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Efficacy and tolerability of artemisinin-based and 
quinine-based treatments for uncomplicated falciparum 
malaria in pregnancy: a systematic review and individual 
patient data meta-analysis
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Summary
Background Malaria in pregnancy affects both the mother and the fetus. However, evidence supporting treatment 
guidelines for uncomplicated (including asymptomatic) falciparum malaria in pregnant women is scarce and 
assessed in varied ways. We did a systematic literature review and individual patient data (IPD) meta-analysis to 
compare the efficacy and tolerability of different artemisinin-based or quinine-based treatments for malaria in 
pregnant women.

Methods We did a systematic review of interventional or observational cohort studies assessing the efficacy of 
artemisinin-based or quinine-based treatments in pregnancy. Seven databases (MEDLINE, Embase, Global Health, 
Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana em Ciencias da Saude) and two clinical 
trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov) were searched. The final search 
was done on April 26, 2019. Studies that assessed PCR-corrected treatment efficacy in pregnancy with follow-up of 
28 days or more were included. Investigators of identified studies were invited to share data from individual patients. 
The outcomes assessed included PCR-corrected efficacy, PCR-uncorrected efficacy, parasite clearance, fever clearance, 
gametocyte development, and acute adverse events. One-stage IPD meta-analysis using Cox and logistic regression 
with random-effects was done to estimate the risk factors associated with PCR-corrected treatment failure, using 
artemether-lumefantrine as the reference. This study is registered with PROSPERO, CRD42018104013.

Findings Of the 30 studies assessed, 19 were included, representing 92% of patients in the literature (4968 of 
5360 episodes). Risk of PCR-corrected treatment failure was higher for the quinine monotherapy (n=244, adjusted 
hazard ratio [aHR] 6·11, 95% CI 2·57–14·54, p<0·0001) but lower for artesunate-amodiaquine (n=840, 0·27, 
95% 0·14–0·52, p<0·0001), artesunate-mefloquine (n=1028, 0·56, 95% 0·34–0·94, p=0·03), and dihydroartemisinin-
piperaquine (n=872, 0·35, 95% CI 0·18–0·68, p=0·002) than artemether-lumefantrine (n=1278) after adjustment for 
baseline asexual parasitaemia and parity. The risk of gametocyte carriage on day 7 was higher after quinine-based 
therapy than artemisinin-based treatment (adjusted odds ratio [OR] 7·38, 95% CI 2·29–23·82).

Interpretation Efficacy and tolerability of artemisinin-based combination therapies (ACTs) in pregnant women are 
better than quinine. The lower efficacy of artemether-lumefantrine compared with other ACTs might require dose 
optimisation.
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Introduction
The physiological changes that occur during pregnancy 
mean that pregnant women are more susceptible to 
malaria than women who are not pregnant. Symptomatic 
and asymptomatic infections affect both mother and 
fetus.1,2 Around 60% of pregnant women in the world live 
in malaria-endemic regions, with an estimated 125 million 
pregnant women at risk of malaria every year.3 Efficacious 

prevention and treatment are required to limit maternal 
mortality and the cumulative adverse effects of malaria 
episodes during pregnancy. However, this susceptible 
population nurturing future generations is understudied.4 
Pregnant women are often excluded from clinical trials 
and antimalarial studies are no exception.5

Over the past 30 years, pregnant women have been 
systematically excluded from standard antimalarial 
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treatment efficacy studies.6 There were several reasons 
for this exclusion, the first of which was concern over 
the teratogenicity and embryotoxicity of artemisinin 
derivatives shown in animal studies.7 Since the mid-
1990s, however, data for the human safety of artemisinin 
derivatives in the first trimester has been accumulating, 
leading to the conclusion that artemisinin derivatives are 
at least as safe as quinine.8,9 The second reason was that 
there are no agreed guidelines to assess antimalarial drug 
efficacy during pregnancy. The 2009 WHO guidelines10 
on the assessment of antimalarial efficacy recommend 
the exclusion of pregnant women from treatment efficacy 
studies on the basis that they are different from the non-
pregnant population in several ways, including altered 
immunity, gestational physiological changes affecting 
pharmacokinetics and pharmacodynamics, and the 
presence of the placenta, which might provide a haven for 
malaria parasites.11–13

Considering the variability of study designs and the fact 
that most antimalarial studies in pregnancy were single-
arm studies, conclusions from conventional aggregated 
meta-analyses were not reliable.6 There is little evidence to 
support the WHO recommendation14 of quinine (with 
clindamycin if available) for women in their first trimester 
and artemisinin-based combination therapy (ACT) for 
women in their second or third trimester.

By including single-arm studies and more studies done 
after the release of the treatment guidelines, this study 
aims to contribute to the body of evidence by pooling 
individual patient data from studies to assess the efficacy 
of recommended antimalarial drugs for uncomplicated 
falciparum malaria during pregnancy, including patients 
who were asymptomatic. Our objective was to compare the 
efficacy and tolerability of artemisinin-based treatments 
(ABT) and quinine-based treatments (QBT), and also 
assess the difference between ACTs using artemether-
lumefantrine (AL), the most used ACT, as the reference 
standard.

Methods
Search strategy and selection criteria
We did a systematic review on the efficacy of ABT and 
QBT on uncomplicated falciparum malaria, including 
asymptomatic parasitaemia (hereafter referred as un
complicated falciparum malaria) in pregnancy without 
any restrictions on language or publication year, and this 
was published elsewhere.6 Two reviewers (MS and MEG) 
assessed eligibility independently, and discrepant results 
were resolved by a second assessment. Seven databases 
(MEDLINE, Embase, Global Health, Cochrane Library, 
Scopus, Web of Science, and LILACS) and two clinical 
trial registries (ICTRP and ClinicalTrial.gov) were used. 
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Research in context

Evidence before this study
We did a systematic literature search for studies assessing 
treatment efficacy of artemisinin-based or quinine-based 
treatments for uncomplicated falciparum malaria (including 
asymptomatic malaria) in pregnancy using seven databases 
(MEDLINE, Embase, Global Health, Cochrane Library, Scopus, 
Web of Science, and Literatura Latino Americana em Ciências 
da Saúde) and two clinical trial registries (International 
Clinical Trials Registry Platform and ClinicalTrials.gov). 
The final search was done on April 26, 2019, without 
restrictions on publication year or language. Previous 
aggregated data meta-analyses showed a lower efficacy of 
quinine-based treatment than artemisinin-based treatments, 
though the strength of evidence was low as the number of 
randomised control trials (RCTs) was very small, and different 
study designs and outcome measures were used. It was 
impossible to compare efficacy of different ACTs because of 
the paucity of RCTs.

Added value of this study
This meta-analysis includes the largest dataset of malaria 
treatments in pregnancy, being composed of individual patient 
data of 4968 episodes in 19 studies across ten countries, 
representing 92% (4968 of 5360 episodes) of data identified 
in the systematic literature review. Quinine is recommended 
to treat malaria in the first trimester of pregnancy and is still 
commonly used for all trimesters. Our study shows that quinine 

was less preferable than ACTs because of higher treatment 
failure, unless combined with clindamycin, higher occurrence of 
acute adverse events (ie, lower tolerability), and higher risk of 
gametocyte development (ie, higher risk of transmission). 
Artemether-lumefantrine (AL), the most commonly used ACT, 
shows the best tolerability but a lower efficacy than other 
standard ACTs. In moderate-to-high falciparum malaria 
transmission areas, the risk of treatment failure was higher in 
nulliparous women. Dose optimisation of AL for pregnant 
women should be further investigated. Although the numbers 
of first trimester pregnancies studied were small, these findings 
support recommendations in 2017 that ACTs should replace 
quinine as the treatment of choice for falciparum malaria in all 
trimesters.

Implications of all the available evidence
This meta-analysis, together with previous research on the 
safety of ACTs in the first trimester, provides compelling 
evidence that both efficacy and safety of ACTs in pregnant 
women are better than quinine-based treatments. Suboptimal 
dosing of lumefantrine with pregnant women might explain a 
slightly lower efficacy of AL than other ACTs. Dose optimisation 
of antimalarial drugs in pregnancy, supported by 
pharmacokinetic studies, will be required to achieve the highest 
treatment success in pregnancy to protect both mother and 
fetus from the adverse effects of malaria infection.
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Prospective treatment efficacy studies of uncomplicated 
falciparum malaria, including pregnant women in any 
trimester, were identified using a combination of five 
components: malaria, pregnancy, treatment or names 
of antimalarial drugs, study design (interventional or 
observational cohort studies), and outcome types 
(efficacy), up until the final date of April 26, 2019.

Studies were included in this meta-analysis if 
Plasmodium falciparum parasitaemia was confirmed by 
microscopy before treatment, regardless of the patient’s 
symptoms, the length of active follow-up was 28 days 
and over, and PCR was used to differentiate the recurrence 
of infections with P falciparum during follow-up.10 
Investigators of published and unpublished studies that 
were identified by the systematic literature review were 
invited to share the individual patient data with 
the WorldWide Antimalarial Resistance Network. The 
protocol of the methods used to standardise the individual 
patient data and statistical analyses was published 
elsewhere,15 and the study is registered on PROSPERO 
(CRD42018104013).

Outcomes
Pregnancy outcomes are reported elsewhere.16 Only 
patients who were treated with a full course of ant
imalarial drugs of recommended regimen according to 
the WHO treatment guidelines were included in the 
analyses.14 Patients with indeterminate PCR were 
excluded from PCR-corrected efficacy analyses in the 
main analysis,10 but we also did sensitivity analyses 
assuming that the patients were either recrudescent or 
reinfected. Fever clearance was defined as the absence of 
fever (>37·5°C) and parasite clearance as the absence of 
microscopic asexual parasitaemia on days 1, 2, or 3. 
Gametocyte positivity on day 7 was assessed by only 
including patients who did not have gametocytaemia on 
day 0 and who did not have recurrence of P falciparum 
within 28 (±3) days. Acute adverse events were regarded 
as present if the symptom was actively assessed and 
recorded on any day between days 1 and 7.

Statistical analysis
All individual patient data from each study were pooled 
together for statistical analyses. For the descriptive 
analysis, treatment efficacy, and gametocyte positivity for 
each treatment at fixed timepoints (ie, days 28, 42, and 
63 for efficacy, and day 7 for gametocyte positivity) were 
estimated by the Kaplan-Meier method in each study at 
each site. Then, after complementary log-log trans
formation,17 these estimates were pooled by the aggre
gated data meta-analysis approach (a two-stage IPD 
meta-analysis).

We did a one-stage IPD meta-analysis using the Cox 
proportional hazards regression with shared frailty for 
study sites to identify the risk factors for recrudescence 
and to compare different treatment drugs. We used 
univariable and multivariable mixed effects logistic 

regression models to model risk of parasite positivity, 
gametocyte positivity, and acute adverse events. We used 
hazard ratios (HRs) for PCR-corrected efficacy and ORs 
for the other outcomes.

We did a complete case analysis because of the small 
proportion of missing data for the main variables of interest. 
For all regression models, we identified independent risk 
factors by backward elimination.15 Two variables, treatment 
regimen and baseline asexual parasitaemia, were included 
in the multivariable models on PCR-corrected efficacy as a 
priori forced variables, regardless of statistical significance 
(p<0·05). Few women had multiple episodes recorded, thus 
previous history of malaria 28 days before treatment was 
included taking account for this within-person correlation. 
Interaction between parity and malaria transmission 
intensity (categorised into three groups as defined in the 
protocol),15 or age and transmission was assessed if age or 
parity was included in the multivariable model, as the effect 
of age and parity (ie, pregnancy-specific immunity) can be 
different depending on transmission intensity. Any anti
malarial use (including intermittent preventive treatment) 
was censored on the documented day. Plasmodium vivax 
intercalated infection (ie, P vivax mono-infection before the 
recurrence of P falciparum parasitaemia) was regarded as a 
time-dependent covariate if the original study genotyped 
falciparum recurrences regardless of intercalated infection 
with P vivax. Otherwise, intercalated infection with P vivax 
was regarded as censored following the WHO guidelines.10 
AL, the most commonly used drug, was used as the 
reference group, and comparison between every pair of 
drugs was not done to avoid multiple testing. In the Cox 
regression, global test was used for checking the pro
portional hazard assumption. We used the piecewise-Cox 
model by introducing time-by-covariate interactions if the 
proportional-hazards assumption of constant HRs was 
violated. As a prespecified sensitivity analysis, the model 
was refitted, excluding one study site at a time to identify 
any influential studies. For the other outcomes, the 
treatment group was always included in the final models. 
Risk of bias was assessed using the Cochrane risk of bias 
assessment tool for randomised controlled trials (RCTs) and 
the Newcastle-Ottawa scale for observational cohort studies.

Statistical analysis was done using R (R Foundation for 
Statistical Computing, Vienna, Austria) or Stata MP15.1 
(StataCorp, College Station, TX, USA).

Role of the funding source
The funders did not participate in the study design, the 
writing of the paper, decision to publish, or preparation 
of the manuscript.

Results
Our search identified 30 studies with PCR-corrected 
efficacy. With the exception of two unpublished studies, 
individual patient data from 4968 (92%) of 5360 episodes
in 19 studies18–36 were shared and pooled for the analyses 
of PCR-corrected efficacy (figure 1).
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See Online for appendix

The included studies were done between 1995 and 2014 
in ten different countries (appendix pp 2–4): nine studies 
(comprising 3813 episodes) were done in sub-Saharan 
Africa and ten (comprising 1155 episodes) in Asia.

Ten antimalarial treatments were included in this 
analysis: AL (1278 [89·7%] of 1425 episodes in the lite
rature), artesunate-amodiaquine (ASAQ; 840 [91·8%] 
of 915 episodes), artesunate-mefloquine (ASMQ; 1028 

[96·0%] of 1071 episodes), dihydroartemisinin-piperaquine 
(DP; 872 [98·6%] of 884 episodes), artesunate-sulfadoxine-
pyrimethamine (ASSP; 173 [84·4%] of 205 episodes), 
artesunate monotherapy (230 [100%] of 230 episodes), 
artesunate with clindamycin (AC; 142 [100%] of 
142 episodes), artesunate-atovaquone-proguanil (AAP; 
91 [100%] of 91 episodes), quinine monotherapy 
(244 [81·6%] of 299 episodes), and quinine with 
clindamycin (QC; 67 [100%] of 67 episodes). The fixed 
dose formulation was used in all participants who took 
ASAQ and in 962 (93·6%) of the 1028 participants who 
took ASMQ (appendix pp 5–7).

Of the 4968 episodes in 4745 women, the mean age 
was 23·5 years (SD 6·0), and the median parity was one 
(range zero to ten; table 1). Most episodes were either in 
the second trimester (weeks 14–27, 3325 [67·0%] of 
4965 episodes) or third trimester (≥28 weeks, 
1610 [32·4%] of 4965 episodes) with 33 (0·7%) of 
4968 episodes in the first trimester (<14 weeks). Of these, 
4914 (98·9%) of 4968 episodes were P falciparum mono-
infections. The geometric mean parasite density before 
treatment was 1189 (range 1–447 638) asexual parasites 
per µL, with 79 (1·6%) of 4968 episodes considered to be 
hyperparasitaemic (defined as >100 000 parasites per 
µL). Only 504 (10·4%) of the 4854 women were febrile 
(>37·5°C) at presentation.

For all patients who took ABTs or QC, PCR-corrected 
treatment efficacy by the Kaplan-Meier method was more 
than 90% at day 28, 42, or 63, pooled by random effects 
(table 2, and appendix p 8). Quinine monotherapy had 
the lowest pooled efficacy at 87·7 % (95% CI 58·2–99·3%, 
n=181 in three studies) on day 28.

In univariable analysis, four risk factors were asso
ciated with recrudescence: treatment, age, baseline 
asexual parasite density, and parity (table 3). After 
adjustment for other risk factors in the multivariable 
analysis, the risk of PCR-corrected treatment failure 
compared with AL was decreased for ASAQ (aHR 0·27, 
95% CI 0·14–0·52, p<0·0001), ASMQ (0·56, 0·34–0·94, 
p=0·03), DP (0·35, 0·18–0·68, p=0·002), and AC 
(0·37, 0·15–0·91, p=0·03), but higher in quinine 
monotherapy (6·11, 2·57–14·54, p<0·0001). For AAP, 
artesunate monotherapy, ASSP, and QC, the risk of 
failure was not statistically different to that for AL 
(table 3). Higher baseline parasite density was associated 
with an increased risk of treatment failure (1·93 per 
ten-fold increase, 1·61–2·32, p<0·0001).

The effect of parity was different depending on the 
malaria transmission intensity (p value for inte
raction 0·02). Compared with nulliparous women, the 
risks of treatment failure were decreased in primiparous 
women in moderate (aHR 0·29, 95% CI 0·10–0·81, 
p=0·02) and high transmission areas (0·73, 0·34–1·57, 
p=0·42); and in multiparous women in moderate 
(0·22, 0·08–0·63, p=0·004) and high transmission areas 
(0·49, 0·25–0·95, p=0·04); but not different in low 
transmission areas.

Figure 1: Study selection
ACT=artemisinin-based combination therapies. IPD=individual patient data. Q=quinine monotherapy.
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Sensitivity analyses were done by a piece-wise Cox 
model that split the observation time to satisfy the 
proportionality assumption and also for different 
handling of indeterminate PCR and P vivax intercalated 
infection. The estimates for these models were similar to 
the main analysis above (appendix pp 13–16).

Parasite clearance on days 1 and 2 was analysed, 
including those with recurrent infection that was not 
genotyped, or was indeterminate (appendix pp 19–22). 
The adjusted risk of positive parasitaemia by microscopy 
on day 2 (n=4876) was higher for quinine monotherapy 
(adjusted OR [aOR] 33·64, 95% CI 13·63–83·00, 
p<0·0001) and QC (22·92, 7·90–66·50, p<0·0001) than 
for AL. The risk was not different in ACTs compared with 
AL. Fever clearance is described in the appendix (p 23).

The number of patients with gametocytaemia on 
different days, stratified by baseline gametocytaemia, is 
summarised in the appendix (p 9). Further analyses 
of the risk of gametocyte carriage in women without 
gametocytaemia on day 0 were done by categorising 
treatments into ABT and QBT because of the small 
number of outcomes in each treatment. Overall, the 
pooled Kaplan-Meier estimates of women without 
gametocytes at baseline but positive by day 7 were 4·0% 
(95% CI 2·3–6·5, n=4256 in 18 studies) after ABT and 
23·9% (7·0–46·3, n=261 in five studies) after QBT.

There were 3445 women who were without game
tocytaemia on day 0 and were assessed for the risk of 
gametocytaemia on day 7. In the univariable analysis, the 
risk of positive gametocytaemia on day 7 was higher after 
QBT than after ABT (OR 8·50, 95% CI 2·55–28·33, 
p=0·0005; appendix p 10). In the multivariable analyses 
adjusted for other risk factors, the risk of developing 
gametocytaemia was still higher after QBT than after 
ABT (aOR 7·38, 2·29–23·82, p=0·001). Higher baseline 
parasitaemia (aOR 1·82 per ten-fold increase, 1·23–2·71, 
p=0·003) and lower bodyweight (aOR 0·93 per kg, 
0·87–0·99, p=0·02) were associated with an increased 
risk of developing gametocytaemia. Compared with 
women who were nulliparous, the risks of developing 
gametocytaemia were decreased in women who were 
primiparous (aOR 0·41, 0·15–1·10, p=0·08) or multi
parous (aOR 0·38, 0·17–0·89, p=0·03). Low malaria 
transmission intensity was associated with a higher 
adjusted risk of developing gametocytaemia (aOR 8·12, 
1·39–47·55, p=0·02) than moderate transmission 
intensity areas.

The PCR-uncorrected treatment efficacy on days 28, 42, 
or 63 by the Kaplan-Meier method was pooled by random 
effects for each malaria transmission intensity (appendix 
pp 11–12). In high transmission areas, PCR-uncorrected 
treatment efficacy of quinine on day 28 was 42·0% 
(95% CI 27·7–59·8, n=64 in two studies) and AL was 
86·2% (82·1–89·8, n=308 in three studies). In low 
transmission areas, efficacy was higher for both drugs: 
PCR-uncorrected efficacy of quinine on day 28 was 
66·4% (42·2–88·6, n=128 in four studies) and AL was 
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92·7% (63·2–99·9, n=174 in two studies). Efficacy on day 
28 was greater than 95% for all other ACTs regardless of 
transmission intensity.

The risk of developing adverse events in the first week 
after treatment was estimated for nine commonly assessed 
symptoms (figure 2, appendix pp 24–36). Overall, the AL 
treatment group had the lowest risk, similar to artesunate 
monotherapy, followed by the DP treatment group. 
QBT, ASAQ, and ASMQ were associated with higher 
adjusted risks of abdominal pain, anorexia, dizziness, and 
vomiting than for AL. The risk of tinnitus was higher for 
quinine (aOR 249·84, 80·90–771·56, p<0·0001) and QC 
(71·91, 19·45–265·86, p<0·0001) than AL. The risks of 
musculoskeletal pain (2·83, 1·88–4·24, p<0·0001) and 
fatigue (12·65, 8·70–18·38, p<0·0001) were higher after 
ASAQ than after AL.

Discussion
We present here the results of, to our knowledge, the 
largest IPD meta-analysis to date assessing the efficacy 
and tolerability of ABTs and QBTs for uncomplicated 
falciparum malaria in pregnancy, representing 92% of all 
patients enrolled in published studies. The PCR-corrected 
efficacy of evaluated antimalarial drugs was greater than 
90% after 28–63 days of follow-up, except for quinine 
monotherapy, which is the recommended treatment for 
pregnant women with P falciparum infection in their 
first trimester. The slightly lower efficacy of AL, the most 
widely used ACT in pregnancy, compared with other 
standard ACTs (ie, ASAQ, ASMQ, and DP) in the 
multivariable analysis might be due to its under-dosing in 
pregnant women, particularly if the immunity level is low 
(appendix pp 17–18). The pharmacokinetics of antimalarial 
drugs are affected by physiological changes of pregnancy,13 
and lower blood concentration of lumefantrine on day 7 
were reported in this patient group.37 Pregnant women 

with higher parasitaemia who are treated with AL need to 
be followed up closely. Dose optimisation, including 
courses longer than the recommended 3 days, might be 
necessary.

Although ASAQ, ASMQ, and DP showed higher efficacy 
than AL, the adjusted risk of treatment failure of ASSP 
was higher than AL (aHR 2·05, 95% CI 0·38–11·03, 
p=0·40), although not significant. ASSP efficacy was 
essentially equivalent to artesunate monotherapy 
(but given only for 3 days) in areas of sulfadoxine-
pyrimethamine (SP) resistance. Considering the spread of 
SP resistance,38 ASSP provides a suboptimal therapeutic 
option for pregnant women compared with other ACTs. 
As was shown in non-pregnant populations,39 adding clin
damycin to quinine resulted in efficacy equivalent to ABT, 
although poor tolerability of quinine could affect the 
adherence and acceptability to patients. Furthermore, 
clindamycin is not widely available in malaria-endemic 
countries.

Higher baseline asexual parasite density was associated 
with a higher risk of PCR-corrected treatment failure, as 
described in non-pregnant populations.40 This analysis 
found that nulliparous women were more likely to result 
in treatment failure in areas where transmission levels 
are moderate and high. This effect was most likely due to 
pregnancy-specific (ie, parity-dependent) immunity 
and was not observed in low transmission areas. These 
findings suggest that in an era of declining malaria 
endemicity, pregnant women might lose pregnancy-
specific immunity and the risk of treatment failure might 
increase.41

The risk of recurrent falciparum malaria was high after 
AL and quinine monotherapy, as was expected from the 
shorter half-life and post-treatment prophylactic effect. 
Considering the cumulative effect of malaria recurrences 
on the fetus,42,43 PCR-uncorrected efficacy is an important 
consideration when choosing the most appropriate drug 
for pregnant women, particularly in high transmission 
settings.

The use of QBT leads to a higher risk of gametocyte 
development than ABT because artemisinin derivatives 
have a gametocytocidal effect but quinine does not.44,45 
Lower bodyweight and higher baseline parasite density 
were associated with a higher risk of gametocytaemia on 
day 7, similar to non-pregnant populations.46,47 Nulliparous 
women were at a higher risk of developing gametocytaemia, 
possibly due to lower pregnancy-specific immunity.

Quinine was associated with higher risks of abdominal 
pain, anorexia, dizziness, nausea, tinnitus, and vomiting 
than AL, limiting its practical use in real-life settings. 
Tolerability is important because pregnant women 
infected with malaria are generally less symptomatic 
than non-pregnant patients and are therefore less likely 
to accept adverse drug events. Poor adherence and 
patient discomfort could even be further exacerbated by 
morning sickness in the first trimester when QBT is 
recommended.

Day 28 Day 42 Day 63

N % (95% CI) N % (95% CI) N % (95% CI)

AL 1168 96·9 (94·5–98·5) 929 95·5 (92·6–97·5) 598 93·6 (89·1–96·7)

AAP 58 99·9 (98·4–100·0) 49 98·9 (91·5–100·0) 40 98·5 (91·4–99·9)

AC 106 99·5 (97·4–99·9) 73 98·6 (85·4–100·0) 39 97·5 (71·4–100·0)

AS 169 95·9 (88·4–99·1) 140 95·6 (87·3–99·1) 91 95·3 (85·7–99·2)

ASAQ 811 99·6 (99·2–99·9) 782 99·2 (98·5–99·7) 611 98·8 (97·2–99·6)

ASMQ 982 99·9 (99·6–100·0) 948 99·5 (98·3–99·9) 717 99·2 (97·0–99·9)

ASSP 159 99·0 (95·4–99·9) 120 99·2 (95·7–99·9) 113 99·2 (95·7–99·9)

DP 815 99·5 (98·0–99·9) 799 99·4 (97·0–99·9) 705 98·4 (95·6–99·6)

Q 181 87·7 (58·2–99·3) 164 86·8 (56·6–99·3) 128 84·9 (51·6–99·3)

QC 43 99·9 (97·6–100·0) 37 99·9 (97·0–100·0) 28 99·9 (96·3–100·0)

Treatment success was estimated by pooling the Kaplan-Meier survival estimates in each study by random effects 
method. AAP=artesunate with atovaquone-proguanil. AC=artesunate with clindamycin. AL=artemether-lumefantrine. 
AS=artesunate monotherapy. ASAQ=artesunate-amodiaquine. ASMQ=artesunate-mefloquine. ASSP=artesunate-
sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. Q=quinine monotherapy. QC=quinine with 
clindamycin.

Table 2: PCR-corrected treatment efficacy for each treatment at fixed timepoints in each shared study 
pooled by random effects
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Among ACTs, adverse events were considered to be 
mainly due to the partner drug, and AL and DP were the 
better tolerated regimens. The risk of anorexia, nausea, 
vomiting, and dizziness was higher in ASAQ and ASMQ 
than in AL or DP, although none of the studies included 
in this pooled analysis were double-blinded. Pregnancy 
outcomes are described in detail by Saito and colleagues,16 
but there was no difference among the ACTs tested 
(ie, AL, ASAQ, ASMQ, and DP).

This study has some limitations. Firstly, although this 
meta-analysis includes over 90% of patients that are 
available in the literature, some non-standard treatments 
were documented in only a small number of women. 
Nine studies48–56 (8% of individual patient data ) were not 
included, but the pooled efficacy at the fixed timepoints 
was similar when aggregated data of those unshared 
studies were included (appendix p 8). Study designs and 
handling of indeterminate PCR or P vivax intercalated 
infection also did not affect our conclusions (appendix 
p 13–16), thereby confirming the robustness of our 
analysis as the most accurate global summary. Secondly, 
although the efficacy of ACTs shown in this study was 
satisfactory, careful consideration is needed when 
applying these results to specific settings because of 
variable patterns of drug resistance. Sensitivity to the 
partner drugs and immunity level differs depending on 
the location and study year, although a sensitivity analysis 
in which one study site was removed at a time did not 
change the conclusion of the meta-analysis (data not 
shown). The data from southeast Asia included in this 
study were collected before widespread artemisinin 
resistance in the area, but the spread of resistance in this 
region will affect the general recommendations for 
antimalarials, requiring alternative strategies and the 
safety of those formulations will have to be assessed in 
pregnant women. Thirdly, as study participants were 
mostly enrolled at antenatal clinics by screening for 
peripheral parasitaemia, the women included in this 
pooled analysis were more likely to be afebrile and with 
lower baseline parasite densities than patients in most 
antimalarial efficacy studies in non-pregnant populations.46 
Thus, the efficacy at fixed time points might not be directly 
comparable to the results in non-pregnant populations or 
in settings where antenatal screening is not provided. 
Indeed, as baseline parasite density is a known risk factor 
for PCR-corrected treatment failure, the pooled efficacy 
at fixed timepoints in this study could have been 
overestimated. The lower efficacy of quinine and AL 
(under the dosing currently recommended by WHO)14 
shown in this analysis could thus actually be worse for 
infections with higher parasitaemia. Nonetheless, the 
results of this study will be practically useful and more 
relevant than only including symptomatic patients 
because even asymptomatic parasitaemia leads to adverse 
pregnancy outcomes and most pregnant women with 
parasitaemia were asymptomatic.1,2 Finally, evidence on 
the safety and efficacy of antimalarial treatment in the first 

Number 
assessed 
(failure)

Univariable analysis Multivariable analysis*

HR (95% CI) p-value HR (95% CI) p-value

Treatment

AL 1278 (68) ·· ·· ·· ··

AAP 91 (2) 0·39 (0·07–2·11) 0·27 0·31 (0·06–1·61) 0·17

AC 142 (6) 0·46 (0·19–1·15) 0·10 0·37 (0·15–0·91) 0·03

AS 230 (15) 0·72 (0·37–1·42) 0·35 0·64 (0·34–1·23) 0·18

ASAQ 841 (12) 0·27 (0·14–0·52) <0·0001 0·27 (0·14–0·52) <0·0001

ASMQ 1028 (25) 0·56 (0·33–0·94) 0·03 0·56 (0·34–0·94) 0·03

ASSP 173 (4) 1·68 (0·30–9·31) 0·55 2·05 (0·38–11·03) 0·40

DP 874 (14) 0·38 (0·20–0·74) 0·004 0·35 (0·18–0·68) 0·002

Q 244 (31) 5·70 (2·09–15·55) <0·0001 6·11 (2·57–14·54) <0·0001

QC 67 (1) 0·63 (0·05–7·22) 0·71 0·48 (0·04–5·24) 0·55

Age (years) 4968 (178) 0·96 (0·93–0·98) 0·002 ·· ··

Parity

0 2130 (89) ·· ·· ·· ··

1 1040 (31) 0·60 (0·40–0·90) 0·01 0·59 (0·39–0·89) 0·01

≥2 1733 (56) 0·51 (0·36–0·72) 0·0002 0·62 (0·44–0·89) 0·009

Trimester

1 27 (1) 0·45 (0·06–3·31) 0·44 ·· ··

2 3325 (131) ·· ·· ·· ··

3 1610 (46) 0·81 (0·58–1·15) 0·24 ·· ··

Weight (kg) 4943 (177) 1·00 (0·98–1·03) 0·78 ·· ··

Parasitaemia (log10/µL) 4968 (178) 1·97 (1·65–2·35) 0·0001 1·93 (1·61–2·32) <0·0001

Hyperparasitaemia

Yes 79 (6) 1·74 (0·76–4·00) 0·19 ·· ··

No 4889 (172) ·· ·· ·· ··

Fever >37·5°C

Yes 504 (32) 1·46 (0·98–2·18) 0·07 ·· ··

No 4350 (142) ·· ·· ·· ··

Haemoglobin (g/dL) 4917(175) 0·97 (0·88–1·08) 0·60 ·· ··

Presence of gametocytes

Yes 197 (12) 1·28 (0·70–2·33) 0·42 ·· ··

No 4629 (157) ·· ·· ·· ··

Mixed infection

Yes 54 (5) 1·76 (0·70–4·43) 0·23 ·· ··

No 4914 (173) ·· ·· ·· ··

Intercalated vivax infection

Yes 233 (10) 0·59 (0·30–1·18) 0·14 ·· ··

No 4735 (168) ·· ·· ·· ··

Transmission intensity

Low 1319 (81) 1·75 (0·46–6·73) 0·41 ·· ··

Moderate 2594 (49) 1·26 (0·30–5·26) 0·75 ·· ··

High 1055 (48) ·· ·· ·· ··

 p value for shared frailty <0·001. AAP=artesunate with atovaquone-proguanil. AC=artesunate with clindamycin. 
AL=artemether-lumefantrine. AS=artesunate monotherapy. ASAQ=artesunate-amodiaquine. ASMQ=artesunate-
mefloquine. ASSP=artesunate-sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. HR=hazard ratio. 
Q=quinine monotherapy. QC=quinine with clindamycin. *Adjusted by treatment, parity, parasitaemia, and previous 
antimalarial treatment.

Table 3: Risk factors for PCR-corrected treatment failure in pregnant women infected with falciparum malaria
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trimester both in this meta-analysis and in the literature is 
scarce. Although safety of ACTs is reassuring8,9 and there 
was no apparent effect of gestational age on the risk of 
PCR-corrected treatment efficacy indicated in this meta-
analysis, collecting further evidence on the safety and 
efficacy of antimalarial treatment in first trimester women 
should be continued.

In conclusion, this meta-analysis, together with the 
evidence of safety shown in previous research,8,9 provides 
compelling evidence that quinine monotherapy provides 
lower efficacy and tolerability than ACTs. Although the 
efficacy of QC was as high as that of ACTs, its practical 
use is discouraged considering the slow parasite 
clearance, the longer treatment period needed, the higher 
risk of gametocyte development, and poor tolerability. 
Although patients treated with AL had fewer acute 
adverse events, its efficacy was lower than other ACTs 
with the currently recommended dosing.14 In addition, 

the post-treatment prophylactic period of AL is shorter 
than other ACTs, leading to a higher risk of recurrences, 
which can cumulatively affect the fetus, particularly in 
higher transmission areas. ASAQ, ASMQ, and DP 
showed better efficacy compared with AL, but the 
tolerability of ASAQ and ASMQ was lower than AL. 
Considering the adverse effect of malaria on pregnant 
women and their offspring, all pregnant women infected 
with malaria, regardless of trimester, should be treated 
with the most effective drugs available.
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Figure 2: Adjusted odds ratio of developing symptoms after treatment compared with artemether-lumefantrine
AAP=artesunate-atovaquone-proguanil. AC=artesunate with clindamycin. AL=artemether-lumefrantrine. AS=artesunate monotherapy. ASAQ=artesunate-
amodiaquine. ASMQ=artesunate-mefloquine. ASSP=artesunate-sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. Q=quinine monotherapy. 
QC=quinine with clindamycin.
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