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Abstract 
Neurological disorders are the leading cause of disability and the second leading cause of death 

worldwide. Among these diseases, neurodegenerative disorders constitute a considerable 

segment, the two most common ones being Alzheimer’s (AD) and Parkinson’s disease (PD), 

which are also the leading causes of dementia. Dementia is a severe burden on the quality of 

life of the patients and their caregivers. As there is still no cure for the cause of 

neurodegenerative diseases, dementia due to AD and PD can only be treated symptomatically 

to some extent.  For any potential clinical studies aiming at finding curative agents for 

neurodegenerative dementias, it is critical to intervene at a very early stage of the disease, when 

a substantial part of neurons are still alive and can be preserved. Moreover, symptomatic 

interventions by lifestyle change or drug application are likely more effective when applied 

early in the disease course.  For these reasons, new approaches to assess the risk of dementia in 

cognitively healthy or only mildly affected patients is essential.  

This thesis focusses on finding potential diagnostic and prognostic biomarkers of cognitive 

decline in Parkinson’s disease patients, extensively investigating patterns in brain waves 

through electroencephalogram (EEG) recordings. In a real-world clinical study at one centre, it 

is common to have data from a limited number of patients. However, due to the nature of EEG 

data, the number of features extracted can be much higher than the number of patients, resulting 

in sparse data requiring suitable analysis methods. The different studies carried out for this 

project aimed at feature selection – both, for distinguishing PD patients from healthy controls 

as well as PD patients with Mild Cognitive Impairment from those without, and investigating 

the association of EEG features with cognitive tests. Through a collaboration, it was also 

possible to evaluate EEG as a potential marker for patients at the prodromal stage or before 

there are enough symptoms to have a clear clinical diagnosis of Parkinson’s disease. 

The first significant outcome of this thesis was identifying optimal methods for feature selection 

and using penalized regression for shortlisting EEG spectral power features to classify PD 

patients from healthy individuals using high-density as well as standard 10-20 EEG recording 

systems. This was also tested on some prodromal PD patients. Theta spectral power came out 

as an important feature in both studies and was highly associated with dopamine depletion in 

the brain, as seen with DaTscan imaging on a subset of prodromal and PD patients. Another 

outcome was finding connectivity measures in delta and theta bands to be of high importance 

in identifying PD patients with Mild Cognitive Impairment and finding correlations between 

memory and connectivity in the theta band, attention and connectivity in the beta band. On 

following up on a subset of these patients for 5 years, theta spectral power and connectivity 

were found to have the strongest association with the change in cognition, in line with our 

hypothesis based on all the baseline studies. Our data suggest that theta activity can be a 

diagnostic marker for PD and prognostic marker for cognitive decline in Parkinson’s disease, 

eventually leading to dementia.  
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Abbreviations 
 

AD- Alzheimer’s disease 

AUC = area under the curve  

CI-OCS - change index in overall cognitive score  

DAT - dopamine active transporter  

EEG – Electroencephalogram 

fMRI – functional MRI  

GP- Global spectral power 

HR-PDEEG+ - individuals with high risk for motor Parkinson’s disease and similarity in EEG 

pattern of Parkinson’s disease patients 

HR-PDEEG- individuals with high risk for motor Parkinson’s disease without similarity in EEG 

pattern of Parkinson’s disease patients 

LASSO – least absolute shrinkage and selection operator  

LED- Levodopa equivalent dosage 

LR+ / LR- positive and negative likelihood ratio 

MCI – Mild Cognitive Impairment 

MMSE – Mini Mental State Examination 

PD – Parkinson’s disease 

PET- positron emission tomography  

PLI – Phase Lag Index 

ROC- Receiver Operator Curve 

SN - substantia nigra 

SPECT - single-photon emission computed tomography  

TCS- Transcranial Sonography 
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1. Introduction 
 

1.1 Neurodegeneration and biomarkers 

Neurons are the building blocks of the nervous system, which includes the brain and spinal 

cord. The human brain consists of about 120 billion neurons (Herculano-Houzel, 2009) that can 

interact, collectively generating complex human behaviours, from sensorimotor response to 

consciousness. Since neurons do not replace themselves, the body, in the event of damage or 

death of neurons, cannot replace them. This leads to disorders spanning from movement (such 

as ataxias), to mental functioning (such as dementias). Neurodegeneration is defined by the 

progressive loss of structure or function of neurons that also includes the death of neurons 

(Heemels, 2016). Examples of neurodegenerative diseases include Parkinson’s, Alzheimer’s, 

and Huntington’s diseases. Neurodegenerative disorders are becoming even more prevalent 

now, as the ageing population grows. According to the 2019 United Nations report on world 

population ageing (United Nations, Department of Economic and Social Affairs, Population 

Division., 2019), the world’s population is expected to grow by 10% to 8.5 billion in 2030 and 

by 2050, one in 6 people worldwide are projected to be aged over 65 (16%),  in comparison to 

one in 11 in 2019 (9%). Ageing has been linked to neurodegeneration due to some observed 

changes, but the process is especially influenced by factors like genetics, environment and 

accumulation of certain proteins, lysosomes in the brain.  

 

Figure 1.1: Ageing, neurodegeneration and brain rejuvenation (Wyss-Coray, 2016). Aged brains 

become highly prone to neurodegenerative diseases in which the same lesions amass as those that are 

found in old brains in smaller numbers. The relationship between such lesions and cognitive impairment 

is often blurred and normal ageing, neurodegeneration, and dementia can overlap. The concept of 

rejuvenation posits that old brains are malleable and that aspects of the ageing process can be reversed 
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to a younger stage. If this can be achieved, it might also be possible to slow or reverse neurodegeneration 

and cognitive impairment. 

Neurodegeneration can begin at any point during an individual’s lifespan and progress for 

several years before becoming clinically manifest (Savica et al., 2010; Reiman et al., 2012). 

This poses a significant obstacle for research into prevention and delays treatment. Although 

treatments may help relieve some of the physical or mental symptoms associated with 

neurodegenerative diseases, there is currently no way to slow disease progression and no known 

cures. As cognitive decline is a common symptom, leading up to dementia in many cases, any 

methods of early diagnosis and monitoring would be crucial for improving people’s quality of 

life.  

It has long been known that keeping track of certain measures of health can facilitate preventive 

medicine. These measures, known as biomarkers, could vary from blood pressure, cholesterol 

levels to antibodies and more tests of the blood and tissue, that could help in preventing and 

detecting events like heart attacks, stroke or other conditions like autoimmune diseases. A 

biomarker is defined as any substance, structure or process that can be measured in the body or 

its products and influence or predict the incidence of outcome or disease (WHO International 

Programme on Chemical Safety Biomarkers in Risk Assessment: Validity and Validation, 

2001; Strimbu and Tavel, 2010). Biomarkers can be classified into four main types: diagnostic, 

prognostic, predictive, and response (FDA-NIH Biomarker Working Group, 2016). While a 

diagnostic biomarker detects or confirms the presence of a disease or condition of interest or 

can be used to identify individuals with a subtype of the disease, prognostic biomarkers identify 

likelihood of a clinical event, disease recurrence or progression in patients who have the disease 

or medical condition of interest. A predictive biomarker, on the other hand, can be used to 

identify individuals who are more likely than similar individuals without the biomarker to 

experience a favourable or unfavourable effect from exposure to a medical product or an 

environmental agent. A response biomarker indicates if a biological response has occurred in 

an individual who has been exposed to a medical product or an environmental agent. 

Additionally, a therapeutic biomarker could be a protein, for instance, that could be used as 

target for a therapy. 

As of 2019, biomarkers have expanded into digital measures (Coravos et al., 2019), with 

wearables and smartphones being used to detect anomalies like atrial fibrillation (such as the 

Apple Watch with an ECG measuring component), irregular sleep patterns (using 

accelerometers), autism spectrum disorder using Electroencephalogram (EEG) (Bosl et al., 

2018) or tracking mental health, mood , movement and even asthma using smartphone apps.  

In the past few years, a number of studies have worked towards identifying and validating 

neurodegenerative disease biomarkers too (Jeromin and Bowser, 2017). These biomarkers can 

include measurements of the blood, cerebrospinal fluid or brain imaging, for instance. Digital 

biomarkers are also being implemented in clinical trials for stratification of patients as well as 

monitoring the effects of drugs.  
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1.2 Applications of machine learning in neurodegeneration 

With the increase in data generation and usage of new imaging as well as genetic techniques, 

the number of studies applying machine learning to investigate the brain further have also 

increased. The common goal of most of these studies is the early diagnosis of a neurological 

disorder or making prediction models for risk-assessment. The dimension of data varies 

depending on the equipment or the types of tests used and the data collection process. So, 

depending on the research question, sample size and type of data, suitable statistical tests and 

machine learning algorithms need to be applied or altered accordingly. In a very recent study 

(Álvarez et al., 2019), researchers applied machine learning with feature selection for diagnosis 

and classification of neurodegenerative disorders, using Primary Progressive Aphasia (PPA) as 

the disease model. The main features used here were from positron emission tomography (PET) 

imaging, as identified from patient records via data mining, and the goal was to facilitate 

automatic diagnosis of this disease as well as identifying disease subtypes that correlated with 

the brain anatomy. 

Feature selection and data mining are two of the many utilisations of big data that can facilitate 

knowledge discovery (Özyurt and Brown, 2009) and prediction of disease onset/worsening. 

This can ultimately lead to personalised health solutions. In one recent study, researchers 

applied deep learning techniques to investigate the neuropathology of tauopathy using digital 

images obtained from 22 brains after autopsy (Signaevsky et al., 2019) and in another, deep 

learning was applied on MRI data of Alzheimer’s disease patients from a longitudinal study to 

predict disease progression better (Pena et al., 2019). Such applications and more (Singh et al., 

2019) of machine learning and artificial intelligence are consistently contributing to expanding 

our knowledge about neurodegeneration and also paving the way to learn more about related 

diseases. 

Interpretability is crucial for the end user and for reliably using predictive models. Bias and 

problems can arise from either the model or the dataset itself. Sometimes, a model could also 

discover patterns unknown by experts, helping in generating new hypothesis. According to one 

research (Doshi-Velez and Kim, 2017), some of the factors to consider while evaluating the 

interpretability of a model, are:  

- Application grounded (real tasks): Letting the end user or field experts evaluate it. E.g.: 

radiologists testing a fracture detection software to evaluate the model. 

- Human grounded (simplified tasks): Having non-expert evaluators. E.g.: deciding 

which explanations seem more understandable or try to simulate the model. 

- Functionally grounded (proxy) – Does not require humans. Experimentally shown to 

be correlated to human assessment. E.g.: decision tree depth 

It is also important to consider the runtime complexity, usability, stability, reliability, 

knowledge needed to understand the model and how understandable a method is. 
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1.3 Synchronization in the brain 
 

“Irrespective of whether it’s neural activity, the clapping of a crowd or the rumbling of an 

earthquake, all of these phenomena occur because of a synchronization of oscillation 

patterns.” 

 

With 120 billion neurons interacting amongst themselves, the brain indeed is a complex 

machinery. However, this complexity has a beautiful rhythm to it, a rhythm brought on by 

synchronization of brain waves. But what are brain waves and what does synchronization 

really mean?  

Neurons or brain cells communicate via electrical impulses (Lovinger, 2008) and each of the 

neurons may oscillate in a rhythmic or wave-like pattern. In some instances, large groups of 

neurons oriented in the same direction may be oscillating together in harmony, creating 

synchronized electrical activity. This cumulative electrical activity is known as a brain wave. 

Due to the magnitude of these large-scale brain waves, it is possible to detect the electrical 

activity in different regions on the scalp with a medical device known as EEG which records 

the brain signals using electrodes attached to the scalp. Waves can vary in amplitudes and 

frequency, and there are five main kinds of brain waves of interest.  

However, no single brainwave alone is considered more important than the other is. The 

different waves coexist; just that the dominance of a brain wave frequency can influence 

performance in specific functions and the synchronized ensembles may be linked to specific 

states of mind, like relaxation, sleep, etc.  

The five brain waves in order of lowest frequency to highest are as follows:  

Delta (1-4 Hz) - Delta is the slowest brain wave and is optimally associated with deep sleep. 

An excessive reduction in delta could lead to sleep problems. 

Theta (4-8 Hz) - Theta is a slow wave, with 4 to 7 cycles per second. This could be associated 

with light sleep or drowsiness but also with meditation or relaxed state of mind. An increase in 

theta is linked to depression or problems in attention, for instance.  

Alpha (8-13 Hz) – Alpha waves are dominant when an individual is calm, relaxed but alert, 

even with eyes closed.  

Beta (13-30 Hz) – Beta are fast waves that optimally help people perform tasks requiring focus, 

like problem-solving, critical thinking etc. Caffeine or other energy drinks can stimulate these. 

Reduction in beta is linked to problems in cognition or attention.  

Gamma (30-60 Hz) – Gamma waves are the fastest and said to be associated with information 

processing. A depiction of the different kinds of waves, as seen with an EEG recording, is 

shown in Figure 2. 
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Figure 1.2: Depiction of different EEG bands 

Apart from just visualizing the brain waves, we can now quantify and process the electrical 

signals with Quantitative EEG (qEEG). Applications of qEEG have been researched 

continuously in the past few years.  Since EEG is a fast and non-invasive method to monitor 

the electrical activity of the brain, can provide a resolution of few milliseconds, and the 

equipment is not too expensive, it makes it a viable option to assess the changes in the electrical 

activity of the brain. The other neuroimaging techniques, like functional MRI (fMRI) or PET 

scans do not offer such high temporal resolution (they are limited to seconds), are more 

expensive, need more time for recording and are not mobile. Thus, EEG has some advantages 

over them.  

EEG is used in clinics to investigate sleep disorders, monitor alertness, detecting and 

investigating brain regions affected by epileptic seizures (Rosenow et al., 2015), drug effects 

and has also been used to investigate learning and cognition. In fact, EEG recordings of patients 

with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease, Schizophrenia, 

Multiple Sclerosis have shown changes in patterns of the brain signals. This has opened up a 

very interesting field of research, one that we have explored further in our studies, focusing on 

Parkinson’s disease and dementia. 

However, it is difficult to accurately detect very low amplitude waves like gamma with an EEG 

on the surface of the head and distinguish them from muscle activity.  Hence, for the scope of 

our work, we only focus on the role of the first four brain waves: delta, theta, alpha and beta.  
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1.4 Motivation and aim of the thesis 

Dementia is a general term for a decline in mental ability severe enough to interfere with daily 

life. It is characterized by the loss of cognitive functioning—thinking, remembering, and 

reasoning—and behavioural abilities to such an extent that it interferes with a person's daily life 

and activities. It is not a specific disease, but several different diseases may cause dementia, 

Parkinson’s and Alzheimer’s disease being two of the leading causes (Emre, 2003b; Walker et 

al., 2015). Parkinson’s disease Dementia (PD-D) is associated with lower quality of life, 

caregiver dependency, and a higher rate of mortality. Neurological disorders are the leading 

cause of disability and the second leading cause of death worldwide(Carroll, 2019). Dementia 

is an emergent problem for ageing populations. It is also one of the non-motor symptoms of 

PD, which worsens outcomes and life expectancy of the patients (Emre, 2003a)(Levy et al., 

2002). Some studies have shown that patients with PD have an almost six-fold increased risk 

of developing dementia compared with age-matched individuals without PD (Aarsland et al., 

2001). 

 In a study carried out investigating the global burden of neurological disorders from 1990 to 

2016 (Feigin et al., 2019), various neurological diseases were investigated based on global 

deaths, disability-adjusted life years (DALYS) and prevalence. This global burden, for 

Alzheimer’s and Parkinson’s diseases, is shown in Table 1.1. About 50 million people are said 

to be living with dementia worldwide currently(Nichols et al., 2019), and this number is 

predicted to increase to 152 million by 2050. Dementia is now ranked as the fifth leading cause 

of death, and the global economic burden comes close to a trillion dollars every year (World 

Health Organization.; Xu et al., 2017).  

Cognitive changes occur gradually in patients, with an intermediate condition between the 

normal cognition and dementia known as mild cognitive impairment (MCI) (Wood et al., 2016). 

The progression rate from PD-MCI to PD dementia varies depending on factors like age, 

disease duration, etc., but one study found it to be 45–60% while following up patients for 4–

12 years (Buter et al., 2008) and a 49.28% prevalence rate was reported for dementia over 7 

years (Sanyal et al., 2014). Hence, methods of cognitive assessment and early identification of 

PD patients with a risk of dementia are of significant importance for clinicians to improve the 

quality of life of PD patients. 

In this respect, QEEG has proved to be a useful approach for early prognosis of cognitive 

decline leading up to dementia. QEEG is an inexpensive, non-invasive and fast technique to 

assess the electrical activity of the brain. It is employed clinically as a measure of brain function 

in the hope of determining and differentiating certain functional conditions of the brain. QEEG 

is used in patients with cognitive dysfunction involving either a general decline of overall brain 

function or a localised or lateralized deficit. 
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 Absolute numbers 

(thousands) 

Age-standardised rate (per 100 000 people) 

 

 

 2016 

Percentage 

change, 

1990–2016 

2016 

Percentage 

change, 

1990–2016 

Males Females 
Male-to-

female ratio 

Parkinson’s disease 

Deaths 
211 (168 

to 265) 

161% (152 

to 171) 

3 (3 to 

4) 

19% (16 to 

23) 

5 (4 to 

6) 

3 (2 to 

3) 

1·81 (1·74 to 

1·89) 

DALYs 

3235 

(2564 to 

4013) 

148% (140 

to 156) 

51 (41 

to 63) 

22% (18 to 

26) 

67 (53 

to 83) 

39 (31 to 

49) 

1·70 (1·63 to 

1·76) 

Prevalence 

6063 

(4971 to 

7325) 

145% (138 

to 152) 

94 (77 

to 

114) 

22% (18 to 

25) 

112 

(92 to 

135) 

80 (65 to 

97) 

1·40 (1·36 to 

1·43) 

Alzheimer’s disease and other dementias 

Deaths 

2382 

(2060 to 

2778) 

148% (140 

to 157) 

41 (35 

to 48) 
4% (1 to 6) 

37 (32 

to 44) 

43 (37 to 

49) 

0·88 (0·86 to 

0·91) 

DALYs 

28 764 

(24 511 

to 

33 952) 

121% (115 

to 127) 

471 

(401 

to 

556) 

2% (0 to 4) 

439 

(373 

to 

523) 

490 

(417 to 

576) 

0·90 (0·88 to 

0·92) 

Prevalence 

43 836 

(37 756 

to 

51 028) 

117% (114 

to 121) 

712 

(614 

to 

828) 

2% (1 to 2) 

645 

(555 

to 

752) 

757 

(652 to 

879) 

0·85 (0·85 to 

0·86) 

  

Table 1.1: Global deaths, DALYs, incidence, and prevalence per 100 000 people and age-standardised 

rates by neurological disorder category, 1990–2016 (Feigin et al., 2019).  Numbers in brackets are 95% 

uncertainty intervals. DALYs for traumatic brain injuries and spinal cord injuries include years lived 

with disability only (not years of life lost), because International Classification of Disease rules for cause 

of death reporting require that injury deaths are assigned to causes rather than consequences. 

 

This project aims to explore the differences in high-resolution QEEG data between patients at 

different stages of Parkinson’s disease and detect electrophysiological biomarkers for the risk 

of future Parkinson’s disease dementia. The studies focussed on finding EEG patterns 
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associated with cognitive decline in PD patients using their clinical, neuropsychological and 

electroencephalographic data extensively at baseline and eventually, over 3 and 5 years. 

The vision of this project is to detect prospective biomarkers of cognitive decline in PD that 

will contribute to providing a more comprehensive picture and assessment of the health status 

of a PD patient. Long-term assessment of Parkinson’s disease patients is crucial for 

understanding the gradual cognitive decline and this study will analyse data recorded at three 

and five-year follow-ups. Using high-density EEG instead of conventional low-resolution EEG 

recording systems enables us to obtain more detailed information regarding the functioning of 

the brain. Combining QEEG and clinical features into a prognostic biomarker will allow 

clinicians to better assess the risk for cognitive decline. 

 

1.5 Outline  
 

In the following chapters, we will be going through the disease mechanisms, investigate EEG 

in detail and then look at applications of EEG in early diagnosis of Parkinson’s disease and in 

using EEG as a potential marker for cognitive decline in Parkinson’s disease. Chapter 2 

describes the onset, progression of Parkinson’s disease and describes the different diagnostic 

methods for cognitive decline and dementia. Chapter 3 focusses on EEG; how the signals are 

measured and how it has been applied so far in neurology, particularly the EEG features 

characteristic of Parkinson’s disease and dementia. We then move on to the methodological 

section in Chapter 4 where we deep dive into brain signal analysis and look at machine learning 

methods that can be applied for analysing and interpreting the EEG data. Chapter 5 is an 

amalgamation of two published papers regarding EEG and early Parkinson’s disease along with 

additional unpublished work using EEG and neuropsychological measures in classifying PD 

patients from healthy individuals. Going one-step further, Chapter 6 applies the findings of 

Chapter 5 and investigates a group of prodromal PD patients, or patients identified to be at risk 

of PD but not diagnosed clearly. Chapter 7 includes a publication investigating Mild Cognitive 

Impairment in Parkinson’s disease, applying machine-learning methods to connectivity and 

spectral measures. Chapter 8 builds up on our knowledge and presents some results from 

following up the cohort at 3 and 5 years, establishing theta as a potential prognostic biomarker. 

Finally, Chapter 9 gathers the findings and learnings from all the described work and presents 

an integrated discussion. 
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2. Parkinson’s disease  
 

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects 1–2 per 1000 

of the population at any time. It’s prevalence increases with age (de Lau et al., 2004; Barbosa 

et al., 2006), to 1-2% of persons older than 60 years (Poewe et al., 2008; Sveinbjornsdottir, 

2016; Tysnes and Storstein, 2017). As of 2016, 6.1 million people worldwide were estimated 

to be affected (Dorsey et al., 2018). 

It is caused by the gradual loss of the dopamine-producing brain cells of the substantia nigra —

located just above where the spinal cord meets the midbrain. The dopamine release facilitates 

the communication between the substantia nigra and parts like the basal ganglia, frontal lobe 

which are responsible for coordinating movements. The loss of dopamine obstructs this 

communication, resulting in movement disorders where people start losing control and start 

experiencing tremors, stumbling etc. Parkinson’s disease is one such movement disorder.  

 

2.1 Disease progression 
 

Parkinson's disease-related functional changes in basal ganglia  

The basal ganglia is a group of nuclei embedded deep in the brain hemispheres(Lanciego et al., 

2012). This includes the striatum, globus pallidus, substantia nigra, and subthalamic nucleus 

(STN) which closely interact with the cerebral cortex and thalamus(DeLong and Wichmann, 

2010) and the balance of signals facilitates movement control. In the basal ganglia, the striatum 

is the main input nucleus, and the dopamine receptors facilitate the modulatory effect of 

dopamine released from nigrostriatal terminal (Gerfen, 1992; Gerfen et al., 1995). In PD, the 

loss of dopaminergic neurons in the substantia nigra results in the striatal dopamine depletion 

leading to an imbalance and thus, enhanced activity of the basal ganglia output nuclei, affecting 

the output to the motor cortex. At first, this may translate to symptoms like rigidity, slow 

movements, freezing but can gradually lead to tremors. 

 

This collective basal ganglia unit is not only responsible for motor control but is also now found 

to be involved in other functions like attention, working memory, planning, learning, emotions 

and more.  

 

Motor and non-motor symptoms 

Parkinson's disease is characterised by some cardinal motor features such as bradykinesia, rest 

tremor, and rigidity. The motor symptoms can also include tremor, gait, speech or handwriting 

impairment (Moustafa et al., 2016).  They start appearing in the early stages of the disease and 

depend mainly on the dopamine reduction (Hughes et al., 1992; Magrinelli et al., 2016).  Non-

motor symptoms such as cognitive impairment, olfactory impairment, autonomic dysfunction, 

sleep alterations, behavioural abnormalities and cognitive deficits are also common in 

Parkinson’s disease patients (Pfeiffer, 2016; Aarsland et al., 2017; Bago Rožanković et al., 
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2017; Cozac et al., 2017). These have a major impact on quality of life (Schrag et al., 2000; 

Erro et al., 2016).  

Prodromal Parkinson’s disease 

When subtle signs of PD are present in a patient but do not fulfil the diagnostic criteria of the 

disease, it is referred to as, prodromal Parkinson’s disease (Hughes et al., 1993, Berg et al., 

2015a; Heinzel et al., 2016). By the time the full clinical picture allows the clinical PD diagnosis 

defining individuals in the prodromal PD period, at least 30-60% of dopaminergic cells (Dauer 

and Przedborski, 2003; Greffard et al., 2006; Cheng et al., 2010; Grosch et al., 2016) are likely 

to have been lost in the process of neurodegeneration of the substantia nigra. Several features 

characteristic of the prodromal stage, when combined, can denote an increased risk for onset of 

PD in the future (Ross et al., 2012; Berg et al., 2013; Noyce et al., 2014) and may even 

correspond to the neuropathological staging of PD-associated pathology. A better 

understanding of the prodromal period is essential for the identification of individuals who 

could potentially convert to Parkinson’s disease within a short time frame as a potential target 

group for upcoming neuroprotective trials.  

An expert group of the International Parkinson’s disease and Movement Disorder Society 

(MDS) has proposed research diagnostic criteria for the prodromal phase of Parkinson’s 

disease, as a first attempt to quantify the risk of a single person to be in the prodromal stage of 

the disease (Berg et al., 2015a). By use of a data-driven probabilistic approach, considering age 

to influence the incidence of disease onset, the occurrence of specific Parkinson’s disease 

related risk and prodromal marker were combined into a prodromal risk score, based on the 

positive or negative likelihood ratio of each marker to predict future Parkinson’s disease onset. 

So far, this approach is validated in several cohorts, confirming a higher prodromal risk score 

increasing the risk for Parkinson’s disease conversion and higher prognostic values for 

conversion within longer follow-up periods. The prodromal risk scores have positive and 

negative predictive values between 19% to 77.8% and 52.9% to 99% (Mahlknecht et al., 2016, 

2018; Fereshtehnejad et al., 2017; Pilotto et al., 2017; Mirelman et al., 2018). The time course 

of Parkinson’s disease progression is illustrated in Figure 2.1. As seen, the prodromal period 

can start up to 10 or even 20 years before the disease can be diagnosed in its early stages. 
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Figure 2.1: Clinical symptoms and time course of Parkinson's disease progression (Kalia and Lang, 

2015) 

 

Pathophysiology of disease progression  

PD can have two forms: familial and sporadic. While the familial form is caused by genetic 

irregularities, among others in the gene for alpha-synuclein, the sporadic form may be caused 

by genetic and environmental factors and has been researched continuously(Rietdijk et al., 

2017). Some elements of sporadic PD are said to include neuroinflammation, oxidative stress, 

and alpha-Synuclein misfolding and aggregation (Drouin-Ouellet and Cicchetti, 2012; Zaltieri 

et al., 2015). 

The origin of sporadic Parkinson’s disease and the spread of the disease through the different 

regions of the brain is not fully confirmed yet. But, several studies have been carried out to 

investigate this course further, and one popular hypothesis was put forth by Braak (Braak et al., 

2003; Braak and Del Tredici, 2017). According to his theory, the progression in Parkinson’s 

disease goes through several stages, although it has been argued that this only describes a 

specific subset of patients with young-onset and long duration of the disease (Rietdijk et al., 

2017). It is said to begin when a pathogen comes into contact with and affects the neurons in 

the gut as well as in the olfactory system. The different stages are illustrated in Figure 2.2.  

 

In the first two stages, some unknown pathogens or microbial products are said to come into 

contact with olfactory and/or enteric neurons, which trigger the aggregation of α-Synuclein. 

The earliest effects in the brainstem and olfactory system, as a result, could be seen as symptoms 

like constipation and losing the sense of smell.  

 

The aggregated α-Synuclein spreads toward the central nervous system via the olfactory bulb 

and the vagus nerve during Stages 3 and 4. By this time, the olfactory system is likely to have 

been significantly damaged, and the disease spreads in the limbic system, which is linked to 
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emotion, long-term memory.  Eventually, in Stage 5, the aggregated α-Synuclein arrives at the 

substantia nigra. Genetic factors are likely to contribute to PD, but the exact mechanism remains 

to be clarified. 

 

 

 

Figure 2.2: A schematic representation of Braak’s hypothesis of Parkinson’s disease(Rietdijk et al., 

2017) 

Other studies state that the pathophysiology of PD is not limited to dopaminergic neurons of 

the substantia nigra, but implicates a distributed brain network: putamen, striatum, thalamus, 

brainstem, and cortex (Galvan and Wichmann, 2008).  
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 2.2 Cognitive decline and dementia  
 

Cognitive impairments in Parkinson’s disease patients are a major non-motor symptom and 

may be present since the earliest stages. These symptoms significantly affect the daily life of 

patients and prevent them from carrying out several routine tasks requiring cognitive 

functioning. Cognitive decline due to neurodegeneration occurs gradually, with an intermediate 

condition between normal cognition and dementia known as mild cognitive impairment (MCI) 

(Petersen et al., 2014). In many cases, PD patients with MCI eventually progress to dementia 

in the long term.   

A study showed the prevalence of MCI in about 40% of newly diagnosed PD patients 

(Monastero et al., 2018). The prevalence of dementia in PD patients also depends on age, 

disease duration, motor severity (Emre, 2003a; Poewe et al., 2008; Goldman and Litvan, 2011) 

and other factors like sleep disorders, depression(Jozwiak et al., 2017; Goldman et al., 2018).  

Some studies have reported a 45-60%  progression rate from PD-MCI to PD dementia (PD-D) 

while following up patients for 4–12 years (Janvin et al., 2006; Buter et al., 2008; Williams-

Gray et al., 2013; Wood et al., 2016; Pedersen et al., 2017; Weil et al., 2018) and a 49.28% 

prevalence rate for dementia over 7 years (Sanyal et al., 2014). MCI can also be a stable stage 

for many patients, as is demonstrated in a longitudinal study over three years (Lawson et al., 

2017) 

Understanding the neural basis of cognitive dysfunctions in PD is essential because mild 

cognitive impairment (MCI) in PD is considered as a precursor of dementia (Caviness et al., 

2007). Any methods to detect the process of cognitive impairment would be highly beneficial 

to identify patients at risk of significant decline leading to dementia. 
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2.3 Current diagnostic methods for Parkinson’s disease 

Molecular diagnosis has emerged as a powerful technique for the early detection of various 

neurodegenerative disorders (Agrawal and Biswas, 2015). Earlier, the diagnosis of Parkinson’s 

disease was based on clinical examination and eventually, based on the response to dopamine 

agents and the development of motor fluctuations (Suchowersky et al., 2006). Researchers have 

been working to develop biomarkers such as blood tests or imaging scans that could be sensitive 

and specific for Parkinson’s disease (Berg et al., 2012; Chahine et al., 2014; He et al., 2018). 

Having reliable, non-invasive ways to detect Parkinson’s disease is particularly vital, as the 

traditional standard for the confirmed diagnosis of PD is post-mortem neuropathological 

examination, which does not help in any clinical interventions for the patient. As the clinical 

symptoms of the disease only appear years after the onset of neurodegeneration (Dauer and 

Przedborski, 2003; Grosch et al., 2016), identifying people who might be at risk of PD would 

be very useful for neuroprotective trials and therapies. Neuroimaging markers may visualize 

the process of neurodegeneration until symptomatic treatment can be applied. Figure 2.3 

illustrates some disease progression markers through different phases of PD. 

 

 

Figure 2.3: A schematic showing determinants of risk, the prediagnostic phase (preclinical and 

prodromal phases) and clinical phase of Parkinson's disease, along with the parallel application of risk 

and disease progression markers to measure disease activity across phases (Noyce et al., 2016) 

 

Here are some of the regular and some of the more recent methods used for diagnosing 

and investigating Parkinson’s disease patients: 
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1. Unified Parkinson’s Disease Rating Scale (UPDRS) 

 

The Unified Parkinson’s Disease Rating Scale (UPDRS) is the most used clinical rating scale 

for Parkinson’s disease (PD)(Goetz, 2010). It was originally developed in the 1980’s but then 

revised in 2001 by the Movement Disorder Society (Movement Disorder Society Task Force 

on Rating Scales for Parkinson’s D, 2003). Primarily, it consists of 50 questions to assess the 

motor and non-motor impairments in an individual. Some parts need to be completed by the 

patient and their caregivers, while some others by doctors themselves. The questions spanning 

four parts investigate: 

 non-motor experiences of daily living 

 motor experiences of daily living 

 motor examination 

 motor complications 

 

2. Smell test 

 

Since the loss of smell is an early sign of PD, testing the olfactory function is an integral part 

of the diagnosis. We use the Sniffin Sticks Screening 12 Test (‘Sniffin‘ Sticks & Taste Strips - 

Tobacco industry, Medical devices & Prototype construction’.; Kobal et al., 1996), which 

consists of 12 felt-tip pens filled with an odorant, e.g., orange, coffee, and fish (Cozac et al., 

2017). Removal of the cap releases the odour. The type of the odorant is coded and is not known 

to the examinee. The pen is held approximately 2 cm in front of the examinee’s nostrils, and 

the examinee receives a verbal command to inhale the odour with both nostrils for 2 s. Then, 

the examinee is given a card with four variants of odour (including the correct one), and—in a 

forced-choice paradigm—is asked to select the correct odour. The number of correctly 

identified odorants is summed up to calculate the “SnSc” ranging from 0 to 12. 

 

3. Neuropsychological tests 

 

A series of neuropsychological tests are carried out to assess the cognitive profile of an 

individual. Two of the commonly used scales are the Mini Mental State Examination (MMSE) 

and the Montreal Cognitive Assessment (MoCA) (Biundo et al., 2016). Individuals scoring less 

than 24 points out of 30 points in the MMSE ratings are likely to have severe cognitive 

impairment or dementia. For a detailed assessment and for diagnosing MCI, we carry out a set 

of 23 neuropsychological tests; resulting in aggregate five cognitive scores (domains): Memory, 

Attention + Working Memory, Executive Function, Language and Visual-Spatial Function. The 

tests falling under each domain are shown in Table 2.1 (Chaturvedi et al., 2019). Besides, we 

calculate an aggregate overall test score and diagnose MCI based on the Litvan 2012 level II 

criteria (Litvan et al., 2012).  As per this established criterion, an individual can be diagnosed 

as having MCI if either two tests in one cognitive domain are impaired or one test is impaired 

in two different cognitive domains, demonstrated by performance approximately 1 to 2 

Standard Deviations below appropriate norms. 
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Table 2.1: Psychological tests grouped into five cognitive domains. Table adapted from (Chaturvedi et 

al., 2019) 

 

 

Domain  Neuropsychological tests 

          

 

                  Memory 

California Verbal Learning Test (Delis et al., 1987): (1) 

trial 1; (2) trial 5; (3) savings; (4) discriminability 

Rey-Osterrieth Complex Figure (Spreen and Strauss, 

1998): savings (immediate recall divided by copy) 

 

 

Executive Function 

Five-Point Test (Regard et al., 1982):  correct answers 

Semantic verbal fluency test (Isaacs and Kennie, 1973): 

correct answers 

Phonemic verbal fluency (Thurstone, 1948): correct 

answers 

Trail-Making Test (Reitan, 1955): time for part B 

divided by time for part A 

             

 

Attention and Working 

Memory 

Test of Attentional Performance (TAP) – Alertness 

(Zimmermann and Fimm, 2007): (1) reaction time with 

alerting sound; (2) reaction time without alerting sound.  

TAP – Divided Attention: (1) reaction time to auditive 

stimuli (2) reaction time to visual stimuli (3) number of 

omissions 

Trail-Making Test:  time for part A 

Digit span from the German version of the Revised 

Wechsler Memory Scale (Härtig et al., 2000): (1) 

correct forwards (2) correct backwards 

Corsi blocks from the German version of the Revised 

Wechsler Memory Scale (Härtig et al., 2000): (1) 

correct forwards; (2) 

correct backwards 

Visuo-Spatial Function 
Rey-Osterrieth Complex Figure: copy  

Block Design Test (Härtig et al., 2000): sum score 

Language Boston Naming Test (Morris et al., 1989): correct 

answers 

Similarities from the German version of the Revised 

Wechsler Memory Scale (Härtig et al., 2000): correct 

answers 
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The detailed clinical diagnostic criteria for Parkinson’s disease dementia (Emre et al., 2007 ) is 

shown below:  

1. Core features  

 

1. Diagnosis of Parkinson's disease according to UK Brain Bank criteria 

2.  A dementia syndrome with insidious onset and slow progression, developing 

within the context of established Parkinson's disease and diagnosed by history, 

clinical, and mental examination, defined as:  

 Impairment in more than one cognitive domain 

 Representing a decline from premorbid level 

 Deficits severe enough to impair daily life (social, occupational, or 

personal care), independent of the impairment ascribable to motor or 

autonomic symptoms 

2. Associated clinical features  

1. Cognitive features:  

 Attention: Impaired. Impairment in spontaneous and focused attention, 

poor performance in attentional tasks; performance may fluctuate 

during the day and from day to day 

 Executive functions: Impaired. Impairment in tasks requiring 

initiation, planning, concept formation, rule finding, set shifting or set 

maintenance; impaired mental speed (bradyphrenia) 

 Visuo‐spatial functions: Impaired. Impairment in tasks requiring 

visual‐spatial orientation, perception, or construction 

 Memory: Impaired. Impairment in free recall of recent events or in 

tasks requiring learning new material, memory usually improves with 

cueing, recognition is usually better than free recall 

 Language: Core functions largely preserved. Word finding difficulties 

and impaired comprehension of complex sentences may be present 

2. Behavioral features:  

 Apathy: decreased spontaneity; loss of motivation, interest, and effortful 

behaviour 

 Changes in personality and mood including depressive features and 

anxiety 

 Hallucinations: mostly visual, usually complex, formed visions of 

people, animals or objects 

 Delusions: usually paranoid, such as infidelity, or phantom boarder 

(unwelcome guests living in the home) delusions 

 Excessive daytime sleepiness 

 

 



25 

 

 

3. Features which do not exclude PD‐D, but make the diagnosis uncertain  

1. Co‐existence of any other abnormality which may by itself cause cognitive 

impairment, but judged not to be the cause of dementia, e.g. presence of relevant 

vascular disease in imaging 

2. Time interval between the development of motor and cognitive symptoms not 

known 

 

4. Features suggesting other conditions or diseases as cause of mental impairment, 

which, when present make it impossible to reliably diagnose PD‐D  

1. Cognitive and behavioural symptoms appearing solely in the context of other 

conditions such as:  

i. Acute confusion due to  

1. Systemic diseases or abnormalities 

2. Drug intoxication 

ii. Major Depression according to DSM IV 

2.  Features compatible with “Probable Vascular dementia” criteria according to 

NINDS‐AIREN (dementia in the context of cerebrovascular disease as indicated 

by focal signs in neurological exam such as hemiparesis, sensory deficits, and 

evidence of relevant cerebrovascular disease by brain imaging AND a 

relationship between the two as indicated by the presence of one or more of the 

following: onset of dementia within 3 months after a recognized stroke, abrupt 

deterioration in cognitive functions, and fluctuating, stepwise progression of 

cognitive deficits) 

Apart from the above-mentioned clinical tests, we now also have some more recent imaging 

methods that aim to diagnose early Parkinson’s disease.  

 

4. DaTscan 

 

The DaTscan (GE) is a dopamine transporter (DAT) single photon emission computerised 

tomography (SPECT) imaging technique (Seifert and Wiener, 2013). It uses small amounts 

of a radioactive drug (Ioflupane l 123 Injection) and brain imaging to detect how much 

dopamine is available in the brain. The detection of loss of functional dopaminergic neurons 

in the striatum helps identifying patients with clinically uncertain Parkinsonian 

Syndromes(European Medicines Agency, 2018). Ioflupane (123I) INN, the active 

substance (otherwise referred to as 123I-FP-CIT or 123I-CIT-FP) is an iodinated cocaine 

analogue that has high affinity to the dopamine transporter (DaT) located on presynaptic 

nerve endings (axon terminals) in the striatum. This binding of DaTscan is claimed to reflect 

the number of dopaminergic neurons in the substantia nigra. A single photon emission 

computed tomography (SPECT) scanner is used to measure this amount and location of the 

drug in the brain. This technique can differentiate between changes in the nigrostriatal 
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dopaminergic system in patients with Parkinsonism and healthy controls (Cummings et al., 

2014). It helps in differentiating Essential Tremor from Parkinsonian Syndromes related to 

idiopathic Parkinson’s disease, Multiple System Atrophy and Progressive Supranuclear 

Palsy (Bajaj et al., 2013; Ogawa et al., 2018). However, DaTscan is unable to discriminate 

between Parkinson's Disease, Multiple System Atrophy and Progressive Supranuclear 

Palsy. To patients, DaTscan is presented as a sterile 5% (v/v) ethanolic solution for 

intravenous injection without dilution. The recommended dose for adults and the elderly by 

the European Medicines Agency is 111-185 MBq.  Further, the patients must undergo 

appropriate thyroid blocking treatment before the injection to minimise thyroid uptake of 

radioactive iodine. SPECT imaging should take place between three to six hours post-

injection.  

 

5. Transcranial ultrasound 

 

 Transcranial sonography (TCS) is another relatively new method which displays 

echogenicity of human brain tissue through the intact skull (Li et al., 2016; Smajlovic and 

Ibrahimagic, 2017). TCS of brain parenchyma is used as a diagnostic tool in movement 

disorders, particularly idiopathic PD and in the differentiation of idiopathic Parkinson’s 

disease (PD) from other parkinsonian disorders. TCS through the preauricular bone window 

allows the depiction of characteristic abnormalities in the echogenicity of SN and basal 

ganglia. Compared to other neuroimaging methods, TCS permits different visualisations of 

brain structures and has high-resolution imaging capacity for echogenic brain structures.  

 

6. EEG 

 

Electroencephalography (EEG) has been used extensively as a non-invasive and cost-

effective tool to study brain activity since it was first developed in 1924 by Hans Berger. It 

records the electrical activity of the brain (Rana et al., 2017) and provides quantitative 

information on brain functions. The apparatus is easy to use, takes only a few minutes, is 

inexpensive and now can also be transported easily. EEG has been used to detect changes 

in brain signals in Parkinson’s patients, as they progress from having normal cognition to 

MCI to dementia. This is elaborated on further in Chapter 3.  

 

The polysomnography verified rapid eye movement (REM) sleep behaviour disorder (RBD) is 

a known risk marker for Parkinson’s disease (Galbiati et al., 2019). Besides, reduced dopamine 

transporter (DAT) binding on single-photon emission computed tomography (SPECT), 

occurrence of Parkinson’s disease-related mild parkinsonian signs indicating subthreshold 

parkinsonism and hyperechogenicity of SN (SN+) assessed by transcranial sonography (TCS) 

are anticipated to constitute the highest likelihood for future Parkinson’s disease (Berg et al., 

2015a). Though it is an ongoing discussion, we know little about neurophysiological methods 

outside the frame of RBD that contribute to the prediction of future onset of Parkinson’s disease. 
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3. QEEG features as biomarkers for cognitive decline in 

Parkinson’s disease 
 

3.1 Neurophysiology underlying generation of EEG signals 
 

EEG records the electrical fields generated in the brain. But how do these fields even get 

generated? The source of this activity is the brain cells or neurons. Each neuron consists of a 

cell body, dendrites, axon and an enclosing membrane. Figure 3.1. shows a simplified structure. 

 

 

Figure 3.1: Structure of a neuron. Credit: Dhp1080 [CC BY-SA 3.0 ] 

The surface membrane contains proteins known as ion channels that allow small positive or 

negative charged atoms to pass through. The inside of the membrane is said to be more negative 

than the outside; around -70 mV, although it keeps fluctuating depending on the ions coming 

in from other neurons.  

When the voltage across the membrane changes, some of these ion channels allow production 

of a fast signal known as a nerve impulse or action potential (Lovinger, 2008). Basically, an 

axonal potential leads to the generation of excitatory postsynaptic potentials (ESPs) (Purves et 

al., 2001) which causes the apical dendrite to release ions through its membrane. The resulting 

depolarisation of the membrane establishes an electrical potential difference between the apical 

dendrite and the cell body. This depolarisation is what causes the action potential.  

The dendrite typically carries signals or chemical inputs towards the cell body, and the axon 

carries them away from the cell body towards the junction known as synapse. The action 

potential is depicted in Figure 3.2. 

 

Neurons can be of different types; pyramidal cortical neurons are the ones located in the cerebral 

cortex; they are close to the cortical surface and aligned perpendicular. Since the EEG picks up 

electric signals from the surface, most signals likely come from these pyramidal neurons.  

http://creativecommons.org/licenses/by-sa/3.0/
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Figure 3.2: An action potential, or spike, causes neurotransmitters to be released across the synaptic 

cleft, causing an electrical signal in the postsynaptic neuron. (Image: By Thomas Splettstoesser / CC 

BY-SA 4.0) 

 

3.2 Slowing of EEG in Parkinson’s disease 
 

EEG is a fast and non-invasive method to monitor the electrical activity of the brain. One of the 

consistent findings with Parkinson’s disease, especially related to cognitive decline, has been 

the slowing of EEG (Bočková and Rektor, 2019). Slowing of EEG waves has been related to 

non-motor symptom manifestation (Bonanni et al., 2008; Serizawa et al., 2008; Morita et al., 

2009), primarily cognitive dysfunction recently discussed as a potential PD prodromal marker 

(Postuma and Berg, 2016).   

In other words, spectral powers in ranges above 8 Hz (such as alpha, beta) are lower, and those 

below 8 Hz (theta, delta) are higher in Parkinson’s disease patients, in those with and without 

cognitive decline. (Stoffers et al., 2007; Babiloni et al., 2011; Klassen et al., 2011, Benz et al., 

2014b; Dubbelink et al., 2014; Caviness et al., 2016).  

Increased theta, delta powers and reduced alpha, beta powers, are shown to be associated with 

severity of cognitive impairment in PD (Benz et al., 2014b, Cozac et al., 2016b, Geraedts et al., 

2018a). It is also characteristic in classification of mild cognitive impairment (PD-MCI) 

(Fonseca et al., 2009; Bousleiman et al., 2015; Mostile et al., 2019) and diagnosis of 

Parkinson’s disease dementia (Klassen et al., 2011; Al-Qazzaz et al., 2014; Caviness et al., 

2015; Babiloni et al., 2017).  

In de novo Parkinson’s disease patients, an increase in theta and a decrease in alpha spectral 

powers has been reported compared to healthy controls, along with decreased beta measures 

which were associated with the severity of motor impairment (Stoffers et al., 2007, 2008; 

Gongora et al., 2019). Beta frequency in the right posterior temporal region has been reported 

to be negatively associated with disease severity, (He et al., 2017) though other studies were 

not able to verify the association of a specific EEG pattern and motor impairment in Parkinson’s 

disease (Geraedts et al., 2018a). Slowing of EEG waves has also been related to non-motor 

symptom manifestation (Bonanni et al., 2008; Serizawa et al., 2008; Morita et al., 2009), 

primarily cognitive dysfunction which was recently defined as a Parkinson’s disease prodromal 

marker (Heinzel et al., 2019). For instance, increased theta, delta and reduced alpha, beta 

spectral powers, are associated with severity of cognitive impairment in Parkinson’s disease 

http://commons.wikimedia.org/w/index.php?curid=41349083
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(Benz et al., 2014b, Cozac et al., 2016b, Geraedts et al., 2018a). In patients diagnosed with 

depression, which is also a risk factor for Parkinson’s disease (Ishihara and Brayne, 2006), 

absolute theta power was seen to be associated with the condition (Cai et al., 2018). Overall, 

there is evidence that alteration in EEG might occur in non-RBD individuals suspected to be in 

the prodromal stage of Parkinson’s disease.  

It is interesting to note that slowing, in general, is also observed in Alzheimer’s disease patients. 

In the case of Alzheimer’s disease, alpha/theta spectral ratio was used to distinguish patients 

from healthy individuals (Schmidt et al., 2013). In one case(Morita et al., 2009), a spectral ratio 

(sum of alpha and beta powers divided by the sum of delta and theta powers) was found 

associated with a decline in the MMSE score, which is an indicator of cognitive decline.  

Based on our research and general evidence, we included the alpha/theta ratio in some of our 

studies to investigate the effect in Parkinson’s disease patients.  

But researchers have observed differences while comparing both of these diseases. In one such 

study (Benz et al., 2014b), slowing of EEG was more pronounced in Parkinson’s patients, in 

comparison to Alzheimer’s disease patients.  

 

3.3 EEG connectivity in Parkinson’s disease patients 
 

Apart from spectral powers, another group of features of interest in learning about brain 

functions is connectivity. The brain, as we know, is highly complex and contains several 

interconnected elements. This connection matrix or the collective network in the brain is 

referred to as the ‘connectome’(Sporns et al., 2005; Abbott, 2016; Vecchio et al., 2017). 

While the connectome can be explored at different scales, a lot of recent research focusses on 

the functional aspect instead of structural, thus referring to it as the ‘functional 

connectome’(Biswal et al., 2010). Typically, functional MRI (fMRI) was used to investigate the 

functional connectivity. However, owing to its lack of temporal resolution, EEG is also now 

used to explore better.  

Brain network connectivity has been increasingly studied in the past few years. The extensive 

study of the normal brain organization has led to an understanding of different types of 

networks, hubs. Healthy brain networks are seen to be associated with cognitive functions. So, 

the disruption of these networks could potentially lead to neurological disorders. 

Network analysis has been applied to disorders like frontotemporal dementia and PD. For AD 

and PD, it is suggested that the changes in networks are increased. Network changes could also 

suggest changes in the structural pathology. Certain brain regions might be affected more in 

this regard in the case of AD, PD, dementia patients.  

Different measures can quantify connectivity. Some standard measures include graph measures, 

coherence and phase lag index. A decrease in alpha coherence is reported to be strongly 

associated with Alzheimer’s disease dementia(Musaeus et al., 2019). 

In the case of Parkinson’s disease, brain connectivity alterations are found associated with 

cognitive deterioration (Bertrand et al., 2016; Gao and Wu, 2016; Hassan et al., 2017). Studies 
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investigating PD patients have reported early changes in frontal inter-hemispheric coupling 

(Carmona et al., 2017) and indicate network decentralisation to progress over time in these 

patients.  

In the earliest clinical stages of PD, delta and alpha1 band resting-state functional connectivity 

was seen altered in temporal cortical regions (Olde Dubbelink et al., 2013). As the disease 

progressed, connectivity in the alpha2 band decreased. EEG slowing and reduced functional 

connectivity in the alpha2 band has also been found to be associated with non-dopaminergic 

disease severity in PD (Geraedts et al., 2018b).  

Another study investigating procedural memory in Parkinson’s disease found strong delta 

functional connectivity in patients and it was associated with weak offline memory 

consolidation after learning a visuo-motor skill (Manuel et al., 2018). Coherence measures, as 

seen in a separate study, indicate distinct cortical activity in PD with and without MCI (Carmona 

Arroyave et al., 2019). Such changes could potentially be a marker for disease progression. 

In patients with RBD, which is a risk factor for PD, studies observed decreased delta-band 

functional connectivity in the frontal regions (Sunwoo et al., 2017). Alterations in the form of 

bursts in alpha, theta spectral bands, in comparison to healthy individuals, derived from a few 

minutes of eyes-closed resting EEG (Ruffini et al., 2019) were associated with prognosis for 

development of Parkinson’s disease or dementia with Lewy-bodies. This further supports the 

assumption that EEG might help to characterise individuals at risk for Parkinson’s disease 

progression.  

 

3.4 EEG features in Parkinson’s disease dementia patients 
 

Since QEEG is useful for identifying PD patients at early stages of cognitive impairment, it can 

also be helpful for the early prognosis of dementia (Fonseca et al., 2009; Klassen et al., 2011; 

Dubbelink et al., 2014, Gu et al., 2014a). In two such studies comparing Parkinson’s disease 

patients with and without dementia(Olde Dubbelink et al., 2013; Ponsen et al., 2013), demented 

patients showed weaker Phase lag Index (PLI) in the alpha band, especially in the frontal and 

temporal regions. General region-to-region connectivity was stronger in theta band and weaker 

in delta, alpha, and beta bands in PD patients with dementia.  

A graph theory analysis performed to follow up over four years on connectivity changes in PD 

patients without dementia also saw alterations in the alpha and theta bands(Olde Dubbelink et 

al., 2014).  

Concerning spectral power, increase in theta, delta with a decrease in alpha, beta was the 

common trend (Bonanni et al., 2008; Kamei et al., 2010). There is a lot we still do not know about 

the brain and its functioning, and every study is one-step forward to confirming theories and 

making new hypotheses to investigate further. In our case, we focussed on a few of the features 

mentioned above and conducted extensive studies to investigate Parkinson’s disease patients at 

baseline and then at different cognitive stages, in line with our aim (Section 1.3). 
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4.Computational methods for Brain Signal Analysis 
 

The data for the studies described in Chapters 5, 7, 8 were collected at the University Hospital 

Basel and the Memory Clinic, Basel, starting in 2011. The brain signal analysis in this context 

refers to analysing the quantified data obtained from a high-density EEG system (system with 

256 electrodes) at the University Hospital Basel. The patients were recruited on the following 

criteria: PD according to UK PD Brain Bank (UPDRS, 2003), Mini-Mental Score Examination 

(MMSE) above 24/30, no history of vascular and/or demyelinating brain pathology, sufficient 

knowledge of German language. The local ethics committees (Ethikkommission beider Basel, 

Basel; Switzerland; EK 74/09) approved the study, and all participants gave written informed 

consent before study inclusion. The clinical and EEG data used in Chapter 6 were collected at 

the outpatient clinic of the Department of Neurodegeneration, University of Tübingen. 

Diagnosis of PD was made according to the UK Brain Bank criteria (Liepelt-Scarfone et al., 

2015) at baseline and follow-up visits. Inclusion criteria were, Hoehn & Yahr stage ≤ 2.5, age 

>50 years, no deep brain stimulation, no verified genetic mutation known to cause PD, and 

neither history of drug or alcohol abuse, nor delirium or diagnosis of Parkinson's Disease 

dementia were included. The High-Risk PD and control individuals were investigated in the 

PMPP study (Liepelt-Scarfone et al., 2013a). The EEG data for these patients were recorded 

using a standard 10-20 system (21 electrodes). Further details of the EEG systems, data 

recording and processing, are described in Section 4.1. In Section 4.2, we go one step ahead to 

see what suitable machine learning methods were applied to analyse and interpret all of the 

EEG data.         

  

4.1 EEG Recording and processing 

EEG systems record the electric potentials generated by the brain using electrodes placed on 

the scalp. The recording system mainly consists of: 

- electrodes with conductive media, which record the signals from the surface of the scalp 

- amplifiers with filters, which transform the signals recorded in microvolt to an optimal range 

for accurate digitalization 

- A/D converter which changes the signals into the digital form, 

- recording device like a computer that stores and displays the recorded signals. 

 

 EEG lets us measure potential changes over time by measuring the voltage difference between 

each electrode and the chosen reference electrode. EEG recording systems can be of different 

types. The most common form is the 10-20 system, where the ‘10' and ‘20' refer to the 

electrodes being placed 10% or 20% of the distance away from each other. Each electrode is 

named with one or two letters denoting the brain region (such as Fp = frontopolar; F = frontal; 

C = central; P = parietal; O = occipital; T = temporal), followed by a number to denote whether 

it is placed on the left or the right hemisphere. While odd numbers refer to the left hemisphere, 

even numbers refer to the right one. Electrodes on the midline are denoted using a ‘Z' instead 

of a number. This is also illustrated in Figure 6 below. For reference, Nasion refers to the point 

between the forehead and nose, and inion refers to the bump at the back of the skull. 
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Figure 4.1: Head measurements and electrode placement according to the 10-20 electrode placement 

system (Jasper, 1958). The longitudinal line from the nasion to inion is divided into 10% and 20% 

segments. Distances along the transverse line (dashed) and the circumference (dotted) are not to scale 

because the 3-dimensional head is drawn in 2-dimensional profile. Approximate locations of Fz, C3, 

O1, and A1 (behind the ear) are indicated. 

 

The other system can be a high-density one with 256 electrodes. The high-density recording 

system enables us to aggregate nearby signals, thus potentially reducing noise.  Grouping the 

electrodes into regions is a way to get initial insights into connectivity between different 

anatomical parts of the brain, building upon our previous knowledge. In our case, we recorded 

20 min of EEG in resting-state eyes-closed condition, using such a 256-channel EEG System 

(Netstation 300, EGI, Inc., Eugene, OR). EEG recordings were done in the afternoons, and 

patients were seated comfortably in a relaxing chair, instructed to close their eyes. A technician 

present in the recording room controlled for vigilance of the patients. Before the EEG recording, 

patients were also asked to self- rate their sleepiness level from 1 to 9 using the Karolinska 

Sleepiness Scale (Åkerstedt and Gillberg, 1990; Kaida et al., 2006; Miley et al., 2016). The 

placement of electrodes using a high-density system is shown in Figure 4.2 below. We see 

electrodes grouped into 10 regions of interest for simplifying the interpretation: frontal 

left/right, central left/right, parietal left/right, temporal left/right, and occipital left/right, but it 

is possible to change this mapping and group them into 22 specified regions, or not group them 

at all. While grouping, we do not consider the electrodes placed at the mid-line of the scalp or 

on areas outside the scalp such as the neck, cheeks and electrodes to exclude spurious signals. 

Depending on the EEG feature calculated, not grouping the 214 electrodes into any region can 

result in a massive amount of data. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824445/#R12
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Figure 4.2: Placement of 256 electrodes on the scalp, grouped into 10 regions of interest. 

 

For the data acquired in Tübingen, EEG data were recorded using a standard IS 10-20 system 

(5 minutes resting condition with eyes open and closed, each for 30 seconds, five times in a 

row). We obtained relative spectral powers for 18 electrodes in six power bands. Moreover, 

global spectral measures and median frequencies were obtained. 

 

All data were segmented and processed in an automated way using a MATLAB based in-house 

software (TAPEEG, https://sites.google.com/site/tapeeg/)(Hatz et al., 2015), as described in our 

publications (Chaturvedi et al., 2017, 2019). EEG's were filtered (Firls:0.5–70 Hz, 50 Hz notch) 

at a sampling rate of 1000 Hz and an inverse Hanning window was used to stitch together 

shorter segments, to have at least 3 minutes of cleaned EEG data. Artefacts like eye movements, 

traces of sleep, blinking, ECG, etc. were detected and removed. After performing automated 

bad-channel detection (Hatz et al., 2015), the average of all ‘good' channels was used to re-

reference the EEG to a common average montage.  

 

The independent component analysis implementation of EEGLAB (Delorme and Makeig, 

2004) ("runica" with default settings) was used to remove further artefacts.   

Artefact removal, referencing channel, and ensuring that uniform settings in terms of amplifier, 

filters. ICA is applied consistently and is crucial for maintaining the quality of the data and 

facilitating the data analysis. A variation in the processing can be semi-automated, where a 

visual control step is incorporated after the EEG segment selection step.  

 

Post-processing with Inverse Solution 

 

While EEG continues to be an exciting tool for investigating neural activity, it has certain 

limitations as the recordings occur only at the surface of the head, which prohibits direct access 

to the neural source domain and recording the actual neural activity. To overcome this 

challenge, source analysis techniques try to estimate the location and dynamics of the 

https://sites.google.com/site/tapeeg/
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underlying neural generators of EEG. Low-Resolution Electromagnetic Tomography 

(LORETA) is one possible approach that computes an instantaneous, three-dimensional, 

discrete linear solution consisting of the smoothest of all possible neural current density 

distributions (Pascual-Marqui, 2002).  LORETA has gained widespread popularity and has 

been used on hundreds of scientific publications  

 

Inverse solution is a method of localizing deep brain activity based on recordings from the 

scalp. sLORETA computes electric neuronal activity based on images of standardized current 

density, obtained from the digital MRI information recorded in the Montreal Neurological 

Institute Brain Atlas (Aubert-Broche et al., 2006). The source space or the cortical grey matter 

and hippocampus were divided into 5011 solution points with subsequent reduction to 76 

regions of interest (ROIs) based on the Anatomical Automatic Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002). The ROIs can be calculated by either selecting the ‘maxpower’ or the 

voxel with maximal power in different frequency bands for every region, or ‘center’ referring 

to the centre voxel for every region. To ensure uniformity and to reduce variability, we 

considered the centre voxel for the calculation. The software package Sloreta (Key Institute) 

was used to calculate the inverse solution matrices and source activity was calculated for all 

5011 solution points.  

 

4.1.1 EEG Features 
 

Frequency - spectral power 

 

Spectral analysis is a process used for quantifying EEG. It is used to decompose a complex 

EEG signal into its component frequencies by applying Fourier Transformation (Walczak and 

Chokroverty, 2009, p. 12). A power spectrum reflects “the amount of activity” in frequency 

bands(Cozac, 2017). Relative power is used to assess the relative contribution of a particular 

frequency to the EEG signal (Heisz and McIntosh, 2013) and is calculated by dividing the 

absolute power in a given frequency band by the total power. We calculated median relative 

spectral powers in the following frequency ranges (Hz): 1–4 (delta), 4–8 (theta), 8–10 (alpha1), 

10–13 (alpha2), 8–13 (alpha), and 13–30 (beta).  

Spectral power can be assessed globally (over the whole scalp) and over definite scalp regions. 

Using a high-density electrode system enables us to aggregate nearby signals, thus potentially 

reducing noise.  

 

Connectivity – Phase Lag Index 

 

We used Phase Lag Index (PLI) as a measure of functional connectivity. PLI is calculated from 

the asymmetry of the distribution of instantaneous signal phase differences between two brain 

regions. (Cozac, 2017). It is based on the idea that a consistent phase lag translates to a time lag 

between two time series (Bastos and Schoffelen, 2016). In other words, PLI reflects the degree 

of synchronization between couples of signals;  it denotes functional connection between 

regions of the brain, mentioned above (for instance, PLI in theta frequency range for connection 
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between temporal left and temporal right regions reflects the level of synchronization of 

oscillations in 4 – 8 Hz in these 2 regions, from “chaotic” (lower PLI) to synchronized (higher 

PLI)). The main approach is to disregard phase differences which centre around 0 mod π (Stam 

et al., 2007). It is calculated as:   

PLI = |<sign [sin (ΔΦ (tk))]> | 

 

where ΔΦ is the phase difference at time point tk between two time series, calculated for all 

time-points per epoch (4096 in our case), sign stands for signum function, < > denotes the mean 

value and || indicates the absolute value.  The instantaneous phases were estimated with the 

Hilbert transform using a 50% overlapping sliding window approach. 

 

PLI values range between 0 and 1, where 0 can indicate possibly no coupling and 1 refers to 

perfect phase locking. We mapped the 214 electrodes to the ten anatomically defined regions. 

For each region, the average connectivity of all its electrodes to all other regional groups of 

electrodes was determined (Hardmeier et al., 2014). The connectivity between all pairs of 

regions was calculated, including the connectivity within a region.   

 

4.2 Machine learning and statistical methods for analysing EEG 

data 
 

For computing frequency and connectivity measures using QEEG, all calculations were first 

done for all electrodes and then averaged to corresponding anatomical regions of the brain. 

Extracting and analysing features from each electrode is manageable when using a low-density 

electrode system, such as the 10-20 EEG. But, when using 256 electrodes, even after excluding 

electrodes placed at neck, cheek, ears to avoid artefacts, we still get a huge number of 

connections between the remaining 214 electrodes, which makes it computationally expensive 

as well as confusing for the correct interpretations. 

 

For this purpose, we map signals from the usable 214 electrodes to Frontal left/right, central 

left/right, temporal left/right, parietal left/right, occipital left/right regions of the brain. Relative 

power was obtained for five frequency bands: delta (1–4Hz), theta (4–8Hz), alpha1 (8– 10Hz), 

alpha2 (10–13Hz), and beta (13–30Hz), by calculating the ratio of the signal power within a 

frequency band to the total signal power (1–30Hz). Electrodes placed on the mid-auricular line 

were also excluded while mapping and were not a part of the 214 electrodes used.   

 

A total of 68 different frequency measures can be extracted and used for further analysis and 

feature selection. These included global and regional powers, as described previously, and the 

median, peak frequency measures. Additionally, if we calculate any power ratios like 

alpha1/theta, it would result in a total of 79 features.  

 

While calculating PLI for each region, the average connectivity of all its electrodes to all other 

regional groups of electrodes was determined, including PLI for within a region. This resulted 

in 55 PLI measures for each band. This number would vary of course depending on how many 
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regions we use for grouping, or if we would consider not grouping into regions at all.  But 

essentially, what this means is that in our context of data from in-house patients, the number of 

features to be analysed are far too many than the number of patients we have. This makes it 

challenging to apply quite a few of the statistical methods effectively. Data of this kind where 

p>> n, or the number of observations is far less than the number of variables, are especially 

common in medical or genetic projects. In such cases, applying classical methods may seem to 

yield effective results on the training set but not necessarily for predicting new data. The risk 

of overfitting is quite high. One way to deal with this challenge is by using sparse models and 

working with the lowest possible number of input variables to achieve good prediction 

accuracy. This is known as sparse data modelling. 

 

Our dataset had highly correlated features, and the goal was to find out which features were 

important for classification. Machine learning has been applied in several medical studies for 

prediction and diagnostic classification (Khodayari-Rostamabad et al., 2013; Singal et al., 

2013; Johannesen et al., 2016). Differences can be noted in the way each method works and, in 

the results, obtained. 

In this section, we will review some of the machine learning and statistical methods suited to 

handle data like ours.  

 

4.2.1 The importance of sample size 
 

 One of the most frequent and critical questions in statistical analysis is determining the 

appropriate sample size (Greenland, 1988; Gupta et al., 2016). An in-appropriate sample size leads 

to questionable results. There is no absolute rule of thumb to determine the sample size; 

however, in regression analysis, it is often believed that there should be at least ten observations 

per variable. For example: If we are using three independent variables, then a clear rule would 

be to have a minimum sample size of 30. It is also possible to follow a statistical formula to 

calculate the sample size. This requires making multiple models on the dataset. Some studies 

provide detailed guidance on calculating the appropriate sample size for different kinds of study 

designs (Charan and Biswas, 2013; Gupta et al., 2016; Hanley, 2016). 

 

4.2.2 Supervised learning methods 
 

Supervised learning refers to methods that first learn from a training dataset and then make 

predictions on an unseen test set (Baştanlar and Ozuysal, 2014; Raymond and Medina, 2018). 

This process continues until an optimal level of performance. 

Such algorithms take a known set of input datasets (input variables (x)) and their known 

responses to the data (output variable (Y)) to learn the regression/classification model. A 

learning algorithm then trains a model to generate a prediction for the response to new data or 

the test dataset (Raymond and Medina, 2018).  

 

Y = f(X) + b 
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The goal is to approximate the mapping function so well that when we have new input data (x) 

that we can predict the output variables (Y) for that data. Supervised learning uses classification 

and regression algorithms to develop predictive models (Talabis et al., 2015). These algorithms 

include linear regression, logistic regression, decision trees, neural networks, Support Vector 

Machine (SVM), and others.     

                 

The classification task predicts discrete responses, which classify the data. The primary 

application of classification includes prediction of actives and in-actives from high throughput 

screening results in the drug discovery process, medical imaging, and speech recognition, to 

name a few. Also, handwriting recognition uses classification to recognise letters and numbers, 

to check whether an email is genuine or spam (Shobha and Rangaswamy, 2018), or even to detect 

whether a tumour is benign or cancerous. Regression techniques predict continuous responses. 

A linear regression attempts to model the relationship between two variables by fitting a linear 

equation to observed data (Schneider et al., 2010). For example, say, data is collected about how 

happy people are after getting so many hours of sleep. In this dataset, sleep and happy people 

are the variables. By regression analysis, one can relate them and start making predictions.  

 

In this thesis, we applied both regression and classification models on Parkinson's disease data. 

Some of the widely used techniques are: 

 Linear regression for regression problems. 

 Logistic regression for classification 

 Penalized regression for classification of sparse data 

 Random forest for classification and regression problems. 

 Support vector machines for classification problems. 

 

Linear regression for regression problems 

Regression algorithms deal with modelling the relationship between variables that are refined 

iteratively using a measure of error in the predictions made by the model (Alexopoulos, 2010; 

Shobha and Rangaswamy, 2018). Linear regression is an approach to model the relationship 

between a scalar-dependent variable y and one or more explanatory variables (or independent 

variables) denoted x (Schneider et al., 2010). It is a popular way of analysing data described in 

a linear model. For example, we may relate the weights of individuals to their heights using a 

linear regression model. This method is mostly used for forecasting and finding out the cause 

and effect relationship between variables.  

A simple linear regression relates two variables (x and y) with a straight-line equation, while a 

nonlinear regression generates a line as if every value of y is a random variable. The line can 

be modelled based on the linear equation shown below and is depicted in Figure 4.3. 
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Figure 4.3: Plotting a linear equation 

y= ax + b 

In the equation above, “y” is the scalar dependent variable on “x”. a is the slope of the line and 

b is the y-intercept. 

The motive of the linear regression algorithm is to find the best values for a and b. 

Linear regression is easier to use and interpret. However, if a good fit with linear regression is 

not possible, then nonlinear regression is used. Logarithmic functions, exponential functions, 

and trigonometric functions are among the other fitting methods in nonlinear regression.  

When we deal with more than one explanatory variable, we apply multiple linear regression.  

 Here multiple correlated dependent variables are predicted, rather than a single scalar variable 

(dependent variable).  

 

Logistic Regression 
 

Logistic regression is another type of regression analysis, used for prediction when the 

dependent variable is binary (Nick and Campbell, 2007). To understand which independent 

variables have the most effect on the model, we look at the log-odds ratios. This shows us how 

the log-odds or probability of success changes with a change in one unit of the independent 

variable, whether positive or negative. A negative coefficient or an odds ratio of less than 1 

signifies that the outcome or success would be less likely with its increase (Sperandei, 2014; 

Ranganathan et al., 2017). The logistic function is depicted in Figure 4.4. 

The logistic regression equation, in terms of the odds ratio, can be written as shown below: 
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Figure 4.4: The logistic function 

 

Taking the natural log of both sides, we can write the equation in terms of the log-odds (logit) 

which is a linear function of the predictors. The coefficient (b1) is the amount the logit (log-

odds) changes with a one unit change in x.  

 
So, the probability of a sample being in a particular class (y=1, for instance), would be:  

 

 
 

Here too, the rule of thumb applies while planning out an experiment and deciding upon the 

number of independent variables to include in the model. However, since we typically have a 

lot more variables than the number of observations, we face the risk of overfitting, poor 

prediction accuracy and a poorly designed experiment. Besides, multicollinearity is a big issue 

to tackle when dealing with data like ours.  

 

Therefore, this might lead us to think if logistic regression might not be ideal for the 

classification of groups using EEG data. 

 

 

 

 

 

 



40 

 

Penalized regression for classification of sparse data 
 

To combat the problems of sparse data and multicollinearity, we can apply a penalty to the 

logistic regression model and use a regularized regression model instead.  The least absolute 

shrinkage and selection operator (LASSO) method has been used in different studies for feature 

selection and computing risk predictive models (Wu et al., 2009; Fontanarosa and Dai, 2011). By 

penalizing (or equivalently constraining the sum of the absolute values of the estimates), some 

of the parameter estimates may turn out to be exactly zero. The larger the penalty, the further 

estimates are shrunk towards zero. So, the non-zero coefficients can denote the influential 

variables and help us in feature selection.  

 

The lasso estimate (𝛼̂, 𝛽̂) was defined by Tibshirani(Tibshirani, 1996a) as:  

 

(𝛼̂, 𝛽̂) = arg 𝑚𝑖𝑛 {∑ (𝑦
𝑖

−  𝛼 −  ∑ 𝛽
𝑗
𝑥𝑖𝑗

𝑗

)

2
𝑁

𝑖=1

} 

Subject to ∑ |𝛽
𝑗
|𝑗 ≤ 𝑡 

 

The t ≥ 0 is a tuning parameter, where for all t, the solution for 𝛼 is 𝛼̂ = ȳ. We can 

assume without loss of generality that ȳ = 0 and omit 𝛼. The tuning parameter controls 

the amount of shrinkage that is applied to the estimates. Values below t < t0 will cause a 

shrinkage of the coefficients, so that some coefficients will become zero. 

 

In many cases, lasso-penalised models have shown improved prediction accuracy while 

selecting only a limited number of covariates that are included in the model. The penalized 

(Goeman, 2010) (Goeman, 2010) package in R(version 3.2.1) (R Core Team, 2018)  was used to 

create a logistic regression model and apply the L1-LASSO   penalty. Tenfold cross-validation 

and optimisation was carried out to find the optimal lambda value.  

 

Decision Trees 
 

Decision tree algorithm recursively, at the same time greedily, classifies a dataset following 

depth-first or breadth-first strategy until all the instances are assigned to a class (Mitchell, 1997). 

Directed edges characterize decision trees and start with a single node that has no incoming 

edges and every other node with only one incoming edge. Nodes with an outgoing edge are 

described as test nodes while those that terminate the tree, without further outgoing edges, are 

termed leaf nodes or the actual decision nodes. The leaf nodes are assigned with class labels 

(Quinlan, 1986). 

 

The general algorithmic framework for constructing a decision tree on a training set of 

instances, described by the vector of descriptors and a class label, involves the following steps: 
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1. Analyse the dataset for border-line cases (e.g., "all instances of the training set contain 

the same class label," or "all the descriptors of the dataset contain the same value"). Create a 

single-node tree with the most common class label, if necessary. 

 

2. If the dataset is valid, proceed with the tree construction. From all the descriptors 

select one or several, that split the original training set into subsets according to a split criterion 

of choice. The split criterion can involve only one descriptor (univariate splitting criterion) or 

several descriptors (multivariate splitting criterion) (Rokach and Maimon, 2005). The criterion 

may vary depending on the tree type. The criteria used in different decision trees include 

impurity based criterion (Rokach and Maimon, 2005) like information gain (Quinlan, 1987), Gini 

index (Breiman et al., 1984; Gelfand et al., 1989) etc. 

3. Based on the criterion selected in the previous step, construct child nodes for each of 

the subsets, into which the criterion splits the set assigned to the parent node. Connect the new 

nodes with the parent node with edges that represent the thresholds or ranges for the descriptors 

chosen on step 2. For example, the univariate criterion based on information gain may select 

one descriptor and identify several ranges of values of this descriptor, that maximize the 

information gain for training set instances belonging to each particular range. As a result, a 

descriptor is placed in the current test node, and child nodes are created for each of the identified 

ranges. 

4. The optional step of bottom-up pruning may be performed. Pruning is referred to 

either deleting some of the existing branches of the tree or to merging several nodes to one. 

Pruning approaches differ depending on the particular implementation of the decision tree. 

 

5. The steps 2 - 4 are repeated recursively for all nodes until the whole dataset is 

partitioned to subsets that contain only instances of one class, or if a predefined 

misclassification tolerance criterion is fulfilled. 

 

The process of applying a decision tree is generally very straightforward - the decision tree is 

traversed from root to leaf following the edges that are applicable for the current classified 

instance descriptors. The class assigned to the instance is taken from the leaf node of the tree. 

 

A sample decision tree from an article on blood-brain permeability (Suenderhauf et al., 2012) is 

displayed in Figure 4.5. In this figure, the tree was constructed based on a univariate criterion, 

which split the original set into subset based on threshold values for the descriptors (aLogP, 

BCUTS and tPSA). 
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Figure 4.5: Example of decision Tree for blood-brain permeability data (Suenderhauf et al., 2012). 

 

Random Forest 

Random forest is a bagging technique for both classification and regression. The general 

concept is to divide the data into several portions, use a relatively weak classifier/regressor to 

process, and then combine them. Random forest is flexible and can enhance the 

accuracy/performance of the weak algorithm to a better extent, at the expense of heavier 

computational resources required. The solution quality (in terms of accuracy for classification 

or MSE for regression) in each bag should be relatively high in order for bagging to perform 

promisingly. 

Random forest (RF) is an ensemble of unpruned classification trees that performs classification 

through a majority vote approach, taking all the decisions of the trees into consideration to 

perform the final prediction (Breiman, 2001a). RF frequently performs better than single tree 

classifiers and, sometimes, has a better accuracy than many other ML algorithms. Also, it is 

relatively robust against noise. The RF learner exploits both bagging (Breiman, 1996) and the 

random subspace method (Tin Kam Ho, 1998) to construct randomised decision trees. 

RF can be said to be a special case of bagging as it combines results from several unstable 

classifiers through bootstrapping, similar to C4.5 (J48 in WEKA). In bootstrapping, random 

sampling is performed with replacement from the training dataset. Because of the random 

selection, around 2/3 of the instances from the initial training set are used in each sample. 

Further, the randomness is introduced by the random selection of a subset of attributes to be 

considered at each node of every decision tree. The algorithm for RF is mentioned below 

(Breiman, 2001a): 

1. Bootstrapped sample is generated from the original dataset, where the size of the sample 

equals the size of the original dataset, and random examples are chosen with 

replacement from the original dataset. 

2. A tree is constructed using the bootstrapped sample as the training dataset, using the 

modified standard decision tree algorithm: 
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                        i.         At each node, the set of candidate attributes are restricted to a 

randomly selected subset. 

                      ii.         The decision tree is not pruned. 

3. Steps 1 and 2 are repeated for all the trees, creating a forest of trees, derived from 

different bootstrap samples. 

4. On classifying an example, combine decisions of all trees in the forest. The majority of 

votes takes the decision. 

 

 
               Figure 4.6: Schematic representation of Random forest algorithm (Tripoliti et al., 2011) 

The error rate of RF for classification depends on the correlation and the strength between each 

tree classifier. Its robustness depends on the randomness in each generated tree. If all the trees 

are identical in the ensemble, then it will perform the same as any single tree. So, bootstrapping 

and random attribute selection is crucial in reducing the correlation between each tree in the 

RF. Its strength also depends upon the strength of each single tree as robust performance of 

trees strengthens the forest. The diverse number of robust trees lowers the overall error rate and 

enhances the accuracy and strength of the RF learner. 
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Support Vector Machines 
 

SVM is a classification algorithm, whereas its regression counterpart is SVR (support vector 

regression). Formulated as a quadratic programming problem, SVM is a linear classifier 

because its decision boundary for classification is linear. You can turn SVM into a non-linear 

classifier by employing the concept of kernel, at the expense of heavier computational resources 

required. The above applies analogously to SVR as a matter of course. 

 

Support Vector Machines (SVM) is a very well-known machine learning technique used in data 

mining field, which is used in various domains for real-world classification problems. Due to 

its high generalization capabilities and ability to identify global and non-linear solutions, it has 

become a very popular choice of technique among the data mining researchers and scientists. 

Vapnik and colleagues (Cortes and Vapnik, 1995) first introduced the SVM and successfully 

applied in various areas ranging from handwritten character recognition, text classification to 

image retrieval (Cortes and Vapnik, 1995; Joachims, 1998; Tong and Chang, 2001). Briefly, it 

is based on drawing a hyper-plane or simply a decision plane that defines the decision 

boundaries (Figure 4.7). 

 

Figure 4.7: A linear SVM (Meyer and Wien, 2001) 

It separates a set of objects having different class memberships. Let's say there is a simple 

classification example problem (Boser et al., 1992; Cortes and Vapnik, 1995) represented by 

dataset 

x J1( ), y1( ), x J2( ), y2( ),..., x JN( ), yN( ){ } 

where, 

         N

iMii JxJxJxJ  ,...,, 211x  

represents an N-dimensional data point and 

yi Î -1,1{ } 

represents the label of class of that data point. The SVM algorithm is applied to find the best 

separating hyperplane that provides maximum margin and therefore the maximum separation 

of classes. Frequently, such separation cannot be achieved in the initial descriptor space. 

Therefore, to achieve it, the data points are first transformed into a higher dimension feature 
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space by a non-linear mapping function, say F  . The possible separating hyperplane is defined 

as 

w×F x( )+b= 0
 

 (1) 

where, ω is the weight vector normal to the hyperplane. If the dataset is completely linearly 

separable, the hyperplane can be found by solving the following optimization problem: 

minimize :
1

2
w

2

 
 (2) 

s.t : yi w×F x Ji( )( )+b( ) ³1, i =1..N 

However, the real-world problems are not linearly separable despite being transformed into a 

higher dimensional space due to the presence of noise. So, the optimisation problem in Eqn. 2 

is modified by the introduction of slack variables, xi ³ 0and the optimization problem is 

rewritten as 

minimize :
1

2
w

2
+C xi

i=1

N

å  (3) 

s.t : yi w×F x Ji( )( )+b( ) ³1-xi, i =1..N,xi > 0  

The slack variables xi ³ 0 hold for misclassification, and therefore the penalty term 


N

i

iC
1

  is 

used to account for total misclassifications (training errors of the model). This new optimised 

function in Eq. (3) is to maximise the margin and to minimise the number of misclassifications 

(the penalty term). The parameter C is usually selected using grid optimisation of the SVM 

algorithm. 

  

Although SVM produces very accurate results for balanced datasets, it is sensitive towards 

imbalanced datasets and may fail to produce optimal solutions. There are several studies which 

analysed this problem (Veropoulos et al., 1999; Wu and Chang, 2003; Akbani et al., 2004). It 

is possible to apply weights to the minority class in order to overcome the imbalanced data 

problem. 

 

While linear and logistic regression generally require linearly separable data, SVMs can handle 

data that is not linearly separable, using non-linear kernel functions like Radial Basis Function 

kernels (Pochet and Suykens, 2006). 

 

 

4.2.3 Cross- Validation 
 

In order to have stable and reliable predictive models and avoid over-fitting of the data, it is 

important to validate them. In particular, when the data is limited and no external data set is 

available for validation, one way to deal with this issue is splitting the data in order to use only 



46 

 

one part for training the model and having an unseen dataset for testing. This is the basis for 

cross-validation, a technique for evaluating models (Berrar, 2019).  

 

Cross-validation can be implemented in several ways. One technique is simply based on the 

method described above, in which the data is split into two parts (can be 70-80% training, and 

the remaining test) and predictions are made on the test set after the model is trained on the first 

part. The errors are averaged and can be seen as a measure to evaluate the performance of the 

model on the test set. However, this holdout method can have a high variance, based on which 

data points get selected into the training set and which ones go into the test set.  

 

To improve over this method, we can apply k-fold cross validation, in which the data set is 

divided into k subsets, and the holdout method is repeated k times. The most common 

implementations are 5 or 10 fold cross-validation, again depending on the size of the data. In a 

10-fold cross-validation, the data would be split into 10 parts. In each run, one part would be 

used as the test set and the remaining 9 merged to form the training set. Since the average error 

is obtained at the end, each data point gets placed in the test set once and the splitting of data 

into the two groups has less effect on the overall performance. However, this can turn out to be 

computationally expensive. One alternate method is to randomly split the data k different times 

and repeat the process as many times as desired, averaging the errors from all the runs (Kim, 

2009; Refaeilzadeh et al., 2009) . In Chapter 7, we implement repeated k-fold cross validation, 

repeating 5-fold cross validation 20 times.  

 

Yet another technique of implementing this method is Leave-one-out cross validation. In this 

case, k- fold cross validation is applied in a way that k equals the total number of data points. 

So, the model would run as many times as the number of data points, with only one sample 

being used as the test set in each run.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

 

5.Diagnostic value of EEG in early Parkinson’s disease 
 

As the process of neurodegeneration starts years before the clinical symptoms manifest, our 

goal was to detect differences in brain patterns in early stage Parkinson’s disease patients as 

compared to healthy individuals and use these findings for monitoring the disease progression. 

In Section 5.1, we apply machine learning to identify a subset of six QEEG spectral power 

features that can distinguish between the two groups effectively. Theta power, especially in the 

temporal left region, as well as the alpha1/theta ratio in the central region of the brain come up 

as two of the most important differentiating features. The text in this section is based on a 

published study (Chaturvedi et al., 2017). A major strength of the overall study was the 

availability of an extensive neuropsychological test battery, evaluating the attention, long-term 

memory, short term or working memory, visuo-spatial function and executive functions of the 

patients. This led to questions about whether these tests contained additional information that 

could complement the EEG patterns and increase the classification accuracy of early stage PD 

patients and healthy individuals. Section 5.2 investigates this additive value of 

neuropsychological scores to EEG measures. We see that combining EEG and 24 

neuropsychological scores does increase the overall prediction accuracy by a maximum of 10% 

and the importance of the attention domain as well as the overall cognition score is reflected in 

the ranking of important features. Investigating the relationship between EEG and 

neuropsychological scores in early stage PD patients further, we focused on the visuospatial 

impairments. This published study (Eichelberger et al., 2017) follows in Section 5.3 and shows 

the reduction of the alpha1/theta ratio in the parietal regions to be related with visuo spatial 

impairments in non-demented PD patients.  
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5.1 Machine learning in high-density QEEG feature selection for 

classification 
 

5.1.1 Introduction 
 

Neurodegenerative disorders may begin at any point during the lifetime of an individual and 

progress for years or decades before becoming clinically manifest(Savica et al., 2010; Reiman 

et al., 2012).  This poses a major obstacle for research into prevention and delays treatment.   

A few studies have shown that quantitative EEG (QEEG) could be useful for early prognosis 

of dementia(Fonseca et al., 2009; Klassen et al., 2011; Dubbelink et al., 2014, Gu et al., 2014b). 

Some alterations in the electrical activity of the brain have also been found to be prevalent in 

Parkinson’s disease patients without dementia (Berendse and Stam, 2007; Stoffers et al., 2007) 

Benz et al.(Benz et al., 2014a) reported significant QEEG differences between patients with 

AD and  PD, observing more pronounced slowing of EEG in patients with PD as compared to 

the AD group. Having a set of QEEG features that could detect patients in the early stages of 

Parkinson’s disease would be useful in providing treatment and care to the individuals.  Schmid 

et al.(Schmidt et al., 2013) carried out such a study for AD and  investigated alpha/theta spectral 

ratio as a measure to distinguish healthy individuals from patients with AD. Han et al. (Han et 

al., 2013)  recorded EEG’s in Parkinson’s disease patients and healthy controls and found an 

increase of relative powers in the delta, theta bands, while observing a decrease of relative 

powers in the alpha, beta bands. We have investigated the regional powers in Parkinson’s 

disease patients and healthy controls in order to see if a subset of QEEG features obtained from 

high-density EEG recordings could accurately distinguish between the two groups. Based on 

previous studies, we speculated that alpha/theta spectral ratio could be a good feature for 

discriminating between the diseased and healthy individuals. Our aim was also to find an 

optimal method for feature selection that could deal with high dimensionality, multicollinearity 

and avoid the risk of overfitting of the data. 

 

The current study explores the differences in high-resolution QEEG data between PD patients 

(with and without MCI) and healthy controls (HC) at baseline, using regression and machine 

learning meth
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5.1.2 Methods 
 

Subjects 



68 patients with Parkinson’s disease were recruited from the Movement Disorders Clinic of 

University Hospital of Basel from 2011 to 2015 by advertising in the magazine of the Swiss 

Parkinson’s Disease Association. The patients were diagnosed according to the United 

Kingdom Parkinson’s Disease Brain Bank criteria (Gibb and Lees, 1988). A 

neuropsychological examination was carried out in all individuals during the recruitment 

process. Knowledge of the German language was a requirement to be included in the study.  9 

patients had to be excluded due to presence of other medical conditions and 1 patient dropped 

out due to an accident. After processing and visually inspecting the EEG data, 8 patients had to 

be excluded either due to artifacts present or low voltage signals. A group of 50 PD patients (33 

males and 17 females) was selected and compared with an age and education matched group of 

41 healthy controls (21 males and 20 females), who were recruited from the Memory Clinic, 

University Center for Medicine and Aging of Basel and from the University Hospital of Basel. 

The sample size can detect an effect size of 0.59 with a statistical power of 80% at a 5% 

significance level. 

 

Mean age of the PD group was 68.8 (+/-7) years, with an average disease duration of 5.3 (+/- 

5.1) years, while that of the healthy group was 71.1 (+/-7) years.  The studies were approved 

by the local ethics committee (Ethikkommission beider Basel, ref. no.: 135/11, 294/13, 260/09). 

All participants gave their written consent. 

 

 Neuropsychological assessment 

 

A comprehensive battery of neuropsychological tests was applied to test for the following 

cognitive domains: attention, working memory, executive functions, memory and visuo-spatial 

functions.  The raw scores of the tests were normalized and transformed into adjusted z-scores 

(Berres et al., 2000) based on the data collected for 604 age-, sex- and education-matched 

healthy individuals. The tests were used for thorough examination of patients and diagnosis of 

Mild Cognitive Impairment (MCI) according to the criteria published by Litvan et al(Litvan et 

al., 2012). Patients with dementia were excluded for this study and only those with MCI or with 

normal cognition were included. 

 

EEG recording and processing 

 

A 256-channel EEG System (Netstation 300, EGI, Inc., Eugene, OR) was used to record 12 

minutes of continuous EEG (eyes closed) for all individuals. The participants were seated on 

reclining chairs, asked to relax while staying awake and to have minimum of eye as well as 

body movements. Three minutes of EEG data, with single segments of at least 30 seconds 

without artifacts (e.g. eye movements, signs of drowsiness), were selected and down sampled 
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(500 Hz). Data from 214 electrodes (excluding cheeks, neck electrodes) were filtered (0.5–70 

Hz) and an inverse Hanning window was used to stitch together shorter segments. Resulting 

EEG data were re-referenced to average reference and bad channels were interpolated with the 

spherical spline method. Additionally, the independent component analysis implementation of 

EEGLAB (Delorme and Makeig, 2004) (“runica” with default settings) was used to remove 

further artifacts.  To obtain the power spectra, Welch’s method (Welch, 1967) was applied. 

Relative power was obtained for five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha1 

(8–10 Hz), alpha2 (10–13 Hz), and beta (13–30 Hz), by calculating the ratio of the signal power 

within a frequency band to the total signal power (1-30 Hz). The electrodes were mapped to ten 

regions of interest on the scalp, corresponding to the left and right frontal, central, parietal, 

temporal and occipital.  Median and peak frequencies were also calculated from the occipital 

region. Compared to classical electrode designs (with typically 21 channels), high density 

electrode systems allow us to aggregate the signals from nearby locations, which in many cases, 

leads to significant noise reduction.   

 

A total of 79 different measures were extracted and used for further analysis and feature 

selection. These included global power for each band, power in every region in all five 

frequency bands, alpha1/theta ratios for all regions and the median as well as peak frequency 

measures. 

 

 Statistical analysis 

 

Potential confounding by factors, such as age, sex, and education of the patients was accounted 

for by calculating linear regression models. The dataset had highly correlated features and the 

goal was to find out which features were important for classification. For this purpose, a 

comparison was done between Logistic regression and three machine learning methods 

including Random Forest(Breiman, 2001b; Liaw, A. & Wiener, M., 2002), Support Vector 

Machine (SVM) (Chang and Lin, 2011) and J48 Decision Trees(Salzberg, 1994) using the 

Weka software(Hall et al., 2009), version 3.7. Ten-fold cross-validation was applied to all the 

methods. A ranking of variables was obtained from Random Forest on the basis of mean 

decrease in accuracy and Gini coefficients. Machine learning methods have been used in quite 

a few medical studies for prediction and diagnostic classification(Khodayari-Rostamabad et al., 

2013; Singal et al., 2013; Johannesen et al., 2016). Differences can be noted in the way each 

method works and, in the results, obtained.  

 

While linear and logistic regression generally require linearly separable data,  SVMs can handle 

data that is not linearly separable, using non-linear kernel functions like Radial Basis Function 

kernels (Pochet and Suykens, 2006).  Decision Trees work by creating a flowchart which 

consists of “leaf” nodes (representing a classification) and decision nodes (which can have 

several “branches”). Their hierarchical tree structure makes them easy to understand and 

interpret. A random forest algorithm makes use of several decision trees that are combined in a 

“bootstrap aggregation” scheme. Based on random subsets of the data, random forests grow a 

series of individual trees, and the whole forest of such trees can then be used to identify a set of 
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vital features. Random Forests do not require real-valued features and can handle high 

dimensional data. However, some bias can be introduced with any of the methods, including 

Random Forest (Strobl et al., 2007). 

 

Additionally, penalized logistic regression was applied to the data to obtain a subset of features 

that would not be highly correlated to each other. The least absolute shrinkage and selection 

operator (LASSO) method has been used in different studies for feature selection and 

computing risk predictive models (Wu et al., 2009; Fontanarosa and Dai, 2011). In many cases, 

lasso-penalized models have shown improved prediction accuracy while selecting only a 

limited number of covariates that are included in the model. 

 

The penalized (Goeman, 2010) package in R(R Core Team, 2018)(version 3.2.1)  was used to 

create a logistic regression model and apply the L1-LASSO (Tibshirani, 1996b, 1997) penalty. 

Tenfold cross validation and optimization was carried out to select the tuning parameter. Cross-

validated ROC curves were obtained with the ROCR (Sing et al., 2005) package in R. 

 

5.1.3 Results 
 

Table 5.1.1 shows the characteristics of the PD and HC groups.  No significant differences were 

found in the age, education, sex distribution of the patients in the two groups. 

 

Parameters HC(N=41) PD(N=50) p value (Wilcoxon) 

Age(years) 70 [53,83] 69 [55,84] 0.08 

Education(years) 12 [8,19] 14 [9,20] 0.052 

Males 21 33  

Females 20 17  

 

Table 5.1.1: Demographic characteristics of PD patients and healthy controls (HC). The data shown 

here are the median values and range for each parameter. 

The average grand spectra for the ten regions in both groups of individuals can be seen in Figure 

5.1.1.  

On comparing Logistic Regression, SVM, Random Forest and J48 decision trees, Random 

Forest was seen to perform better overall with an area under the curve of 0.8 and accuracy of 

0.78.  The accuracies and AUC values of all methods can be seen in Table 5.1.2.  
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Table 5.1.2: Performance measures evaluated by logistic regression and machine learning methods 

As Random Forest and LASSO are two methods that give a ranked list for feature selection, we 

focused on these two methods and investigated the subset of features selected by the methods. 

The penalized logistic regression model obtained from using LASSO revealed the most 

influential variables in classifying individuals into two groups. Table 5.1.3 shows the list of 

names of the most influential variables.  

Method Accuracy AUC  

Random 

Forest 

0.78 0.8 

SVM  0.747 0.73 

J48 0.68 0.67 

Logistic 

Regression 

0.56 0.63 
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Figure 5.1.1:  Comparison of average grand spectra of 10 brain regions in Parkinson’s disease patients 

and healthy controls  
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Variables Coefficients 

(Median) 

F4.8_TL 0.531 

F10.13_FL 0.243 

F10.13_CR 0.069 

A1.T_CL -0.586 

F13.30_PL -0.156 

A1.T_TL -0.045 

 

Table 5.1.3: Variables found to be influential in the logistic regression model with LASSO penalty. 

They are coded as F(Frequency) [Power band in Hertz]_[Brain Region].  E.g.: F4.8_TL refers to the 

theta band power in the temporal left region of the brain.  A1.T refers to the alpha1/theta ratio.  The 

median coefficient values depicted correspond to the box plot in Figure 5.1.2. 

 

A boxplot depicting the non-zero coefficients of penalized logistic regression model can be 

seen in Figure 5.1.2. The figure shows the coefficients of penalized logistic regression model 

in which cross-validations were carried out.  The median values of the coefficients are seen in 

the box plot.  The different frequency bands are represented as 4.8 (theta), 8.10 (alpha1), 

10.13(alpha2), 8.13(total alpha ),13.30(beta).The alpha1/theta ratio is represented as A1.T and 

the different brain regions are abbreviated as TL/TR(temporal left/right), CL/CR(central 

left/right), FL/FR(frontal left/right), PL/PR(parietal left/right), CL/CR(central left/right).  GP 

refers to the Global Power in each band. A cross-validated ROC curve was plotted after logistic 

regression is shown in Figure 5.1.3.  It showed an area under the curve of 0.76.  



 

55 

 

 

Figure 5.1.2: Box plot showing non-zero coefficients of the penalized logistic regression model 

obtained after 200 cross validations.  

 

 

Figure 5.1.3: Cross-validated ROC curve obtained from the logistic regression model shows an AUC 

value of 0.76 

 

Alpha1/theta ratio in the central left region and theta power in temporal left were found to be 

two of the most important features for classification.  
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Random Forest ranked the QEEG measures on the basis of a decrease in accuracy of 

classification and also in decreasing order of the Gini coefficients.  A variable is deemed to be 

more important for the classification of data if its exclusion results in a decrease in the accuracy 

of the random forest model. This is determined during the out of bag error calculation phase.  

Hence, the higher the MeanDecreaseAccuracy measure for a variable, the greater is its 

importance. MeanDecreaseGini shows how each variable contributes to the homogeneity of 

nodes in the random forest model. A higher decrease in Gini implies that the variable plays a 

greater role in the classification process. The top thirty measures obtained from both rankings 

can be seen in Figure 5.1.4.  

 

Figure 5.1.4: Variable Importance plots obtained from Random Forest in R show the top QEEG 

measures ranked on the basis of Mean Decrease in Accuracy and Mean Decrease in Gini coefficients. 

 

Both methods selected a few common top features, including theta power in the temporal left 

region, alpha1/theta ratios in the central left and temporal left regions. The main difference was 

that LASSO focusses on selecting an optimal set of variables that are not highly correlated to 

each other but have high accuracy in the prediction model.  Random Forest takes the accuracy 

into account but does not exclude variables that are highly correlated to each other. In this way, 

a small subset of features for distinguishing the two groups can be obtained using LASSO but 

a detailed list of influential features can be obtained using Random Forest.  
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5.1.4 Discussion 
 

In this study, we investigated seventy-nine frequency measures from ten regions of interest in 

groups of PD patients and healthy controls. Our goals were to look for a feature selection 

method that would solve the problem of multicollinearity, high dimensionality and reduce the 

risk of overfitting of data. We also wanted to see if alpha/theta spectra ratio would come up as 

an important feature in distinguishing between diseased and healthy individuals. The penalized 

logistic regression method (LASSO) applied for classification between the groups resulted in a 

subset of six measures, reflecting differences in theta, alpha2, beta power and alpha1/theta ratio 

in certain regions. Two of the most influential features included theta power in the temporal left 

region and alpha1/theta ratio in central left region, and were detected by both methods focused 

on, Random forest and LASSO. As speculated, alpha/theta spectral ratio was seen to be one of 

the influential features in discriminating between Parkinson’s disease patients and healthy 

individuals. 

 

The regression method with the LASSO penalty has been useful in selecting a group of six 

features out of seventy-nine. It is good for handling large number of data points and predictors 

at a time but can pose a problem if the variables are not relatively scaled. It can be used for 

different types of data, such as continuous, binomial, etc.  However, on carrying out 

classification with Random Forest, we found that the variables were not ranked in the same way 

as with LASSO. This could be possibly explained by the fact that a lot of frequency measures, 

especially in the neighbouring regions of the brain, are highly correlated and the LASSO 

penalty integrated in Logistic Regression only selects one measure out of every group of highly 

correlated measures.   

 

The final choice of method for feature selection would depend on the question at hand. For 

obtaining a model that could include a detailed list of the most important variables, Random 

Forest would be a good choice. If, on the other hand, the goal would be to select a small set of 

uncorrelated features that could result in comparable prediction accuracy, LASSO would be the 

preferred method. LASSO selects one set of optimal features for classification but might not 

reflect all the features important for clinical diagnosis. 
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5.2 Feature selection combining QEEG and neuropsychological 

measures 

 

5.2.1 Introduction 
 

Parkinson’s disease can affect both, motor and non-motor functions of the patients. Amongst 

non-motor functions, cognitive impairments and behavioural disturbances can have a big 

impact on the quality of life (Watson and Leverenz, 2010; Watson et al., 2013), and can also 

be an early indicator of the disease.  

 

Neuropsychological parameters are known to be effective in diagnosing and monitoring 

Parkinson’s disease (PD) apart from other neurodegenerative disorders like Alzheimer’s 

disease. A battery of neuropsychological tests is used to evaluate different cognitive domains 

of the patients, such as Attention, Working Memory, Executive Function, Visuo-Spatial 

Function, and Memory (Berres et al., 2000; Ph.D, 2007; Zimmermann and Fimm, 2007, Benz 

et al., 2014a). 

 

Since we investigated the effectiveness of EEG data in distinguishing PD patients from healthy 

controls (HC) in section 3.1, we wanted to extend this study further. Our aims were to: a) check 

for the correlation between EEG and neuropsychological measures, b) see if the classification 

performance could be improved by adding on the neuropsychological test measures and c) 

identify the most important features from both groups for achieving high accuracy overall.  

 

5.2.2 Methods 
 

This study was carried out in two iterations. The first was an extension of the research shown 

in Section 5.1 (Chaturvedi et al., 2017) and used the exact patient cohort as published. 

Neuropsychological assessment of the patients was done using 18 tests that covered five 

cognitive domains: attention, working memory, executive functions, memory and visuo-spatial 

functions. An average score for each domain was calculated along with an overall cognitive 

score, resulting in 6 additional scores. EEG data processed with a semi-automated pipeline were 

used to obtain the relative power in alpha, theta, delta, beta frequency bands across 10 regions 

of the brain. The 5 cognitive domains as well as the overall cognitive score were correlated with 

EEG data of the 41 healthy individuals and 50 PD patients.  LASSO was re-applied with all 

EEG measures together with all cognitive scores. Additionally, Random Forest algorithm was 

applied to the data to check for prediction accuracy and to obtain variable importance plots. 

 

To increase the patient cohort and have a standardised processing pipeline, all EEG data were 

processed using an automated pipeline and this was used in the second iteration of the study. 

Any patients who dropped out later, had doubtful EEG data or also had another disease were 

excluded. Patients whose neuropsychological data were not available were also left out of this 

cohort. This resulted in a cohort of 66 PD patients and 59 healthy controls. 
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5.2.3 Results 
 

Following up on the subset of measures selected in Section 5.1, we found attention domain to 

be correlated with theta power in temporal left, beta power in parietal left regions. Theta in 

temporal left was particularly highly correlated with memory and overall cognition scores. This 

was also reflected in the alpha1/theta power in the temporal left region. Table 5.2.1 shows the 

correlation coefficients between the shortlisted EEG features and cognitive domains.  

 

 

Table 5.2.1: Correlation between EEG features selected by LASSO and cognitive domains 

Lasso was re-run on the dataset consisting of both, neuropsychological and EEG scores, to 

check for important features in the classification. This new subset, along with the beta 

coefficients, is seen in Table 5.2.2. The median AUC was 0.75 and comparable to the 

performance using EEG measures alone and included 5 of the EEG variables also selected by 

Lasso using EEG. The largest coefficients still corresponded to EEG features.  

Cognitive 

domains 

F13.30_PL F4.8_TL A1.T_CL F10.13_CR F10.13_FL A1.T_TL 

Attention 0.307 -0.405 0.152 0.01 -0.138 0.2 

Working 

Memory 

0.114 -0.111 0.019 0.0832 -0.0006 0.089 

Executive 

function 

-0.074 -0.138 0.14 -0.06 0.023 0.176 

Memory 0.198 -0.29 0.237 -0.016 -0.065 0.238 

Visuo 0.131 -0.101 0.113 -0.02 -0.116 0.098 

Overall Cog 0.211 -0.315 0.21 -0.004 -0.11 0.248 
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Table 5.2.2: Penalized regression coefficients for EEG and neuropsychological measures in classifying 

PD patients from healthy individuals 

In the second iteration of this study, an increased patient pool was considered and the EEG data 

of all 125 patients were processed uniformly using an automated pipeline. Lasso was first 

applied only to the 18 neuropsychological scores of all patients to assess the discriminative 

power between the two groups.  The Rey Copy Test, associated with the visuo constructive 

domain, was seen to have the largest coefficient, followed by tests in the Attention and Memory 

domain. This is depicted in Table 5.2.3. The median AUC obtained was 0.88. 

 

Measures Coefficients 

Intercept  0.138232898 

F10.13_FL 0.096637113 

F4.8_TL 0.009764126 

Working Memory -0.010300006 

A1.T_TL -0.033160499 

Memory -0.062768028 

Attention -0.115259682 

Overall Cog -0.167384416 

F13.30_PL -0.481784339 

A1.T_CL -0.622159769 



 

61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2.3: Coefficients of penalized logistic regression for distinguishing PD from HC using 

neuropsychological measures 

As a next step, the EEG measures were also added to the 18 neuropsychological scores, and the 

classification process was run to identify influential features. The non-zero coefficients are seen 

in Table 5.2.4. The median AUC increased to 0.9. EEG variables had the biggest influence on 

the classification. 

Measures Coefficients 

(Intercept) 0.1407114 

F13.30_OR 2.13364294 

F4.8_CR 1.02777218 

CVLT_sav 0.81022275 

F10.13_OL 0.70306598 

F1.4_OL 0.40665649 

F10.13_OR 0.37905272 

Digitspan_bw 0.26727335 

Rey_sav_IR_copy 0.0764899 

F1.4_OR 0.03483677 

A1T_TR -0.00209984 

Tests Coefficients Domain 

Rey_copy -0.509507445 

Visuo 

Constructive 

Trail_Making_A -0.48891941 Attention 

   

(Intercept) -0.441420291 

 
Simple_RT_no_Warning -0.40371739 Attention 

CVLT_t1 -0.401967906 Memory 

Five_Point_Test -0.345707686 

Executive 

function 

Div_Att_vis_RT -0.290275666 Attention 

Div_Att_aud_RT -0.002014186 Attention 

CVLT_sav 0.027343262 Memory 

Digitspan_bw 0.224255256 

Working 

Memory 
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Trail_Making_A -0.01279106 

A1T_TL -0.10709 

F8.10_PL -0.113549 

F13.30_CL -0.27277 

Block_Tapping_bw -0.307411 

A1T_CR -0.31502294 

F13.30_FL -0.31654541 

Semantic_Fluency -0.41663774 

Div_Att_aud_RT -0.43593 

Simple_RT_no_Warning -0.47415921 

Five_Point_Test -0.51077041 

Div_Att_Omissions -0.78091621 

F13.30_TR -0.7914092 

Rey_copy -0.98296989 

A1T_PR -1.10237651 

 

Table 5.2.4: Coefficients of penalized logistic regression for distinguishing PD from HC using 

neuropsychological and EEG measures 

To get a ranked list of important features, Random Forest was applied on different combinations 

of the data set. On using the QEEG measures alone for classification, Area-under-the-Curve 

(AUC) value of 0.819 was obtained along with Positive and Negative predictive values (PPV, 

NPV) of 0.736 and 0.754 respectively. The 6 neuropsychological domain scores, when used 

alone, resulted in an AUC of 0.82, PPV of 0.71 and NPV of 0.8. On combining the QEEG 

measures and the 6 neuropsychological scores, an AUC value of 0.859 was obtained along with 

a PPV of 0.729 and NPV of 0.76. A slight increase in the AUC was observed on combining the 

QEEG and 6 neuropsychological measures, in comparison to using them alone while the PPV 

and NPV values did not have much difference.  

 

However, on combining the QEEG measures with all 24 available neuropsychological scores 

instead of using the average domain scores and overall cognitive scores alone, the AUC value 

increased to 0.88 while the PPV and NPV values increased to 0.785 and 0.8. 

 

Measures that were ranked higher in the list included the attention domain, overall cognitive 

score, beta frequency measures, followed by individual tests from the executive function and 
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attention domain. Results from the Random Forest can be seen in Table 5.2.5 and the ranked 

list of EEG and neuropsychological variables can be seen in Figure 5.2.1. 

 

Parameters 

included 

Precision PD Precision HC AUC FP Rate Recall 

EEG 0.765 0.827 0.819 0.26 0.744 

EEG+6 NP 

domains 

0.73 0.765 0.859 0.265 0.744 

EEG+24 NP 

scores and 

domains 

0.78 0.8 0.88 0.213 0.792 

EEG+18 NP 

scores 

0.76 0.792 0.85 0.23 0.776 

6 NP domains 0.735 0.719 0.82 0.27 0.744 

18 NP scores 0.8 0.81 0.88 0.197 0.8 

24 NP scores 0.78 0.727 0.866 0.217 0.78 

 

Table 5.2.5: Random Forest classification performance using different combinations of EEG and 

neuropsychological scores 

 

 

Figure 5.2.1: EEG and neuropsychological measures differentiating Parkinson’s disease patients from 

healthy individuals 
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5.2.4 Conclusion 
 

Overall, we see that EEG and neuropsychological scores have comparable performances and 

when combined, the accuracy increases slightly. However, what is interesting to see is that tests 

from the visuo-constructive domain, attention and memory are influential amongst the set of 

neuropsychological measures. Amongst the EEG measures, beta and theta measures were 

consistently ranked at the top, even when combined with neuropsychological measures. 

QEEG measures and neuropsychological measures, when combined together, are useful in 

distinguishing Parkinson’s disease patients from healthy controls with a considerable accuracy.  
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5.3 Visuospatial Ability and EEG Slowing in Patients with  

Parkinson ’s disease 
 

As visuo-constructive domain was one of the important neuropsychological domains detected 

in identifying PD patients, and it is one of the first domains that start getting affected in 

cognitive decline, the following manuscript by Echelberger et al. (Eichelberger et al., 2017) 

investigates the relationship between visuo spatial ability and EEG measures in PD patients.  

 

5.3.1 Introduction 
 

Cognitive impairment in PD has mainly been characterised by executive dysfunction, 

attentional, memory, and visuospatial deficits (Emre, 2003a; Gratwicke et al., 2015). The 

cognitive impairment generates far-reaching individual and health economic implications. In 

previous studies, it has been shown that visuospatial disturbances are among the first symptoms 

of cognitive decline to appear in PD (Girotti et al., 1988; Antal et al., 1998). These deficits 

become more pronounced as the disease progresses (Levin et al., 1991) and they are 

independent of the severity of motor dysfunction and of the overall intellectual status. 

Interestingly, studies have shown that PD-patients with visuospatial deficits or memory 

impairment show a higher conversion rate to Parkinson’s disease dementia (PDD) than 

individuals with executive deficits (Muslimović et al., 2005; Williams-Gray et al., 2007). 

 

The cause of the visuospatial deficits, however, remains unclear (Laatu et al., 2004). A study  

(Pereira et al., 2009) showed that patients with Parkinson’s disease and mild cognitive 

impairment (PD-MCI) have a greater grey matter atrophy in both occipitotemporal and 

dorsoparietal cortices compared to healthy controls. Furthermore, previous research showed 

that these patterns correlate with visuoperceptual and visuospatial abilities. These results are in 

line with the dual-stream hypothesis of visual processing which differentiates between two 

linked visual projection systems (Ungerleider and Haxby, 1994). The first system expands from 

the area 17 (primary visual cortex) over the dorsal visual route towards the areas of the upper 

temporal lobe and the parietal lobe (occipitoparietal projection system). These areas participate 

in the analysis of visuospatial information such as movement, depth, position, orientation, and 

3D characteristics of objects. The second projection system, the ventral visual stream, is 

responsible for pattern recognition (analysis of shapes, colours, objects and faces). It extends 

beyond area 17 to the lower temporal lobe. 

 

Biomarker-based detection might lead to a better understanding of the cause of the visuospatial 

decline in PD-patients. Research (Kamei et al., 2010) verified a positive correlation between 

deficient executive functions in PD and frontal EEG slowing. This relationship indicates that 

the deficits in executive tasks in PD could be due to a frontal dysfunction. Based on these 

findings, it would be interesting to investigate whether visuospatial abilities are related to 

parietal and occipital EEG activity in PD-patients.  
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More precisely, it is hypothesized that PD-patients with a visuospatial deficit manifest an EEG 

slowing which should be particularly pronounced in the parietal and the occipital lobe, 

compared to frontal, central and temporal areas. To avoid confounding with overall cognitive 

performance the EEG slowing is matched with a test of memory span measures (short term 

memory). This association, in turn, is expected to be stronger in the frontal lobe compared to 

central, temporal, parietal and occipital areas. 

 

5.3.2 Materials and Methods 
 

Subjects and clinical Assessments 

 

Participants were recruited between 2011 and 2015 from the outpatient clinic for movement 

disorders of the University Hospital Basel or through announcements in the Journal of the Swiss 

Parkinson’s Disease Association. Altogether 72 patients with PD participated in the study. The 

data used in this study were baseline data collected from two studies. The first study was a 

computer-based, multi-dimensional and disease-specific training of cognition in patients with 

PD that has already been published (Zimmermann et al., 2015a). The second study was an 

ongoing group-based stress management training in patients with PD. Clinical assessment was 

performed with optimally medicated patients by means of the sum score of the motor section 

of the Unified Parkinson’s Disease Rating Scale (UPDRS) subscale III.  Depression was 

assessed by Beck`s Depression Inventory (BDI) (Schrag et al., 2007). The levodopa-equivalent 

(LED) was estimated (Tomlinson et al., 2010). Inclusion criteria for the study were idiopathic 

PD according to UK Parkinson’s disease Brain Bank Criteria  (Gibb and Lees, 1988) and signed 

informed consent. Patients were excluded if they had other severe brain disorders, insufficient 

knowledge of the German language or if the EEG and the neuropsychology measurement were 

set apart more than 60 days. For this study, the data of 57 patients with PD were included. 

Fifteen patients were excluded due to a Mini-Mental State Examination (MMSE) score of <24 

(n = 3), because of undergoing a deep brain stimulation (n = 6) or due to insufficient EEG 

quality (n = 6). 

 

Neuropsychological Assessments 

 

Patients were assessed with a comprehensive neuropsychological test battery. The following 

tests of this battery were used for this study: Clock Drawing Test, Rey-Osterrieth Complex 

Figure Test (ROCF) copy task (Duley et al., 1993), Block Design Test (Tewes, 1991) and verbal 

Digit Span forward. 

 

The Clock Drawing Test(Thalmann et al., 2002) is a reliable measure of cognitive dysfunction  

(Cahn-Weiner et al., 1999; Riedel et al., 2013) and correlates with visuospatial tests like the 

ROCF and the Block Design (Hochrein et al., 1996; Pinto and Peters, 2009).  
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The ROCF is a common neuropsychological screening method for visuospatial abilities (Karádi 

et al., 2015). Particularly, the copy variant of the task measures visuospatial construction while 

the delayed variant indicates visuospatial memory performance(Aebi and Mistridis, 2009). In 

the ROCF, the patients had to copy a complex figure. Afterwards, they had to reproduce it as 

complete as possible after a delay of 30 minutes. The ROCF was evaluated according to Aebi 

and Mistridis [34] based on Spreen and Strauss. The sum score ranges from 0 to 36 points. The 

data were transformed into education and age-controlled z-scores. 

 

Block Design is a subtest of the revised Hamburg Wechsler Intelligence Scale for Adults. The 

patients received at the beginning 4 and later 9 blocks, with different colour patterns on each 

side. With the blocks the patients had to build a predetermined pattern within a restricted period. 

The sum score ranges from 0 to 51 points; lower values are indicating more severe visuospatial 

disabilities. 

 

Verbal Digit Span was applied to measure short-term memory. This test is a subtest of the 

Wechsler Memory Scale German adaption. The examiner reads a series of digits aloud which 

have to be repeated by the subject afterwards. Each correctly repeated series granted a point, 

adding up to a sum score ranging from 0 to 12 points, where higher values indicate better short-

term memory performance. 

 

EEG Data 

 

During 15 min an eyes-closed, resting-state, 256-channel EEG was recorded (Netstation 300; 

EGI Inc., Eugene, Oreg., USA). Semi-automatic processing of the data was applied in order to 

calculate the relative power in alpha (8-18Hz) and theta (4-8Hz) frequency bands across the 10 

brain regions. The processing was done in the same way as described in Section 4.1. Relative 

alpha/theta ratios were calculated from the frequency results.  

 

Statistical Procedure 

 

The R software version 3.2.3 was used for statistical analysis. The level of statistical 

significance was set at p=.05.  

 

A linear mixed effect model (LME) with the alpha/theta ratio as the dependent variable was 

used to test the association between EEG slowing and visuospatial test scores. The test 

performance was used as fixed factor and the patients as random factor. Consequently, a b-

value below zero indicates that the worse the alpha/theta ratio, the deeper the test-performance. 

The LME is a linear model that allows repeated measurement. This model was adopted due to 

the repeated measurements, caused by EEG electrode subdivision into the five brain areas. An 

exhaustive search, with age, gender, years of education, motor symptoms (UPDRS III), disease 

duration, depression scale (BDI), MMSE and LED showed that gender and age were 

confounding factors for alpha/theta ratio. The assumptions for LME are homoscedasticity 

(homogeneous variance), linearity, no influential data points, and independence (collinearity). 
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The plot of the standardized residuals showed a heterogeneous variance relating to the fitted 

values. A logarithmic transformation was performed in order to achieve a normal distribution. 

After the logarithmic transformation the residuals in the used LME models were normally 

distributed around zero and therefore the requested homogeneous variance was achieved. Plots 

of the random effects showed an unsystematic arrangement around zero. This confirmed a 

normal distribution of the errors (linearity). Influential data points were not found. Furthermore, 

there was no correlation between the predictor variables. 

 

In a first step, the LME calculations showed no correlation between alpha/theta ratio and the 

task performance. Because of this finding, a median split was used to separate potentially 

clinically conspicuous from inconspicuous patients in regard to the visuospatial ability. The 

median split was calculated separately for each neuropsychological test. Group A included 

patients from the lowest task’s performance up to the median and group B included patients 

from the median up to the best task’s performance. Clinical and demographic variables between 

the median split groups were analysed by means of X2-test or Mann–Whitney U-test as 

appropriate. The difference in relative alpha/theta ratio between the left and the right cerebral 

hemisphere was calculated by a Wilcoxon’s matched pairs signed rank test. There were no 

significant differences in the relative alpha/theta ratio between the right- and left-sided electrode 

in the PD-patients (p=.316). Therefore, the analyses were based on combined data of the 

alpha/theta ratio for the right- and left-sided electrode locations. Furthermore, to compare the 

results, the LME were calculated with z-scaled Block Design and the Digit Span scores. 

 

5.3.3 Results 
 

The visuospatial decrease which would be expected in PD-patients, was weak in this population 

(see table 5.3.1). The descriptive statistics of the clinical performance split in the two median 

groups A and B, are shown in table 5.3.2. Significant differences between group A and B had 

been obtained in the Clock Drawing Test with regards to the MMSE and the BDI and in the 

Digit Span with regards to the disease duration. Otherwise there were no significant differences 

between the groups. The exhaustive search had shown that gender and age were confounding 

factors for all used neuropsychological tests. The EEG alpha/theta ratio was different between 

males and females in all areas [parietal U(57/57) = 211, p = 0.024, frontal U (57/57) = 200, p = 

0.014, central U(57/57) = 205, p = 0.018, temporal, U(57/57) = 210, p = 0.023 and occipital 

U(57/57) = 194, p = 0.010]. 
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PD patients (N=57) Mean SD 

Sex (M/F) 40/17  

Age (years) 67.21 (6.96) 

Education (years) 14.67 (3.01) 

UPDRS III 14.77 (11.13) 

MMSE 28.70 (1.06) 

Disease duration (years) 5.25 (0.50) 

Dose of L-dopa (mg/day) 597.60 (372.06) 

BDI 7.22 (4.47) 

Clock Drawing Test 

(incorrectly/correctly drawn) 

16/41  

ROCF 28.83 (4.19) 

Block Design Test 24.79 (7.56) 

Verbal Digit Span forward 7.49 (1.72) 

 

Table 5.3.1: Descriptive statistics and tasks performance of total group. 

Note. Means and standard deviations relate to raw values. UPDRS III= Unified Parkinson’s Disease 

Rating Scale subscale III (range 0-108); MMES= Mini-Mental State Examination (range 0-30); 

BDI=Beck Depression Inventory (range 0-63); ROCF= Rey-Osterrieth Complex Figure Test. 
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Table 5.3.2: Descriptive statistics of median split groups. 

Note. Values are expressed by median; UPDRS III= Unified Parkinson’s Disease Rating Scale subscale 

III (range 0-108); MMSE= Mini-Mental State Examination (range 0-30); BDI=Beck Depression 

Inventory (range 0-63); ROCF= Rey-Osterrieth Complex Figure Test; A= group with lower tasks 

performance; B= group with higher tasks performance ** p < .001, * p <.050, . p < .1. 

 

Clock Drawing Test ROCF Block Design 

Test 

Digit Span 

 

Incorr

ectly 

drawn 

N= 16 

Corre

ctly 

drawn 

N=41 

 
A 

N=

26 

B 

N=29 

 
A 

N= 

29 

B 

N=2

7 

 
A 

N=

29 

B 

N=2

8 

 

allocation 

Media

n 

Media

n p 

Me

dia

n 

Media

n 

p 

Medi

an 

Me

dia

n 

p 

Me

dia

n 

Medi

an p 

Sex (M/F) 11/5 29/12 1.00

0 

19/

9 

20/7 .833 20/9 19/

8 

1.0

00 

20/

9 

20/8 1.000 

Age  67.5 67 .930 66.

5 

69.0 .295 67.0 69.

0 

.38

4 

67.

0 

67.5 .994 

Education  15 15 .964 14 15 .572 14 15 .09

2. 

15 15 .413 

UPDRS III 13.5 13.5 .765 17.

0 

10.0 .166 15.5 13.

0 

.51

1 

14.

0 

13.5 .818 

MMSE 28.5 29 .036

* 

29 29 .347 29 29 .20

9 

29 29 .322 

Disease 

duration  

5.27 3.37 .160 4.3

0 

3.24 .508 4.12 3.3

7 

.55

8 

2.9

4 

4.74 .038* 

Dose of 

L-dopa 

666 510 .247 650 495 .206 590 550 .90

6 

510 585 .296 

BDI 4.5 8.0 .024

* 

6.5 7.18 .901 6.5 7.3

5 

.65

5 

7 7 .941 
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Clock Drawing 

The LME results for the Clock Drawing Test are show in table 5.3.3. A significant lower 

alpha/theta ratio was recognised in PD-patients with an incorrectly drawn clock compared to 

PD-patients, who had produced a correctly drawn clock. The group difference was more distinct 

in parietal areas than in central, temporal and occipital areas.  

  

Table 5.3.3: Correlation between alpha/theta ratio and Clock Drawing Test 

Note. b = beta coefficient (standard errors); using a linear mixed effect model (LME); ** p < .001, * p<. 

05. p < .1. 

 

ROCF  

 

As shown in table 5.3.4, in group A of the ROCF, the results revealed that the deeper the parietal 

alpha/theta ratio, the worse the ROCF performance. An increase of 1.0 z-score in the ROCF 

increased the parietal alpha/theta ratio by b = 0.59, t (24) = 2.73, p =.012. There was also a 

significant positive association between occipital alpha/theta ratio and the ROCF performance 

in the ROCF group A. An increase of 1.0 z-score in the ROCF increased the occipital 

alpha/theta ratio [b = 0.50, t (24) = 2.31, p =.030]. No significant association was found in the 

other cortical areas (see table 4). Furthermore, the association in the parietal areas were different 

from the frontal [b = -.19, t(104) = -2.28, p = .025], central [b = -.24, t(104) = -2.88, p = .005] 

and temporal [b = -.24, t(104) = -2.88, p = .005]. There was no significant difference between 

the association in parietal areas and the association in occipital areas [b = -.09, t (104) = -1.06, 

p = .290]. In the ROCF group B, there was neither an association between alpha/theta ratio and 

the ROCF z-score nor a significant difference between the association in parietal areas and the 

associations in the remaining areas. 

 

Block Design Test 

 

The LME results for the Block Design Test are shown in table 5.3.5. No significant correlation 

was found between the alpha/theta ratio and the Block Design performance. In the Block Design 

group A, there was simply a tendency towards a positive correlation between the parietal 

alpha/theta ratio and the Block Design performance. An increase of 1.0 z-score in the Block 

Design Test increased the alpha/theta ratio [b = 0.48, t (25) = 1.96, p = .062]. No associations 

 Δ incorrectly and correctly drawn comparison b parietal/ other areas  

brain area b p b 

Parietal 0.54 (0.18) 0.003*  

Frontal 0.44 (0.18) 0.016* 0.134 

Central 0.40 (0.18) 0.025* 0.046* 

Temporal 0.40 (0.18) 0.027* 0.040* 

Occipital 0.36 (0.18) 0.045* 0.009* 
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were found in the other cortical areas. The association in the parietal areas differed from the 

association in temporal areas [b = -.24, t (108) = -2.54, p = .013]. Furthermore, there was a 

trend towards a difference between the association in parietal areas and the association in frontal 

[b = -.16, t (108) = -1.71, p = .090] as well as central areas  

[b = -.16, t (108) = -1.68, p = .096].  

 

Verbal Digit Span forward 

 

The results in both Digit Span groups, A and B, showed no correlation between the alpha/theta 

ratio and the Digit Span performance (see table 6). However, in the Digit Span group A a slight 

tendency towards a negative correlation between the alpha/theta ratio and the Digit Span 

performance was observable in frontal [b = .0.35, t(25) = -2.05, p = .051], central, 

[b = -.29, t(25) = -1.73, p = .096] and parietal areas, [b = -.34, t(25) = -2.02, p = .054]. There 

were no associations in the other cortical areas. Furthermore, the association in the parietal areas 

was different from the occipital areas, [b = .14, t (108) = 2.21, p = .030] in group A. In group 

B a difference between the association in parietal areas and the association in central areas, [b 

= -.16, t (104) = -2.07, p = .041], was observable (see table 5.3.6). 
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 ROCF A  ROCF B 

brain 

areas 

b p 

comparison b 

parietal/ other 

areas 

p b p 

comparison b parietal/ 

other areas 

p 

Parietal 0.59 

(0.21) 

.012*  -0.06 

(0.17) 

.738  

Frontal 0.39 

(0.21) 

.079. .025* -0.08 

(0.17) 

.653 
.724 

Central 0.34 

(0.21) 

.123 .005* -0.00 

(0.17) 

.984 
.337 

Temporal 0.34 

(0.21) 

.123 .005* -0.01 

(0.17) 

.967 
.372 

Occipital 0.50 

(0.21) 

.030* .290 -0.02 

(0.17) 

.900 
.530 

Table 5.2.4: Correlation between alpha/theta ratio and Rey-Osterrieth Complex Figure Test 

Note. b = beta coefficient (standard errors); using a linear mixed effect model (LME); ** p < .001, * p 

<. 05. p < .1. 

 Block Design A  Block Design B 

brain 

areas 

b p 

comparison b 

parietal/ 

other areas 

p b p 

comparison b parietal/ 

other areas 

p 

Parietal 0.49 

(0.25) 

.062.  0.02 (0.15) .886  

Frontal 0.32 

(0.25) 

.202 .090. -0.01 (0.15) .938 .588 

Central 0.33 

(0.25) 

.198 .096. 0.05 (0.15) .711 .578 

Tempora

l 

0.25 

(0.25) 

.328 .013* 0.05 (0.15) .735 .631 

Occipital 0.40 

(0.25) 

.121 .353 -0.01 (0.15) .962 .640 

Table 5.2.5: Correlation between alpha/theta ratio and Block Design Test 

Note. b = beta coefficient (standard errors); using a linear mixed effects model (LME); ** p < .001, * p 

<. 05. p < .1. 
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 Digit Span A  Digit Span B 

brain 

areas 

b p 

comparison b 

parietal/ other 

areas 

p b p 

comparison b 

parietal/ other areas 

p 

Parietal -0.34 

(0.17) 

.054.  0.25 (0.22) .272  

Frontal -0.35 

(0.17) 

.051. .944 0.13 (0.22) .548 .156 

Central -0.29 

(0.17) 

.096. .469 0.08 (0.22) .707 .041* 

Temporal -0.28 

(0.17) 

.107 .381 0.15 (0.22) .505 .218 

Occipital -0.19 

(0.17) 

.265 .030* 0.13 (0.22) .510 .210 

 

Table 5.2.6: Correlation between alpha/theta ratio and verbal Digit Span forward 

Note. b = beta coefficient (standard errors); using a linear mixed effects model (LME); ** p < .001, * p 

<. 05,. p < .1. 
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5.3.4 Discussion 
 

The aim of this study was to investigate possible relationships between parietal and occipital 

EEG slowing and visuospatial deficit in non-demented PD-patients. The EEG slowing was 

measured by determining the alpha/theta ratio in the frontal, central, temporal, parietal, and 

occipital lobe. The visuospatial ability was assessed by three different neuropsychological tests: 

Clock Drawing Test, ROCF and Block Design Test. An LME was used to explore the 

association between visuospatial performances and alpha/theta ratio.  

 

Inconsistent with previous findings, the PD-patients in our study showed only slight deficits in 

visuospatial ability. This might be explained by the high education level of the patients in our 

sample. Recent studies indicated that a high education is predictive for a slower cognitive 

decline (Kornhuber, 2004; Stern, 2009; Meng and D’Arcy, 2012). In order to separate 

potentially clinically conspicuous from inconspicuous patients with regards to the visuospatial 

ability, a median split was used. 

 

The results of this study show that PD-patients with a parietal EEG slowing manifest a 

visuospatial deficit. This result is in line with findings from voxel-based morphometry MRI 

analysis, indicating correlations between visuospatial ability in PDD-patients and changes in 

the occipitotemporal and dorsoparietal cortices in comparison to healthy controls (Pereira et al., 

2009). Nombela et al. (Nombela et al., 2014) also reported a correlation between parietal 

activity and visuospatial performance. In line with our hypothesis, the association between the 

EEG slowing and the visuospatial task performance is particularly pronounced in parietal areas 

compared to frontal, central and temporal areas (see figure 5.3.1). In addition, no differences 

between the association in parietal and occipital areas were detected in our sample. This finding 

indicates, that the association is not explained by the global EEG slowing, as has been shown 

in previous studies in patients with PD (Klassen et al., 2011; Olde Dubbelink et al., 2014). 

Though other previous studies also indicated that the visuospatial ability is not correlated with 

global EEG slowing measured by median frequency(Zimmermann et al., 2015a), more research 

is needed to substantiate this point. Our present findings are also in line with the dual-stream 

hypothesis of the visual processing claiming the occipitoparietal projection system to be 

responsible for visuospatial performance(Ungerleider and Haxby, 1994).  
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Figure 5.3.1. Difference alpha/theta ratio between gender in the different brain areas. 

 

In all groups with test scores above the median (i.e. unimpaired visuospatial abilities), no 

correlations were found between the alpha/ theta ratio and the task performances, indicating 

that a relationship between the visuospatial ability and the EEG is only measurable if the 

visuospatial ability score decreases below the median. 

 

In contrast to the results of the ROCF and the Block Design Test, the results of the Clock 

Drawing Test showed that PD-patients drawing an incorrect clock had lower alpha/theta ratio 

not only in parietal and occipital brain areas but also in all other brain areas. PD-patients with 

a flawless CDT-performance did not show this association (see figure 5.3.2). 

 

Figure 5.3.2. Comparison intercept between incorrectly and correctly drawn Clock Drawing Test groups 

related to the alpha/theta ratio in the different brain areas.  
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The neuroanatomical correlates of Clock Drawing Test performance were investigated in 

several studies, but the findings are inconsistent (Lee et al., 2008; Matsuoka et al., 2011, 2013; 

Shon et al., 2013). This discrepancy might probably stem from the fact that the Clock Drawing 

Test measures also executive function, numerical and verbal memory in addition to visuospatial 

ability (Shulman, 2000; Karádi et al., 2015). Furthermore, Matsuoka et al. explored the 

relationship between regional cerebral blood flow and different scoring criteria of the Clock 

Drawing Test in patients with Alzheimer’s disease, revealing that different criteria correlate 

with different brain regions. Consequently, it can be concluded that for a correlative analysis 

between different brain areas and CDT-performance an overall classification into errorless and 

incorrect CDT-performance might be too simple. Hence, future studies should adopt differential 

scoring CDT-scoring criteria to unravel this relationship. 

 

In our study, the results of the ROCF and the Block Design Test are consistent. In line with our 

findings, for both tests neuroanatomical correlation in parietal and occipital areas were also 

found in previous studies (Chase et al., 1984; Warrington et al., 1986; Wilde et al., 2000; 

Melrose et al., 2013). However, the results are more specific in ROCF than in the Block Design 

Test; for it we could only measure a tendency. This result could be explained as far as the in 

ROCF is majoritarian a visuoconstructive task; the patient merely needs to draw the figure. The 

Block Design Test, on the other hand, needs the abilities to perceive the figure, to analyse it and 

to fragment it in his components. Furthermore, the Block Design Test measures the capacity 

for problem-solving strategy and can provide information on how strongly the subject feels 

stressed by time pressure. Otherwise we did not consider the time required in ROCF 

performance. 

 

The Digit Span measures working memory. Studies on healthy subjects, using either 

transcranial magnetic stimulation(Aleman and Van’T Wout, 2008), or functional 

neuroimaging(Gerton et al., 2004), were able to show an involvement of the right dorsolateral 

prefrontal cortex in Digit Span processing. Furthermore, Gerton et al. reported that parietal and 

occipital areas are activated during the Digit Span forward task. In the present study no 

association was found between EEG slowing and the Digit Span performance. Nevertheless, a 

slight tendency towards a negative correlation between the alpha/theta ratio and the Digit Span 

performance was observed in frontal, central and parietal areas (see figure 5.3.3). The 

involvement of parietal areas could be explained by the use of the visual imagination strategies 

the subjects used during the Digit Span test. An explanation for the negative tendency could be 

that the Digit Span performance is not relating to EEG slowing caused by a shifting in 

alpha/theta ratio but by a shifting in others frequency range (e.g. theta/delta ratio or beta/alpha). 
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Figure 5.3.3. Correlation between alpha/theta ratio and tasks performance in different brain areas; 

ROCF= Rey-Osterrieth Complex Figure Test; A= group with lower tasks performance; B= group with 

higher tasks performance. 

 

The results from our present study revealed no significant differences regarding confounding 

factors between the median split groups of the ROCF and Block Design Test. However, there 

were significant differences between the subgroups according to their Clock Drawing Test 

performance. Patients with an incorrectly drawn clock had a lower MMSE score than patients 

with a flawless CDT-performance. This finding is not surprising since both CDT and MMSE 

are also measures of global cognitive dysfunction (Ploenes et al., 1994; Cahn-Weiner et al., 

1999; Riedel et al., 2013). In addition, many studies found a correlation between these two tests 

(Klein, 2015; Brodaty and Moore, 1997; Shulman, 2000; Heinik et al., 2004). Furthermore, PD- 

Patients with an incorrectly drawn clock had a lower BDI score than PD- patients with a 

correctly drawn clock. These findings were unexpected, as it is well-known that there is an 

association between depression and cognitive performance(Steffens and Potter, 2008). The 

results exploring the association between severity of depression and the performance in the 

Clock Drawing Test are inconsistent. Some authors have reported a significant negative relation 

(Harvey et al., 2004; Sarapas et al., 2012), whereas others have found minimal or no effect 

between the severity of depression and the Clock Drawing performance (Herrmann et al., 1998; 

Kirby et al., 2001; Elderkin-Thompson et al., 2004; Quinn et al., 2012). In the present study, 

the BDI score has no significant influence on the used LME model. 

 

Nevertheless, the results cannot predict whether the severity of depression has an influence on 

cognitive performance. Another group difference is found between Digit Span performance and 

disease duration. Patients in the Digit Span group A have a shorter disease duration than patients 

in the Digit Span group B. This result contrasts some recent findings, which have shown a 
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reduction of working memory capacity in PD-patients as disease progresses (Johnson et al., 

2016; Warden et al., 2016). Hence, our result might be caused by the sampling process based 

on a right-skewed sample and thus might represent an artefact. 

 

While in our analyses, the exhaustive search showed that gender (see figure 5.3.1) and age were 

confounding factors and were consequently controlled in the LME, other authors have found 

only a small influence for these variables on the EEG activity (Morgan et al., 2005; Klassen et 

al., 2011). Hence, further studies are needed to determine the influence of gender and age on 

EEG slowing in PD-patients. 

 

One limitation of our study is that the calculation of z-scores for the ROCF was based on a 

norm population whereas the calculations of z-scores for the Block Design Test and the Digit 

Span were based on our study population, limiting comparison of the tests. Moreover, since 

only 17 of 57 patients in our sample were female, the gender influence on EEG limits a 

generalisation. Although the unequal distribution of gender is well-known in PD (Baldereschi 

et al., 2000; Van Den Eeden et al., 2003) an equal gender distribution should be considered in 

future studies. Another limitation of this study is that there were no healthy controls included. 

Therefore, the conclusion that the findings are specific for patients with PD, cannot be drawn. 

A third issue is that this study did not control for multiple comparisons. Therefore, the 

interpretation of the results should be treated with caution, as the probability of making a false 

statement increases with the number of tests performed. In conclusion, in PD-patients with only 

slight deficits in visuospatial abilities, the visuospatial performance is related to parietal and 

occipital EEG slowing. The association between the EEG slowing and the visuospatial task 

performance is particularly pronounced in parietal areas compared to frontal, central and 

temporal areas. 
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6. Predictive value of EEG in prodromal Parkinson’s disease 

patients 
 

After feature selection for classification of PD patients from healthy individuals using a high 

density qEEG system and getting insights into the additive effect of neuropsychological tests 

for the classification as well as association between EEG and visuo-spatial domain, one of the 

goals was to test if similar qEEG features would be selected if using a low density recording 

system and further on, if such changes in brain signals could be detected already at a prodromal 

stage. For this purpose, a collaborative study was carried out with the University of Tübingen. 

The aims of this study were: a) to identify specific EEG patterns differentiating patients with 

early Parkinson’s disease from healthy controls using a 10-20 EEG system, b) evaluate whether 

this pattern is associated with striatal dopamine active transporter binding and can be identified 

in persons in the prodromal stage of the disease. The text below is based on a manuscript 

currently in submission for peer-review. 

 

6.1 Introduction 
 

Neurodegeneration in the substantia nigra (SN) is already advanced with a loss of 30-60% of 

dopaminergic cells (Dauer and Przedborski, 2003; Greffard et al., 2006; Cheng et al., 2010; 

Grosch et al., 2016) by the time Parkinson’s disease (PD) can be diagnosed clinically. When 

subtle signs of PD are present but do not fulfil the diagnostic criteria, it is referred to as 

prodromal PD (pPD) (Hughes et al., 1993, Berg et al., 2015a; Heinzel et al., 2016). Several 

features characteristic of this stage, when combined, can denote an increased risk for onset of 

PD in the future (Ross et al., 2012; Berg et al., 2013; Noyce et al., 2014), and may even 

correspond to the neuropathological staging of PD associated pathology (Mahlknecht et al., 

2015; Adler and Beach, 2016; Braak and Del Tredici, 2017). 

 

RBD(Galbiati et al., 2019), reduced dopamine transporter (DAT) binding on SPECT, 

occurrence of PD related mild parkinsonian signs indicating subthreshold parkinsonism and 

hyperechogenicity of SN (SN+) assessed by transcranial sonography (TCS) are anticipated to 

constitute the highest likelihood for future PD (Berg et al., 2015a). To date, the contribution of 

neurophysiological methods to predict pPD is unclear. Alteration in quantitative 

electroencephalography (qEEG) have reported in RBD as well as non-RBD individuals with 

depression, a potential prodromal marker of PD (Stoffers et al., 2007; Sunwoo et al., 2017; 

Bočková and Rektor, 2019; Gongora et al., 2019; Ruffini et al., 2019). 

 

We present data from the “Progression Markers in the Premotor Phase of Parkinson’s disease” 

study (Liepelt-Scarfone et al., 2013b), designed to investigate the progression of various 

clinical and biological markers in pPD. Aim of this analysis was to identify a specific qEEG 

pattern differentiating patients with early PD from healthy individuals and evaluate whether it 

is identifiable in people at potentially high risk for PD, indicating that specific alterations in 

qEEG activity might be a prodromal marker. We also aimed to see if this pattern was related to 
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DAT tracer binding and explore the predictive ability of qEEG data for PD related motor and 

non-motor worsening after two years. 

 

6.2 Materials and methods 
 

Patients  

           

Idiopathic Parkinson’s disease patients were recruited consecutively at the outpatient clinic of 

the Department of Neurodegeneration, University of Tübingen from January 2011 to December 

2012, using the UK Brain Bank criteria (Gibb and Lees, 1988; Liepelt-Scarfone et al., 2015).  

Patients were at an early stage of the disease with Hoehn & Yahr stage ≤ 2.5 and aged over 50 

years. HR-PD and controls were investigated in the PMPP study (Liepelt-Scarfone et al., 2013b). 

We primarily defined the status of HR-PD by the presence of SN+ assessed by TCS, which is 

associated with an increased risk of developing Parkinson’s disease in older aged persons (Berg 

et al., 2013, 2015a). In addition to SN+, the following criteria defined group status of HR-PD:  

i.       one of the Parkinson’s disease cardinal (bradykinesia, rigidity and resting 

tremor, defined by any of items 3.3-3.8, 3.14,3.17-3.18 of MDS UPDRS-III) motor 

signs assessed by the Unified Parkinson’s Disease Rating Scale or 

ii.      presence of at least two of the following markers – hyposmia (Sniffin’ sticks 

<75% correct identified odours) (Hummel et al., 2001), lifetime prevalence of major 

depression according to the ICD-10 criteria (World Health Organization, 1992), 

clinical rated one-sided reduced arm swing or a positive family history of 

Parkinson’s disease according to the criteria by Marder and co-workers (Marder et 

al., 1996).  

 

This combination of SN+ and prodromal markers is based on previous studies  (Liepelt et al., 

2011). Based on these past results, the chosen marker combination of our HR-PD group was 

estimated to reflect around 4% of persons in the healthy population. In total, 1300 participants 

were pre-screened according to the protocol of the PRIPS and TREND study (Berg et al., 2012). 

Healthy controls had normal echogenicity of the SN, no signs of current psychiatric disease and 

a negative family history of Parkinson’s disease. Exclusion criteria for participants were: 

neurological diseases affecting the central nervous system, Parkinson’s disease surgery, history 

of drug or alcohol abuse, prior use of cholinesterase inhibitors or memantine, or a Minimental 

State Examination (Folstein et al., 1975) <24 indicating severe cognitive deficits indicative for 

dementia. The local ethical committee of the University of Tübingen approved the study, and 

we performed it as per the 1964 Declaration of Helsinki and its later amendments (World Medical 

Association Declaration of Helsinki, 1997). All individuals gave written informed consent. 

 

In total, 70 subjects were included in the PMPP study and reassessed after two years. Of those, 

three participants did not have an EEG recording due to technical problems. Additionally, we 

excluded one subject from data analysis due to the diagnosis of a meningioma near the brain 

stem. Therefore, the present study is based on the data of 16 Parkinson’s disease patients, 37 

HR-PD and 13 controls.  
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Assessments 

 

EEG recording and analysis 

 

EEG data were recorded using a standard IS 10-20 system (five minutes resting condition with 

eyes open and closed, each for 30 seconds, five times in a row). EEG’s were processed with an 

automated pipeline using TAPEEG (https://sites.google.com/site/tapeeg/) (Hatz et al., 2015). 

The data were filtered (Firls: 0.5–70 Hz, 50 Hz notch), artefacts like muscle and eye movement 

were removed along with bad channels. Further artefact removal was done  using the 

independent component analysis implementation of EEGLAB (Delorme and Makeig, 2004) 

(“runica” with default settings). We obtained relative spectral powers for 18 electrodes in six 

power bands, global spectral measures and median frequencies. 

 

Penalized logistic regression was applied to identify the most influential EEG features 

distinguishing Parkinson’s disease patients from healthy controls (Chaturvedi et al., 2017) and 

obtain a subset of features that would not be highly correlated to each other. We then 

investigated this pattern in the HR-PD disease group at baseline. The least absolute shrinkage 

and selection operator (LASSO) method (Tibshirani, 1996b, 1997) has been used in different 

studies for feature selection and computing risk predictive models (Wu et al., 2009; Fontanarosa 

and Dai, 2011; Mavaddat et al., 2019). In many cases, lasso-penalized models have shown 

improved prediction accuracy while selecting only a limited number of covariates that are 

included in the model. 

 

We used the penalized (Goeman, 2010) package in R (R Core Team, 2018) to create a logistic 

regression model with the L1-LASSO penalty and carried out cross-validation, optimization to 

select the tuning parameter. Cross-validated ROC curves were obtained with the ROCR (Sing 

et al., 2005) package in R. 

 

123I-FP-CIT-SPECT  

 

Due to requirements of the local ethical committee, imaging of DAT binding in nigrostriatal 

region was limited to the HR-PD and Parkinson’s disease group and measured by 123I-FP-CIT-

SPECT (DaTSCANTM). Participants received a single intravenous injection of 123I-FPCIT (GE 

Healthcare, Zeist, Netherlands) with a recommended dose of 185 MBq. Three hours post-

injection, SPECT images were acquired with a dual-head gamma camera high-resolution 

collimator (Symbia®, Siemens, Germany, acquisition time was will be approximately 40 min). 

Based on the software BRASS® (Hermes Medical Solution, Inc), we defined uptake values for 

the right and left caudate and the putamen as regions of interest. In addition, sides were pooled 

to match sides with lower (more affected) and higher (less affected) tracer binding in either the 

right and left regions of interest as well as summed up to a total summary uptake score of 

caudate and putamen. The putamen/caudate ratio was also calculated.  

 

 

https://sites.google.com/site/tapeeg/
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Transcranial sonography 

 

To define the echostatus of the SN, a TCS was conducted with a 2.5 Mhz transducer in all 

participants (Antares® ultrasound machine, Siemens, Germany). Resolution of this system is 

approximately axial=0.7 mm, lateral=3 mm. Echogenicity of the SN was measured 

planimetrically according to the consensus guideline (Berg et al., 2006). SN+ was defined as an 

area of echogenicity above 0.19 cm² of either the right or left side of the SN. This cut-off is the 

90th percentile of a large sample of neurodegenerative healthy individuals (Liepelt et al., 2011; 

Berg et al., 2013). 

 

Motor assessment 

 

Severity of parkinsonian signs was assessed by the MDS Unified Parkinson’s Disease Rating 

Scale motor part (MDS-UPDRS-III)(Goetz, 2010) and the modified Hoehn & Yahr stage 

score(Goetz et al., 2004). Based on their motor performance after two years, we categorized 

patients as having stable (no increase in MDS-UPDRS-III score) or progressive motor signs. 

Progressive signs referred to either ≥1 point or ≥3 points increase in the MDS-UPDRS-III.  

 

Previous studies identified an UPDRS-III score of 2.5 points as the minimal clinically 

meaningful differences in Parkinson’s disease (Shulman et al., 2010), but changes have been 

reported to be below this cut-off in a non-Parkinson’s disease sample over time (Liepelt-Scarfone 

et al., 2015). For calculation of the LRs to define the probability of being in the prodromal stage 

of Parkinson’s disease, MDS-UPDRS-III scores referring to postural and action tremor were 

excluded as suggested by the MDS criteria (Berg et al., 2015a).  

 

Non-motor assessment 

 

We used the German version of the University of the Pennsylvania Smell Identification Test 

(UPSIT) to evaluate progression in olfactory dysfunction over the study period. Subjects with 

actual or chronic diseases that might reduce olfactory performance (e.g. chronic rhinitis) were 

excluded from data analysis. Age- and gender-corrected standard scores were analysed, a value 

below one standard deviation of published population norms (z=-1.0) were classified as 

hyposmia at baseline and follow-up.  

 

Urinary and erectile dysfunction and constipation were rated on a 5 point scale to code for 

symptom severity ranging from no presence of symptoms (score=0) to permanent medical 

therapy needed (score=4) (Wenning et al., 2004). Examination of orthostatic hypertension was 

based on a standardised blood pressure measurement (UMSARS part III) (Wenning et al., 2004). 

According to the protocol, we manually assessed the systolic, diastolic blood pressure (S/DBP) 

and heart rate of the participants after 2 minutes lying in supine position and again after 2 

minutes of standing. The RBD Screening Questionnaire (Stiasny-Kolster et al., 2007) was used 

to assess the symptoms and severity of RBD. Acute state of depression was diagnosed during 

consensus guidelines (World Health Organization, 1992). Since we used the lifetime prevalence 
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of major depression for study group assignment, newly diagnosed major depression within the 

follow-up period was included as a prodromal marker in the follow-up.  

 

Additionally, male sex and history of smoking expressed as pack-years were registered. We 

defined subjects with a pack-year value of zero as never-smokers. All subjects with a pack-year 

value ≥1 were classified as former smokers including current smokers.  

 

Neuropsychological battery 

 

A comprehensive neuropsychological test-battery assessed all major areas of potential 

cognitive disability, known to be disturbed in early Parkinson’s disease. This included the short 

version of the intelligence task “Leistungsprüfsystem 50+” (LPS 50+K) (Sturm W. Willmes K. 

Horn W, 1993), covering for both crystalline and fluid intelligence, including the letter fluency 

test (subtest 6). The Tower of London (TL-D) test assessed the planning and executive function 

(Tucha O. Lange KW, 2004)), the Trail Making Test (TMT) part A and B (Memory Clinic NPZ, 

2005) assessed psychomotor speed (A) and set-shifting (B). The Stroop Color-Word 

Interference test (Stroop) (Baeumler G., 1985) to screen for impairment in direct attention. Two 

subtests of the computerised assessment battery of attentional performance (TAP) (Zimmermann 

P. Fimm B., 2002), namely the value of phasic alertness from the “Alertness” and the median 

reaction time from the subtest “Divided Attention” part was applied to further test for attentional 

dysfunction. The Logical Memory I and II of the Wechsler Memory Scale Revised (WMS-R) 

(Wechsler and Härting, 2004) assessed complex memory function, the Digit Span forward and 

backward section of the WMS-R (Wechsler and Härting, 2004) assessed working memory 

performance. The Block design of the Wechsler Adult Intelligence Scale (Tewes, 1991), was 

used to test visual-spatial abilities. German norm data (percentile rank score, PR) provided in 

the test manual of the neuropsychological assessments, referring to an age matched population 

for each subject investigated were used to compare test performance. If available (TL-D, 

Stroop, TMT and TAP), we chose norms corrected for both age and education. 

 

Data analysis and statistics 

 

LR+ and LR-, for the risk mentioned above and prodromal markers, were defined according to 

the recommendations of the MDS guideline for prodromal Parkinson’s disease (Berg et al., 

2015b). For details, we refer to supplementary Table 1. Total LR for baseline and follow-up, 

respectively, for every study participant, was calculated, with a higher total LR indicated a 

higher intra-individual number of the assessed risk or prodromal markers. Finally, we calculated 

the age-adapted quantitative post-test probability score (0 to 100%) for each patient in a 

neurodegenerative process that may lead to future Parkinson’s disease after two years. The cut-

off for the post-test probability score was 50 and 80% to define possible and probable prodromal 

Parkinson’s disease (Berg et al., 2015a; Liepelt-Scarfone et al., 2017). Besides the EEG analysis 

described above done using R, the rest of the data were analysed using IBM SPSS Statistics 

22.0 for Windows. Non-parametric test statistic was applied. Therefore, data are presented as 

median and range or number/percentage if not indicated otherwise. Demographics and clinical 

data between groups were compared by use of the Kruskal-Wallis (healthy controls vs HR-PD 
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vs Parkinson’s disease), the Mann-Whitney U Test (e.g. between-group comparison and post 

hoc comparison) or Chi² test or Fisher's exact test as appropriate.  

 

To identify the association of the tracer binding in 123I‐FP‐CIT‐SPECT, the likelihood ratios, 

the post-test probability prodromal score and the identified Parkinson’s disease-specific EEG 

profile, a linear regression analysis was done taking each feature of interest as a dependent 

variable and the EEG risk score as an independent variable, correcting for age and sex as 

potential confounders. In a second model exploring the association of DAT tracer binding, 

additionally the MDS-UPDRS-III score was added as an independent variable into the analysis. 

Spearman correlation analysis (rho) was done in the total sample.  

 

 6.3 Results 
 

Table 6.1 gives an overview of the distribution of risk and prodromal marker in each study 

group. The disease duration was 31 (range: 15-56) months, patients were assigned to the 

following Hoehn & Yahr stages: 1=6.3%, 1.5=6.3%, 2=68.8% and 2.5=18.8%. All Parkinson’s 

disease patients were medicated with dopaminergic medication: intake of antidepressants was 

recorded in 10 participants, five (31.3%) with a diagnosis of Parkinson’s disease and five 

(13.1%) individuals classified as HR-PD. Participants of the control group took none of these 

drugs.  

 

In summary, 18 subjects (Parkinson’s disease=31.3%, HR-PD=35.1%) reported a first, six 

(Parkinson’s disease=18.8%, HR-PD=8.1%) a second-degree relative, and four patients 

(Parkinson’s disease=18.8%, HR-PD=2.7%) other family relatives with Parkinson’s disease 

symptoms. In addition to the recruitment criteria, urinary urgency was more frequent in HR-

PD compared to the control group at baseline. Around two thirds (n=28, 75.7%) of the HR-PD 

group had either mild bradykinesia, rigidity or resting tremor, with bradykinesia as the most 

frequent symptom (70.3%). However, only five patients of the HR-PD group scored more than 

six on the MDS-UPDRS-III scale. 

 

 Controls HR-PD PD p-value HR-PDEEG- HR-PDEEG+ p-value 

Number 13 37 16  27 10  

Age 
62 (54-

76) 

62 (54-

73) 

64 

(50-

80) 

0.89 62 (54-73) 62.5 (57-70) 0.85 

Years of 

Education 

12 (10-

20) 

15 (11-

22) 

13.5 

(8-24) 
0.33 16 (11-22) 15 (11-22) 0.96 

Risk 

markers 
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Male 

gender 

7 

(53.8%) 

26 

(70.3%) 

9 

(56.3

%) 

0.48 18 (66.7%) 8 (80.0) 0.69 

Smoking 

3 (23.1) 
14 

(38.9) 

6 

(37.5)

) 

0.58 11 (40.7) 3 (33.3) 1.00 

Positive 

family 

history for 

first degree 

relatives 

0 12 

(35..1) 

5 

(31.3) 

0.042# 

9 (33.3) 4 (40) 1.00 

Substantia 

nigra 

hyperechog

enicity 

0 (0) 37 (100) 15 

(93.8) 

<0.00╫

# 
27 (100) 10 (100) 1.00 

Prodromal 

markers 
       

One-sided 

reduced 

arm-

swing* 

0 (0) 13 

(35.1) 

14 

(87.5) 

<0.001

╫#‡ 
9 (33.3) 4 (40) 1.00 

MDS-

UPDRS-III  
0 (0-2) 4 (0-12) 

26 (9-

55) 

< 

0.001╫#

‡ 

3 (0-12) 4 (0-6) 0.85 

MDS-

UPDRS-III 

>6 

0 (0) 
5 

(13.5%) 

16 

(100) 

<0.001

╫‡ 
5 (18.5) 0 (0) 0.30 

UPSIT 
40 (14-

62) 

15 (4-

90) 

5.5 (9-

54) 

< 

0.001╫‡ 
24 (5-90) 14 (4-26) 0.07 

Hyposmia, 

Sniffin‘ 

Sticks < 

75%* 

1 (8.1) 18 

(48.6) 

12 

(75) 

0.002╫ 

13 (48.1) 5 (50) 1.00 

Olfactory 

impairment 

2 (15.4) 
23 

(62.2) 

13 (

8

1

.

3

) 

0.001╫# 15 (55.6) 8 (80) 0.26 

RBD 

 
1 (7.7) 4 (10.8) 4 (25) 0.38 3 (11.1) 1 (10) 1.00 
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Urinary 

dysfunction 
0 (0) 

15 

(40.5) 

10 

(62.5) 
0.002╫# 12 (44.4) 3 (30) 0.48 

Erectile 

dysfunction 
0 (0) 7 (18.9) 

3 

(18.8) 
0.29 4 (14.8) 3 (30) 0.36 

Constipatio

n 
0 (0) 2 (5.4) 

3 

(18.8) 
0.18 2 (7.4) 0 (0) 1.00 

Orthostatic 

hypotensio

n 

0 (0) 2 (5.4) 
6 

(37.5) 
0.003‡ 2 (7.4) 0 (0) 1.00 

Lifetime 

depression, 

n (%)* 

1 (15.4) 
13 

(35.1) 
8 (50) 0.16 8 (29.6) 5 (50) 0.44 

New-onset 

depression 
1 (7.7) 

11 

(32.4) 

5 

(35.7) 
0.20 8 (30.8) 3 (37.5) 1.00 

 

Table 6.1. Overview of demographics, risk and prodromal marker of study groups 

*. Markers used for recruitment and study group assignment only; post-hoc comparison p<0.017: 

╫.Parkinson’s disease (PD) vs. all controls; #.High risk for PD (HR-PD) group vs. controls; 

‡.Parkinson’s disease patients vs. HR-PD group. 

 

6.3.1 Differentiation between controls and Parkinson’s disease 

according to EEG pattern 
 

By using penalized logistic regression (LASSO), we identified theta power in the right occipital 

lobe (O2) and alpha1 activity in the left parietal lobe (P3) as primary factors differentiating 

controls from Parkinson’s disease. This resulted in a risk score obtained from the following 

equation: (1.62*Theta-O2) + (0.75*Alpha1-P3) + 3.75. The probability of each patient being 

diagnosed as Parkinson’s disease or the predicted risk can be obtained by applying the formula: 

exponential (patient’s risk score) ÷ (1 + exponential (patient’s risk score)). Cross-validated 

median values for sensitivity and specificity was 71% and 75% respectively, with an area under 

the curve (AUC) of 0.80. Figure 6.1 shows the cross-validated ROC curves. 
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Figure 6.1: Cross-validated ROC curves from the penalized regression model differentiating PD 

patients from healthy individuals  

 

According to the risk score, ten participants classified as HR-PD (27%) had a higher probability 

of having a Parkinson’s disease-specific EEG profile. Figure 6.2 shows how the three study 

groups differ with regards to the two chosen features, theta power in the O2 electrode and alpha1 

power at P3. On single marker level, the clinical profile of the HR-PD group with similarities 

in EEG to Parkinson’s disease patients (HR-PDEEG+) and without similarities (HR-PDEEG-) did 

not statistically differ, except a tendency of slightly lower UPSIT total scores in the HR-PDEEG+ 

group (p=0.07, see Table 6.1). The HR-PDEEG+ group had no intake of antidepressants in 

contrast to 18.5% of HR-PDEEG- group.  
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Figure 6.2: Difference in theta and alpha1 relative powers in PD, HC and high-risk groups in the right 

occipital and left parietal lobes respectively. 

 

6.3.2 Association between the Parkinson’s disease-specific EEG 

pattern and 123I-FP-CIT-SPECT 
 

Of the total sample, we recorded 123I-FP-CIT-SPECT data of 14 Parkinson’s disease patients 

and 18 individuals of the HR-PD group. Results of the regression analysis confirmed a 

significant association between the EEG risk score equation, reflecting a Parkinson’s disease-

specific EEG pattern with uptake values of caudate and putamen, as well as the 

putamen/caudate ratio independent from age and sex (see Supplementary Table 6S2). By 

adding the MDS-UPDRS-III score into the regression model (data not shown) the association 

between EEG and the tracer uptake was no longer significant for most parameters, but level of 

significance for association of caudate/putamen ratio and EEG was borderline (Model fit: F 

17.797, p<0.001; β=-.264, p=0.052).  

 

 HR-PDEEG- HR-PDEEG+ P value 

 

Risk LR    

Baseline  5.99 (1.45- 14.98) 5.99 (1.44-31.73) 0.39m 

Non-motor prodromal LR     

Baseline  1.71 (0.18-24.33) 1.71 (0.41-8.04) 0.47m 
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LR, likelihood ratio; c. Fishers Exact test; m Mann-Whitney U test 

Table 6.2: Comparison of risk and non-motor prodromal likelihood ratios and motor worsening between 

groups.  

6.3.3 Association between baseline risk and prodromal marker 

profile and EEG 

 

Regression analysis (Model fit: F= 3.707 p=0.016, R²=0.15) revealed that the calculated risk 

marker LR was not statistically significantly associated with the EEG risk equation (β=0.180, 

p=0.134), independent from age (β=-0.179, p= 0.142) and sex ((β=0.276, p=0.024). In contrast, 

baseline LR of non-motor prodromal markers, which were not used for classification of study 

groups (excluding olfaction and lifetime prevalence of depression) were predicted  (β=0.269, 

p=0.022) in addition to age (β=0.260, p=0.029) by the EEG equation (Model fit: F=5.130, 

p=0.003, R²=0.19). The effect between the EEG profile and the total LR, including motor 

performance (Model fit: F=3.749, p=0.015, R²=0.16) was highly significant (β =0.395, 

p=0.001), and not confounded by age (p=0.91) and gender (p=0.71).  

 

Between-group comparison of the persons classified as HR-PDEEG+ and HR-PDEEG- showed 

that the risk and prodromal marker burden expressed as risk LRs (U=97.5, p=0.39), prodromal 

LRs (U=113.5, p=0.47), as well as total LRs including motor performance (U=108.5, p=0.64), 

did not statistically differ at baseline (see Table 6.2 for details).  

 

 6.3.4 Prediction of motor worsening after two years by EEG  
We re-assessed all participants after a median follow-up interval of 23 (21 to 30) months but 

had to exclude five participants (3 HR-PD, 2 Parkinson’s disease), who we lost to follow-up 

due to severe illness death or loss of contact. 

 

Prediction of motor outcome assessed by either the total MDS-UPDRS-III score with (Model 

Fit: F=6.873, p<0.001, R²=0.23) and without tremor scores (Model Fit: F= 7.236, p<0.001. 

R²=0.28) according to baseline EEG data (tremor included: β=0.508. p<0.001; tremor excluded: 

β=0.516, p<0.001) revealed a close relationship between these variables with no impact of age 

(p>0.34) and sex (p>0.32) on the dependent variable.  

 

Follow-up  0.72 (0.16-14.47) 2.49 (0.16-14.47) 0.043m 

Motor worsening in two years   

MDS-UPDRS-III ≥1 increase, n (%) 7 (26.1%) 2 (25.0) 1.00c 

UPDRS Part III ≥3 increase, n (%) 3 (11.5) 2 (25%) 0.57c 

Total prodromal LR    

Baseline 9.11 (0.19-348.90) 17.97 (0.62-38.06) 0.64m 

Follow-up 4.55 (0.19-71.42) 59.15 (4.16-256.75) 0.002m 
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 6.3.5 Prediction of prodromal Parkinson’s disease stage at the time 

of follow-up  
 

At the time of follow-up, participants of the HR-PDEEG+ group had significantly higher values 

in non-motor prodromal (U=54, p=0.043) and total LRs (U=32.5, p=0.002) in comparison to 

the HR-PDEEG- group. Results of regression analysis (Model fit: F=4.15, p=0.01, R²=0.14), 

including the entire sample, verified that baseline EEG risk score values were associated with 

follow-up non-motor prodromal LRs (β=0.393, p=0.002), irrespective of person’s age (p=0.36) 

and sex (p=0.14). The same holds for the association of post-test probability of prodromal 

Parkinson’s disease to baseline EEG data (Model Fit: F=18.771, p<0.001, R²= 0.50), which was 

highly significant (β=0.693, p<0.001), not confounded by age (p=0.30) and sex (p=0.61).  

 

Calculations of post-test probability scores showed that 15 participants (HR-Parkinson’s 

disease: 4/34, Parkinson’s disease: 11/14) and seven participants (HR-Parkinson’s disease: 1/34 

-Parkinson’s disease converter-, Parkinson’s disease: 6/14) reached ≥50 and ≥80% post-test 

probability values, respectively. Of those, 13 participants (HR-Parkinson’s disease: 4; 

Parkinson’s disease; 9/11) were classified to have an EEG profile indicative of Parkinson’s 

disease at baseline. The sensitivity of ≥50% post-test probability for the HR-PDEEG+ group 

compared to those classified as HR-PDEEG- at baseline was calculated as 50%, with a specificity 

of 100% and a positive and negative predictive value of 100% and 87% respectively. The risk 

for ≥50% post-test probability, indicating state of possible prodromal Parkinson’s disease, was 

therefore significantly higher in the HR-PDEEG+ group (p=0.02) with a relative risk of 27 (95% 

CI: 1.61 to 454.21) compared to HR-PDEEG- 

 

 6.3.6 Association between EEG and cognitive function  
 

Correlation analysis between baseline cognitive and EEG data was highest for 

neuropsychological tests assessing attention (TAP-Phasic Alertness, rho=-0.259, p=0.040); 

TAP-Divided Attention. Median, rho=-0.256, p=0.042), memory performance (Logical 

Memory II, rho=-0.258, p=0.037) and psychomotor speed (TMT A, rho= -0.281, p= 0.024) 

indicating that lower test performance in these domains was associated with higher EEG risk 

scores reflecting a higher probability of resembling the Parkinson’s disease-specific EEG 

profile. By correlating follow-up cognitive data with baseline EEG values, lower performance 

in the Stroop test colour naming condition (directing attention, rho= -0.263, p= 0.040) and the 

TMT B (rho=-0.256, p=0.047) indicating attention and executive problems (set shifting) were 

significantly associated with the baseline EEG risk score.  
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6.4 Discussion 
 

For the first time, we investigated the potential of EEG as a biomarker for Parkinson’s disease 

in individuals potentially at high risk for Parkinson’s disease primarily selected by SN+ 

according to TCS. TCS has been used in various studies, not only to confirm Parkinson’s 

disease diagnosis (Li et al., 2016) but also to encompass a high-risk group for future onset of 

Parkinson’s disease (Berg et al., 2011).  

 

As the pre-clinical symptoms of Parkinson’s disease are heterogenic as an expression of the 

underlying neurodegenerative process (Dauer and Przedborski, 2003; Grosch et al., 2016), 

biomarkers indicating a high risk for Parkinson’s disease conversion reflecting in vivo 

Parkinson’s disease specific brain changes are needed to identify a high-risk Parkinson’s 

disease group.  

 

Diagnostic value of EEG for early diagnosis of Parkinson’s disease 

 

We here identified a Parkinson’s disease-specific EEG pattern differentiating controls from 

early-stage disease patients. By using a 10-20 standard EEG system, economical in time and 

costs, we obtained an EEG risk score based on a subset of EEG features expressing the 

likelihood of Parkinson’s disease-related neurophysiology alterations. The results showed that 

none of the individuals with a normal EEG scored higher than 50% post-test probability even 

if they were classified as HR-PD indicating that a normal EEG pattern predicts ones with low 

post-test probability perfectly. On the other hand, half of the individuals with HR-PD with a 

specific EEG pattern had a score higher than 50%. Theta and alpha powers, especially in the 

occipital, parietal and temporal regions, are reported as characteristics of Parkinson’s disease 

patients in several studies. One study investigating 15 early-stage Parkinson’s disease patients 

and 15 healthy individuals had found an increase in delta, theta bands in Parkinson’s disease 

patients with a decrease in alpha, beta bands (Han et al., 2013). Theta power in the left occipital 

region was found to be associated with disease severity in Parkinson’s disease patients and also 

differed significantly between Parkinson’s disease patients with and without mild cognitive 

impairment (He et al., 2016). One MEG study (Bosboom et al., 2006) had also reported an increase 

in theta power in the occipital and temporal channels to be associated with lower cognitive 

performance in Parkinson’s disease patients without dementia.  

 

As the penalized logistic regression method picks out features that are not highly correlated to 

each other, the final two features may not represent the only possible solution, but rather an 

optimal model resulting in a considerable classification accuracy. This could explain why some 

studies found power in theta temporal left region to be the most effective classifier instead of 

theta power in temporal right or occipital regions. Signals from electrodes placed close to each 

other can be more correlated than if further away, which would lead to the selection of only one 

amongst the cluster.  

 

We noted that the alpha1 power was slightly increased in Parkinson’s disease patients in 

comparison to healthy individuals, unlike our observations in other cohorts, but speculate that 
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it could be an effect of the dopaminergic medication on some of the patients. Some studies have 

found levodopa intake to result in increased spectral powers (Yaar and Shapiro, 1983), 

specifically in alpha and beta powers (Melgari et al., 2014). A recent study reported changes in 

phase-amplitude coupling and coherence due to dopaminergic medication, especially in the 

sensorimotor cortex (Miller et al., 2019). Daily intake of levodopa was also observed to affect 

the alpha cortical source activations in Parkinson’s disease patients while in a state of quiet 

wakefulness (Babiloni et al., 2019). 

 

Association between EEG, TCS and 123I‐FP‐CIT‐SPECT 

 

Once we identified an EEG profile distinguishing Parkinson’s disease from healthy controls, 

we wanted to investigate other clinical features, including motor and cognitive scores from their 

two-year follow up data, and find out how these patients progressed. A significant strength of 

this study was the availability of data from 123I‐FP‐CIT‐SPECT for a subset of the patients 

(Benamer et al., 2000; Seifert and Wiener, 2013). We found the EEG risk score associated with the 

caudate, putamen, as well as putamen/caudate independent from age and sex, showing that EEG 

reflects dopaminergic loss associated with Parkinson’s disease. By controlling for motor 

severity in the regression model, most effects between the EEG risk score and tracer uptake 

were no longer significant for most parameters; however, association between the 

putamen/caudate and EEG was strongest. Loss of caudate uptake is found to be correlated with 

cognitive function in Parkinson’s disease patients (Arnaldi et al., 2012; Pellecchia et al., 2015), 

especially executive function, and when combined with some other biomarkers, it has been 

found to potentially predict cognitive decline (Schrag et al., 2017; Lanskey et al., 2018).  

 

In individuals with hyposmia, a known risk factor, and non-motor manifestation of Parkinson’s 

disease, studies reported a higher risk of conversion in those with a 123I‐FP‐CIT‐SPECT tracer 

uptake deficit (Jennings et al., 2017) than in those with an intermediate DAT binding or normal 

123I‐FP‐CIT‐SPECT tracer uptake. A study investigating idiopathic RBD carried out DAT 

imaging at baseline and follow-ups and identified nigrostriatal changes concerning the early 

onset of the disease (Zou et al., 2016). Such deficits, when combined with olfactory dysfunctions, 

have also been identified as potential predictors of Parkinson’s disease (Berendse and Ponsen, 

2006). Such studies verify that Parkinson’s disease related dopaminergic alteration can be 

detected very early in the stage of neurodegeneration. In our cohort, EEG is associated with 

tracer binding, with lower tracer binding reflecting higher values of the EEG risk score more 

prominent in Parkinson’s disease. Therefore, our data indicate that the identified EEG risk score 

might reflect dopaminergic activity, even in the prodromal stage of Parkinson’s disease. A non-

invasive way to detect these changes early on, such as EEG, have the potential to serve as a 

prodromal Parkinson’s disease biomarker.  

 

Sensitivities of 87.5% and 84.4% were reported for TCS and DAT Scan with a specificity of 

96.2% for both methods (Jesus-Ribeiro et al., 2016). Findings from both methods correlated with 

84% of diagnosis of Parkinson’s disease (Bártová et al., 2014). In RBD, reduced striatal binding 

and SN+ in combination were also reported to predict conversion to synucleinopathy after 2-5 

years, a sensitivity of 100% and specificity of 55% (Iranzo et al., 2010). Comparing individuals 
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with a potential high and low risk for Parkinson’s disease both TCS seems to have a better 

discriminant ability than the DAT striatal binding ratio (Noyce et al., 2018), suggesting that SN+ 

is able to identify very early in the disease related neurodegenerative process. In our sample a 

combination of SN+, other risk and prodromal marker and EEG best predicted worsening of 

both motor and non-motor symptoms in our group.  

 

Association between EEG and clinical marker profile 

 

Several studies have demonstrated that non-motor markers occur early in the neurodegenerative 

process (Pilotto et al., 2017; Postuma et al., 2019). However, those markers assessed individually 

also frequently occur in the healthy population, dramatically lowering its positive predictive 

value. Therefore, a combination of different Parkinson’s disease-specific clinical markers has 

been proposed to increase its prognostic value (Berg et al., 2015b; Heinzel et al., 2019). A higher 

non-motor burden is also established to be associated with a more rapid development of 

Parkinson’s disease (Mahlknecht et al., 2016, 2018; Fereshtehnejad et al., 2017; Pilotto et al., 

2017; Mirelman et al., 2018). The recent application of deep learning in distinguishing healthy 

individuals from patients with RBD who eventually progressed to Parkinson’s disease using 

signals from a single electrode showed the potential of EEG in facilitating the identification of 

clinically relevant biomarkers (Ruffini et al., 2019). Even if RBD is the prodromal marker with 

the highest prognostic value for alpha synucleopathies, it is prominent in only a subgroup of 

16–47% of all Parkinson’s disease cases, at the time of Parkinson’s disease diagnosis (Högl et 

al., 2018). Therefore, another combination of prodromal marker might also increase the risk for 

future Parkinson’s disease accompanied by probable alteration in EEG.   

 

Following up on the patients after two years, we found EEG to be associated with motor 

worsening, deficits in cognitive tests such as attention, executive function and with likelihood 

ratios of non-motor prodromal markers. Baseline EEG patterns of the cohort predicted 

(p<0.001) follow-up motor outcome (MDS-UPDRS-III score, excluding tremor), follow-up 

probability of ≥50% prodromal Parkinson’s disease in HR-PD in two years and baseline 

prodromal marker burden. Previous work showed that beta frequency in the right posterior 

temporal region was related to stage of disease severity (He et al., 2016). Moreover, EEG is also 

found to be useful in predicting motor symptoms such as freezing of gait in Parkinson’s disease 

patients (Handojoseno et al., 2018) further supporting the assumption that EEG might be a 

potential biomarker for disease progression in Parkinson’s disease.  

 

Similar to several studies showing the importance of theta and alpha1 power in the disease 

progression leading to cognitive decline (Jacobs et al., 2006; Bousleiman et al., 2015, Cozac et 

al., 2016a; Singh et al., 2018), we also found theta and alpha1 powers to be important indicators 

of early-stage Parkinson’s disease as well as in the high-risk Parkinson’s disease group. 

Absolute theta power was also identified to be more prominent in patients with depression 

compared to healthy controls (Cai et al., 2018). In our study, theta was the strongest predictor 

and could clearly distinguish between Parkinson’s disease and the healthy group, with the high-

risk group falling in between. As we used the likelihood ratios including varying Parkinson’s 

disease-related motor and non-motor symptoms to define the stage of prodromal Parkinson’s 
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disease, our data suggests that the EEG risk scores reflect an overall symptoms burden 

associated to Parkinson’s disease in our sample, rather than a specific clinical symptom profile.  

Potential limitations of this study arise from the small group of patients investigated and limited 

longitudinal data. The recruited HR-PD group had a marker profile measured in around 4% of  

the general population (Liepelt et al., 2011) which needed around 1300 persons to be screened 

for the recruitment of HR-PD group. It needs to be considered, though, that only a subgroup of 

individuals of the HR-PD group will develop Parkinson’s disease in their lifetime. Further 

longitudinal follow up of these individuals would be helpful to determine whether EEG helps 

to stratify those who will develop the full clinical picture of PD. The value of EEG as a potential 

biomarker for Parkinson’s disease needs to be verified in monitoring disease progression from 

prodromal to the symptomatic stage in larger cohorts. 
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6.5 Supplementary tables 
 

 

Risk markers Assessment Cut-off LR+ LR- 

Male gender - - 1.2 0.8 

Smoking Pack years ≥ 1 0.45 1.25 

Positive family history for first 

degree relatives 

Marder 

Questionnaire 

Possible PD 2.5 1.0 

Substantia nigra 

hyperechogenicity 

TCS * 4.7 0.45 

Prodromal markers   LR+ LR- 

REM sleep behaviour disorder RBDSQ ≥5 2.3 0.76 

Possible subthreshold 

parkinsonism 

MDS-UPDRS >6       10 0.7 

Olfactory impairment UPSIT age and gender corrected 

standard score, z < -1.0 

4.0 0.43 

Urinary dysfunction UMSARS item 

10 

≥ 1 1.9 0.9 

Erectile dysfunction UMSARS item 

11 

≥ 2 2.0 0.9 

Constipation UMSARS item 

12 

≥ 2 2.2 0.8 

Orthostatic hypotension UMSARS part-

III 

SBP-D > 20 or DBP-D > 

10 or symptom with 

standing 

2.1 0.87 

Depression ICD-10 - 1.8 0.85 

 

Table 6.5.1: Assessment tools, cut-off values and likelihood ratios of risk and prodromal markers 

LR, likelihood ratio; PD, Parkinson’s disease; TCS, Transcranial sonography; RBDQS, REM sleep 

behaviour disorder screening questionnaire; UPSIT. Smell Identification Test; MDS-UPDRS, 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale; UMSARS, Unified multiple 

system atrophy rating scale; S/DBP-D, systolic/diastolic blood pressure drop; ICD, International 

statistical classification of diseases. excluding action tremor. 

* Substantia nigra hyperechogenicity was defined as ≥ 90th percentile of the measurements in healthy 

population. 

t Excluding postural and action tremor.   
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 Model Fit EEG Equation Age Sex 

 F p-value ß-

value 

p-value ß-value p-value ß-value p-value 

Nucleus caudatus         

- Right side 4.549 0.010 -0.515 0.004 -0.017 0.923 -0.192 0.257 

- Left side 5.749 0.003 -0.611 0.001   0.108 0.517 -0.102 0.527 

- More affected 

side 

5.705 0.004 -0.613 0.001   0.112 0.500 -0.094 0.560 

- Less affected side 4.926 0.007 -0.527 0.003 -0.019 0.913 -0.202 0.227 

- Total values 5.426 0.005 -0.579 0.001   0.050 0.764 -0.148 0.367 

Putamen         

- Right side 5.758 0.003 -0.634 <0.001   0.070 0.672   0.007 0.967 

- Left side 5.785 0.003 -0.649 <0.001   0.156 0.350   0.048 0.764 

- More affected 

side 

5.746 0.003 -0.638 <0.001   0.095 0.568   0.013 0.936 

- Less affected side 5.840 0.003 -0.649 <0.001   0.137 0.411   0.045 0.780 

- Total values (both 

sides) 

5.867 0.003 -0.646 <0.001   0.116 0.485   0.029 0.858 

Putamen/Caudate 

Ratio 

6.467 0.002 -0.669 <0.001   0.183 0.264   0.229 0.154 

 

Table 6.5.2: Association between the PD specific EEG pattern and 123I-FP-CIT-SPECT 
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7.EEG Connectivity in Mild Cognitive Impairment 
 

7.1 Introduction 
 

Cognitive impairment, whether without dementia or dementia itself, is a critical non-motor 

symptom of PD, which limits treatment options, and worsens outcomes and life expectancy of the 

patients (Emre, 2003a)(Levy et al., 2002)(Watson and Leverenz, 2010). As we know, cognitive 

course of PD is heterogeneous and clinical manifestation of dementia is preceded by subtle 

functional changes. Mild Cognitive Impairment (MCI) is the intermediate condition between non-

altered cognition and Parkinson’s disease dementia (PD-D). MCI can be a stable stage for many 

patients, as is demonstrated in a longitudinal study over 3 years (Lawson et al., 2017) while some 

studies have reported the progression rate of MCI to PD-D over 4 – 12 years to be 40-60% 

(Williams-Gray et al., 2013; Wood et al., 2016; Pedersen et al., 2017; Weil et al., 2018). As the 

clinical symptoms appear much later than the onset of cognitive impairment or neurodegeneration, 

having methods of early identification of cognitive impairment in PD patients are of major 

importance for clinicians and researchers and can help improve the quality of life of patients. To 

add on to the previous knowledge gained from investigating spectral measures, connectivity in the 

form of Phase Lag Index was now evaluated as a potential qEEG marker of cognitive decline in 

PD. This chapter is based on a published study from 2019 (Chaturvedi et al., 2019). 

 

The aims of this study were:  (a) to identify spectral and connectivity qEEG measures potentially 

characteristic of MCI in PD patients; (b) to compare the predictive performance of spectral and 

connectivity qEEG measures; (c) to check for correlation between cognitive domains and EEG 

features.  

 

7.2 Methods  
 

Subjects 

 

We selected patients at the out-patient movement disorders clinic of the University Hospital Basel 

(Switzerland) on the following criteria: PD according to UK PD Brain Bank(UPDRS,2003), Mini-

Mental Score Examination (MMSE) above 24/30, no history of vascular and/or demyelinating 

brain pathology, sufficient knowledge of German language. The study was approved by the local 

ethics committees (Ethikkommission beider Basel, Basel; Switzerland; EK 74/09) and all 

participants gave written informed consent before study inclusion.  
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Clinical neurological and neuropsychological assessments 

 

Basic neurological examination was carried out in all individuals. All patients underwent 

comprehensive neuropsychological examinations. A series of 23 neuropsychological tests was 

carried out, resulting in aggregate five cognitive scores (domains): Memory, Attention+Working 

Memory, Executive Function, Language and Visual-Spatial Function. Overall test variables 

comprised an aggregate “overall cognitive score”. MCI diagnosis was set on the grounds of Litvan 

2012 level II criteria.(Litvan et al., 2012) We identified 27 PD patients with MCI (MCI group) and 

43 PD patients without MCI (non-MCI group). The individual tests grouped into domains are 

shown in Table 7.1. This grouping follows the same classification as used for the MCI 

categorization.  

 

Domain  Neuropsychological tests 

          

 

                  Memory 

California Verbal Learning Test : (1) trial 1; (2) trial 5; (3) 

savings; (4) discriminability 

Rey-Osterrieth Complex Figure : savings (immediate recall 

divided by copy) 

 

 

Executive Function 

Five-Point Test :  correct answers 

Semantic verbal fluency test : correct answers 

Phonemic verbal fluency : correct answers 

Trail-Making Test : time for part B divided by time for part A 

             

 

Attention and Working 

Memory 

Test of Attentional Performance (TAP) – Alertness: (1) 

reaction time with alerting sound; (2) reaction time without 

alerting sound.  

TAP – Divided Attention: (1) reaction time to auditive stimuli 

(2) reaction time to visual stimuli (3) number of omissions 

Trail-Making Test:  time for part A 

Digit span from the German version of the Revised Wechsler 

Memory Scale : (1) correct forwards (2) correct backwards 
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Table 7.1: Psychological tests grouped into 5 cognitive domains 

 

EEG Recording and Processing 

We recorded 12 minutes of EEG in resting-state eyes-closed condition, using a 256-channel EEG 

System (Netstation 300, EGI, Inc., Eugene, OR). EEG recordings were done in the afternoons and 

patients were seated comfortably in a relaxing chair, instructed to close their eyes. A technician 

present in the recording room controlled for vigilance of the patients. Before the EEG recording, 

patients were also asked to self- rate their sleepiness level from 1 to 9 using the Karolinska 

Sleepiness Scale (Åkerstedt and Gillberg, 1990; Kaida et al., 2006; Miley et al., 2016). 

All data were segmented and processed in an automated way using TAPEEG (Hatz et al., 2015). 

EEG’s were filtered (Firls:0.5–70 Hz, 50 Hz notch) at a sampling rate of 1000 Hz and an inverse 

Hanning window was used to stitch together shorter segments,  to have at least 3 minutes of cleaned 

EEG data. Artefacts like eye movements, traces of sleep, blinking, ECG etc. were detected and 

removed. After performing automated bad-channel detection (Hatz et al., 2015), the average of all 

‘good’ channels was used to re-reference the EEG to a common average montage.  

The independent component analysis implementation of EEGLAB (Delorme and Makeig, 2004) 

(“runica” with default settings) was used to remove further artefacts. Electrodes placed on the 

neck, ears, cheeks were excluded to remove spurious signals, and 214 electrodes were mapped to 

ten regions of interest: frontal left/right, central left/right, parietal left/right, temporal left/right, and 

occipital left/right.   

 

EEG features 

Frequency - spectral power 

Median relative spectral powers were calculated in the following frequency ranges (Hz): 1–4 

(delta), 4–8 (theta), 8–10 (alpha1), 10–13 (alpha2), 8–13 (alpha), and 13–30 (beta) and spectral 

Corsi blocks from the German version of the Revised 

Wechsler Memory Scale : (1) correct forwards; (2) 

correct backwards 

Visuo-Spatial Function 
Rey-Osterrieth Complex Figure: copy  

Block Design Test : sum score 

Language 
Boston Naming Test : correct answers 

Similarities from the German version of the Revised Wechsler 

Memory Scale : correct answers 
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powers for the ten regions of interest as well as global powers were obtained. Thus, we analysed 

features in 6 frequency ranges and 11 locations, obtaining a total of 66 spectral features.  

 

Connectivity – Phase Lag Index 

We used Phase Lag Index (PLI) as a measure of functional connectivity. PLI values range between 

0 and 1, where 0 can indicate possibly no coupling and 1 refers to perfect phase locking. We 

mapped the 214 electrodes to the ten anatomically defined regions. For each region, the average 

connectivity of all its electrodes to all other regional groups of electrodes was determined 

(Hardmeier et al., 2014). The connectivity between all pairs of regions was calculated, including the 

connectivity within a region.  This resulted in 55 PLI measures for 6 frequency bands, totalling to 

330. Both kinds of features are explained in detail in Chapter 4.  

 

Statistical analysis  

Checking for normal distribution and standardization of measures 

We compared the demographic and clinical features between MCI and non-MCI groups: age, sex, 

total education, UPDRS III, MMSE, Hoehn and Yahr Scores, using Wilcoxon non-parametric tests 

to test if the groups were comparable and for any apparent biases that might be visible. We also 

compared the global EEG frequency and PLI measures in both groups for a first overview of 

differences in EEG features in PD- MCI and Non-MCI and adjusted the p-values for multiple 

testing. 

For statistical calculations, we used R version 3.4.1 and RStudio version 1.0.143(R Core Team, 

2018).  

Cognitive test variables were standardized (“normalized”) with reference to a normative database 

of 604 healthy individuals from the Memory Clinic, Felix Platter Hospital of Basel, Switzerland 

(Berres et al., 2000).  

Spearman correlation coefficients were computed to check for significant correlations between the 

cognitive domains and PLI measures in each power band. The p-values and confidence intervals 

for correlations between the cognitive domains and all PLI global measures were obtained using 

the Psych(Revelle, 2018) package. The probability values were adjusted using the Holm correction 

method implemented in the package.  

The ggcorrplot(Kassambara, 2018) package was used for visualisations.  

Random Forest 

Random Forest is a widely used ensemble machine learning method based on decision trees. 

(Breiman, 2001a). It has been successfully used in several classification and regression studies 
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related to neurology, such as, for predicting disease progression or classifying patients based on 

different features in the case of Alzheimer’s disease (Sarica et al., 2017; Dimitriadis and Liparas, 

2018; Dimitriadis et al., 2018), Parkinson’s disease (Açıcı et al., 2017; Chaturvedi et al., 2017) and 

Multiple Sclerosis(Lötsch et al., 2018; Zhang et al., 2018).  

The method works by constructing several decision trees, selecting subsets of features randomly 

with replacement, evaluating the best features based on majority voting and then getting 

predictions based on these measures. The hyperparameters can be tuned to obtain models with 

high predictive performance. Each variable included in the model is evaluated based on its effect 

on the overall accuracy of the model and a measure called ‘Mean Decrease Accuracy’ reflects the 

importance of the predictor. 

It is advantageous to use Random Forest as it combines decision trees with bagging, reduces 

overfitting, handles large number of predictor variables and ranks variables based on their 

importance. This makes it more effective in feature selection.  

In this analysis, Random Forest was applied with the standard implementation in R. Data were 

split into training (70%) and test sets (30%) and 5-fold Cross-Validation was repeated 20 times. 

Area-under-the-curve (AUC) measures were obtained for Receiver Operating Characteristics 

(ROC)-curves. Classification models were built using frequency measures, PLI measures and 

frequency combined with PLI measures, respectively. We then obtained a ranked list of the top 

features important for the accuracy of the classification model. To test whether the AUC values 

were significantly different while using frequency and PLI measures for classification, we carried 

out the Friedman test (Friedman, 1940), followed by posthoc testing to see which of the groups 

had significant differences (Demšar, 2006). This showed us if the AUC values significantly 

differed between the three groups, and if so, between which pairs. The following packages were 

used: Random Forest (Liaw, A. & Wiener, M., 2002), caret (Kuhn, n.d.), ROCR(Sing et al., 2005),  

PMCMR(Pohlert, 2018). 

 

7.3 Results 

 

7.3.1 Participant characteristics 
 

For the first part of the study, we wanted to check if the data set was free from any apparent bias 

due to differences in demographic features and also if the EEG patterns corroborated with our 

previous findings. Table 7.2 shows the demographics the patients stratified according to the 

diagnosis of MCI. MCI and non-MCI patients did not differ in their age, education, UPDRS III 

and Hoehn and Yahr scores. UPDRS III scores recorded reflect the condition of patients under 

medication. The disease duration was also similar in both groups; so all patients were at a relatively 

early stage of the disease. As expected, they had significant differences in their MMSE scores. 
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Self- reported sleepiness scores indicated alertness for majority of the patients, with median value 

3 on the 1 to 9- sleepiness scale.  

 

 

 

Parameters PD patients(n=70)  

 MCI (n=27)  (21 M, 6 

F) 

Non-MCI(n=43)(26 M, 17 

F) 

p-value 

Age 67[53,84] 67[46,82] n.s. 

Education 16[9,20] 15[9,21] n.s 

MMSE 29[24,30] 29[27,30] 0.02 

UPDRS III 15[0,41] 15[0,36] n.s. 

Hoehn and Yahr 2[0,5] 2[0,4] n.s 

Disease duration (years) 5[0,23] 4[0,17] n.s 

Levodopa Dosage 

(mg/day) 

650[0,1875] 525[0,2129.5] n.s 

Karolinska Sleepiness 

Scale 

3[1,7.7] 3 [1,7] n.s. 

Table 7.2: Patient demographics, showing Median [Min, Max]. 

   

7.3.2 EEG features in PD-MCI and non-MCI patients 
 

While inspecting the differences in the global EEG features in the two groups, relative median 

spectral power in theta (p<.05) and beta bands (p<.05) differed significantly between MCI and 

Non-MCI patient groups as did PLI in theta band (p<.05) (Figure 7.1). This aligned with our 

previous understanding of theta power being highly associated with cognitive decline.    
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Figure 7.1: (Top) Global spectral powers and PLI measures in Delta, Theta, Alpha1, Alpha2, Alpha, Beta 

bands between PD Non -MCI and PD MCI patients. (Bottom)Theta, Beta global powers and Theta global 

PLI differed significantly in the two groups. 

 

7.3.3 Classifying PD patients according to MCI using PLI and 

spectral measures 
 

We proceeded to carry out the classification between the two groups and obtained the ROC-curves 

using PLI and frequency measures, separately and in combination. The demographics and clinical 

features assessed earlier were also included, to verify yet again if any of these features would be 

ranked as highly influential in the classification. The mean AUC values obtained for frequency 

measures after cross-validation (0.64 +/- 0.15) were lower than those obtained for PLI (0.74 +/- 

0.17) and for the combination of Frequency, PLI (0.73 +/- 0.16). The range of AUC values in these 

three cases is depicted in Figure 7.2.  
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Figure 7.2:  AUC spreads showing model performance while using PLI, Frequency and a combination of 

PLI, Frequency measures mapped to 10 regions.  

 

We then wanted to test if AUC values obtained from these 3 groups have any significant 

differences, so as to understand if the classification performance would truly improve while using 

PLI measures instead of frequency. Friedman test showed overall group differences to be 

significant and then, the Friedman posthoc testing showed that the classification performance using 

PLI was statistically different than using frequency measures but similar to performance obtained 

when combining frequency and PLI. This is depicted in Table 7.3. 

 

 

 

 

 

 

EEG features 

comparisons 

p-value 

PLI vs Frequency 7.7e-05 

Frequency + PLI vs 

Frequency 

0.0005 

Frequency + PLI vs PLI 0.8 
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Table 7.3: Statistical significances between AUC measures obtained during classification using frequency, 

PLI measures and combining them together.  

On an external unseen test set, AUC values of 0.65, 0.65 and 0.71 were obtained respectively for 

the three cases. With regards to identifying the most critical variables to identify MCI in PD 

patients, more PLI measures than spectral measures were ranked amongst the most important ones. 

In the model constructed using PLI features, measures in theta, delta, beta bands, especially in the 

Temporal, Central and Parietal regions were ranked high. The clinical features were not ranked 

amongst the top 20 variables influential for the prediction accuracy of the model but Hoehn and 

Yahr stage came up as important feature while using frequency features alone. When considering 

all frequency and PLI measures together, theta powers in the parietal, central, regions and alpha1 

power in central region were ranked at the top, along with PLI measures. Figures 7.3, 7.4 show the 

top 20 PLI and all frequency and PLI combined measures, ranked according to their effect on the 

accuracy of the model by Random Forest respectively.  

 
Figure 7.3: Top Selected features by Random Forest while building the model with PLI measures mapped 

to 10 regions. The x-axis shows the relative importance of the features as percentages. The y-axis denotes 

the features corresponding to the power band [1–4 (delta), 4–8 (theta), 8–10 (alpha1), 10–13 (alpha2), 8–

13 (alpha), 13–30 (beta)] and the connectivity between two regions. E.g.: F1F4_FL-TR denotes the PLI in 

the delta band between the frontal left and temporal right regions. 
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Figure 7.4: Top Selected features by Random Forest while building the model with PLI and frequency 

measures mapped to 10 regions. The x-axis shows the relative importance of the features as percentages. 

The y-axis denotes the features corresponding to the power band and the spectral power in a specific region 

(e.g.: PL denotes parietal left) or PLI between two regions (e.g.: TR-OL denotes the connectivity between 

temporal right and occipital left regions). 

These results indicate that PLI measures perform better while classifying MCI from Non-MCI 

patients. We found no added benefit in performance while adding on the frequency measures to 

the PLI features. So, for classification purposes, using this data, we can say that PLI would be the 

preferred choice of EEG measure over frequency. In line with our previous understanding and 

assumptions, theta, beta power bands and theta PLI showed the major differences in the two 

groups. We also observed Alpha frequency and Delta PLI measures amongst the top influential 

variables selected by Random Forest.  

 

Additionally, we also investigated the effect of using all 256 electrodes, without mapping to 

corresponding anatomical brain regions, for the development of prediction models and classifying 

PD MCI from PD non-MCI patients. In this case, we retrieved 1278 frequency measures and 
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136846 non-zero PLI measures. AUC values from the model developed using frequency measures 

during cross-validation (0.65+/-0.15) did not differ much when using PLI measures (0.696+/- 

0.145) or combining all frequency and PLI measures (0.7+/-0.14) during cross-validation. There 

were no statistical differences in AUC’s, as depicted in Table 7.4. 

 

 

 

 

 

 

 

 

Table 7.4: Statistical significances between AUC measures obtained during classification using frequency, 

PLI measures (without mapping to regions) and combining them. 

Figure 7.5 shows the higher influence of Theta and Delta PLI in the classification using all PLI 

and frequency measures. Most of the electrodes ranked at the top corresponded to the Temporal, 

Parietal and Central Regions, aligned with our previous findings. The only frequency feature 

ranked amongst the top 20 variables corresponded to Theta power in the Temporal Right region. 

On an unseen external test, AUC values of 0.74, 0.85 and 0.875 were obtained for the three models 

respectively 

 

EEG features 

comparisons 

p-val 

PLI vs 

Frequency 

0.54 

Frequency + 

PLI vs 

Frequency 

0.17 

Frequency + 

PLI vs PLI 

0.74 
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Figure 7.5: Top Selected features by Random Forest while building the model with PLI and frequency 

measures, without any mapping to regions. The x-axis shows the relative importance of the features as 

percentages. The y-axis denotes the EEG features in power bands corresponding to specific electrode 

numbers from the 256-electrode placement. E.g.: F4F8_E95-E112 represents the PLI in theta band between 

electrode numbers 95 and 112. F4:8_E180 denotes theta power in electrode 180. 

However, when comparing the runtime complexities for different models, we noted that using all 

PLI and frequency features without mapping to regions took maximum time (40,620.02 seconds 

or about 11 hours) while doing so with the mapped 10 regions took 64.45 seconds. The model 

using PLI features mapped to 10 regions took 53.79 seconds while using all PLI features without 

mapping took 32,924 seconds. Models built using 256 electrodes, in general, took more runtime, 

which should be taken into consideration while building similar models in the future. Time taken 

by each of the six models can be seen in Table 7.5. 

 

Models Run time (seconds) 

Frequency-10 regions 20.78               

PLI-10 regions 53.79              

Frequency + PLI (10 regions) 64.45               

Frequency – 214 electrodes 

(no mapping) 

154.45               

PLI- 214 electrodes 

(no mapping) 

 32924.44            

Frequency +PLI 

(214 electrodes- no mapping) 

40620.02           

 

Table 7.5: Run time of each cross-validated classification model 

 

7.3.4 Correlation of Cognitive domains and EEG features 
 

Now that we determined PLI to be an effective measure for identifying PD patients with MCI, we 

wanted to assess correlations between each of the 5 cognitive domains and the Overall Cognitive 

Score (Attention + Working Memory, Executive Function, Memory, Visuo-Spatial Function, 

Language) and global PLI measures to get some additional insights into cognitive decline. The 

strongest correlations were seen for Theta PLI with Memory(r=-0.4), Attention (r=-0.38).   
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While checking for which of these correlations remain significant, we found alpha2 PLI to be 

correlated with Memory at p=0.05, theta PLI with Attention + Working Memory at p=0.05, alpha1 

PLI with Visuo-Spatial Function at p=0.01, beta PLI with Attention + Working Memory and theta 

PLI with Memory at p=0.001 (Figure 7.6). After adjusting the correlation p-values using Holm 

correction we identified the most significant correlation for Memory domain with theta PLI 

(p=0.04).  

 

Figure 7.6: Spearman rank correlations for cognitive domains and PLI measures in each power band.  (* P 

≤ 0.05, ** P ≤ 0.01, *** P≤ 0.001) 

The p-values and confidence intervals for correlations between the cognitive domains and all PLI 

global measures can be seen in Table 7.6. 

 

PLI-Cog domain lower R = correlation 

coefficient 

upper p 

TGPLI-Memory -0.4659 -0.39897 -0.32749 6.24E-04 

TGPLI-Attn. -0.44406 -0.37556 -0.30269 1.36E-03 

BGPLI-Attn. 0.292741 0.366145 0.435258 1.83E-03 

A2GPL-Memry 0.276027 0.350293 0.420402 2.95E-03 

A2GPL-OvrlC 0.204659 0.282128 0.356084 1.80E-02 

BGPLI-OvrlC 0.197014 0.274779 0.349108 2.13E-02 
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A2GPL-Attnt 0.170983 0.249689 0.325229 3.71E-02 

AGPLI-Attn. 0.142141 0.221765 0.298538 6.50E-02 

BGPLI-Visuo 0.130488 0.210446 0.287685 8.04E-02 

A1GPL-OvrlC 0.120005 0.200245 0.277886 9.65E-02 

TGPLI-Exfnc -0.26927 -0.19129 -0.11081 1.13E-01 

A1GPL-Visuo 0.109306 0.189816 0.267852 1.16E-01 

DGPLI-Memory 0.103141 0.183798 0.262055 1.28E-01 

AGPLI-OvrlC 0.092079 0.172986 0.251623 1.52E-01 

A2GPL-Exfnc 0.089755 0.170711 0.249427 1.58E-01 

TGPLI-Wrk_M 0.087849 0.168846 0.247624 1.62E-01 

TGPLI-OvrlC -0.24023 -0.16119 -0.08004 1.83E-01 

A1GPL-Wrk_M 0.075876 0.157112 0.236276 1.94E-01 

A2GPL-Wrk_M 0.053564 0.135185 0.215011 2.65E-01 

AGPLI-Wrk_M 0.044126 0.125886 0.20597 2.99E-01 

TGPLI-Visuo 0.035059 0.116938 0.197257 3.35E-01 

BGPLI-Wrk_M 0.022992 0.10501 0.185623 3.87E-01 

DGPLI-Wrk_M 0.022957 0.104975 0.185589 3.87E-01 

A1GPL-Memry -0.1852 -0.10458 -0.02255 3.89E-01 

AGPLI-Exfnc 0.012378 0.094497 0.175351 4.36E-01 

A1GPL-Attnt 0.000739 0.08295 0.164047 4.95E-01 

A2GPL-Visuo 0.000411 0.082625 0.163728 4.97E-01 

AGPLI-Visuo -0.00719 0.075066 0.156317 5.37E-01 

BGPLI-Exfnc -0.01763 0.064684 0.146123 5.95E-01 

AGPLI-Memory -0.14299 -0.0615 0.020822 6.13E-01 

DGPLI-Exfnc -0.02261 0.059715 0.141237 6.23E-01 

DGPLI-OvrlC -0.02367 0.058665 0.140205 6.30E-01 

DGPLI-Attnt -0.13118 -0.0495 0.032853 6.84E-01 

BGPLI-Memory -0.05618 0.026157 0.10814 8.30E-01 
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DGPLI-Visuo -0.1056 -0.02359 0.058743 8.46E-01 

A1GPL-Exfnc -0.07796 0.004287 0.086472 9.72E-01 

 

Table 7.6: The p-values and confidence intervals for correlations between the cognitive domains and all 

PLI global measures. 

 

7.4 Discussion 
 

In this study, we analysed the capacity of quantitative EEG to identify MCI in patients with 

Parkinson’s disease. It is considerable to note that though PD-MCI is a common condition, it could 

result from a mixture of complex pathophysiologies, rather than being a distinct pathologic entity, 

as shown in some studies (Wen et al., 2017). Identifying clinical features or biomarkers associated 

with this condition can be useful in early risk assessment of dementia. 

 

Patients with MCI in our study, in comparison to those without MCI, had statistically significant 

differences in the following frequency measures: higher theta spectral power, and lower beta 

power; and following connectivity measures: higher PLI in theta band. This corresponds to studies 

reporting higher theta and lower beta powers in PD- MCI patients (He et al., 2016). PLI measures 

in theta, delta bands came up ranked high as important variables while classifying PD- MCI from 

PD non-MCI patients.  

 

When considering model performance with AUC as a criterion in this dataset, cross-validated 

classification performance was better with PLI than frequency and this was comparable to the 

performance obtained while combining PLI and frequency measures. This shows us that PLI 

features are not inferior to frequency measures and may contain additional information for 

understanding and detecting disease progression. 

 

In a previous analysis, we had identified theta spectral power as predictor of general cognitive 

decline in a cohort of PD patients (Cozac et al., 2016a), but we had not investigated connectivity 

measures (PLI) with regard to MCI. Considering the EEG features ranked high in the classification 

and looking at the correlations between EEG features and cognitive domains, we see that theta PLI 

is highly correlated with Memory cognitive domain. These results confirm previous findings of 

cognitive domains like memory being associated with EEG features like theta power (Jacobs et 

al., 2006; Han et al., 2017). They may also provide additional evidence to the concept of 

consecutive cognitive decline and as shown in several studies, MCI is a risk factor of progression 

to dementia in PD (Caviness et al., 2007; Hobson and Meara, 2015; Wood et al., 2016). 
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We also re-ran the classification analysis using signals from all electrodes, without mapping to ten 

regions of interest in the brain, although excluding the electrodes placed on neck, cheeks, and ear 

lobes. Using all PLI and frequency features, we found that the most important variables ranked at 

the top were those from Theta, Delta PLI, corresponding to Temporal, Parietal, Central regions 

and Theta power in the Temporal region. This aligned with results obtained from creating models 

with features mapped to regions, in which the number of features is much reduced. Through this 

analysis, we also saw how computationally expensive it can be to deal with vast amounts of data, 

as with more than 130,000 PLI features. 

 

The limitations of this study arise due to the small number of patients, especially those diagnosed 

with MCI. However, the study also has some strengths. As this data was recorded at baseline and 

patients had mild cognitive impairment, they also had low dosages of medication which could not 

have had a substantial altering effect on the EEG. Patients at advanced stages of the disease can 

potentially be on medication for several issues such as sleep, bladder, etc. which could affect the 

EEG recordings. We also had extensive neuropsychological testing which served as reliable scores 

for overall cognition and the different domains.  The EEG features identified in this study could 

be characteristic of cognitive impairment and help us investigate cognitive decline while following 

up with the patients in the next steps.  
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8.Theta as a potential prognostic marker 
 

Evidence from all the cross-sectional studies pointed towards features from the theta band holding 

predictive value for Parkinson’s disease. The Basel PD cohort was followed up for three years and 

the five-year follow-up is underway. In a first follow-up study after three years, we investigated 

clinical and qEEG parameters as predictors of severe cognitive decline in PD. Our hypothesis was 

that qEEG variables at baseline are able to predict severe cognitive decline, and these qEEG 

variables are not influenced by clinical and demographic parameters. Section 8.1 is based on a 

publication by Cozac et. al (Cozac et al., 2016a). Section 8.2 follows up on the results and includes 

Theta PLI to investigate both these variables as predictors at 5 years follow-up. 

 

8.1 Theta spectral power as a predictor of cognitive decline at 3 years 
 

At the time of this study, we could acquire data from 37 patients with Parkinson’s disease at 

baseline and 3-year follow-up. Patients had no severe cognitive impairment at baseline. We used 

a summary score of cognitive tests as the outcome at follow-up, using 14 tests covering six 

cognitive domains. The difference in the overall cognitive score and in each domain from baseline 

to 3 years can be seen in Figure 8.1. 

 

     Figure 8.1: Cognitive domains and overall cognitive score of the sample at baseline and after 3 years.  
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We used linear regression models to evaluate the relation of baseline parameters with cognitive   

deterioration. The influence of the baseline parameters on cognitive state at follow-up was checked 

with univariate and multivariate linear regression models with backward elimination.  Prediction 

accuracy was checked with receiver operating characteristic (ROC) curves. Additionally, 

regression using Random Forest was applied. The level of statistical significance  

 was set at 0.05. Regression analyses identified three baseline parameters which had significant 

influence on CI-OCS: Global relative median power (GRMP) theta (β = -3.16, p < 0.001), 

executive functions (β =   0.54, p < 0.001), working memory (β = 0.19, p < 0.05), adjusted R 

squared = 0.64, p < 0.001.                                   

 

Explained variance of the overall model was 66.9%, of which “executive functions” made 27.5%, 

GRMP theta – 25.8%, and “working memory” – 13.6%. Furthermore, we checked if age, sex, and 

education had confounding effect on each of the three significant variables (GRMP theta, 

“executive functions,” and “working memory”). No confounding effects were identified. 

 

Predictor Estimate Standard 

error 

 

t value p-value Variance 

importance 

metrics, % 

theta.baseline -3.157 0.641 -4.920 2.33e-05 

* 

25.79 

exec.functions.baseline 0.544 0.106 5.127 1.27e-05 

* 

27.52 

 

work.memory.baseline 0.187  0.072 2.588 0.0142 * 13.61 

 

Residual standard error: 0.4057, F-statistic: 22.280 on 3 and 33 DF, Adjusted R-squared:  0.6394, 

p-value: 4.542e-08 

Proportion of variance explained by model: 66.92%, metrics are not normalized. 

 

Table 8.1 Multivariate regression model with significant qEEG spectral and cognitive predictors. “Change 

index of the overall cognitive score” was introduced as dependent variable. 

Receiver operating characteristic were built using the selected variables: GRMP theta, “executive 

functions,” and “working memory.” Best accuracy was identified in GRMP theta: AUC = 75%, 

specificity = 63%, specificity = 77%. The ROC curves for each of the selected variables can be 

seen in Figure 8.2 and the corresponding values are shown in Table 8.2. 
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Figure 8.2: ROC curves using theta global power, executive function and working memory 

 

Coordinates GMRP theta Executive  

functions 

Working  

memory 

Area under the curve 0.746 0.719 0.655 

Specificity 0.631 0.684 0.736 

Sensitivity 0.777 0.722 0.555 

Positive predictive value 0.666 0.684 0.666 

Negative predictive value 0.750 0.722 0.636 

Table 8.2: Prediction values for ROC curves using theta global power, executive function and working 

memory 

 

While using Random Forest Regression, global relative median power theta was classified as the 

most important variable (MDA = 7.49, MDGC = 1.63). The complete list of ranked variables is 

shown in Table 8.3. 
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Predictors Mean Decrease Accuracy Mean Decrease Gini 

Coefficient 

theta.baseline 7.49 1.63 

alpha2.baseline 4.28 1.20 

beta.baseline 4.98 1.29 

median.freq.baseline 1.79 1.27 

attention.baseline 2.91 1.40 

exec.functions.baseline 7.29 1.67 

fluency.baseline 4.39 1.51 

work.memory.baseline 3.69 1.51 

long.memory.baseline 1.38 1.25 

vis.spat.funct.baseline 4.58 1.43 

Type of random forest: regression 

Number of trees: 1000 

No. of variables tried at each split: 1 

Mean of squared residuals: 0.2796442, % Var explained: 37.03 

 

Table 8.3: Important predictors using Random Forest regression  

 

Concluding Remark: At three years, we found increased theta global power, especially when 

combined with low scores in the executive function and working memory domains to be strong 

predictors of change in overall cognition.  
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8.2 Theta Global PLI and spectral power as predictors of cognitive 

decline at 5 years 
 

At the 5-year follow-up, we assessed the relative change in overall cognition and obtained change 

scores for 37 patients. The aim was to investigate if theta PLI and spectral powers would be 

associated with cognitive decline at 5 years, based on previous findings.  

For this purpose, at first, Spearman’s rank correlation tests were carried out for theta global PLI 

and theta global powers with the reliable change index score (RCI). Both measures correlated 

significantly with cognitive decline. This is seen in Table 8.4. 

 

Predictor Rho p-value 

Theta global spectral power -0.61 7.878e-05 

Theta global PLI -0.49 0.002251 

 

 Table 8.4: Correlation coefficients of theta global power and theta global PLI with Reliable change index 

in overall cognition at 5 years 

Linear regression was carried out to check for the individual association of both these measures 

with the RCI. This association is depicted in Figures 8.3 and 8.4, where the grey areas around the 

slope depict the 95% confidence intervals. A confidence band provides a representation of the 

uncertainty about the regression line. In univariate models as well as when combined, both 

measures were found to be significantly associated with the RCI. However, the model improved 

(adjusted R-square) while using theta global spectral power instead of theta global PLI and further 

enhanced when combining both in a single model. 

Predictor p-value Adjusted R-Squared 

Theta global PLI 0.0222  0.1161 

Theta global power 5.68e-05 

 

0.3568 

Theta global PLI+ theta global power 4.436e-05 0.4128 

 

Table 8.5: Comparison of linear regression models using RCI as the dependent variable 



 

119 

 

 

Figure 8.3: Association of theta global spectral power with Reliable change index at 5 years. 

 

 

  Figure 8.4: Association of theta global PLI with Reliable change index at 5 years. 
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To check for confounders, variables like age, education, gender, disease duration, medication 

were assessed in separate models but were also included in a stepwise regression model with 

 theta PLI and global theta power. This model is described in Table 8.5.  

 

Predictor Estimate Standard error t value p-value 

Intercept 0.5270689   1.4756915    0.357   0.72339    

Theta global PLI 15.2127046   8.2339940    1.848   0.0742 

Theta global power 5.8759281   1.8052430   -3.255   0.00274 ** 

Age -0.0217180   0.0139083    -1.562   0.12856    

UPDRS III -0.0213079   0.0086264   -2.470   0.01921 * 

LEDD 0.0002833   0.0002122   -1.335   0.19153    

Residual standard error: 0.5627 on 31 degrees of freedom 

Multiple R-squared:  0.5639, Adjusted R-squared:  0.4936  

F-statistic: 8.017 on 5 and 31 DF,  p-value: 6.065e-05 

 

Table 8.5: Stepwise regression model with theta features, age, medication, motor scores 

 

Besides this, an extreme group analysis was also carried out on these 37 patients. A subset of 

patients falling in the top and bottom quantiles was obtained, representing ten patients who showed 

the maximum deterioration (Biggest cognitive decline) and 10 others who showed an improvement 

in cognition (Cognitive improvement). Their corresponding EEG frequency values at baseline 

were checked to see how the two groups differed.  

 

The graphs here in Figures 8.5 and 8.6 show the mapping band power median relative values and 

can be seen as representative of percentages.  We observe the biggest difference in theta power in 

these two groups. Patients who had the most significant cognitive decline had a much higher global 

theta power at baseline; more than 40% of their relative spectral powers were constituted of theta. 

With regards to Phase Lag Index, the two groups differed in theta PLI the most. The coloured 

boxes are representative of the interquartile range, and the horizontal line in the boxplots show the 

median values.  
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Figure 8.5: Difference in spectral powers at baseline between PD patients who had the most and least 

cognitive decline in 5 years. 

 

Figure 8.6: Difference in Phase. Lag index at baseline between PD patients who had the most and least 

cognitive decline in 5 years. 

This shows the potential of theta band as a prognostic marker and reiterates our findings on its 

importance as a biomarker for cognitive decline.  
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In general, over a period of 5 years, we observed a reduction in overall alpha, beta powers and 

increase in delta, theta powers. However, there were no significant differences in this cohort. Alpha 

and delta bands had shown trends with p=0.06 and p=0.07. This is based on comparing 27 patients 

who had EEG’s at both time points- and amongst those, 8 were detected as MCI at Baseline and 

19 as Non-MCI. The general overall results are more representative of Non-MCI patients as they 

constitute the majority in the cohort and are depicted in Figures 8.7, 8.8. However, what it points 

towards is the fact that for most patients, the EEG patterns remained consistent but changes in 

specific bands started occurring early on in those who progressed to dementia at a later stage. 

 

 

Figure 8.7: Differences in spectral powers in PD patients at baseline and at 5 years 

 

Figure 8.8: Changes in PLI in PD patients at baseline and 5 years 

Conclusion: We observe theta as a significant predictor of cognitive decline at 5 years, with 

spectral power to have a higher substantial effect but improves the prediction model when 

combined with theta PLI and considering factors like UPDRS III, age, levodopa dosage. 
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9.Integrated discussion and conclusion 
In this thesis, we investigated a cohort of healthy individuals, Parkinson’s disease patients at a 

prodromal stage, PD patients at an early stage with normal cognition and PD patients with mild 

cognitive impairment to investigate potential EEG biomarkers for predicting cognitive decline in 

PD patients, leading to dementia. What we learnt can be categorized into two main categories: 

technical considerations and clinical implications.  

 

9.1 Technical considerations 
 

EEG Recording systems  

 

EEF recording systems can have varying numbers of electrodes, resulting in usable data from 18, 

21 or 214 electrodes, for instance. A big challenge is combining data from different recording 

systems, especially if the aim is to pool data in a multi-centre study to have an increased sample 

size.  

 

EEG processing  

 

Differences in methods of processing the data, such as automated processing or semi-automated 

with visual inspection, or even altering settings like filters, amplifiers, post processing can impact 

the quantified results. In order to have consistency and reproducibility in results, it is vital to follow 

a specific protocol and to have it accessible by all members of the group to avoid any confusion. 

 

Grouping into regions 

 

While using a high-density EEG system, one can obtain signals from 214 usable electrodes, but 

the features obtained from every single electrode increase the complexity of the analysis and 

processing manifold. To make the data meaningful and interpretable, we often average the signals 

from electrodes into 10 or 22 regions of interest, corresponding to the brain regions. However, a 

consistent question we get is if it makes sense to group these electrodes into regions. 

In Chapter 7, while investigating patients with PD MCI, we re-performed the analysis for 

frequency and PLI measures taking 214 electrodes to see if the classification performance 

improved and which features would come up as the most influential ones if we didn’t group them 

into regions. We noted comparable performance on the cross-validated data, although an 

improvement while predicting on a small, unseen external set. The most important variables for 

frequency were primarily from theta and beta bands, corresponding to the occipital, temporal 

regions, mid-auricular line. In case of PLI, we obtained 136,846 features excluding the PLI=0 

features in the diagonal of the matrix, which was computationally expensive while running cross-

validations and other analysis. The most important PLI features corresponded to those in theta and 
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delta bands, similar to the observations with the grouped features. However, the run time of 11 

hours is too computationally expensive if machine-learning algorithms like random forest would 

need to be carried out multiple times on all the PLI data for all electrodes. 

 

While post-processing EEG using inverse solution with 76 regions of interest (based on the AAL 

atlas), it is possible to either carry out an analysis with connectivity between all 76 regions or 

average them into 8 regions at the end for simplicity and ease of interpretation. Including 

connectivity between 76 regions would result in big amounts of data, which would be 

computationally expensive and more difficult to interpret, while grouping all connectivity 

measures into 8 regions might not give a nuanced view of the condition. Therefore, it is important 

to keep the main research question in mind before deciding on the form of data to be used. 

 

Inverse solutions can also be applied using different methods for calculating the regions of interests 

and this can impact the results, especially if there is lack of uniformity while pooling different data 

or using data processed at different times. To have a uniform method processing and acquiring 

comparable results, it is suggested to use the ‘center’ method, which computes the centre voxel for 

every region instead of computing the voxel with maximal power in different bands as is with the 

‘maxpower’ method. 

 

Dealing with the p<<n problem of sparse data 

 

With EEG data, one of the main challenges is the dimension of the dataset, especially when dealing 

with a small group of patients but evaluating EEG features from different regions, which amounts 

to the classic p<<n problem of sparse data. If the number of variables or features used are much 

greater than the number of observations or patients, it can lead to problems like overfitting and 

inaccurate, unstable results. For this reason, we need to adjust the regression or classification 

methods accordingly. In studies conducted as part of this project, penalized regression was applied 

using LASSO to overcome the issue and Random Forest was the only other standard machine 

learning algorithm that was found suitable to handle this kind of data. In a separate study conducted 

(Eckl, Florian, 2017)  using the same data as shown in Chapter 5.1, group LASSO was applied and 

both methods were compared. While the latter was seen to have an improved prediction accuracy, 

the main features selected by both methods were similar. This shows that there may be scope of 

adjusting the penalties further but a regularized regression method is still a good choice for feature 

selection on sparse data.  

 

Solving the issue of imbalanced data  

 

In statistical classification tasks, dataset is considered imbalanced data if it is not evenly distributed 

amongst the classes and one class constitutes the minority or ‘rare’ sample. At the same time, the 

rare class represents the interest and needs to be identified accurately (Krawczyk, 2016). In 
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practical scenarios, such problems can arise in cases of fraud detection (Fawcett and Provost, 1997) 

diagnosing rare diseases and associated genetic variants (Schubach et al., 2017). Applying the 

standard general classification algorithms may not have good results as they work towards 

minimizing the overall classification error rate, instead of considering the true classification rate 

of the minority class. Several studies have investigated imbalanced learning with different types 

of data  (Haixiang et al., 2017).  To solve the issue of imbalanced data, two mathematical 

approaches can be used:  

-  “cost-sensitive” learning – this is assigning a high cost to misclassification of  the minority  

class, and trying to minimize the overall cost (Domingos, 1999).  

-  sampling techniques - Either down-sampling the majority class or over sampling the 

minority class, or both.  

  

In one of the studies, the aim was to identify PD-D patients from a pool of PD patients with and 

without PD-D, and the number of PD-D patients was about 4 times lesser than the number of 

dementia-free patients. So, Random Forest  (Breiman, 2001a) algorithm was adapted for 

imbalanced learning (Chen Chao and Liaw Andy, 2004) using stratified sampling. This proved to 

be better than using the standard implementation of the algorithm. 

 

9.2 Clinical implications and challenges 
 

“Knowledge isn’t power until it is applied.” – Dale Carnegie 

 

Through all the studies carried out, innumerable trial and error sessions and technical challenges, 

the focus of this thesis was to see how the findings can be potentially applied in a clinical 

environment and accelerate the diagnostic process in the future while coming up with prognostic 

biomarkers for cognitive decline in Parkinson’s disease. The main findings and future prospects 

are outlined below. 

 

Predictive value of EEG for early diagnosis of PD 

 

In order to eventually investigate cognitive decline, we started by investigating how Parkinson’s 

patients differ from healthy individuals in terms of EEG patterns. We took all the spectral powers 

into consideration and came up with two regression models, one while using a 256 electrode EEG 

system with electrodes grouped into 10 regions of interest (Chapter 5), and the other while using 

a standard 10-20 system (Chapter 6).  

 

The challenge lay in handling a large group of EEG features from a small group of patients, which 

refers to the p<<n problem. We wanted to obtain models with only a few EEG features, so that it 

could be easy to implement in the future and would avoid the problems of multicollinearity as well 

as overfitting. After applying a selection of machine learning methods, we chose to work with a 
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penalized regression model, applying the LASSO penalty. LASSO was seen effective in solving 

problems in different fields such as, fraud detection in banks or genetic analysis (Wu et al., 2009; 

Fontanarosa and Dai, 2011; Wang et al., 2015). We also found it to be effective in dealing with 

EEG data.  

 

EEG Risk model using high-density systems 

 

The penalized logistic regression method (LASSO) applied for classifying Parkinson’s disease 

patients from healthy individuals using seventy-nine features resulted in a subset of six features, 

reflecting differences in theta, alpha2, beta power, and alpha1/theta ratio in certain regions. Two 

of the most influential features included theta power in the temporal left region and 

alpha1/theta ratio in central left region. Implementing these coefficients in an equation would 

look like: 

 (Theta_TL *8.77)+ (Theta_PL*3.32)+(Alpha2_FL*0.83) + (Alpha1_CL* -1.04) + (Delta_FL*-

2.1) + (Beta_PR*-2.74) + (Alpha1_OL* +6.32) + 0.46  

 

EEG Risk model using 10-20 system 

 

Using a 10-20 standard EEG system, we shortlisted two features from the theta and alpha 

bands in an optimal risk score model. We identified theta power in the right occipital lobe (O2) 

and alpha1 activity in the left parietal lobe (P3) as primary factors differentiating controls from 

PD. This resulted in a risk score obtained from the following equation: (1.62*Theta_O2) + 

(0.75*Alpha1_P3) + 3.75.  

 

The probability of each patient being diagnosed as PD or the predicted risk can be obtained by 

applying the formula: exponential (patient’s risk score) ÷ (1 + exponential (patient’s risk score)). 

Theta spectral power (in the temporal and occipital regions) was found to be the most 

important feature in both cases. 

 

Theta and alpha powers, especially in the occipital, parietal and temporal regions, are reported as 

characteristics of PD patients in several studies. One study investigating 15 early-stage PD patients 

and 15 healthy individuals had found an increase in delta and theta bands in PD patients with a 

decrease in alpha, beta bands (Han et al., 2013). Theta power in the left occipital region was found 

to be associated with disease severity in PD patients and also differed significantly between PD 

patients with and without mild cognitive impairment (He et al., 2016). One MEG study (Bosboom 

et al., 2006) had also reported an increase in theta power in the occipital and temporal channels to 

be associated with lower cognitive performance in PD patients without dementia. In Alzheimer’s 

disease, the alpha/theta ratio was seen to be indicative of the condition too, with potential to 

distinguish between the diseased and the healthy group(Schmidt et al., 2013). Our current data 



 

127 

 

supports these patterns as being reliable enough for implementation in an easy to use tool in the 

future to help in early diagnosis. 

 

As the penalized logistic regression method picks out features that are not highly correlated to each 

other, the final selected features may not represent the only possible solution, but rather an optimal 

model resulting in a considerable classification accuracy. This could explain why some studies 

found power in theta temporal left region to be the most effective classifier instead of theta power 

in temporal right or occipital regions. Signals from electrodes placed close to each other can be 

more correlated than those further away, which would lead to selection of only one amongst the 

cluster.  

 

EEG reflects dopaminergic loss associated with Parkinson’s disease 

 

We investigated for the first time the potential of EEG as a biomarker for Parkinson’s 

disease in individuals potentially at high risk for PD. 

 

When subtle signs of PD are present in a patient but do not fulfil the diagnostic criteria of the 

disease, it is referred to as prodromal PD (Hughes et al., 1993, Berg et al., 2015a; Heinzel et al., 

2016). A better understanding of the prodromal period is essential for the early diagnosis of PD, 

with the future aim to apply neuroprotective treatment in individuals at high risk for PD, once it is 

available. After obtaining the risk score model for early PD patients, this study applied it on a 

group of patients suspected to be in the prodromal stage. The premise of the study was that 

symptoms start appearing many years before a clear diagnosis can be made, and if the patients are 

identified early on, it could help improve their quality of life in the long run. As the pre-clinical 

symptoms of PD are heterogenic as an expression of the underlying neurodegenerative process 

(Dauer and Przedborski, 2003; Grosch et al., 2016), biomarkers indicating a high risk for PD 

conversion reflecting in vivo PD specific brain changes are needed to identify a high-risk PD 

group. The method used for identifying this group , Transcranial Sonography, has been used in 

various studies, not only to confirm PD diagnosis (Li et al., 2016) but also to encompass a high-

risk group for future onset of PD (Berg et al., 2011).  

 

The high-risk group had a higher amount of theta power than the healthy individuals and lesser 

than the PD group, indicating that theta power changes can already be measured in the prodromal 

stage. After two years, motor symptoms worsened in several of these patients and EEG was also 

found associated with olfactory test scores as well as cognitive functions like attention, executive 

function. As we know, loss of the sense of smell is a well-known symptom of early PD(Berendse 

and Ponsen, 2006; Morley et al., 2018; Pak et al., 2018) and cognitive decline occurs in several 

PD patients in the long run (de la Riva et al., 2014; Chahine et al., 2018). 
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Currently, one of the only ways to measure the dopaminergic loss in a human brain is by using a 

123I‐FP‐CIT‐SPECT or DAT Scan, and some of the patients underwent this imaging procedure. 

It was interesting to find the theta power correlated with the uptake of the tracer in the caudate and 

putamen, showing that EEG reflects dopaminergic loss associated with PD. 

 

These findings suggest that theta activity might be a potential prodromal marker for Parkinson’s 

disease and can be useful for predicting PD-related motor symptoms.  

 

EEG markers for Mild Cognitive Impairment in PD patients 

 

The study described in Chapter 7 analysed the capacity of quantitative EEG to identify MCI in 

patients with Parkinson’s disease. Mild Cognitive Impairment (MCI) is the intermediate condition 

between non-altered cognition and Parkinson’s disease dementia (PD-D). PD-MCI is a common 

condition, but it could result from a mixture of complex pathophysiology, rather than being a 

distinct pathologic entity (Wen et al., 2017). Identifying clinical features or biomarkers associated 

with this condition can be useful in early risk assessment of dementia.  

 

Patients with MCI in this study, in comparison to those without MCI, had significantly higher 

theta spectral power, lower beta power and higher PLI in theta band. This corresponds to 

studies reporting higher theta and lower beta powers in PD-MCI patients (He et al., 2016). PLI 

measures in theta and delta bands differ between PD-MCI from PD non-MCI patients. 

Connectivity measures classified MCI patients from non-MCI PD patients better than spectral 

power when used alone but had comparable performance when combined. 

 

It is interesting to note that the criteria for determining the MCI status of a patient can vary across 

clinics, populations, demographics and studies report varying MCI prevalence as well as 

progression rates. For instance, one study showed prevalence of MCI in about 40% of newly 

diagnosed PD patients (Monastero et al., 2018) and another reported 15% to 53% prevalence 

across different centres(Yarnall et al., 2013). The MDS Task Force’s Level I criteria can be applied 

on global cognition scales or using fewer than two tests in each of five cognitive domains 

(attention/working memory; executive function; episodic memory; visuospatial function; 

language) or when fewer than five cognitive domains are assessed. The Level II criteria requires 

more than one test in each of the cognitive domains and PD-MCI is confirmed when any two (or 

more) neuropsychological test scores are 1-2 S.D below normative data(Litvan et al., 2012). The 

study described was based on the Litvan Level 2 criteria and impaired scores were assessed with 

a 1.5 S. D cut-off. This should be kept in mind while replicating studies or designing any future 

studies.  
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Association between EEG and cognitive function  

 

Through the different studies showcased in Chapters 5, 6, 7, consistent findings showed 

association of EEG with attention and memory domains. With regards to spectral power, theta and 

beta powers, especially in the temporal and parietal regions respectively, apart from global powers, 

had the strongest correlation with attention and memory. For patients identified to be in the 

prodromal stage, lower test performance in these domains was associated with higher EEG risk 

scores reflecting a higher probability of resembling the PD specific EEG profile. Following up this 

group for two years indicated attention and executive problems were significantly associated with 

the baseline EEG risk score. Attention and memory, along with visuo-constructive domains were 

also amongst the most influential domains while classifying the PD group from the healthy 

individuals. 

 

Moving on to connectivity features like Phase Lag Index, the strongest correlation was seen 

between theta PLI and memory, followed by beta and theta PLI with attention+working memory 

while investigating Parkinson’s disease patients with and without MCI. In line with Section 5.3, 

the idea of association between alpha band and visuo-spatial function was reiterated also in the 

case of PLI as seen in Chapter 7.  

 

These results confirm previous findings of cognitive domains like memory being associated with 

EEG features like theta power (Jacobs et al., 2006; Han et al., 2017). They may also provide 

additional evidence to the concept of consecutive cognitive decline and as shown in several studies, 

MCI is a risk factor of progression to dementia in PD (Caviness et al., 2007; Hobson and Meara, 

2015; Wood et al., 2016). 

 

Theta as a potential prognostic marker 

 

Evidence from all the cross-sectional studies pointed towards features from the theta band holding 

predictive value for Parkinson’s disease. The Basel PD cohort was followed up for three years and 

the five-year follow-up was carried out for 37 patients. In a first follow-up study (Cozac et al., 

2016a), increased theta global power, especially when combined with low scores in the executive 

function and working memory domains were found to be strong predictors of change in overall 

cognition after three years. Some studies have reported the progression rate of MCI to PD-D over 

4 – 12 years to be 40-60% (Williams-Gray et al., 2013; Wood et al., 2016; Pedersen et al., 2017; 

Weil et al., 2018). But this is not what we observed in our cohort. Only five patients from our 

cohort progressed to dementia in three years and there wasn’t much of a change at five years. In 

fact, to investigate how EEG patterns might vary early on in patients who progressed to dementia, 

an extreme group analysis was carried out.  
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This shows the potential of theta band as a prognostic marker and reiterates our findings on its 

importance as a biomarker for cognitive decline.  

 

Rate of cognitive decline 

 

When looking at a group of 46 PD patients who were followed up, 15 were evaluated to have Mild 

Cognitive Impairment (MCI) at baseline. This number grew to 19 after three years. Nine patients 

converted to MCI in three years and five MCI patients were seen to re-convert to normal cognition 

at the time of the follow-up study. At baseline, MCI and Non-MCI patients did not differ in their 

demographics except for disease duration. However, after three years, MCI and Non-MCI patients 

had significant differences in their MMSE and UPDRS III scores. Table 1 shows the demographics 

of MCI and Non-MCI patients at Baseline and at three years. 

 

 

  Table 9.1: Patient demographics  

 

MCI can be a stable stage for many patients, as is demonstrated in a longitudinal study over 

three years (Lawson et al., 2017). As discussed previously, different clinics may be applying 

variations of cut off scores for diagnosing MCI and for determining the dementia status. MCI is 

considered a risk marker for dementia, but if there is a lack of uniformity in scales, it can be 

challenging to compare studies and arrive at the same conclusions. Based on literature review, we 

expected a much higher proportion of our cohort to progress to dementia. But we found that the 

rate of cognitive decline was exceptionally low in our case. In comparison, when working on a 

collaborative project with patients from Italy, many more dementia patients were observed and a 

Parameters Baseline (n=46)  3 Year Follow up(n=46)  

      MCI  

(10 M, 5 F) 

Non-MCI 

(19 M, 12 F) 

p-

value 

MCI 

(12 M, 7 

F) 

Non-MCI 

(17 M, 10 F) 

p-value 

Age 67.4+/- 8.6 

  

67.4+/-7.2 n.s. 71.4+/-7.8 69.7+/-7.4 n.s 

Education 15.2+/-3.5 14.4+/-3 n.s 15+/-3.5 14.4+/-2.9 n.s. 

MMSE 28.4+/-1.5 28.9+/-0.8 n.s. 26.8+/-2.5 29.18+/-1 0.0002 

UPDRS 

III 

15.7+/-11 15.9+/-11.8 n.s. 25.5+/-

11.1 

15.7+/-12.3 0.005 

Disease 

Duration 

6.46+/-5.8 3.95+/-3.8 n.s 8.3+/-4.4 7.4+/-4.94 n.s. 
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huge difference in education was observed between the two cohorts. We know that a longer span 

of education does influence a higher cognitive reserve which prevents a rapid cognitive decline 

(Meng and D’Arcy, 2012) , but we are unsure of what other factors might have facilitated the 

preservation of cognitive health of our patients.  

 

9.3 Significance for patients and future direction 
 

To implement a biomarker in practice, it is important for it to be stable and reliable. EEG is seen 

to have a high test-retest reliability, is seen to be stable and we have seen patterns emerging and 

staying consistent throughout the disease progression. In our case, theta, in particular, has proven 

to be an effective measure of identifying early PD, MCI and eventually dementia. Its strong 

association with memory and attention domains make it a good indicator of cognitive decline. This 

was also observed in the prodromal PD group and as discussed, the prodromal stage begins several 

years before a clear clinical diagnosis is feasible for PD. 

 

An effective implementation might be to find out optimal cut-off points pertaining to different 

phases of progression and using it in the clinic for facilitating decision making with regards to 

patient therapy, care and treatment. 

 

Improving the quality of life of patients and helping them overcome problems in daily life has 

been one of the main visions and drivers of this project. If we are able to effectively implement 

tools using cut-off scores from selected EEG and neuropsychological tests, we might be able to 

identify patients at risk at an early stage and provide them with relevant regular therapy to improve, 

stabilize and possibly revert their condition. As observed, a few patients did revert to normal 

cognition, although it is not fully clear how well they stuck to a routine or practised physical/mental 

exercises at home throughout. One study carried out at our centre had used the Wii gaming console 

to train patients thrice a week for six months (Zimmermann et al., 2015b) and noted an 

improvement in cognitive performance for some of the patients. Some other patients are given 

dance therapy, speech therapy or cognitive behavioural therapy in a group, depending on each 

one’s needs and condition. 
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