these tocolytics is a safe option for the mother, however, 

it is only allowed in pregnancies below 32 weeks, due to its risk of causing an early closure of 

the ductus arteriosus and impairing foetal renal function [90]. 

Progesterone 

The steroid hormone progesterone mediates uterine quiescence before the onset of labour. It 

is produced by the corpus luteum and, after 8 weeks of gestation, by the placenta [66]. 

Progesterone acts by binding to the nuclear progesterone receptor, and blocks labour by 

inhibiting the responsiveness of myometrial cells to pro-labour/pro-inflammatory stimuli [66, 
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98]. Progesterone is given to the mother, either intramuscularly or intravaginally, as a 

preventive measure for women at risk, like in cases of previous PTB or short cervix [97].  

Other tocolytics 

Due to lack of data or negative benefit-risk assessment, several tocolytic treatments are no 

longer recommended. Magnesium sulphate acts as a Ca2+ antagonist, however, its 

effectiveness is not sufficient to outweigh the potential risks for mother and foetus [69]. In the 

case of nitric oxide (NO)-donor, there is not sufficient data to recommend its use as a tocolytic, 

and the maternal vasodilatation can lead to symptoms like flushing, headache, hypotension, 

and tachycardia [85, 91]. 

1.4 Contractility pathways 

Throughout the journey of pregnancy, the uterus exhibits a relatively quiescent state and 

responds to a low level of uterotonins until parturition approaches. The beginning of human 

parturition is clinically manifested by rhythmic uterine contractions, leading to the expulsion of 

the baby. At a cellular level, the mechanism by which OT leads to stimulation of the uterus is 

very complex, and consists in the activation of several pathways [62]. 

1.4.1 Role of oxytocin 

The neurohypophysial hormone OT is a peptide consisting of nine amino acids (Fig. 7). This 

hormone was first discovered by Sir Henry Dale in 1906. The term oxytocin originated from the 

Greek words ‘oxus’ and ‘tokos’ meaning ‘sharp’ and ‘childbirth’, respectively [99, 100]. OT is 

mainly produced by the hypothalamus, in the nuclei supraopticus and paraventricularis, and is 

released by the posterior lobe of the pituitary gland in a pulsatile manner [101], triggering 

peripheral and central receptors [102]. However, it can also be produced by peripheral tissues 

like the decidua, placenta or amnion. OT has a major impact on human reproduction, playing a 

role in the processes of labour, lactation, mother-child bonding and also erectile dysfunction 

and ejaculation [100, 102].  



Introduction 

 

33 
 

 

Figure 7. Chemical structure of OT 
OT is a nonapeptide hormone composed of a cyclic (above line) and a linear part (below line). Its 
sequence is cysteine-tyrosine-isoleucine-glutamine-aspargine-cysteine-proline-leucine-glycine-amide 
(Cys-Tyr-Ile-GLn-Asn-Cys-Pro-Leu-Gly-NH2) [103]. 

 

Birth is a complex process based on many biochemical processes. The time of onset of labour 

is mainly determined by the complex interaction of corticotropin-releasing hormone (CRH) and 

oestradiol (from the placenta). Instead of upregulating OT production in the hypothalamus, the 

beginning of parturition is characterised by a higher excitability of the uterine contractility 

apparatus. In the blood of a pregnant woman, towards the end of pregnancy, the oestradiol 

level increases by about 150 times, and the progesterone concentration by about 15 times 

[100]. This oestrogen-progesterone quotient increase is accompanied by an augmentation of 

the sensitivity of OTRs on myometrium cells. Furthermore, the spontaneous reactivity of the 

myometrium is increased by an oestrogen-dependent depolarization of the cell membrane and 

induction of local OT production by the placenta and decidua. Contractions are triggered 

through the binding of OT to the OTR of myometrial cells [102, 104]. 

OT is the most potent uterine stimulant known so far, and its pharmacological application is 

mainly in the induction and augmentation of childbirth or in the prevention of postpartum 

haemorrhage by stimulating the delivery of the placenta [66, 89].  
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1.4.2 Oxytocin receptor  

OTR functions as a receptor for the hormone OT and belongs to the rhodopsin-type (Class 1) of 

the guanylate nucleotide binding proteins (G-proteins) coupled receptor (GPCR) family [65, 

100, 101] . GPCRs are one of the most important families of cell surface proteins and play a 

major role in transmembrane signalling [65]. 

The receptor consists of seven α-helical transmembrane domains connected to the 

heterodimeric G-proteins. When agonists interact with the OTR, G-protein subunits Gα, Gβ and 

Gγ couple to the receptor to stimulate a number of signalling pathways [65, 89, 104]. A 

schematic model of the OTR is shown in Figure 8. 

 
Figure 8. Schematic representation of OTR structure 
OTR belongs to the GPCR family, and possesses seven transmembrane domains. The associated G-
protein subunits are located in the intracellular compartments. Figure adapted from Li J. et al., 2002 
[105]. 

 

In the uterus, OTR undergoes a radical up- and down regulation. During pregnancy it is 

upregulated, to ensure a strong sensitivity towards OT and, after labour, the receptor 

undergoes a rapid decrease [106]. The tissue specific regulated expression of OTR is essential, 

since it enables the OT that circulates in the blood to switch target organs and to promote the 

induction of contractions during labour [100]. 
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1.4.3 Main oxytocin-induced signalling pathways  

When OT binds to OTR, a conformational change is induced in the receptor domain. In the 

myometrium, the OTR has been shown to couple with Gαq/11, Gαi and potentially Gα12/13. OTR 

couples to Gαq/11 proteins to stimulate membrane phospholipase C-β (PLC-β), promoting its 

activation. PLC-β then hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 

1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 and DAG will act as second messengers, 

activating different pathways in the cells (Fig. 9) [62, 65, 101]. 

1.4.3.1 Canonical pathway 

IP3 interacts with a specific receptor (IP3R) at the level of the sarcoplasmic reticulum (SR), 

leading to the release of Ca2+ from this intracellular store, and increasing the [Ca2+]i [62]. A 

further potential way of regulating Ca2+ release is referred to as store-operated Ca2+ entry 

(SOCE). As a result of emptying the intracellular SR stores of Ca2+, an unknown signal is sent to 

the plasma membrane (PM) to allow entry of extracellular Ca2+ into the cytosol. The channels 

through which this entry occurs are referred to as store operated channels (SOCs) [62, 101]. 

Besides activating the release of intracellular Ca2+ storage, OTR stimulation also seems to 

trigger the opening of VGCCs, also referred to as L-type Ca2+ channels [107], implying a further 

rise in [Ca2+]i. Furthermore, the Ca2+-ATPase pump is inhibited, preventing Ca2+ from exiting the 

cell [100, 101].  

Mobilisation of these extra- and intracellular Ca2+-sources trigger the activation of calmodulin 

(CaM), a Ca2+-dependent cytosolic protein that binds to Ca2+ ions. The Ca2+-calmodulin complex 

(Ca2+-CaM) then activates the myosin light chain kinase (MLCK), leading to the phosphorylation 

of the MLC initiating the actin-myosin cross-bridge cycle and myometrial contraction (Fig. 9, 

pink pathway) [62, 100]. Thus, the regulation of the Ca2+ flux is of ultimate importance in 

determining the state of contractile activity. Ca2+ is one of the most ubiquitously used second 

messenger signalling molecules in biological systems [62]. 
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Figure 9. Oxytocin receptor signalling in the myometrium 
Binding of OT to its receptor leads to contraction of the myometrium through several pathways. 
Activation of G-protein Gαq/11 promotes the activation of phospholipase C-β (PLC-β), leading to the 
hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-tirsphosphate (IP3) and 
diacylglycerol (DAG). IP3 then triggers the release of Ca2+ from the sarcoplasmic reticulum (SR) which 
forms a complex with calmodulin, the Ca2+-calmodulin complex (Ca2+-CaM). This complex will activate 
the myosin light chain kinase (MLCK) leading to the phosphorylation of myosin, enabling it to form the 
complex myosin-actin cross binding that leads to myometrial contraction. DAG, on the other hand, 
activates the protein kinase C (PKC), which activates c-kinase-activated protein phosphatase-1 inhibitor 
17-kDa (CPI-17) by phosphorylation. CPI-17 then phosphorylates myosin light chain phosphatase (MLCP) 
that when phosphorylated is inactive, and cannot dephosphorylate myosin, resulting in myometrial 
contraction. The inactivation of MLCP is also mediated via the RhoA/ROCK pathway. Ras homolog family 
member A (RhoA) is directly activated by the linkage of OT to the oxytocin receptor (OTR) and leads to 
the activation of RhoA-associated protein kinase (ROCK), which then also phosphorylates MLCP. Besides 
CPI-17, PKC also activates mitogen-activated protein kinases (MAPKs), in this case the extracellular-
signal regulated kinases (ERK1/2), the p38, and the stress-activated protein kinase or c-Jun NH2-terminal 
kinases (SAPK/JNK). These MAPKs lead to upregulation and activation of PG synthesising enzymes such 
as cyclooxygenase (COX) and cytosolic phospholipase A2 (cPLA2). COX and cPLA2 are responsible for 
prostaglandin (PG), and inflammatory cytokines and chemokines production, which leads to cell 
contraction. 
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1.4.3.2 Calcium sensitization - RhoA/ROCK pathway 

In uterine smooth muscle cells, the intensity of myometrial contractions depends on the 

balance between the activities of MLCK and myosin light chain phosphatase (MLCP), since they 

dictate the extent of myosin phosphorylation and therefore myometrial contraction [101]. 

Inactivation of MLCP by phosphorylation allows MLC to remain phosphorylated and leads to 

uterine muscle contraction. If MLCP is in its active, dephosphorylated form, it leads to the 

dephosphorylation of the MLC and therefore also to the disruption of the cross-bridge cycle 

and myometrium relaxation [62, 101]. 

MLCP is composed of three subunits: the catalytic region (protein phosphatase 1 or PP1), the 

myosin phosphatase target subunit 1 (MYPT1) and a third small peptide of approximately 20 

kDa (M20) of unknown function [62, 89]. The most relevant subunit for the function of MLCP is 

MYPT1, whose main objective is to provide access to the target of dephosphorylation of the 

phosphorylated MLC. MYPT1 has two major phosphorylation sites (Thr696 and Thr853) and by 

the phosphorylation of MYPT1, MLCP’s ability to dephosphorylate MLC is inhibited [62].  

DAG, one of the second messengers resulting from PIP2 hydrolysis, activates the protein kinase 

C (PKC) isoforms [62], leading to the phosphorylation of c-kinase-activated protein 

phosphatase-1 inhibitor 17-kDa (CPI-17), a smooth muscle specific inhibitor of MLCP. 

Phosphorylated CPI-17 promotes MLCP phosphorylation and, therefore, impedes its relaxation 

effect on the myometrium [101, 108]. 

Ras homolog family member A (RhoA) is a monomeric G protein and a member of the Rho 

subfamily of the Ras G superfamily of monomeric guanosine triphosphatases (GTPases). RhoA 

exists in an inactive form in the cytosol bound to guanosine diphosphate (GDP) in a complex 

including GDP-dissociation inhibitor (GDI). To be activated, this complex is disrupted and the 

GDP exchanged for guanosine triphosphate (GTP) [89, 101]. In parallel to the PKC pathway, 

MLCP is also affected via the RhoA/ROCK pathway [62, 109]. The binding of OT to its receptor 

also leads to the activation of Gα12/13 that triggers the activation of RhoA [101]. The binding of 

GTP-RhoA to the binding domain of RhoA-associated kinase (ROCK) leads to a conformational 

change causing autophosphorylation and activation of ROCK. Like PKC, ROCK can inactivate 

MLCP by phosphorylation, thereby shifting the balance of MLCP and MLCK activity to the side 
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that benefits myometrial contractility [89, 101, 109, 110]. This promotion of contractility is 

called calcium sensitization, a term that implies an indirect effect on the Ca2+-dependent 

pathway, increasing the effect of the available Ca2+ on the contractility apparatus by displacing 

the equilibrium to the MLCK side (Fig. 9, orange and green pathway) [65]. 

1.4.3.3 MAPK pathway 

In addition to the well characterised, direct or indirect, Ca2+-dependent pathways, there is also 

a signalling segment independent of Ca2+. Previous studies suggest that OT also acts as an 

inflammatory mediator, playing a central role in the inflammatory cascade leading to labour, 

by activating mitogen-activated protein kinases (MAPK) [99, 111]. The MAPK pathway is a highly 

conserved signal transduction pathway in all eukaryotic cells, and one of the best-characterized 

signalling cascades [112].  

In multicellular organisms there are three major classes of MAPKs: the extracellular-signal 

regulated kinases (ERK1 and ERK2); the four p38 enzymes, p38α, p38β, p38γ, and p38δ; and 

the stress-activated protein kinase or c-Jun NH2-terminal kinases (SAPK/JNK), JNK 1, JNK2, and 

JNK3. The three MAPK classes play an important role in cellular regulation processes, especially 

on gene expression, mitosis, movement, metabolism and programmed cell death [113-115]. 

Spatial location of the MAPK ERK1/2 determines target substrates and later effects within the 

cell: i) nuclear translocation of activated ERK is followed by upregulation of gene expression, 

and ii) activated ERK remaining in the cytoplasm leads to contraction and PG production [112, 

116]. MAPKs SAPK/JNK, when activated, can translocate into the nucleus and bind to the 

deoxyribonucleic acid (DNA) binding protein c-Jun, increasing its transcriptional activity. This 

has marked consequences, as c-Jun is a component of the activator protein 1 (AP-1), an 

important regulator of gene expression that contributes to the control of many cytokine genes 

[99, 114]. Both SAPK/JNK and p38 MAPKs play an important role in apoptosis, inflammation, 

and cytokine production [82, 113, 115]. 

The MAPK cascade is regulated as a three-kinase system including MAPK, activated by MAPK 

kinase (MKK), which is in turn activated by MKK kinase (MKKK). For a MAPK to be activated, two 

sites have to be phosphorylated (serine and threonine). The activation of MAPKs is reversed by 

MAPK phosphatases [113-115]. In the uterus, activated MAPKs lead to upregulation and 



Introduction 

 

39 
 

activation of PG synthesising enzymes, such as cytosolic phospholipase A2 (cPLA2) and COX 

isoforms (COX 1 and 2). All three classes of MAPK have been reported to phosphorylate cPLA2 

[117, 118]. MAPKs phosphorylate cPLA2 at Serine505, leading to selective hydrolysis of glycerol-

phospholipids, and mobilising arachidonic acid from membrane phospholipids [119, 120]. Once 

mobilised, free arachidonic acid is rapidly converted to prostaglandin H2 (PGH2) by the enzyme 

PGH2 endoperoxide synthase (PGHS)-2. In endometrial tissue, PGH2 is then converted to 

prostaglandin F2α (PGF2α), and E (PGE2) by the enzyme PGF synthase [121]. COX, also known as 

PGHS or prostaglandin-endoperoxide synthase (PTGS), is also responsible for PG production 

(Fig. 9, orange and purple pathway) [99, 111, 122]. PGs have a pro-inflammatory effect on the 

myometrial tissue and lead to contractions by increasing Ca2+ entry [66]. This pro-inflammatory 

pathway that leads to PG production is also present in other uterine tissues like the amnion and 

the decidua [101, 123]. 
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Human myometrium tissue was obtained from pregnant women undergoing a caesarean 

section and mounted in a myograph system. Tissue was allowed to contract spontaneously and 

B. pinnatum leaf press juice (BPJ), atosiban or nifedipine were added alone or in combination 

to the chamber. The effect of BPJ plus atosiban and BPJ plus nifedipine was compared to the 

effect of each substance alone, in terms of area under the curve (AUC), amplitude and 

frequency. To find out whether the effect observed was concentration dependent, substances 

alone or in combination were repeatedly added to the organ bath. Cell viability assays with 

human myometrial cell lines (hTERT-C3 and PHM1-41) were performed, for both combinations 

and substances alone. 
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Bryophyllum pinnatum enhances the
inhibitory effect of atosiban and nifedipine
on human myometrial contractility: an
in vitro study
S. Santos1,2, C. Haslinger1, M. Mennet3, U. von Mandach1, M. Hamburger2 and A. P. Simões-Wüst1*

Abstract

Background: The herbal medicine Bryophyllum pinnatum has been used as a tocolytic agent in anthroposophic

medicine and, recently, in conventional settings alone or as an add-on medication with tocolytic agents such as

atosiban or nifedipine. We wanted to compare the inhibitory effect of atosiban and nifedipine on human

myometrial contractility in vitro in the absence and in the presence of B. pinnatum press juice (BPJ).

Methods: Myometrium biopsies were collected during elective Caesarean sections. Myometrial strips were

placed under tension into an organ bath and allowed to contract spontaneously. Test substances alone and

at concentrations known to moderately affect contractility in this setup, or in combination, were added to

the organ bath, and contractility was recorded throughout the experiments. Changes in the strength

(measured as area under the curve (AUC) and amplitude) and frequency of contractions after the addition of

all test substances were determined. Cell viability assays were performed with the human myometrium

hTERT-C3 and PHM1–41 cell lines.

Results: BPJ (2.5 μg/mL), atosiban (0.27 μg/mL), and nifedipine (3 ng/mL), moderately reduced the strength

of spontaneous myometrium contractions. When BPJ was added together with atosiban or nifedipine,

inhibition of contraction strength was significantly higher than with the tocolytics alone (p = 0.03 and p <

0.001, respectively). In the case of AUC, BPJ plus atosiban promoted a decrease to 48.8 ± 6.3% of initial,

whereas BPJ and atosiban alone lowered it to 70.9 ± 4.7% and to 80.9 ± 4.1% of initial, respectively. Also in

the case of AUC, BPJ plus nifedipine promoted a decrease to 39.9 ± 4.6% of initial, at the same time that

BPJ and nifedipine alone lowered it to 78.9 ± 3.8% and 71.0 ± 3.4% of initial. Amplitude data supported those

AUC data. The inhibitory effects of BPJ plus atosiban and of BPJ plus nifedipine on contractions strength

were concentration-dependent. None of the test substances, alone or in combination, decreased myometrial

cell viability.

Conclusions: BPJ enhances the inhibitory effect of atosiban and nifedipine on the strength of myometrial

contractions, without affecting myometrium tissue or cell viability. The combination treatment of BPJ with

atosiban or nifedipine has therapeutic potential.
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Background

Preterm birth, defined as birth before 37 weeks of

pregnancy, affects 5 to 18% of pregnancies. It is the

number one cause of neonatal deaths, and the second

leading cause of childhood death under 5 years of age

[1–3]. Delaying preterm delivery frequently involves

pharmacological inhibition of myometrial contractions

(tocolysis) [4]. The main aim of a tocolytic treatment

is to delay delivery long enough (24–48 h) for cortico-

steroid administration to the mother to achieve foetal

lung maturation, and for transfer of the mother to a

perinatal centre [4, 5]. Several types of tocolytics are

currently in use [4, 6, 7]. Atosiban, a competitive

oxytocin-vasopressin antagonist [8], and nifedipine, a

calcium channel-blocking agent [9], are often given as

first tocolytic treatment since they have good efficacy

to side-effect ratios [10, 11]. A recent randomised

study showed that atosiban and nifedipine resulted in

similar perinatal outcomes [12]. Long term (> 1 week)

tocolysis is seldom pursued and rarely achieved even

though pregnancy prolongation favours perinatal out-

comes [13].

Bryophyllum pinnatum (Lam.) Oken [syn. Kalanchoe

pinnata (Lam.) Pers.; family Crassulaceae] is a perennial

succulent plant that grows widely in tropical and subtrop-

ical areas. In Europe, B. pinnatum started to be used in

anthroposophic medicine [14] as treatment of preterm

labour [15, 16]. Retrospective analyses of the clinical prac-

tice revealed good efficacy of B. pinnatum preparations in

this indication [15, 16], which was corroborated by a

matched pair study [17]. Results of a prospective rando-

mised trial on acute tocolysis are in line with good efficacy,

but have to be interpreted with caution since - due to poor

recruitment rate - the study was discontinued before com-

pletion [18]. All clinical studies demonstrated a very good

tolerability of B. pinnatum. The use of such preparations in

the treatment of pre-term contractions was supported by

in vitro studies [19, 20].

An assessment of the internal treatment recommenda-

tions in the main Swiss obstetrics centres showed that B.

pinnatum preparations are being prescribed for the treat-

ment of preterm contractions [21]. This is in line with a

Swiss online survey which showed that in approximately

¾ of the cases B. pinnatum preparations are administered

in combination with synthetic tocolytics [22]. Comparable

results were obtained in a retrospective analysis of the

clinical practice at the University Hospital Zurich [23]. It

is still not clear how B. pinnatum preparations influence

the effects of tocolytics on myometrial contractility. We

here compare the inhibitory effect of atosiban and nifedi-

pine on human myometrial contractility in vitro in the

absence and in the presence of B. pinnatum press juice

(BPJ). Given a potentially synergistic effect of these sub-

stances, the question is of clinical interest.

Methods

Test substances

B. pinnatum leaves were harvested on the 25 March

2014 from B. pinnatum plants cultivated at the Medical

Plants Garden located in S. Roque, Brazil, and that des-

cend from seedlings brought from Weleda AG, Arlesheim,

Switzerland, in the past. Plant collection did not affect

Brazilian biodiversity and was done in accordance to

Brazilian Environmental and Biodiversity laws, mainly

Provisional Measure 2186–16 from 23 August 2001 that

rules access to genetic resources and traditional know-

ledge. The Medical Plants Garden from S. Roque belongs

to Weleda Brazil and the harvested B. pinnatum plants

were identified by the Weleda employees Moacyr Copani

and Paulo Copani. A voucher specimen ZSS 29717 was

deposited at the Zurich Succulent Plant Collection. Leaves

were sent by airmail to Weleda Arlesheim, Switzerland, in

a refrigerated box. BPJ was obtained by mechanical press-

ing in a roller, the procedure used in the first step of the

production of the active ingredient of Weleda Bryophyl-

lum 50% chewable tablets (Weleda AG, Arlesheim). Unfil-

tered press juice was kept at − 80 °C until use.

Atosiban (Tractocile®, 7.5mg/mL injectable solution), was

purchased from Ferring Pharmaceuticals, Baar, Switzerland.

Nifedipine was obtained from Sigma-Aldrich (purity ≥98%,

N7634-1G); a 3.7 μg/mL stock solution was prepared in

DMSO.

Design

The ethics committee of canton Zurich approved the

study with human myometrium biopsies (KEK-ZH-Nr.

2014–0717, approval date 12.05.2015). Patients were

asked prior to elective caesarean sections to donate a

myometrium biopsy if the following inclusion criteria

were fulfilled: single pregnancy, planned first caesarean

section, negative HIV test, age > 18 years, and no tocoly-

sis within 2 weeks before caesarean section.

A myometrial biopsy of approx. 5 g was taken from each

study participant at the cranial margin of the uterotomy.

The myometrial biopsy was immediately stored in Ringer

solution and transported to the lab. Longitudinal strips of

muscle of about 15 × 2 × 1mm were cut and mounted in a

myograph bath chamber. Each of the four myograph cham-

bers contained 6mL of Krebs solution (in mM: NaCl 118,

NaHCO3 24.9, KCl 4.7, KH2PO4 1.24, CaCl2 2.48, MgSO4

1.21, Glucose 10, EDTA 0.034; pH = 7.4), with temperature

regulated at 37 °C and bubbled with 95% O2 and 5% CO2

(PanGas, Dagmersellen, Switzerland). Contractions were re-

corded with a DMT800MS myograph (Danish Mayo Tech-

nology, Denmark) and transferred to a personal computer

via a transducer (ADInstruments PowerLab 4/30). Myome-

trial strips were allowed to contract spontaneously (which

took in most cases approximately 2 h). During this time,

the Krebs solution was replaced every 30min.
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In preliminary experiments, concentrations of atosiban,

nifedipine and BPJ were determined that would lead to

moderate lowering (by 20–30%) of contraction strength.

These concentrations were used in the main combination

experiments, performed as described below. In prelimin-

ary experiments, two slightly different experimental proto-

cols appeared equally promising. We used both protocols,

one for the experiments with atosiban, and the second for

nifedipine, to find out whether one of the protocols would

result in lower standard error of the means (SEM) values.

Effect of the combination of BPJ with atosiban or with

nifedipine on myometrial contractility

In all cases, regular spontaneous myometrial contractions

in amplitude and frequency were recorded for 30min.

When the effects of the combination of BPJ with atosi-

ban were being studied, each one of four strips was

treated with one test substance, and contractility was

recorded for additional 30 min. Test substances were:

Krebs solution, 5 μL (control; n = 11); BPJ, 15 μL (0.25%

final concentration, corresponding to 2.5 μg/mL; n = 13);

atosiban, 4.3 μL of 375 μg/mL (0.27 μg/mL final concen-

tration; n = 11); and BPJ and atosiban combined (same

concentrations, n = 12). Temporal and vehicle controls

were run in parallel in each experiment to access the

decay in contractility of the myometrium with time.

To study the combination of BPJ with nifedipine, Krebs

solution, 5 μL (control; n = 13) or nifedipine, 5 μL of

3.7 μg/mL (final concentration 3 ng/mL; n = 11) was added

to two chambers each, contractility was recorded for 30

min and thereafter 15 μL of BPJ (final concentration of

0.25 μg/mL; n = 10) was added to all four chambers. This

resulted in two chambers with BPJ alone and two cham-

bers with the combination of nifedipine with BPJ. After

BPJ addition, contractions were recorded for 30min

(Fig. 1b).

Dose-dependency effect of combination treatments on

myometrial contractility

To find out whether the effect of the combination treat-

ments would further increase at higher concentrations, a

previously described approach was followed [24]. In brief,

when spontaneous contractions were regular for 20min,

Krebs solution was added (addition 0), and contractility

was recorded for 20min. Then, each strip was treated with

one test substance by adding 4 times, at time intervals of

20min, the same volume of a stock solution. Test solu-

tions included: control, 5 μL Krebs solution; BPJ, 15 μL;

combination of BPJ (15 μL) plus atosiban (4.3 μL of

375 μg/mL) or BPJ (15 μL) plus nifedipine (5 μL of 3.7 μg/

mL). For each substance tested, 5 different biopsies were

used (n = 5).

Vitality of myometrial strips

The exposure to the different test substances was

followed by a 30-min washing period where Krebs solu-

tion was changed several times (at 5, 10, 20 and 30min).

Vitality of the strips was determined at the end of the

experiment (30 min after washing) by observation of

spontaneous contractions. In all cases, strips were con-

tracting and data were included in the present analysis.

Fig. 1 Experimental design for measurement of myometrial contractions. Test substances were added to the organ bath when myometrium

strips had been contracting regularly for 30 min. When the effects of BPJ and/or atosiban were being studied (a), Krebs solution (control), BPJ,

atosiban, or the combination of BPJ and atosiban were added, and contractility was recorded for 30 min. When the effects of BPJ and/or

nifedipine were being studied (b), Krebs solution (control; two strips) or nifedipine (two strips) was added, contractility was recorded for 30 min,

and then BPJ was added to all chambers. Exposure to test substances was followed by a 30 min washout step, with change of Krebs solution at

5, 10, 20 and 30 min
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Fig. 2 (See legend on next page.)
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Myograph data processing

Myometrium contractions were recorded by LabChart

Pro 8.0.6 (ADInstruments, Germany) and analysed

with the peak analysis module. For each contraction,

the area under the curve (AUC) and the amplitude

were analysed. Depending on the type of experiments,

for each 20 or 30 min interval, the average AUC and

average amplitude were calculated, and the number of

contractions was noted (frequency). Initial values of

AUC, amplitude and frequency of spontaneous con-

tractions (before any addition) were set at 100%.

Effects after addition of test substances were expressed

as percentage of initial. When studying the combin-

ation of BPJ and atosiban and in all dose-dependency

experiments, the values obtained in one strip per bi-

opsy were used for further statistical analyses. When

investigating the combination of BPJ and nifedipine,

two strips per biopsy were used to determine the effect

of each substance (BPJ, nifedipine, BPJ plus nifedipine,

and control). In this case, average values of the two

determinations were calculated and used for further

statistical analyses.

Viability assays in myometrium cell lines

Human myometrial telomerase reverse transcriptase

cell line (hTERT-C3) [25, 26], provided by M. Grãos

(University of Coimbra, Portugal), was cultured in an

1:1 mixture of DMEM and F-12 supplemented with

antibiotics (100 U/mL penicillin and 100 μg/mL strepto-

mycin) and 10% (v/v) heat-inactivated foetal bovine serum

(FBS) (all from Gibco, Paisley, UK). Human uterine myo-

metrium smooth muscle cells (PHM1–41), obtained from

American Type Culture Collection (ATCC® CRL-3046™)

were maintained in ATCC-formulated DMEM (ATCC®

No. 30–2002) supplemented with 0.1mg/mLG-418 (Carl

Roth, Zurich, Switzerland), 2 mM glutamine and 10% (v/

v) heat-inactivated FBS.

hTERT-C3 cells were seeded at a density of 5 × 104

cells/mL (5 × 103 cells per well) and PHM1–41 cells at a

density of 8 × 104 cells/mL (8 × 103 cells per well) into

transparent 96-well microplates. 1 day after seeding, cells

were exposed to BPJ (2.5–10.0 μg/mL), atosiban (0.27–

1.08 μg/mL), nifedipine (3.0–12.0 ng/mL) or the combi-

nations BPJ plus atosiban or BPJ plus nifedipine for 24 h.

After exposure, resazurin (Alamar Blue, Invitrogen, Illkirch

Cedex, France) was added to cells (final concentration 1.0

mg/mL), and the plate incubated at 37 °C for 4 h. The extent

of resazurin reduction was measured in a microplate reader

(SpectraMax Paradigm, Molecular Devices, Berkshire, UK)

at 570 and 600 nm. For each substance tested, 4 independ-

ent experiments were carried out in quadruplicate. Ethyl

methanesulfonate (30mM) [27] and Triton X-100 (1%) were

used as a positive control. In each experiment, wells with no

test substance added to the culture medium served as un-

treated control (100% viability). Cell viability was determined

according to the following equation:

Viability ¼
A570−A600ð Þsample− A570−A600ð Þblank

A570−A600ð Þcontrol− A570−A600ð Þblank

Cell morphology analysis

Myometrium hTERT-C3 cells and PHM1–41 cells were

stained with fluorescent probes for nuclei (double-

stranded DNA) and cytoplasm (F-actin), as follows. After

treatment with test substances, alone or combined, for

24 h, cells were washed with phosphate buffered saline

(PBS; Gibco, Paisley, UK) and fixed with 4% paraformal-

dehyde (PFA; from Artechemis, Zoffingen, Switzerland)

in PBS for 20 min. Cells were then permeabilised with

0.3% Triton X-100 (Sigma, St. Louis, USA) in 1% bovine

serum albumin (BSA; Sigma, St. Louis, USA) for 30 min.

Then, cells were incubated with a 1:10000 dilution of 4′,

6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, USA)

and 1:400 rhodamine phalloidin (Invitrogen, Illkirch Cedex,

France) prepared in 0.1% Triton X-100 (Sigma, St. Louis,

USA) in 1% BSA, for 4 h, in the dark. Cells were rinsed with

PBS and examined with the Leica CTR 6000 microscope

(Leica microsystems, Heerbrugg, Switzerland). The entire

procedure was performed at room temperature.

Statistical analyses

Statistical analyses were performed using GraphPad

Prism 7 (GraphPad Software, Inc., CA, USA). In all

cases, a significance level of p < 0.05 was considered sta-

tistically significant.

Because of the slightly different experimental set-ups

used to investigate the combinations of BPJ with atosi-

ban and of BPJ with nifedipine in the myograph model,

different tests were used in the two cases. Data from the

combination of BPJ and atosiban measurements were

analysed with the Kruskal Wallis test followed by Dunn’s

multiple comparisons test. Data from the combination

of BPJ and nifedipine were analysed with the Wilcoxon

test to compare control with BPJ and nifedipine with the

combination (determinations in the same strips, paired

(See figure on previous page.)

Fig. 2 Effect of BPJ, atosiban, and the combination of BPJ with atosiban on human myometrial contractility in vitro. BPJ (green; 15 μL), atosiban

(blue; 4.3 μL of 375 μg/mL) or their combination (red, same concentrations) were added to the myograph chamber. The scatter dot plot shows

the AUC (a), the amplitude (b), and the frequency (c) of contractions expressed as percentage of initial. Krebs solution was used as negative

control (black, 5 μL). Data were obtained from 11 to 15 different biopsies (n = 11–15) and are presented as mean value ± SEM. *p < 0.05
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test), and with the Mann-Whitney to compare control

with nifedipine and with combination (determinations in

different strips, unpaired test). Effects of combination

treatments on myometrial contractility are expressed in

scatter dot plots as mean values ± SEM.

For each test substance, dose-dependency data ob-

tained in the myograph model and cell viability data was

analysed with the paired, non-parametric Friedman test.

Statistical analyses of cell viability data was followed by

Dunn’s multiple comparisons test. In the case of the sin-

gle concentrations of positive controls used in cell viabil-

ity assays, the paired t-test was used to compare their

effects with untreated control. Myograph measurements

on dose-dependency and cell viability data are given as

mean ± SEM.

Results

Effect of BPJ and atosiban on human myometrial

contractility

The exposure of contracting strips to 2.5 μg/mL BPJ and

0.27 μg/mL atosiban (final concentrations in the bath)

led to a decrease of contraction strength (AUC and

amplitude; Fig. 2a and b). BPJ alone lowered the AUC to

70.9 ± 4.7% of initial, which was significantly different

from the control (p = 0.001), while 0.27 μg/mL of atosi-

ban lowered AUC to 80.9 ± 4.1% of initial. When the

combination of BPJ and atosiban was added to the organ

bath, the AUC decreased to 48.8 ± 6.3%, a value signifi-

cantly different from control and atosiban alone (p <

0.001 and p = 0.03, respectively; Fig. 2a).

BPJ decreased the amplitude to 91.0 ± 4.6% of initial,

and atosiban to 93.4 ± 4.6% of initial, but the decreases

were not statistically significant. The combination of BPJ

and atosiban led to a significantly stronger decrease of

amplitude (80.1 ± 7.4% of initial, p = 0.01; Fig. 2b) rela-

tive to control.

The frequency of myometrial contractions increased

with the addition of BPJ to 204.7 ± 27.8% of initial, which

was significantly higher than with atosiban (81.0 ± 10.1%

of initial; p = 0.03). Also, the combination of BPJ and

atosiban led to a significant increase of frequency

(345.4 ± 73.0% of initial) relative to control and atosiban

alone (p = 0.010 and p < 0.001, respectively; Fig. 2c) that

per se did not increase frequency.

Stepwise increase of BPJ and atosiban concentrations

led to successive decreases of myometrial contractility

strength (Fig. 3a and b).

Effect of BPJ and nifedipine on myometrial contractility

BPJ, nifedipine, or the combination of the two led to a

significant decrease of contractions relative to control

(Fig. 4a). BPJ alone lead to a decrease to 78.9 ± 3.8% of

initial (p = 0.003), and nifedipine decreased the AUC to

71.0 ± 3.4% of initial (p < 0.001). The combination of

nifedipine with BPJ had the strongest effect, as the AUC

of contractions was lowered to 39.9 ± 4.6% of initial,

which was significantly different from the effect of ni-

fedipine alone (p < 0.001).

The amplitude of myometrial contractions decreased

with BPJ (91.7 ± 4.7%), nifedipine (86.4 ± 4.4%), and the

combination (65.4 ± 5.3%). Compared to control, the

effect of nifedipine (p < 0.001) and the combination of

BPJ with nifedipine (p = 0.003) was significant. The

combination of BPJ and nifedipine also significantly de-

creased the amplitude when compared to nifedipine

alone (p = 0.002; Fig. 4b).

As shown in Fig. 4c, BPJ strongly increased the frequency

of myometrial contractions to 257.1 ± 40.6% of initial (p <

0.001). In contrast, nifedipine alone had no effect on fre-

quency when compared to control. However, the combin-

ation of BPJ and nifedipine led to an increase of 190.1 ±

22.2% of initial, which was significantly different from

control (p < 0.0001) and from nifedipine alone (p < 0.001;

Fig. 4c).

Exposing the strips to successively higher concentrations

of the combination of BPJ and nifedipine led to stepwise

increases of the inhibitory effects on myometrial contract-

ility (Fig. 3a and b, data on BPJ + Nifedipine).

Effects on myometrial viability

Under our experimental conditions, myometrium strips

were still contracting spontaneously after the washing

step at the end of the myograph experiments, revealing

that the test substances (single or in combinations) were

not toxic to myometrial tissue (data not shown). To

assess the cytotoxicity of the test substances using a

different read-out, viability experiments were performed

with two human myometrial cell lines (hTERT-C3 and

PHM1–41). The test substances, alone or in combin-

ation, were not cytotoxic at similar or even higher con-

centrations than those used in the main combinations

experiment, and at a markedly longer exposure time (24

h; Fig. 5a). At the end of cell viability experiments, cell

morphology was evaluated by fluorescence microscopy.

Visual examination revealed that the test substances did

not affect the morphology of myometrial cells. In

(See figure on previous page.)

Fig. 3 Effect of repeated addition of BPJ plus atosiban (15 μL and 4.3 μL of 375 μg/mL, respectively) and of BPJ plus nifedipine (15 μL and 5 μL of

3.7 μg/mL, respectively) on human myometrial contractility in vitro. All test substances were repeatedly added to the myograph chamber. The

line chart shows the AUC (a), the amplitude (b), and the frequency (c). Data were obtained with 5 different biopsies (n = 5) and are expressed as

percentage of initial. The repeated addition of BPJ was performed for comparison; Krebs solution (5 μL) was used as control. *p < 0.05
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(See figure on previous page.)

Fig. 4 Effect of BPJ, nifedipine, and the combination of BPJ with nifedipine on human myometrial contractility in vitro. BPJ (green; 15 μL),

nifedipine (violet; 5 μL of 3.7 μg/mL), or their combination (orange, same concentrations) were added to the myograph chamber. The scatter dot

plot shows the AUC (a), the amplitude (b), and the frequency (c) expressed as percentage of initial. Krebs solution was used as negative control

(black, 5 μL). Data were obtained from 11 to 13 different biopsies (n = 11–13) and are presented as mean value ± SEM. *p < 0.05

Fig. 5 Effect of BPJ, atosiban, nifedipine, BPJ plus atosiban and BPJ plus nifedipine on myometrium cell viability. (a) Cell viability assays were

performed in the presence of BPJ (2.5–10.0 μg/mL), atosiban (0.3–1.1 μg/mL) and nifedipine (3.0–12.0 ng/mL), as well as of BPJ plus atosiban and

BPJ plus nifedipine (same concentrations as with single treatments) using hTERT-C3 and PHM1–41 human myometrium cell lines. Cells were

incubated with the test substances for 24 h. Triton X-100 (1%) and ethyl methanesulfonate (30 mM) were used as positive controls. Data is

presented as mean ± SEM of 4 independent experiments (n = 4), each carried out in quadruplicate; *p < 0.05. (b) Staining of nuclei (blue) and

actin (red) from hTERT-C3 cells untreated (i.e. control) or upon treatment with BPJ (10.0 μg/mL), BPJ plus atosiban (10.0 μg/mL and 1.1 μg/mL,

respectively), and BPJ plus nifedipine (10.0 μg/mL and 12.0 ng/mL, respectively). The images are representative of four independent cultures
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particular, the intact nucleus morphology of hTERT-C3

cells (Fig. 5b) or PHM1–41 cells (data not shown)

treated with the highest concentrations of the various

test substances reveals that the cells were not undergo-

ing apoptosis.

Discussion

Press juice from B. pinnatum leaves, the active ingredient

of chewable tablets that are being used in the management

of preterm labour in Switzerland, enhances the inhibitory

effect of the oxytocin receptor antagonist atosiban on con-

traction strength in human myometrium strips. BPJ also

enhances the effect of nifedipine, a voltage-dependent cal-

cium channel blocker that is in off-label use as a tocolytic.

Both the combination BPJ with atosiban and BPJ with

nifedipine show dose-dependent effects on human myo-

metrial contractility. Reduced viability of myometrial

tissue or cells does not play a role in the observed results.

Taken together, our data corroborate the clinical use of

these combination treatments.

The main strength of our study is the use of the

physiologically most relevant model to study the process

of myometrial contractions in human material, with the

possibility to compare the effect of different substances,

alone and in combination. In fact, our study depicts a

proof of principle for the therapeutic potential of the com-

bination of standard tocolytic medications with BPJ. Alter-

natives would be animal models, but the process of labour

differs between humans and animal species [28, 29]. Limi-

tations of our model are the availability of myometrium

biopsies and the very low throughput that can be achieved

with an organ bath model. For these reasons, the number

of tested concentrations had to be kept low. Also due to

the low throughput, it would be advantageous to further

reduce the variability of results (and therefore of needed

experiments) in future projects. For this reason, two vari-

ant experimental protocols were used in this work. The

comparable SEM values obtained indicated that the two

protocols were equally suited.

Several signalling pathways are known to increase

intracellular calcium concentrations leading to contrac-

tion of myometrium cells. Some of these pathways are

triggered by binding of oxytocin to the corresponding

G-protein coupled receptor, but membrane depolarisa-

tion with concomitant opening of voltage-gated calcium

channels may also play a role [30]. The two tocolytics

used in the present study prevent the increase in intra-

cellular calcium concentration by different mechanisms,

namely by blocking oxytocin receptors in the case of

atosiban, or by blocking voltage-gated calcium channels

in case of nifedipine [11]. Previous work showed that

BPJ inhibits oxytocin-induced increase of intracellular

calcium concentration in myometrium cells. BPJ did not

prevent, but delayed the depolarisation-induced increase

of intracellular calcium in cells with voltage-gated channels

[31]. In myometrial strips, the combination of atosiban with

calcium-channel blockers (nicardipine or nifedipine) led to

additive inhibitory effects, indicating that simultaneous tar-

geting of these two pathways has clinical potential [32, 33].

Therefore, it appears conceivable that the delaying effect of

BPJ on depolarisation-induced increase of intracellular

calcium can enhance the effects of atosiban. Likewise, the

inhibition of oxytocin-induced increase of intracellular cal-

cium concentration by BPJ should synergise with the effects

of nifedipine. To which extent inhibition by BPJ of each of

these two signalling pathways contributes to the observed

in vitro results or to the effectiveness of B. pinnatum prepa-

rations in the treatment of preterm labour is currently not

known.

BPJ is known to increase the contraction frequency of

myometrium strips [19, 20] and this was also observed

in the combination with atosiban or nifedipine (Figs. 2, 3

and 4). Our previous work suggests that various compo-

nents of B. pinnatum leaves might contribute to increase

contraction frequency of myometrium strips [24]. Both a

bufadienolide-enriched fraction and a flavonoid-enriched

fraction (but not the corresponding flavonoid aglycon mix-

ture) seemed to contribute to the frequency increase.

Whether the signalling pathways activated by BPJ might

trigger a partial membrane-depolarisation reserves further

investigations. Trying to translate the increase in frequency

seen in myometrium strips into the clinical situation, we

feel tempted to suggest that B. pinnatum preparations –

but not other tested tocolytics – could induce a type of

conversion of labour-contractions into other, high fre-

quency and painless, and most importantly not-effective,

contractions. These are well known in the praxis, and often

interpreted as myometrium training uterine contractions

that do not lead to labour. In retrospective studies on the

tolerability of B. pinnatum, no clinically relevant increases

of contraction frequency have been observed, neither when

used as single treatment nor in combination with tocolytics

[15–17, 23]. Also, no increase was reported in a prospective

observational study which even included women with uter-

ine tachysystoles [22]. On the contrary, a significant lower-

ing of contraction frequency was observed after 4 h of

treatment with B. pinnatum 50% tablets in a previous ran-

domised trial on acute tocolysis (n = 13) [18].

Although the main combination experiments were

performed in vitro and with concentrations leading to

moderate effects, we compared the concentrations of

atosiban and nifedipine used in vitro with the corre-

sponding plasma concentrations during tocolysis. In the

case of atosiban, the mean plasma concentration at

steady state is 0.44 ± 0.07 μg/mL [34], and in the case of

nifedipine is 67.4 ± 28.4 ng/mL [35]. Therefore, whereas

the concentration of atosiban in the myograph experi-

ments is rather close to that measured in the plasma, the
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concentration of nifedipine was markedly lower. Given

the lack of pharmacokinetic data with BPJ, it is not possible

at this point to compare the concentration in the myograph

experiments with known plasma concentrations.

Currently used standard tocolytic treatments are not

always able to prolong pregnancy for at least 48 h [7]. At

the same time, combinations of standard tocolytics are

not recommended by the Swiss Society for Gynaecology

and Obstetrics current Swiss guidelines [36], nor by the

guidelines from the National Institute for Health and

Care Excellence (NICE) [37] because of concerns about

side-effects. Our data show that BPJ enhances the inhibi-

tory effect of atosiban and nifedipine on myometrium

contractility. In Germany and Switzerland, B. pinnatum

preparations (containing BJP as the active ingredient)

have been used for decades in clinics and private prac-

tices of anthroposophic medicine [15, 16, 38]. In

Switzerland, B. pinnatum preparations are being recom-

mended [21] and used to stop pre-term contractions also

in conventional clinical practice, often as an add-on

treatment [22, 23]. In the case of atosiban, a combin-

ation at low dosages with B. pinnatum would lower the

overall medication costs. As for nifedipine, a lowering of

the dosage in a combination with B. pinnatum would

have the advantage of limiting the well-known cardiovas-

cular side effects, such as palpitations, hypotension,

flushes, headache, and gastro-intestinal symptoms like

gastric upset and constipation [39].

Conclusion

We provide here evidence for the potential of drug com-

binations of atosiban and nifedipine with B. pinnatum.

Such combinations may lower the required dosage of

tocolytics, thereby decreasing treatment costs and redu-

cing maternal and foetal side effects. This could help to

reduce early tocolysis failure and to increase the percent-

age of patients that reach a 48 h delay of delivery. Pro-

spective randomised studies are needed to substantiate

such combination treatments.
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ABSTRACT

Bryophyllum pinnatum has been used since the 1970s to pre-

vent premature labour, first in anthroposophic hospitals and,

more recently, also in the main Swiss perinatal centres. How-

ever, it is not known which compounds in B. pinnatum leaves

contribute to the tocolytic effect. Here we studied the effects

of a flavonoid-enriched fraction, the corresponding flavonoid

aglycon mixture, a bufadienolide-enriched fraction, and

B. pinnatum leaf press juice on human myometrial contractil-

ity in vitro. The strength (area under the curve and amplitude)

and frequency of contractions were recorded using strips of

human myometrium mounted in an organ bath system. Cell

viability assays were performed with the human myometrium

hTERT‑C3 and PHM1–41 cell lines. Repeated addition of the

flavonoid-enriched fraction, flavonoid aglycon mixture, bufa-

dienolide-enriched fraction, or B. pinnatum leaf press juice led

to a progressive decrease of contraction strength, without

jeopardising the vitality of myometrium strips. The bufadie-

nolide-enriched fraction was the most active, since 1 µg/mL

of the bufadienolide-enriched fraction lowered the area under

the curve to 40.1 ± 11.8% of the initial value, whereas 150 µg/

mL of the flavonoid-enriched fraction, 6.2 µg/mL of the flavo-

noid aglycon mixture, and 10 µg/mL of the B. pinnatum leaf

press juice were required to achieve comparable inhibition.

A progressive increase of contraction frequency was ob-

served, except in the case of the flavonoid aglycon mixture,

which did not affect frequency. None of the test substances

decreased myometrial cell viability, even at concentrations of

500 µg/mL of the flavonoid-enriched fraction, 40 µg/mL of

the flavonoid aglycon mixture, 3.8 µg/mL of the bufadieno-

lide-enriched fraction, and 75 µg/mL of the B. pinnatum leaf

press juice, i.e., higher than those used in the myometrium

experiments. Given the concentrations of flavonoids in the

flavonoid-enriched fraction and B. pinnatum leaf press juice,

and of bufadienolides in the bufadienolide-enriched fraction

and B. pinnatum leaf press juice, it appears that bufadienolides

may be mainly responsible for the relaxant effect.

A Bufadienolide-Enriched Fraction of Bryophyllum pinnatum

Inhibits Human Myometrial Contractility In Vitro
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Introduction
Bryophyllum pinnatum (Lam.) Oken [syn. Kalanchoe pinnata (Lam.)

Pers.; family Crassulaceae] is a succulent perennial plant native to

Madagascar that now grows widely in tropical and subtropical re-
gions around the globe. In ethnomedicine, B. pinnatum has multi-

ple uses including the treatment of wounds, diabetes mellitus,

joint pain, headache, hypertension, and kidney stones, and nau-

sea and vomiting in cancer patients. For B. pinnatum extracts,

antifungal, antimicrobial, anti-inflammatory, and analgesic prop-

erties have been reported [1,2].

In Europe, the use of remedies prepared from B. pinnatum

leaves was limited for a long time to anthroposophic medicine.
Initially, they were used for the treatment of various hyperactivity

disorders [3,4], and only in the 1970s was B. pinnatum introduced

by the German gynaecologist Werner Hassauer (1928–1993) as a

routine treatment of preterm labour [5]. In Switzerland, B. pinna-

tum is used in gynaecology and obstetrics against premature con-

tractions, restlessness, and overactive bladder [6]. A recent as-

sessment of the internal treatment recommendations in the main

Swiss obstetrics centres revealed that B. pinnatum preparations
are suggested for the treatment of preterm contractions, as well

as anxiety, restlessness, and sleep disorders [7]. Several clinical

studies documented a very good tolerability of B. pinnatum prep-

arations when used for these indications [3,4,6, 8–12]. Moreover,

pharmacovigilance data for the Bryophyllum preparation used in

Switzerland (B. pinnatum 50% tablets) and for a comparable prep-

aration in use in Germany and France (B. pinnatum 50% powder)

corroborate the very good tolerability (Weleda AG, pharmacovigi-
lance data).

Preterm labour and prematurity (i.e., birth before 37 weeks of

pregnancy) are the main determinants of perinatal mortality and

long-term morbidity [13,14]. Since preterm uterine contractions

correlate highly with preterm birth, their inhibition by tocolytics

(beta-adrenergic receptor agonists, calcium channel blockers, or

oxytocin receptor antagonists) constitute a major treatment ele-

ment. Most studies have shown that administration of tocolytics
may delay pregnancy for 48 h with the goal to administer antena-

tal corticosteroid therapy for foetal lung maturation and to allow

intrauterine transfer to a tertiary care perinatal centre [15, 16].

However, tocolysis was not shown to prevent preterm birth from

occurring or to reduce neonatal morbidity or mortality [17,18].

Therefore, additional therapeutic options are needed. As a toco-

lytic agent, B. pinnatum was shown to be effective and to lead to

significantly less maternal adverse effects than beta-adrenergic
receptor agonists [10]. In vitro studies showed that B. pinnatum

(aqueous extract, 100mg/mL, and leaf press juice) inhibited

spontaneous contractions of human myometrial strips [19,20].

In human myometrium cells, BPJ lowered the oxytocin-induced in-

crease of intracellular calcium concentrations [21].

Flavonoid glycosides and bufadienolides are the major classes

of secondary metabolites in B. pinnatum leaves [22, 23]. The pres-

ence of nine different glycosides of kaempferol, quercetin, myri-

cetin, acacetin, and diosmetin was shown, and four bufadieno-

lides, namely, bersaldegenin-1-acetate, bryophyllin A, bersalde-
genin-3-acetate, and bersaldegenin-1,3,5-orthoacetate, were

identified [22]. Fractions enriched in flavonoid glycosides (FEF)

and bufadienolides (BEF) were prepared, and their effects on hu-

man myometrial contractility were characterised in vitro. The ac-

tivity of fractions was compared with that of BPJ, the starting ma-

terial for the B. pinnatum tablets used in clinical practice, and with

a mixture of flavonoid aglycons (A‑mix) that corresponded to the

composition of aglycons in FEF.

Results
To investigate the contribution of different constituents of B. pin-

natum leaves on human myometrial contractility, spontaneously

contracting strips of myometrium mounted in an organ bath sys-

tem were repeatedly exposed to increasing concentrations of FEF,

A‑Mix, BEF, and BPJ. A schematic representation of the experimen-
tal design is given in ▶ Fig. 1. The concentration ranges for FEF,

BEF, and BPJ (▶ Table 1) were determined in preliminary experi-

ments to ensure that an effect on the strength of contractions,

measured as the AUC and amplitude, would be visible upon two

to three additions. The concentration range of A‑Mix was such

that the concentration of the main flavonoid aglycons in the or-

gan bath were identical to those of the corresponding flavonoid

glycosides in FEF.
The AUC of myometrial contractions decreased progressively

and in a statistically significant way with the repeated addition of

FEF and the corresponding A‑Mix (FEF: p < 0.001, A‑Mix: p < 0.001;

Friedman test) (▶ Fig. 2A). Compared to addition 0, the values of

the AUC were significantly lower after the 3rd and 4th additions of

FEF (final concentrations of 150 and 200 µg/mL, p = 0.01 and

p < 0.001, respectively; Dunnʼs multiple comparisons test)

(▶ Fig. 2A). The repeated addition of A‑Mix also significantly
lowered the AUC after the 3rd and 4th additions (concentrations

of 6.2 and 8.3 µg/mL), again when compared to addition 0

(p = 0.008 and p = 0.002, respectively) (▶ Fig. 2A). Comparable

inhibitory effects of FEF and A‑Mix on the amplitude were ob-

served (FEF: p = 0.01, A‑Mix: p < 0.001) (▶ Fig. 2B). Compared to

addition 0, the 4th addition of FEF and the 3rd addition of A‑Mix

led to significantly lower amplitudes (in each case p = 0.01)

(▶ Fig. 2B). The repeated addition of FEF promoted a progressive
increase in contraction frequency (p = 0.001), with significant dif-

ferences after the 3rd and 4th additions (p = 0.004 and p = 0.002,

respectively). In contrast, increased concentrations of A‑Mix did

not affect contraction frequency (▶ Fig. 2C).

As shown in▶ Fig. 3, the effect of BEF on the AUC ofmyometrial

contractility was concentration dependent (p < 0.001). When each

addition was compared to addition 0, a significant difference was

obtained with the 3rd and 4th additions (concentrations of 1.0
and 1.3 µg/mL, p = 0.02 and p < 0.001, respectively) (▶ Fig. 3A).

ABBREVIATIONS

A‑Mix flavonoid aglycon mix

AUC area under the curve

BEF bufadienolide-enriched fraction

BPJ Bryophyllum pinnatum leaf press juice

FEF flavonoid-enriched fraction

PC positive control

386 Santos S et al. A Bufadienolide-Enriched Fraction… Planta Med 2019; 85: 385–393

Original Papers

D
o
w

n
lo

a
d
e
d
 b

y
: 
F

a
c
h
s
te

lle
 E

-M
e
d
ia

. 
C

o
p
y
ri
g
h
te

d
 m

a
te

ri
a
l.



The amplitude of the contractions also decreasedwith consecutive

additions of BEF (p = 0.001) andwas significantly different fromad-

dition 0 after the 4th addition (final concentration of BEF in the or-

gan bath was 1.3 µg/mL, p = 0.003) (▶ Fig. 3B). The frequency of

themyometrial contractions increasedwith the repeated additions
of BEF (p = 0.001), with significant differences, relative to addition

0, being obtained after the 3rd and 4th additions (p = 0.004 and

p = 0.002, respectively) (▶ Fig. 3C).

To compare the effects described above with the active ingre-

dient of commercially available 50% B. pinnatum tablets, BPJ was

also tested. The addition of BPJ led to a progressive decrease of

the AUC compared to addition 0 (p < 0.001). After the 3rd and

4th additions [final concentrations of 10 and 13 µg/mL (1.0 and
1.3%) of BPJ], the values of the AUC were significantly lower than

after addition 0 (p = 0.01 and p < 0.001, respectively) (▶ Fig. 4A).

A progressive decrease of the amplitude was also observed

(p < 0.003). As shown in ▶ Fig. 4B, the 4th addition of BPJ resulted

in a significant decrease of contraction amplitudes compared to

addition 0 (p = 0.01, final concentration of 13 µg/mL). BPJ led to a

strong increase in contraction frequency (p < 0.001) to 860.0 ±

219.4% (p = 0.007) at the 3rd addition, and 1120.0 ± 214.2% of
the initial value at the 4th addition (▶ Fig. 4C).

Nifedipine, a known tocolytic drug frequently used in clinical

practice [7,24], was used as the PC. The repeated addition of nife-

dipine led to a progressive decrease of the contraction strength as-

sessed either as the AUC or as amplitude (in each case p < 0.001)

(▶ Fig. 4A,B), with statistically significant values after the 3rd
and 4th additions (concentrations of 16.2 and 21.6 nM) when

compared to addition 0 (in each case p = 0.01 and p = 0.0003,

respectively). The frequency of the myometrial contractions was

not affected by increasing concentrations of nifedipine (p < 0.5)

(▶ Fig. 4C).

The bufadienolide content in BEF and BPJ, and the flavonoid

aglycons in FEF, had been previously determined [23,25]. To be

able to compare the effects of FEF with those of BPJ, the main fla-
vonoid aglycons in BPJ were now determined by HPLC‑PDA analy-

sis after hydrolysis. BPJ contained 0.034 ± 0.006mg/mL of flavo-

noid aglycons in the relative proportions of 78.7% quercetin,

4.8% myricetin, 11.5% diosmetin, and 4.9% kaempferol (Fig. 1S,

Supporting Information).

To verify whether the test substances could be toxic to myo-

metrial tissue, the ability of the strips to contract again after the

washing step at the end of the myograph experiments was deter-
mined. All strips contracted again (Fig. 2S, Supporting Informa-

tion), either spontaneously or after the addition of oxytocin (final

▶ Table 1 Side-by-side comparison of flavonoid aglycon and bufadienolide concentrations in the organ bath upon consecutive addition of the var-
ious test substances. Concentration of the flavonoid-enriched fraction (FEF), the corresponding flavonoid aglycon mixture (A‑Mix), the bufadieno-
lide-enriched fraction (BEF), and B. pinnatum leaf press juice (BPJ) in the organ bath after each addition is shown. The corresponding concentrations
of flavonoid aglycons in FEF and BPJ, and bufadienolides in BEF and BPJ were calculated.

Addition FEF A‑Mix BEF BPJ

(µg/mL) Flavonoids

(µg/mL)

(µg/mL) (µg/mL) Bufadienolides

(µg/mL)

µg/mL Flavonoids

(µg/mL)

Bufadienolides

(µg/mL)

1 50 2.07 2.07 0.33 0.030 3.3 0.11 0.033

2 100 4.14 4.14 0.67 0.061 6.7 0.23 0.067

3 150 6.21 6.21 1.00 0.091 10.0 0.34 0.100

4 200 8.28 8.28 1.33 0.121 13.3 0.45 0.133

▶ Fig. 1 Experimental design for measurement of myometrial contractions. When uterine strips were contracting regularly for 20min, Krebs so-
lution was added to the organ bath (addition 0) and contractility was recorded for 20min. Thereafter, a test substance was added four times, at
intervals of 20min each, and contractility was recorded for 20min after each addition. A washout period of 30min followed, with a change of Krebs
solution at 5, 10, 20, and 30min. If the strip was not contracting spontaneously at the end of the washout period, oxytocin was added (final con-
traction 1 U/L).
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concentration of 1 U/L). This indicated that test substances did

not jeopardise the viability of the myometrium strips. In some

myograph experiments, however, a decrease of contraction

strength was still apparent after the washing step. Therefore, we

assessed the cytotoxicity of the test substances during longer pe-

riods using two human myometrial cell lines. When hTERT myo-

metrium cells were incubated with test substances for 24 h (data

not shown) and 48 h, A‑Mix, BEF, and BPJ did not affect cell viabil-
ity at concentrations up to 40 µg/mL, 15 µg/mL, and 150 µg/mL,

respectively. Moreover, FEF was cytotoxic only at a concentration

of 1000 µg/mL when compared to the untreated control

(p < 0.05) (▶ Fig. 5). When PHM1–41 cells were incubated with

test substances for 24 h (data not shown) and 48 h, FEF and A‑Mix

did not affect cell viability at concentrations up to 1000 µg/mL

and 40 µg/mL, respectively. BEF decreased cell viability when

compared to the untreated control only after 48 h, at concentra-
tions of 7.5 and 15 µg/mL (p < 0.05), while BPJ was cytotoxic only

at 150 µg/mL (p < 0.05) (▶ Fig. 5). DMSO used to dissolve the test

samples only decreased cell viability at concentrations higher than

1.5% (Fig. 3S, Supporting Information).

Discussion
Fractions prepared from B. pinnatum leaves and enriched in flavo-
noid glycosides or in bufadienolides led to a concentration-depen-

dent decrease of myometrial contraction strength in vitro. There-

fore, our data suggest that FEF and BEF contain compounds that

contribute to the inhibitory effect of BJP (▶ Fig. 6), the starting

material for the 50% B. pinnatum tablets that have been used in

several prospective clinical studies [6,8, 11,12]. These B. pinna-

tum press juice tablets are taken orally, and the intestinal metab-

olisation of compounds thus needs to be considered. Flavonoid
glycosides are known to be hydrolysed, leading to the release of

flavonoid aglycons [26,27], whereas bufadienolides in B. pinna-

tum are less likely to be metabolised by gut microbiota (own un-

published preliminary observations with bufalin). From a transla-

tional point of view, the similar abilities of FEF and A‑mix to lower

myometrium contractions in vitro suggest that the intestinal me-

tabolisation step is not required for FEF effects on this tissue.

The concentrations in the organ bath of flavonoid aglycons
after the addition of FEF and BPJ, and of bufadienolides after the

addition of BEF and BPJ was calculated based on previous [23,25]

and present data, and are shown in ▶ Table 1. It is apparent that

the concentration of flavonoid aglycons in BPJ additions was

markedly lower than with FEF. In contrast, bufadienolide concen-

trations after the addition of BEF and BPJ were comparable. The

repeated addition of FEF, A‑Mix, BEF, and BPJ led to a comparable

lowering of the AUC and amplitude (▶ Fig. 6), albeit at much high-
er concentrations for FEF and A‑mix. From a translational point of

view, this suggests that bufadienolides are mainly responsible for

the inhibitory effect of BPJ on myometrium contractility, and that

flavonoids only play a minor role. Therefore, special attention

should be paid to the amount of bufadienolides present in B. pin-

natum preparations administered for the prevention of preterm

birth. In general, bufadienolides increasingly appear to be the ma-

jor pharmacologically active compounds in Bryophyllum spp. [28].

Human myometrium strips are the most relevant model for

assessing the effects of substances on uterine contractions. The

downside of the model is the highly limited availability of myome-

trium strips (they have to be freshly taken from a Caesarean sec-

tion, with prior consent) and the very low throughput that can be
achieved with an organ bath model. To study concentration de-

pendency in this model, we have therefore increased the concen-

▶ Fig. 2 Effect of repeated addition of the flavonoid-enriched frac-
tion (FEF) and corresponding flavonoid aglycon mixture (A‑Mix) on
human myometrial contractility in vitro. FEF (2 µL of 150mg/mL
DMSO stock solution) or the corresponding A‑Mix (2 µL of 6.21mg/
mL DMSO stock solution) was repeatedly added to the myograph
chamber. The box plot shows the AUC (A), amplitude (B), and fre-
quency (C). The bottom and top edges of the box are the 25th and
75th percentile, respectively, the central mark indicates the me-
dian, and the end of the whiskers represents minimum and maxi-
mum values. Data were obtained with five different biopsies (n = 5)
and are expressed as percentage of the initial value. The repeated
addition of DMSO (2 µL) was used as a control; *p < 0.05.
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tration of the various test substances in the myograph chamber
with consecutive additions. The inclusion of vehicle (and concom-

itantly time) controls in the various experiments supported the

concentration dependency of the effects. Moreover, the intervals

of 20min after each addition allow the compounds to penetrate

into the tissue and thus to exert their effect.

The results obtained in the organ bath seem to represent a

true inhibition of contractions since myometrium strips were still

vital after the washout, i.e., they could still contract if given
enough time and/or if stimulated with oxytocin (Fig. 2S, Support-

ing Information). Since the contraction strength of the strip treat-
ment with the test substances was still lower than prior to the

additions, we investigated the cytotoxic effects of the test sub-

stances on two human myometrium cell lines (hTERT‑C3 and

PHM1–41). The test substances were not cytotoxic even at con-

centrations far higher than those used in the organ bath experi-

ments, and exposure times that were significantly longer

(▶ Figs. 5 and 3S, Supporting Information).

Our results with the myometrium model show that the frac-
tions obtained from B. pinnatum leaves (FEF and BEF) not only re-

▶ Fig. 3 Effect of repeated addition of the bufadienolide-enriched
fraction (BEF) on human myometrial contractility in vitro. BEF (2 µL
of 1mg/mL DMSO stock solution) was repeatedly added to the
myograph chamber. The box plot shows the AUC (A), amplitude (B),
and frequency (C). Data were obtained with five different biopsies
(n = 5) and are expressed as percentage of the initial value. The re-
peated addition of DMSO (2 µL) was used as acontrol; *p < 0.05.

▶ Fig. 4 Effect of repeated addition of B. pinnatum leaf press juice
(BPJ) and nifedipine (positive control; PC) on human myometrial
contractility in vitro. BPJ (20 µL) or nifedipine (3 µL of 10.8 µM) were
repeatedly added to the myograph chamber. The box plot shows
the AUC (A), amplitude (B), and frequency (C). Data were obtained
with five different biopsies (n = 5) and are expressed as percentage
of the initial value. The repeated addition of Krebs solution (20 µL)
was used as a control; *p < 0.05.
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duced contraction strength, but also increased the frequency of

spontaneous contractions (▶ Fig. 6). This is in line with previous

studies [19,20], but different from what was observed with

A‑mix. The reason for the frequency increase with BPJ, FEF, and
BEF is not clear at this point in time. As for the clinical practice,

there are no published reports that B. pinnatum preparations

would lead to an increase in frequency of the strong and rhythmi-

cal contractions that eventually lead to delivery.

Taken together, our data corroborate the relaxant properties

of BPJ and fractions on myometrium strips and, therefore, support

the use of B. pinnatum preparations in the management of pre-

term labour. Considering the qualitative and quantitative compo-
sition of the press juice and the fractions tested on one side, and

the potency of relaxant effects on the other, bufadienolides ap-

pear to be the major active compounds of B. pinnatum.

Material and Methods

Chemicals

Quercetin (purity ≥ 95%), myricetin (purity ≥ 96%), diosmetin (pu-

rity ≥ 98%), kaempferol (purity ≥ 97%), NaHCO3, glucose (ACS

grade), KCl (purity ≥ 99%), and EDTA were obtained from Sigma-

Aldrich. KH2PO4 (purity ≥ 99.5%) and CaCl2 (purity ≥ 95%) were

purchased from Merck. MgSO4 (purity ≥ 99%) was purchased

from Fluka and NaCl (purity ≥ 99.5%) from PanReac AppliChem.

Plant material

Plant material originated from two different harvests. Weleda Bra-

zil provided leaves harvested on 25 March 2014 in S. Roque, Brazil.

Identification of this material was done by Moacyr Copani and

Paulo Copani, Weleda Brazil. A voucher specimen (ZSS 29717)

has been deposited at the Zurich Succulent Plant collection.

Leaves were sent by airmail to Weleda AG, Arlesheim, Switzerland,
in a refrigerated box. In addition, the Weleda branch located in

Schwäbisch Gmünd, Germany, provided leaves harvested in July

and August 2010. Identification of this material was done by

Michael Straub, Weleda Germany. A voucher specimen (ZSS

29715) was deposited at the Zurich Succulent Plant collection.

After harvesting, the leaves were frozen and stored at − 20 °C until

processing.

Bryophyllum pinnatum leaf press juice

BPJ was prepared from leaves harvested in S. Roque, Brazil. The

press juice was obtained by the mechanical pressing of the leaves

in a roller mill. The procedure was identical to the initial steps of

the protocol used for the production of the active ingredient of

Weleda Bryophyllum 50% chewing tablets (Weleda AG). Unfil-

tered press juice was kept at − 80 °C until use.

Flavonoid- and bufadienolide-enriched fractions

FEF and BEF used in the present study originated from earlier in-

vestigations, and chromatograms of these fractions have been

published (see [29] and [25], respectively). Briefly, frozen fresh

leaves of B. pinnatum (from Schwäbisch Gmünd, Germany) were

lyophilised and powdered in a mortar, and the powder (1065 g)

was extracted with MeOH. After evaporation, a portion of the

MeOH extract (112 g) was partitioned between CH2Cl2 and H2O,
and the aqueous phase (2.2 g) was fractionated by column chro-

matography on Diaion HP-20 to provide the FEF (610mg). Evapo-

▶ Fig. 5 Cytotoxic effect of the flavonoid-enriched fraction (FEF, 30–1000 µg/mL) (A), the corresponding flavonoid aglycon mixture (A‑Mix, 1.3–
40 µg/mL) (B), the bufadienolide-enriched fraction (BEF, 0.5–15mg/mL) (C), or B. pinnatum leaf press juice (BPJ, 0.5–15.0%) (D) on human myo-
metrium cell lines (hTERT‑C3 and PHM1–41). Viability assays were performed after 24 and 48 h, and ethyl methanesulfonate was used as a positive
control (PC). Data is presented as the mean ± SEM of four independent experiments carried out at least in quadruplicate (n = 4); *p < 0.05.
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ration of the CH2Cl2 phase yielded a residue (10.8 g) [29] that was

purified by solid-phase extraction on RP-18 to afford 268mg of

BEF [23]. For testing, FEF and BEF stock solutions (150mg/mL

and 1.0mg/mL, respectively) were prepared in DMSO.

Flavonoid aglycon mix

A content of 4.14% of total flavonoid aglycons after hydrolysis of

FEF was previously determined, and the relative proportions were
74.6% quercetin, 16.7% myricetin, 4.6% diosmetin, and 4.0%

kaempferol [25]. A mixture of the four aglycons in these propor-

tions (A‑Mix) was prepared in DMSO at a concentration of

6.21mg/mL.

Acid hydrolysis of Bryophyllum pinnatum leaf press
juice and quantification of flavonoid aglycons

Concentrated HCl (4.05mL) was added to B. pinnatum juice
(20mL) to a final concentration of 2 N. The mixture was heated

under reflux at 90 °C for 1.5 h. The reaction mixture was allowed

to cool and was neutralised with NaHCO3. The solution was ex-

tracted with ethyl acetate (3 × 20mL), and the combined organic

layers were evaporated under reduced pressure. The solid residue

was redissolved in DMSO (5mL). Hydrolysis was performed in trip-

licate.

HPLC analysis was performed on a Shimadzu LCMS 8030 sys-
tem with a photodiode array detector using an Atlantis dC18 col-

umn (4.6 × 150mm, 3 µm; Waters). The mobile phase consisted

of H2O (A) and MeOH (B), both containing 0.1% formic acid. After

isocratic elution with 50% B for 2min, a gradient of 50–75% B in

28min was applied. The flow rate was 0.6mL/min, and detection

was at 254 nm. The injection volume was 10 µL. The identity of

the aglycons was confirmed by electrospray ionisation mass spec-

trometry and by comparison with reference standards. Quantifi-
cation of the five aglycons was performed using a calibration

curve for quercetin (12.5–200 µg/mL) and a previously deter-

mined response factor [25]. The HPLC‑UV chromatogram of the

hydrolysed juice and the calibration curve are shown as Support-

ing Information (Fig. 1S, Supporting Information).

Measurement of myometrial contractility in vitro

The study was approved by the ethics committee of canton Zurich
(KEK‑ZH‑Nr. 2014–0717). Written informed consent of the study

participants was obtained on the day before surgery. Inclusion cri-

teria were planned first caesarean section, single pregnancy, neg-

ative HIV test, age > 18 years, and no tocolysis within 2 weeks be-

fore the caesarean section.

A myometrial biopsy of approximately 5 g was taken from each

study participant at the cranial edge of the uterotomy during the

elective caesarean section. The myometrial biopsies were imme-
diately stored in Ringer solution and transferred to the laboratory

for experiments.

Longitudinal muscle strips of approximately 15 × 2 × 1mm

were prepared and mounted between two clamps of a myograph

bath chamber containing 6mL of Krebs solution (118mM NaCl,

24.9mM NaHCO3, 4.7mM KCl, 1.24mM KH2PO4, 2.48mM CaCl2,

1.21mMMgSO4, 10mM glucose, 0.034mM EDTA, pH = 7.4), with

the temperature set at 37 °C, and aerated with 95% O2 and 5%
CO2 (PanGas). Contractions were recorded by a DMT800MS myo-

graph (Muscle Strip Myograph system, DMT, ADInstruments) and
transferred to a PC via a transducer (ADInstruments PowerLab 4/

30).

Regular spontaneous contractions were recorded for 20min.

Then, Krebs solution was added (addition 0), and contractility

was recorded for 20min. Each strip was treated with 1 test sub-

stance by adding 4 times, at time intervals of 20min, the same

volume of a stock solution of the test compound, and recording

contractility for 20min after each addition. Test solutions in-
cluded: control, 20 µL Krebs solution or 2 µL DMSO; FEF, 2 µL of

▶ Fig. 6 Comparison of the effects of the flavonoid-enriched frac-
tion (FEF), the corresponding flavonoid aglyconmixture (A‑Mix), the
bufadienolide-enriched fraction (BEF), and B. pinnatum leaf press
juice (BPJ) on human myometrial contractility in vitro. For experi-
mental details, see legends to ▶ Figs. 2, 3, and 4.
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150.0mg/mL; A‑Mix, 2 µL of 6.21mg/mL; BEF, 2 µL of 1.0 mg/mL;

or BPJ, 20 µL. Contractions as a measure of vitality of the tissue

was determined after a 30-min period of washing, where Krebs

solution was changed at 5, 10, 20, and 30min (▶ Fig. 1). If the

strip did not contract spontaneously after the washing, 1 U of oxy-

tocin was added to stimulate contractions. After observing con-

tractility, the experiment was stopped. Nifedipine was used as a

positive control (3 µL of 10.8 µM in Krebs solution). For each sub-
stance tested, five different biopsies were used (n = 5).

Myograph data processing

Myometrium contractions were recorded by LabChart Pro 8.0.6

(ADInstruments) and analysed with the peak analysis module.

AUC and amplitude of each contraction were calculated. Average

AUC and average amplitude were taken as measures for the

strength of contractility in each of the 20-min phases. The num-
ber of contractions in each phase was also recorded (frequency).

Spontaneous contractions (before any addition, i.e., baseline)

were set at 100%. The effect after addition was expressed as per-

centage of the initial value. The values of the various biopsies

were used for further statistical analysis (n = 5 per test substance).

Cell culture

A human myometrial telomerase reverse transcriptase cell line
(hTERT‑C3) [30, 31], provided by M. Grãos (University of Coimbra,

Portugal), was cultured in a 1 :1 mixture of DMEM and F-12 sup-

plemented with antibiotics (100 U/mL penicillin and 100 µg/mL

streptomycin) and 10% (v/v) heat-inactivated FBS (all from Gib-

co). Human uterine myometrium smooth muscle cells (PHM1-

41), obtained from ATCC (CRL-3046) were maintained in ATCC-

formulated DMEM (ATCC No. 30-2002) supplemented with

0.1mg/mL G-418 (Carl Roth), 2mM glutamine, and 10% (v/v)
heat-inactivated FBS (Gibco).

Cell viability

Cells were seeded into transparent 96-well microplates. hTERT‑C3

cells were seeded at a density of 5 × 104 cells/mL (5 × 103 cells per

well) and PHM1–41 at a density of 8 × 104 cells/mL (8 × 103 cells

per well). One day after seeding, cells were exposed to FEF (30–

1000 µg/mL), A‑Mix (1.3–40 µg/mL), BEF (0.5–15 µg/mL), BPJ (5–
150 µg/mL), and DMSO (0.2–6.0%) for 24 and 48 h. After expo-

sure, resazurin was added to the cells (final concentration

1.0mg/mL), and the plate was incubated at 37 °C for 4 h. The ex-

tent of resazurin reduction was measured in a microplate reader

(SpectraMax Paradigm, Molecular Devices) at 570 and 600 nm.

For each substance tested, four independent experiments were

carried out at least in quadruplicate. Ethyl methanesulfonate

(30mM) [32] was used as a positive control. In each experiment,
wells with no test substance added to the culture medium served

as an untreated control (100% viability). Cell viability was deter-

mined according to the following equation:

Viability ¼
ðA570 − A600Þsample − ðA570 − A600Þblank
ðA570 − A600Þcontrol − ðA570 − A600Þblank

Statistical analysis

Statistical analyses were performed using GraphPad Prism soft-

ware. For each test substance, myograph measurements (n = 5)

and cell viability data (n = 4) were analysed with the paired, non-

parametric Friedman test. In all cases, this test was followed by

Dunnʼs multiple comparisons test in which the various additions

or concentrations were compared to addition 0 or untreated con-

trol, respectively. A significance level of p < 0.05 was considered
statistically significant. Myograph measurements data are pre-

sented as box plots (median, 25th percentile and 75th percentile,

and minimum and maximum values) and as the mean ± standard

error of the mean (SEM). Cell viability data is given as the mean ±

SEM.

Supporting information

An HPLC‑UV chromatogram of hydrolysed BPJ, a calibration curve
for quercetin, and the effect of different concentrations of DMSO

on the human myometrium hTERT‑C3 and cell line PHM1-41 are

available as Supporting Information.
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Fig. 1S A HPLC chromatogram of the hydrolysed juice. Myricetin (a), quercetin (b), 

kaempferol (c), diosmetin (d). Analyses were performed using an Atlantis dC-18 column (4.6 

× 100 mm, 3 μm; Waters) with H2O + 0.1% formic acid (A) and MeOH + 0.1% formic acid 

(B). Isocratic elution with 50% B for 2 min, then 50-75% B in 28 min; 0.6 mL/min. Detection 

was at UV 254 nm. B Calibration curve of quercetin (0.0125-0.2 μg/mL) 
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Fig. 2S Effect of repeated addition of the flavonoid-enriched fraction (FEF) and corresponding 

flavonoid aglycon mixture (A-Mix), the bufadienolide-enriched fraction (BEF), B. pinnatum 

leaf press juice (BPJ), and the corresponding controls (Krebs solution and DMSO) on human 

myometrial contractility in vitro. Krebs solution (20 μL), DMSO (2 μL), FEF (2 μL of 150 

mg/mL DMSO stock solution), A-Mix (2 μL of 6.21 mg/mL DMSO stock solution), BEF (2 

μL of 1 mg/mL DMSO stock solution), or BPJ (20 μL) were repeatedly added to the myograph 

chamber. When uterine strips were contracting regularly for 20 min, Krebs solution was added 

to the organ bath (addition 0) and contractility was recorded for 20 min. Thereafter, a test 

substance was added four times at intervals of 20 min each, and contractility was recorded for 

20 min after each addition. A washout period of 30 min followed, with a change of Krebs 

solution at 5, 10, 20, and 30 min. If the strip was not contracting spontaneously at the end of 

the washout period, oxytocin was added (final contraction 1 U/L). Data are from one 

representative experiment out of five. 

 

© Georg Thieme Verlag KG · 10.1055/a-0810-7704 · Planta Med · Santos S et al.



 

Fig. 3S Cytotoxic effects of DMSO (0.2-6.0%) on human myometrium cells (hTERT-C3 and 

PHM1-41). Viability assays were performed after a 48-h incubation. Ethyl methanesulfonate 

was used as a positive control (PC). Data are presented as the mean ± SEM of four independent 

experiments (n = 4) carried out at least in quadruplicate; *p < 0.05. 
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Abstract 26 

Bryophyllum pinnatum has been used in the treatment of premature labour, first in 27 

anthroposophic hospitals and, recently, in conventional settings as an add-on 28 

medication. In vitro work with hTERT human myometrial cells showed that B. 29 

pinnatum leaf press juice (BPJ) inhibits the increase of intracellular free calcium 30 

concentration ([Ca2+]i) induced by oxytocin (OT), a hormone known to play a role in 31 

labour. Our aim was to identify fractions/compounds in BPJ that contribute to this 32 

inhibitory effect, and to investigate their effect on OT-driven activation of the MAPK 33 

cascade.  Several fractions/compounds from BPJ led to a concentration-dependent 34 

decrease of OT-induced increase of [Ca2+]i, but none of them was as strong as BPJ.  35 

However, the combination of a bufadienolide (BEF) and a flavonoid-enriched fraction 36 

(FEF) was as effective as BPJ, and their combination had a synergistic effect. BPJ 37 

inhibited OT-driven activation of MAPKs SAPK/JNK and ERK1/2, an effect also 38 

exerted by BEF. The effect of BPJ on OT-induced signalling pathways was 39 

comparable to that of the OT-receptor antagonist and tocolytic agent atosiban. Our 40 

findings further substantiate the use of BPJ preparations in the treatment of preterm 41 

labour.  42 

 43 

Keywords: Bryophyllum pinnatum, myometrium cells, oxytocin, MAPK, intracellular 44 

calcium, cell signalling 45 

  46 
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Introduction 47 

Every year, around 15 million neonates worldwide are born too early. Prematurity 48 

(i.e. birth before 37 weeks of pregnancy) is the number one cause of neonatal 49 

deaths, and the leading cause of death in children under 5 years of age1-3. A number 50 

of pharmacological agents known as tocolytics – including beta-sympathomimetic 51 

drugs, oxytocin receptor (OTR) antagonists, and calcium channel inhibitors – have 52 

been introduced for inhibiting preterm uterine contractions that are responsible for a 53 

considerable part of preterm births4,5. Tocolysis is usually performed for 48h to allow 54 

corticosteroid administration to the mother in order to achieve foetal lung maturation, 55 

and in utero transfer to a perinatal centre5,6. However, to date there are no fully 56 

satisfactory tocolytics as often birth still occurs prematurely7,8. Moreover, treatment 57 

with the usual tocolytic agents is often accompanied by various, in part serious side-58 

effects. These include tachycardia, dyspnoea, palpitation, pulmonary oedema, and 59 

hyperglycaemia (in the case of the sympathomimetic drugs)4, nausea, dizziness, 60 

headache, and tachycardia (OTR antagonists)9 and flushing, hypotension, and 61 

suppression of heart rate (calcium channel blockers)10,11. 62 

The beginning of human parturition is clinically manifested by rhythmic uterine 63 

contractions leading to the expulsion of the baby. Oxytocin (OT) is a potent 64 

physiological stimulator of myometrial contractions, and its receptor and the 65 

downstream signalling pathways are attractive targets for drug development aimed at 66 

managing preterm labour4. At the cellular level, the mechanism by which OT leads to 67 

stimulation of the uterus is very complex12. Binding of OT to its receptor (OTR) leads 68 

to OTR coupling with Gαq/11 G protein13 promoting myometrial contractions through 69 

multiple signalling pathways14,15. Gαq/11 signalling activates phospholipase C-β (PLC-70 

β), which in turn hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 71 
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1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 leads to release of calcium 72 

ions (Ca2+) from the sarcoplasmic reticulum (SR) into the cytoplasm, and DAG 73 

activates protein kinase type C (PKC). A high Ca2+-concentration in the cytoplasm 74 

promotes myometrial contraction through activation of myosin light chain kinase 75 

(MLCK), known as canonical pathway. PKC activates the mitogen-activated protein 76 

kinase (MAPK) cascade14,15, resulting in increased phospholipase A2 (PLA2) activity 77 

and prostaglandin E2 (PGE2) production which also contributes to contraction14. In 78 

recent years, the importance of inflammatory processes in labour at term and 79 

preterm became apparent16. The main MAPKs are the extracellular signal-regulated 80 

kinases (ERKs) 1 and 2 (ERK1/2), stress-activated protein kinase or c-Jun amino-81 

terminal kinases (SAPK/JNK) and p3817,18. Due to the direct impact of OT on 82 

myometrium contractility, OTRs are attractive targets19. A widely used competitive 83 

inhibitor of the OTR is atosiban9,20.  84 

Bryophyllum pinnatum (Lam.) Oken, [syn. Kalanchoe pinnata (Lam.), Pers.; family 85 

Crassulaceae] has been widely used in traditional medicine of tropical countries, in 86 

the treatment of wounds, diabetes mellitus, joint pain, headache, etc21,22. In 1970, B. 87 

pinnatum was introduced in obstetrics at the anthroposophic Herdecke Community 88 

Hospital (Germany) for the treatment of preterm labour (PTL)23. In Switzerland, 89 

products containing press juice of B. pinnatum leaves are nowadays prescribed for 90 

the same indication24,25. Several clinical studies have shown a very good tolerability 91 

of B. pinnatum preparations for this indication21,22,24,26,27. In vitro studies showed that 92 

B. pinnatum reduces the strength of human myometrium contractions28-31. In human 93 

myometrial cells (hTERT-C3 cell line), leaf press juice of B. pinnatum (BPJ) lowered 94 

the OT-induced increase of intracellular calcium concentrations ([Ca2+]i)32.  95 



5 

 

Previous phytochemical studies on B. pinnatum showed that flavonoid glycosides 96 

and bufadienolides are the major classes of secondary metabolites in leaves33,34. The 97 

presence of flavonoid glycosides (derivatives of quercetin, myricetin, diosmetin, and 98 

kaempferol)35 and bufadienolides (bersaldegenin-1-acetete, bryophyllin A, 99 

bersaldegenin-3-acetate, and bersaldegenin-1,3,5-orthoacetate (BO)) was shown34.  100 

We here investigated the inhibitory effects of B. pinnatum press juice compounds on 101 

OT-induced intracellular signalling, with focus on intracellular calcium levels and 102 

activation of MAPK proteins. The effects were compared with those of the OTR-103 

antagonist and tocolytic agent atosiban. 104 

 105 

Materials and methods 106 

Cell culture 107 

Human myometrial telomerase reverse transcriptase cells (hTERT-C3)36,37, provided 108 

by M. Grãos (Biocant, Cantanhede, Portugal), were cultured in an 1:1 mixture of 109 

DMEM and F-12 supplemented with antibiotics (100 U/mL penicillin and 100 µg/mL 110 

streptomycin) and 10% (v/v) heat-inactivated foetal bovine serum (FBS) (all from 111 

Gibco). Pregnant human myometrial cells (PHM1-41, ATCC® CRL-3046TM) were 112 

maintained in ATCC-formulated DMEM (ATCC® No. 30-2002) supplemented with 113 

10% (v/v) heat inactivated FBS, 2 mM glutamine (Gibco), and 0.1 mg/mL G-418 (Carl 114 

Roth).  115 

 116 

Plant material 117 

Plant material of B. pinnatum originated from two different harvests. Weleda Brazil 118 

provided leaves harvested on 25 March 2014 in S. Roque, Brazil. A voucher 119 

specimen (ZSS 29717) was deposited at The Zurich Succulent Plant collection. 120 
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Immediately after the collection, leaves were sent by airmail in a refrigerated 121 

container to Weleda AG, Arlesheim, Switzerland. In addition, the Weleda branch 122 

located in Schwäbisch Gmünd, Germany, provided leaves harvested in July and 123 

August 2010. A voucher specimen (ZSS 29715) was deposited at the Zurich 124 

Succulent Plant collection.  125 

Plant material of B. daigremontianum was provided by the Ita Wegman Hospital 126 

Arlesheim, Switzerland, in September 2010. A voucher specimen (No. 838) was 127 

deposited at the Division of Pharmaceutical Biology, University of Basel.  128 

 129 

Bryophyllum pinnatum leaf press juice (BPJ) 130 

BPJ was prepared from leaves harvested in S. Roque, Brazil. The press juice was 131 

obtained by mechanical pressing of leaves in a roller mill. The procedure was 132 

identical to the initial steps of the protocol used for the production of the active 133 

ingredient of Weleda Bryophyllum 50% chewing tablets (Weleda AG, Arlesheim, 134 

Switzerland). The amount of bufadienolides and flavonoids in BPJ was 0.012 and 135 

0.072 mg/mL (based on the determined content of the flavonoid aglycones – 0.034 136 

mg/mL), respectively30,33. The suspension was filtered using a 150 mm diameter 137 

paper filter (Schleicher & Schuell, Dassel, Germany), and aliquots were kept at -80°C 138 

until use.  139 

 140 

Bufadienolide and flavonoid-enriched fractions (BEF and FEF) 141 

Enriched fractions originated from earlier studies35,38. Frozen fresh leaves (Weleda, 142 

Schwäbisch Gmünd) were lyophilised, powdered in a mortar, and extracted with 143 

MeOH. The MeOH extract was partitioned between H2O and CH2Cl2. The aqueous 144 

phase was further fractionated by column chromatography (with Diaion HP20 resin) 145 
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and, after a first elution with H2O to remove the highly polar compounds, FEF was 146 

obtained by elution with MeOH. Evaporation of the CH2Cl2-soluble phase yielded a 147 

residue38 that was further purified to afford BEF33. The amount of flavonoids in FEF 148 

was estimated to be approx. 8.28% based on the determined content of the flavonoid 149 

aglycones (4.14%) while the amount of  bufadienolides in BEF was found to be 150 

9.10%33,35. BEF and FEF stock solutions (1.3 and 10.0 mg/mL, respectively) were 151 

prepared in DMSO. 152 

 153 

Flavonoid aglycon mix (A-Mix) 154 

After hydrolysis of FEF, a content of 4.1% of total flavonoid aglycons was 155 

determined, and relative proportions were 74.6% of quercetin, 16.7% of myricetin, 156 

4.6% of diosmetin, and 4.0% of kaempferol35. A mixture of the four aglycons in these 157 

proportions (A-Mix) was prepared in DMSO at a concentration of 0.4 mg/mL. 158 

 159 

Bersaldegenin-1,3,5-orthoacetate (BO) 160 

The compound was previously isolated from B. daigremontianum34. The amount of 161 

BO in BPJ was 0.002 mg/mL33. A stock of 0.023 mg/mL was prepared in DMSO. 162 

 163 

Drugs, reagents and test substances 164 

OT and Digitonin were obtained from Sigma-Aldrich (St. Louis, USA). Fura-2 and 165 

Pluronic F-127 were purchased from Molecular Probes-Invitrogen. Atosiban 166 

(Tractocile®, 7.5 mg/mL injectable solution) was purchased from Ferring 167 

Pharmaceuticals (Baar, Switzerland) and Dimethyl sulfoxide (DMSO) from Sigma 168 

(France). 169 
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All substances tested were diluted in Krebs solution or cell media prior to 170 

experiments being performed. The DMSO concentration in test substances was 171 

adjusted to 0.1% in calcium experiments and 0.2% in phosphorylation experiments. 172 

Control wells were treated to contain the same concentration of DMSO. 173 

 174 

Measurement of intracellular calcium levels 175 

hTERT-C3 (8x104 cell/mL) and PHM1-41 (10x104 cell/mL) cells were seeded into 96-176 

well black microplates (Corning Inc.) two days before experiments were performed. 177 

Measurement of intracellular calcium levels was performed as previously described 178 

with some adaptations32. Briefly, cells were loaded with 10 µM Fura-2/AM 179 

reconstituted in DMSO as a 1mM stock solution and 0.06% (w/v) Pluronic F-127 in 180 

fresh medium. After 1 h incubation at 37°C, Fura-2 was replaced by fresh medium 181 

and cells were incubated for 30 min. Thereafter, cells were washed twice with 100 µL 182 

sodium salt solution (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM 183 

Glucose, 10 mM HEPES-Na+, pH=7.4). Test substances were added in fresh sodium 184 

salt solution and fluorescence was read for 4 min, followed by stimulation with 100nM 185 

OT (4 min reading). At the end of the experiments, cells were permeabilised with 200 186 

µM digitonin followed by Tris-EGTA solution (Tris 1M, EGTA 200 mM, pH=10.2). 187 

Fluorescence was read for 2 min. For each substance tested, 4 (PHM1-41 cell line) 188 

to 6 (hTERT-C3 cell line) independent cultures, carried out in quadruplicate, were 189 

used. A negative control, with no test substance added (or DMSO) to the culture 190 

medium and a positive control (5000 nM atosiban) were included in each plate. 191 

Fluorescence was measured at emission of 510 nm by illuminating the cells with an 192 

alternating 340/380 nm light every 4 s, using a microplate fluorescence reader 193 

(EnVision Multilabel Reader, Perkin Elmer). Fluorescence intensities were acquired 194 
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using the Wallac EnVision Manager software. The relative fluorescence units 195 

readings were converted to [Ca2+]i values (in nM) using the following formula: 196 

[Ca2+]i = Kd × Q R −  RminRmax − R′ 197 

Where: Kd = dissociation constant of the Ca2+/Fura-2 complex (224 nM); Q = 198 

Fmin/Fmax at 380 nm (Fmax after digitonin and Fmin after EGTA); R = F340 nm/F380 nm (F – 199 

fluorescence intensity); Rmax at maximum Ca2+ concentration (after digitonin) and Rmin 200 

at minimum Ca2+ concentration (after Tris-EGTA). 201 

The variation of intracellular Ca2+ concentration (Δ[Ca2+]i) in each well was calculated 202 

by subtracting basal readings from the peak of [Ca2+]i after stimulation with OT (5 203 

highest points). The Δ[Ca2+]i was normalised to control values. 204 

To characterise the effect of combinations, the median-effect method  was used39,40. 205 

This method is based on the mass action law and allows a quantitative definition of 206 

the interaction between two different drugs. The combination Index (CI) is widely 207 

used to asses both beneficial and adverse interactions between pharmaceuticals. CI 208 

quantitatively determines/simulates a measure of the extent of drug combination at 209 

all doses and all effects with small number of data points39,40. CI is calculated 210 

according to which the interaction between two drugs can be classified as 211 

antagonistic (CI>1), additive (CI=1) or synergistic (CI<1). CI values were calculated 212 

using Compusyn software. 213 

 214 

Phosphorylation experiments  215 

hTERT-C3 (4.7x104 cell/mL) were seeded into 6-well plates three to four days before 216 

experiments were performed. Once 90% confluence was reached, cells were treated 217 

with OT (100 nM) for 2, 5, 15, 30 or 45 min. To investigate the modulation of OT-218 

induced phosphorylation, cells were pre-treated with BPJ (2% corresponding to 20 219 
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µg/mL), BEF (2.20 µg/mL), FEF (17.39 µg/mL), A-Mix (0.68 µg/mL), different 220 

combinations, atosiban (100 nM) or just medium for 30 min before stimulation with 221 

OT (time 0 of OT-incubation). Stimulation was stopped by washing with ice-cold PBS, 222 

and plates were flash frozen in liquid nitrogen. Afterwards, cells were lysed in 223 

radioimmunoprecipitation assay (RIPA) buffer and phosphatase and protease 224 

inhibitor cocktail (both from Thermo scientific).  225 

Proteins (20 µg) were separated in a 12% SDS polyacrylamide gel, and transferred 226 

to a PVDF membrane. When protein samples from one experiment were run in more 227 

than one gel, a normalisation sample (NS) constituted by proteins extracted from 228 

hTERT-C3 cells exposed to OT for 5 min was used in all gels to decrease variability 229 

between blots. Membranes were incubated in primary antibody: GAPDH, phospho-230 

p38 (Thr180/Tyr182), phospho-p44/42 ERK1/2 (Thr202/Tyr204), phospho-SAPK/JNK 231 

(Thr183/Tyr185) overnight at 4°C and in the appropriated Horseradish peroxidase 232 

(HRP)-conjugated secondary antibody (all from Cell Signalling) for 1h at room 233 

temperature the next day. Signal detection was done using SupersignalTM West Pico 234 

Plus Chemiluminescent Substrate (Thermo scientific). Detection and quantification of 235 

band intensities was performed using FusionCapt Advance system (Vilber, 236 

Germany). Equal loading was confirmed by blotting the membranes for GAPDH. For 237 

each substance tested, 4 independent cultures of hTERT-C3 cell line were used. 238 

 239 

Statistical analysis 240 

All results were expressed as mean ± standard error of the mean (SEM) and 241 

statistical analyses were performed with Graphpad Prism software. The Shapiro-Wilk 242 

test was used to check normal distribution. For intracellular calcium measurements 243 

one-way ANOVA with Dunnett’s post-hoc test was conducted to compare different 244 
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concentrations of each test substance to the corresponding control. Ordinary two-245 

way ANOVA was used to compare different dose-dependency treatments. For 246 

phosphorylation study, RM two-way ANOVA with Dunnett’s multiple comparison was 247 

used to evaluate differences between each time point to time 0 min, and to OT-248 

treated. To compare the different test substances to non-stimulated control or to OT-249 

stimulated cells, the Mann-Whitney was used. Values were considered to be 250 

statistically significant if p<0.05. 251 

 252 

Results 253 

Inhibition of OT-induced rise of [Ca2+]i by BPJ fractions/compounds 254 

We previously showed that BPJ inhibits OT-induced rise of [Ca2+]i32. To investigate 255 

the contribution of different constituents/fractions of B. pinnatum on the OT-induced 256 

rise of [Ca2+]i, hTERT-C3 cells were pre-incubated with FEF, BEF, A-Mix and BO. 257 

The Δ[Ca2+]i decreased progressively and in a statistically significant way when cells 258 

were pre-incubated with FEF and A-Mix (FEF: p=0.043, A-Mix: p=0.0008). Compared 259 

to control, the values of Δ[Ca2+]i were significantly lower at 4.35 µg/mL of FEF 260 

(p=0.030) and 0.17 µg/mL of A-Mix (p=0.014; Fig. 1a). 261 

As shown in Fig. 1b, the effect of BEF and BO on the OT-induced rise of [Ca2+]i was 262 

concentration dependent (BEF: p=0.0001, BO: p=0.022). When each concentration 263 

was compared to control, a significant difference was obtained with 0.55 µg/mL of 264 

BEF (p=0.01) and 0.035 µg/mL of BO (p=0.028). Under our experimental conditions, 265 

none of the fractions/compounds had an effect that was equally strong as that of BPJ 266 

(Figs. 1a and 1b). 267 

Concentrations of FEF, BEF, A-Mix and BO used during the experiments are 268 

correspondent to those found in BPJ (Fig. 1c).  269 
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 270 

Inhibition of OT-induced rise of [Ca2+]i by combinations of BEF with FEF, and of 271 

BEF with A-Mix 272 

To assess whether more than one fraction/compounds mixture was needed to obtain 273 

an effect comparable to that of BPJ, combinations of BEF with FEF, and of BEF with 274 

A-Mix were investigated, again at test concentrations that corresponded to their 275 

content in BPJ. BEF plus FEF led to a concentration-dependent inhibition of Δ[Ca2+]i, 276 

whereby all concentrations were significantly different from control (p<0.0001). No 277 

statistically significant difference was observed when comparing the effect of BEF 278 

plus FEF with that of BPJ. The combination of the highest concentrations of BEF and 279 

FEF (2.20 and 17.39 µg/mL, respectively) was significantly different from each 280 

substance alone at the same concentrations (BEF: p=0.030, FEF: p=0.009; Fig. 2a).  281 

Pre-incubation of cells with the combination of BEF plus A-Mix also showed a 282 

concentration-dependent effect (p<0.0001) on the OT-induced rise of [Ca2+]i, and at 283 

all test concentrations the effect was significantly different from control. However, the 284 

effect of the combination was generally weaker than that of BPJ. The combination of 285 

the highest concentrations of BEF and A-Mix (2.20 and 0.68 µg/mL, respectively) 286 

was significantly different from BPJ (p=0.0035; Fig. 2c). 287 

 288 

Characterisation of the combined effects 289 

The median-effect method was used to analyse the data for antagonism, additivity or 290 

synergism of the combinations. Figures 2b and 2d show that combination index (CI) 291 

values less than 1 were obtained with the combinations studied, which is indicative 292 

for synergistic interaction. Fraction affected (Fa) values for the various combinations 293 

of BEF and FEF ranged between 0.2 to 0.6, indicating that the synergistic interaction 294 
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was observed when the inhibition of OT-induced increase of intracellular Ca2+ levels 295 

was 20 to 60% (Fig. 2b).  Fa values for the combination of BEF and A-Mix ranged 296 

between 0.2 to 0.4, reflecting a weaker maximal inhibition by this combination (Fig. 297 

2d).  298 

 299 

BPJ inhibits OT-induced rise of [Ca2+]i in PHM1-41 myometrial cells  300 

As previously shown, the exposure of hTERT-C3 cells to 100 nM OT induced an 301 

increase of [Ca2+]i with a peak response at about 10 to 20 sec after stimulation, and a 302 

subsequent decrease to resting conditions (Fig. 3a and 3b). Pre-incubation with BPJ 303 

(0.1%-2.0% corresponding to 1.0-20.0 µg/mL) led to a concentration dependent 304 

decrease of the [Ca2+]i peak induced by OT (p<0.0001; Fig. 3a). To verify if this effect 305 

was cell line dependent, experiments were conducted in a second myometrial cell 306 

line (PHM1-41). A peak response of [Ca2+]i was observed at 12 to 20 sec after 307 

stimulation with OT (Fig. 3c and 3d). When pre-incubated with BPJ, a decrease of 308 

the OT-induced increase of cytosolic [Ca2+]i peak was observed (Fig. 3c). BPJ thus 309 

promoted a concentration-dependent effect on Δ[Ca2+]i in both cell lines (p<0.0001; 310 

Fig. 3e), with significant effects at concentrations >2.5 µg/mL in hTERT-C3 cells 311 

(p=0.012), and >5.0 µg/mL in PHM1-41 cells (p=0.026). 312 

In both cell lines, the effect of BPJ was compared with that of the OTR antagonist 313 

atosiban. Pre-incubation of hTERT-C3 and PHM1-41 with atosiban led to a decrease 314 

of the OT-induced [Ca2+]i peak (Fig. 3b and 3d, respectively), and promoted a 315 

concentration-dependent effect on Δ[Ca2+]i (p<0.0001, both cell lines; Fig. 3f). The 316 

highest concentration of atosiban (5000nM) lowered Δ[Ca2+]i to 6.04 and 22.46% of 317 

control in hTERT-C3 and PHM1-41 cells, respectively.  318 

 319 
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BPJ inhibits OT-induced phosphorylation of MAPK proteins 320 

We investigated the effect of BPJ on OT-induced phosphorylation of p38, SAPK/JNK 321 

and ERK1/2 in hTERT-C3 cells. Time-course experiments revealed that 322 

phosphorylation of these three MAPKs increased markedly during the first 5 min of 323 

incubation with OT (Figs 4a, c and e). The extent of p38 phosphorylation was 324 

constant for further 10 min before starting to decrease (Fig. 4a), whereas SAPK/JNK 325 

and ERK1/2 phosphorylation decreased already after 10 min of incubation with OT 326 

(Figs 4c and 4e). After 45 min, the levels of phosphorylated p38, SAPK/JNK and 327 

ERK1/2 were comparable to basal values.  328 

As shown in Fig. 4a, pre-treatment with BPJ delayed, but did not prevent, OT-329 

triggered p38 phosphorylation. BPJ seemed to attenuate the effect of OT on p38 330 

activation at 5 min, but the difference did not reach statistical significance. For 331 

comparison, atosiban was included in the time-course experiments. This OTR 332 

antagonist led to a significant inhibition of OT-induced phosphorylation of p38 at 5 333 

and 15 min (p=0.001 and p=0.001; Fig. 4a). The effects of pre-treating the cells with 334 

BPJ fractions/compounds alone or combined on OT-induced p38 phosphorylation 335 

were comparable to the one of BPJ, i.e., none of the test substances promoted a 336 

significant decrease of p38 phosphorylation induced after at 5 min incubation with OT 337 

(Fig. 4b). 338 

Regarding SAPK/JNK, pre-treatment with BPJ led to a significant decrease of the 339 

maximal OT-driven phosphorylation (p=0.0002). A similar inhibition was observed 340 

when cells were pre-incubated with atosiban (p=0.0002; Fig. 4c). Pre-treatment with 341 

BEF alone and even more BEF plus FEF induced a significant decrease in the 342 

maximal amount of OT-induced phosphorylation of SAPK/JNK (in both cases 343 

p=0.029). The effect of the combination was similar to the one of BPJ (Fig. 4d). 344 
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Considering p-ERK1/2, pre-treatment with BPJ significantly reduced the OT-driven 345 

maximal activation, which was observed after 5 min incubation (p=0.006). Also, in 346 

this case, atosiban reduced maximal activation (p=0.001; Fig. 4e). The results 347 

obtained with BPJ fractions/compounds showed that only BEF promoted an inhibition 348 

similar to that observed upon pre-treatment with BPJ (p=0.029). None of the other 349 

fractions/compounds significantly reduced the OT-driven phosphorylation of ERK1/2 350 

(Fig. 4f).  351 

 352 

Discussion 353 

BPJ appears to inhibit several OT-induced signalling pathways that are involved in 354 

the regulation of myometrial contractility. Apart from an inhibition of the OT-induced 355 

increase of [Ca2+]i, various fractions obtained from BPJ exhibit similar, albeit weaker, 356 

effects. In contrast, the combination of BEF and FEF had an effect on the canonical 357 

signalling pathway that is comparable to that of BPJ, and the combination of these 358 

fractions enriched in bufadienolides (BEF) and flavonoid glycosides (FEF) is 359 

synergistic. Other OT-induced pathway, namely the activation of the MAPKs 360 

SAPK/JNK and ERK1/2 is inhibited by BPJ, whereby the bufadienolide fraction 361 

seems to be chiefly responsible for the inhibition of ERK1/2 phosphorylation, and the 362 

combination of BEF plus FEF for the inhibition of SAPK/JNK phosphorylation. In 363 

contrast, activation of p38 was hardly affected. The main findings are depicted in Fig. 364 

5. 365 

To better understand which compound classes in BPJ might be responsible for its 366 

effect on the OT-induced increase of [Ca2+]i, BEF, FEF, A-Mix and BO were tested at 367 

concentrations that corresponded to those in BPJ (Fig. 1c). In addition, we studied 368 

the effect of two different combinations, namely BEF plus FEF, and BEF plus A-Mix 369 
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(Fig. 2). The amounts of flavonoid aglycons in BPJ and FEF, and of bufadienolides 370 

present in BPJ and BEF have been determined previously 30,33,35, allowing an exact 371 

comparison of the various related substances. Since even longer incubations at 372 

higher concentrations of BPJ fractions/compounds did not affect cell viability30, it is 373 

likely that the results reflect a true effect on OT-signalling. All fractions/compounds 374 

tested promoted a concentration-dependent decrease of OT-induced increase of 375 

[Ca2+]i, but these effects were not as strong as that of BPJ (Fig. 1). Only the effect of 376 

a combination of BEF and FEF was comparable to that of BPJ. This indicates that 377 

several compound classes in BPJ contribute to the inhibition of the OT-induced 378 

increase of [Ca2+]i, and that the effects of BEF and FEF (Fig. 2b) are synergistic. 379 

Synergy has often been postulated as being important for the pharmacological 380 

activity of phytomedicines, but this is one of only a few cases where this has been 381 

shown experimentally41,42.  382 

Press juice of B. pinnatum leaves is the active ingredient of preparations that are 383 

being recommended and used in Switzerland to treat preterm labour, often as an 384 

add-on treatment24,25,43. Using the myograph model, we previously showed that BPJ 385 

concentration-dependently inhibits spontaneous myometrium contractions, affecting 386 

contraction peak, tension, and contraction duration29,30. Stronger effects on 387 

spontaneous contractility were observed when BPJ was combined with known 388 

tocolytics such as atosiban and nifedipine29. The present work confirms earlier results 389 

showing that BPJ inhibits the canonical pathway of OT-induced increase of 390 

contractility in hTERT-C3 human myometrium cells32. A comparable inhibition of the 391 

OT-induced increase of [Ca2+]i has now been observed in PHM1-41 myometrial cells 392 

(Fig. 3e). In both cell lines, pre-treatment with the OT-antagonist atosiban led to an 393 

inhibition of the canonical pathway.  394 
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Flavonoid glycosides are known to be hydrolysed by gut microbiota, leading to 395 

release of aglycons44,45. In our experimental settings, the effects of FEF and A-Mix 396 

were comparable, suggesting that cleavage of the sugar moieties does not affect 397 

their activity in the models used. Only in the combination experiments with BEF, A-398 

Mix had weaker effects than FEF. It may be that the glycosides contribute to a 399 

stronger synergistic effect, or that FEF contains additional compounds that are 400 

relevant for the activity. 401 

Early preterm birth is often associated with increased myometrium contractility, but 402 

uterus inflammation is also an important risk factor for foetal and neonatal central 403 

nervous system damage46. Therefore, an ideal tocolytic agent should have both 404 

functions. Our results show that BPJ, and in particular the corresponding 405 

bufadienolides, prevent the OT-induced phosphorylation of two relevant MAPKs, 406 

namely SAPK/JNK and ERK1/2. This suggests that downstream enzymes might also 407 

be inhibited and prostaglandin production lowered as a consequence. Whether B. 408 

pinnatum preparations can inhibit inflammatory processes that might lead to 409 

increased myometrial contraction and eventually parturition needs further 410 

investigation. 411 

In the development of new tocolytic agents, a simultaneous inhibition of the 412 

immediate, calcium mediated canonical pathway and of the activation of MAPK-413 

dependent pathways in the myometrium is nowadays seen as a required 414 

pharmacological profile15. The present data show that B. pinnatum matches with 415 

these requirements, which in turn further substantiates its use in the treatment of 416 

preterm labour.  417 

 418 

Data Availability 419 
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All data generated or analysed during the currently study are available from the 420 

corresponding author on reasonable request. 421 
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Figure Legends 554 

Figure 1. Concentration-dependent effects of BPJ fractions/compounds on the OT-555 

induced increase of [Ca2+]i. Myometrial hTERT-C3 cells were pre-treated with FEF or 556 

A-Mix (a) and BEF or BO (b) prior to stimulation with 100 nM of OT. Results of a pre-557 

treatment with BPJ are shown in transparent line. Values represent the mean ± SEM 558 

of 6 independent experiments performed in quadruplicate and are expressed as 559 

percentage of control; *p<0.05. In c, the concentrations of FEF, BEF, A-Mix and BO 560 

corresponding to the BPJ concentrations are shown. 561 

 562 

Figure 2. Effect of the combination of BPJ fractions/compounds on the OT-induced 563 

rise of [Ca2+]i. Cells were pre-treated with BEF plus FEF (a), or with BEF plus A-Mix 564 

(c) prior to stimulation with 100 nM OT. Results of pre-treatment with BPJ and each 565 

substance alone are shown in transparent lines (significance symbols regarding 566 

comparison to control omitted). Values represent the mean ± SEM of 6 independent 567 

experiments performed in quadruplicate and are expressed as percentage of control; 568 

*p<0.05 compared with control; #p<0.05 compared to combination. Combination 569 

index (CI) values of the combination of BEF with FEF (b) or with A-Mix (c) were 570 
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calculated from the concentration-response curves. Data were analysed by the 571 

median-effect method. Fa: fraction affected. 572 

 573 

Figure 3. Comparison between the effects of BPJ and atosiban on OT-induced rise 574 

of [Ca2+]i in myometrial cell lines. Time-course of OT-induced [Ca2+]i response in 575 

hTERT-C3 (a and b) and PHM1-41 (c and d) cells when pre-incubated in the 576 

absence (a-d, grey lines) or in the presence of BPJ (a and c) or atosiban (b and d). 577 

[Ca2+]i was measured for 4 min before stimulation with 100 nM OT. Data shown are 578 

from one representative experiment. Concentration-dependent effect of BPJ (e) or 579 

atosiban (f) on the oxytocin-induced [Ca2+]i increase in hTERT-C3 (lighter colour) and 580 

PHM1-41 (darker colour) cells. Values represent the mean ± SEM of 4 (PHM1-41) or 581 

6 (hTERT-C3) independent experiments performed in quadruplicate and are 582 

expressed as percentage of control; *p<0.05. 583 

 584 

Figure 4. Effect of BPJ fractions/compounds and atosiban on OT-induced MAPKs 585 

phosphorylation. In the time-course experiments, hTERT-C3 cells were pre-treated 586 

with or without 20 µg/mL BPJ or 100 nM atosiban for 30 min, before incubation with 587 

100 nM OT for 2, 5, 15, 30, and 45 min (a, c and e). To compare the effects of BPJ 588 

and the various fractions/compounds, cells were pre-treated with 20 µg/mL BPJ, 2.20 589 

µg/mL BEF, 17.39 µg/mL FEF, 0.68 µg/mL A-Mix, BEF plus FEF, or BEF plus A-Mix 590 

(same concentrations as for single fractions) for 30 min before stimulation with OT for 591 

5 min (b, d and f). Whole cell proteins were subjected to western blot analysis with 592 

antibodies against phosphorylated p38 (a and b), SAPK/JNK (c and d) and ERK1/2 593 

(e and f); matching densitometry analyses are depicted bellow the representative 594 

blots. Samples from the same experiment were processed in parallel and 595 
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membranes were probed with GAPDH to confirm equal loading. Blot images are from 596 

a representative experiment, and line between bands delineate boundary between 597 

the gels that were cropped. Full-length blots/gels are presented in Supplementary 598 

Figure S1. Values represent the mean ± SEM of 4 independent experiments; *p<0.05 599 

compared with control; #p<0.05 compared to OT-treated. 600 

 601 

Figure 5. Schematic representation of the effects of BPJ fractions on the OT-induced 602 

signalling pathways. Myometrial contraction is induced by OT via activation of several 603 

intracellular signalling pathways, such as the canonical and the MAPKs pathways. 604 

Taken together, our data indicate that BPJ and the combination of BEF and FEF 605 

inhibit the OT-induced increase of [Ca2+]i. In what concerns the MAPK pathways, BPJ 606 

prevents phosphorylation of SAPK/JNK and ERK1/2, whereby the combination of 607 

BEF and FEF seems to be needed for a strong inhibition of SAPK/JNK 608 

phosphorylation, while BEF alone appears to be sufficient to preclude ERK1/2 609 

phosphorylation. 610 

  611 
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Figure S1. Uncropped western blots shown in figure 4. Full size western blots 28 

showing the expression of phosphorylated p38 (a), SAPK/JNK (b), and ERK1/2 (c). 29 

Membranes were probed with GAPDH to confirm equal loading. Horizontal lines 30 

mark the cropped sections of the blots shown in figure 4. A normalisation sample 31 

(NS) was used in each gel. Contrast settings were not modified in any image. 32 
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The earlier PTB happens, the greater the health risks for the newborn baby. Despite 

considerable efforts in the past years, there is still an urgent need for more reliable treatments. 

It is of vast importance to find selective, well-tolerated and safe uteromodulating compounds 

to prevent complications before birth [1]. Nature is a rich source for the discovery of medical 

compounds which might help. Nevertheless, it is a challenge to find a suitable plant and 

characterise the compounds responsible for its beneficial effects. B. pinnatum is a very useful 

plant for treating various disorders and a well-regarded phytotherapeutic with potential to 

treat PTL [2, 3].   

4.1 Closing remarks 

In this thesis, we have shown over and again the importance of B. pinnatum for the contractility 

of the uterus.  

More specifically, our results revealed that: 

I. Press juice from B. pinnatum leaves enhances the inhibitory effect of the OTR antagonist 

atosiban and of nifedipine, a voltage-dependent calcium channel blocker, on 

contraction strength in human myometrium strips 

II. Bufadienolides may be mainly responsible for the relaxant effect of B. pinnatum on 

myometrium strips contractility 

III. B. pinnatum compounds are not cytotoxic even at concentrations higher than those 

needed for the effects on contractility 

IV. B. pinnatum press juice promotes a strong decrease of the OT-induced increase of 

[Ca2+]i in two different myometrium cell lines and the combination of fractions enriched 

in bufadienolides and in flavonoids is necessary to obtain a similar inhibition 

V. The combination of fractions enriched in bufadienolides and in flavonoids promotes 

synergistic effect on the OT-induced increase of [Ca2+]i 

VI. B. pinnatum press juice inhibits OT-induced activation of the MAPKs SAPK/JNK and 

ERK1/2 by phosphorylation 

VII. Bufadienolides seem to be particularly relevant for the inhibitory effects of B. pinnatum 

on SAPK/JNK and ERK1/2 activation 
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Multiple setups including in vitro cultures and human myometrial tissue were used to gain 

insights on the inhibitory effect of B. pinnatum on myometrium contractility. The promising 

results presented will engender a series of follow-up studies on multiple research fronts. 

4.2 General discussion  

The use of tocolytic drugs is the main option for the treatment of PTL. Unfortunately, their use 

has been frequently associated with low efficacy in long-term treatment and adverse reactions 

[4-6]. Therefore, new drugs or herbal extracts are being tested in PTB models both in clinical 

studies and in in vitro models to explore their possible therapeutic benefits (for examples see 

[7, 8]). Various preparations of B. pinnatum are currently being used in a broad range of 

therapeutic indications [2, 9] and, in Switzerland, B. pinnatum has found wide use in tocolysis 

as an add-on therapy [10, 11]. This herbaceous plant allows a longer treatment, since some 

preparations can be taken orally, and has less side effects than known tocolytics [8, 12-15]. 

Synthesis  

The first retrospective clinical trials documented a potent tocolytic effect of B. pinnatum [12-

14], which led to experimental investigations using various in vitro models. Initial results of in 

vitro experiments using myometrial strips demonstrated a dose-dependent inhibitory effect of 

an aqueous leaf extract on spontaneous human myometrial contractions [16, 17], as well as an 

inhibition of OT-stimulated contractions [17]. Subsequent in vitro work showed that BPJ inhibits 

the OT-induced increase of [Ca2+]i in myometrium cells and delays the depolarization-induced 

increase of [Ca2+]i in cells with voltage-gated channels [18]. Taken together, these observations 

inspired us to investigate the effect of BPJ in combination with atosiban, an OTR antagonist, 

and nifedipine, a voltage-gated calcium channel blocker, on human myometrial contractility in 

vitro. The leaf press juice increased the inhibitory effect of atosiban and nifedipine, providing 

evidence for the add-on use of B. pinnatum during tocolysis. 

Since B. pinnatum demonstrated efficient myometrium relaxant activities, the effect of the 

main metabolites, bufadienolides and flavonoids, was studied in a next step. Enriched fractions 

prepared from B. pinnatum leaves (BEF and FEF) led to a concentration-dependent decrease of 
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human myometrial contractions strength in vitro. Our results suggest that both BEF and FEF 

contain compounds that contribute to the effect of BPJ, but only BEF had an effect as strong as 

that of BPJ (at corresponding concentrations). Therefore, special attention should be paid to 

bufadienolides, since they seem to be the main responsible for the inhibitory effect of B. 

pinnatum on myometrium contractility. 

The beginning of parturition is clinically manifested by rhythmic uterine contractions leading to 

the expulsion of the baby [19]. At cellular level, OT is a potent physiological stimulator of 

myometrial contractions, and its receptor and the subsequent intracellular mechanisms are 

attractive targets for drug development aimed at managing PTL [19, 20]. As mentioned before, 

previous in vitro work showed that BPJ inhibits the mobilisation of intracellular Ca2+ storages in 

myometrium cells (hTERT-C3) in a concentration-dependent way and, therefore, inhibits the 

canonical pathway of myometrial contractility [18]. In the present work, these observations 

were reproducible and comparable results were obtained with other myometrial cells (PHM1-

41), showing that this effect is not restricted to one cell line. Furthermore, B. pinnatum 

fractions/compounds also promoted a concentration-dependent effect on the OT-induced 

increase of [Ca2+]i in hTERT cells. However, their effects were not as strong as BPJ alone. Most 

interestingly, a strong and synergistic effect of fractions enriched in bufadienolides and in 

flavonoids could be observed (CI<1), proving that several compound classes in B. pinnatum 

contribute to the inhibition of the OT-induced increase of [Ca2+]i. Such a strong synergistic effect 

suggests that preparations of B. pinnatum leaves offer advantages over isolated compounds. 

This is in line with the opinion of other authors that positive interactions between compounds 

are likely to occur more frequently in traditionally used  herbal preparations than is known [21, 

22]. 

In the past years, the importance of inflammatory processes in labour at term and preterm 

have become apparent, and the MAPK pathway plays a central role in the activation of these 

processes [23]. It has been shown that PGF2α is significantly released after stimulation with OT 

in pregnant and non-pregnant uteri suggesting a strong interaction between OT and PG in 

synergising the force of uterine contraction [24]. The investigation on the effect of BPJ 

compounds on the OT-induced activation of MAPKs show that BPJ, and in particular the 

corresponding bufadienolides, prevent the OT-induced phosphorylation of SAPK/JNK and 
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ERK1/2. This suggests that downstream enzymes involved in PG production might be inhibited, 

meaning that B. pinnatum would inhibit the inflammatory processes.  

The setup 

In vitro models can yield useful preliminary indications when the contractility of uterus is 

studied, but ultimately only in vivo experiments would provide a complete picture for a given 

tissue model. The use of complex animal models presents, however, an interspecies challenge 

for translation into humans, since the procedure of parturition is very specific in different 

animal species, and human parturition is not identical to that of other mammals [25, 26]. 

Several methods have been used to study myometrial contractility, from the generation of 

transformed or immortalized cells of myometrial origin, to in vivo internal and external 

tocography and intrauterine pressure catheters [27-29]. During this work, we took advantage 

of the following two different methods that allowed us to use human myometrium smooth 

muscle materials. 

Immortalized cell lines combine properties of primary cells and the long life of continuous cell 

lines. These cells retain many morphological and phenotypic characteristics and are useful for 

long-term or coordinated studies, as their behaviour is quite reproducible. Still, like any in vitro 

model, the use of immortalised cells has its limitations, since the immortalisation of the cells 

can lead to different expression profiles. In the case of hTERT-C3, the cell line most often used 

in the present dissertation, a previous study has shown similar high expression levels of OTR as 

in primary myometrial cells corroborating the use of these immortalised cells as an in vitro 

model for the study of myometrium contractility [30]. 

Whilst cell culture systems can detect whether and how a substance acts at the cellular level, 

strips of tissues can be used as tools to measure functional responses of whole tissues to 

pharmacological agents. Strips of myometrium have been used by a number of research groups 

to examine many questions relating to myometrium physiology and pathology, including 

preterm [7, 31-33]. This technique allows the assessment of tissue contraction performance 

and the study of direct effects of different substances, alone or in combination, on contractility 

parameters. As the isolated tissue strips constitutes a model of more than one cell type, the 

physiological response of the whole tissue can be measured. Therefore, and in particular when 
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working with human material, the organ bath and isolated tissue strips are a useful tool in 

providing the bridge between cell culture work and whole animal/clinical studies. In the field of 

drug discovery, the effects of novel agents in terms of their excitatory or inhibitory potential 

for contractility in vivo can be more closely assessed. For example, the use of this method 

helped to validate the translational value of atosiban and generated the proof-of-concept data 

needed to take it forward to clinical trials [34-37]. 

Basic science vs clinical translation – bench to bedside 

Despite the efforts in choosing the right assays to characterise the effect of B. pinnatum on 

uterus contractility, clinical translation remains the biggest challenge in the field. Knowledge 

pitfalls in some aspects of the use of B. pinnatum for the treatment of PTL remains a challenge 

for tocolysis in clinical practice. Thus, new approaches may lead to better clinical translation.  

Nevertheless, in the course of this work we obtained promising data that can help 

understanding how B. pinnatum might affect the contractility of myometrium, but also may 

contribute to obtain better clinical readouts. Our results suggest that:  

I. B. pinnatum combined with atosiban or nifedipine might allow the lowering of required 

dosages of these well-known tocolytics. These combinations would allow lowering 

medication costs and reducing maternal and foetus side-effects, allowing an increase of 

the time delay of pregnancy;  

II. Bufadienolides are important, but B. pinnatum is needed as a whole. When we compare 

the effects of fractions, their combinations and BPJ, we can conclude that more than 

one compound is needed to obtain stronger effects. Developing a single-compound 

preparation might have limited effectiveness;  

III. B. pinnatum can also help in preventing PTL through a decrease in pro-inflammatory 

factors. In vitro work with myometrium cells showed that B. pinnatum decreases the 

intensity of myometrial contractility through inhibition of several OT-induced signalling 

pathways. One of the pathways affected was the MAPK-pathway, which leads to PG 

production and further activation of contractility through inflammation.  

Furthermore, the following limitations might impair a better translation of results: i) there is a 

limited correspondence between concentrations used in in vitro studies and attainable in 
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patients, since no pharmacokinetic data on B. pinnatum (compounds) are yet available, not 

even during  pregnancy; and ii) possible metabolisation of B. pinnatum is not being taken into 

consideration. These limitations are further discussed in the following subchapter. 

4.3 Future directions 

We believe that the results obtained during this project are a stepping stone for future 

research. The phytotherapy research field is rapidly evolving and important consideration must 

be undertaken for future studies in order to unify findings and be able to build on each others’ 

results. During the course of this work, we came across some questions related to BPJ 

concentrations which limited the translation of our results to the clinics. These limitations were 

mentioned previously in “Basic science vs clinical translation – bench to bedside”. The first 

limitation could be overcome by performing pharmacokinetic studies with B. pinnatum 

compounds. Interestingly, the second limitation is related to the first, and could be solved by 

studying what happens to B. pinnatum from the moment it is taken until it reaches the blood 

stream. The preparation from B. pinnatum press juice most commonly used in Switzerland, 

Bryophyllum 50% chewable tablets, are taken orally, and thus both intestinal and liver 

metabolisation need to be considered. Such information would be useful in the planning of 

future prospective randomised studies that are urgently needed to definitely prove the efficacy 

of B. pinnatum preparations, alone or in combination with standard tocolytics.  

In the future, it would also be useful to deepen knowledge on the OT-induced pathways 

affected by B. pinnatum. Regulation of upstream or downstream proteins, gene expression and, 

especially PG production deserves further investigation. Since in this work we showed that B. 

pinnatum affects MAPK activation, it is likely that it affects PG production. Thus, in future 

studies, the effect of B. pinnatum on myometrium contractility should also be evaluated from 

the perspective of inflammation.  

Clinical practice shows that not all patients benefit equally from treatment with agents acting 

on OTR, meaning that patients’ response to these medications is highly variable. The existence 

of genetically variant forms of OTR are likely to influence patient responses to the medications 

that bind to this receptor. Our previous work showed that genetic variants of the OTR gene 
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might have an impact on myometrial contractility strength induced by OT [38]. Since the results 

described in Chapter 3 strongly suggest that B. pinnatum compounds act on OTR, they also 

pose some new questions: i) Do genetic variant forms of OTR gene also affect the impact of B. 

pinnatum on human myometrium contractility? and ii) Which variant forms are more likely to 

have an impact on the effect of B. pinnatum? To answer these research questions, additional 

work will be needed. 
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