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Abstract 

 

People living with HIV (PLWH) are aging but are often excluded from clinical studies because of 

pragmatical and ethical concerns. Therefore, the effect of aging on the pharmacokinetics and drug-drug 

interaction (DDI) magnitudes of antiretroviral drugs remain uncertain. Consequently, clinical guidance 

regarding dose adjustment for antiretroviral drugs and the clinical management of DDIs with advanced 

aging are missing. 

 

Studies presented in this thesis combined clinically observed data with physiologically based 

pharmacokinetic (PBPK) modelling to investigate the continuous effect of aging on drug 

pharmacokinetics and DDI magnitudes. The PBPK model was developed in the mathematical 

programming language Matlab®. A virtual population considering age-related changes in demographics, 

physiology, and biology informed the model.  

 

Clinically observed data of ten non-HIV drugs being commonly administered as comedications to aging 

PLWH were used to verify the predictive power of the PBPK model to simulate drug disposition in the 

elderly. Extrapolating the pharmacokinetics of all investigated ten drugs across adulthood (20 to 99 

years) elucidated that the progressively decreasing drug clearance drove age-related pharmacokinetic 

changes, which itself was caused by the decline of the hepatic and renal blood flow and the glomerular 

filtration rate. Age-dependent pharmacokinetic alterations were independent of drug characteristics. 

Additional clinical data of 52 drugs obtained from young and elderly individuals verified this general 

model-based hypothesis. 

 

Concentration-time profiles of ten antiretroviral drugs, belonging to the current first-line treatment, were 

obtained in two clinical studies including PLWH at least 55 years, who participated in the Swiss HIV 

Cohort Study. These clinically observed data were generally predicted within the 95% confidence 

interval of the PBPK model, demonstrating the ability of the used approach to predict real-life plasma 

concentrations from PLWH, who had a declined kidney function (e.g. the glomerular filtration rate was 

65.6 ± 19.2 mL/min/1.73m²) and common comorbidities (e.g. hypertension). Age-related 

pharmacokinetic changes of antiretroviral drugs across adulthood were found to be similar to non-HIV 

drugs, indicating a marginal increase in antiretroviral drug exposure with advanced aging. 
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One of the conducted clinical studies in PLWH at least 55 years was designed to investigate DDI 

magnitudes between amlodipine, atorvastatin, or rosuvastatin and a dolutegravir (no interaction 

expected) or a boosted darunavir (high interaction potential) containing antiretroviral regimen. The 

comparison with historical data obtained in young PLWH aged 20 to 50 years yielded no changes in the 

DDI magnitudes between both investigated age groups. These clinically observed data were used to 

verify DDI simulations of the developed PBPK framework in the elderly and subsequently DDI 

magnitudes were predicted across the entire adult lifespan. The model indicated that DDI magnitudes 

were unchanged across adulthood regardless of the involved drugs, the DDI mechanism, or the sex of 

the investigated individual. This general model-based hypothesis was verified with independent clinically 

observed data from 17 DDIs. 

 

As DDI magnitudes are not impacted by aging, static methods can be applied to predict DDI magnitudes 

in elderly patients, who receive two drugs with an uncharacterized DDI magnitude. Predictions are based 

on the fraction of metabolism by a specific enzyme and the strength of an inhibitor or inducer. In contrast 

to the PBPK approach, the static method provides a more straightforward supportive tool to rationalize 

dose adjustments to overcome a given DDI. 

 

In conclusion, this thesis demonstrates marginal pharmacokinetic alterations of antiretroviral drugs and 

no age-related changes of DDI magnitudes. Therefore, a dose adjustment of antiretroviral drugs or a 

different management of DDIs in clinical practice are a priori not necessary when treating aging male 

and female PLWH in the absence of severe comorbidities. These general rules being broadly applicable 

to antiretroviral and non-HIV drugs support the overall care of elderly PLWH beyond HIV and therapies 

of future effective drugs. 
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1.1 Human immunodeficiency virus 

Globally, 37.9 million people are living with the human immunodeficiency virus (HIV) of whom 1.7 million 

people got newly infected with HIV in 2018. The incidence of infections decreased by 70% in the past 

20 years [1, 2]. When being untreated, the HIV infection leads to the acquired immunodeficiency 

syndrome (AIDS). AIDS is uniformly fatal, because the human body is no longer able to defend itself 

against invading pathogens [3]. AIDS-related deaths were reduced by over 70% in the past twenty years 

[1, 2], which is an achievement of the combined effective antiretroviral therapies that became available 

in the mid-1990 [4]. In 2019, 24.5 million people living with HIV (PLWH) had access to antiretroviral 

treatment [1], which needs to be lifelong because no current HIV therapy can eradicate the virus [5]. HIV 

is efficiently suppressed in PLWH on antiretroviral therapy by the disruption of different phases of the 

viral replication cycle. 

1.1.1 Viral structure and replication cycle 

HIV is a lentivirus belonging to the retroviruses. The variability of HIV is enormous, which remains a 

challenge in HIV care [6]. A key characteristic is that HIV has not the capability to reproduce itself and 

thus needs a suitable human or human primate host [7]. Two single ribonucleic acids (RNA) form the 

HIV genome that is contained in a protein capsid (Figure 1.1) [8]. Nine genes encode for three structural, 

two envelope, six regulatory proteins, and three enzymes [9]. HIV is further surrounded by a lipid bilayer 

derived from the host plasma membrane [10]. The outer membrane contains the two glycoproteins gp41 

and gp120 that are essential to bind to the cluster of differentiation (CD) 4 receptor and the chemokine 

receptor (CCR) 5 [11]. The binding leads to the fusion of the viral and the host cell membrane and 

subsequently the viral capsid is released into the cytoplasm of the host cell [12]. The viral RNA is 

uncoated and the reverse transcriptase rewrites the single-stranded viral RNA into deoxyribonucleic 

acid (DNA) [13]. The newly synthesized viral DNA enters the nucleus of the host cell with the help of 

viral proteins [14]. In a next step, the viral integrase integrates the viral DNA into the cellular genome, 

where the cellular machinery is used for transcription and translation [15]. HIV synthesizes two large 

precursor proteins, namely the gag-polyprotein that contains the structural proteins for the capsid and 

the gag-pol protein that contains the viral enzymes such as the reverse transcriptase [16]. From the 

latter, the viral protease is cleaved autocatalytically and hydrolysis the precursor polyproteins [17]. 

Afterwards, the virus is assembled and leaves the host cell through budding [9]. 
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Figure 1.1: Schematic structure of HIV. Reproduced with permission from [18]. 

Key: gp = glycoprotein, p = protein, RNA = ribonucleic acid. 

1.1.2 Antiretroviral therapy 

Antiretroviral therapy can effectively control the replication rate of HIV and hence suppress the virus 

[19]. Six different antiretroviral drug classes (Table 1.1) are currently available, which disrupt different 

phases of the reproduction cycle of HIV (Figure 1.2) [20]. The first class are the nucleoside/nucleotide 

reverse transcriptase inhibitors (NRTI) that competitively inhibit the reverse transcriptase and thus 

disrupt the synthesis of the viral DNA. NRTIs are prodrugs that are phosphorylated to their active form 

by host kinases [21]. They are called the backbone of the antiretroviral therapy [22]. Currently, tenofovir 

(derived from the prodrugs tenofovir disoproxil fumarate or tenofovir alafenamide) and emtricitabine are 

commonly used NRTIs in antiretroviral therapy [20]. 

Table 1.1: Antiretroviral drugs currently in use, their antiretroviral drug classes, and targets. 

Class Target Drugs 

Nucleoside/nucleotide reverse 
transcriptase inhibitors (NRTI) 

Reverse transcriptase Abacavir 

Emtricitabine 

Lamivudine 

Tenofovir 

Zidovudine 

Non-nucleoside reverse transcriptase 
inhibitors (NNRTIs) 

Reverse transcriptase Doravirine 

Efavirenz 

Etravirine 

Nevirapine 

Rilpivirine 

Integrase inhibitors HIV integrase Bictegravir 

Dolutegravir 

Elvitegravir 

Raltegravir 

Protease inhibitors HIV protease Atazanavir 

Darunavir 

Lopinavir 

Ritonavir 

Entry inhibitors Chemokine receptor 5 (CCR5) 
Glycoprotein (gp) 41 
Cluster of differentiation (CD) 4 receptor 

Maraviroc 
Albuvirtide 
Ibalizumab 

Fusion inhibitors Fusion of viral and host cell membrane Enfurvirtide 

Pharmacokinetic enhancers Cytochrome P-450 (CYP) 3A inhibition Ritonavir 

Cobicistat 
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In contrast to NRTIs, non-nucleoside reverse transcriptase inhibitors (NNRTIs) bind to the reverse 

transcriptase non-competitively, therefore blocking the ability to use endogenous nucleosides for the 

DNA synthesis [23]. Efavirenz and nevirapine are first generation NNRTIs, whereas rilpivirine, etravirine, 

and doravirine belong to the second and third generation, respectively [24, 25]. Integrase inhibitors such 

as raltegravir, dolutegravir, elvitegravir, and bictegravir belong to the third class of antiretrovirals. They 

block the integration of the viral DNA into the cellular host genome [26]. The fourth class are the protease 

inhibitors, which inhibit the maturation of the immature virions. The viral protease is no longer able to 

cleave the precursor polypeptides into functional proteins [27]. Atazanavir, darunavir, and lopinavir 

belong to protease inhibitors that are highly effective against HIV [28]. 

 

 

Figure 1.2: Reproductive cycle of HIV and targets for antiretroviral drugs. Explanations can be found in the main 

text. Reproduced with permission from [29], Copyright Massachusetts Medical Society. 

Key: CD4 = cluster of differentiation 4, CCR5 = chemokine receptor 5, CXCR4 = CX-Chemokine receptor 4, DNA 

= deoxyribonucleic acid, gp = glycoprotein, RNA = ribonucleic acid. 
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Maraviroc, albuvirtide, and ibalizumab are entry inhibitors, which belong to the fifth class of 

antiretrovirals. Maraviroc binds reversibly to CCR5 and therefore, inhibits the fusion between the viral 

and the host cell membrane [30]. Maraviroc does not demonstrate efficacy in every PLWH and is 

therefore not recommend as first-line therapy [28]. Albuvirtide targets gp41 and the monoclonal antibody 

ibalizumab binds to the CD4 receptor, therefore blocking the entry of HIV into the host cell [31, 32]. The 

last class are the entry inhibitors with the therapeutic protein enfurvirtide being the only representative 

[33]. Enfurvirtide is only used if no other treatment option is available [28]. 

 

In addition to the six antiretroviral drug classes, there are two pharmacokinetic enhancers, ritonavir and 

cobicistat. They inhibit cytochrome P-450 (CYP) 3A leading to an increased drug exposure and 

consequently to a longer duration of the effect of other antiretrovirals metabolized by CYP3A [34, 35]. 

 

The treatment strategy is to combine three antiretroviral drugs that interrupt at least two different points 

in the replication cycle of HIV. The current recommendation as first-line therapy are two NRTIs combined 

with an integrase or protease inhibitor [36]. To increase the adherence of PLWH, different antiretroviral 

drugs are combined in a single tablet. Prevention strategies such as preexposure prophylaxis, which 

focuses on HIV-negative individuals who are at high risk of acquiring HIV [37], are also implemented. 

1.1.3 The “graying” of the HIV epidemic 

The highly effective antiretroviral therapy increased the life expectancy of PLWH through the last 

decades till it reached the life expectancy of the general population [38, 39]. Consequently, the number 

of aging PLWH is growing as shown by the age distribution of the Swiss HIV Cohort Study over the past 

30 years (Figure 1.3) [40]. Worldwide, 6 million PLWH were older than 50 years by the end of 2018 [1]. 

Every second PLWH belonged to the aged group in the Western Countries [41]. The number of PLWH 

at least 50 years is projected to increase to over 70% in Europe by 2030 [42]. The general life expectancy 

in African countries, where the majority of PLWH life, is 55 to 60 years [43], and therefore only a minority 

of Africans living with HIV reaches the age of 50 years. In the future, the life expectancy of the general 

African population and Africans living with HIV are projected to increase, especially in Eastern and 

Southern Africa [43, 44]. Most PLWH aged older than 50 years acquired the disease earlier in life, but 

17% of newly infected US-Americans were aged 50 years and older [45]. 



  Chapter 1: General Introduction 

 - 15 - 

 

Figure 1.3: Age distribution of active patients by year in the Swiss HIV Cohort Study, 1986-2016 [40]. 

The age cut-off of 50 years to define an elderly PWLH was chosen historically with the finding that HIV 

accelerates aging [46-48], which is a matter of discussion given that not all PLWH have a shorter life-

expectancy compared with the general population [38, 39]. Aging and HIV infection show similarities at 

the cellular level regarding inflammation and immunosenescence, which could lead to combined effects 

and hence accelerate aging [49, 50]. Furthermore, mortality was found to be increased in large cross-

sectional studies. However, other studies found the mortality and the risk for comorbidities to be similar 

at all studied ages between PLWH and non-infected controls [41]. The observed difference of mortality 

between studies might be explained by different antiretroviral therapies. The first-generation protease 

inhibitors and NRTIs as well as efavirenz had more severe side effects such as glucose intolerance, 

hyperlipidemia or an added risk for chronic kidney disease that could contribute to aging [51-53]. In 

addition, the lifestyle between PLWH and the general population might differ in terms of smoking, 

alcohol, drug use, and other viral infections such as hepatitis [54].  

 

In the absence of a pharmacological and clinical definition of an “elderly” individual [55], the age of 65 

years is used, which is purely based on the age of retirement in Western Countries [56]. 

 

The “graying” of HIV brings new challenges to the care of PLWH besides virologic suppression [57]. 

Effects of aging on the pharmacokinetics and pharmacodynamics of antiretroviral therapy alone, frailty, 

age-related comorbidities, polypharmacy, and subsequently the risk for drug-drug interactions (DDIs) 

and inappropriate prescribing need to be considered in geriatric HIV care. 
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1.2 Effects of aging on the pharmacokinetics of antiretroviral drugs 

Aging leads to demographical, physiological, and biological changes in men and women, which all could 

impact drug pharmacokinetics [58]. The effect of aging on the human body is extensively discussed in 

chapter 2. In brief, contradictory findings are reported for the effect of aging on drug absorption. Different 

studies found gastric emptying time to be slower, similar or faster in elderly compared with young 

individuals [59-64]. Distribution of drugs and consequently the volume of distribution could change with 

advanced aging, because of altered body composition with increased adipose tissue weight and reduced 

total body water in the elderly [65]. It is a matter of debate whether hepatic enzyme activity and therefore 

drug metabolism is altered with advanced aging; however, the small samples size and the general large 

variability of CYP and uridine diphosphate-glucuronosyltransferase (UGT) activity remains a challenge 

when investigating the impacted of aging on enzyme activity [66-68]. The hepatic drug clearance is 

affected by age-related alterations in the liver volume and the hepatic blood flow [69]. The most 

prominent change with aging is the decline in kidney function leading potentially to a change in renal 

drug clearance [70]. Despite the known physiological alterations with advanced aging, clinical studies 

investigating age-related pharmacokinetic changes of antiretroviral drugs are limited [71-75]. 

 

In a pilot study, the pharmacokinetics of two common antiretroviral regimens (tenofovir + emtricitabine 

+ efavirenz or atazanavir/ritonavir) were assessed in six PLWH aged 55 to 65 years. The area under 

the curve (AUC) of tenofovir and boosted atazanavir decreased by 8 to 13% and 12% in aging compared 

with young PLWH. In contrast, the AUC of emtricitabine and ritonavir was increased by 19 to 78%. 

Exposure of efavirenz was unchanged in middle-aged PLWH [71]. A second study showed higher 

protease inhibitor concentrations with aging obtained from regular therapeutic drug monitoring, but no 

age-related pharmacokinetic changes for NNRTIs [73]. In a third study, the AUC of dolutegravir was 

unchanged in PLWH aged 60 to 79 years, whilst the peak concentration (Cmax) increased by 25% 

compared with young PLWH [72]. A forth study supported the findings of the previous ones with a 40% 

decrease in boosted darunavir clearance in elderly PLWH and no age-related changes for dolutegravir 

and lamivudine [74]. In a fifth study, physiologically based pharmacokinetic (PBPK) modelling estimated 

the exposure of the renally cleared antiretroviral drugs emtricitabine, lamivudine, and tenofovir to be 

increased by 40%, 42%, and 48% in PLWH aged 65 to 74 years compared with young individuals aged 

20 to 50 years [75]. 
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There are substantial limitations to the available studies investigating the impact of aging on antiretroviral 

drug pharmacokinetics. These include the small number of individuals in each study particularly above 

the age of 65 years. Additionally, all aforementioned studies including the one which used PBPK 

modelling compared the pharmacokinetics between two groups (i.e. young subjects aged 20 to 50 years 

and elderly individuals aged at least 65 years); however, aging is a continuous process [58] and 

longitudinal data in the same individual are entirely lacking for antiretroviral and non-HIV drugs. 

 

As a consequence of the limited clinical studies, drug labels of antiretrovirals do not give any dose 

recommendations for elderly PLWH [76-84], except for atazanavir for which no dose adjustment is 

necessary based on the age of the treated PLWH [85]. Thus, evidence-based prescribing is not possible 

when treating aging PLWH. Clinicians are faced with the challenge to adjust the dose based on empirical 

experience. 

1.3 Age-related comorbidities, polypharmacy, and drug-drug interactions in 

aging people living with HIV 

Aging PLWH in high income countries face the challenge of age-related comorbidities such as 

cardiovascular diseases, hypertension, dyslipidemia, diabetes, and depression [86]. The number of 

comorbidities increases with advanced aging [87]. In the French HIV Cohort, 4% of the enrolled PLWH 

aged 50 to 74 years had more than four comorbidities. The number increased to 18% in PLWH at least 

75 years [88]. 

 

Given the high prevalence of age-related comorbidities, polypharmacy being defined as taken more than 

five concomitant drugs, is common amongst the elderly [86, 89]. Importantly, the antiretroviral regimen, 

consisting usually of three different antiretroviral drugs, is not considered for the definition of 

polypharmacy in HIV care to allow the comparison to non-infected individuals [90, 91]. Polypharmacy is 

more prevalent in middle-aged PLWH compared with the general population, but the difference is less 

marked with advanced aging [92]. This finding can probably be explained by the occurrence of age-

related chronic diseases regardless of the HIV infection. Importantly, polypharmacy appears to increase 

with the duration of the HIV infection, which is explainable by the side effects of long-term antiretroviral 
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treatment [93]. The most commonly prescribed comedications in aging PLWH are cardiovascular drugs, 

antiplatelet/anticoagulant medications, and gastrointestinal agents [92, 94].  

 

One issue of polypharmacy are DDIs, because the risk for a DDI increases exponentially with every 

drug taken [95]. Clinical management of DDIs is important, because DDIs can lead to unsafe or 

inefficacious therapies. Therefore, either doses of the victim drug can be adjusted to overcome a given 

DDI or alternative drugs with less interaction potential could be administered [96]. Antiretroviral drugs 

have a high DDI potential as they can serve as the victim drug, the inhibitor, or the inducer of a DDI. 

Examples of victim drugs are the integrase inhibitors raltegravir, dolutegravir, and bictegravir, the 

NNRTIs rilpivirine and doravirine as well as the entry inhibitor maraviroc, which are all extensively 

metabolized in the liver but have no inhibitory or inducing potential [78, 79, 84, 97-99]. Conversely, the 

boosting agent cobicistat inhibits hepatic enzymes [35], whereas the NNRTIs efavirenz and etravirine 

have inducing properties [100, 101]. Ritonavir, a protease inhibitor used to boost other antiretrovirals, 

has both inhibitory (e.g. CYP3A) and inducing (e.g. CYP2C9, CYP2C19, UGT1A1) potential, which is 

different to the second pharmacokinetic enhancer cobicistat, which is more selective towards CYP3A 

inhibition [102]. Additionally, antiretroviral drugs can lead to transporter mediated DDIs. Atazanavir, 

darunavir, and ritonavir can competitively inhibit the hepatic organic anion transporting polypeptide 

(OATP) 1B1 [103]. In addition to enzyme- and transporter-mediated DDIs in the liver, intestine, and 

kidney, there can be DDIs at the level of drug absorption. Neutralizing agents change the gastric pH and 

lead consequently to a reduced absorption of atazanavir and rilpivirine [104, 105]. All integrase inhibitors 

contain an ion-chelating motif that could lead to complex formation with divalent cations such as calcium, 

when the drug is taken together with mineral supplements or antacids, containing for instance calcium 

carbonate, which decreases the absorption of integrase inhibitors [106]. When administering two drugs 

with a similar toxicity profile, a pharmacodynamic interactions might occur with an additive risk for 

adverse events. 

 

A study conducted in the framework of the Swiss HIV Cohort Study found a higher DDI frequency in 

PLWH at least 50 years (51%) compared with PLWH aged 20 to 50 years (35%) [94], manifesting that 

the risk for DDIs increases with advanced aging [48, 86, 107, 108]. Consistent with age-dependent 

comorbidities occurring in elderly PLWH, DDIs involving antiretrovirals are commonly observed with 

cardiovascular drugs and psychotropic drugs [48, 92, 94, 107, 108]. Despite the declining DDI potential 
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of newer antiretroviral drugs, the number of DDIs is similar which is explained by the high prevalence of 

age-related comorbidities and the consequent use of more medications [109].  

 

Only a limited number of drug combinations are evaluated in clinical studies. The entire variety of 

prescribed drug combinations in clinical practice cannot feasible or pragmatical be studied. Generally, 

the effect of one strong inhibitor or inducer is investigated on the victim drug of interest leading to missing 

guidance of firstly moderate perpetrators and secondly of DDIs between several different administered 

drugs that might interact mutually. To rationalize the clinical management of DDIs, estimates for DDI 

magnitudes can be obtained from the fraction metabolized by a certain enzyme and the strength of an 

inhibitor or inducer to alter the activity of this specific enzyme. Before using a prediction method, 

appropriate verification would be necessary, which has not been performed for antiretroviral drugs [110]. 

 

Additionally, clinical studies investigating the pharmacokinetics and DDI magnitudes are often 

conducted in healthy volunteers, making it challenging to understand the effect of the disease. 

Furthermore, the impact of aging on the inhibition and induction of enzymes and transporters is largely 

unknown, but DDI studies in the elderly are hardly conducted. The DDI magnitude of midazolam 

administered with clarithromycin was shown to be similar between young individuals aged 20 to 50 years 

and elderly subjects aged at least 65 years [111, 112], but the effect of advanced aging on other DDI 

scenarios remains uncertain. However, there are several challenges when designing a clinical DDI study 

in aging PLWH. HIV therapy cannot be disrupted, because current antiretroviral therapies only suppress 

the virus, but cannot eradicate it. Therefore, a virologic failure with increasing virions would likely be the 

result of the treatment interruption [113]. Furthermore, participants should have no chronic disease or 

medication that could potentially influence the DDI of interest, because otherwise it is not possible to 

understand the effects mechanistically. 

1.4 Physiologically based pharmacokinetic modelling 

To overcome the practical and ethical limitations to conduct clinical studies in the elderly, PBPK 

modelling offers the possibility to perform virtual clinical trials. The development of a PBPK model is 

extensively discussed in chapter 3. In brief, a PBPK model describes the absorption, distribution, 

metabolism, and excretion of a drug mathematically in a physiologically relevant compartmental 
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structure, where each compartment represents an organ or tissue (Figure 1.4) [114]. Dynamic 

movement of the drug between the model compartments is mediated by the regional blood flows and 

described by ordinary differential equations. An advantage of the PBPK approach is the prediction of 

intracellular concentrations that cannot easily be measured in humans. The distribution into a 

compartment can be either limited by perfusion (well-stirred models) or by the cell membrane 

(permeability-limited models) [115]. 

 

The PBPK model is informed by virtual populations (system data), drug, and trial design data [115]. 

Virtual populations are generated based on measured organ weights, regional blood flows, and other 

important physiological parameters to predict drug pharmacokinetics [58]. By incorporating variability for 

all system parameters, certain subpopulation with high risk for DDIs (e.g. poor metabolizers for CYP2D6) 

can be identified [116]. A combination of measured in vitro and clinically observed in vivo data are used 

to correctly simulate the absorption, distribution, metabolism, and elimination of a drug [117]. System 

and drug data are combined in the trial design component considering dose, dosing regimen, route of 

administration, and number of virtual individuals to simulate the clinical scenario of interest. Importantly, 

simulations of the PBPK model need to be verified against clinically observed data before extrapolating 

to unknown clinical scenarios of interest. 

 

 

Figure 1.4: Structure of a whole-body PBPK model. Perfusion-limited and permeability-limited compartments are 

shown in black and green. Venous blood flows, arterial blood flows, and lymphatic flows are displayed in blue, red, 

and orange, respectively. Adapted from [118]. 
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1.5 Aim of this thesis 

The aim of this thesis was to investigate the continuous effect of aging on drug pharmacokinetics and 

DDI magnitudes by combining clinically observed data with modelling and simulation. The two-research 

questions of this thesis were:  

 

1) Do the pharmacokinetics of antiretrovirals change with aging to a degree that would support 

a dose adjustment based on the age of the treated PLWH? 

 

2)  Are DDI magnitudes impacted by aging and is there consequently the need for a different 

clinical management of DDIs? 

 

To answer the two research questions, firstly, age-related demographical, physiological, and biological 

changes were analyzed to generate a virtual aging population (Chapter 2). Secondly, a PBPK model 

framework was coded in the mathematical programming language Matlab® and informed by the 

developed virtual aging population (Chapter 3). Thirdly, the developed PBPK model and population were 

verified against published clinical data for ten non-HIV drugs that are commonly used as comedications 

in aging PLWH. The PBPK model determined the continuous effect of aging on drug pharmacokinetics 

and the cause for observed age-related changes of drug exposure (Chapter 4). Subsequently, the found 

rules for non-HIV drugs were applied to antiretroviral drugs after verifying the predictive performance of 

the developed PBPK model to simulate antiretroviral drug disposition against clinically observed data 

from PLWH at least 55 years ([74]; Chapter 5). Fourthly, a prospective clinical study was conducted in 

the framework of the Swiss HIV Cohort Study at the University Hospitals Basel and Lausanne to 

investigate for the first time DDI magnitudes between antiretroviral drugs and cardiovascular agents in 

elderly PLWH. Consequently, these clinically observed data were used to verify the predictive potential 

of the developed PBPK model to simulate DDI magnitudes in the elderly. Afterwards, the age-

dependency of 50 DDI magnitudes, developed during all studies contained in this thesis, were analyzed 

(Chapter 6). Lastly, a predictive, static tool was developed and verified for DDIs involving antiretrovirals 

to quickly assess magnitudes of uncharacterized DDIs in HIV care (Chapter 7). 
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2.1 Abstract 

Background: 

Aging is characterized by anatomical, physiological, and biological changes that can impact drug 

pharmacokinetics. The elderly are often excluded from clinical trials and knowledge about drug 

pharmacokinetics and drug-drug interaction magnitudes are sparse. Physiologically based 

pharmacokinetic modelling can overcome this clinical limitation but detailed descriptions of the 

population characteristics are essential to adequately inform models. 

 

Objective: 

The objective of this study was to develop and verify a population database for aging Caucasians 

considering anatomical, physiological, and biological system parameters required to inform a 

physiologically based pharmacokinetic model, which includes population variability. 

 

Methods: 

A structured literature search was performed to analyze age-dependent changes of system parameters. 

All collated data were carefully analyzed, and descriptive, mathematical equations were derived. 

 

Results: 

A total of 362 studies were found of which 318 studies were included in the analysis as they reported 

rich data for anthropometric parameters and specific organs (e.g. liver). Continuous functions could be 

derived for most system parameters describing a Caucasian population from 20 to 99 years of age with 

variability. Areas with sparse data were identified such as tissue composition, but knowledge gaps were 

filled with plausible qualified assumptions. The developed population was implemented in Matlab® and 

estimated system parameters from 1,000 virtual individuals were in accordance with independent 

observed data, showing the robustness of the developed population. 

 

Conclusion: 

The developed repository for aging subjects provides a singular specific source for key system 

parameters needed for physiologically based pharmacokinetic modelling and can in turn be used to 

investigate drug pharmacokinetics and drug-drug interaction magnitudes in the elderly. 
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2.2 Key Points 

The developed repository provides a singular specific source of age-dependent anatomical, 

physiological, and biological system parameters required to inform physiologically based 

pharmacokinetic models. The parameters and associated developed equations can be implemented 

into existing physiologically based pharmacokinetic frameworks and can be used to overcome sparse 

clinical data in subjects at least 65 years to investigate age-dependent changes in drug 

pharmacokinetics and drug-drug interaction magnitudes in silico. These parameterized and informed 

physiologically based pharmacokinetic models for the elderly can provide more rational frameworks for 

dose-adjustments to overcome drug-drug interactions. 

2.3 Introduction 

Worldwide, the number of elderly people has increased substantially in the recent years [119]. An 

“elderly” individual is defined as being above the age of 65 years [56], which is in line with the age of 

retirement in most Western countries. Older individuals are prone to multi-morbidities and hence 

polypharmacy and consequently drug-drug interactions (DDIs) [86, 120, 121]; however, there is no clear 

pharmacological or clinical definition of an “elderly” [55]. Often, elderly subjects are excluded from 

clinical trials, resulting in a general lack of knowledge about the efficacy, safety, and pharmacokinetics 

of a drug at different ages [122].  

 

There are certain age-dependent anatomical, physiological, and biochemical changes influencing drug 

pharmacokinetics including decreased kidney weight [123], reduced renal blood flow [124], declined 

glomerular filtration rate [125], and reductions in liver volume and hepatic blood flow [126-128]. For other 

parameters such as enzyme and transporter abundance, or the concentration of plasma-binding 

proteins, data are limited, contradictory, or entirely missing. In addition, it is difficult to investigate aging 

because other environmental and behavioral factors such as diseases, food, and smoking can have 

effects themselves or enhance the aging process [129].  

 

Physiologically based pharmacokinetic (PBPK) modelling can help to overcome the lack of clinical data 

and to understand drug absorption, distribution, metabolism, and elimination at different ages. 

Furthermore, PBPK models have the ability to predict DDI magnitudes in aging individuals and support 
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more rational identification of dose adjustments to overcome given DDIs. To develop a PBPK model, 

system data (where system refers to the population of interest, e.g. elderly) are required to inform the 

PBPK model. To generate reliable predictions, a comprehensive description of system characteristics 

is essential to fully represent the population of interest. To date, only two databases have been published 

to inform PBPK models for the elderly, of which one does not distinguish between ethnicities [130] and 

the other does not consider population variability and provides no descriptive functions of physiological 

and anatomical parameters [131]. 

 

The objective of this work was to collate and analyze data from the literature with the view to create a 

new comprehensive description of system characteristics for PBPK modelling and to address 

shortcomings of previous databases. The work focuses on parameters to inform a PBPK model for aging 

people that considers population variability, and to develop continuous functions describing 

physiological parameters of interest between 20 and 99 years of age for a Caucasian population. 

2.4 Methods 

2.4.1 Data sources 

A structured literature search was performed using the MEDLINE database for age-dependency of 

anatomical, physiological, and biological parameters required to inform a PBPK model for aging 

subjects. Keywords used were “aging”, “elderly” or “geriatric” plus the parameter of interest (Table 2.1 

and Figure 1.4 for the investigated compartments of the developed PBPK model). No restrictions were 

applied regarding the language or the publication year of the article. Abstracts were screened, and 

studies included if the study population were Caucasians, at least age has been reported in addition to 

the parameter of interest, and subjects were healthy or their disease/organ function was deemed unlikely 

to affect the parameter of interest such as the effect of chronic liver disease on brain blood flow [132]. 

Studies performed with North Americans and Australians were considered if at least 80% of the study 

population were of European heritage. Studies including subjects over the age of 65 years should at 

least report a mean age per age decade. The reference list of chosen articles was manually screened 

to identify further references. 
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2.4.2 Data analysis 

Data analysis was performed in Matlab® 2015b. Data were converted to consistent units and a normal 

distribution was assumed for each parameter to make published data comparable. If a study reported 

the median, minimum, and maximum, data were converted to the arithmetic mean and standard 

deviation according to Hozo et al. [133] and if the interquartile range was given, the conversion was 

done according to Wan et al. [134].  

 

Collated data were separated into a development and verification dataset. Studies in the development 

dataset were required to report age, sex, body height, body weight, and ethnicity in addition to the 

parameter of interest as necessary covariates to describe correlations. Otherwise, studies with less 

reported covariates were used in the verification dataset. If at least three different studies covering the 

entire age range with at least one value in each age decade and all required covariates for the 

development dataset were available for a parameter of interest, the data were randomly separated into 

a development and a verification dataset. In the case of missing covariates such as anthropometric 

parameters in the verification dataset or cardiac output for regional blood flow analysis, the covariates 

have been estimated by the derived equations following the approach by Williams & Leggett [135]. The 

body surface area was calculated according to DuBois and DuBois [136]. 

 

We performed a weighted linear regression to derive descriptive continuous equations for the parameter 

of interest from 20 to 99 years considering age, sex, anthropometric parameters, location of the study, 

the publication year, and methods of measurement as independent variables. Location was used as an 

independent variable to investigate if studies conducted in Europe, North America, and Australia can be 

combined without bringing a bias into the data. Publication year has been used to investigate differences 

in key parameters (e.g. body weight) over the last century and if different methods used at different 

times have an impact. Data obtained by different methods have only been pooled when there was no 

significant difference between methods. 

 

Linear, polynomial, and exponential functions were investigated during the regression analysis. 

Covariates with a p-value below 0.01 have been considered as significant. Visual and numerical 

regression diagnostic were performed. The corrected Akaike’s information criterion was used for 
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numerical diagnostics to select the best fitted function [137]. Variability for each parameter was 

calculated as the weighted coefficient of variance (CV) of the development dataset for each individual 

mean and standard deviation (equation 1) and it was visually investigated whether age had an impact 

on variability. The variability of a parameter of interest was estimated by the variability of the covariates 

describing the parameter of interest and, if necessary, additional random variability to fully capture the 

observed variability. 

 

�� =  ����	�
	 	����������  (1) 

 

 

The derived equations for all parameters necessary to describe a white population have been 

implemented in Matlab® and 1,000 virtual men and women have been created and the estimated system 

parameters have been compared to the independent verification dataset. Normal distribution with the 

derived CV (Table 2.2) was used to describe variability of the parameter of interest. Furthermore, it was 

analyzed if the sum of organ weights and regional blood flows did not exceed body weight and cardiac 

output. 

2.5 Results 

A total of 362 studies were found of which 318 studies were included in the analysis. Studies were 

mostly excluded because the age or ethnicity of the study population was insufficiently defined. Rich 

data were found for anthropometric parameters (body height and body weight), adipose tissue, brain, 

heart, kidney, and liver. Data for some regional blood flows, such as to the bone, and in general 

composition of tissues were difficult to obtain from the literature. Although including data for 

centenarians, most of the data were found for ages up to the mid-80s identifying a general knowledge 

gap for very old individuals. Derived equations and the population variability expressed as the CV can 

be found in Table 2.2. Detailed information on the number of subjects in each age decade used in the 

development dataset, the number of total studies in the development and verification dataset, the 

methods used to measure the parameter of interest, the study location, and the references can be found 

for each investigated parameter in the electronic supplementary material of the published article 

(https://link.springer.com/article/10.1007% 2Fs40262-018-0709-7 #SupplementaryMaterial). 
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2.5.1 Age and sex distribution 

Data regarding age and sex distribution were taken from Eurostat [138] for all 28 member states of the 

European Union and the Federal Office for Statistics of Switzerland (Figure 2.1) [139]. The number of 

subjects in each age decade was found to be uniform between 20 and 59 years. The number of subjects 

declined from the age of 60 years, with only 2% of the Swiss population being above 90 years of age. 

A Weibull distribution with α = 1.55 and β = 61.73 best described the age distribution. The proportion of 

women was found to be 50% of the population in Europe till the age of 69 years and increased to over 

80% for very old Swiss subjects above the age of 100 years. In all following equations, age is expressed 

in years and sex is either 0 for men or 1 for women. 

 

 

Figure 2.1: Proportion of subjects (a) and proportion of women (b) per age decade. Data are from the 28 member 

states of the European Union (black bars) and Switzerland (white bars). 

 

2.5.2 Body height and body weight 

Anthropometric data of 106,698 Caucasians have been analyzed in the developmental dataset [139-

185] and the derived equations have been verified with data from 14,096 subjects [186-201]. The mean 

body height of Caucasians aged 20 to 59 years was 178 cm for men and 166 cm for women with a sex-

independent CV of 3.8%. Body height declined by 2% per age decade from the age of 60 years 

(Figure 2.2a). The difference between men and women was constant at all age ranges. Location was 

found to be a significant variable during regression, with lower height observed in Southern Europe, and 

an exclusion of data reported from Portugal, Spain, and Italy led to a non-significance of location. 
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The mean body weight of a Caucasian aged 20 to 49 years was 79.9 kg for men and 64.1 kg for women 

with a CV of 15.7% (Figure 2.2b). Body weight increased in subjects in the fifth and sixth age decade 

by about 4% and decreased afterwards by about 10% in each age decade. In women, the decline started 

one age decade later than in men. In contrast to body height, location was not significant for body weight, 

but publication year was with a significant increase since 2000. 

 

Table 2.2: Descriptive equations and population variability for anatomical, physiological, and biological parameters 

necessary to inform a PBPK model. Virtual subjects from 20 to 99 years can be generated. Blood flows are relative 

to cardiac output and the variability is only propagated from cardiac output. 

Parameter Unit Descriptive equation CV [%] 

Body height cm −0.0039 × ���� + 0.238 × ��� − 12.5 × �� + 176 3.8 

Body weight kg 
−0.0039 × ���� + 1.12 × #$%& ℎ�(�ℎ) + 0.611 × ��� − 0.424 ×�� − 137  

15.2 

Lung weight kg �+,.,�-×.�	/ 0�10�2,.,,33×41�56.78 0 

Adipose tissue weight kg 0.68 × #$%& 9�(�ℎ) − 0.56 × #$%& ℎ�(�ℎ) + 6.1 × �� + 65   29.6 

Bone weight kg �+,.,�:×.�	/ 0�10�5;.<8 13.2 

Brain weight kg �5,.,,36×41�2,.,,3-×.�	/ 0�10�5,.<3 9.0 

Gonad weight kg −0.00034 × #$%& 9�(�ℎ) − 0.00022 × ��� − 0.03 × �� + 0.072  34.8 

Heart weight kg 0.34 × #�� + 0.0018 × ��� − 0.36 17.9 (m), 22.7 (f) 

Kidney weight kg −0.00038 × ��� − 0.056 × �� + 0.33 19.3 (m), 23.2 (f) 

Muscle weight kg 17.9 × #�� − 0.0667 × ��� − 5.68 × �� − 1.22  11.8 

Skin weight kg �+5,.,,6-×41�5,.=3×>�?2;.;=8  8.3 

Thymus weight kg 0.0221 44.8 

Gut weight kg 3@5,7  ×  #$%& ℎ�(�ℎ)�.:<  7.3 

Spleen weight kg �;.;=×.>45=.<=  51.7 

Pancreas weight kg 0.103  27.8 

Liver weight kg �+,.-3×.>45,.,,;:×41�5;.,8  23.7 

Blood weight kg �+,.,73×.>45,.,,�6×41�5,.=-×>�?2;.38  10.4 

Cardiac output (CO) L/h 159 ×  #�� − 1.56 × ��� + 114 21.1 

Adipose tissue blood flow % of CO +0.044 + 0.027 × �� 8 × ��� + 2.4 × �� + 3.9  - 

Bone blood flow % of CO 5 - 

Brain blood flow % of CO �5,.:-×.>42,.,:×>�?2=.6 - 

Gonad blood flow % of CO −0.03 × �� + 0.05 - 

Heart blood flow % of CO −0.72 × #$%& ℎ�(�ℎ) − 10 × �� + 134 - 

Kidney blood flow % of CO −8.7 × #�� + 0.29 × #$%& ℎ�(�ℎ) − 0.081 × ��� − 13  - 

Muscle blood flow % of CO −6.4 × �� + 17.5 - 

Skin blood flow % of CO 5 - 

Thymus blood flow % of CO 1.5 - 

Gut blood flow % of CO 2 × �� + 14 - 

Spleen blood flow % of CO 3 - 

Pancreas blood flow % of CO 1 - 

Liver blood flow % of CO −0.108 × ��� + 1.04 × �� + 27.9  - 

Albumin g/L −0.0709 × ��� + 47.7  7.9 

GFR mL/min �5,.,,3<×41�2,.6×.>42:.�  14.7 

Key: BSA = body surface area, CV = coefficient of variance, GFR = glomerular filtration rate, m = male, f = female. 
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Figure 2.2: Body height (a) and body weight (b) per age decade in an aging population. The blue, red, and black 

lines represent the predicted mean of virtual men, virtual women, and from all virtual subjects, respectively. The 

dashed lines represent the 5 and 95% confidence interval of the predictions. Stars show observed data from the 

development and circles represent overserved data from the independent verification dataset. The size of the stars 

and circles indicates the size of the studied population. 

 

2.5.3 Liver 

Liver weight 

The liver is the major organ of drug metabolism. Liver weight was analyzed from over 3,000 subjects 

[144, 156, 166, 167, 170, 184, 187, 193, 202, 203] and was found to be on average 1.78 kg in men and 

1.49 kg in women with a CV of 23.7% till the age of 65 years. Thereafter, liver weight decreased by 10 

to 15% in women per age decade reaching 1.03 kg at the age of 100 years. The decrease in men was 

around 20% per age decade reaching 1.01 kg on average in 90 years old individuals (Figure 2.3a).  

Liver blood flow 

Absolute total liver blood flow decreased by 60% between 60 and 90 years in men and women, but 

relative to cardiac output the changes were only significant between 90 and 100 years of age (Figure 

2.3b) [128, 204]. The age-dependent changes in total liver blood flow might come from changes of the 

splanchnic blood flow [192, 204-209], explaining observed differences in the first pass effect between 

young and old subjects [210-212]. The hepatic arterial blood flow appears to be constant with age [135, 

204, 213]. 
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Figure 2.3: Liver weight (a) and hepatic blood flow (b) per age decade in an aging population. The blue, red, and 

black lines represent the predicted mean of virtual men, virtual women, and from all virtual subjects, respectively. 

The dashed lines represent the 5 and 95% confidence interval of the predictions. Stars show observed data from 

the development and circles represent observed data from the independent verification dataset. Black circles 

represent data from an undefined gender population. The size of the stars and circles indicate the size of the studied 

population. 

In-vitro-to-in-vivo extrapolation factors 

PBPK models are informed by in-vitro-to-in-vivo extrapolation, meaning that for instance the in vivo 

clearance is extrapolated from measured in vitro data. Hepatic scaling factors like the hepatocellularity 

or microsomal proteins per gram liver are needed [214]. Barter et al. reported age-dependent equations 

for hepatocytes per gram liver [215] and microsomal proteins per gram liver [216] with the oldest 

individuals in the analysis being between the mid-70s and the early 80s.  

Hepatic enzyme activity 

Studies concerning the age-dependency of hepatic cytochrome P-450 (CYP) enzyme activity are sparse 

and contradictory. The biggest challenge is the high variability in hepatic CYP enzyme abundance [217, 

218] and the small sample size generally used for analysis [66, 219]. In a recent large meta-analysis 

investigating hepatic CYP abundance to inform PBPK models, age was only a significant covariate for 

CYP2C9 [218]. It is worthwhile mentioning, that the different genotypes known for CYP2C9 increase the 

sample size needed to identify age-dependency even further. A significant age-dependency was 

detected for CYP1A2, CYP2D6, and CYP2E1 in a different study, but not for CYP2C9 [67]. In a third 
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study, CYP1A2 activity was reported to be independent of age [68]. CYP3A4 activity is consistently 

reported to be not affected by aging between different studies [220-222]. 

 

Posalek et al. investigated drug clearances in the elderly for probe substrates such as caffeine 

(CYP1A2), warfarin (CYP2C9), phenytoin (CYP2C19), desipramine (CYP2D6), and midazolam 

(CYP3A) and found a clearance decrease of 30 to 40% in 70 years old subjects compared with young 

individuals, which can be explained by the decline in liver volume and hepatic blood flow rather than 

hepatic CYP enzyme activity [223]. In addition inflammation affects CYP enzyme activity [224], making 

it difficult to analyze data from non-healthy elderly individuals.  

 

Uridine diphosphate-glucuronosyltransferase (UGT) activity is reported to be independent of age in the 

literature [67, 225-227]. Taken together, this lack of evidence and data to inform age dependency 

necessitates a more judicious approach assuming no age-dependent hepatic enzyme activity and thus 

assuming the same values in aging subjects as in young individuals.  

Hepatic drug transporter activity 

Recently, a compact meta-analysis about hepatic drug transporter abundance to inform a PBPK model 

was published and age was tested as a covariate in the analysis and was reported to be not significant 

for any hepatic drug transporter [228]. In a PBPK model, we are interested in activity rather than 

abundance because the activity of enzymes and drug transporters can explain the clinically observed 

data. If the abundance of drug transporters does not change, there might still be an age-dependent 

difference in drug transporter activity; however, these data are currently not available. Comparable to 

hepatic enzymes, it is therefore recommended to use the same drug transporter activity in elderly as in 

young subjects. 

2.5.4 Kidney 

Kidney weight 

The literature search yielded nine different studies with a total of 1,620 data points measuring kidney 

weight after autopsy (Figure 2.4a) [144, 156, 157, 166, 167, 170, 184, 193, 200]. The average kidney 

weight in young male and female individuals was 0.318 kg with a CV of 19.3% and 0.259 kg with a CV 
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of 23.2%, respectively. The reduction in kidney weight increased with age starting from 5% at the age 

of 70 years to 15% at the age of 80 years to 25% up to the age of 100 years in both sexes. 

Kidney blood flow 

Absolute kidney blood flow decreased by 5 to 10% per age decade till the age of 65 years and thereafter 

decreased by 25% per age decade (Figure 2.4b) [192, 205, 209, 229-237]. Kidney blood flow relative to 

cardiac output was 19.7% in young men and decreased to 11.9% at the age of 85 years. The decrease 

was 5 to 20% per age decade. In women, the average kidney blood flow relative to cardiac output was 

16.5% and stayed constant till the age of 70 years. Thereafter, it decreased to 9.2% at the age of 85 

years. 

 

Figure 2.4: Kidney weight (a), renal blood flow (b), and glomerular filtration rate (GFR) (c) per age decade in an 

aging population. The blue, red, and black lines represent the predicted mean of virtual men, virtual women, and 

from all virtual subjects, respectively. The dashed lines represent the 5 and 95% confidence interval of the 

predictions. Stars show observed data from the development and circles represent observed data from the 

independent verification dataset. Black circles represent data from an undefined gender population. The size of the 

stars and circles indicates the size of the studied population. 

Glomerular filtration rate 

Only studies using inulin or 51Cr-EDTA as a biomarker for glomerular filtration rate have been considered 

in this work [229-235, 237-241]. Equations to estimate the glomerular filtration rate like Cockcroft-Gault 

[125] and the Modification of Diet in Renal Disease [242] use serum creatinine, which is problematic 

considering senile sarcopenia in aging subjects [243]. The average glomerular filtration rate was 

between 130 and 140 mL/min in men aged between 20 and 50 years and around 120 mL/min in women 
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of the same age. In the fifth age decade, glomerular filtration rate declined in men to 115 mL/min, which 

was like the value in women (112 mL/min). Afterwards, the decline in glomerular filtration rate was 

roughly 10% per age decade independent of sex reaching 50% of the value of a young adult at the age 

of 90 years (Figure 2.4c). 

2.5.5 Adipose tissue 

Adipose tissue weight 

Adipose tissue weight is usually measured via X-ray absorptiometry and bioelectric impedance analysis. 

Data from 18 different studies from 12,323 subjects were available for the development dataset [140, 

141, 151, 152, 156, 157, 160-163, 172, 174, 175, 177, 180, 183, 188, 244]. In young men, adipose 

tissue weight was on average 17.8 kg with a CV of 24%. It increased by 5 to 10% per age decade to 

22.9 kg at the age of 70 years. The CV increased to 28%. In young women, adipose tissue weight was 

found to be 17.3 kg with a CV of 29%. Between 20 and 70 years, adipose tissue weight increased to 

25.2 kg with a CV of 37% in women and decreased again to 21.9 kg with a CV of 37% at the age of 85 

years. 

Adipose tissue blood flow 

Adipose tissue blood flow increased from 5% in young to 9% in aged male individuals and from 8% in 

young to 10% in aged female individuals [245, 246]. 

2.5.6 Muscle 

Muscle weight 

Data from 11 different studies with 5,542 participants were available to analyze muscle weight, which 

was measured by X-ray absorptiometry and bioelectrical impedance analysis [141, 156, 157, 160, 165, 

179, 188, 194, 196, 198, 244]. The average muscle weight was 32.0 kg in men aged 20 to 65 years and 

19.8 kg in women of the same age. Muscle weight decreased by 10% per age decade between 65 and 

100 years. The CV was 11.8% and was similar for male and female individuals. 
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Muscle blood flow 

Only sparse data concerning muscle blood flow have been found in the literature, which do not cover all 

age decades but suggest 17.5% of cardiac output in men and 11.1% in women [247-250]. 

2.5.7 Brain 

Brain weight 

Brain weight was analyzed by using data from eight different studies with 2,425 participants [144, 156, 

157, 166, 167, 170, 193, 251] and was found to be independent of age. The average brain weight was 

1.39 kg in male and 1.28 kg in female individuals with a sex-independent CV of 9%. 

Brain blood flow 

The literature search yielded 12 different studies with 956 participants for brain blood flow [252-263]. 

Brain blood flow relative to cardiac output was 11.8% in men and 15.6% in women below the age of 40 

years and increased to 15.6% in men and 16.3% in women in the fourth age decade and was constant 

thereafter.  

2.5.8 Heart 

Heart weight 

Heart weight was analyzed using data from ten different studies measuring heart weight after autopsy 

[144, 156, 157, 168, 170, 176, 184, 193, 264, 265] and increased in both, male and female individuals, 

from 0.325 kg and 0.241 kg at the age of 25 years to 0.390 kg and 0.317 kg in the ninth age decade.  

Heart blood flow 

Blood flow to the heart relative to cardiac output increased from 5.5% at the age of 25 years to 12% at 

the age of 85 years in men and from 4.3% at the age of 25 years to 11.3% at the age of 70 years in 

women [266-271]. 
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Cardiac output 

Cardiac output is the volume of blood being ejected by the heart per minute. Data from 12 studies 

involving 645 subjects were used to analyze cardiac output [154, 178, 185, 189, 192, 199, 205, 209, 

247, 250, 272, 273]. Cardiac output decreased from 352 L/h in 30 years old male individuals and 312 

L/h in young female individuals between 5 and 10% every age decade to 258 L/h in aged male 

individuals and 201 L/h in aged female individuals (Figure 2.5). The CV was similar between both sexes 

with a value of 21.1%. 

 

Figure 2.5: Cardiac output per age decade in an aging population. The blue, red, and black lines represent the 

predicted mean of virtual men, virtual women, and from all virtual subjects, respectively. The dashed lines represent 

the 5 and 95% confidence interval of the predictions. Stars show observed data from the development and circles 

represent observed data from the independent verification dataset. The size of the stars and circles indicates the 

size of the studied population. 

2.5.9 Blood 

Blood weight 

Blood weight was analyzed from seven different studies with 382 male and 179 female participants [142, 

145, 146, 159, 181, 190, 274]. In young male individuals, blood weight was 5.8 kg with a CV of 10% and 

decreased to 5.0 kg at the age of 90 years (Figure 2.6a). In young women, blood weight was lower with 

3.8 kg, but stayed constant over different age decades. At the age of 70 years, female blood weight was 

still 3.7 kg; the CV was the same as in male individuals. 
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Hematocrit 

Hematocrit and the level of albumin and alpha-acid glycoprotein were the blood parameters analyzed 

(Figure 2.6b). Data of 1,752 subjects aged 21 to 90 years were available to analyze hematocrit [234, 

254, 275-280]. Sex was the only significant covariate. Mean values were 0.443 ± 0.064 for men and 

0.410 ± 0.063 for women. 

Plasma binding protein level 

Regression analysis of albumin yielded age as a significant covariate [281-289] with an overall CV of 

7.9%. The albumin concentration declined about 1.5% in each age decade (Figure 2.6c). Malnutrition 

and acute illnesses, both occurring often in the elderly, can have a significant impact on the analysis of 

age-dependent albumin levels [281, 286, 290],. Therefore, only data from apparently healthy subjects 

have been used in the analysis. 

 

Alpha-acid glycoprotein showed no significant covariate when analyzing data of 472 subjects aged 24 

to 90 years from five different studies (Figure 2.6 d) [288, 290-293]. The mean value was 0.798 g/L with 

a CV of 24.3%. 

 

Figure 2.6: Blood weight (a), hematocrit (b), albumin (c), and alpha-acid glycoprotein (AAG) (d) concentration per 

age decade in an aging population. The blue, red, and black lines represent the predicted mean of virtual men, 

virtual women, and from all virtual subjects, respectively. The dashed lines represent the 5 and 95% confidence 

interval of the predictions. Stars show observed data from the development and circles represent overserved data 

from the independent verification dataset. Black circles represent data from an undefined gender population. The 

size of the stars and circles indicates the size of the studied population. 
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2.5.10 Other organs 

Other organs such as the spleen and pancreas are not described in detail here, but the descriptive 

equations to describe an aging Caucasian population can be found in Table 2.2. Organs that have not 

been considered in the model are lumped in a remaining organ compartment. Its weight and blood flow 

are calculated as the sum of all organ weights and regional blood flows subtracted from the body weight 

and cardiac output (Figure 2.7). 

 

Figure 2.7: Sum of all organ weights (colored areas) in comparison to body weight (dashed line) in male (a) and 

female (b) subjects. 

2.5.11 Tissue composition 

Tissue composition is an important parameter to predict the distribution of drugs into tissues in a PBPK 

model. Data regarding the composition of lipids and proteins of tissues are generally sparse in humans 

and no age-dependency was found in the literature, but total body water, total extracellular water, and 

total body cell mass have been reported in aging subjects [65, 141, 152, 180, 294-301]. Age-

independent fractions of tissue volumes [302] coupled with age-dynamic tissue volumes have been used 

to calculate the vascular and interstitial space of tissues (representing the extracellular water) and the 

intracellular space minus the intracellular water (representing the cell mass). Organ densities to convert 

organ weights obtained from the derived functions to organ volumes have been used from the 

International Commission on Radiological Protection database [303, 304]. The weighted mean of the 

organ density and the fraction of tissue compositions of investigated organs was used for the remaining 
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organ. The values of all tissues have been summed and compared against the observed data 

(Figure 2.8). The prediction of total body water and total cell mass was well in agreement with the 

observed data, leading to the conclusion that the made assumptions were adequate to inform a PBPK 

model. 

 

 

Figure 2.8: Total body water (a) and total body cell mass (b) per age decade in an aging population. The blue, red, 

and black lines represent the predicted mean of virtual men, virtual women, and from all virtual subjects, 

respectively. The dashed lines represent the 5 and 95% confidence interval of the predictions. Stars show observed 

data from the development and circles represent observed data from the independent verification dataset. The size 

of the stars and circles indicates the size of the studied population. 

2.5.12 Parameters affecting drug absorption 

Physiological parameters having an impact on drug absorption are gastric pH, gastric emptying, and 

small intestinal transit time, the surface area available for absorption, and intestinal enzyme and drug 

transporter abundance. 

Gastric pH 

One study compared gastric pH in fasted and fed state between 24 young healthy volunteers aged 21 

to 35 years [305] and 79 subjects aged 65 to 83 years [306]. The study reported a significant age-

dependent difference between the median pH in fasted state (interquartile range) with 1.72 (1.08 – 2.34) 

in the young group and 1.28 (0.90 – 5.60) in the aged group. The variability appeared to be much greater 

in older individuals, but the difference in sample size need to be kept in mind. Another study in young 
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subjects below the age of 65 years found a median fasted pH of 1.45 [307]. To conclude, it is doubtful 

if there is an age-dependency of gastric pH in the fasted state and more data need to be generated and 

included in the meta-analysis to judge the age effect properly. Gastric pH in fed state was not 

significantly different between young and elderly subjects [305, 306], but the decline of gastric pH from 

fed to fasted state was exponential with a half-life of 1.8 hours (CV: 65%) in young subjects and was 

linear with a half-life of 3.0 hours (CV: 80%) in aging subjects [306]. Eight percent of Caucasians are 

achlorhydric, meaning they do not secret hydrochloric acid in the gastric juice [308] and thus have a 

gastric pH of 7.1 in fasted state [306]. In Japanese individuals, the number of achlorhydric subjects 

increases with age [309], but this appears not to be the case in healthy aging Caucasians [306].  

Gastric emptying time 

Reports in the literature about gastric emptying time are contradictory. Some studies report a slower 

gastric emptying time [59, 60] in aging subjects, some report no changes [61, 62], and some report a 

faster rate [63, 64]. Many influencing factors exist for gastric emptying time such as gastric pH [310], 

particle size [63], and food [62, 63, 311], making it difficult to analyze age-dependency. Furthermore, 

gastric emptying has a circadian rhythm, making a difference if the study is conducted in the morning or 

in the evening [312]. Two studies have investigated gastric emptying time after fluid and food intake in 

young controls and aging subjects [311, 313]. Both studies used the same marker and the same method, 

and both started in the morning. Gastric emptying time was different between fluids and food but did not 

show any age-dependency, which was verified by the regression analysis. Therefore, it is recommended 

to use the same gastric emptying time in aging subjects as in young individuals. 

Small intestinal transit time 

Small intestinal transit time appears to be independent of age and a fixed value can be used to inform 

a PBPK model [314, 315]. 

Passive permeability 

The mucosal area is reported to decline with age [316, 317], but enterocytes and villi appear to be 

unchanged [317]. Malnutrition, disease, and drug intake could alter the mucosa and need to be carefully 

considered when investigating age-dependency. Passive permeability was reported to be impaired in 

aging subjects [316], but two studies investigating mannitol and lactulose, two carbohydrates that are 
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passively absorbed, showed no difference in passive permeability between young controls and aging 

subjects after correcting the data for the age-dependent decline in the glomerular filtration rate [318, 

319]. It is therefore assumed that neither the surface area available for passive diffusion nor the rate of 

passive diffusion differ in aging subjects compared with young individuals. 

Intestinal enzyme and drug transporter abundance 

Data regarding intestinal enzyme and drug transporter abundance are generally sparse and therefore 

age-dependency cannot be analyzed sufficiently. 

2.6 Discussion 

The described population database for aging subjects summarizes anatomical, physiological, and 

biological system parameters required to inform PBPK modelling. Descriptive continuous functions for 

systems parameters from the age of 20 to 99 years have been derived and verified with observed data 

extracted from the peer-reviewed literature. Population variability was considered for each parameter. 

 

Two previous databases have been described in the literature for aging individuals. Thompson et al. 

gathered extensive data from the literature, but the authors did not considered different ethnic groups 

and combined data from Caucasians, Latin-Americans, and Asians [130]. However, it is known that 

ethnicity can have a significant impact on system parameters, for instance hepatic enzyme abundance, 

and therefore on clearance prediction [320]. Schlender et al. recently published a database for elderly 

individuals further processing the data from Thompson et al. for Caucasians only [131]. A limitation of 

this study is that only values for organ weight and blood flow for each age decade were considered, 

making it difficult to extrapolate to other ages of interest. Furthermore, population variability of system 

parameters was not considered by Schlender et al., which is an essential element for reasonable 

predictions of drug pharmacokinetics using PBPK models [116].  

 

One notable novelty of the presented repository for Caucasian subjects are the derived continuous 

functions that allow prediction for a population from 20 to 99 years of age. The advantage of continuous 

functions is the creation of only one population with one distinct value at a certain age. If two separated 

populations would have been built with one representing young subjects from 20 to 65 years and the 
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other one representing elderly individuals from 65 to 99 years, there would be two separated equations 

calculating system parameters at the age of 65 years, which might lead to unphysiological steps. 

Another advantage for the prediction of monoclonal antibody kinetics or long-term drug therapies could 

be to introduce time-varying physiology [321], meaning that subjects age during the time of the 

simulation. 

 

A few limitations need to be acknowledged. Data from individuals over the age of 85 years are sparse, 

meaning the derived equations could be less robust and extrapolation to older ages might be difficult. 

However, data for centenarians have been included for some system parameters [193] and were 

adequately estimated by the derived functions. Clinical studies are usually not performed in very old 

individuals, making it impossible to verify the described population by analyzing drug pharmacokinetics. 

It is therefore recommended to use the described repository with caution at older ages. This holds 

particularly true for regional blood flows to adipose tissue, heart, muscle, and skin because almost no 

geriatric data are currently available in the literature.  

 

Another area with sparse data is tissue composition, where more research is needed in the future, 

because it is important to predict the distribution into tissues accurately. It was shown that the 

assumptions used in this work are plausible for total body water and cell mass (Figure 2.8); however, 

exception for single tissues cannot be excluded and data for lipid composition in the elderly were 

generally not found in the literature. 

 

The analysis of system parameters to inform a PBPK model for aging Caucasians was complicated by 

the fact that some studies combined age groups together, meaning individuals aged 65 to 100 years 

might have been included, but only one mean age is given. This can lead to a bias in the data and 

hinders the characterization of age-dependent changes. Reports that insufficiently described age should 

generally be excluded unless no other data are available. Furthermore, ethnicity, particular in European 

studies, is not always clearly defined and need to be assumed from the given study location.  

 

Predictions of system parameters become more robust when model parameters are correlated with 

each other and co-variability can be described [322, 323]. To obtain such descriptive correlations, 

studies need to report important covariates, which is unfortunately not always the case. Weighted 
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regression analysis has been used to correlate parameters and to receive a more robust aging 

population. Linear regression can only describe linear relationships; however, using data transformation 

such as logarithm might compensate. Using regression, it is easy to overfit and model the noise in the 

data rather than the relationship between parameters. In this work, the corrected Akaike’s information 

criterion was used to select the best performing function among those tested, which in contrast to the 

coefficient of determination exhibits no bias to higher parameterized models. Another limitation of 

regression analysis is its sensitivity towards outliers. Visual inspection of the estimated mean and 

variability of each parameter compared to observed data in this work, showed an adequate fit for all 

investigated parameters (Figure 2.2 to 2.8).  

 

The evaluation of variability was further complicated by being unable to set boundaries for publication 

year and study location. For a few parameters, for instance blood weight, data were only available from 

specific regions (e.g. USA) and from the 1950s. Both, location and publication year have therefore been 

used as independent variables during regression and their impact has been quantified when sufficient 

data were available. Body height and body weight are key parameters to describe a population 

adequately and data from 106,698 individuals were available. Location was found to have an impact to 

body height, with a lower height correlated with Southern Europe. Otherwise, location was not a 

significant covariate for any variable and therefore combining data of studies conducted in Europe, the 

United States, and Australia appears not to bring a bias into the data. However, the derived equations 

should not be used to predict aging African or Asian individuals as aging processes might be different. 

Publication year had a significant impact on body weight, showing a weight increase particularly in the 

last ten years. Consequently, the developed population will require constant updates to include future 

potential changes such as body weight. 

 

A challenge when studying older individuals is that the definition of an “elderly” individual is not universal. 

The World Health Organization specifies “elderly” as being above the age of 65 years [56], which is in 

accordance with the age of retirement in most Western countries, but a clear pharmacological or clinical 

age-cut off is missing [55]. For some patient groups, such as people infected with HIV, the age cut-off 

is even as early as 50 years [324]. We compared organ parameters important for drug disposition for 

men and women aged 50 and 70 years with subjects aged 30 years (Figure 2.9). There is a progressive 

decline in relevant system parameters, such as adipose tissue weight, hepatic, and renal blood flow, 
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with age. However, it is challenging to conclude a “pharmacological” or “clinical” age cut-off for the 

elderly based on the age-dependent changes in anatomical and physiological parameters because it is 

unknown when those changes affect drug pharmacokinetics significantly. No study has been undertaken 

to compare the pharmacokinetics of a drug between different age decades and correlate those data to 

age-dependent changes of organ parameters. Furthermore, elderly subjects included in clinical trials 

can have diseases influencing the parameter of interest. It is therefore a challenge to define “healthy” in 

terms of an aged person. 

 

 

Figure 2.9: Comparison of a 50 and 70 years old man (a and b) and woman (c and d) with a 30 years old subject, 

who was arbitrarily chosen to represent a young individual. Blood flow is relative to cardiac output and all values 

are relative to a 30 years old man and woman, respectively. 
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Despite the limitations, in this work, it was possible to derive descriptive continuous functions to generate 

a virtual population from 20 to 99 years in accordance with observed independent data. The elderly are 

a growing vulnerable patient population with a high frequency of comorbidities and in turn polypharmacy. 

However, aging subjects are often excluded from clinical trials and knowledge concerning drug 

pharmacokinetics and DDI magnitudes is scarce. The developed population database can be 

implemented into existing PBPK frameworks and then be used to predict drug pharmacokinetics and 

DDI magnitudes in aging subjects, thereby overcoming the lack of clinical data and providing a rational 

framework for dose optimization to overcome DDIs. 

2.7 Conclusion 

The population database for aging subjects presented in this work can be implemented into existing 

PBPK frameworks and allows the prediction of drug pharmacokinetics and DDI magnitudes in the 

elderly. It provides descriptive continuous functions for anatomical and physiological parameters from 

20 to 99 years of age necessary to inform PBPK models and provides a view of the current literature 

concerning metabolizing enzymes and drug transporters in aging individuals. Furthermore, population 

variability is considered for all system parameters providing a framework for realistic pharmacokinetic 

predictions. 
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2.8 Electronic Supplementary Material 

The online version of this article contains supplementary material: 

https://doi.org/10.1007/s40262-018-0709-7 

 

Figure S1: Structure of the used PBPK model. See Figure 1.4. 

Figure S2: Sum of all organ weights in comparison to body weight. See Figure 2.7. 

Table S1:  System parameters necessary to describe the population of interest. See Table 2.1. 

Table S2:  Number of subjects in the development dataset used to derive the equations. Not included 

in this thesis. 

Table S3:  Mean value per age decade for all system parameters. Not included in this thesis. 

Table S4:  Detailed metrics for all system parameters. Not included in this thesis. 
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3.1 Summary 

Physiologically based pharmacokinetic (PBPK) models are useful tools to predict clinical scenarios for 

special populations for whom there are high hurdles to conduct clinical trials such as children or the 

elderly. However, the coding of a PBPK model in a mathematical programming language can be 

challenging. This tutorial illustrates how to build a whole-body PBPK model in Matlab® to answer specific 

pharmacological questions, involving drug disposition and magnitudes of drug-drug interactions in 

different patient populations. 

3.2 Background 

Physiologically based pharmacokinetic (PBPK) models have been applied with significant impact during 

drug development and post-marketing phases and achieved regulatory acceptance [325] as shown by 

the recent guidelines of the U.S. Food and Drug Administration [326] and the European Medicines 

Agency [327]. PBPK models are useful for the prediction of drug-drug interaction (DDI) magnitudes [328] 

and drug disposition in special populations such as pediatrics [329], pregnant and breastfeeding women 

[330, 331], and patients with liver cirrhosis [332] or renal impairment [333], for all of whom there are high 

hurdles to design and conduct clinical trials. In addition, PBPK models have been successfully applied 

to simulate different routes of administration [334] and for the design of novel formulations. 

 

A PBPK model describes the absorption, distribution, metabolism, and elimination of a drug in a 

physiologically relevant compartmental structure, where each compartment represents an organ or 

tissue [114]. The organs and tissues are connected via arteries and veins, which themselves merge in 

the lung. Dynamic drug movement through regional blood flows to the different organs and tissues is 

described by ordinary differential equations (ODEs). Tissue distribution can be predicted by a PBPK 

model that is of high relevance to most drugs because the drug targets are usually in specific populations 

of cells in an organ or tissue. The distribution into a compartment can either be limited by perfusion 

(well-stirred models) or by the cell membrane (permeability-limited models) [115]. 

 

An important characteristic of the PBPK modelling approach is the separation of system data (where 

system refers to the population of interest) from drug metabolism and pharmacokinetic data and the trial 

design [115]. System data contain all relevant information to build a population of virtual individuals such 
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as demographics, organ weights, and regional blood flows. It is of tremendous importance that the 

system data used to parameterize the PBPK system components reflects the “true” (meaning observed) 

population to produce reliable predictions [58]. The incorporated physiological, biochemical, and genetic 

variability of system parameters allows the identification of certain subpopulations with high risks for 

DDIs (e.g. poor metabolizers for the enzyme cytochrome P-450 (CYP) 2D6), where clinical data are 

often lacking [116]. However, variability is often underestimated in PBPK models because of missing 

parameters or processes involved with physiological changes caused by diseases or specific patient 

characteristics, all of which add uncertainty and variability [335]. 

 

Drug metabolism and pharmacokinetic data describe the information related to physicochemical 

properties (e.g. molecular weight), absorption (e.g. intestinal permeability), distribution (e.g. binding to 

plasma proteins), metabolism (e.g. kinetic parameters for an enzyme), and excretion (e.g. renal 

clearance) [117]. Usually drug characteristics, such as the intrinsic clearance of an enzyme, are 

quantified through laboratory based experiments that are then scaled to the in vivo clearance under the 

consideration of system parameters such as the enzyme abundance in the liver per gram protein, the 

protein content per gram liver, the liver weight, and the hepatic blood flow [214]. By considering variability 

in these system parameters, it is possible to obtain reliable population predictions of drug clearance 

[116]. System and drug data can be combined in the trial design component, considering parameters 

such as dose, dosing regimen, route of administration, number of individuals, and duration of 

administration to simulate clinical scenarios of interest. 

 

Several commercial PBPK software platforms, such as SimCYP® (Certara UK, Sheffield, UK) [336], PK-

Sim® (Bayer Technology Services, Leverkusen, Germany) [337], and GastroPlus® (SimulationPlus, 

Lancaster, CA) [338] simplify the model management for unexperienced modelers and are based on 

structural PBPK models. However, they are limited in flexibility to simulate specific pharmacological 

questions. In this tutorial, a general framework on how to build a whole-body PBPK model in Matlab® 

(MathWorks, Natick, MA) is described for scientists and users with interest in mathematical modelling 

and its application in pharmacology. The general development can also be adapted in other 

programming languages such as R® or other Matlab® packages like Simbiology®. 
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3.3 Five steps to build a PBPK model in Matlab® 

Matlab® offers a powerful mathematical programming language with matrix-based operations 

(https://uk.mathworks.com/products/matlab.html). The basic principles of Matlab® are extensively 

described in the documentation by MathWorks® (https://uk.mathworks.com/help/matlab/index.html). 

This tutorial illustrates the different steps necessary to build a PBPK model to simulate specific clinical 

scenarios with examples of pseudo code separated by lines from the main text. The entire code is 

published open access (https://doi.org/10.1002/psp4.12399) and tables listing the abbreviation and units 

for all used parameters can be found in the appendix of Chapter 3 (Section 3.7; Table A3.1 and A3.2). 

The Statistic and Machine Learning Toolbox is a required Add-On to the Matlab® suite to execute the 

code. 

 

A “building block” system is used for separating system, drug, and trial design data to inform the PBPK 

model [115]. Advantages are that each block can be used for a different purpose (e.g. the generated 

population could be used in a different model) and each block can be exchanged (e.g. aging white 

population vs. pediatric population [339]). Each building block described in this tutorial is a Matlab® 

function. Matlab® requires one script indicating the order in which the functions should be executed, 

which in this tutorial is called the main function. 

 

 %Main function: Calls each function of a PBPK model 
 Define the model structure and the model parameters Generation of the virtual population Load the drug files and perform the in vitro to in vivo extrapolation Solve the ordinary differential equations +ODEs8 Process the data from the ODE solution and output the results 

 

 

The variables used in different functions in Matlab® need either to be passed onto the next function or 

to be defined as globals using the “global” command. However, it is good practice to scope variables as 

local if they are only used within a specific script. 
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3.3.1 Step 1: Define the parameters of the model 

The modelling process is started by defining the objective and the purpose of the model, identifying the 

pharmacological scenario to be simulated [340]. The model structure proposed can vary based on the 

overall purpose of the simulations, and a representative compartmental model is shown in Figure 3.1. 

As an example, it would be of scientific interest to simulate clinical scenarios in aging HIV-infected 

patients, because clinical data of antiretroviral drug disposition and DDI magnitudes between 

antiretroviral agents and comedications are currently lacking. When simulating anti-HIV therapy, drug 

penetration into viral reservoirs, such as the testis and the brain [341], and into the lymphatic system 

being the target site for antiretroviral drugs can represent a relevant pharmacokinetic factor. The flexible 

computational structure supports the inclusion of the lymphatic system, dividing each compartment into 

the vascular, the interstitial, and the intracellular space (Figure 3.2) with lymph fluid flowing from the 

interstitial space of each organ to a central lymph-node compartment and further to the venous blood 

pool. Organs not being simulated are lumped in a remaining organ compartment [58]. In our example, 

the model is used to simulate the effect of the CYP3A4 inhibitor ritonavir, used as pharmacokinetic 

enhancer to boost the concentrations of co-administered HIV protease inhibitors like darunavir, on the 

disposition of the anticoagulant rivaroxaban being metabolized by CYP3A4 in aging white subjects. 

 

 

Figure 3.1: Schematic illustration of the five steps to build a PBPK model. 
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Figure 3.2: Structure of an organ in the PBPK model.  

Key: Jin = flux into the cell, Jine = flux from the interstitial to the vascular space, Jout = flux out of the cell, Jvas = flux 

from the vascular to the interstitial space, Lorg = regional lymph flow, Qorg = regional blood flow. 

First, the model structure and model variables including populations, compartments, drugs, and route of 

administration are defined by a number because Matlab® is a numerical software tool. The number 

assigned to each variable (e.g. drugs) refers to the column in each matrix containing specific data (e.g. 

if darunavir is defined by a one, data of darunavir would be in the first column; Figure 3.3). Each variable 

is also defined by a string defining its name for the outputs. 

 

Figure 3.3: Example of the organization of drug parameters with variability. Each row contains data for a drug. 

Parameter clues are illustrative only.  

Key: DrugNo = number of drugs, IndNo = number of virtual individuals. 

After defining all necessary variables of the model, the target population and the drugs to be used in a 

specific simulation need to be entered. The virtual trial design can be described by firstly indicating the 

number of virtual individuals in the simulation. The appropriate number of individuals depends on the 
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variability of system data involved to describe the pharmacokinetics of the simulated drug (e.g. 

enzymatic vs. total clearance) and the number of patients included in clinical trials to verify the model. 

To come to the “true” population mean for most anatomical, physiological, and biological parameters, a 

sample size of at least 100 individuals is recommended. Therefore, if observed clinical data are available 

for six patients, it is recommended to run 20 trials times six patients resulting in 120 virtual individuals. 

The split into different trials allows the comparison of the mean predicted concentration of each trial with 

the mean observed data. The mean observed is used because often observed concentration from 

individuals are not published or available. Observed data from six individuals may not be representative 

of the whole patient population taking the drug of interest; thus, it is important to recognize that the mean 

prediction obtained might be different and far from the mean of the six observed subjects, but it might 

be close to the “true” population of patients. Therefore, if the observed data from six subjects fit the 

prediction of one trial, even when its prediction should be on the upper or lower end of all simulations, 

this is still considered to be a “successful” outcome.  

 

Next the proportion of men and women in the simulated population and the age range of the virtual 

individuals can be specified. In addition, the resolution of each simulated time unit needs to be given for 

the outputs.  

 

Once the individual characteristics are described, the dosing regimen for each drug can be defined, 

indicating the route of administration, the number of doses (1 for a single dose and n for multiple doses), 

the dose, and the dosing interval. After entering the trial design, a dose event matrix can be set up to 

allow the simultaneous simulations of darunavir, ritonavir, and rivaroxaban alone and in combination to 

investigate DDIs. The matrix contains five columns with the start and the end time of each dose, the 

dose, the route of administration, and the resolution for each dosing event. Only unique start and end 

times for each dosing event are needed, which need to be extracted. 

 

The code to define the model parameters and choose the simulation settings is given by: 

 

 function[] = DefineParameters+8 
 %This function defines the population, and model structure +PBPK compartments8,  %the drugs, the virtual trial design, and the simulation settings to be used 
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 %======================================================= 
 Define the populations saved on the hard drive by a number and a string 

 Define the compartments of the model by a number and a string Define enzymes for the dynamic abundance calculation in case of DDIs by a number and a string Define the number of subcompartments 
 Define the drugs saved on the hard drive by a number and a string Define plasma-binding proteins by a number and a string 

 Define the route of administration by a number and a string 
 %======================================================= 
 User sets the population to be simulated +if more than one is saved on the hard drive8 
 User sets the number of drugs to be simulated Initialize drug name 
 Define a case for each simulated drug  Define a drug name for each drug to be simulated end 
 Define the number of trials Define the number of virtual individuals per trial Calculate the number of all virtual individuals to be simulated 
 Ask the user for the proportion of women in the virtual population Ask the user for the minimal and maximal age of the virtual population to be simulated 

 Ask the user for the resolution of each time step 
 Initialize the route of administration, the number of doses, the dose, the dosing interval,… The start time point for the dose, and the prolongation of the terminal elimination phase 

 Define a case for each drug to be simulated  Define the route of administration to be an intravenous bolus or oral  Define the number of doses and dose given in mg  Define the dose interval in h  Set a start time for the drug to be administered in h  Set the prolongation for the terminal elimination phase in h end 
 %======================================================= 
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 Define the name of the columns for the dose event matrix 
Calculate the number of columns of the dose event matrix 
 Initialize a matrix containing the regimen for each drug 
Define a case for each drug 
 Define a case for each dose being administered 
 Calculate the start and end time for the first dosing event 
 Calculate the start and end time for all dosing events 
 Consider the prolongation of the terminal elimination phase 
 end 
end 
 Define a case for each drug 

 Sort the regimen matrix based on the start time of each drug 
 Delete zero values 

end 
 %Combine the dosing regimen for each drug to be simulated simultaneously 

Define a case for each drug 
 Combine the dosing regimens for different drugs 
 Use a function to find unique dosing events for each drug 
  Set dose, route of administration, and resolution for the other drugs to be zero 
  Sort the matrix according to the start time 
  Find unique start times 
  Output the dose event matrix for each drug based on the unique start times 
 end 
end 
 Calculate the number of events 
Combine the dose event matrix 
 end 
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3.3.2 Step 2: Generation of the population 

A repository summarizing anatomical, physiological, and biological system parameters required to 

inform a PBPK model has been recently published [58]. The described continuous, age-dependent 

equations and the variability for each system parameter can be directly entered in Matlab®: 

 

 function[] = Population+8 
 %This function generates the virtual population based on the user settings 
%Attention: the normrnd command needs the Statistics and Machine Learning Toolbox 
 Calculate age from a Weibull distribution for each virtual individual 
 while age of an individual is smaller or larger than the minimal or maximal user-defined age 
  Resample age from the Weibull distribution 
 end 
end 
 Calculate number of virtual female individuals 
Assign randomly a zero +defined as “male”8 or one +defined as “female”8 to each virtual subject 
 Calculate system parameters as described in reference [58] 
Add random variability to the system parameters by using a normal distribution 
 end 

 

 

3.3.3 Step 3: Calculation of the required drug parameters 

In the next step, the user-defined drug file is loaded from the library containing all developed drug files. 

The string defining the drug (e.g. “darunavir”) is converted to the function in the drug library to load the 

drug-dependent data to inform the PBPK model (Figure 3.4): 
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Figure 3.4: Steps from the user-defined drug to be simulated to the drug parameter that are loaded to inform the 

PBPK model. 

 

 function[] = Drug+8 
 %This function loads the relevant drug files from the drug library and… 
%performs the in vitro-to-in vivo extrapolation 
 Prepare empty vectors/matrices for all drug parameters +Table 3.18 
 Define a case for each drug 
 Load the Matlab® file containing the drug parameter by converting the string defining the… 
 Drug to the function in the drug library 
end 
 Delete all zero values and extract all drug files chosen by the user 
 end 

 

 

Drug parameters incorporated in a drug file are shown in Table 3.1. The measured drug properties 

included in the drug file can be derived through experimental in vitro methods, and are integrated into 

specific equations for drug absorption, distribution, and elimination as described in the following 

sections. 
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Table 3.1: Parameters required for a drug file to inform the PBPK model. 

Parameter Typical unit Explanation 

Physicochemical properties   

MW g/mol molecular weight 

logP - octanol-water partition coefficient 

drug type - 
important property to predict tissue distribution according to 
Rodgers & Rowland 

pKa - acid dissociation constant 

BP - blood-to-plasma ratio 

fuPL - fraction unbound in plasma 

Absorption     

Papp 10-6 cm/sec apparent permeability 

Distribution     

Kp scalar - scalar to alter predicted tissue partition coefficients 

Metabolism & 
Elimination 

    

Vmax/Km or CLint 
pmol/min/pmol enzyme / µM or µL/min/pmol 
enzyme 

kinetic parameters per enzyme and metabolic pathway 

CLint,hep µL/min/mg protein unspecified intrinsic clearance 

CLr L/h renal clearance 

CLad L/h additional plasma clearance 

Transporter     

CLpd µL/min/Mio cells passive diffusion flux 

Vmax/Km or CLint 
pmol/min/pmol transporter / µM or 
µL/min/pmol transporter 

kinetic parameters for transporters 

Interactions     

Ki µM inhibition constant for competitive inhibition 

Kapp µM 
apparent enzyme inhibition constant for mechanism-based 
inhibition 

kinact 1/h maximum inactivation rate constant 

IndMax - maximum fold of induction 

IC50 µM half maximum inhibitory concentration 

Key: Vmax = maximal velocity, Km = Michaelis-Menten constant, CLint = intrinsic clearance. 

Absorption 

The compartmental absorption and transit model proposed by Yu & Amidon about 20 years ago is used 

as a basis [342]. Assumptions of the original compartmental absorption and transit model are: 

 

1) the drug is immediately dissolved, 

2) absorption occurs primarily in the small intestine and not in the stomach or the colon, 

3) transit time and radii are similar for each compartment, 

4) intestinal metabolism is negligible, and 

5) only passive diffusion occurs through the gut wall. 
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It can be assumed that assumption 1 holds true for antiretroviral drugs because they are often given as 

an immediate-release tablet. Formulation and dissolution play a crucial role when simulating capsules 

or delayed-release tablets, and more complex absorption models can be built into the model as 

previously described [308, 343]. The compartmental absorption and transit model consists of five 

different compartments, namely, the stomach, duodenum, jejunum, ileum, and colon. The stomach 

serves as an entry compartment for the orally administered drug. It is assumed that the drug can only 

move further to the duodenum and no absorption or other processes occur in the stomach. Movement 

between different compartments representing the intestine can be described by first order rate constants 

calculated from the gastric emptying and the intestinal transit time [342]. 

 

Permeability into enterocytes and further into the systemic circulation can be mediated by passive or 

active processes. Drug transporters are present on the apical and basolateral site of the small intestine 

[344]. An established experimental model, such as human epithelial colorectal adenocarcinoma cells 

seeded as a monolayer can be used to measure the apparent permeability (Papp) in vitro and depending 

on the experimental conditions, the measured flux into the cell can be the sum of passive and active. 

The measured Papp can be converted to the effective permeability in man (Peff,man) describing the flux of 

the drug from the lumen into the enterocytes in humans [345] as follows: 

 

x�yy,��� = 10,.73<6∗{|}~�����5,.==66, (1) 

 

where Papp is in 10-6 cm/s and Peff,man is in 10-4 cm/s. Peff,man needs to be multiplied by the available 

enterocyte surface for drug absorption (permeability surface area: PSA) to arrive at the absorption 

clearance (CLab; please note that the flux between two compartments can be written as a clearance), 

namely: 

 ���� = x�yy,��� ∗ x�� ∗ 0.001 ∗ 3600, (2) 

 

where CLab is in L/h. The PSA can be calculated by assuming that the gut has a cylindric shape, namely: 

 x�� = 2 ∗ � ∗ � ∗ �� ∗ ����, (3) 

 

where r is the radius of each intestinal segment in cm, Le is the length of each intestinal segment in cm, 

and Fvilli is a fold expansion factor for the villi surface area. The length and the expansion factors for the 
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different gastrointestinal segments has been extensively described previously [304, 346]. Drugs 

penetrate through the intestinal wall mainly by the transcellular pathway because of tight junctions 

between enterocytes. Paracellular transport is only possible for drugs with a molecular weight less than 

300 Da, being positively charged and with an octanol-water partition coefficient (logP) greater than 0 

[347]. 

 

To estimate the concentration in the enterocyte, the volume of the enterocytic cell layer needs to be 

determined. A jejunal biopsy was undertaken in 11 healthy controls (five women) aged younger than 30 

years and 3,040 enterocytes were found in the sample. The volume of one enterocyte is 770 µm3, 

calculated as a cylinder from the measured height and radius [348]. The surface of the small intestine 

can be calculated by assuming a cylindric shape and the radius and length of 2.25 cm and 280/260 cm 

for an average male/female subject, respectively [304]. The resulting surface area of the small intestine 

is 3,958/3,676 cm2. Scaling the number of enterocytes from the biopsy sample to the entire small 

intestine leads to 1.20*1011/1.12*1011 cells. The total volume of all enterocytes in the small intestine is 

therefore 0.093/0.086 L. 

 

The drug distributes further from the enterocytes to the interstitial space and could move further either 

via the systemic or the lymphatic circulation. The potential strategies for antiretroviral drugs include 

manipulating the formulation in such a way so that more drug gains access into the lymphatic system, 

because (a) it is the relevant target site, (b) there will be no first pass metabolism, and (c) the drugs stay 

longer in the body because intestinal lymph flow is about 600-fold slower than intestinal blood flow [302, 

304]. To move preferentially into the lymphatic circulation rather than into the systemic circulation, a 

drug needs to be highly lipophilic, positively charged, and it should have a high molecular weight [349]. 

However, there are no quantitative relationships in the literature. A manual restriction factor can be 

implemented into the model defining a proportion of the drug going via the lymphatic system to test new 

formulations. The rest of the drug will distribute via the systemic circulation. 

Distribution – passive and active pathways 

The prediction of tissue distribution is important in a PBPK model. Intracellular concentration cannot be 

easily obtained, particularly in humans, but most drug targets are in cells. In addition, metabolism occurs 

in hepatocytes and enterocytes, and therefore, the intracellular concentration is important to predict 
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metabolism and DDI magnitudes adequately. Several models are described in the literature to predict 

distribution into tissues [350-355]. Poulin and Theil assume homogenous distribution in a tissue [350, 

351], which does not hold true if the cell membrane is a tight barrier. Therefore, the approach of Rodgers 

and Rowland is used in this model [352-354]. In contrast to Poulin and Theil, Rodgers and Rowland 

consider binding to different constituents of the cell, such as lipids and proteins. 

 

Calculation of partition coefficients 

Monoprotic and diprotic basic drugs with an acid dissociation constant >7 interact preferentially with 

acidic phospholipids in the tissue through electrostatic interactions. Binding to extracellular proteins may 

not play an important role because basic drugs preferentially bind to alpha-acid glycoprotein, which is 

mostly restricted to plasma. Therefore, an affinity constant for acidic phospholipids (KaAP) is calculated 

for red blood cells. The partition coefficient for the unbound drug into red blood cells can be calculated 

from the blood-to-plasma (BP) ratio, which itself can be measured in vitro. It is assumed that KaAP is 

similar for all tissues. Generally, the tissue partition coefficient of the unbound drug (Kpu) for muscle 

should be preferred as there is a good correlation between the distribution into muscle and the 

distribution into other tissues. The unbound drug partition coefficient for erythrocytes is given by [352]: 

 

����.� = �������∗y��� = .�∗���2+;5���8y��� , (4) 

 

where C = concentration, fu = fraction unbound in plasma, HCT = hematocrit, PL = plasma, and RBC = 

red blood cells. The affinity constant for acidic phospholipids is given by [352]: 

 

���x�.� =  �����.� − �����,������,�� � ∗ � ¡,�.�¢ −
���1�∗y£�,���2 +,.=∗��1�2,.38∗y£�,������,�� �¤ ∗  ¥ ���,��[4�]���∗+���,���5;8¦,  (5) 

 

����
1 =  ����,§¨∗y§¨,�©ª���,�� � + �«¡,�
1 + ���4����∗[4�]�©ª∗+���,§¨5;8���,�� � +
���1�∗y£�,�©ª2 +,.=∗��1�2,.38∗y£�,�©ª���,�� �,  (6) 

 

where, Kio = ionized form according to Henderson-Hasselbalch [353], fIW = fraction of intracellular water, 

fEW = fraction of extracellular water, fNL = fraction of neutral lipids, fNP = fraction of neutral phospholipids, 
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and AP = acidic phospholipids. The subscript org represents organ. For the partitioning into the adipose 

tissue, it is more accurate to use the vegetable oil:water partition coefficient (logDvo:w) rather than logP, 

namely [350]: 

 ¬$���:® = +1.115 ∗ ¬$�x − 1.358 − ¬$�~��,�¯�. (7) 

 

Binding to extracellular albumin should be considered for drugs that are not moderate to strong bases 

thus requiring the determination of the affinity constant for binding proteins (KaPR). The calculation is 

done for plasma because albumin concentration in plasma is known, and the unbound fraction in plasma 

can be determined in in vitro experiments. It is assumed that KaPRPL holds true for all tissues [353], 

namely: 

 

��x°�¯ =  ¥ ;y��� − 1 − ���1�∗y£�,��2 +,.=∗��1�2,.38∗y£�,�����,�� �¦ ∗ ;����,  (8) 

 

where PRPL is the binding protein concentration in plasma in g/L. The unbound drug partition coefficient 

is given by [353]: 

 

����
1 =  ����,§¨∗y§¨,�©ª���,�� � + �«¡,�
1 + ~��x°�¯ ∗ ��x°�
1 ∗ x°�¯� +
���1�∗y£�,�©ª2 +,.=∗��1�2,.38∗y£�,�©ª���,�� �,  (9) 

 

where KpPRorg is the partition coefficient of plasma binding proteins in different organs.  

 

The apparent volume of distribution in steady state (Vss) can be calculated as follows [354]: 

 

��� = ���y��� + ∑ ��
1 ∗ ���
1, (10) 

 

where V is the volume and Kp is the total tissue partition coefficient, which is defined as [352]: 

 

�� =  ��©ª��� = �� ∗ ���. (11) 

 

A Kp scalar can be introduced to the model, which multiplies the predicted Kp 

 �����	 = �� ∗ �� ²³�¬��, (12) 
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and can be used to correct for insufficient tissue partition prediction. One such example is the extensive 

lysosomal trapping or binding to intracellular constituents such as DNA (e.g. doxorubicin) [352]. 

 

When splitting every compartment of the PBPK model into the subcompartments vascular, interstitial, 

and intracellular spaces, the distribution through the endothelial cell layer and through the cell 

membrane are required to inform the PBPK model. The endothelial cell layer is not a tight barrier for 

small molecule drugs; thus, it can be assumed that the extracellular water is almost instantaneously in 

equilibrium. Under physiological conditions, blood comes with high pressure into the capillaries and its 

content is pushed against the endothelial cell layer and through the small and large pores into the 

interstitial space [356]. There is a partial fluid loss, the lymph, which is recycled back to the venous blood 

pool via the lymph nodes. Erythrocytes cannot cross the endothelial cell layer and hence the lymph is 

colorless. 

 

The calculated Kp is used to estimate the flux through the cell membrane between the interstitial and 

the intracellular spaces, when experimental data about cell membrane permeability are not available. It 

holds true that the concentration in plasma equals the concentration in the vascular space, which is 

considered to belong to the blood, namely: 

 

�� = ��©ª��� = ��´µ2 �¶µ·�¸�¹ = ��´µ�¸�¹ + �¶µ·�¸�¹ , (13) 

 

where the subscripts vas, ine, and cel represent vascular, interstitial, and intracellular, respectively. Kp 

is determined in steady state and under steady-state conditions, the vascular and interstitial space 

concentration differ by the drug concentration in erythrocytes, and the interstitial and intracellular drug 

concentration differ by the fraction unbound and the flux through the membrane, namely: 

 

�� =  ;.� + º�´∗y��´µº�»¼∗y�¶µ·. (14) 

 

Kp can only be described by the ratio of influx (Jin) and efflux (Jout) of the cell. 

 

Fraction unbound in the interstitial and intracellular space 

A critical parameter for the distribution of a drug is fu in each compartment. Usually, fu is only measured 

in plasma samples, but the site of metabolism or efflux transporters is intracellular, making it necessary 



  Chapter 3: PBPK Model Development 

 - 70 - 

to know fucel. In a first step, the age-dependency of fu is calculated for each virtual individual based on 

the measured fu in vitro and the main binding protein. Ref refers to a 30 years old adult, who is arbitrarily 

used to represent a “young” subject. It is assumed that the binding affinity does not change with age, 

and therefore fu for plasma is given by [333]:  

 

���¯ =  ;
;2����∗ ½ ¾¿»�µ¿À¾

����,�µ¿Á
. (15) 

 

In a second step, fu in the interstitial space of each organ is estimated based on the known partition 

coefficient for plasma binding proteins in each tissue [352]. It is assumed that the binding affinity is the 

same as in plasma. Thus, fuine is calculated as follows: 

 

����,�
1 = ;Â����©ª¿Ã¨,�©ª ∗ � ¾¿»��5;�2;. (16) 

 

fucel is calculated according to Rodgers & Rowland [353], namely: 

 

��Ä��,�
1 = ;
;2¥�·�ª�∗ ¿£�,�©ªÅ +Æ.Ç∗·�ª�ÅÆ.È8∗¿£�,�©ªÂ��,�� �2�É���©ª∗����¦. (17) 

 

 

Active drug transporters 

Drug transporters can theoretically be implemented into any compartment of the model to represent 

active distribution into cells, but absolute transporter abundance values to inform the PBPK model are 

only available for the liver [228]. There are some important points to consider before implementing a 

transporter into a PBPK model. Each transporter has a direction, and its impact will depend on whether 

the transporter is expressed on the apical or basolateral site. Passive permeability can occur besides 

active transport for given compounds, and therefore it is important to define the contribution of each of 

these transport processes. The overall contribution of uptake transporters is likely to be negligible for 

compounds characterized by a high passive permeability. Conversely, efflux transporters will have a 

pronounced impact for compounds characterized by a slow passive diffusion. Importantly, uptake and 

efflux transporters are exposed to different drug concentrations and thus the unbound drug 

concentrations in the interstitial and intracellular spaces should be used for uptake and efflux 

transporters, respectively [357]. Transporter functionality can be described by Michaelis-Menten 
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kinetics; however, Vmax,T/Km,T = CLu,int,T [358], where Vmax,T is the maximum transport rate, Km,T is the 

Michaelis-Menten constant for a transporter, and CLu,int,T is the intrinsic transport clearance of the 

unbound drug, only holds true if the unbound concentration is much smaller than Km (fu * C << Km). This 

is the case under physiological conditions in the cell but might not hold true for uptake transporters being 

exposed to the interstitial concentration. In addition, Michaelis-Menten assume one binding site per 

transporter, which is questionable for instance for the organic anion transporting polypeptide 1B1 [359]. 

Active hepatic drug transporters can be described by [358]: 

 

����,�,���,0�É = �∑ �� �Ê�Ë,»�,Ìµ�,»�Ê,»�,Ìµ�,» 2 ��´µ∗y��´µ + ����,�É,0�É,�� ∗ �#�É,0�É,�¢  −��Í;

∑ �� �Ê�Ë,µ¿,Ìµ�,µ�Ê,µ¿,Ìµ�,µ 2 �¶µ·∗ y�¶µ· + ����,�y,0�É,�� ∗ �#�y,0�É,�¢  ��Í;  ¤ ∗
ÎxÏ� ∗ ¬(Ð�� 9�(�ℎ), (18) 

 

where HPGL is the hepatocellularity and AB is the abundance. The subscripts T, tot, hep, up, eff, u, and 

e stand for transporter, total, hepatic, uptake, efflux, uptake, and efflux transporter isoform, respectively. 

Metabolism and elimination 

The following four different options are described to represent drug clearance in the model: 

 

1) enzymatic intrinsic clearance,  

2) intrinsic hepatic clearance not assigned to a specific enzyme,  

3) renal clearance, and  

4) additional plasma clearance. 

 

Enzymatic intrinsic clearance can be either represented as CLint,E or through Vmax,E and Km,E, where 

CLint,E is the intrinsic clearance, Vmax,E is the maximum metabolism rate for each enzyme, and Km,E is the 

Michaelis-Menten constant for each enzyme. Different pathways can be implemented, considering 

active metabolic pathways [360], namely: 

 

����,«,���,0�É = ∑ �∑ �����?Ã,Ìµ�,Ñ,���Ã,Ìµ�,Ñ,� � + ��(Ò)«,0�É,Ó,¢ Í; ∗ �#«,0�É,Ó¢ºÓÍ; ∗
ÔxxÏ� ∗ ¬(Ð�� 9�(�ℎ),  (19) 
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����,«,���,1�� = ¥∑ �∑ �����?Ã,ª»¼,Ñ,���Ã,ª»¼,Ñ,� � + ����,«,1��,Ó, ∗ �#«,1��,Ó� Í; �ºÓÍ; ¦, (20) 

 

where MPPGL is the microsomal protein per gram liver. The subscript E stands for enzyme, i stands for 

the metabolic pathway, and j represents the enzyme isoform. 

 

The intrinsic hepatic clearance not assigned to a specific enzyme has the units µmol/min/mg and is 

scaled via MPPGL and liver weight but not CYP abundance, namely: 

 ����,���,0�É = ����,«,���,0�É +  ����,0�É ∗ ÔxxÏ� ∗ ¬(Ð�� 9�(�ℎ). (21) 

 

The well-stirred liver model is used to calculate the hepatic clearance from the intrinsic clearance [361] 

and is given by: 

 

��0�É = Õ�§∗y���∗�¯�´¼,¼�¼,�§Õ�§2y���∗�¯�´¼,¼�¼,�§, (22) 

 

where CLhep is the total hepatic clearance in L/h, QLI is the hepatic blood flow, and fuBL is the fraction 

unbound in blood. 

 

The renal clearance is scaled via the glomerular filtration rate (GFR) and ignores tubular secretion and 

active transport processes, which would require a more mechanistic PBPK model [362], and is given by 

[363]: 

 

��� = ���,��y ∗  Ö×�Ö×��µ¿ ∗ y�y��µ¿, (23) 

 

where CLR is the renal clearance in L/h. 

 

The fourth clearance option in the PBPK model is the additional plasma clearance (CLad). This 

parameter is always used as a fixed value, not scaled to any population, but it offers the possibility to 

enter an in vivo clearance value if clearance mechanism pathways are completely unknown. In cases 

when there are no measured in vitro values for enzymatic kinetic parameters or CLint,tot,hep but the in vivo 

clearance and the different contributions of metabolism and elimination pathways are known, a 

retrograde calculation can be performed to inform the PBPK model [364]. 
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The total clearance can be written as follows: 

 

����� = Õ�§∗y���∗�¯�´¼,¼�¼,�§Õ�§2y���∗�¯�´¼,¼�¼,�§ + ��� + ���	. (24) 

Drug-drug interactions 

The PBPK framework allows simulation of competitive inhibition (whereby the inhibitor binds to the active 

site of the enzymes and blocks its activity), mechanism-based inhibition (whereby the inhibitor represses 

the transcription or translation of the metabolizing enzyme leading to a loss of enzyme concentration), 

and induction. The enzymatic intrinsic clearance (equation 19 for the liver and equation 20 for the gut) 

needs to be modified accordingly [365]: 

 

∑ ½∑ ½� ���?Ã,Ë,Ñ,�,∗[>��]
��Ã,Ë,Ñ,�∗Ø;2∑ [§´Ì]¶Â�¶�¶Ù¾ Ú2[>��]¢Á Í; ∗ �#)«,?,ÓÁºÓÍ; ,  (25) 

 

where [Sub] represents the substrate concentration, [Inh] is the concentration of the cth competitive 

inhibitor, Ki stands for the inhibition constant, ABt is the time-dependent enzyme abundance, and the 

subscript x represents either the liver or the gut. In the case of mechanism-based inhibition or induction, 

the enzyme concentration changes with time. The basal state can be described by [365]: 

 

	4.�Ã	� = Û	�1,« ∗ �#« − Û	�1,« ∗ �#)« = Û	�1,« ∗ ~�#Ä/É − �#)Ä/É�, (26) 

 

where kdeg represent the degradation rate. It holds that ABt(0) = AB. In the case of mechanism-based 

inhibition, equation 26 changes as follows [365]: 

 

	4.�Ã	� = Û	�1,« ∗ �#« − �Û	�1,« + ∑ Ü�´�¶¼,Ã,Ê∗[ �0]Ê����,Ã,Ê2[ �0]ÊÝ�Í; � ∗ �#)« ,  (27) 

 

where kinact and Kapp are the inactivation rate of an enzyme and the apparent enzyme inhibition constant 

of the mth mechanism-based inhibitor. The syntheses rate changes as followed for induction [365]: 

 

	4.�Ã	� = Û	�1,« ∗ �#« ∗ �1 + ∑  �	Ý�?Ã,�∗[ �0]� �ÞÆ,Ã,�2[ �0]� Í; � − Û	�1,« ∗ �#)«, (28) 

 

where IndMax and IC50 are the maximum fold of induction and the half maximal inducer concentration 

of the ith inducer. All DDI mechanisms are accounted for in Equation 25. 
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3.3.4 Step 4: Bridge system and drug data – the ordinary differential equation solver 

After generating the population and drugs to inform the PBPK model, the ODEs are set up. ODEs are 

solved for each individual (ind) and each dose event (n) by the build-in stiff ODE solver ode15s [366] to 

ensure efficient running times of the code. 
 

 function[] = Solve ODE+8 
%This function solves the ordinary differential equations +ODEs8 
 Convert variables from global to local 
 Calculate the number of ODE equations 
Get the number of simulated time points for each dosing event and the entire simulation 

 Initialize a vector for the simulated time points 
Initialize a matrix for the simulated concentrations 

 Run the ODE system for each virtual individual separately 
 Set the initial concentrations for the first / single dose 
  Run the ODE system for each dosing event separately 
  Set the initial concentrations for multiple dosing events 
   Solve the ODEs 
   Generate time steps for each dosing event with the user-defined resolution 
  Evaluate the solution from the ODE system for each given time point 
   Combine time points for each dosing event in the time vector 
  Combine concentrations for each dosing event 
 end 
 end 
 
 end 
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The function defining the initial concentration C0 for single doses and M0 for multiple dosing events 

needs to consider the drug concentration in a compartment at the timepoint of the nth multiple dose and 

is given by: 

 

 function   C0 = Initialize+8; 
Set the initial concentration of each compartment to zero 
Set the initial CYP abundance in the liver and intestine according to [66, 367] 
 Define a case for each drug 
 switch the route of administration for each drug 
 iv bolus: venous blood concentration is the dose divided by the venous volume 
 oral: stomach concentration is the dose divided by the stomach volume 
 end 
end 
end 
 
function   M0 = Initialize_M+C08 
if the first dose is administered 
 then M0 has been defined by C0 
else 
 M0 is defined by the calculated concentration of the last dosing event 
   
 Define a case for each drug 
 switch the route of administration for each drug 
 iv bolus: add dose divided by venous volume to the venous concentration 
 oral: add dose divided by the stomach volume to the stomach concentration 
 end 
 end 
end 
end 

 

 



  Chapter 3: PBPK Model Development 

 - 76 - 

A relevant element is to define the right-hand site of the ODEs to describe the dynamic drug movement 

from and to each compartment. The ODEs can be written as follows for the vascular, interstitial, and 

intracellular space of a generic compartment: 

 

	�¸�¹,�©ª	� = ;�̧ �¹,�©ª ∗ âã�
1 ∗ ��� − ~ã�
1 − ��
1� ∗ ����,�
1 − ä���,�
1 ∗ Ø�¸�¹,�©ª.� Ú +
ä��,�
1 ∗ ���,�
1å,  (29) 

 

	��´µ,�©ª	� = ;��´µ,�©ª ∗ âä���,�
1 ∗ Ø�¸�¹,�©ª.� Ú − ä��,�
1 ∗ ���,�
1 − ��
1 ∗ ���,�
1 −
ä�,�
1 ∗ ���,�
1 ∗ ����,�
1 + ä���,�
1 ∗ �Ä��,�
1 ∗ ��Ä��,�
1å,  (30) 

 

	�¶µ·,�©ª	� = ;�¶µ·,�©ª ∗ æä�,�
1 ∗ ���,�
1 ∗ ����,�
1 − ä���,�
1 ∗ �Ä��,�
1 ∗ ��Ä��,�
1ç,  (31) 

 

where Q is the blood flow, L is the lymph flow, J is a flux, and the subscript ab represents the arterial 

blood pool. The Matlab® function defining the right-hand site of the ODEs 29 to 31 is written in the 

following way: 

 

 function   dtdy = rhs+~, y8 
 Initialize the output as a column vector containing only zeros 

  Write the differential equations 
end 
 

 

Some organs require a more detailed ODE than the generic ODEs described in equations 29 to 31. 

Blood flows from the venous blood pool into the lungs and after being loaded with oxygen, blood returns 

to the arterial blood pool. Therefore, the ODE of the vascular space of the lungs is given by: 

 

	�¸�¹,�é	� = ;�¸�¹,�é ∗ â�ê ∗ ��� − +�ê − �¯ë8 ∗ ����,¯ë − ä���,¯ë ∗ Ø�¸�¹,�é.� Ú + ä��,¯ë ∗
���,¯ëå,  (32) 

 

where CO is the cardiac output, and the subscripts LU and vb represents the lung and the venous blood 

pool, respectively. 
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In the kidney, the renal clearance should be considered. A mechanistic kidney model including renal 

transporters is not described in this tutorial.  

 

	�¸�¹,Â§	� = ;�¸�¹,Â§ ∗ âã�  ∗ ��� − +ã�  − �� 8 ∗ ����,�  − ä���,�  ∗ Ø�¸�¹,Â§.� Ú + ä��,�  ∗
���,�  − ��� ∗ ����,�  ∗ y���.� å,  (33) 

 

where the subscript KI stands for the kidney. 

 

In the liver, active drug transporters and hepatic metabolism by enzymes are included and given by: 

 

	�¸�¹,�§	� = ;�¸�¹,�§ ∗ âã0� ∗ ��� + ã��.ì ∗ ��� + +ãÖë − �Öë8 ∗ ����,Öë + ã>� ∗
����,>� + +ã�4 − ��48 ∗ ����,�4 − +ã¯  − �¯ 8 ∗ ����,¯  − ä���,¯  ∗
Ø�¸�¹,�§.� Ú + ä��,¯  ∗ ���,¯ å, (34) 

 

	��´µ,�§	� = ;��´µ,�§ ∗ ¥ä���,¯  ∗ Ø�¸�¹,�§.� Ú − ä��,¯  ∗ ���,¯  − �¯  ∗ ���,¯  − ä�,¯  ∗ ���,¯  ∗
����,¯  + ä���,¯  ∗ �Ä��,¯  ∗ ��Ä��,¯  − ∑ ��Ê�Ë,»�,Ìµ�,»∗��´µ,�§∗y��´µ,�§�Ê,»�,Ìµ�,»2��´µ,�§∗y��´µ,�§ +��Í;
����,�É,0�É,� ∗ ���,¯  ∗ ����,¯ � ∗ �#�É,0�É,� ∗ ÎxÏ� ∗ í¯  +
∑ ��Ê�Ë,µ¿¿,Ìµ�,µ∗�¶µ·,�§∗y�¶µ·,�§�Ê,µ¿¿,Ìµ�,µ2�¶µ·,�§∗y�¶µ·,,�§ + ����,�yy,0�É,� ∗ ���,¯  ∗ ����,¯ ���Í; ∗
�#�yy,0�É,� ∗ ÎxÏ� ∗ í¯ ¦, (35) 

 

	�¶µ·,�©ª	� = ;�¶µ·,�©ª ∗ ¥ä�,¯  ∗ ���,¯  ∗ ����,¯  − ä���,¯  ∗ �Ä��,¯  ∗ ��Ä��,¯  +
∑ ��Ê�Ë,»�,Ìµ�,»∗��´¼,�§∗y��´¼,�§�Ê,»�,Ìµ�,»2��´¼,�§∗y��´¼,�§ + ����,�É,0�É,� ∗ ���,¯  ∗ ����,¯ ���Í; ∗
�#�É,0�É,� ∗ ÎxÏ� ∗ í¯  − ∑ ��Ê�Ë,µ¿¿,Ìµ�,µ∗�¶µ·,�§∗y�¶µ·,�§�Ê,µ¿¿,Ìµ�,µ2�¶µ·,�§∗y�¶µ·,,�§ +��Í;
����,�yy,0�É,� ∗ ���,¯  ∗ ����,¯ � ∗ �#�yy,0�É,� ∗ ÎxÏ� ∗ í¯  −
¥∑ �∑ � �Ê�Ë,Ã,Ìµ�,Ñ,��Ê,Ã,Ìµ�,�,Ñ ∗ +;2∑[ �0]/�82�¶µ·,�§∗y�¶µ·,,�§  + ����,«,0�É,Ó,� Í; ∗ºÓÍ;
�#)«,0�É,Ó� + ����,0�É¦ ∗ ÔxxÏ� ∗ í¯  ∗ �Ä��,¯ ¦, (36) 
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where the subscripts LI, ha, PVBY, GU, SP, PA, up, and eff represents liver, hepatic arterial, portal vein 

bypass, gut, spleen, pancreas, uptake, and efflux, respectively. 

 

Lymph fluid flows through afferent lymph vessels from the interstitial space of organs to the central 

lymph-node compartment and further to the venous blood pool, given by: 

 

	�¸�¹,�£	� = ;�¸�¹,�£ ∗ æã¯î ∗ ~��� − ����,¯î� + ���� ∗ ~���,¯î − ����,¯î�ç, (37) 

 

	��´µ,�£	� = ;��´µ,�£ ∗ æ∑ ~��
1 ∗ ���,�
1�ï�
1Í; − ���� ∗ ���,¯î − ä�,¯î ∗ ���,¯î ∗
����,¯î + ä���,¯î ∗ �Ä��,¯î ∗ ��Ä��,¯îç, (38) 

 

where Ltot is the total lymph flow and the subscript LN represents the central lymph-node compartment.  

 

The ODEs for the venous and arterial blood compartments are given by: 

 

	�¸ð	� = ;�¸ð ∗ æ����,4ñ ∗ +ã4ñ − �4ñ8 + ����,.ï ∗ ã.ï + ����,.� ∗ +ã.� − �.�8 +
����,Öï ∗ +ãÖï − �Öï8 + ����,�« ∗ +ã�« − ��«8 + ����,�  ∗ +ã�  − �� 8 +
����,Ýë ∗ +ãÝë − �Ýë8 + ����,>� ∗ +ã>� − �>�8 + ����,�� ∗ +ã�� − ���8 +
����,¯  ∗ +ã¯  − �¯ 8 + ����,¯î ∗ +ã¯î + ����8 + ����,�« ∗ +ã�« − ��«8 −
�ê ∗ ���ç,  (39) 

 

	��ð	� = ;��ð ∗ â+�ê − �¯ë8 ∗ ����,¯ë − ∑ ~ã�
1,� ∗ ����ï�Í; − ���	 ∗ ��� ∗ y���.� å, (40) 

 

where the subscripts AD, BO, BR, GO, HE, MU, SK, TH, and RE represent adipose tissue, bone, brain, 

gonads, heart, muscle, skin, thymus, and remaining organ, respectively. 

 

The solution of the different equation needs to be evaluated in Matlab® using the implemented deval 

function over a predefined number of time points (NumPoints). The solution for the drug concentration 

of each compartment is saved in the matrix Conc, and the corresponding time point to the concentration 

is saved in the vector Time as described previously.  
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3.3.5 Step 5: Work with the simulated data – the postprocessing step 

The solution of the ODE solver has been saved into a single matrix. The first step of postprocessing is 

therefore to extract the concentration for each compartment of the model from the solution matrix of the 

ODE solver. Different statistics can now be calculated with the extracted concentrations such as the 

mean and the 5% and 95% confidence interval with predefined Matlab® commands, which require the 

Statistics and Machine Learning Toolbox as an Add-On to the Matlab® suite. 

 

One important aspect of postprocessing is to ensure mass balance of the model. The concentration of 

each compartment is multiplied by the compartmental volume, and the drug amount cleared by a specific 

pathway as well as the amount not being absorbed are integrated and added together. The product 

should be equivalent to the dose entered in the study design. 

 

Pharmacokinetic parameters, such as the peak concentration (Cmax), the time to reach peak 

concentration (tmax), the area under the curve (AUC), the apparent clearance (CLF), the apparent volume 

of distribution (VdF), and the elimination half-life (t1/2) can be calculated for each compartment. The 

elimination rate is used to extrapolate the AUC to infinity and to calculate the clearance and the volume 

of distribution. 

 

 function[] = PostProcessing+8 
 %This function processes the data from the ODE solution and outputs the results %Attention: Some statistical calculations +geomean , prctile8 require… %the Statistical and Machine Learning Toolbox 
 Initialize Cmax Initialize tmax Initialize AUCt                      %area under the curve for one dosing interval 
 Calculate PK parameters for each simulated drug  Calculate PK parameters for each virtual individual   if the venous concentration at timepoint t is greater than Cmax    than the venous concentration at timepoint t is the new Cmax    than the timepoint t is the new tmax   end    
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  Calculate the AUCt according to the linear trapezoidal rule  end end 
 Take the logarithm of the concentration for extrapolation to infinity 
 Initialize the slope and beta 
 Calculate the slope and beta for each simulated drug  Calculate the slope and beta for each virtual individual   Linear regression of the last four time points    Beta is the slope of the regression  end end LogVenousConc = log10+VenousConc8; 
 Half-life is the natural logarithm of two divided by beta AUC extrapolated to infinity is the AUCt plus the venous concentration at the last simulated… time point divided by beta Clearance is the dose divided by the AUC extrapolated to infinity Volume of distribution is the clearance divided by beta 
 end 

 
 

As shown above for the concentration, the mean and the confidence interval or other statistics can be 

calculated for pharmacokinetic parameters. 

 

The results can be either output graphically using the build-in plot function or can be exported to Excel® 

(Microsoft, Redmond, WA) using the xlswrite command. 

3.4 Simulation of the DDI magnitude between rivaroxaban and 

darunavir/ritonavir 

To illustrate the steps of PBPK model development, the DDI magnitude between a single dose of 

rivaroxaban and darunavir boosted with ritonavir under steady state conditions will be simulated (Figure 

3.5). The rivaroxaban PBPK model was developed combing published in vitro data (bottom-up 

approach) with clinical clearance data (top-down approach). Verified PBPK models for darunavir and 

ritonavir were used [368]. Ritonavir has an impact on the renal clearance of rivaroxaban [369], which 



  Chapter 3: PBPK Model Development 

 - 81 - 

was considered in the model. The parameters of the drug models can be found in the code 

(https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/psp4.12399). A clinical DDI study investigating the 

effect of 600 mg ritonavir twice daily on a single 10 mg dose of oral rivaroxaban in 12 healthy men aged 

18 to 44 years was used to verify the rivaroxaban model [369]. A total of 10 virtual trials with 12 men 

(proportion of women is set to zero) aged 20 to 44 years were simulated. Afterwards, the effect of 

800/100 mg darunavir/ritonavir once daily on a single oral dose of 10 mg rivaroxaban was simulated 

because the boosted protease inhibitor is given in clinical practice. 

 

Figure 3.5: PBPK simulations for a single dose of 10 mg rivaroxaban administered with 600 mg ritonavir twice daily 

(a) and 800/100 mg darunavir/ritonavir once daily in steady state (b). Green and blue represent rivaroxaban in the 

absence and presence of the perpetrators. The dashed line and the shaded area are the mean and the 95% 

confidence interval for the prediction of all virtual individuals, respectively. The solid lines show the mean of each 

virtual trial (10 trials with 12 virtual subjects per trial have been simulated). The red and the dark red circles show 

observed clinical data of 10 mg rivaroxaban alone and co-administered with 600 mg ritonavir twice daily [369]. 

The simulation of 10 mg rivaroxaban with and without 600 mg of oral ritonavir were in good agreement 

with the observed clinical data (Figure 3.5a). The tmax of rivaroxaban was underpredicted by twofold 

because tmax was achieved 1.5 h later in the clinical study compared to the simulation. However, the 

predicted tmax ratio of rivaroxaban administered with 600 mg ritonavir twice daily and rivaroxaban given 

without a perpetrator was within 1.25-fold of the observed data. The elimination half-life of rivaroxaban 

was overpredicted by twofold, but Cmax and AUC were predicted within 1.25-fold (bioequivalence 
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criterion; Table 3.2) of clinically observed data. The effect of 100 mg ritonavir once daily used to boost 

darunavir in clinical practice is predicted to be similar to 600 mg of ritonavir twice daily (Figure 3.5b), 

because full inhibition of CYP3A4 and CYP2J2 is already achieved at lower ritonavir concentrations. 

 

The predicted concentrations of the two perpetrators darunavir (800 mg once daily) and ritonavir (100 

mg once daily) are in accordance to observed clinical data from various studies (Figure 3.6). The tmax of 

ritonavir was underpredicted by twofold, but all other pharmacokinetic parameter of boosted darunavir 

and ritonavir were within the 1.25-fold interval of the clinically observed data (Table 3.2). 

 

Figure 3.6: PBPK simulations for 800 mg darunavir once daily boosted with 100 mg ritonavir once daily (a) and 

100 mg ritonavir once daily (b). The dashed line and the shaded area are the mean and the 95% confidence interval 

for the prediction of all virtual individuals, respectively. The solid lines how the mean of each virtual trial (10 trials 

with 12 virtual subjects per trial have been simulated). The red markers show observed clinical data (a: [370-372] 

and b: [371, 373, 374]). 

3.5 Conclusion 

We have described a comprehensive strategy to develop and code a PBPK model in Matlab® with 

potential applications in other pharmacological scenarios. Of interest, PBPK models are increasingly 

accepted for the prediction of DDIs and drug disposition in special populations such as pediatrics and 

the elderly. Furthermore, this type of computational framework can be integrated with pharmacodynamic 

models, which can be easily added to custom build PBPK models in Matlab®. 
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3.6 Appendix 

Table A3.1: Parameters with their abbreviation and units used to build the PBPK model. 

Parameter Abbreviation Unit 

concentration of acidic phospholipids [AP] - 

inhibitor concentration [Inh] mg/L 

substrate concentration [Sub] mg/L 

abundance AB hepatic enzymes pmol/mg 

    hepatic transporters pmol/Mio cells 

    intestinal enzymes nmol/intestine 

    intestinal transporter fmol/cm² 

time-dependent abundance ABt units see abundance 

blood-to-plasma ratio BP - 

concentration   C mg/L 

clearance CL L/h 

absorption clearance CLab L/h 

intrinsic clearance of an enzyme / transporter isoform CLint µL/min/pmol enzyme / transporter 

intrinsic clearance not assigned to a specific enzyme CLint,hep µL/min/mg protein 

cardiac output CO L/h 

fraction of extracellular water fEW - 

fraction of intracellular water fIW   

fraction of neutral lipids fNL - 

fraction of neutral phospholipids fNP - 

fraction unbound fu - 

fold expansion factor for the villi of the surface area Fvilli - 

glomerular filtration rate GFR mL/min 

hematocrit HCT - 

hepatocytes per gram liver HPGL Mio cells / g liver 

half maximal inducer concentration IC50 µM 

maximum fold induction IndMax - 

flux J L/h 

affinity constant for acidic phospholipids KaAP - 

apparent inhibition constant Kapp µM 

affinity constant for binding proteins KaPR - 

degradation rate kdeg 1/h 

inhibition constant Ki µM 

inactivation rate kinact 1/h 

ionized form Kio - 

Michaelis-Menten constant Km µM 

partition coefficient of plasma binding proteins KpPR - 

unbound drug partition coefficient Kpu - 

length Le cm 

lymph flow L L/h 

vegetable oil-water partition coefficient logD - 

octanol-water partition coefficient logP - 

total lymph flow Ltot L/h 

microsomal proteins per gram liver MPPGL mg / g liver 

apparent permeability Papp 10-6 cm/sec 

effective permeability in man Peff,man 10-4 cm/sec 

binding protein concentration PR g/L 
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Table A3.1: cont. 

Parameter Abbreviation Unit 

permeability surface area PSA cm² 

blood flow Q L/h 

radius R cm 

volume V L/h 

maximum velocity Vmax pmol/min/pmol enzyme / transporter 

volume of distribution at steady state Vss L 

 

Table A3.2: Subscripts and their abbreviation used to build the PBPK model. 

Parameter Abbreviation 

arterial blood ab  

additional ad 

adipose tissue AD 

bone BO 

brain BR 

intracellular space cel 

enzyme E 

efflux ef 

gonads GO 

gut GU 

hepatic arterial ha, hep 

heart hep 

interstitial space ine 

intracellular water IW 

kidney KI 

liver LI 

lymph-node LY 

lung LU 

muscle MU 

organ org 

pancreas PA 

plasma PL 

portal vein bypass PVBY 

renal R 

red blood cells RBC 

remaining organ RE 

refers to a 30 years old subject  
arbitrarily chosen to represent  
a "young" subject 

Ref 

skin SK 

spleen SP 

transporter T 

thymus TH 

total tot 

uptake up 

vascular space vas 

venous blood vb 
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3.7 Electronic Supplementary Material 

The online version of this article contains supplementary material: 

https://doi.org/10.1002/psp4.12399 

 

Table S1:  Parameters and their abbreviation and units used to build the PBPK model. See Table 

A3.1. 

Table S2:  Subscripts and their abbreviation used to build the PBPK model. See Table A3.2. 

Material S1: The PBPK model code is published open access. Not included in this thesis.



  Chapter 4: Pharmacokinetic Changes in the Elderly 

 - 87 - 

 

 

 

 

 

 

 

 

 

 

Chapter 4: 

Pharmacokinetic Changes in the Elderly 

 

  



  Chapter 4: Pharmacokinetic Changes in the Elderly 

 - 88 - 

4. Pharmacokinetic Changes in the Elderly 

 

4.1 Abstract Page 90 

 

4.2 Key Points Page 91 

 

4.3 Introduction Page 91 

 

4.4 Methods Page 93 

4.4.1 Physiologically based pharmacokinetic model Page 93 

4.4.2 Parameters of simulated drugs Page 93 

4.4.3 Workflow for simulations Page 95 

4.4.4 Verification of the PBPK drug models Page 96 

4.4.5 Extrapolation to aged individuals Page 96 

4.4.6 Sensitivity analysis Page 98 

4.4.7 Verification of the extrapolation to aged individuals Page 98 

 

4.5 Results Page 99 

4.5.1 Predicting drug pharmacokinetics in the elderly Page 99 

4.5.2 Pharmacokinetic parameters driving age-related changes in 

drug exposure Page 108 

 

4.6 Discussion Page 114 

 

4.7 Conclusion Page 118 

 

4.8 Electronic Supplementary Information Page 119 

  



  Chapter 4: Pharmacokinetic Changes in the Elderly 

 - 89 - 

 

This chapter is a pre-printed version of a peer-reviewed original research article published under the 

following reference: 

 

Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug 

exposure changes in the elderly 

 

Felix Stader, Hannah Kinvig, Melissa A. Penny, Manuel Battegay, Marco Siccardi, & Catia Marzolini 

 

Clinical Pharmacokinetics 2020; 59(3): 383-401. 

DOI: 10.1007/s40262-019-00822-9 



  Chapter 4: Pharmacokinetic Changes in the Elderly 

 - 90 - 

4.1 Abstract 

Background:  

Medication use is highly prevalent with advanced aging, but clinical studies are rarely conducted in the 

elderly, leading to limited knowledge regarding age-related pharmacokinetic changes. 

 

Objective:  

The objective of this study was to investigate which pharmacokinetic parameters determine drug 

exposure changes in the elderly by conducting virtual clinical trials for ten drugs (midazolam, metoprolol, 

lisinopril, amlodipine, rivaroxaban, repaglinide, atorvastatin, rosuvastatin, clarithromycin, and rifampicin) 

using our physiologically based pharmacokinetic (PBPK) framework. 

 

Methods:  

PBPK models for all ten drugs were developed in young adults (20 to 50 years) following the best 

practice approach, before predicting pharmacokinetics in the elderly (at least 65 years) without any 

modification of drug parameters. A descriptive relationship between age and each investigated 

pharmacokinetic parameter (peak concentration: Cmax, time to Cmax: tmax, area under the curve: AUC, 

clearance, apparent volume of distribution, elimination-half-life: t1/2) was derived using the final PBPK 

models, and verified with independent clinically observed data from 52 drugs. 

 

Results:  

The age-related changes in drug exposure were successfully simulated for all ten drugs. 

Pharmacokinetic parameters were predicted within 1.25-fold (70%), 1.5-fold (86%), and 2.0-fold (100%) 

of clinical data. AUC increased progressively by 0.9% per year throughout adulthood from the age of 20 

years, which was explained by decreased clearance, while Cmax, tmax, and the apparent volume of 

distribution were not affected by aging. Additional clinical data of 52 drugs were contained within the 

estimated variability of the established age-dependent correlations for each pharmacokinetic parameter. 

 

Conclusion:  

The progressive decrease in hepatic and renal blood flow, as well as in the glomerular filtration rate led 

to a reduced clearance driving exposure changes in the healthy elderly, independent of the drug. 
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4.2 Key Points 

Drug pharmacokinetics in the elderly (at least 65 years) were accurately predicted by our developed 

physiologically based pharmacokinetic framework. The model suggested an average 0.9% increase in 

the area under the curve per year from the age of 20 years, which was explained by a decrease in 

clearance rather than an effect of altered drug absorption and distribution, because the peak 

concentration (Cmax), time to Cmax, and apparent volume of distribution were not affected by advanced 

aging. Sensitivity analysis and statistical analysis of clinical pharmacokinetic data collected for 52 drugs 

showed that the progressive decrease of hepatic and renal blood flow and the glomerular filtration rate 

led to the reduced clearance, and thus drove drug exposure changes in the elderly, independent of the 

drug. 

4.3 Introduction 

The number of people older than 65 years is predicted to double in the United States and Europe by 

2050 [375, 376]. The burden of age-related comorbidities, such as cardiovascular diseases, 

hypertension, diabetes mellitus, and renal impairment, increases in the elderly [377], resulting in twice 

as high medication use compared with middle-aged adults [378]. Despite the growing population of 

elderly individuals, clinical trials are generally not conducted in this special population, leading to a 

knowledge gap regarding the effect of adult age on drug pharmacokinetics [379]. However, advanced 

aging is characterized by anatomical, physiological, and biological changes [58], which have the 

potential to affect the absorption, distribution, metabolism, and elimination processes of a drug, resulting 

in altered pharmacokinetics. 

 

The impact of advanced aging on drug absorption processes remains inconclusive due to contradictory 

findings in the literature. For instance, gastric emptying time is reported to be slower, similar or faster in 

elderly compared with young adults. The distribution of drugs is affected by a progressive increase of 

adipose tissue weight, while total body water declines in the elderly. Hepatic drug metabolism is 

potentially affected by age-related changes in liver weight and hepatic blood flow, which are decreased 

by 10% and 18%, respectively, in 70 years old individuals compared with 30 years old individuals. 

Reports regarding hepatic enzyme activity in the elderly are sparse and contradictory. The only well-

studied hepatic enzyme is cytochrome P-450 (CYP) 3A, which shows age-independent activity [58]. 
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Polasek et al. investigated five different probe substrates for hepatic metabolism, namely caffeine 

(CYP1A2), warfarin (CYP2C9), phenytoin (CYP2C19), desipramine (CYP2D6), and midazolam 

(CYP3A), and found a clearance decrease of 30 to 40% in 70 years old subjects compared with younger 

individuals, which was explained by the changes in liver volume and hepatic blood flow rather than 

enzyme activity [223]. Data regarding drug transporter activity are generally sparse, but in a compact 

meta-analysis, age was tested as a covariate for hepatic drug transporter activity and was found to be 

non-significant [228]. Lastly, the most significant change with adult aging is the reduction in renal drug 

clearance, namely because of a reduction in kidney weight caused by a loss of nephrons, decreased 

renal blood flow, and consequently, a decline in the glomerular filtration rate during the entire adulthood 

[58]. 

 

Age-dependent anatomical, physiological, and biological changes can be incorporated into a 

physiologically based pharmacokinetic (PBPK) model, which is used to overcome sparse clinical data 

offering the possibility to run virtual clinical trials for special populations such as the elderly [58, 131, 

380]. A PBPK model describes the absorption, distribution, metabolism, and elimination of a drug in a 

physiologically relevant compartmental structure, where each compartment represents an organ or 

tissue. Dynamic movement of the drug between compartments is mediated by regional blood flows and 

described by ordinary differential equations. The PBPK model is informed by a combination of in vitro 

and in vivo data regarding drug characteristics that are separated from physiological data describing the 

population of interest [118]. 

 

The first aim of the present study was to evaluate the prediction of drug disposition in the elderly of our 

previously developed and parameterized PBPK framework [118]. The second aim was to determine 

pharmacokinetic parameters driving clinically observed drug exposure changes in the elderly through 

sensitivity analysis on age. We investigated which physiological and drug-specific parameters 

determined the degree of age-dependent changes of pharmacokinetic parameters in the model by 

sensitivity analysis and with clinically observed data for 52 drugs additionally collected. Lastly, we 

analyzed the age at which pharmacokinetic parameters changed more than expected with respect to 

interindividual variability in comparison to the youngest studied age group (20 to 24 years). 
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4.4 Methods 

4.4.1 Physiologically based pharmacokinetic model 

A whole-body PBPK model constructed in Matlab® 2017a was used. The model structure and code have 

been published previously [118]. Virtual individuals aged 20 to 99 years were generated according to 

our published repository describing age-dependent changes in anatomical, physiological, and biological 

system parameters. Variability was considered for all population parameters by using a normal 

distribution [58]. 

4.4.2 Parameters of simulated drugs 

A structured literature search was performed to identify drugs with available pharmacokinetic data in 

elderly individuals in order to clinically verify the PBPK model simulations. Ten drugs were selected 

including midazolam, metoprolol, lisinopril, amlodipine, rivaroxaban, repaglinide, atorvastatin, 

rosuvastatin, clarithromycin, and rifampicin. Input drug parameters were obtained from verified, 

published PBPK models [101, 118, 328, 358, 381-385], except for lisinopril. The lisinopril PBPK model 

was developed combining published in vitro data (bottom-up approach) with available clinical clearance 

data (top-down approach). PBPK models were modified to adequately predict the pharmacokinetics in 

young adults before scaling the PBPK models to the elderly. Simulations of metoprolol were carried out 

in extensive metabolizers of CYP2D6 only. Tissue distribution of the amlodipine model has been 

modified to be used in a whole-body PBPK model based on the observed volume of distribution [386]. 

Metabolic CYP3A4 clearance of amlodipine was calculated from the fraction of CYP3A4 mediated 

clearance [387] and clinically obtained intravenous clearance [386]. The in vitro ratio between CYP3A4- 

and CYP3A5-mediated clearance for amlodipine was implemented [388]. The rest of the missing, 

observed amlodipine clearance was assigned to the unspecified hepatic intrinsic clearance. Active 

hepatic drug transport was included in the repaglinide PBPK model based on published in vitro data 

[385]. The rifampicin clearance after intravenous administration was retrogradely calculated to an 

unspecified intrinsic hepatic clearance under the consideration of the renal clearance of rifampicin [365, 

389]. The parameters of the ten simulated drugs can be found in Table 4.1. 
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Key for Table 4.1: am = ampholyte, AML = amlodipine, ATO = atorvastatin, BP = blood-plasma-ratio, CLA = 

clarithromycin, CLint = intrinsic clearance, CLpd = passive diffusion clearance, fup = fraction unbound in plasma, 

HSA = human serum albumin, LIS = lisinopril, logP = octanol-water partition coefficient, ma = monoprotic acid, 

mb = monoprotic base, MET = metoprolol, MID = midazolam, MW = molecular weight, op = optimized to match 

profile in young adults (20 to 50 years) – values unchanged in simulation in the elderly, Papp = apparent permeability, 

pKa = acid dissociation constant, pre = predicted by SimCYP, REP = repaglinide, ret = retrograde calculation 

(see text for more information), RIV = rivaroxaban, RIF = rifampicin, ROS = rosuvastatin. 

4.4.3 Workflow for simulations 

The strategy for building and verifying the PBPK models and subsequently extrapolating the 

pharmacokinetics to elderly adults is described in Figure 4.1. All PBPK models were verified in young 

adults (20 to 50 years), following the best practice approach [413], before scaling to elderly adults (at 

least 65 years) without any modification of drug parameters. Published clinical study results (Table 4.2) 

were used to assess the accuracy of the predictions. Observed data were extracted from the literature 

using GetData Graph digitizer V. 2.26. Pharmacokinetic parameters were not given in six publications 

[412, 414-418] and thus the area under the curve for one dosing interval (AUCt) was calculated by the 

linear trapezoidal method, the area under the curve extrapolated to infinity (AUCinf) was extrapolated 

from the last three given concentration-time points, and the clearance was calculated as dose / AUCinf. 

If more than one published study was available, the weighted mean and standard deviation of reported 

pharmacokinetic parameters were calculated. Observed data were published in different formats and 

were converted into arithmetic mean and standard deviation [133, 134]. 

 

Figure 4.1: Workflow for the verification of the used physiologically based pharmacokinetic framework.  

Key: DDI = drug-drug interaction, DMPK = drug metabolism and pharmacokinetics, fm = fraction metabolized. 



  Chapter 4: Pharmacokinetic Changes in the Elderly 

 - 96 - 

The simulations were matched as closely as possible to the published observed studies in terms of 

demographics, dose, dosing regimen, and number of subjects (n) with 10 trials x n virtual subjects being 

simulated in each case. If more than one published study was available for a drug, the dosing regimen 

was the same, the study participants were summed up, and the weighted mean of demographic 

parameters was used. No adjustment of the drug parameters was carried out when scaling drug 

pharmacokinetics to the elderly. 

4.4.4 Verification of the PBPK drug models 

Predicted concentration-time profiles were visually compared with observed clinically data for young and 

elderly adults (Table 4.2). Furthermore, published pharmacokinetic parameters (peak concentration: 

Cmax, time to Cmax: tmax, AUC, and elimination half-life: t1/2) were compared against our simulation results. 

Simulations were defined as being successful in young adults if the predicted pharmacokinetic 

parameters were within the twofold interval of the clinically observed data, which is considered best 

practice for modelling and simulation by the regulatory authorities [326, 327]. 

4.4.5 Extrapolation to aged individuals 

The final PBPK models were utilized to predict age-related changes in pharmacokinetic parameters from 

20 to 99 years in 500 virtual individuals split into 10 different trials (proportion of women: 0.5) in five-

year steps. The analyzed pharmacokinetic parameters (Cmax, tmax, AUC, clearance, apparent volume of 

distribution, and t1/2) were normalized to the youngest investigated age group (20 to 24 years). We 

examined when age-related differences of investigated pharmacokinetic parameters changed more than 

expected from interindividual variability defined as the 1.25-fold interval (bioequivalence criterion). 

Additionally, the normalized pharmacokinetic parameters were fitted to descriptive linear, exponential, 

and monotonic functions containing age as an independent variable. The corrected Akaike’s information 

criterion was used to select the best performing function amongst those tested, which, in contrast to the 

coefficient of determination, exhibits no bias to higher parameterized models. The analysis was 

performed for men, women, and all virtual subjects to investigate whether sex has an impact on age-

related changes of pharmacokinetic parameters. 
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4.4.6 Sensitivity analysis 

Sensitivity analysis was performed to investigate which population- and drug-specific parameter drive 

the age-related pharmacokinetic parameter changes in the used PBPK model. A fictive drug was 

generated, informed by the median input parameters of the ten investigated drugs, and it was ensured 

that age-related pharmacokinetic changes felt within the average predicted rate (data not shown). 

Sensitivity analysis was run in a single male individual representative of the entire population at ages 

20 to 99 years, in five years steps, looking at the: 

 

(a) octanol-water partition coefficient (logP) between -5 and +5, and its impact on age-related 

changes in the apparent volume of distribution; 

(b) fraction unbound in plasma (fup) between 0.01 and 1, and its impact on age-related changes 

in clearance; 

(c) hepatic blood flow between 8 and 30% of cardiac output, and its impact on age-related 

changes in clearance of a fictive drug being exclusively cleared hepatically; 

(d) renal blood flow between 5 and 25% of cardiac output, and its impact on age-related 

changes in clearance of a fictive drug being exclusively cleared renally; 

(e) glomerular filtration rate between 60 and 150 mL/min and its impact on age-related changes 

in clearance of a fictive drug being exclusively cleared renally. 

 

Additionally, the total clearance of the fictive drug was either assigned completely to CYP3A4, CYP2D6, 

CYP2C9, CYP1A2, CYP2C8, to an unspecified hepatic intrinsic clearance, or to the renal clearance to 

investigate the impact of different clearance pathways on the age-related changes of total drug 

clearance. 

4.4.7 Verification of the extrapolation to aged individuals 

To verify the derived correlations between age and the investigated pharmacokinetic parameters, a 

literature search was performed using the MEDLINE database to screen for clinical studies comparing 

the pharmacokinetics in young and elderly individuals. Keywords used were “pharmacokinetic” plus 

“aging”, “young vs. elderly” or “young vs. geriatric”. Inclusion criteria were a direct comparison of the 

pharmacokinetics between young adults with a mean age up to 35 years and adults aged at least 
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40 years. The age bands were chosen to allow inclusion of middle-aged adults. The subject should 

apparently be healthy, with no disease conditions or medication use that could possibly alter the 

pharmacokinetics of the drug of interest (the included drugs and references are detailed in Table 4.3). 

Included pharmacokinetic parameters were normalized to young adults and the observed data were 

visually compared against the prediction of the derived age-dependent functions. 

 

To check the performed sensitivity analysis against clinically observed data, logP, fup, and the main 

metabolizing enzyme were collected for each of the investigated drug in the additional dataset 

(Table 4.3). Physiological parameters, such as the hepatic and renal blood flow and the glomerular 

filtration rate, important in determining drug clearance, were not usually measured in the published 

clinical studies and were thus calculated assuming random variability to adequately describe the general 

aging population [58]. Between-group comparisons of the main route of elimination (hepatic vs. renal) 

and route of administration (intravenous vs. oral) were performed using the Wilcoxon test after checking 

normal distribution, by the Shapiro-Wilk test. Analysis of variance was performed for the impact of the 

main metabolizing enzyme on age-related changes in clearance. Pearson’s correlation was done for 

continuous variables (i.e. logP, fup, age, hepatic and renal blood flow, and glomerular filtration rate). 

4.5 Results 

4.5.1 Predicting drug pharmacokinetics in the elderly 

PBPK models for all drugs were developed and adjusted in young adults (20 to 50 years) until 

simulations captured the clinically observed concentrations (used clinical studies are listed in Table 4.2) 

visually and the observed pharmacokinetic parameters were predicted within twofold. Afterwards, drug 

pharmacokinetics were simulated in elderly adults aged at least 65 years, without any modification of 

drug parameters, and the predictions were compared with clinically observed data (Table 4.4). Ten 

drugs commonly used in the elderly and for which clinical pharmacokinetic data have been published in 

study participants older than 65 years, were investigated. The enzymes and transporters involved in the 

disposition of the ten investigated drugs, as well as references to clinical studies used to verify the 

simulations, can be found Tables 4.1 and 4.2. 
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Midazolam 

The benzodiazepine midazolam is predominantly metabolized by CYP3A (95.2%) and to a lesser extent 

by UGT1A4 (4.7%). The remaining 0.1% of midazolam is excreted via glomerular filtration [384]. 

Clinically observed data of a single oral dose of midazolam (4 mg in young and 3-4 mg in the elderly) 

were contained in the 95% prediction interval for the PBPK simulations in both age groups (Figure 4.2 

a/b). Pharmacokinetic parameters were normalized to 4 mg for comparison between young and elderly 

subjects. The predicted AUC was in close agreement to the observed clinical data in young (44.1 ± 23.2 

ng*h/mL vs. 50.9 ± 19.1 ng*h/mL) and elderly adults (42.9 ± 17.2 ng*h/mL vs. 54.8 ± 22.5 ng*h/mL), 

including the observed variability [111, 112]. The ratio of elderly/young for Cmax and tmax was predicted 

to be within the 1.25-fold interval (predicted:observed ratio: 0.98 and 0.87, respectively), while t1/2 of 

midazolam was overpredicted in both age groups (predicted:observed ratio: 1.30 and 1.89) [111, 112]. 

Metoprolol 

Metoprolol is predominantly metabolized by CYP2D6 (79.2%). Other routes of metoprolol elimination 

involve CYP3A (13.7%) and renal clearance (7.1%) [381]. The beta-blocker metoprolol was studied as 

a single oral dose of 100 mg. The variability of metoprolol was covered by the PBPK model in young 

and elderly individuals (Figure 4.2 c/d). Cmax, AUC, and t1/2 were accurately scaled to elderly individuals 

by the PBPK model (predicted:observed ratio of the ratio elderly/young: 1.10, 1.06, and 0.97, 

respectively). The tmax of metoprolol was overpredicted in the elderly by twofold as the model suggested 

only a slight increase in the elderly compared with young adults, whereas tmax was half in the observed 

study [414, 419]. 

Lisinopril 

The angiotensin-converting enzyme (ACE) inhibitor lisinopril is filtered by the glomerulus and is not 

bound to any plasma-binding protein [401]. The predictions of a single oral dose of lisinopril (20 mg) 

were in close agreement to clinically observed data in young and elderly adults (Figure 4.2 e/f). The 

Cmax of lisinopril was well-predicted in young adults (predicted:observed ratio: 0.95), but Cmax was 

simulated to increase in the elderly by 9% and was increased in the clinical study by 51% [415, 416]. 

The ratio elderly/young for tmax and the AUC were accurately predicted by the model (predicted:observed 

ratio: 1.10 and 0.95). 
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Table 4.4: Observed vs. predicted pharmacokinetic parameters for non-HIV drugs in young and elderly individuals. 

 Young adults Elderly adults Ratio elderly/young 

  observed predicted observed predicted observed predicted 

Midazolam             

Cmax [ng/mL] 16.2 ± 7.7 15.9 ± 6.4 15.3 ± 7.3 14.8 ± 6.3 0.94 0.93 

tmax [h] 0.7 ± 0.2 0.5 ± 0.1 0.8 ± 0.6 0.5 ± 0.2 1.10 0.96 

AUC [ng*h/mL] 44.1 ± 23.2 50.9 ± 19.1 42.9 ± 17.2 54.8 ± 22.5 0.97 1.08 

t1/2 [h] 3.4 ± 1.6 4.4 ± 1.4 3.2 ± 2.2 6.1 ± 2.0 0.94 1.37 

Metoprolol             

Cmax [ng/mL] 115 ± 24 124 ± 69 106 ± 24 126 ± 79 0.92 1.02 

tmax [h] 2.4 ± 0.4 2.3 ± 0.4 1.2 ± 0.1 2.3 ± 0.4 0.50 1.00 

AUC [ng*h/mL] 1,048 ± 196 878 ± 559 1,021 ± 105 910 ± 754 0.97 1.04 

t1/2 [h] 9.9 ± 0.3 8.8 ± 2.9 9.6 ± 0.4 8.3 ± 2.1 0.97 0.94 

Lisinopril             

Cmax [ng/mL] 87.4 83.3 ± 23.3 132.1 90.4 ± 34.9 1.51 1.09 

tmax [h] 7.0 6.2 ± 0.4 7.3 7.1 ± 0.6 1.04 1.15 

AUC [ng*h/mL] 1,399 1,339 ± 359 1,736 1,577 ± 566 1.24 1.18 

t1/2 [h] 24.4 17.0 ± 2.4 - 23.2 ± 5.0 - 1.36 

Amlodipine             

Cmax [ng/mL] 4.2 ± 1.1 4.1 ± 1.0 5.8 ± 1.7 5.3 ± 1.2 1.38 1.30 

tmax [h] 7.0 ± 2.0 3.5 ±  0.5 8.0 ± 2.0 4.0 ± 0.6 1.14 1.14 

AUC [ng*h/mL] 81 ± 22 86 ± 22 112 ± 40 113 ± 26 1.38 1.31 

t1/2 [h] 53 ± 14 66 ± 6 69 ± 20 79 ± 6 1.30 1.19 

Rivaroxaban             

Cmax [ng/mL] 190 ± 54 191 ± 33 237 ± 50 213 ± 40 1.25 1.12 

tmax [h] 2.3 ± 0.6 1.2 ± 0.2 2.6 ± 0.1 1.3 ± 0.2 1.12 1.12 

AUC [ng*h/mL] 1,245 ± 417 1,262 ± 348 1,890 ± 432 1,604 ± 347 1.52 1.27 

t1/2 [h] 9.0 ± 6.4 10.5 ± 2.9 11.6 ± 3.7 13.2 ± 2.8 1.29 1.26 

Repaglinide             
Cmax [ng/mL] 38.0 ± 20.7 31.9 ± 8.0 47.5 ± 29.3 38.2 ± 8.9 1.25 1.20 

tmax [h] 0.7 ± 0.4 0.6 ± 0.1 0.7 ± 0.2 0.7 ± 0.1 1.00 1.17 

AUC [ng*h/mL] 43.9 ± 36.7 51.7 ± 19.7 78.7 ± 48.7 83.5 ± 23.4 1.79 1.62 

t1/2 [h] 1.3 ± 0.3 2.3 ± 0.6 1.9 ± 0.4 3.0 ± 0.6 1.46 1.30 

Atorvastatin             

Cmax [ng/mL] 14.8 ± 7.6 16.2 ± 8.0 18.1 15.2 ± 8.9 1.22 0.94 

tmax [h] 1.0 ± 0.3 1.4 ± 0.4 1.8 1.5 ± 0.5 1.8 1.07 

AUC [ng*h/mL] 77.9 ± 30.9 86.3 ± 50.3 107.8 114.1 ± 68.7 1.38 1.32 

t1/2 [h] 9.2 ± 3.6 13.1 ± 3.7 18.8 16.1 ± 4.5 2.04 1.23 

Rosuvastatin             

Cmax [ng/mL] 20.9 ± 10.6 16.2 ± 5.7 19.9 ± 7.4 14.8 ± 5.0 0.95 0.91 

tmax [h] 5.0 ± 1.6 2.5 ± 0.5 4.0 ± 1.2 3.0 ± 0.7 0.8 1.2 

AUC [ng*h/mL] 188 ± 78 188 ± 59 194 ± 28 233 ± 92 1.03 1.24 

t1/2 [h] 18.6 ± 4.8 14.8 ± 4.9 24.4 ± 12.5 16.8 ± 6.4 1.31 1.14 

Clarithromycin             

Cmax [ng/mL] 2,410 ± 670 2,570 ± 497 3,217 ± 927 3,672 ± 764 1.33 1.43 

tmax [h] 2.1 2.3 3.1 2.5 1.45 1.07 

AUC [ng*h/mL] 18,870 ± 5,550 20,227 ± 4,116 28,840 ± 9,549 29,940 ± 5,260 1.53 1.48 

t1/2 [h] 11.7 ± 3.4 13.8 ± 2.2 21.3 ± 8.0 17.7 ± 2.9 1.82 1.28 

Rifampicin             

Cmax [ng/mL] 5.570 ± 2,200 7,841 ± 2,230 7,300 ± 2,300 8,310 ± 1,977 1.31 1.06 

tmax [h] 1 1.4 ± 0.3 1.5 ± 1.1 1.5 ± 0.3 1.46 1..07 

AUC [ng*h/mL] 21,428 ± 7,648 23,608 ± 15,742 37,342 ± 16,485 36,793 ± 20,424 1.74 1.56 

t1/2 [h] 4.9 ± 1.7 4.3 ± 1.5 7.9 ± 3.5 6.0 ± 2.0 1.62 1..40 

Key: AUC = area under the curve, Cmax = peak concentration, tmax = time to Cmax, t1/2 = elimination half-life. 
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Figure 4.2: Predicted vs. observed concentration-time profiles for midazolam (a: young and b: elderly), metoprolol 

(c: young and d: elderly), and lisinopril (e: young and f: elderly). The red markers show the observed clinical data 

(mean ± standard deviation), the solid lines, the dashed line, and the shaded area represent the mean of each 

virtual trial, the mean, and the 95% confidence interval of all virtual individuals. Green and blue show simulations in 

young and elderly adults, respectively. Used clinical studies for model verification can be found in Table 4.2. 
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Amlodipine 

Amlodipine is metabolized by CYP3A (49.4%), an unspecified enzymatic pathway (4.0%), and 

eliminated unchanged by glomerular filtration (6.1%). Additionally, biliary clearance (40.5%) was 

implemented in the model, representing clearance of amlodipine metabolites [382]. The observed 

elimination phase of amlodipine (2.5 mg once daily) was well captured by the PBPK model for young 

and elderly individuals, including variability (Figure 4.3 a/b). Cmax was well predicted in both age groups 

(predicted:observed ratio: 0.98 and 0.92), but tmax was reached too early in the simulation 

(predicted:observed ratio: 0.5 in both age groups). However, the age-related increase in tmax of 14% 

observed in the clinical study in elderly compared with young study participants [489] was correctly 

captured by the model (predicted:observed ratio: 1.0). Simulated AUC and t1/2 were both in close 

agreement with the observed clinical data (predicted:observed ratio: 1.06 and 1.25 in the young and 

1.01 and 1.14 in the elderly, respectively). 

 

Figure 4.3: Predicted vs. observed concentration time profiles for amlodipine (a: young and b: elderly) and 

rivaroxaban (c: young and d: elderly). The red markers show the observed clinical data (mean ± standard deviation), 

the solid lines, the dashed line, and the shaded area represent the mean of each virtual trial, the mean, and the 

95% confidence interval of all virtual individuals. Green and blue show simulations in young and elderly adults, 

respectively. Used clinical studies for model verification can be found in Table 4.2. 
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Rivaroxaban 

Rivaroxaban is metabolized by CYP3A4 (20.0%), CYP2J2 (15.7%), an unspecified enzymatic pathway 

(18.3%), and is cleared unchanged by the kidney (46.0%) [118]. A 10 mg single oral dose of the 

anticoagulant rivaroxaban was studied. The observed terminal elimination phase of rivaroxaban was 

contained within the 95% confidence interval of the PBPK model simulations for young and elderly adults 

(Figure 4.3 c/d) as were the observed ratios elderly/young adults of Cmax, AUC, and t1/2 

(predicted:observed ratio: 0.89, 0.84 ,and 0.98, respectively). 

 

Repaglinide 

Repaglinide is mainly metabolized by CYP2C8 (75.5%) and to a minor extend by CYP3A4 (24.5%) 

[410]. The uptake of the antidiabetic drug repaglinide into hepatocytes is mediated by the organic anion 

transporting polypeptide (OATP) 1B1 [385]. A single oral 2 mg dose of repaglinide was simulated. The 

mean prediction of repaglinide was close to the mean observed, but the observed variability of 

repaglinide pharmacokinetics was not completely captured by the model (Figure 4.4 a/b). Cmax, tmax, and 

AUC were predicted with good accuracy in young (predicted:observed ratio: 0.84. 0.86, and 1.18, 

respectively) and elderly adults (predicted:observed ratio: 0.80, 1.00, and 1.06, respectively). The t1/2 

was overpredicted in both age groups (predicted:observed ratio: 1.77 and 1.58), but the predicted ratio 

elderly/young was in agreement to clinically observed data (predicted:observed ratio: 0.89) [423]. 

Atorvastatin 

Atorvastatin is mainly metabolized by CYP3A (88.9%). Other minor excretion routes for atorvastatin are 

CYP2C8 (0.2%), UGT1A1 and 1A3 (4.9% each), and renal elimination (1.1%). Atorvastatin uptake into 

hepatocytes is mediated by OATP1B1 [383]. The concentration-time profile of atorvastatin (40 mg single 

dose) was in good agreement with the observed data of young volunteers, also capturing the variability 

adequately (Figure 4.4 c). In the elderly, only one clinical pharmacokinetic study was identified, and the 

terminal elimination phase was underpredicted in adults aged older than 65 years (Figure 4.4 d). Cmax 

was shown to increase by 22% in the clinical study [424], but was predicted to be 6% lower by the PBPK 

model. The AUC was accurately predicted in young and elderly adults (predicted:observed ratio: 1.11 

and 1.06). The t1/2 was overpredicted by 42% in the young (observed: 9.2 ± 3.6 h vs. predicted: 13.1 ± 

3.7 h) but was predicted adequately by the PBPK model in the elderly (predicted:observed ratio: 0.86). 
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Figure 4.4: Predicted vs. observed concentration time profiles for repaglinide (a: young and b: elderly), atorvastatin 

(c: young and d: elderly), and rosuvastatin (e: young and f: elderly). The red markers show the observed clinical 

data (mean ± standard deviation), the solid lines, the dashed line, and the green shaded area represent the mean 

of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals. Green and blue show 

simulations in young and elderly adults, respectively. Used clinical studies for model verification can be found in 

Table 4.2. 

Rosuvastatin 

The uptake of rosuvastatin into hepatocytes is mediated by different uptake transporters. Rosuvastatin 

is cleared via enzymatic metabolism (1.8%), biliary (74.6%), and renal clearance (23.6%) [358]. A single 
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oral dose of rosuvastatin (40 mg) was captured by the model (Figure 4.4 e/f). Cmax of rosuvastatin was 

underpredicted in young and elderly adults (predicted:observed ratio: 0.78 and 0.74), but the decrease 

in Cmax with age was accurately predicted for rosuvastatin (predicted:observed ratio for the elderly/young 

ratio of Cmax: 0.96). The predicted increase of AUC and t1/2 with adult age was in accordance to the 

observed clinical data (predicted:observed ratio: 1.20 and 0.87). 

Clarithromycin 

The antibiotic clarithromycin is mainly metabolized in the liver (75.6%), predominately by CYP3A and to 

a lesser extent by the kidney (24.4%) [490]. Clinically observed data of 500 mg oral clarithromycin twice 

daily were contained in the 95% prediction interval for the PBPK simulations of young and elderly adults 

(Figure 4.5 a/b). All pharmacokinetic parameters were predicted within 1.25-fold of clinically observed 

data. 

Rifampicin 

Rifampicin, a potent inducer of CYP3A, is mainly metabolized in the liver (92.6%) and only a small 

fraction is excreted by the kidney (7.4%) [491]. Predictions of 300 mg rifampicin twice daily were 

comparable with clinically observed data for young and elderly individuals (Figure 4.5 c/d). The AUC 

was accurately predicted in young (21,428 ± 7,648 ng*h/mL vs. 23,608 ± 15,742 ng*h/mL) and elderly 

adults (37,342 ± 16,485 ng*h/mL vs. 36,793 ± 20,424 ng*h/mL). The simulated increase of Cmax, tmax, 

and t1/2 was in accordance to clinically observed data (predicted:observed ratio: 0.81, 0.73, and 0.87, 

respectively). 

4.5.2 Pharmacokinetic parameters driving age-related changes in drug exposure 

After the successful prediction of drug pharmacokinetics in adults older than 65 years, the developed 

PBPK models of all ten drugs have been used to simulate Cmax, tmax, AUC, clearance, apparent volume 

of distribution, and t1/2 for individuals 20 to 99 years of age. The impact of adult age on Cmax was not 

consistent for the different drugs investigated (Figure 4.6). The predicted Cmax of atorvastatin declined 

with age by 0.42%, whereas Cmax of amlodipine and clarithromycin increased by 1.1% per year. Cmax of 

midazolam, metoprolol, and rosuvastatin did not change with advanced age. Tmax showed a tendency 

to increase with age, but it was only outside the bioequivalence criterion for lisinopril and rosuvastatin 
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with a maximum change of 43%. The predicted AUC showed a linear increase of 0.9% per year from 

the age of 20 years. Atorvastatin showed no changes of the AUC with age, whereas repaglinide and 

lisinopril showed the highest change with up to a 2.5-fold difference compared with young adults. 

Clearance decreased with age with more than a 1.25-fold change at the age of 55 years. Atorvastatin 

showed the least change with age (0.06% per year), while lisinopril showed the highest change with a 

0.84% decrease in drug clearance per year, matching the decline in the glomerular filtration rate. The 

apparent volume of distribution was independent of adult age for all investigated drugs. T1/2 increased 

with an average rate of 0.8% per year. The lowest and highest age-related change of t1/2 was estimated 

for clarithromycin (0.32% per year) and lisinopril (1.4% per year). The age-dependent changes for all 

investigated pharmacokinetic parameters were independent of sex. 

 

 

Figure 4.5: Predicted vs. observed concentration time profiles for clarithromycin (a: young and b: elderly) and 

rifampicin (c: young and d: elderly). The red markers show the observed clinical data (mean ± standard deviation), 

the solid lines, the dashed line, and the shaded area represent the mean of each virtual trial, the mean, and the 

95% confidence interval of all virtual individuals. Green and blue show simulations in young and elderly adults, 

respectively. Used clinical studies for model verification can be found in Table 4.2. 
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Figure 4.6: Age-related changes of pharmacokinetic parameters for non-HIV drugs normalized to the youngest 

investigated age group (20 to 24 years). Circles, triangles, diamonds, squares, plus, cross, left-, right-, and 

downward-pointing triangles, and dots represent midazolam, metoprolol, lisinopril, amlodipine, rivaroxaban, 

repaglinide, atorvastatin, rosuvastatin, clarithromycin, and rifampicin, respectively. Blue and red markers show data 

for men and women. The solid line and the grey shaded area display the fitted mean relationship with estimated 

variability between age and the pharmacokinetic parameter of interest. The grey dashed lines represent the 1.25-

fold interval (bioequivalence criterion).  

Key: AUC = area under the curve, Cmax = peak concentration, CLF = clearance, tmax = time to Cmax, t1/2 = elimination 

half-life, VdF = apparent volume of distribution. 

 

Sensitivity analysis demonstrated that predicted age-related changes of the apparent volume of 

distribution and drug clearance did not depend on investigated drug characteristics (logP, fup, route of 

elimination), but did depend on physiological changes of hepatic and renal blood flow and glomerular 

filtration rate (Figure 4.7).  
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Figure 4.7: Sensitivity analysis to analyze the impact of drug (a-c) and physiological (d-f) parameters on age-related 

pharmacokinetic changes. Physiological and pharmacokinetic parameters are both normalized to the youngest 

investigated age group. 

Key: CYP = cytochrome P-450, CLF = clearance, CLint,hep = intrinsic, hepatic clearance, fup = fraction unbound in 

plasma, GFR = glomerular filtration rate, logP = octanol-water partition coefficient, QKI = renal blood flow, QLI = 

hepatic blood flow, VdF = apparent volume of distribution. 

Our derived correlations between altered pharmacokinetics and age (Figure 4.6) should hold true for 

any drug, if age-related pharmacokinetic changes are drug independent as demonstrated by the 

conducted sensitivity analysis. In order to verify this hypothesis, a literature search was conducted to 

seek for studies having a direct pharmacokinetic comparison between young and elderly adults. 

Clinically observed data for 52 additional drugs (Table 4.3) were gathered. The observed age-dependent 

pharmacokinetic alterations of this additional dataset could be appropriately described by our derived 

relationship (Figure 4.8). Variability was underestimated for Cmax and tmax, but clinically observed data 

for the apparent volume of distribution, AUC, clearance, and t1/2 were mostly contained within the 

estimated variability of derived age-related changes. There were no significant differences between 

main route of elimination (hepatic vs. renal) and route of administration (intravenous vs. oral) for any of 

the investigated pharmacokinetic parameters. Aging was significantly correlated with changes in AUC, 

clearance, and volume of distribution, but not with Cmax, tmax and t1/2 (Table 4.5).
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Figure 4.8: Verification of derived pharmacokinetic parameter changes with age against 52 additional drugs. The 

solid black line, the shaded grey area, and the dashed grey lines represent the fitted mean relationship, the 

estimated variability, and the 1.25-fold interval (bioequivalence criterion). Red, blue, and green marker show drugs 

primarily undergoing hepatic, renal, and biliary eliminations. Triangle and circles represent intravenous and oral 

drug administration. References of the studied drugs can be found in Table 4.3. 

Key: AUC = area under the curve, Cmax = peak concentration, CLF = clearance, tmax = time to Cmax, t1/2 = elimination 

half-life, VdF = apparent volume of distribution. 

 

Surprisingly, there was no correlation between the lipophilicity of a drug and the clinically observed 

changes in the volume of distribution with aging (Figure 4.7 and 4.9). Age-related changes of drug 

clearance were neither impacted by the extend of protein binding (p-value: 0.58) nor the main enzyme 

responsible for drug metabolism (p-value: 0.31). In contrast, there was a linear correlation between the 

clearance of mainly hepatically cleared drugs and the hepatic blood flow (correlation coefficient [95% 

confidence interval]: 0.27 [0.05, 0.48], p-value = 0.02) as well as a correlation between the clearance of 

mainly renally cleared drugs and the renal blood flow (correlation coefficient [95% confidence interval]: 
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0.60 [0.30, 0.79], p-value = 0.006) and the glomerular filtration rate (correlation coefficient [95% 

confidence interval]: 0.65 [0.38, 0.82], p-value = 0.001) (Figure 4.9). 

 

 

Figure 4.9: Correlation between drug (octanol-water partition coefficient: logP, fraction unbound in plasma: fup, 

metabolizing enzymes) and physiological parameters (blood flow to respective organ: Qxx, glomerular filtration rate: 

GFR) against age-related changes in apparent volume of distribution (VdF) and clearance (CLF). Red, blue, and 

green marker show drugs primarily undergoing hepatic, renal, and biliary eliminations. Triangle and circles represent 

intravenous and oral drug administration. References of the studied drugs can be found in Table 4.3. 

Key: CYP = cytochrome P-450, UGT = uridine diphosphate-glucuronosyltransferase. 

4.6 Discussion 

The elderly population is usually excluded from clinical trials resulting in a knowledge gap regarding the 

effect of adult age on drug pharmacokinetics. In this study, the pharmacokinetics of ten drugs that are 

metabolized and excreted through different pathways were successfully predicted in the elderly using a 

whole-body PBPK model, demonstrating the predictive power of the PBPK approach to investigate and 

predict drug disposition in special populations. The conducted virtual trials across adulthood elucidated 

that an increase in the AUC of 0.9% per year from the age of 20 years is mainly determined by decreased 
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drug clearance, which itself is caused by a progressive decrease of hepatic and renal blood flow, as well 

as of the glomerular filtration rate. Those physiological changes drive age-dependent drug exposure 

changes in the elderly, independent of the drug, as shown by sensitivity analysis and clinically observed 

data of 52 drugs additionally collected.  

 

Predictions from our developed PBPK models for all investigated drugs compared well with observed 

clinical data based on visual inspection. In all cases, clinical data in the elderly were quite sparse. The 

predicted decline in midazolam clearance with age (i.e. -21% by the age of 85 years when clearance is 

corrected by body weight) is in agreement with the result reported by Polasek et al. [223], who 

investigated the influence of adult age on drugs being metabolized by a dominant hepatic CYP enzyme. 

The age-dependent pharmacokinetics of metoprolol have previously been investigated in three different 

studies with contradictory findings. Kendall et al. found a decline in clearance by 60% [414], which could 

be explained through the age-dependent changes in liver weight and hepatic blood flow [58], but two 

other studies reported a higher clearance in the elderly compared with young study participants [419, 

492]. Metoprolol is mainly metabolized by CYP2D6, an enzyme with known genotypes, leading to 

distinct drug metabolizing phenotypes, which could explain the observed variability [381]. It would be of 

interest to conduct a clinical pharmacokinetic study for metoprolol in the elderly, using CYP2D6 

genotyping, to adequately analyze the impact of aging on metoprolol clearance. We found lisinopril had 

the highest age-dependent impact on drug clearance, due to the pronounced age-dependent decline in 

the glomerular filtration rate [58]. Tubular secretion was not modelled and it is worthwhile mentioning 

that tubular secretion cannot be excluded for lisinopril although its renal clearance matches the 

glomerular filtration rate [493]. The rate of absorption was predicted too rapidly for amlodipine and 

rivaroxaban; however, the observed Cmax were well predicted and the observed terminal elimination 

phases were contained in the 95% prediction interval of the PBPK model simulations for both drugs. 

The reason for the slower absorption rate observed in clinical studies could be formulation and more 

sophisticated absorption models [308, 338] might improve the prediction of tmax. Nevertheless, the tmax-

ratio elderly/young were exactly predicted by the PBPK model (predicted:observed ratio: 1.0 for both 

drugs) and were thus judged to be sufficient for age-dependent analysis. Across the ten drugs studied, 

the drug clearance of atorvastatin was least impacted by age and is likely explained by the fact that 

metabolism in the intestine is least impacted by adult age and extensive intestinal metabolism is a key 

characteristic of atorvastatin [494]. 
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Overall the pharmacokinetics of the ten selected drugs for model qualification were adequately predicted 

in the elderly, confirming the predictive power of the PBPK approach in special populations, which was 

previously shown for seven model drugs of CYP enzymes [380], as well as for morphine and furosemide 

administered intravenously [131]. The AUC was generally predicted to increase progressively with an 

average rate of 0.9% per year from the age of 20 years. Despite the higher drug exposure in the elderly, 

dose adjustment based on age alone is not recommended in the label of any of the ten studied drugs. 

The age-related changes of the AUC can be explained by the linear decrease of drug clearance as a 

result of reduced hepatic and renal blood flow and glomerular filtration rate [58], rather than drug 

characteristics (i.e. logP, fup, main metabolizing enzyme, main route of elimination) as shown by our 

conducted sensitivity analysis (Figure 4.7) and statistical analysis of clinically observed age-dependent 

pharmacokinetic alterations of 52 drugs additionally collected (Figure 4.9). These findings are contrary 

to conventional thinking. It is believed that volume of distribution changes with advanced aging, because 

of altered body composition [65], which would suggest a higher volume of distribution for lipophilic drugs 

and a lower volume of distribution for hydrophilic drugs. Indeed, there are contradictory findings in the 

literature regarding altered [450, 495, 496] and unaltered volume of distributions [211, 439, 464] with 

advanced age. Cusack et al. investigated digoxin pharmacokinetics in the elderly and found that the 

volume of distribution was not different when corrected for body weight [497], which was used in our 

study. Contradictory findings were also found for the main metabolizing enzyme of a drug. Age was 

found to be a significant covariate for CYP2C9 only in a compact meta-analysis looking at hepatic CYP 

abundance [66]. However, in a study investigating probe substrates, age-dependency was detected for 

CYP1A2, CYP2D6, and CYP2E1, but not CYP2C9 [67]. In contrast, in a third study CYP1A2 activity 

was reported to be independent of aging [68]. Taken together, the small samples size generally used 

for analysis and the high biological variability (e.g. for hepatic CYP abundance) prevented a meaningful 

investigation regarding the impact of drug characteristics on age-related changes of drug 

pharmacokinetics. In our compact analysis, we combined clinically observed data and PBPK modelling 

to demonstrate the described drug characteristics do not significantly impact age-related 

pharmacokinetic changes. 

 

Blood flows were usually not measured in the clinical studies of the 52 drugs additionally collected and 

hence were estimated based on observed data of reduced hepatic and renal blood flow with advanced 

aging [58], and thus was a limitation of this study. However, Vestal et al. measured age-related changes 
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of propranolol clearance, a purely passively distributed drug, and determined hepatic blood flow 

alterations in the same subjects, showing a linear correlation and supporting therefore the results of our 

study [498]. The glomerular filtration rate is often determined by measuring creatinine clearance, which 

is not an ideal marker in the elderly due to senile sarcopenia in aging subjects [243], but linear 

correlations between the rate of glomerular filtration alterations and age-related changes of clearance 

of mainly renally excreted drugs were shown in numerous different studies [439, 445, 454] supporting 

the findings of the present work. 

 

Importantly, the impact of age was independent of sex for all investigated drugs, which is line with 

clinically observed data [421, 424, 499]. However, the pharmacokinetics can differ between women and 

men [500] and therefore, more research is needed to investigate the impact of sex in combination with 

aging. 

 

A clear limitation of our study is that clinical pharmacokinetic data for individuals aged older than 85 

years are sparse and thus the simulation results in this age group need to be interpreted with caution. 

Furthermore, clinical data, as well as the virtual population used in this study, represent healthy elderly 

individuals. It is known that certain comorbidities, for instance renal impairment [333], liver cirrhosis [332] 

or heart disease [501] can change physiology and thus impact drug pharmacokinetics. Whether these 

physiological changes are more pronounced in elderly adults needs to be determined. 

 

It should be emphasized that age-related changes in physiology and biology do not just impact 

pharmacokinetics but also modify the pharmacodynamic of drugs, resulting in altered drug effects. 

Differences in the effects of drugs in the elderly can be explained by changes in the number of receptors, 

the affinity of the drugs to its receptor, and changes in physiological and homeostatic processes with 

aging [502]. Elderly adults are more sensitive to the sedative effect of benzodiazepines such as 

midazolam. The dose of midazolam required to reach comparable sedation like in young adults below 

the age of 50 years was shown to be halved in the elderly [503]. Conversely, the sensitivity to the beta-

adrenergic receptor and therefore the pharmacodynamic effect of beta blockers, such as metoprolol, is 

reduced in the elderly caused by receptor downregulation or alterations in binding affinity [502]. Age-

related differences in the antihypertensive effect of lisinopril appear not to be clinically relevant [504]. 

Conversely, the decrease in systolic blood pressure after amlodipine administration was shown to be 
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greater in the elderly compared with young patients, while the decrease in diastolic blood pressure was 

similar in both age groups [489, 505]. Rivaroxaban has a well-established correlation between plasma 

concentration and FXa activity and prothrombin time prolongation [506]. Thus, the higher plasma 

concentration in the elderly may lead to a more pronounced pharmacodynamic effect compared with 

young adults [507]. Statins appear to have the same pharmacodynamic effect in the elderly compared 

with young adults [508]. Taken together, clinical management of elderly individuals should consider not 

only age-related pharmacokinetic changes but also age-related pharmacodynamic changes and the 

presence of comorbidities, all of which predispose elderly individuals to inappropriate prescribing . 

4.7 Conclusion 

Conducting virtual clinical trials across the entire adulthood in combination with clinically observed data 

in young and elderly individuals elucidated that drug elimination rather than absorption or distribution is 

likely responsible for age-related drug exposure changes in the elderly. Our PBPK model in combination 

with statistical analysis of the clinically observed pharmacokinetic data of 52 drugs additionally collected, 

showed that the age-related physiological decrease in hepatic and renal blood flow, and glomerular 

filtration rate, rather than drug characteristics, are responsible for drug exposure changes in the elderly. 

The empirical rule of reducing the doses by 25 to 50% independent of the drug [509] was justified 

through the PBPK simulations with an average predicted increase in the AUC of 1.7-fold. Furthermore, 

age-related differences in drug exposure were outside of the expected interindividual variability (defined 

as the 1.25-fold interval) at 55 years of age compared with the youngest studied age group. Importantly, 

this finding can inform future clinical trials aiming to understand the pharmacokinetic differences in older 

versus younger adults. Additionally, pharmacodynamic alterations and the presence of comorbidities 

should be considered when prescribing treatments in the elderly. 
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4.8 Electronic Supplementary Material 

The online version of this article contains supplementary material: 

https://doi.org/10.1007/s40262-019-00822-9 

 

Table S1:  Parameters of the simulated drugs. See Table 4.1. 

Table S2: Published clinical studies used to verify the developed PBPK model. See Table 4.2. 

Table S3: Studies used to verify the derived age-related relationships of pharmacokinetic parameters. 

Partly contained in Table 4.3 
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5.1 Abstract 

Background: 

The impact of aging on antiretroviral pharmacokinetics remains uncertain, leading to missing dosing 

recommendations for elderly people living with the human immunodeficiency virus (HIV: PLWH). 

 

Methods: 

Plasma concentrations for 10 first line antiretrovirals were obtained in PLWH at least 55 years, 

participating in the Swiss HIV Cohort Study, and used to proof the predictive performance of our 

physiologically based pharmacokinetic (PBPK) model. The verified PBPK model predicted the 

continuous effect of aging on HIV drug pharmacokinetics across adulthood (20 to 99 years). The impact 

of ethnicity on age-related pharmacokinetic changes between whites and other races was statistically 

analyzed. 

 

Results: 

Clinically observed concentration-time-profiles of all investigated antiretrovirals were generally within 

the 95% confidence interval of the PBPK simulations, demonstrating the predictive power of the 

modelling approach used. The predicted decline in drug clearance drove age-related pharmacokinetic 

changes of antiretrovirals, resulting in a maximal 70% [95% confidence interval: 40%, 120%] increase 

in antiretrovirals exposure across adulthood. Peak concentration, time to peak concentration, and 

apparent volume of distribution were predicted to be unaltered by aging. There was no statistically 

significant difference of age-related pharmacokinetic changes between studied ethnicities. 

 

Conclusion: 

Dose adjustment for antiretrovirals based on age of male and female PLWH is a priori not necessary in 

the absence severe comorbidities considering the large safety margin of the current first-line HIV 

treatments.  
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5.2 Introduction 

Potent antiretroviral therapy increased the life-expectancy of people living with the human 

immunodeficiency virus (HIV: PLWH) close to the general population [510]. It is estimated that by 2030 

over 70% of PLWH will be aged at least 50 years in the western countries [42]. Nevertheless, clinical 

studies are rarely conducted in elderly PLWH, resulting in limited knowledge concerning the effect of 

aging on HIV drug pharmacokinetics and consequently if dose adjustment is necessary in clinical 

practice. 

 

Advanced aging is characterized by demographical, physiological, and biological changes with the 

potential to alter drug absorption, distribution, metabolism, and elimination. The most significant change 

with age is the decrease in renal blood flow and glomerular filtration rate affecting renal drug clearance 

[58]. Drug excretion is further reduced by the hepatic component, because of decreased liver mass and 

hepatic blood flow whilst hepatic enzyme and transporter activity appear to remain unchanged with aging 

[58, 228]. Additionally, drug distribution can be altered as a result of increased adipose tissue weight 

and reduced total body water [58]. 

 

Physiologically based pharmacokinetic (PBPK) modelling, an approach accepted by the regulatory 

authorities [325, 511], offers the possibility to conduct virtual clinical trials for clinical scenarios that 

cannot easily or ethically be studied [118]. Virtual populations informing the PBPK model are generated 

based on measured organ weights, regional blood flows, glomerular filtration rate, and other 

physiological parameters important to predict drug pharmacokinetics [58]. A combination of measured 

in vitro and clinically observed in vivo data are used to correctly simulate drug disposition in the human 

body [118]. Simulations are compared against clinically observed data to verify the model before 

extrapolating to unknown scenarios of interest. 

 

The aim of the present study was to investigate age-related pharmacokinetic changes of HIV drugs by 

using our previously developed and verified PBPK framework in combination with clinically observed 

data sampled as part of the Swiss HIV Cohort Study in aging PLWH [74]. We analyzed if our findings in 

Europeans can be extrapolated globally by comparing published age-related pharmacokinetic changes 

between ethnicities. 
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5.3 Methods 

We took three steps to analyze the impact of aging on antiretroviral pharmacokinetics. Firstly, we used 

clinically observed data for antiretroviral drug plasma concentrations obtained in aging PLWH at least 

55 years to verify the predictive performance of our PBPK framework [118]. Secondly, the verified PBPK 

model predicted antiretroviral drug pharmacokinetics across adulthood (20 to 99 years) to investigate 

the continuous effect of aging. Results were compared to our study for non-HIV drugs to support the 

overall care beyond HIV [512]. Thirdly, the general impact of ethnicity on age-related changes of drug 

pharmacokinetics was analyzed. 

5.3.1 Clinical data for model verification 

Ritonavir, darunavir boosted with ritonavir (darunavir/r), atazanavir/r, dolutegravir, raltegravir, rilpivirine, 

efavirenz, etravirine, tenofovir (administered as tenofovir disoproxil fumarate) and emtricitabine were 

analyzed in PLWH at least 55 years in the framework of two clinical studies within the Swiss HIV Cohort 

Study. Both studies were conducted in accordance with the Declaration of Helsinki and are registered 

at clinicaltrials.gov (NCT 03515772). The Ethics Committee of Vaud and Northwest/Central Switzerland 

approved the study protocol (CER-VD 2018-00369). Written informed consent was collected from each 

participant. 

 

Intensive plasma concentration sampling was used from the first study and sparse sampling collected 

at the biannual visit of PLWH was used from the second study for the verification of the predictive 

performance of the used modelling approach to simulate HIV drug pharmacokinetics in the elderly. 

Details on study design and analytical methods were published previously [74]. Pharmacokinetic 

parameters were only calculated non-compartmentally from the first study. Pharmacokinetic parameters 

were not available for raltegravir and rilpivirine in the elderly. 

 

We identified additional published clinical data in aging PLWH for ritonavir, atazanavir/r, dolutegravir, 

tenofovir, emtricitabine, and efavirenz, which were used for model verification [71, 72, 513]. Observed 

data were extracted from the literature using GetData Graph digitizer V. 2.26. Exposure of etravirine 

was measured in PLWH aged 20 to 77 years with a mean age of 35 years and we thus used this estimate 

for verification of the young [371]. Clinical studies used for model verification are detailed in Table 5.1. 
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5.3.2 Physiologically based pharmacokinetic modelling 

A whole-body PBPK model constructed in Matlab® 2017a was used [118]. Virtual individuals aged 20 to 

99 years were generated considering age-related changes of demographical (e.g. body weight), 

physiological (e.g. organ weight), and biological (e.g. enzyme abundance) parameters. Variability was 

considered for all population parameters by using normal distribution [58]. 

 

Table 5.1: Published clinical studies for antiretroviral drugs used to verify the developed PBPK models. Clinically 

observed data of etravirine were obtained in PLWH aged 20 to 77 years with a mean age of 35 years and have 

therefore been defined as young adults for the purpose of this study [371]. 

Drug Dosing regimen 
Young adults 
(20-50 years) 

Elderly adults 
(55-85 years) 

Ritonavir 100 mg once daily 
[371, 373, 374, 514, 
515], # 

[71], # 

Darunavir/r 800/100 mg once daily [370-372], # [74], # 

Atazanavir/r 300/100 mg once daily [374, 514, 515], # [71], # 

Atazanavir 400 mg once daily [374, 514, 515]  

Dolutegravir 50 mg once daily [72, 516, 517], # [72, 74], # 

Raltegravir 400 mg twice daily [518-521], # # 

Rilpivirine 25 mg once daily [516, 522], # # 

Efavirenz 600 mg once daily [513, 523], # [71, 513], # 

Etravirine 400 mg once daily [371], # # 

Tenofovir 300 mg once daily [524, 525], # [71], # 

Emtricitabine 200 mg once daily [522, 524-526], # [71], # 

Key: # = own clinical data obtained from PLWH, who participated in the Swiss HIV Cohort Study, /r = boosted with 

ritonavir. 

 

Input parameters (Table 5.2) of the ten studied antiretroviral drugs, which belong to the current first-line 

therapy for HIV as described by the US, European, and WHO guidelines, were obtained from published 

models, modified, and verified for our PBPK framework [118]. If not available, the apparent permeability 

used to predict drug absorption after oral administration was calculated from the published fraction 

absorbed and the rate of absorption or from physicochemical values [342, 527]. Tissue distribution was 

optimized to match clinically observed data in young adults and verified with at least one independent 

clinical study. Clearance for darunavir was split between the cytochrome P-450 enzymes (CYP) 3A4 

and an unspecified enzymatic pathway based on direct glucuronidation of darunavir [528]. The intrinsic 

clearance for dolutegravir and rilpivirine were retrogradely calculated from clinical data considering the 



  Chapter 5: Antiretroviral Pharmacokinetics with Aging 

 - 128 - 

in vitro measured fraction metabolized for each enzymatic pathway [529, 530]. Prediction for efavirenz 

were performed in extensive (EM) and poor metabolizer (PM) of CYP2B6. Our developed PBPK 

framework does not include renal transporters and therefore tubular secretion of tenofovir and 

emtricitabine was modelled as an additional clearance, which does not change with aging. The 

metabolism of emtricitabine was accounted for by an unspecified enzymatic pathway [531]. 

 

Our workflow for predicting and extrapolating drug pharmacokinetics was described previously [512]. In 

brief, drug disposition was firstly simulated in young adults aged 20 to 50 years before scaling drug 

pharmacokinetics to the elderly (55 to 85 years) without modifying drug parameters. Successful 

prediction was judged by overlaying clinically observed data with the simulation results and 

pharmacokinetic parameters (peak concentration: Cmax, area under the curve to τ: AUCt, and elimination 

half-life: t1/2) had to be predicted within twofold of clinically observed data, which is considered best 

practice for modelling by the regulatory agencies [326]. Model verification of pharmacokinetic 

parameters is reported as mean ± standard deviation. Simulations were matched as closely as possible 

to the published clinical trials regarding dose and dosing regimen. We simulated ten trials containing ten 

virtual individuals in each case. The ratio predicted/observed was calculated for each virtual trial and 

are given as mean and the 95% confidence interval. 

5.3.3 Impact of aging on antiretroviral pharmacokinetics across adulthood 

Age-related changes of analyzed pharmacokinetic parameters (Cmax, time to Cmax: tmax, AUCt, oral 

clearance: CLF, apparent volume of distribution: VdF, and t1/2) were predicted across adulthood (20 to 

99 years) in 500 virtual individuals (50% women) per five years using the verified PBPK model. 

Investigated pharmacokinetic parameters were normalized to the youngest investigated age group (20 

to 24 years). We examined the age at which pharmacokinetic parameters changed more than expected 

from interindividual variability defined as the 1.25-fold interval (bioequivalence criterion). This analysis 

was undertaken for men, women, and across all virtual subjects to investigate whether sex has an impact 

on age-related changes of pharmacokinetic parameters. The slopes of the age-related pharmacokinetic 

changes between men and women were statistically compared by a t-test for each investigated drug 

and pharmacokinetic parameter. All results were compared to our previous analysis for non-HIV drugs 

[512]. Results are given as mean and the 95% confidence interval. 
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5.3.4 Impact of ethnicity on age-related pharmacokinetic changes 

A literature search yielded clinical studies comparing age-related pharmacokinetic alterations in other 

ethnicities than whites for any drug (Table 5.3). Keywords used were “pharmacokinetic” plus “aging”, 

“young vs. elderly” or “young vs. geriatric” plus different ethnicities. Inclusion criteria were a direct 

pharmacokinetic comparison between young adults with a mean age up to 35 years and aging adults 

with a mean age at least 55 years to match our own clinical study, at least 80% of the studied population 

had to belong to a different ethnic group than whites, and subjects had no severe disease and chronic 

medication that could potentially impact the pharmacokinetic of the drug of interest. Pharmacokinetic 

parameters were normalized to the youngest age group investigated. Group-wise comparison of age-

related pharmacokinetic changes between whites [512] and other ethnic groups were performed by a t-

test. 

5.4 Results 

5.4.1 Verification of plasma concentration predictions in the elderly 

Protease inhibitors 

Clinically observed data for ritonavir (100 mg once daily), darunavir/r (800/100 mg once daily), and 

atazanavir/r (300/100 mg once daily) were generally contained within the 95% confidence interval of the 

model predictions in young and elderly subjects (Figure 5.1). Pharmacokinetic parameters were 

simulated within 2.0-fold, 1.25-fold, and 1.6-fold of clinically observed data for ritonavir, darunavir/r, and 

atazanavir/r, respectively (Table 5.4). Clinical data for unboosted atazanavir (400 mg once daily) were 

only available for young adults (data not shown). The observed AUCt of atazanavir was correctly 

predicted with 27,452 ± 4,158 ng*h/mL vs. 28,007 ± 25,043 ng*h/mL. The predicted increase in drug 

exposure between the young and the elderly group was 51% for ritonavir (predicted:observed ratio: 1.67 

[1.07; 2.67]), 33% for darunavir/r (predicted:observed ratio: 1.04 [0.83; 1.28]), and 28% for atazanavir/r 

(predicted:observed ratio: 1.76 [1.28; 2.63]). 
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Figure 5.1: Predicted vs. observed concentration time profiles for ritonavir (100 mg once daily; a: young and b: 

elderly), darunavir/r (800/100 mg once daily; c: young and d: elderly), and atazanavir/r (300/100 mg once daily; e: 

young and f: elderly). Red markers show published clinical data with different markers indicating different clinical 

studies (mean ± standard deviation). Dark grey markers represent clinical data from the Swiss HIV Cohort Study. 

Different markers indicate different individuals from intensive pharmacokinetic sampling (study 1) and crosses show 

sparse plasma concentration sampling from PLWH that came for their biannual visit to the HIV clinics (study 2). The 

solid lines, the dashed line, and the shaded area represent the mean of each virtual trial, the mean, and the 95% 

confidence interval of all virtual individuals. Used clinical studies for model verification can be found in Table 5.1.



  T
a

b
le

 5
.4

: 
O

b
s
e

rv
e

d
 v

s.
 p

re
d

ic
te

d
 p

h
a

rm
a

c
o
k
in

e
tic

 p
a

ra
m

e
te

rs
 (

m
e
a

n
 ±

 s
ta

n
d
a

rd
 d

e
v
ia

tio
n

) 
o

f 
a
n

ti
re

tr
o

vi
ra

l 
d

ru
g

s 
fo

r 
yo

u
n

g
 (

2
0
 t

o
 5

0
 y

e
a

rs
) 

a
n

d
 e

ld
e

rl
y
 a

d
u
lt
s 

(5
5
 t

o
 8

5
 y

e
a

rs
).

 

T
h

e
 r

a
tio

s
 p

re
d

ic
te

d
/o

b
se

rv
e
d

 a
re

 g
iv

e
n
 a

s 
m

e
a

n
 [
9

5
%

 c
o

n
fid

e
n

ce
 i
n
te

rv
a

l]
 c

a
lc

u
la

te
d

 f
o

r 
th

e
 e

n
tir

e
 v

ir
tu

a
l p

o
p

u
la

tio
n

 a
n
d

 e
a
c
h

 v
ir

tu
a

l 
tr

ia
l. 

  
  

Y
o

u
n

g
 a

d
u

lt
s 

(2
0-

50
 y

ea
rs

) 
E

ld
er

ly
 a

d
u

lt
s 

(5
5-

85
 y

ea
rs

) 
R

at
io

 e
ld

er
ly

/y
o

u
n

g
 

R
at

io
 p

re
d

ic
te

d
/o

b
se

rv
ed

 

  
  

o
b
s
e
rv

e
d
 

p
re

d
ic

te
d
 

o
b
s
e
rv

e
d
 

p
re

d
ic

te
d
 

o
b
s
e
rv

e
d
 

p
re

d
ic

te
d
 

y
o
u
n
g
 

e
ld

e
rl
y 

e
ld

e
rl
y
/y

o
u
n
g
 

ri
to

n
av

ir
 

C
m

a
x 

[n
g
/m

L
] 

4
7
8
 ±

 2
7
7
 

5
2
4
 ±

 2
6
8
 

4
7
9
 ±

 2
5
2
 

5
5
5
 ±

 3
0
7
 

1
.0

0
 ±

 0
.7

9
 

1
.0

6
 ±

 0
.8

0
 

1
.1

0
 [

0
.9

3
; 

1
.2

3
] 

1
.1

6
 [

0
.8

5
; 

1
.4

2
] 

1
.0

6
 [

0
.7

4
; 

1
.3

2
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

5
,9

1
2
 ±

 4
,5

9
1
 

5
,0

2
5
 ±

 3
,6

8
1
 

5
,3

3
6
 ±

 3
,3

0
3
 

7
,5

8
0
 ±

 6
,8

0
4
 

0
.9

0
 ±

 0
.9

0
 

1
.5

1
 ±

 1
.7

5
 

0
.8

5
 [

0
.6

7
; 

0
.9

7
] 

1
.4

2
 [

0
.9

3
; 

2
.4

2
] 

1
.6

7
 [

1
.0

7
; 

2
.6

7
] 

  
t 1

/2
 [
h
] 

6
.6

 ±
 5

.4
 

3
.9

 ±
 1

.1
 

8
.0

 ±
 3

.1
 

5
.6

 ±
 2

.4
 

1
.2

0
 ±

 1
.0

8
 

1
.4

4
 ±

 0
.8

0
 

0
.5

9
 [

0
.4

8
; 

0
.6

8
] 

0
.7

0
 [

0
.5

4
; 

0
.9

7
] 

1
.2

0
 [

0
.9

9
; 

1
.4

6
] 

d
ar

u
n

av
ir

/r
 

C
m

a
x 

[n
g
/m

L
] 

6
,3

5
9
 ±

 2
,3

2
5
 

6
,1

8
3
 ±

 2
,4

3
0
 

7
,9

6
9
 ±

 2
,3

7
2
 

7
,1

8
6
 ±

 2
,5

3
3
 

1
.2

5
 ±

 0
.5

9
 

1
.1

6
 ±

 0
.6

1
 

0
.9

7
 [

0
.8

2
; 

1
.0

9
] 

0
.9

0
 [

0
.7

5
; 

1
.0

3
] 

0
.9

3
 [

0
.7

9
; 

1
.0

8
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

7
5
,7

8
0
 ±

 2
2
,1

0
2
 

7
9
,5

6
4
 ±

 4
4
,1

3
0
 

9
6
,4

4
7
 ±

 2
3
,3

1
5
 

1
0
5
,4

7
8
 ±

 4
8
,1

9
1
 

1
.2

7
 ±

 0
.4

8
 

1
.3

3
 ±

 0
.9

5
 

1
.0

5
 [

0
.8

1
; 

1
.2

4
] 

1
.0

9
 [

0
.8

6
; 

1
.3

1
] 

1
.0

4
 [

0
.8

3
; 

1
.2

8
] 

  
t 1

/2
 [
h
] 

1
4
.4

 ±
 5

.2
 

1
4
.2

 ±
 6

.8
 

2
0
.9

 ±
 1

3
.7

 
2
0
.3

 ±
 7

.6
 

1
.4

5
 ±

 1
.0

8
 

1
.4

2
 ±

 0
.8

7
 

0
.9

9
 [

0
.8

7
; 

1
.1

6
] 

0
.9

7
 [

0
.8

9
; 

1
.0

8
] 

0
.9

8
 [

0
.8

0
; 

1
.1

8
] 

at
az

an
av

ir
/r

 
C

m
a
x 

[n
g
/m

L
] 

4
,7

5
7
 ±

 9
5
4
 

3
,5

9
0
 ±

 1
,0

4
4
 

3
,4

9
3
 ±

 1
,8

4
4
 

4
,0

5
6
 ±

 1
,5

4
7
 

0
.7

3
 ±

 0
.4

1
 

1
.1

3
 ±

 0
.5

4
 

0
.7

5
 [

0
.6

4
; 

0
.8

7
] 

1
.1

6
 [

1
.0

5
; 

1
.2

6
] 

1
.5

4
 [

1
.3

5
; 

1
.9

1
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

4
5
,2

8
5
 ±

 1
1
,5

7
1
 

4
0
,9

2
6
 ±

 2
8
,9

3
2
 

3
2
,9

0
0
 ±

 9
,6

3
0
 

5
2
,2

3
8
 ±

 4
0
,6

7
4
 

0
.7

3
 ±

 0
.2

8
 

1
.2

8
 ±

 1
.3

4
 

0
.9

0
 [

0
.6

8
; 

1
.3

1
] 

1
.5

9
 [

1
.3

3
; 

1
.8

8
] 

1
.7

6
 [

1
.2

8
; 

2
.6

3
] 

  
t 1

/2
 [
h
] 

9
.1

 ±
 2

.2
 

7
.2

 ±
 3

.5
 

7
.3

 ±
 6

.1
 

9
.3

 ±
 5

.5
 

0
.8

0
 ±

 0
.7

0
 

1
.2

8
 ±

 0
.9

8
 

0
.7

9
 [

0
.6

2
; 

1
.0

1
] 

1
.2

8
 [

1
.1

6
; 

1
.4

1
] 

1
.6

1
 [

1
.2

3
; 

2
.0

2
] 

d
o

lu
te

g
ra

vi
r 

C
m

a
x 

[n
g
/m

L
] 

3
,5

3
2
 ±

 9
0
9
 

3
,9

8
5
 ±

 1
,2

1
7
 

4
,3

9
1
 ±

 1
,1

3
9
 

4
,7

1
7
 ±

 1
,6

9
3
 

1
.2

4
 ±

 0
.4

5
 

1
.1

8
 ±

 0
.5

6
 

1
.1

3
 [

0
.9

4
; 

1
.2

8
] 

1
.0

7
 [

0
.9

4
; 

1
.2

1
] 

0
.9

5
 [

0
.7

9
; 

1
.2

0
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

5
3
,2

9
1
 ±

 1
5
,8

1
0
 

5
4
,3

6
1
 ±

 2
5
,7

2
2
 

6
1
,6

2
9
 ±

 2
9
,9

0
2
 

7
1
,3

9
3
 ±

 3
6
,6

7
7
 

1
.1

6
 ±

 0
.6

6
 

1
.3

1
 ±

 0
.9

2
 

1
.0

2
 [

0
.7

3
; 

1
.2

5
] 

1
.1

6
 [

0
.9

5
; 

1
.3

6
] 

1
.1

4
 [

0
.8

6
; 

1
.6

3
] 

  
t 1

/2
 [
h
] 

1
2
.8

 ±
 4

.3
 

1
0
.8

 ±
 4

.8
 

1
3
.6

 ±
 5

.1
 

1
3
.9

 ±
 5

.9
 

1
.0

7
 ±

 0
.5

3
 

1
.2

8
 ±

 0
.7

8
 

0
.8

5
 [

0
.5

8
; 

1
.0

3
] 

1
.0

2
 [

0
.8

8
; 

1
.1

5
] 

1
.2

0
 [

0
.9

1
; 

1
.7

1
] 

ra
lt

eg
ra

vi
r 

C
m

a
x 

[n
g
/m

L
] 

3
,1

2
5
 ±

 1
,3

2
7
 

3
,2

5
8
 ±

 1
,2

4
2
 

  
3
,4

3
7
 ±

 9
2
3
 

  
1
.1

4
 ±

 0
.4

6
 

1
.0

4
 [

0
.8

8
; 

1
.2

9
] 

 
 

  
A

U
C

t [
n
g
*h

/m
L
] 

1
5
,3

1
5
 ±

 6
,7

7
9
 

1
5
,5

2
4
 ±

 1
0
,5

4
1
 

  
1
8
,8

3
3
 ±

 9
,1

3
1
 

  
1
.4

4
 ±

 0
.9

9
 

1
.0

1
 [

0
.7

8
; 

1
.4

5
] 

 
 

  
t 1

/2
 [
h
] 

7
.4

 ±
 4

.0
 

4
.4

 ±
 1

.5
 

  
5
.7

 ±
 2

.1
 

  
1
.2

4
 ±

 0
.6

6
 

0
.6

0
 [

0
.5

2
; 

0
.6

9
] 

 
 

ri
lp

iv
ir

in
e 

C
m

a
x 

[n
g
/m

L
] 

1
4
4
 ±

 6
8
 

2
0
9
 ±

 7
8
 

  
2
4
4
 ±

 8
3
 

  
1
.1

6
 ±

 0
.5

9
 

1
.4

5
 [

1
.2

1
; 

1
.7

2
] 

 
 

  
A

U
C

t [
n
g
*h

/m
L
] 

2
,1

3
2
 ±

 9
3
0
 

2
,1

1
0
 ±

 1
,3

6
1
 

  
2
,7

1
1
 ±

 1
,3

1
9
 

  
1
.2

9
 ±

 1
.0

4
 

0
.9

9
 [

0
.7

8
; 

1
.3

0
] 

 
 

  
t 1

/2
 [
h
] 

4
7
.2

 ±
 1

2
.1

 
2
6
.8

 ±
 1

3
.1

 
  

3
5
.9

 ±
 1

5
.7

 
  

1
.3

4
 ±

 0
.8

8
 

0
.5

7
 [

0
.4

9
; 

0
.6

7
] 

 
 

ef
av

ir
en

z 
C

m
a
x 

[n
g
/m

L
] 

4
.0

3
5
 ±

 1
,1

9
0
 

3
,6

2
9
 ±

 1
,4

3
3
 

4
,1

2
1
 ±

 2
,4

3
0
 

4
,2

6
0
 ±

 1
,5

0
3
 

1
.0

2
 ±

 0
.6

7
 

1
.1

7
 ±

 0
.6

2
 

0
.9

0
 [

0
.7

5
; 

1
.0

4
] 

1
.0

3
 [

0
.9

2
; 

1
.1

6
] 

1
.1

5
 [

0
.9

3
; 

1
.4

0
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

5
7
,5

7
2
 ±

 2
3
,0

6
7
 

5
1
,6

0
0
 ±

 2
6
,4

6
0
 

6
7
,6

0
0
 ±

 3
7
,0

3
7
 

6
2
,4

6
3
 ±

 2
7
,3

8
7
 

1
.1

7
 ±

 0
.8

0
 

1
.2

1
 ±

 0
.8

2
 

0
.9

0
 [

0
.7

1
; 

1
.1

1
] 

0
.9

2
 [

0
.8

0
; 

1
.0

6
] 

1
.0

3
 [

0
.7

9
; 

1
.3

2
] 

  
t 1

/2
 [
h
] 

4
7
.5

 ±
 4

.3
 

4
6
.6

 ±
 2

0
.2

 
4
6
.6

 ±
 3

0
.8

 
5
8
.2

 ±
 1

6
.6

 
0
.9

8
 ±

 0
.6

5
 

1
.2

5
 ±

 0
.6

5
 

0
.9

8
 [

0
.8

4
; 

1
.1

9
] 

1
.2

5
 [

1
.1

7
; 

1
.3

4
] 

1
.2

7
 [

1
.0

1
; 

1
.4

8
] 

et
ra

vi
ri

n
e 

C
m

a
x 

[n
g
/m

L
] 

7
9
0
 ±

 2
8
7
 

6
7
4
 ±

 5
3
4
 

1
2
4
2
 ±

 4
3
7
 

1
,0

0
4
 ±

 6
6
4
 

1
.5

7
 ±

 0
.8

0
 

1
.4

9
 ±

 1
.5

4
 

0
.8

5
 [

0
.8

2
; 

0
.9

2
] 

0
.8

1
 [

0
.6

4
; 

1
.1

9
] 

0
.9

5
 [

0
.7

4
; 

1
.4

0
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

1
0
,4

1
0
 ±

 4
,1

8
6
 

1
1
,0

1
9
 ±

 1
0
,9

2
1
 

1
7
,9

8
4
 ±

 7
,0

8
7
 

1
8
,0

0
7
 ±

 1
4
,4

3
8
 

1
.7

3
 ±

 0
.9

7
 

1
.6

3
 ±

 2
.0

8
 

1
.0

6
 [

0
.9

1
; 

1
.1

6
] 

1
.0

0
 [

0
.7

5
; 

1
.5

9
] 

0
.9

5
 [

0
.7

1
; 

1
.5

0
] 

  
t 1

/2
 [
h
] 

3
5
 

3
0
.6

 ±
 1

4
.6

 
3
3
.3

 ±
 1

4
.8

 
4
1
.1

 ±
 1

4
.6

 
0
.9

5
 ±

 0
.4

2
 

1
.3

4
 ±

 0
.8

0
 

0
.7

5
 [

0
.7

0
; 

0
.8

1
] 

1
.2

3
 [

1
.1

1
; 

1
.5

4
] 

1
.6

5
 [

1
.2

6
; 

1
.8

2
] 

te
n

o
fo

vi
r 

C
m

a
x 

[n
g
/m

L
] 

2
7
8
 ±

 7
2
 

2
4
0
 ±

 3
3
 

3
1
3
 ±

 1
4
7
 

2
9
0
 ±

 4
7
 

1
.1

3
 ±

 0
.6

0
 

1
.2

1
 ±

 0
.2

6
 

0
.8

6
 [

0
.8

2
; 

0
.9

2
] 

0
.9

3
 [

0
.8

9
; 

0
.9

7
] 

1
.0

7
 [

0
.9

9
; 

1
.1

5
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

2
,7

7
4
 ±

 4
7
4
 

2
,6

7
0
 ±

 2
8
3
 

3
,5

1
0
 ±

 7
4
1
 

3
,3

5
1
 ±

 3
2
5
 

1
.2

7
 ±

 0
.3

4
 

1
.2

5
 ±

 0
.1

8
 

0
.9

6
 [

0
.9

2
; 

1
.0

1
] 

0
.9

5
 [

0
.9

1
; 

0
.9

8
] 

0
.9

9
 [

0
.9

3
; 

1
.0

6
] 

  
t 1

/2
 [
h
] 

2
0
.3

 ±
 8

.4
 

1
7
.8

 ±
 3

.0
 

1
9
.2

 ±
 1

4
.2

 
2
1
.3

 ±
 4

.5
 

0
.9

5
 ±

 0
.8

0
 

1
.2

0
 ±

 0
.3

2
 

0
.8

8
 [

0
.7

9
; 

0
.9

7
] 

1
.1

1
 [

1
.0

2
; 

1
.1

8
] 

1
.2

7
 [

1
.1

0
; 

1
.4

1
] 

em
tr

ic
it

ab
in

e 
C

m
a
x 

[n
g
/m

L
] 

1
,6

4
7
 ±

 5
6
5
 

1
,8

8
6
 ±

 3
1
5
 

1
,7

9
0
 ±

 4
8
0
 

2
,0

2
7
 ±

 3
2
5
 

1
.0

9
 ±

 0
.4

7
 

1
.0

7
 ±

 0
.2

5
 

1
.1

5
 [

1
.0

9
; 

1
.2

1
] 

1
.1

3
 [

1
.0

5
; 

1
.1

8
] 

0
.9

9
 [

0
.9

2
; 

1
.0

8
] 

  
A

U
C

t [
n
g
*h

/m
L
] 

9
,7

1
5
 ±

 2
,2

2
5
 

1
1
,7

9
6
 ±

 7
9
7
 

1
4
,9

2
9
 ±

 6
,4

3
6
 

1
3
,6

8
0
 ±

 1
,0

3
3
 

1
.5

4
 ±

 0
.7

5
 

1
.1

6
 ±

 0
.1

2
 

1
.2

1
 [

1
.1

9
; 

1
.2

3
] 

0
.9

2
 [

0
.8

9
; 

0
.9

4
] 

0
.7

5
 [

0
.7

3
; 

0
.7

8
] 

  
t 1

/2
 [
h
] 

1
5
.4

 ±
 1

3
.9

 
1
1
.1

 ±
 1

.9
 

6
.1

 ±
 1

.2
 

1
2
.0

 ±
 2

.3
 

0
.4

0
 ±

 0
.3

6
 

1
.0

8
 ±

 0
.2

8
 

0
.7

2
 [

0
.6

7
; 

0
.7

7
] 

1
.9

6
 [

1
.7

8
; 

2
.1

5
] 

2
.7

3
 [

2
.4

7
; 

2
.9

8
] 

K
e

y
: 

A
U

C
t =

 a
re

a
 u

n
d

e
r 

th
e

 c
u

rv
e

 t
o

 t
a
u

, 
C

m
a

x 
=

 p
e
a

k
 c

o
n
c
e
n

tr
a

tio
n

, 
t 1

/2
 =

 e
lim

in
a

ti
o
n

 h
a
lf
-l
if
e

. 

 

- 134 - 

Chapter 5: Antiretroviral Pharmacokinetics with Aging 



  Chapter 5: Antiretroviral Pharmacokinetics with Aging 

 - 135 - 

Integrase inhibitors 

The pharmacokinetics of dolutegravir (50 mg once daily) and raltegravir (400 mg twice daily) were 

accurately predicted in young individuals (Figure 5.2). Clinically observed data of dolutegravir were 

contained within the 95% confidence interval of predictions; however, the observed variability of 

raltegravir plasma concentration was not captured by the model. Pharmacokinetic parameters were 

predicted within 1.25-fold of clinically observed data for both investigated integrase inhibitors, except t1/2 

of raltegravir, which was underpredicted in young adults (predicted:observed ratio: 0.60 [0.52; 0.69]). 

The AUCt was estimated to increase by 31% for dolutegravir (predicted:observed ratio: 1.14 [0.86; 1.63]) 

and 44% for raltegravir. 

 

 

Figure 5.2: Predicted vs. observed concentration time profiles for dolutegravir (50 mg once daily; a: young and b: 

elderly) and raltegravir (400 mg twice daily; c: young and d: elderly). Red markers show published clinical data with 

different markers indicating different clinical studies (mean ± standard deviation). Dark grey markers represent 

clinical data from the Swiss HIV Cohort Study. Different markers indicate different individuals from intensive 

pharmacokinetic sampling (study 1) and crosses show sparse plasma concentration sampling from PLWH that 

came for their biannual visit to the HIV clinics (study 2). The solid lines, the dashed line, and the shaded area 

represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals. Used 

clinical studies for model verification can be found in Table 5.1. 
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Non-nucleoside reverse transcriptase inhibitors 

Clinically observed data for non-nucleoside reverse transcriptase inhibitors (NNRTIs; rilpivirine: 25 mg 

once daily, efavirenz: 600 mg once daily, and etravirine: 400 mg once daily) were contained within the 

95% confidence interval of the PBPK predictions of both investigated age groups (Figure 5.3). 

Pharmacokinetic parameters were generally predicted within 1.5-fold of clinically observed data for 

rilpivirine and etravirine and within 1.25-fold for efavirenz. Drug exposure of rilpivirine, efavirenz, and 

etravirine was predicted to increase by 29%, 21% (predicted:observed ratio: 1.03 [0.79; 1.32]), and 63% 

(predicted:observed ratio: 0.95 [0.71; 1.50]), respectively. Efavirenz exposure in PM of CYP2B6 felt 

generally within the 95% confidence interval of the model predictions (data not shown). 

Nucleoside/nucleotide reverse transcriptase inhibitors 

The mainly renally excreted nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) tenofovir 

(300 mg once daily administered as tenofovir disoproxil fumarate) and emtricitabine (200 mg once daily) 

were predicted in close agreement to the clinically observed data in young and elderly subjects (Figure 

5.4). Pharmacokinetic parameters were predicted within 1.25-fold of clinically observed data, except for 

t1/2 of emtricitabine in the elderly, which was 6.1 ± 1.2 h observed and 12.0 ± 2.3 h predicted 

(predicted:observed ratio: 1.96 [1.78; 2.15]). The AUCt of tenofovir and emtricitabine was predicted to 

increase by 25% (predicted:observed ratio: 0.99 [0.93; 1.06]) and 16% (predicted:observed ratio: 0.75 

[0.73; 0.78]) in the elderly compared with the young group. 

5.4.2 Impact of aging on antiretroviral pharmacokinetics 

All developed drug models were used to investigate the impact of aging on Cmax, tmax, AUCt, CLF, VdF, 

and t1/2 across adulthood (20 to 99 years). Cmax increased for all investigated HIV drugs by 34% [18%; 

51%] in the oldest compared with the youngest studied age group (Figure 5.5). In contrast, tmax and VdF 

were predicted to be similar across adulthood. Simulated AUCt and t1/2 progressively increased by 0.58% 

[0.54%; 0.63%] per year of age, respectively. Correspondingly, CLF decreased by maximal 70% [40%; 

180%] across adulthood. Overall, there were more changes in HIV drug pharmacokinetics at the age 57 

years than expected from interindividual variability. The age-dependent changes for all investigated 

pharmacokinetic parameters were independent of sex (Table 5.5). Predicted age-related 

pharmacokinetic changes of antiretroviral drugs were comparable to non-HIV drugs (Table 5.6) [512]. 
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Figure 5.3: Predicted vs. observed concentration time profiles for rilpivirine (25 mg once daily; a: young and b: 

elderly), efavirenz (600 mg once daily; c: young and d: elderly), and etravirine (400 mg once daily; e: young and f: 

elderly). Red markers show published clinical data with different markers indicating different clinical studies (mean 

± standard deviation). Dark grey markers represent clinical data from the Swiss HIV Cohort Study. Different markers 

indicate different individuals from intensive pharmacokinetic sampling (study 1) and crosses show sparse plasma 

concentration sampling from PLWH that came for their biannual visit to the HIV clinics (study 2). The solid lines, the 

dashed line, and the shaded area represent the mean of each virtual trial, the mean, and the 95% confidence 

interval of all virtual individuals. Used clinical studies for model verification can be found in Table 5.1. 
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Figure 5.4: Predicted vs. observed concentration time profiles for tenofovir (300 mg once daily; a: young and b: 

elderly) and emtricitabine (200 mg once daily; c: young and d: elderly). Red markers show published clinical data 

with different markers indicating different clinical studies (mean ± standard deviation). Dark grey markers represent 

clinical data from the Swiss HIV Cohort Study. Crosses show sparse plasma concentration sampling from PLWH 

that came for their biannual visit to the HIV clinics (study 2). The solid lines, the dashed line, and the shaded area 

represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals. Used 

clinical studies for model verification can be found in Table 5.1. 

5.4.3 Impact of ethnicity on age-related pharmacokinetic changes 

Our used clinical data and the virtual population represent PLWH of white ethnicity only. Recognizing 

that on a global scale, there is large ethnic diversity of HIV-infected individuals, we investigated the 

impact of ethnicity on age-related pharmacokinetic alterations. A literature search yielded 21 studies 

analyzing drug pharmacokinetics in young and elderly adults of different ethnicity than white. Following 

the inclusion criteria, six studies were excluded because more than 20% of the studied population were 

white, four studies were excluded because the mean age of the young age group was over 35 years, 

and one study was excluded because age was not given. The remaining ten studies included 

populations that were all Asians. Lamivudine was the only antiretroviral drug amongst the studied 11 
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drugs. The increase of Cmax was significantly higher in Asians compared with whites (p-value: 0.01 [-

0.69, -0.11]). However, age-related changes of all other pharmacokinetic parameters for renally excreted 

and hepatically metabolized drugs were not different amongst the investigated ethnicities (Figure 5.6). 

 

 

Figure 5.5: Pharmacokinetic parameters of antiretroviral drugs (Ritonavir (circles), boosted darunavir (triangles), 

boosted atazanavir (diamonds), atazanavir (squares), dolutegravir (plus), raltegravir (cross), rilpivirine (left-pointed 

triangles), efavirenz (right-pointed triangles), etravirine (down-pointed triangles), tenofovir (asterixis), and 

emtricitabine (dots) normalised to the youngest investigated age group (20 to 24 years). Blue and red markers show 

data for men and women. The solid line and the grey shaded area display the fitted mean and the estimated 

variability of age-related pharmacokinetic changes obtained from non-HIV drugs [512]. The grey dashed lines 

represent the 1.25-fold interval (bioequivalence criterion). 

Key: AUCt = area under the curve to tau, Cmax = peak concentration, CLF = oral clearance, tmax = time to Cmax, t1/2 

= elimination half-life, VdF = apparent volume of distribution.  
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Table 5.5: P-values to analyse the difference in regression slopes of relative-age-related pharmacokinetic changes 

for men and women by a t-test. 

 Cmax tmax AUCt CLF VdF t1/2 

RTV 0.99 1.00 0.96 0.96 0.85 0.84 

DRV/r 1.00 1.00 0.81 0.99 0.99 0.09 

ATV/r 0.95 1.00 0.89 0.96 0.99 0.47 

DTG 1.00 0.97 0.92 0.64 1.00 0.63 

RAL 0.95 0.99 0.95 0.96 0.96 0.91 

RPV 0.89 1.00 0.53 0.74 0.90 0.49 

EFV 0.99 0.96 0.42 0.93 0.96 0.80 

ETV 1.00 0.96 0.81 0.97 0.88 0.91 

TFV 1.00 0.99 1.00 1.00 0.97 0.99 

FTC 1.00 0.99 1.00 1.00 1.00 0.99 

Key: ATV/r = atazanavir boosted with ritonavir, AUCt = area under the curve to tau, CLF = clearance, 

Cmax = peak concentration, DRV/r = darunavir boosted with ritonavir, DTG = dolutegravir, EFV = 

efavirenz, ETV = etravirine, FTC = emtricitabine, RAL = raltegravir, RPV = rilpivirine, RTV = ritonavir, 

t1/2 = elimination half-life, tmax = time to Cmax, TFV = tenofovir (administered as tenofovir disoproxil 

fumarate), VdF = volume of distribution. 

5.5 Discussion 

Clinical data in aging PLWH are limited, leading to missing guidance whether the dose of antiretroviral 

drugs needs to be adjusted based on the age of the treated PLWH. Limited clinical data combined with 

modelling and simulation elucidated a 70% [40%; 120%] increase in antiretroviral drug exposure with 

advanced aging being in the same range as observed for non-HIV drugs (Table 5.6) [512]. Considering 

the wide therapeutic window of antiretroviral drugs belonging to the first line treatment, the age-related 

pharmacokinetic changes are a priori not clinically relevant and thus, the same antiretroviral drug dose 

can be administered to elderly compared with young PLWH. 

 

Most antiretroviral drug labels provide no dose recommendations for elderly PLWH [76-83], except for 

atazanavir for which doses do not need to be adjusted based on the age of the treated individual [85]. 

Because it is not feasible, pragmatical or ethical possible to study every antiretroviral drug across 

adulthood, we used a cutting-edge modelling approach to investigate the continuous effect of aging on 

HIV drug pharmacokinetics. PBPK modelling has demonstrated its predictive power to simulate plasma 

concentrations in special populations such as children [329], pregnant women [555], and renally 
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impaired individuals [333]. Drug labels are more and more informed by PBPK models to give a dosing 

recommendation for special populations for whom there are high hurdles to conduct clinical trials [325, 

556]. 

 

Clinically observed data for all investigated antiretroviral drugs were generally within the 95% confidence 

interval of the PBPK model predictions (Figure 5.1-5.4), demonstrating the predictive power of the used 

approach to simulate antiretroviral drug pharmacokinetics in aging subjects. Raltegravir was the only 

studied antiretroviral drugs for which data obtained from PLWH in our clinical study were mostly 

underpredicted by the model in contrast to published studies. This could possibly be explained by the 

known large variability of raltegravir plasma concentrations observed in clinical practice [557]. However, 

in the case of large variability, the model should over- and underpredict raltegravir plasma 

concentrations. Another possibility is a difference between healthy volunteers and PLWH. A population 

pharmacokinetic analysis found marked differences of around 40% in the absorption rate, clearance, 

and volume of distribution in PLWH compared with healthy volunteers [558]. The physiological causes 

of these pharmacokinetic differences are unknown. The raltegravir model was developed with clinically 

observed data from healthy volunteers, and thus, the underprediction in elderly PLWH (Figure 5.2d) 

might be caused by the impact of the HIV infection on raltegravir pharmacokinetics. This underprediction 

is similar between young and elderly subjects and therefore, the relative age-related pharmacokinetic 

changes of raltegravir might still hold true. The low raltegravir concentrations in aging PLWH appear to 

have no clinical consequences, because viral loads were undetectable in all subjects on raltegravir. 

Importantly, the sampled antiretroviral drug pharmacokinetics represent real-life data from aging PLWH, 

having a declined kidney function (i.e. glomerular filtration rate was 65.6 ± 19,2 mL/min/1.73m²), 

common age-related comorbidities (i.e. hypertension), and receiving combined antiretroviral therapy 

[74]. 

 

Age-related pharmacokinetics changes of antiretroviral drugs are driven by a reduction in drug 

clearance, which is supported by findings for non-HIV drugs. The reduction in drug clearance is caused 

by physiological alterations with advanced aging such as the decline in hepatic and renal blood flow and 

in the glomerular filtration rate, but is independent of drug characteristics [512]. The relative decreases 

of hepatic and renal blood flow are in a similar range [58], which might be an explanation for why age-

related changes in drug clearance are similar between mostly hepatically and renally cleared drugs. 
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Another explanation is that the activity of metabolizing enzymes and active drug transporters do not 

depend on age [58, 228]. Being broadly applicable to antiretroviral drugs and non-HIV drugs, this works 

supports the overall care beyond HIV in elderly PLWH. Furthermore, as age-related pharmacokinetic 

alterations are independent of drug characteristics, the results are applicable to antiretroviral therapy of 

future effective drugs entering the market before clinical data have been obtained in the elderly. 

 

Table 5.6: Fold change [95% confidence interval] between the age of 85 years and 20 years for non-HIV [512] and 

antiretroviral drugs. 

 non-HIV drugs [512] antiretroviral drugs 

Cmax 1.15 [0.80; 1.42] 1.24 [1.08; 1.36] 

tmax 1.12 [0.90; 1.32] 1.02 [0.96; 1.10] 

AUCt 1.43 [0.99; 2.02] 1.43 [1.18; 1.75] 

CLF 0.65 [0.45; 0.92] 0.61 [0.35; 0.84] 

VdF 0.98 [0.69; 1.27] 1.02 [0.76; 1.31] 

t1/2 1.51 [1.24; 1.86] 1.55 [1.19; 1.79] 

Key: AUCt = area under the curve to tau, Cmax = peak concentration, CLF = oral clearance, tmax = time to Cmax, t1/2 

= elimination half-life, VdF = apparent volume of distribution. 

 

The relative age-related pharmacokinetic changes appear to be independent of the dosing regimen. Our 

study for non-HIV drugs was mostly done for single doses [512], whereas the current analysis for 

antiretroviral drugs was done in steady state and results were not different (Table 5.6). Furthermore, we 

had two patients on darunavir boosted with ritonavir twice daily (600/100 mg) and the relative age-

related changes in AUCt and clearance were not different to the analyzed once daily dosing regimen. 

However, more clinically observed data are warranted in the future to judge the effect of dosing regimens 

on age-related pharmacokinetic changes appropriately.  

 

The impact of aging on age-related pharmacokinetic changes was similar for men and women. Sex-

related differences were only seen for antiretroviral drugs with high pharmacokinetic variability (e.g. 

atazanavir/r), but the differences were neither statistically significant (Table 5.6) nor judged to be of 

clinical relevance. Importantly, the pharmacokinetics can depend on sex [500], but the relative age-

related physiological [58] and resulting pharmacokinetic changes are similar between men and women. 
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A dose adjustment to compensate the increasing drug exposure with advanced aging depends on the 

therapeutic index of the drug of interest. The safety margin of the current first-line antiretroviral treatment 

is large enough that doses can be similar across adulthood. For comedications, the “start low go slow” 

strategy is recommended with a possible dose reduction of 25% at the age of 60 years and of 50% at 

the age of 75 years [509, 512]. Importantly, dose adaption in patients with renal diseases are necessary 

regardless of their age [559].  

 

Globally, 16% of the 37.9 million PLWH are above the age of 50 years [1]. This numbers is expected to 

increase in the future, particularly in Eastern and Southern Africa [44], making it necessary to understand 

the impact of ethnicity on age-related antiretroviral drug exposure changes. Due to the lower life 

expectancy in African countries of 55 to 60 years [43], our literature search did not yield any clinical data 

in Africans, but Asians. Like Africans, Asians have distinct physiological (e.g. organ weights, regional 

blood flows) and biological (e.g. CYP genotypes) differences compared with Europeans [320]. However, 

clinical studies indicated that age-dependent physiological alterations such as the decline in hepatic 

blood flow and in the glomerular filtration rate are similar between Asians and Europeans despite having 

different values at younger ages [58, 560, 561]. Therefore, the age-related decrease in drug clearance 

was not statistically significant different between whites and Asians (Figure 5.6). This research provides 

evidence that age-related pharmacokinetic changes of renally and hepatically eliminated drugs, 

including those metabolized by CYP enzymes with distinct genotype differences between ethnicities, 

are comparable and thus, results of this study can possibly be interpreted globally. However, more data 

are warranted in the future for Africans and antiretroviral drugs in all ethnic groups. 

 

Pharmacogenomics need careful consideration, especially when interpreting the result of the present 

study globally. CYP2B6 phenotypes contribute to the pharmacokinetic variability of efavirenz. PMs of 

CYP2B6 have higher efavirenz concentrations than EMs [513]. The PM frequency for CYP2B6 is higher 

in Africans compared with Europeans [562] and differs in Asians compared with whites [563]. As 

physiological alterations with advanced aging cause age-related pharmacokinetic changes [512], the 

relative increase in drug exposure is similar between PM and EM despite having a different absolute 

drug exposure (data not shown). 
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Figure 5.6: Impact of ethnicities on age-related pharmacokinetic changes. The dashed grey lines, solid black line, 

and the shaded grey area represent the 1.25-fold interval (bioequivalence criterion), the fitted mean, and the 

estimated variability of age-related pharmacokinetic changes obtained from non-HIV drugs [512]. Light grey, grey, 

and dark grey markers show historic data of drugs primarily undergoing hepatic, renal, and biliary elimination for 

whites [512]. Red and blue markers represent drugs primarily undergoing hepatic and renal elimination in other 

ethnic groups. Triangles and circles stand for intravenous and oral drug administrations. References for the studied 

drugs can be found in the Table 5.3. 

Key: AUC = area under the curve, Cmax = peak concentration, CLF = oral clearance, tmax = time to Cmax, t1/2 = 

elimination half-life, VdF = apparent volume of distribution.  
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Intracellular concentrations are important to assess the concentration at the target site but are usually 

difficult to obtain in humans. The pilot study of Dumond et al. measured the intracellular concentration 

of tenofovir diphosphate (after administering tenofovir disoproxil fumarate) and emtricitabine 

diphosphate in peripheral blood mononuclear cells of 12 PLWH aged 55 to 65 years. The authors found 

the intracellular tenofovir diphosphate concentration to be increased by 57.7% and the intracellular 

emtricitabine diphosphate concentration to be decreased by 22.4% [71]. The results between both drugs 

are contradictory, but the small sample size and the age of the participants must be considered. 

Additional clinical data regarding intracellular antiretroviral drug concentration in elderly PLWH are 

missing. A whole-body PBPK model used in our study could help to understand age-related changes in 

intracellular drug exposure (i.e. between tenofovir disoproxil fumarate and tenofovir alafenamide) but 

needs to be carefully verified with existing clinical data which are not available.  

 

Several limitations of our study should be acknowledged. Firstly, clinical data in individuals over the age 

of 85 years were limited and therefore, simulation results in this age group need to be interpreted with 

caution.  

 

Secondly, our clinically observed data were obtained in aging PLWH at least 55 years, having a declined 

kidney function (i.e. glomerular filtration rate up to 65.6 ± 19.2 mL/min/1.73m²) and common 

comorbidities (e.g. hypertension), but had no severe conditions such as advanced renal impairment 

stage 4 to 5 or heart failure classified as New York Heart Association 3 to 4. Therefore, results might 

not be applicable to elderly PLWH with severe diseases. A French study found that 75% of PLWH at 

least 75 years were non-frail, 22% had a risk for frailty, and 4% were complex patients [564], 

demonstrating that our findings support the clinical care of the majority of aging PLWH. Clinical studies 

investigating the combined effects of aging and frailty as well as severe comorbidities are warranted in 

the future. 

 

Thirdly, HIV infection per se affects physiology [565, 566]; however, these changes translate only to 

marginal pharmacokinetic differences of around 20% for some antiretroviral drugs [567]. Even so, our 

model was verified with clinically observed data from healthy volunteers and PLWH and all were 

contained within the 95% confidence interval of the model predictions. 
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Fourthly, our PBPK framework does not include a mechanistic kidney model and therefore, tubular 

secretion of tenofovir and emtricitabine was implemented as an additional clearance that was assumed 

not to change with age. Age-dependent activity of renal transporters has not been studied, and even 

though hepatic drug transporter activity is unaltered with age [228], it remains uncertain if age-

dependency of hepatic transporters can be linked to renal transporters. Exposure of digoxin, a drug 

mainly cleared by the kidney through glomerular filtration and tubular secretion, had a 56% higher 

exposure in individuals aged 72 to 91 years compared with subjects aged 34 to 64 years [497], which is 

in line with the decrease in glomerular filtration rate, indicating that tubular secretion might be unaltered 

in the elderly. 

 

Age-related changes in physiology and biology do not only affect pharmacokinetics but can also modify 

drug pharmacodynamics. Resulting altered drug effects can be explained by changes in the number of 

receptors, the affinity of the drug to its receptor as well as changes in physiological and homeostatic 

processes with aging [568]. Limited data regarding antiretroviral pharmacodynamics in aging PLWH 

suggest efficient viral suppression [88]. Both, age related pharmacodynamic changes, as well as the 

presence of comorbidities predispose elderly individuals to inappropriate prescribing. 

 

In conclusion, the impact of advanced aging on antiretroviral drug pharmacokinetics is not clinically 

relevant considering the large therapeutic index of the current first-line treatment. In our study, neither 

sex nor ethnicity appear to impact age-related pharmacokinetic changes. Overall, antiretroviral drug 

dose adjustment is a priori not necessary in aging male and female PLWH in the absence of severe 

comorbidities. 

  



  Chapter 5: Antiretroviral Pharmacokinetics with Aging 

 - 147 - 

5.6 Study Highlights 

What is already known about this subject? 

 Age-related changes in physiology might impact the pharmacokinetics of antiretroviral drugs to 

a clinically relevant extend. 

 Clinically observed pharmacokinetic data in elderly people living with the human 

immunodeficiency virus (HIV) are limited. 

 Labels of the current first-line HIV treatments provide no dosing recommendations based on the 

age of treated individuals. 

 

What this study adds? 

 Clinical data for 10 antiretrovirals were obtained in aging people living with HIV and used to 

verify a predictive physiologically based pharmacokinetic model. 

 Predicted antiretroviral drug exposures increased by maximal 70% across adulthood, which is 

not clinically relevant for antiretrovirals given the wide safety margins and, thus, dose 

adjustments are not necessary. 
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5.7 Supplementary Material 

The online version of this article contains supplementary material: 

https://doi.org/10.1111/bcp.14402 

 

Table S1:  References for clinical studies used for model verification. See Table 5.1. 

Table S2:  Input parameters for drug models. See Table 5.2. 

Table S3:  Studies to investigate the impact of ethnicity on age-related pharmacokinetic changes. See 

Table 5.3. 

Table S4: Relative age-related changes of the peak concentration for men and women. Not included 

in this thesis. 

Table S5: Relative age-related changes of the time to peak concentration for men and women. Not 

included in this thesis. 

Table S6: Relative age-related changes of the area under the curve to tau for men and women. Not 

included in this thesis. 

Table S7: Relative age-related pharmacokinetic changes of clearance for men and women. Not 

included in this thesis. 

Table S8: Relative age-related pharmacokinetic changes of the volume of distribution for men and 

women. Not included in this thesis. 

Table S9: Relative age-related pharmacokinetic changes of the elimination half-life for men and 

women. Not included in this thesis. 

Table S10: Statistical analysis of relative age-related pharmacokinetic changes between men and 

women. See Table 5.5. 

Figure S1: Impact of phenotypes on age-related pharmacokinetic changes of efavirenz. Not included 

in this thesis. 
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This chapter contains two pre-printed manuscripts: one research letter describing the outcome of the 

conducted clinical study and one original research article describing the continuous effect of aging on 

DDI magnitudes. 

 

 

Aging does not impact drug-drug interaction magnitudes with antiretrovirals: a Swiss HIV Cohort Study 

 

Felix Stader, Laurent A. Decosterd, Marcel Stoeckle, Matthias Cavassini, Manuel Battegay, Susana 

Alves Saldanha, Catia Marzolini, Perrine Courlet, & the Swiss HIV Cohort Study 

 

AIDS 2020; 34(6): 949-952. 

DOI: 10.1097/QAD. 0000000000002489 

 

 

 

Clinical data combined with modelling indicate unchanged drug-drug interaction magnitudes in the 

elderly 

 

Felix Stader, Perrine Courlet, Hannah Kinvig, Melissa A. Penny, Laurent A. Decosterd, Manuel 

Battegay, Marco Siccardi, & Catia Marzolini 

 

Clinical Pharmacology & Therapeutics 2020; [Epub ahead of print]. 

DOI: 10.1002/cpt.2017 
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6.1 Clinical study in aging PLWH to investigate drug-drug interaction 

magnitudes between cardiovascular agents and antiretrovirals 

6.1.1 Summary 

The risk of drug-drug interactions (DDIs) is elevated in aging people living with HIV (PLWH) because of 

highly prevalent age-related comorbidities leading to more comedications. To investigate the impact of 

aging on DDI magnitudes between comedications (amlodipine, atorvastatin, rosuvastatin) and boosted 

darunavir, we conducted a clinical trial in aging PLWH at least 55 years. DDI magnitudes were 

comparable to those reported in young individuals, supporting that the clinical management of DDIs in 

aging PLWH can be similar. 

6.1.2 Introduction 

Combined antiretroviral treatments have increased the life expectancy of people living with HIV (PLWH) 

close to the general population [510]. Consequently, PLWH have an identical high prevalence for age-

related comorbidities, such as cardiovascular conditions, leading to complex drug associations with a 

higher risk for drug-drug interactions (DDIs) [93]. One current issue is the lack of knowledge concerning 

the magnitude and clinical management of DDIs in aging PLWH. However, despite the high DDI 

potential of antiretroviral drugs, it is neither feasible nor ethically possible to conduct clinical studies for 

every single drug combination. Additionally, elderly PLWH are underrepresented in clinical studies. The 

decline in hepatic and renal blood flow and in the glomerular filtration rate drives age-related 

pharmacokinetic changes of non-HIV drugs and likely impacts antiretroviral drug pharmacokinetics 

[512]. The impact of aging on metabolizing enzymes and drug transporters activity is either 

controversially discussed or lacking in the literature [58], which in addition to pharmacokinetic alterations 

could both affect the magnitude of DDIs in the elderly. 

 

The aim of this study was to quantify the DDI magnitudes between cardiovascular drugs (i.e. amlodipine, 

atorvastatin, rosuvastatin) and antiretroviral agents in aging PLWH to provide guidance on DDI 

management in this fragile population. 
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6.1.3 Material and Methods 

This was a prospective clinical study including PLWH at least 55 years in Lausanne and Basel that are 

enrolled in the Swiss HIV Cohort Study [74]. Included PLWH received amlodipine, atorvastatin and/or 

rosuvastatin with a dolutegravir (no drug interaction expected) or a boosted darunavir containing 

regimen (high interaction potential). PLWH were excluded if they had severe comorbidities such as 

advanced renal impairment (stage 4 to 5), heart failure (New York Heart Association 3 to 4) or liver 

cirrhosis (Child-Pugh score C) or if they were receiving comedications with inhibitory or inducing 

properties. Consenting PLWH came to the HIV clinic in the morning for the collection of serial blood 

samples over 24 hours. The Ethics Committee of Vaud and Northwest/Central Switzerland approved 

the study protocol (CER-VD 2018-00369), which is registered at ClinicalTrials.gov (NCT03515772). 

Written informed consent was collected for each participant. 

 

Plasma samples were isolated by centrifugation and stored at -80°C until batch analysis. Plasma levels 

determination was performed in the Laboratory of Clinical Pharmacology in Lausanne, using liquid 

chromatography coupled with tandem mass spectrometry [569]. 

 

All doses were normalized as amlodipine, atorvastatin, and rosuvastatin exhibit dose-proportional 

pharmacokinetics. Pharmacokinetic parameters were calculated noncompartmentally from the 

measured concentration-time profiles in Matlab® 2017a. The mean and standard deviation of the area 

under the curve (AUC) were calculated for the comedication received with either dolutegravir or boosted 

darunavir. The DDI magnitudes were calculated as the AUC of the comedication in the presence of 

boosted darunavir (inhibitory effects on cytochrome P-450 3A4 (CYP3A4) and/or hepatic/intestinal 

transporters) divided by the AUC of the comedication in the presence of dolutegravir (no inhibitory 

effects). 

 

A structured literature search was performed using the MEDLINE database to screen for studies 

investigating the same DDI magnitudes in young adults to evaluate the impact of aging. 
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6.1.4 Results 

A total of 21 white PLWH (four women) aged 56 to 80 years were included in the study. Amlodipine was 

taken by eight PLWH (dolutegravir: n = 6; boosted darunavir: n = 2) aged 64.8 ± 7.0 years. The AUC of 

amlodipine (dose-normalized to 5 mg) was 1,155 ± 414 ng*h/mL and 2,425 ± 739 ng*h/mL in 

combination with dolutegravir and boosted darunavir, resulting in an AUC-ratio of 2.10 ± 0.99 (Table 

6.1). In young adults aged 20 to 50 years, the increase in amlodipine exposure in the presence of 

boosted indinavir was 1.89 [570] and in the presence of ritonavir was 2.11 [382]. 

 

Atorvastatin was investigated in nine aging PLWH (dolutegravir: n = 4; boosted darunavir: n = 5) aged 

64.1 ± 8.0 years at a dose of 10 mg. The AUC of atorvastatin in the presence of dolutegravir was 31.4 

± 4.7 ng*h/mL and increased to 193 ± 133 ng*h/mL in PLWH receiving boosted darunavir. The resulting 

AUC-ratio was 6.16 ± 4.35. No study could be identified in young individuals for atorvastatin in the 

presence of boosted darunavir, but for boosted saquinavir (AUC-ratio: 3.93) [571] and boosted tipranavir 

(AUC-ratio: 9.36) [428]. 

 

Rosuvastatin was administered to six PLWH (dolutegravir: n = 2 boosted darunavir: n = 4) aged 67.7 ± 

5.3 years and concentrations were dose-normalized to 10 mg. The rosuvastatin AUC in the presence of 

dolutegravir and boosted darunavir was 104.2 ± 32.6 ng*h/mL and 166.9 ± 75.5 ng*h/mL, respectively. 

The resulting AUC-ratio was 1.60 ± 0.88. One clinical study investigated rosuvastatin exposure in the 

presence of boosted darunavir in young adults aged 20 to 50 years and reported an AUC-ratio of 1.57 

± 0.54 [572]. 

 

Table 6.1: Comparison of DDI magnitudes of amlodipine, atorvastatin, and rosuvastatin combined with boosted 

darunavir in young (20 to 50 years) and aging individuals (55 to 80 years). 

 n 
Age 

[years] 

AUC-ratio of aging 

individuals (55-80 years) 

AUC-ratio of young 

individuals (20-50 years) 

Ratio 

aging/young 

amlodipine + 

boosted darunavir 
8 64.8 ± 7.0 2.10 ± 0.99 

2.11 (ritonavir alone) [382] 

1.89 (boosted indinavir) [570] 

1.00 

1.11 

atorvastatin + 

boosted darunavir 
9 64.1 ± 8.0 6.16 ± 4.35 

3.93 (boosted saquinavir) [571] 

9.36 (boosted tipranavir) [428] 
- 

rosuvastatin + 

boosted darunavir 
6 67.7 ± 5.3 1.60 ± 0.88 1.57 ± 0.54 [572] 1.02 

Key: AUC = area under the curve. 
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6.1.5 Discussion 

Clinical studies concerning the impact of aging on DDI magnitudes involving antiretroviral drugs do not 

exist, leading to uncertainty concerning the clinical management of DDIs in aging PLWH. To our 

knowledge, our study is the first to investigate DDIs of commonly used comedications (amlodipine, 

atorvastatin, rosuvastatin) and boosted darunavir in PLWH aged at least 55 years. The obtained AUC-

ratios in aging PLWH were in the same range as DDI magnitudes reported in young individuals aged 20 

to 50 years, thus, demonstrating that aging has a marginal impact on DDI magnitudes. 

 

Two clinical studies with midazolam and clarithromycin (inhibition) or rifampicin (induction) elucidated 

no age-related changes of the DDI magnitudes, which support our study results [111, 112, 573]. 

 

Several limitations should be acknowledged. Firstly, the small number of patients led to an observational 

study design. Nevertheless, the obtained clinical data show the real-life scenario of amlodipine, 

atorvastatin, and rosuvastatin in aging PLWH receiving boosted darunavir. Secondly, concentration-

time profiles for the comedications in the presence of dolutegravir and boosted darunavir came from two 

different groups of patients because of medical and ethical reasons. Thirdly, clinical data for our 

investigated DDIs in young individuals were not obtained in the same study but gathered from published 

clinical trials that did not administer the same protease inhibitors as in our study. In the case of 

amlodipine, ritonavir itself is enough to inhibit CYP3A4 completely and thus, the second protease 

inhibitor can be neglected [373]. In the case of atorvastatin, the inhibition of the organic anion 

transporting polypeptide (OATP) 1B1 and P-glycoprotein (P-gp) adds to the CYP3A4 inhibition. 

Saquinavir and ritonavir show the least impact on OATP1B1 followed by darunavir and tipranavir with 

the latter one being a strong P-gp inhibitor [103, 574]. Therefore, our results for atorvastatin and boosted 

darunavir are in line with published studies using either saquinavir or tipranavir. 

 

In conclusion, our clinically observed data demonstrated that DDI magnitudes between antiretroviral 

drugs and comedications appear to be similar in aging PLWH compared with young individuals and 

thus, the clinical management of DDIs can be similar. Further research is warranted in the future to 

investigate more DDI scenarios with a larger study population including more women to further support 

the clinical management of DDIs in aging PLWH.   
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6.2 Physiologically based pharmacokinetic modelling of drug-drug interaction 

magnitudes with advanced aging 

6.2.1 Abstract 

Age-related comorbidities and consequently polypharmacy are highly prevalent in the elderly, resulting 

in an increased risk for drug-drug interactions (DDIs). The effect of aging on DDI magnitudes is mostly 

uncertain, leading to missing guidance regarding the clinical DDI management in the elderly. Clinical 

data obtained in aging people living with HIV at least 55 years, who participated in the Swiss HIV Cohort 

Study, demonstrated unchanged DDI magnitudes with advanced aging for four studied DDI scenarios. 

These data plus published data for midazolam in the presence of clarithromycin and rifampicin in elderly 

individuals assessed the predictive potential of the used physiologically based pharmacokinetic (PBPK) 

model to simulate DDIs in the elderly. All clinically observed data were generally predicted within the 

95% confidence interval of the PBPK simulations. The verified model predicted subsequently the 

magnitude of 50 DDIs across adulthood (20 to 99 years) with 42 scenarios being only verified in adults 

aged 20 to 50 years in the absence of clinically observed data in the elderly. DDI magnitudes were not 

impacted by aging regardless of the involved drugs, DDI mechanism, mediators of DDIs, or the sex of 

the investigated individuals. The prediction of unchanged DDI magnitudes with advanced aging were 

proofed by 17 published, independent DDIs that were investigated in young and elderly subjects. In 

conclusion, this study demonstrated by combining clinically observed data with modelling and simulation 

that aging does not impact DDI magnitudes and thus, clinical management of DDIs can a priori be similar 

in aging men and women in the absence of severe comorbidities.  
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6.2.2 Introduction 

The number of elderly individuals at least 65 years is estimated to double in the USA and Europe by 

2050 [375, 376]. The prevalence of age-related comorbidities increases with advanced aging [377, 575], 

leading to more comedications [378] and consequently, to a higher risk for drug-drug interactions (DDIs) 

[95]. However, clinical studies investigating DDI magnitudes in the elderly are generally not conducted, 

resulting in a knowledge gap about how to manage DDIs in aging individuals in clinical practice. 

 

Organ functions decline with advanced aging with the potential to alter drug pharmacokinetics and 

thereby the magnitude of DDIs [380, 512]. Significant changes are the reduction in the hepatic and renal 

blood flows as well as in the glomerular filtration rate affecting drug clearance. Additionally, the age-

related reduction in total body water and the increase in adipose tissue weight can affect drug distribution 

in the elderly [58]. 

 

The incorporation of age-related physiological changes into physiologically based pharmacokinetic 

(PBPK) models allows to conduct virtual clinical trials in the elderly to investigate scenarios that cannot 

easily or ethically be studied [118]. The model performance is verified against clinically observed data 

before extrapolating to unknown scenarios of interest. 

 

There is a particular need to investigate DDI magnitudes in aging people living with HIV (PLWH), 

because their life expectancy is close to the general population [510], and they have a high prevalence 

for age-related comorbidities [93] and polypharmacy [92]. Furthermore, antiretroviral drugs have a high 

DDI potential [576]. We previously conducted a clinical study in aging PLWH at least 55 years in the 

framework of the Swiss HIV Cohort Study to analyze DDI magnitudes between antiretroviral drugs and 

comedications in the elderly and found similar DDI magnitudes compared to historical data in young 

adults aged 20 to 50 years [577]. However, the conducted study had limitations regarding the number 

of studied scenarios and investigated individuals. 

 

The objectives of the present study were to firstly assess the predictive potential of the PBPK approach 

to simulate DDIs in the elderly and secondly, to investigate comprehensively the impact of aging on DDI 

magnitudes, involving different drugs and DDI mechanisms, by the verified PBPK model. 
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6.2.3 Methods 

We took three different steps to investigate whether aging impacts the magnitudes of DDIs. Firstly, we 

used the clinically observed data obtained in aging PLWH at least 55 years for four different DDI 

scenarios [577] to verify the predictive performance of our previously developed PBPK framework [118] 

to simulate DDI magnitudes in the elderly. Secondly, the verified PBPK model predicted DDI magnitudes 

across adulthood for 50 different DDIs with different involved drugs and DDI mechanisms. The 

simulation results were statistically analyzed to determine the general impact of aging on DDI 

magnitudes. Thirdly, a meta-analysis was undertaken to seek for clinical data investigating DDI 

magnitudes in young adults aged up to 40 years and elderly adults at least 55 years to proof the general 

model-based hypothesis of the present study. 

Clinical data to investigate drug-drug interaction magnitudes in aging individuals to verify the 

physiologically based pharmacokinetic model 

In a prospective clinical study, which was conducted at the HIV clinics Lausanne and Basel, PLWH at 

least 55 years, who participated in the Swiss HIV Cohort Study, were included if they received 

amlodipine, atorvastatin and/or rosuvastatin with a dolutegravir (no interaction expected) or a boosted 

darunavir (high interaction potential) containing antiretroviral regimen. The Ethics Committee of Vaud 

and Northwest/Central Switzerland approved the study protocol (CER-VD 2018-00369), which is 

registered at ClinicalTrials.gov (NCT03515772). Written informed consent was collected for each 

participant. Plasma concentrations were collected over 24 hours. Pharmacokinetic parameters were 

calculated noncompartmentally. Details on the study design were published previously [577]. Historical 

data from young adults aged 20 to 50 years, receiving the same drug combination as the elderly PLWH 

in our conducted study, were gathered from the literature for model verification. 

 

To verify analyzed DDI scenarios, for which clinically observed data exist only in the young, a structured 

literature search was performed to seek for clinical studies investigating DDIs with drugs, we previously 

used to analyze the impact of aging on drug pharmacokinetics [512, 578]. Observed data were extracted 

from the literature using GetData Graph digitizer V. 2.26, which has an excellent accuracy [579]. Clinical 

studies used for model verification are detailed in Table 6.2.
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Physiologically based pharmacokinetic modelling 

A whole-body PBPK model was constructed in Matlab® 2017a. The model structure, code, and 

assumptions were published previously [118]. The model was informed by an aging virtual population 

considering age-related changes of demographical (e.g. body weight), physiological (e.g. organ weight), 

and biological (e.g. enzyme abundance) parameters with variability [58]. 

 

Used drug models for antiretroviral drugs (i.e. dolutegravir and boosted darunavir) and non-HIV drugs 

(i.e. amlodipine, atorvastatin, and rosuvastatin) were developed and verified previously [512, 578]. To 

simulate the combination of dolutegravir with boosted darunavir, the possibility to induce uridine 

diphosphate-glucuronosyltransferase (UGT) 1A1 was implemented into the existing PBPK model [118]. 

The turnover rate of UGT1A1 was found to be 0.0693 1/h [604]. In vitro studies investigating the UGT1A1 

induction potential of antiretroviral drugs are generally missing. It is suggested that cytochrome P-450 

(CYP) 3A and UGT1A1 are both modulated by the pregnane X receptor (PXR) and thus, have a similar 

half-maximal inducing concentration [605]. The maximal inducing potential was also assumed to be 

similar in the absence of data. The prediction of clinically observed DDIs for raltegravir, a drug purely 

metabolized by UGT1A1, in the presence of ritonavir, rifampicin, etravirine, and efavirenz served as the 

verification of the used assumptions regarding UGT1A1 induction. 

 

PBPK models were developed for ketoconazole and nilotinib to analyze the impact of aging on 

competitive CYP3A inhibition and gemfibrozil and its glucuronide metabolite as inhibitors of the organic 

anion transporting polypeptide (OATP) 1B1. Their input parameters (Table 6.3) were obtained from 

published models [385, 606, 607], tissue scalars were modified to capture the clinically observed data 

in young adults (Table 6.4), and verified with at least one independent clinical study for our PBPK 

framework [118]. The generation of the gemfibrozil metabolite was implemented in the liver by the 

UGT2B7 clearance pathway. If compound characteristics of the gemfibrozil metabolite were not 

available in the literature, the same value as for gemfibrozil was assumed. The intrinsic clearance for 

gemfibrozil and nilotinib were retrogradely calculated from clinically observed data considering the in 

vitro measured fraction metabolized for each enzymatic pathway [385, 607]. 
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Table 6.3: Parameters of ketoconazole (KTZ), nilotinib (NIL), gemfibrozil (GEM), and its glucuronide metabolite 

(GEU). 

Parameter Unit KTZ NIL GEM GEU 

Physicochemical properties 

MW g/mol 531.4 [608] 529.5 [609] 250.3 [385] 426.5 [385] 

logP   4.0 [606] 5.0 [609] 4.3 [385] 3.3 [385] 

drug type   db [606] db [609] ma [385] ma [385] 

pKa 1   2.94 [606] 5.35 [609] 4.75 [385] 2.68 [385] 

pKa 2   6.51 [606] 3.9 [609]       

BP   0.62 [606] 0.68 [610] 0.825 [385] 0.825 [385] 

fup   0.029 [606] 0.016 [610] 0.03 [385] 0.115 [385] 

binding protein  HSA [606] AAG [611] HSA [612] HSA [613] 

Absorption 

Papp 10-6 cm/sec 495 [606] 5.99 [610] 160.9 [385] -   

Lag Rate      0.27 op     -   

Distribution 

Tissue Scalar   0.5 op 2 op 0.12 op 0.12 op 

Adipose tissue 
Scalar 

  2 op 0.5 op         

Liver Scalar      0.08 op 8.3 op 8.3 op 

Metabolism & Elimination 

CYP2D6 CLint µL/min/pmol 0.4296 [606]             

CYP3A4 CLint µL/min/pmol 0.5238 [606] 0.157 st 0.117 st     

CYP1A2 CLint µL/min/pmol     0.018 st         

CYP2C8 CLint µL/min/pmol     0.127 st         

UGT1A1 CLint µL/min/pmol                 

UGT2B7 CLint µL/min/pmol     0.470 st   

Unspecified µL/min/mg               

CLrenal L/h                 

CLbile L/h             51.9 [385] 

Interaction 

CYP3A4 Ki µM 0.015 [606] 0.448 [614] 68.08 [385] 103.74 [385] 

CYP3A5 Ki µM 0.11 [606] 0.448 [614]        

CYP2C8 Ki µM     0.236 [614] 6.882 [385]     

UGT1A1 Ki µM     0.19 [614] 75 [615]     

UGT1A3 Ki µM         36 [615]     

OATP1B1 Ki µM         1.8648 [385] 6.162 [385] 

OATP1B3 Ki µM              

CYP2C8 kinact 1/h            9.828 [385] 

CYP2C8 Kapp µM             7.878 [385] 

Key: AAG = alpha-acid glycoprotein, BP = blood-plasma-ratio, CLint = intrinsic clearance, CYP = cytochrome P-

450, db = diprotic base, fup = fraction unbound in plasma, HSA = human serum albumin, Kapp = concentration of 

mechanism-based inhibitor associated with half maximal inactivation rate, Ki = inhibition constant, kinact = inactivation 

rate of an enzyme suppressed by mechanism-based inhibition, logP = octanol-water partition coefficient, ma = 

monoprotic acid, MW = molecular weight, OATP = organic anion transporting polypeptide, op = optimized, Papp = 

apparent permeability, pKa = acid dissociation constant, st = see text, UGT = uridine diphosphate-

glucuronosyltransferase. 
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Table 6.4: Published clinical studies used to verify the developed PBPK models for ketoconazole, nilotinib, and 

gemfibrozil. 

Drug Dosing regimen Health status n 
Prop 
female 

Age 
[years] 

Reference 

Ketoconazole 200 mg oral; single healthy 3 0 34.3 [616] 

    healthy 8 0.63 23.0 [617] 

    healthy 8 0.63 23.0 [617] 

    healthy 12 0.50 30.0 [618] 

    healthy 5 0 30.0 [618] 

    chronic medical conditions 18 0.50 76.0 [619] 

Nilotinib 400 mg oral; single healthy 44 0.50 30.0 [620] 

    healthy 44 0.50 30.0 [620] 

    healthy 20 0.50 30.0 [620] 

    healthy 24 0.50 30.0 [620] 

    healthy 15 0.20 32.1 [594] 

    healthy 18 0.17 39.9 [581] 

Gemfibrozil 600 mg oral; twice daily healthy 10 0.10 32.7 [587] 

    healthy 6 0 30.0 [621] 

 

DDIs were firstly simulated in young adults aged 20 to 50 years. Successful predictions were judged by 

overlaying clinically observed data with the simulation results. We analyzed if pharmacokinetic 

parameters were predicted within 1.25-fold (bioequivalence criterion), 1.5-fold, and 2.0-fold of clinically 

observed data, which is considered best practice for modelling by the regulatory agencies [326]. 

Simulations were performed in ten trials containing ten virtual individuals each and were otherwise 

matched as closely as possible to the conducted and published clinical trials regarding dose and dosing 

regimen. Drug parameters were not modified when performing simulations in the elderly. 

Analyzing the impact of aging across adulthood by the developed PBPK model 

Age-related changes in DDI ratios (in the presence of the perpetrator divided by the absence of the 

perpetrator) of analyzed pharmacokinetic parameters (Peak concentration: Cmax, time to Cmax: tmax, area 

under the curve: AUC, clearance: CLF, apparent volume of distribution: VdF, and elimination half-life: 

t1/2) were estimated across adulthood (20 to 99 years) in 100 virtual individuals (50% women) per five 

years using the verified PBPK model. DDI ratios were normalized to the youngest investigated age 

group (20 to 24 years). The normalized DDI ratios were fitted to descriptive linear functions containing 

age as an independent variable. The analysis was done for men, women, and all virtual subjects to 

investigate whether sex has an impact on age-related changes of DDI magnitudes. The correlation 

between age and normalized DDI ratios were compared between non-HIV drugs and antiretroviral drugs 

as well as between men and women by a t-test. An analysis of variance (ANOVA) was performed to 

investigate whether the impact of aging on DDI magnitudes depends on the mediator of DDIs (CYP 

enzymes, UGT enzymes, or hepatic transporters) or the DDI mechanism (competitive inhibition – 
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binding of drugs is blocked by the inhibitor binding itself to the active site of the enzyme, mechanism-

based inhibition – the inhibitor leads to an altered transcription or translation and therefore to a loss of 

enzyme, and induction), and an analysis of covariance (ANCOVA) was performed to investigate the 

combined effects. The statistical analysis was done in R 3.5. 

Proofing the predicted age-related effect on DDI magnitudes by independent clinically observed 

data 

A literature search was performed using the MEDLINE database to screen for clinical studies reporting 

an AUC-ratio in young and elderly individuals for any DDI. Keywords used were “drug-drug interaction” 

plus “aging”, “young vs. elderly”, or “young vs. geriatric”. Inclusion criteria were a direct comparison of 

the AUC-ratio between young adults with a mean age up to 40 years and aging adults with a mean age 

at least 55 years to match our own clinical study [577], and subjects had to be apparently healthy or 

having no severe disease and comedication that could potentially affect the DDI of interest. AUC-ratios 

were normalized to the youngest age group investigated. All included clinical studies are detailed in 

Table 6.5. 

6.2.4 Results 

Results of our conducted clinical study in aging PLWH at least 55 years and the comparison of the 

obtained DDI magnitudes between amlodipine, atorvastatin, or rosuvastatin and either dolutegravir (no 

interaction expected) or boosted darunavir (high interaction potential) and historical data in young 

individuals aged 20 to 50 years were published previously [577]. 

Predictive performance of the PBPK model to simulate DDI magnitudes in the elderly 

Firstly, published data in the elderly for midazolam in the presence of clarithromycin and rifampicin [111, 

112, 573] and clinically observed data from our own clinical study conducted within the framework of the 

Swiss HIV Cohort Study [577] were used to proof the predictive performance of our PBPK framework 

[118] to simulate DDI magnitudes in aging individuals. In all cases, the clinically observed data were 

generally within the 95% confidence interval of the PBPK model predictions (Figure 6.1-6.3) in young 

(20 to 50 years) and aging individuals (at least 55 years). The AUC-ratio of intravenous midazolam in 

the presence of rifampicin was overpredicted in young and elderly adults (predicted:observed ratio: 1.69 
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and 1.64), and the AUC-ratio of midazolam in the presence of clarithromycin and rifampicin was 

underpredicted in the elderly (predicted:observed ratio: 0.73 and 0.70). All other AUC-ratios were 

simulated within 1.25-fold of the clinically observed data (Table 6.6). In both investigated age groups, 

73%, 81%, and 100% of Cmax and t1/2 values in the absence and presence of the perpetrator were 

predicted within 1.25-fold, 1.5-fold, and 2.0-fold of the clinically observed data, respectively. 

 

 

Figure 6.1: Predicted vs. observed concentration time profiles for midazolam in the absence (brighter color) and 

the presence (darker color) of clarithromycin after intravenous administration (a: young; b: elderly) and oral 

administration (c: young; d: elderly). The design of the simulated DDI scenarios is detailed in Table 6.2. Red markers 

show published clinical data. The solid lines, the dashed line, and the shaded area represent the mean of each 

virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. 
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Figure 6.2: Predicted vs. observed concentration time profiles for amlodipine (a: young; b: elderly), atorvastatin (c: 

young, d: elderly), and rosuvastatin (e: young, f: elderly) in the absence (brighter color) and the presence (darker 

color) of boosted darunavir. The design of the simulated DDI scenarios is detailed in Table 6.2. Red markers show 

published clinical data with different markers indicating different individuals. The solid lines, the dashed line, and 

the shaded area represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual 

individuals, respectively. 
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Figure 6.3: Predicted vs. observed concentration time profiles for dolutegravir (a: young; b: elderly) in the absence 

(brighter color) and in the presence (darker color) of boosted darunavir. The design of the simulated DDI scenario 

is detailed in Table 6.2. Data for young individuals were normalized to 50 mg for comparison with elderly subjects. 

Red markers show published clinical data. The solid lines, the dashed line, and the shaded area represent the 

mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. 

Secondly, additional drug models were developed for ketoconazole and nilotinib to analyze the impact 

of aging on competitive CYP3A inhibition and gemfibrozil and its glucuronide metabolite to investigate 

the age-dependency of DDIs mediated by OATP1B1. Clinically observed data for all drugs were always 

contained within the 95% confidence interval of the PBPK simulations (Figure 6.4-6.5). 

 

 

Figure 6.4: Predicted vs. observed concentration time profiles for nilotinib (a; 400 mg single dose), gemfibrozil (b; 

600 mg twice daily), and gemfibrozil glucuronide (c) in young individuals aged 20 to 50 years. Red markers show 

published clinical data (Table 6.4) with different markers representing different clinical studies. The solid lines, the 

dashed line, and the shaded area represent the mean of each virtual trial, the mean, and the 95% confidence 

interval of all virtual individuals. 
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Figure 6.5: Predicted vs. observed concentration time profiles for ketoconazole (200 mg once daily; a: young, b: 

elderly). Red markers show published clinical data with different markers representing different clinical studies 

(Table 6.4). The solid lines, the dashed line, and the shaded area represent the mean of each virtual trial, the mean, 

and the 95% confidence interval of all virtual individuals. 

Pharmacokinetic parameters in young adults were predicted within 1.25-fold of clinically observed data 

(Table 6.7) except for the half-life of ketoconazole, which was overpredicted (predicted:observed ratio: 

1.30) and the peak concentration of nilotinib, which was underpredicted (predicted:observed ratio: 0.75). 

Ketoconazole was the only drug for which clinically observed data in elderly adults with a mean age of 

76 years were available (Figure 6.5) [619]. Cmax for ketoconazole in the elderly was underpredicted with 

5,627 ± 4,297 ng/mL being observed and 3,827 ± 1,277 ng/mL being predicted (predicted:observed 

ratio: 0.68), but all other pharmacokinetic parameters were simulated within 1.25-fold of the clinically 

observed data in the elderly. 

 

Thirdly, DDIs with drugs we previously used to analyze the impact of aging on drug pharmacokinetics 

were verified against clinically observed data in young adults aged 20 to 50 years before extrapolating 

to elderly individuals using the verified PBPK model. The design of the used clinical studies is detailed 

in Table 6.2. The predictions captured the clinically observed data adequately in individuals aged 20 to 

50 years (Figure A6.1-A6.12). The AUC-ratios were predicted within 1.25-fold, 1.5-fold, and 2.0-fold of 

clinically observed data in 74%, 95%, and 100% of all investigated DDIs (Table 6.8). Cmax and t1/2 are 

detailed in Table A6.1. 
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Table 6.7: Observed vs. predicted parameters for ketoconazole, nilotinib, gemfibrozil, and its glucuronide 

metabolite in young (20 to 50 years) and elderly (at least 65 years) adults. 

  Young adults Elderly adults Ratio elderly/young 
  observed predicted observed predicted observed predicted 

Ketoconazole       

Cmax [ng/mL] 3,343 ± 704 3,186 ± 940 5,627 ± 4,297 3,827 ± 1,277 1.68 1.20 

AUC [ng*h/mL] 13,416 ± 5,376 12,944 ± 8,371 26,178 ± 23,725 22,067 ± 17,648 1.95 1.70 

t1/2 [h] 2.63 ± 1.61 3.41 ± 1.33 4.51 ± 4.09 5.11 ± 1.94 1.72 1.50 

Nilotinib             

Cmax [ng/mL] 647 ± 247 484 ± 111         

AUC [ng*h/mL] 17,700 ± 6,745 14,807 ± 11,687         

t1/2 [h] 14.6 ± 8.5 15.4 ± 6.9         

Gemfibrozil             

Cmax [ng/mL] 42,400 ± 10,800 37,631 ± 8,693         

AUC [ng*h/mL] 109,544 ± 55,796 124,937 ± 37,865         

t1/2 [h] 1.50 ± 0.20 1.59 ± 0.48         

Gemfibrozil-
Glucuronide 

            

Cmax [ng/mL] 29,900 ± 7,900 32,696 ± 8,414         

AUC [ng*h/mL] 124,368 ± 47,804 123,384 ± 36,196         

t1/2 [h] 2.00 ± 0.30 2.44 ± 0.67         

Key: AUC = area under the curve, Cmax = peak concentration, t1/2 = elimination half-life. 

 

Analyzing the impact of aging on DDI magnitudes across adulthood 

After the successful verification of the PBPK model, all developed DDIs were used to investigate the 

impact of aging on the Cmax-, tmax-, AUC-, CLF-, VdF-, and t1/2-ratio (pharmacokinetic parameter of the 

victim drug in the presence divided by the scenario in the absence of the perpetrator) across adulthood 

(20 to 99 years). The most common metric to assess a DDI is the AUC-ratio, which was not affected by 

advanced aging (Figure 6.6). The slope [95% confidence interval] fitted to the mean of the AUC-ratio of 

all investigated DDI scenarios was close to zero with -9.6E-05 [-2.0E-04; 7.4E-06] (Table 6.9). The drug 

class (non-HIV drugs vs. antiretroviral drugs) involved in the DDI (p-value: 0.08), the DDI mechanism 

(p-value: 0.57), the mediator of the DDI (p-value: 0.77), the combination of DDI mechanism and mediator 

(p-value: 0.58), and the sex of the studied individual (p-value: 0.61) did not affect the negligible impact 

of advanced aging on AUC-ratios (Table 6.9). The findings for the AUC-ratio were similar for all 

investigated DDI ratios (Figure A6.13-A6.17), except for tmax, which was statistically significant different 

between DDIs involving antiretroviral drugs or non-HIV drugs (p-value: 0.03), but the difference in the 

slope was not judged to be clinically relevant (antiretroviral drugs: -6.15E-06 [-6.48E-06; -5.83E-06] and 

non-HIV drugs: -2.90E-04 [-3.09E-04; 2.70E-04]).  
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Figure 6.6: Area under the curve (AUC)-ratio normalized to the youngest investigated age group (20 to 24 years) 

for all drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for mechanism-

based inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by UGT1A1 (h), 

and for DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, mechanism-

based inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and OATP1B1-mediated 

DDIs. The solid line and the shaded area show the mean ± standard deviation. The dashed lines represent the 

1.25-fold interval (bioequivalence criterion). 



 Chapter 6: Drug-Drug Interaction Magnitudes with Aging 

 - 174 - 

Table 6.9: Slope of mean prediction for DDI magnitudes across adulthood (20 to 99 years). P-values demonstrated 

that involved drug classes (non-HIV drugs vs. antiretroviral drugs), DDI mechanisms (competitive inhibition, 

mechanism-based inhibition, induction), mediator of the DDI (CYP enzymes, UGT enzymes, hepatic transporters) 

or the sex of the investigated individual did not influence the impact of aging on DDI magnitudes. 

    Cmax tmax AUC CLF VdF t1/2 

slope mean 5.17E-05 -1.42E-04 -9.62E-05 3.54E-04 1.58E-04 -1.98E-04 

  95% CI 
[-8.68E-05; 

9.72-05] 
[-1.51E-04;  
-1.34E-04] 

[-2.00E-04; 
7.40E-06] 

[2.52E-04; 
4.56E-04] 

[2.64E-05; 
2.90E-04] 

[-3.28E-04;  
-6.80E-05] 

p-value drug class 0.77 0.03 0.08 0.17 0.60 0.11 

p-value mechanism 0.65 0.38 0.57 0.60 0.58 0.79 

p-value mediator 0.18 0.77 0.77 0.48 0.12 0.18 

p-value mechanism*mediator 0.22 0.62 0.58 0.34 0.54 0.77 

p-value sex 0.76 0.93 0.61 0.95 0.88 0.45 

Key: AUC = area under the curve, Cmax = peak concentration, CI = confidence interval, CLF = clearance, tmax = time 

to Cmax, t1/2 = elimination half-life, VdF = apparent volume of distribution. 

 

Independent clinically observed data proofed the estimated impact of aging on DDI magnitudes 

In a last step, a literature search was performed to seek for studies investigating AUC-ratios in young 

and elderly subjects to proof the obtained general model-based hypothesis that DDI magnitudes are not 

affected by advanced aging. Our performed literature search yielded 20 studies that investigated DDI 

magnitudes in the elderly. Six studies were excluded, because there was no direct comparison between 

young and elderly individuals and one study was excluded because the age of study participants was 

not defined. The remaining 13 studies investigated 17 DDIs in elderly compared with young healthy 

subjects. The DDI mechanism was competitive in five cases, mechanism-based inhibition in three cases, 

induction in seven cases, and mechanism-based inhibition combined with induction in two cases. Ten 

of the investigated DDIs were mediated by CYP1A2, four by CYP3A, and three were not specified to a 

single enzyme. All included studies demonstrated no changes of DDI magnitudes with advanced aging 

(Figure 6.7). The average ratio elderly (n: 274; age: 68.3 years) / young (n = 298; age = 28.4 years) for 

the AUC-ratio was 1.01 ± 0.64, which confirmed our general PBPK model estimates. 

6.2.5 Discussion 

Clinical data investigating the impact of aging on DDI magnitudes are sparse, leading to uncertainty how 

to manage DDIs in aging individuals in clinical practice. In this study, we demonstrated based on clinical 

data in combination with modelling and simulation that DDI magnitudes are not impacted by aging 

regardless of the drugs being involved in the DDI, the DDI mechanism, the mediator of the DDI, or the 
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sex of the studied individual. Thus, the clinical management of DDIs can a priori be similar in the elderly 

compared with young men and women in the absence of severe comorbidities. 

 

The investigation of age-related changes in DDI magnitudes are especially important for PLWH given 

the increased life expectancy [510], high prevalence of polypharmacy [92], and the high DDI potential 

of antiretroviral drugs [576]. We previously conducted a clinical study in aging PLWH at least 55 years, 

who participated in the Swiss HIV Cohort Study, to investigate for the first time DDI magnitudes between 

antiretroviral drugs and comedications in elderly PLWH [577]. The comparison to historical data in young 

individuals receiving the same drug combination yielded no age-related changes in the magnitude of 

the investigated DDIs [577], comparable to studies conducted with midazolam and clarithromycin and 

rifampicin [111, 112, 573]. However, we could not include enough participants to adequately power the 

study and thus, interpretation must be careful. In general, clinical studies in the elderly are ethically 

difficult to undertake, because necessary treatments (i.e. antiretroviral drugs in our study) cannot be 

disrupted to establish a controlled scenario, the medication of interest cannot be added, and participants 

should not receive any other medication affecting the DDI of interest. Furthermore, it is not feasible or 

pragmatic to study every single drug combination in elderly individuals. 

 

We used the PBPK approach to overcome all mentioned limitations in the DDI study design in elderly 

subjects. Before extrapolating to unknown scenarios of interest, it is crucial to verify the PBPK model for 

the population and the clinical scenario of interest [118]. A strength of the present study is the wide 

range of DDI mechanism (competitive inhibition, mechanism-based inhibition, and induction) and DDI 

mediators (CYP enzymes, UGT1A1, and OATP1B1) included in the PBPK model verification. All 

clinically observed data of altered plasma concentrations caused by a DDI were generally within the 

95% confidence interval of the PBPK model predictions for young and elderly individuals (Figure 6.1-

6.3), which demonstrated the predictive power of the used approach to simulate DDIs in aging subjects. 

 

After proofing the predictive potential of the used PBPK model to simulate DDIs in the elderly, we 

performed sensitivity analyses on age for 50 DDIs with 42 DDIs that could only be verified in adults aged 

20 to 50 years in the absence of clinical data in the elderly. The verified PBPK model estimated that DDI 

magnitudes are unchanged across adulthood (20 to 99 years) regardless of the involved drugs, DDI 

mechanism, the mediator of the DDI, and the sex of the studied individual.  
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Figure 6.7: Impact of aging on the area under the curve (AUC) ratios normalized to the youngest age group for 

independent clinically observed data (mean ± standard deviation; Table 6.5). Black, blue, red, and green markers 

symbolize competitive inhibition, mechanism-based inhibition, induction, and mechanism-based inhibition 

combined with induction, respectively. All investigated DDIs were mediated by CYP enzymes. The solid line and 

the shaded area show the mean ± standard deviation. The dashed lines represent the 1.25-fold interval 

(bioequivalence criterion). 

One advantage of the used PBPK approach over traditional clinical studies is that aging can be analyzed 

as a continuous process through sensitivity analysis. Longitudinal clinical studies are not practical, 

affordable, and ethically difficult to conduct. Thus, traditional clinical studies compare observed data of 

an elderly with a young group, ignoring the continuous physiological changes that impact the 

pharmacokinetics of drugs and the magnitudes of drug interactions throughout adulthood [58]. 

 

DDI magnitudes could potentially be affected by advanced aging, because of higher concentration of 

the inhibitor and inducer and age-related alterations in the regulation of transcription and translation. 

Drug exposure increases with advanced aging due to a decline of drug clearance that is caused by the 

age-related decrease in hepatic and renal blood flow as well as in the glomerular filtration rate and is 

independent of drug characteristic [512, 578]. The higher exposures of inhibitors or inducers with 

advanced aging appears not to lead to an elevated interaction potential in the elderly. Possible 

explanation could be that higher perpetrator concentrations cannot lead to an increased effect for strong 

inhibitors and inducers such as clarithromycin, ritonavir, or rifampicin. Strong inhibitors such as ritonavir 

achieve already a maximal effect in young individuals; therefore, an increased ritonavir concentration in 

the elderly is not expected to result in greater inhibition. The strong inducer rifampicin binds to PXR, 
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forms a complex with the retinoid X receptor, the complex binds to the DNA response element, and 

enhances the transcription of metabolizing enzymes such as CYP3A [635]. Higher rifampicin 

concentrations in the elderly might not lead to an increased CYP3A level, because the amount of PXR 

could be a limiting factor. Even if PXR transcription and translation would be enhanced, a negative 

feedback loop prevents higher PXR concentrations, and thus, induction of metabolizing enzymes such 

as CYP3A [636]. Other regulations to prevent high induction of metabolizing enzymes might exists but 

were not studied so far. For moderate perpetrators like niltonib or etravirine, the predicted DDI 

magnitudes were 10% higher with advanced aging and thus, the effect appears to be marginal. 

 

In contrast to CYP3A4 [220-222], uncertainty exist whether the transcription/translation of CYP2C9 and 

CY1A2 are impacted by advanced aging [66-68], which would result in impaired enzyme activity and 

subsequently lower DDI magnitudes. The majority of DDIs collected in the fourth step of the present 

study to proof the general PBPK model-based hypothesis regarding the impact of aging on DDI 

magnitudes, were mediated by CYP1A2. CYP1A2 was either induced (smoking, phenytoin) or 

competitively inhibited (cimetidine, ciprofloxacin) The ratio elderly/young of the AUC-ratio ranged from 

0.70 ± 0.57 [623] to 1.14 ± 0.58 [627], demonstrating that drug interactions mediated by CYP1A2 are 

likely not affected by advanced aging. The results are consistent with our previous work, in which we 

demonstrated that age-related changes in drug clearance are not determined by the clearance pathway, 

amongst others CYP3A, CYP2C9, and CYP1A2 [512]. However, there are reports in the literature 

indicating that enzyme inducibility might be different as shown exemplarily for antipyrine with rifampicin 

[637], where the elderly showed a six-fold lower DDI magnitude than the young group. Differences to 

other studies investigating age-related changes in DDI magnitudes are not explainable by frailty as all 

investigated participants were healthy. The comparison between young and elderly subjects was 

indirect, because the study in young individuals was conducted earlier, which led to the exclusion in our 

meta-analysis. The reduced inducibility cannot be assigned to a specific hepatic enzyme, because 

antipyrine is metabolized by several different hepatic enzymes, which can be induced by rifampicin. In 

two other studies investigating the effect of smoking and dichloralphenazone on antipyrine with 

advanced aging, there was no difference in the DDI magnitude between the two investigated age groups 

(AUC-ratio elderly/young: 1.02 and 0.78 ± 0.62, respectively) [628, 634]. Studies using rifampicin as an 

inducer were in general heterogenic with the found minimal and maximal DDI magnitude ratio 

elderly/young of 0.67 and 1.86 (Table 6.5). Both studies showed high variability, which might be 
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explained by the small sample size. These findings indicate no systematic effect of a certain DDI 

mechanism or involved enzyme. The found heterogeneity of data represents therefore patient variability 

in clinical practice. Taken together, uncertainty regarding the inducibility of hepatic enzymes exists in 

the literature probably based on the high variability of enzyme activity [217, 218] and the low number of 

subjects included in clinical studies. Overall, the clinically observed data for various DDIs (Table 6.2, 

Table 6.5) proofs our PBPK model estimates of unchanged DDI magnitudes with advanced aging; 

however, in between patient variability up to twofold might be possible. 

 

As DDI magnitudes are not impacted by aging, static methods can be applied if an elderly patient 

receives two drugs with an uncharacterized DDI magnitude. Estimates are based on the degree of 

metabolism by a specific enzyme and the strength of an inhibitor or inducer [110, 387]. A PBPK model 

used in our study is not intendent for the daily management of DDI queries in the clinic, but the static 

method provides a more straightforward supportive tool to rationalize dose adjustments to overcome a 

given DDI. 

 

We used a sequential multi-step approach, that might have the risk to propagate assumptions and errors 

from one step to the next. Using a mathematical model, it is of tremendous importance to clearly mention 

all underlying assumptions, which we have done previously for our developed aging population and 

PBPK model [58, 118]. The model and its predictive power to simulate pharmacokinetics in elderly 

individuals was verified against clinically observed data for 20 non-HIV and HIV drugs, which had 

different drugs characteristics, and clinically observed drug concentrations were generally within the 

95% confidence interval of the model predictions [512, 578]. Thus, a systematic over- or underprediction 

based on assumptions or errors in the population and model can be excluded. In the present study, we 

simulated 50 different DDI scenarios in adults aged 20 to 50 years, involving different DDI mechanisms 

(competitive inhibition, mechanism-based inhibition, and induction), enzymes (CYP3A, CYP2D6, 

CYP2B6, CYP2C9, UGT1A1), and active drug transporter (OATP1B1) and 74.5%, 93.6%, and 100% of 

AUC-ratios were predicted within 1.25-, 1.5-, 2.0-fold of clinically observed data, respectively. The 

average predicted:observed ratio was 0.99 ± 0.21, indicating no systematic over- or underprediction of 

AUC-ratios. The predictive power of our model to simulate DDIs in aging individuals was verified against 

data from our own clinical study and independent, published data [111, 112, 573, 577] and all observed 

data were predicted within the 95% confidence interval. Furthermore, we verified the predicted impact 
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of advance aging on DDI magnitudes against independent clinically observed data, which verified our 

general model-based hypothesis. In conclusion, all performed verification with independent data verified 

the model assumptions and led to the exclusion of systematic errors in the PBPK model. 

 

There are several limitations of our study. Firstly, physiological data to inform the PBPK model are 

sparse over the age of 85 years and therefore, simulation results in the very old need to be viewed with 

caution.  

 

Secondly, individuals over the age of 65 years are generally excluded from clinical studies and if included 

have no major health problems [122, 379]. Thus, results might not be applicable to frail elderly individuals 

or aging subjects with severe comorbidities such as advanced renal impairment stage 4 to 5. However, 

our study delivers a comprehensive overview of conducted DDI studies in the elderly and uses a verified 

modelling approach to interpret the existing data broadly. Furthermore, the included aging PLWH in our 

own clinical study are representative of 75% of all elderly PLWH at least 75 years [564], who have mild 

to moderate renal impairment, hypertension, and receiving combined antiretroviral therapy as well as 

other comedications. The investigation if severe comorbidities impact age-related changes in DDI 

magnitudes is the next logical step for future clinical studies.  

 

Thirdly, in vitro data regarding the induction of UGT1A1 by antiretroviral drugs were not available in the 

literature and based on the same molecular modulation of UGT1A1 and CYP3A [605], the same 

induction values were assumed for both enzymes. Clinically observed data of DDIs involving UGT1A1 

induction were always predicted within the 95% confidence interval of the PBPK model, thus qualifying 

the used assumption.  

 

Fourthly, the impact of aging on transporter mediated DDIs were only studied for the hepatic uptake 

transporter OATP1B1, but other hepatic, intestinal or renal transporters were not investigated and hence 

translation must be careful. 

 

Filthy, we used the commonly accepted twofold margin [326] to assess the accuracy of predicted 

pharmacokinetic parameters; however, the twofold limit might be too permissive for the interpretation of 

AUC-ratios, because it could lead to a misclassification of DDI magnitudes [638]. We focused on clinical 
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relevance, when analyzing the successful prediction of DDI magnitudes. The AUC-ratios that were 

predicted outside of the 1.5-fold margin were midazolam + rifampicin (predicted:observed: 1.69), 

dolutegravir + atazanavir/ritonavir (predicted:observed: 0.63), and atorvastatin + etravirine 

(predicted:observed: 1.54). The differences between predictions and clinically observed data were not 

judged to be of clinical relevance given the safety margin of dolutegravir and atorvastatin. In contrast, 

an under- or overprediction of the DDI magnitude with the anticoagulant rivaroxaban by twofold could 

have clinical consequences for the treated patient [391]. In the case of rivaroxaban, all AUC-ratios were 

predicted within the 1.25-fold margin (rivaroxaban + ketoconazole: 0.85, rivaroxaban + clarithromycin: 

0.96, and rivaroxaban + ritonavir: 0.99). However, the 1.25-fold margin is still too permissive for narrow 

therapeutic index drugs for which the 1.11-fold margin is recommended by the health authorities [639]. 

 

In conclusion, by combining clinical data with modelling and simulation we elucidated that aging does 

not impact the magnitudes of DDIs regardless of the DDI mechanism, the DDI mediators (enzymes, 

transporters) or the involved drugs. Thus, the clinical management of DDIs can a priori be similar in 

aging men and women compared with young individuals in the absence of severe comorbidities. 
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6.2.6 Study Highlights 

What is the current knowledge on the topic? 

Age-related comorbidities are highly prevalent in the elderly, leading to polypharmacy and consequently, 

an increased risk for drug-drug interactions (DDIs). However, clinical studies investigating DDIs are 

generally not conducted in the elderly, resulting in missing guidance regarding the clinical management 

of DDIs with advanced aging. 

 

What question did this study address? 

We combined clinical data with physiologically based pharmacokinetic (PBPK) modelling to investigate 

the impact of aging on DDI magnitudes across the entire adulthood. 

 

What does the study add to our knowledge? 

The PBPK approach has the predictive power to simulate DDIs in the elderly. Predicted DDI magnitudes 

are not affected by advanced aging regardless of the involved drugs, DDI mechanism or the sex of the 

investigated individual. This model-based hypothesis was further verified by independent clinically 

observed AUC-ratios for 17 DDIs being studied in young and elderly individuals. 

 

How might this change clinical pharmacology or translational science? 

The clinical management of DDIs can a priori be similar in elderly compared with young men and women 

in the absence of severe comorbidities. 
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6.2.7 Appendix 

 

Figure A6.1: Predicted vs. observed concentration-time profiles of midazolam with ketoconazole (a), nilotinib (b), 

ritonavir (c), and rifampicin (d) in young individuals aged 20 to 50 years. The design of the simulated DDI scenarios 

is detailed in the Table 6.2. Red markers show the clinically observed data. The solid lines, the dashed lines, and 

the shaded area represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual 

individuals, respectively. Brighter and darker colors show midazolam in the absence and in the presence of the 

perpetrator. 
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Figure A6.2: Predicted vs. observed concentration-time profiles of metoprolol in poor (a) and ultrarapid metabolizer 

of CYP2D6 (b) aged 20 to 50 years. The design of the simulated DDI scenarios is detailed in Table 6.2. Red markers 

show the clinically observed data from different individuals. The solid lines, the dashed lines, and the shaded area 

represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, 

respectively. Brighter and darker colors show metoprolol in extensive metabolizers of CYP2D6 and in poor and 

ultrarapid metabolizers. 

 

 

Figure A6.3: Predicted vs. observed concentration-time profiles of rivaroxaban with ketoconazole (a) and 

clarithromycin (b) in young subjects aged 20 to 50 years. The design of the simulated DDI scenarios is detailed in 

Table 6.2. Red markers show the clinically observed data with different markers representing different clinical 

studies. The solid lines, the dashed lines, and the shaded area represent the mean of each virtual trial, the mean, 

and the 95% confidence interval of all virtual individuals, respectively. Brighter and darker colors show rivaroxaban 

in the absence and in the presence of the perpetrator. 
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Figure A6.4: Predicted vs. observed concentration-time profiles of repaglinide in ultrarapid metabolizers of CYP2C8 

(a), in subjects with a poor transporter phenotype of OATP1B1 (b), with gemfibrozil (c), and with gemfibrozil in 

subjects with a poor transporter phenotype of OATP1B1 (d). All subjects were 20 to 50 years old. The design of the 

simulated DDI scenarios is detailed in Table 6.2. Red markers show the clinically observed data with different 

markers representing different clinical studies. The solid lines, the dashed lines, and the shaded area represent the 

mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter 

and darker colors show the control and DDI scenario for repaglinide simulations. 
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Figure A6.5: Predicted vs. observed concentration-time profiles of atorvastatin with clarithromycin (a), with 

rifampicin (b), with etravirine (c), in subjects with intermediate (d) and poor (e) transporter phenotype of OATP1B1, 

and with gemfibrozil (f). All subjects were 20 to 50 years old. The design of the simulated DDI scenarios is detailed 

in Table 6.2. Red markers show the clinically observed data with different markers representing different clinical 

studies. The solid lines, the dashed lines, and the shaded area represent the mean of each virtual trial, the mean, 

and the 95% confidence interval of all virtual individuals, respectively. Brighter and darker colors show the control 

and DDI scenario of atorvastatin. 
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Figure A6.6: Predicted vs. observed concentration-time profiles of rosuvastatin in subjects with intermediate (a) 

and poor (b) transporter phenotype of OATP1B1, with gemfibrozil (c) and boosted atazanavir (d). All subjects were 

20 to 50 years old. The design of the simulated DDI scenarios is detailed in Table 6.2. Red markers show the 

clinically observed data. The solid lines, the dashed lines, and the shaded area represent the mean of each virtual 

trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter and darker colors 

show the control and DDI scenario of rosuvastatin. 
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Figure A6.7: Predicted vs. observed concentration-time profiles of nilotinib with ketoconazole (a) and rifampicin (b) 

in young adults aged 20 to 50 years. The design of the simulated DDI scenarios is detailed in Table 6.2. Red 

markers show the clinically observed data. The solid lines, the dashed lines, and the shaded area represent the 

mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter 

and darker colors show nilotinib in the absence and in the presence of the perpetrator. 

 

 

Figure A6.8: Predicted vs. observed concentration-time profile of rilpivirine with efavirenz in individuals aged 

20 to 50 years. The design of the simulated DDI scenario is detailed in Table 6.2. Red markers show the 

clinically observed data. The solid lines, the dashed lines, and the shaded area represent the mean of each 

virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter and darker 

colors show rilpivirine in the absence and in the presence of efavirenz. 
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Figure A6.9: Predicted vs. observed concentration-time profiles of dolutegravir with atazanavir (a), boosted 

atazanavir (b), rifampicin (c), and etravirine (d) in young adults aged 20 to 50 years. The design of the simulated 

DDI scenarios is detailed in Table 6.2. Red markers show the clinically observed data with different markers 

representing different investigated individuals. The solid lines, the dashed lines, and the shaded area represent the 

mean of each virtual trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter 

and darker colors show dolutegravir in the absence and in the presence of the perpetrator. 
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Figure A6.10: Predicted vs. observed concentration-time profiles of raltegravir with ritonavir (a), rifampicin (b), 

efavirenz (c), and etravirine (d) in young adults aged 20 to 50 years. The design of the simulated DDI scenarios is 

detailed in Table 6.2. Red markers show the clinically observed data. The solid lines, the dashed lines, and the 

shaded area represent the mean of each virtual trial, the mean, and the 95% confidence interval of all virtual 

individuals, respectively. Brighter and darker colors show raltegravir in the absence and in the presence of the 

perpetrator. 



 Chapter 6: Drug-Drug Interaction Magnitudes with Aging 

 - 190 - 

 

Figure A6.11: Predicted vs. observed concentration-time profiles of efavirenz in poor metabolizers of CYP2B6 (a) 

and with rifampicin (b) in young adults aged 20 to 50 years. The design of the simulated DDI scenarios is detailed 

in Table 6.2. Red markers show the clinically observed data with different markers representing different individuals. 

The solid lines, the dashed lines, and the shaded area represent the mean of each virtual trial, the mean, and the 

95% confidence interval of all virtual individuals, respectively. Brighter and darker colors show the control and DDI 

scenario of efavirenz. 

 

 

Figure A6.12: Predicted vs. observed concentration-time profile of etravirine with clarithromycin in young individuals 

aged 20 to 50 years. The design of the simulated DDI scenario is detailed in Table 6.2. Red markers show the 

clinically observed data. The solid lines, the dashed lines, and the shaded area represent the mean of each virtual 

trial, the mean, and the 95% confidence interval of all virtual individuals, respectively. Brighter and darker colors 

show etravirine in the absence and in the presence of clarithromycin. 
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Figure A6.13: Peak concentration (Cmax)-ratio normalized to the youngest investigated age group (20 to 24 years) 

for all drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for mechanism-

based inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by UGT1A1 (h), 

and for DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, mechanism-

based inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and OATP1B1-mediated 

DDIs. The solid line and the shaded area show the mean ± standard deviation. The dashed lines represent the 

1.25-fold interval (bioequivalence criterion). 
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Figure A6.14: Time to peak concentration (tmax)-ratio normalized to the youngest investigated age group (20 to 24 

years) for all drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for 

mechanism-based inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by 

UGT1A1 (h), and for DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, 

mechanism-based inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and 

OATP1B1-mediated DDIs. The solid line and the shaded area show the mean ± standard deviation. The dashed 

lines represent the 1.25-fold interval (bioequivalence criterion). 
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Figure A6.15: Clearance (CLF)-ratio normalized to the youngest investigated age group (20 to 24 years) for all 

drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for mechanism-based 

inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by UGT1A1 (h), and for 

DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, mechanism-based 

inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and OATP1B1-mediated DDIs. 

The solid line and the shaded area show the mean ± standard deviation. The dashed lines represent the 1.25-fold 

interval (bioequivalence criterion). 



 Chapter 6: Drug-Drug Interaction Magnitudes with Aging 

 - 194 - 

 

Figure A6.16: Apparent volume of distribution (VdF)-ratio normalized to the youngest investigated age group (20 

to 24 years) for all drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for 

mechanism-based inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by 

UGT1A1 (h), and for DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, 

mechanism-based inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and 

OATP1B1-mediated DDIs. The solid line and the shaded area show the mean ± standard deviation. The dashed 

lines represent the 1.25-fold interval (bioequivalence criterion). 
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Figure A6.17: Elimination half-life (t1/2)-ratio normalized to the youngest investigated age group (20 to 24 years) for 

all drugs (a), for non-HIV drugs (b), for antiretroviral drugs (c), for competitive inhibition (d), for mechanism-based 

inhibition (e), for induction (f), for DDIs mediated by CYP enzymes (g), for DDIs mediated by UGT1A1 (h), and for 

DDIs mediated by OATP1B1 (i). Black, blue, and red markers represent competitive inhibition, mechanism-based 

inhibition, and induction. Circles, crosses, and triangles symbolize CYP-, UGT1A1-, and OATP1B1-mediated DDIs. 

The solid line and the shaded area show the mean ± standard deviation. The dashed lines represent the 1.25-fold 

interval (bioequivalence criterion). 
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Table A6.1: Observed vs. predicted drug pharmacokinetics in the control (victim in the absence of the perpetrator 

or extensive metabolizers/transporter phenotype) and DDI (victim in the presence of the perpetrator or different 

phenotype) scenario and the DDI ratio (DDI scenario / control scenario). 

  Control scenario DDI scenario DDI ratio 
  observed predicted observed predicted observed predicted 

Midazolam + Ketoconazole             

Cmax [ng/mL] 52.5 ± 22.1 31.1 ± 10.7 171 ± 49 163 ± 47 3.26 ± 1.66 5.23 ± 2.34 

t1/2 [h] 5.2 ± 6.0 4.7 ± 2.0 15.2 ± 5.1 9.5 ± 7.1 2.93 ± 3.56 2.04 ± 1.75 

Rivaroxaban + Ketoconazole             

Cmax [ng/mL] 138 ± 31 150 ± 30 237 ± 48 186 ± 38 1.72 ± 0.51 1.24 ± 0.35 

t1/2 [h] 6.7 ± 2.7 6.4 ± 1.0 6.5 ± 1.6 7.5 ± 2.6 0.97 ± 0.45 1.18 ± 0.45 

Nilotinib + Ketoconazole             

Cmax [ng/mL] 337 ± 134 472 ± 122 651 ± 289 637 ± 121 1.93 ± 1.15 1.35 ± 0.43 

t1/2 [h] 23.4 ± 13.8 14.6 ± 8.2 51.1 ± 24.3 44.8 ± 48.7 2.18 ± 1.65 3.07 ± 3.76 

Midazolam + Nilotinib             

Cmax [ng/mL] 38.5 ± 16.1 38.6 ± 15.0 45.0 ± 17.5 40.1 ± 15.2 1.17 ± 0.67 1.04 ± 0.56 

t1/2 [h] 5.8 ± 2.5 5.1 ± 2.3 6.8 ± 4.2 5.2 ± 2.4 1.17 ± 0.88 1.02 ± 0.66 

Repaglinide + Gemfibrozil in PT 
of OATP1B1 

            

Cmax [ng/mL] 5.2 ± 0.9 3.1 ± 1.0 9.8 ± 1.4 6.9 ± 1.8 1.88 ± 0.42 2.26 ± 0.95 

t1/2 [h] 1.9 ± 0.4 1.0 ± 0.3 2.8 ± 1.2 2.3 ± 1.1 1.47 ± 0.70 2.28 ± 1.28 

Rivaroxaban + Clarithromycin             
Cmax [ng/mL] 139 ± 23 151 ± 30 194 ± 42 172 ± 34 1.39 ± 0.38 1.14 ± 0.32 

t1/2 [h] 4.8 ± 1.0 3.9 ± 1.0 5.7 ± 1.0 5.0 ± 1.4 1.19 ± 0.32 1.30 ± 0.48 

Atorvastatin + Clarithromycin             

Cmax [ng/mL] 5.5 ± 4.1 4.0 ± 1.8 8.4 ± 2.4 5.4 ± 2.7 1.53 ± 1.24 1.35 ± 0.91 

t1/2 [h] 5.9 ± 2.3 8.2 ± 2.7 9.6 ± 4.3 8.8 ± 2.4 1.61 ± 0.96 1.08 ± 0.46 

Etravirine + Clarithromycin             

Cmax [ng/mL] 986 ± 242 926 ± 258 1,423 ± 419 1,288 ± 557 1.44 ± 0.55 1.39 ± 0.72 

t1/2 [h] 9.3 ± 2.7 7.4 ± 0.8 12.8 ± 3.8 7.8 ± 1.1 1.38 ± 0.57 1.05 ± 0.19 

Midazolam + Ritonavir             

t1/2 [h] 5.7 6.1 ± 2.6 18.4 12.9 ± 8.3 3.25 2.12 ± 1.64 

Rilpivirine + Darunavir/r             

Cmax [ng/mL]         1.79 1.70 ± 0.86 

Atorvastatin + Rifampicin             

Cmax [ng/mL] 15.8 ± 4.1 8.0 ± 3.1 9.5 ± 3.7 3.9 ± 1.6 0.60 ± 0.31 0.49 ± 0.28 

t1/2 [h] 10.3 ± 1.2 8.3 ± 3.0 2.7 ± 0.9 3.7 ± 1.8 0.26 ± 0.09 0.45 ± 0.28 

Nilotinib + Rifampicin             

Cmax [ng/mL] 413 ± 147 445 ± 123 140 ± 25 191 ± 40 0.34 ± 0.13 0.43 ± 0.15 

t1/2 [h] 20.7 ± 9.0 19.3 ± 11.7 14.5 ± 7.3 16.3 ± 5.2 0.70 ± 0.47 0.85 ± 0.58 

Efavirenz + Rifampicin             

Cmax [ng/mL] 4,571 ± 2,663 3,490 ± 1,154 3,882 ± 1,015 3,214 ± 982 0.85 ± 0.54 0.92 ± 0.41 

t1/2 [h] 46.4 ± 40.2 46.6 ± 12.6 55.9 ± 50.9 43.4 ± 10.6 1.20 ± 1.51 0.93 ± 0.34 

Rilpivirine + Efavirenz             

Cmax [ng/mL] 100 ± 28 146 ± 32 65 ± 21 136 ± 30 0.65 ± 0.28 0.93 ± 0.29 

t1/2 [h] 41.4 ± 22.6 44.2 ± 13.3 46.8 ± 28.5 37.6 ± 9.8 1.13 ± 0.92 0.85 ± 0.34 

Atorvastatin + Efavirenz             

Cmax [ng/mL]         1.06 ± 0.56 0.90 ± 0.56 

Atorvastatin + Etravirine             

Cmax [ng/mL] 11.0 ± 5.9 13.0 ± 6.0 11.5 ± 6.0 12.2 ± 5.7 1.05 ± 0.78 0.94 ± 0.62 

t1/2 [h] 6.9 ± 3.8 8.2 ± 2.5 3.8 ± 2.3 8.2 ± 2.5 0.55 ± 0.45 1.00 ± 0.43 

Dolutegravir + Atazanavir             

Cmax [ng/mL] 3,320 ± 531 3,543 ± 1,320 5,110 ± 1,022 4,686 ± 2,068 1.54 ± 0.39 1.32 ± 0.76 

t1/2 [h] 13.0 ± 2.5 11.8 ± 8.3 23.8 ± 5.0 16.7 ± 11.8 1.83 ± 0.52 1.41 ± 1.40 

Dolutegravir + Atazanavir/r             

Cmax [ng/mL] 3,320 ± 531 3,597 ± 1,102 4,290 ± 19 4,144 ± 1,463 1.29 ± 0.21 1.15 ± 0.54 

t1/2 [h] 13.0 ± 2.5 11.6 ± 6.2 24.1 ± 11.0 13.8 ± 8.8 1.85 ± 0.92 1.19 ± 0.99 
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Table A6.1: con’t. 

  Control scenario DDI scenario DDI ratio 
  observed predicted observed predicted observed predicted 

Raltegravir + Ritonavir             

Cmax [ng/mL] 3,176 2,980 ± 866 2,240 2409 ± 598 0.71 0.81 ± 0.31 

t1/2 [h] 12.5 10.8 ± 4.0 12.4 9.9 ± 3.7 0.99 0.92 ± 0.48 

Raltegravir + Rifampicin             
Cmax [ng/mL] 3,833 3,303 ± 1,112 2,377 2,515 ± 715 0.62 0.76 ± 0.34 

t1/2 [h] 8.5 11.0 ± 4.3 9.6 9.8 ± 4.2 1.13 0.89 ± 0.52 

Raltegravir + Efavirenz             

Cmax [ng/mL] 4,602 2,949 ± 856 2,350 2,610 ± 680 0.51 0.89 ± 0.35 

t1/2 [h] 10.9 11.1 ± 4.4 10.8 10.7 ± 4.4 1.00 0.96 ± 0.55 

Raltegravir + Etravirine             

Cmax [ng/mL] 1,576 ± 2,248 1,588 ± 505 897 ± 456 1,380 ± 385 0.57 ± 0.86 0.87 ± 0.37 

t1/2 [h] 8.3 ± 9.3 10.5 ± 4.0 6.5 ± 6.0 9.9 ± 3.8 0.79 ± 1.15 0.95 ± 0.51 

Dolutegravir + Rifampicin             

Cmax [ng/mL] 3,969 ± 1,349 4,169 ± 1,652 2,569 ± 796 3,146 ± 1,076 0.65 ± 0.30 0.75 ± 0.40 

t1/2 [h] 8.9 ± 0.7 12.7 ± 9.4 6.7 ± 1.2 7.2 ± 5.1 0.75 ± 0.15 0.57 ± 0.58 

Dolutegravir + Etravirine             

Cmax [ng/mL] 4,340 ± 825 3,793 ± 1,513 2100 ± 24 2,476 ± 691 0.48 ± 0.09 0.65 ± 0.32 

t1/2 [h] 12.4 ± 2.6 13.9 ± 10.6 6.4 ± 22.0 5.6 ± 4.2 0.52 ± 1.78 0.40 ± 0.43 

Repaglinide + Gemfibrozil             

Cmax [ng/mL] 4.5 ± 2.7 2.3 ± 0.7 10.7 ± 4.6 7.3 ± 1.8 2.40 ± 1.77 3.16 ± 1.24 

t1/2 [h] 1.3 ± 0.4 0.9 ± 0.3 2.9 ± 1.2 2.7 ± 1.6 2.13 ± 1.09 3.07 ± 2.07 

Atorvastatin + Gemfibrozil             

Cmax [ng/mL] 8.2 ± 3.5 6.1 ± 2.7 9.6 ± 4.0 7.2 ± 3.3 1.17 ± 0.70 1.19 ± 0.76 

t1/2 [h] 10.7 ± 2.2 8.2 ± 2.5 9.0 ± 1.8 8.7 ± 2.9 0.84 ± 0.24 1.06 ± 0.48 

Rosuvastatin + Gemfibrozil             

Cmax [ng/mL] 49.5 ± 23.6 34.1 ± 13.9 109 ± 47 60.3 ± 28.9 2.20 ± 1.41 1.77 ± 1.11 

t1/2 [h] 17.1 ± 1.1 13.4 ± 4.5 23.3 ± 4.1 13.3 ± 4.5 1.36 ± 0.26 0.99 ± 0.47 

Rosuvastatin + Atazanavir/r             

Cmax [ng/mL] 2.0 ± 1.4 1.9 ± 0.6 13.0 ± 9.9 12.2 ± 4.6 6.61 ± 6.76 6.52 ± 3.23 

t1/2 [h] 9.1 ± 7.8 14.0 ± 4.7 8.3 ± 5.9 13.5 ± 4.7 0.92 ± 1.02 0.96 ± 0.46 

Metoprolol in PM of CYP2D6             

Cmax [ng/mL] 143 ± 65 135 ± 89 264 ± 26 348 ± 166 1.85 ± 0.87 2.57 ± 2.09 

t1/2 [h] 4.9 ± 1.5 3.1 ± 0.8 8.4 ± 1.1 5.0 ± 2.3 1.70 ± 0.57 1.61 ± 0.83 

Metoprolol in UM of CYP2D6             

Cmax [ng/mL] 143 ± 65 135 ± 89 80.0 ± 32.5 65.0 ± 51.1 0.56 ± 0.34 0.48 ± 0.49 

t1/2 [h] 4.9 ± 1.5 3.1 ± 0.8 4.3 ± 3.0 2.8 ± 0.7 0.88 ± 0.67 0.90 ± 0.31 

Repaglinide in UM of CYP2C8             

Cmax [ng/mL] 47.4 ± 10.4 27.6 ± 7.8 35.9 ± 7.2 25.9 ± 7.3 0.76 ± 0.22 0.94 ± 0.37 

t1/2 [h] 1.2 ± 0.12 1.1 ± 0.3 1.3 ± 0.3 1.0 ± 0.3 1.08 ± 0.26 0.95 ± 0.36 

Repaglinide in PT of OATP1B1             

Cmax [ng/mL] 3.5 ± 1.7 2.1 ± 0.5 5.2 ± 0.9 3.3 ± 1.0 1.49 ± 0.77 1.55 ± 0.60 

t1/2 [h] 1.5 ± 0.4 1.0 ± 0.4 1.9 ± 0.4 1.1 ± 0.4 1.27 ± 0.43 1.14 ± 0.62 

Atorvastatin in IT of OATP1B1             

Cmax [ng/mL] 5.7 ± 2.6 6.0 ± 2.4 8.0 ± 3.7 7.6 ± 3.1 1.41 ± 0.91 1.28 ± 0.73 

t1/2 [h] 10.0 ± 2.6 8.0 ± 2.8 9.2 ± 3.6 8.1 ± 2.9 0.92 ± 0.43 1.01 ± 0.50 

Atorvastatin in PT of OATP1B1             

Cmax [ng/mL] 5.7 ± 2.6 6.0 ± 2.4 10.1 ± 9.0 13.2 ± 5.5 1.76 ± 1.77 2.23 ± 1.28 

t1/2 [h] 10.0 ± 2.6 8.0 ± 2.8 10.4 ± 2.9 8.3 ± 2.9 1.04 ± 0.40 1.03 ± 0.51 

Rosuvastatin in IT of OATP1B1             

Cmax [ng/mL] 4.2 ± 2.4 3.9 ± 1.3 6.4 ± 3.2 4.0 ± 1.5 1.52 ± 1.15 1.04 ± 0.53 

t1/2 [h] 13.7 ± 8.5 13.9 ± 4.4 24.4 ± 13.7 14.1 ± 4.4 1.78 ± 1.49 1.02 ± 0.45 

Rosuvastatin in PT of OATP1B1             

Cmax [ng/mL] 4.2 ± 2.4 3.9 ± 1.3 7.5 ± 1.2 5.3 ± 2.3 1.79 ± 1.06 1.36 ± 0.75 

t1/2 [h] 13.7 ± 8.5 13.9 ± 4.4 24.4 ± 6.3 23.2 ± 8.9 1.78 ± 1.20 1.67 ± 0.83 

Key: Cmax = peak concentration, IT = intermediate transporter phenotype, PM = poor metabolizer, PT = poor 

transporter phenotype, t1/2 = elimination half-life, UM = ultrarapid metabolizer.  
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6.2.8 Supplementary Material 

The online version of this article contains supplementary material: 

https://doi.org/10.1002/cpt.2017 

 

Table S1:  Published clinical studies used to verify drug-drug interaction predictions. See Table 6.2. 

Table S2: Parameters for ketoconazole, nilotinib, gemfibrozil, and its glucuronide metabolite. See 

Table 6.3. 

Table S3: Published clinical studies used to verify the developed PBPK models for ketoconazole, 

nilotinib, and gemfibrozil. See Table 6.4. 

Table S4: Published studies comparing DDI magnitudes between young and elderly study 

participants. See Table 6.5. 

Table S5: Observed vs. predicted parameters for ketoconazole, nilotinib, gemfibrozil, and its 

glucuronide metabolite in young (20 to 50 years) and elderly (at least 65 years) adults. See 

Table 6.7. 

Table S6: Observed vs. predicted drug pharmacokinetics in the control (victim in the absence of the 

perpetrator or extensive metabolizers/transporter phenotype) and DDI (victim in the 

presence of the perpetrator or different phenotype) scenario and the DDI ratio (DDI 

scenario / control scenario). See Table A61. 

Table S7:  Slope of mean prediction for DDI magnitudes across adulthood (20 to 99 years). See Table 

6.9. 

Figure S1:  Predicted vs. observed concentration time profiles for ketoconazole (200 mg once daily) in 

young and elderly subjects. See Figure 6.5. 

Figure S2: Predicted vs. observed concentration time profiles for nilotinib (400 mg single dose), 

gemfibrozil (600 mg twice daily), and gemfibrozil glucuronide in young individuals aged 20 

to 50 years. See Figure 6.4. 

Figure S3ff: See Appendix Figures A6.1ff. 

 

 



  Chapter 7: Effective Method to Predict Drug Interactions 

 - 199 - 

 

 

 

 

 

 

 

 

 

 

Chapter 7: 

Effective Method to Predict Drug Interactions 

 

  



  Chapter 7: Effective Method to Predict Drug Interactions 

 - 200 - 

7. Effective Method to Predict Drug Interactions 

 

7.1 Abstract Page 202 

 

7.2 Introduction Page 203 

 

7.3 Methods Page 204 

7.3.1 Data source for clinical studies to verify the method Page 205 

7.3.2 Calculation of parameters (DPI and InR / IcR) used for the 

prediction of DDI magnitudes Page 205 

 

7.4 Results Page 207 

7.4.1 Calculation of parameters (DPI3A and InR3A / IcR3A) needed 

for the prediction of DDI magnitudes Page 207 

7.4.2 Verification of the method Page 207 

7.4.3 Impact and interplay of DPI3A and InR3A / IcR3A Page 210 

7.4.4 Autoinhibition and autoinduction of antiretrovirals Page 211 

7.4.5 Prediction of DDIs between tyrosine kinase inhibitors and 

antiretrovirals Page 213 

 

7.5 Discussion Page 214 

 

7.6 Appendix Page 218 

  



  Chapter 7: Effective Method to Predict Drug Interactions 

 - 201 - 

 

This chapter is a pre-printed version of a peer-reviewed original research article published under the 

following reference: 

 

Analysis of clinical drug-drug interaction data to predict magnitudes of uncharacterized interactions 

between antiretroviral drugs and comedications 

 

Felix Stader, Hannah Kinvig, Manuel Battegay, Saye Khoo, Andrew Owen, Marco Siccardi, & Catia 

Marzolini 

 

Antimicrobial Agents and Chemotherapy 2018; 62(7): e00717-18. 

DOI: 10.1128/AAC.00717-18. 

 



  Chapter 7: Effective Method to Predict Drug Interactions 

 - 202 - 

7.1 Abstract 

Despite their high potential for drug-drug-interactions (DDI), clinical DDI studies of antiretroviral drugs 

are often lacking, because the full range of potential interactions cannot feasibly or pragmatically be 

studied, with some high-risk DDI studies also ethically difficult to undertake. Thus, a robust method to 

screen and to predict the likelihood of DDIs is required. 

 

We developed a method to predict DDIs based on two parameters: the degree of metabolism by specific 

enzymes, such as cytochrome P-450 (CYP) 3A, and the strength of an inhibitor or inducer. These 

parameters were derived from existing clinical studies utilizing paradigm substrates, inducers and 

inhibitors of CYP3A, to assess the predictive performance of this method by verifying predicted 

magnitudes of changes in drug exposure against clinical DDI studies involving antiretroviral drugs. 

 

The derived parameters were consistent with the FDA classification of sensitive CYP3A substrates and 

the strength of CYP3A inhibitors and inducers. Characterized DDI magnitudes (n = 68) between 

antiretroviral drugs and comedications were successfully quantified meaning 53%, 85%, and 98% of the 

predictions were within 1.25-fold (0.80 to 1.25), 1.5-fold (0.66 to 1.48), and 2.0-fold (0.66 to 1.94) of the 

observed clinical data. In addition, the method identifies CYP3A substrates likely to be highly or 

conversely, minimally impacted by CYP3A inhibitors or inducers, thus categorizing the magnitude of 

DDIs.  

 

The developed effective and robust method has the potential to support a more rational identification of 

dose adjustment to overcome DDIs, being particularly relevant in an HIV-setting, given the treatment’s 

complexity, high DDI risk, and limited guidance on the management of DDIs.  
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7.2 Introduction 

Drug-drug interactions (DDIs) are an increasing burden for patients infected with the human 

immunodeficiency virus (HIV), because DDIs can lead to drug toxicity and treatment failure. Most 

antiretroviral drugs are substrates and inhibitors or inducers of cytochrome P-450 (CYP) enzymes, 

especially the CYP3A family [640], compromised of CYP3A, CYP3A5, CYP3A7, and CYP3A43 [641]. 

Antiretroviral drugs are considered to be amongst the therapeutic agents with the highest DDI potential 

[642]. Large surveys suggest around a quarter of HIV patients on treatment are at risk of a clinically 

significant DDIs even with modern antiretroviral therapies [576, 643, 644]. The risk for DDIs increases 

significantly with age, multiple morbidities, and polypharmacy [86, 645, 646]. 

 

It is not feasible, practical, or affordable for every potential DDI to be clinically studied, either during drug 

development or post licensing. Some DDIs (e.g. those resulting in increased exposure of narrow 

therapeutic index drugs) cannot easily or ethically be studied. However, the ability to quantitatively 

predict the likelihood of any DDI remains important to understand the clinical significance and whether 

any DDI can be safely managed through dose modification and to prevent unnecessary denial of 

important therapies to patients. Where data are lacking, empirical expert opinion prevails based on: (a) 

the metabolic pathway of the drugs involved, (b) in vitro drug metabolism data, and (c) prior knowledge 

from other DDI studies investigating the effect of paradigm agents on the drug of interest. However, it is 

challenging to scale these data in any quantitatively useful manner. Furthermore, in vitro data as well 

as clinical DDI trials are often undertaken only for strong, paradigm CYP3A inhibitors (e.g. ketoconazole, 

itraconazole) and inducers (e.g. rifampicin). It is difficult to estimate if and to what extent the dose of the 

victim drug should be adjusted when administered with a weaker CYP3A inhibitor than ketoconazole or 

inducer than rifampicin. Therefore, a quantitative tool for estimating DDIs involving antiretroviral drugs 

could support a more rational dose adjustment to overcome DDIs.  

 

Physiologically based pharmacokinetic models (PBPK) can be used to simulate the magnitude of 

change in exposure of any given victim drug in a virtual patient population [360], using data obtained 

from in vitro experiments about the susceptibility of victim and the strength of perpetrator drugs. 

However, PBPK models are intended to be generally used for predicting DDIs [325] and not to manage 

daily DDI queries in the clinic. 
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An alternative method to predict DDIs is to analyze clinical pharmacokinetic data from similar drug 

combinations with known DDI magnitudes [110, 647]. This method can provide a valuable evaluation 

and prediction of a DDI magnitude, delineating a potential dose adjustment to overcome the DDI effect 

and ensure a safe and effective treatment of the patient. 

 

The objective of this work was to investigate if DDIs between antiretroviral drugs and comedications can 

be quantified from existing clinical pharmacokinetic data of similar drug combinations, providing a 

rational framework to support necessary dose optimization for HIV-infected patients. 

7.3 Methods 

This study extends the method to estimate DDIs from clinical data to antiretroviral drugs [110, 647]. The 

common metric to quantify a DDI is the ratio of the area under the curve (AUC) of a victim drug in the 

presence of a perpetrator (AUC*) to the AUC of the victim drug in the absence of the perpetrator. The 

AUC ratio can be expressed in the following way for inhibitors (equation 1) and inducers (equation 2): 

 

4ë�∗
4ë� = ;; 5 ñ� Ë  ×   ��Ë (1) 

 

4ë�∗
4ë� = ;ô�§Ë¾ À §¶�Ë 2 +; 5 ñ� Ë8 (2) 

 

where DPI is the fraction of the disposition pathway mediated by a specific enzyme x such as CYP3A, 

and InR and IcR are the inhibitor and inducer ratio, respectively. CYP3A was chosen because it is a 

major contributor to the metabolism of drugs in clinical use and is therefore often involved in DDIs. A 

detailed description of the used method and the deviation of the equation can be found in the appendix 

of chapter 7 (Section 7.7). 

 

DPI represents the importance of a metabolic pathway of interest. A DPI3A of 1 means that 100% of the 

drug is metabolized by CYP3A, hence no other enzyme or transporter is involved in the disposition of 

the drug, while a DPI3A of 0 means that CYP3A is not involved in the metabolism at all. InR / IcR reflects 

the potential of a perpetrator to inhibit or induce the metabolic pathway of interest. An InR3A / IcR3A of 1 

indicates a high inhibition / induction potential, while a low InR3A / IcR3A value translates to a weak 

inhibition / induction potential. 
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7.3.1 Data source for clinical studies to verify the method 

A structured literature search was performed using the MEDLINE database to screen for DDI studies to 

develop and verify the method. Key words were “drug-drug-interaction”, “effect”, and the victim and 

perpetrator drug of interest. Chosen victim drugs should be highly, intermediately, and weakly 

metabolized by CYP3A, and chosen perpetrators should inhibit or induce CYP3A strongly, moderately, 

or weakly. Data were included if subjects were healthy volunteers or HIV-infected patients but did not 

have any severe disease affecting metabolizing enzymes (i.e. liver cirrhosis). At least 80% of the 

subjects of one study were white, because different ethnicities can have an impact on CYP abundance, 

and drug administration was oral. If more than one study reported an AUC ratio for the same victim-

perpetrator drug combination, the weighted mean was calculated. 

7.3.2 Calculation of parameters (DPI and InR / IcR) used for the prediction of DDI 

magnitudes 

With a given AUC ratio determined in a clinical study, DPI and InR / IcR of victim and perpetrator drugs 

can be estimated. Therefore, equations 1 and 2 are rearranged to calculate DPI (equation 3), InR 

(equation 4), and IcR (equation 5). 

 

xõ? = ; 5 öé�öé�∗ ��Ë  (3) 

 

õÒ°? = ; 5 öé�öé�∗ñ� Ë  (4) 

 

õ³°? = ; 5 öé�öé�∗; 5 öé�öé�∗ 5 ñ� Ë (5) 

 

To start the method, a model drug with a known DPI3A is needed (Figure 7.1). We used midazolam as 

a probe substrate, which is highly metabolized by CYP3AA/3A5 and, to a less extend by UGT1A4 [648]. 

In the first step, InR3A of strong, moderate, and weak inhibitors and IcR3A of strong, moderate, and weak 

inducers were calculated from DDI studies with midazolam. In the second step, DPI3A was calculated 

for drugs being highly, intermediately, or weakly metabolized by CYP3A. In the third step, characterized 

DDI magnitudes were calculated using the derived DPI3A and InR3A / IcR3A values in equation 1 or 2, 

and the predicted results were compared to observed clinical data. Judgement if a prediction was 
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successful was assessed by the 1.25-, 1.5-, and 2.0-fold method as recommended by the FDA [556]. In 

the last step, uncharacterized DDI magnitudes were predicted for tyrosine kinase inhibitors being 

weakly, intermediately, or highly metabolized by CYP3A (sorafenib, imatinib, sunitinib, pazopanib, 

gefitinib, nilotinib, lapatinib, dasatinib, and ibrutinib), ritonavir as a potent CYP3A inhibitor, and etravirine 

as a moderate CYP3A inducer. Predicted DDI magnitudes were classified into no DDIs (AUC-ratio of 

0.8 to 1.25), weak DDIs (AUC-ratio of 1.25 to 2.0 for inhibition and 0.5 to 0.8 for induction), moderate 

DDIs (AUC-ratio of 2.0 to 5.0 for inhibition and 0.2 to 0.5 for induction), and strong DDIs (AUC-ratio 

above 5.0 for inhibitors and below 0.2 for inducers) according to the FDA [649]. 

 

To capture the observed variability in clinical DDI studies, Monte-Carlo simulations (n = 10,000) were 

performed to calculate the equation parameters (DPI3A and InR3A / IcR3A) and AUC ratios of 

characterized DDIs to verify the method as well as uncharacterized DDIs between tyrosine kinase 

inhibitors and antiretroviral drugs. Results are reported as the geometric mean [95% confidence 

interval]. 

 

 

 

 

 

 

 

 

 

 

 

DPI3A of Midazolam is used as a 
probe substrate 

Calculate InR3A / IcR3A for 
perpetrator drugs 

Calculate DPI3A for victim drugs 

Explore uncharacterized DDIs 

Figure 7.1: Verification of the developed effective method to estimate uncharacterized DDI magnitudes.  

Key: DPI3A = fraction of disposition pathway mediated by CYP3A, InR3A= inhibitor ratio, IcR3A = inducer ratio. 
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7.4 Results 

7.4.1 Calculation of parameters (DPI3A and InR3A / IcR3A) needed for the prediction of 

DDI magnitudes 

A total of 68 DDIs issued from clinical studies involving antiretroviral drugs were identified including 13 

involving competitive inhibition (whereby the inhibitor binds to the active site of the enzyme and thereby 

blocks the binding of the victim drug), 33 involving mechanism-based inhibition (whereby the inhibitor 

represses the transcription or translation of the metabolizing enzyme thereby leading to the loss of the 

enzyme), and 22 involving induction. 

 

The fraction of CYP3A-mediated metabolism for victim drugs (Table 7.1) and the strength of perpetrators 

(Table 7.2) have been calculated for antiretroviral drugs using published, clinical AUC ratios of 

characterized DDIs. Drugs being highly metabolized by CYP3A (results are reported as geometric 

means and the 95% confidence interval) were triazolam (DPI3A = 0.966 [0.898, 1.0]), midazolam 

(DPI3A = 0.940 [0.909, 0.971]), quetiapine (DPI3A = 0.845 [0.645, 1.0]), tacrolimus (DPI3A = 0.831 [0.531, 

1.0], and maraviroc (DPI3A = 0.792 [0.559, 0.998]), whereas CYP3A was only responsible for 30.3% of 

zolpidem disposition (DPI3A = 0.303 [0.065, 0.661]).  

 

Ritonavir (IndR3A = 0.963 [0.873, 1.0]), cobicistat (InR3A = 0.936 [0.810, 1.0]), and ketoconazole (IndR3A 

= 0.943 [0.823, 1.0]) were estimated to be potent CYP3A inhibitors, whereas cimetidine was the weakest 

inhibitor of CYP3A in this study (InR3A = 0.256 [0.049, 0.570]). The moderate inducers efavirenz and 

etravirine had IcR3A values of 0.539 [0.282, 0.850] and 0.644 [0.433, 0.882] compared to the strong 

inducer rifampicin with an IcR3A of 0.906 [0.846, 0.967]. 

7.4.2 Verification of the method 

Characterized DDIs with antiretroviral drugs were calculated by using the derived DPI and InR / IcR 

values to verify the method and investigate its potential to predict uncharacterized DDIs (Figure 7.2). 

More than half of the predictions (53%) were within 1.25-fold (ratio predicted/observed: 0.90 to 1.25), 

85% of the predicted values were within 1.5-fold (ratio predicted/observed: 0.66 to 1.48) and 98% of the 
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predictions were within 2.0-fold (ratio predicted/observed: 0.66 to 1.94) of the observed clinical data for 

all investigated DDI mechanisms. Overall, predictions were equally performant for antiretroviral drugs 

acting as perpetrators (ritonavir, cobicistat, darunavir, saquinavir, etravirine and efavirenz) or as victim 

drugs (maraviroc, rilpivirine). 

 

 

Figure 7.2: Predicted vs. observed AUC ratios for competitive inhibition (open squares), mechanism-based 

inhibition (open circles), and induction (open triangles). The solid line is the line of identity, the dotted lines represent 

the 80% and 125% margins, and the dashed lines represent the 50% and 200% margins. The interaction between 

saquinavir and cimetidine was calculated by using the InR3A of the stronger inhibitor saquinavir rather than of 

cimetidine, as explained in the discussion (Section 7.5). 

7.4.3 Impact and interplay of DPI3A and InR3A / IcR3A 

To analyze the impact of DPI3A, the interaction magnitude with the potent inhibitor ritonavir 

(InR3A = 0.963 [0.873, 1,0]) and the moderate inducer etravirine (IcR3A = 0.644 [0.433, 0.882]) have 

been calculated (Table 7.1). Drugs being highly metabolized by CYP3A like triazolam and maraviroc 

showed >5-fold increase in exposure when given with ritonavir and roughly a 65% decrease in the AUC 

when administered with etravirine. Monte-Carlo simulations allowed us to investigate the variability of 

predictions, which can be remarkably high for some interactions (e.g. tacrolimus when administered with 

ritonavir or etravirine). 

 

The impact of InR3A and IcR3A was investigated by calculating the DDI potential with the victim drugs 

maraviroc for which CYP3A is responsible for 79.2% of the disposition (DPI3A = 0.792 [0.559, 0.998]), 

and rilpivirine, which is less metabolized by CYP3A (DPI3A = 0.334 [0.079, 0.656], Table 7.2). Strong 
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CYP3A inhibitors such as ritonavir and cobicistat led to a 5-fold increase in the AUC of maraviroc and 

to a 1.5-fold increase of rilpivirine exposure, showing also the impact of DPI3A. This holds true for 

inducers, because CYP3A substrates such as maraviroc and rilpivirine were more impacted by 

rifampicin than by efavirenz and etravirine. The predicted variability was greater for maraviroc being 

highly metabolized by CYP3A, particularly for inhibitors and inducers impacting CYP3A strongly, than 

for rilpivirine. 

 

To investigate the interplay between the role CYP3A plays in the metabolism of drugs (represented by 

DPI3A) and the inhibitor strength (represented by InR3A), the DDI magnitude between five victim drugs 

with increasing DPI3A (zolpidem < macitentan < maraviroc < triazolam < simvastatin) and inhibitors with 

increasing InR3A (cimetidine < fluconazole < itraconazole < ritonavir) have been investigated and 

compared to observed clinical data, if available (Figure 7.3). The strong inhibitors ritonavir and 

itraconazole led to a >5-fold increase of exposure for victim drugs being highly metabolized by CYP3A, 

whereas drugs that were not as sensitive to CYP3A like zolpidem (DPI3A = 0.303 [0.065, 0.661]) resulted 

in a weak AUC ratio increase of less than 2.0-fold. Moderate CYP3A inhibitors like fluconazole gave rise 

to a moderate DDI magnitude (2- to 5-fold) and CYP3A inhibitors with low InR3A values such as 

cimetidine resulted in small DDI magnitudes (<1.25) when administered with a drug being highly 

metabolized by CYP3A (e.g. maraviroc, triazolam, and simvastatin). Therefore, the magnitude of a DDI 

depends on the sensitivity of a substrate towards a specific metabolic pathway represented by DPI and 

the strength of an inhibitor or inducer represented by InR and IcR. 

7.4.4 Autoinhibition and autoinduction of antiretroviral drugs 

It should be highlighted that some antiretroviral drugs, for instance, ritonavir and etravirine, can inhibit 

or induce their own metabolism (autoinhibition / autoinduction), which is important to consider when 

quantifying DDIs involving those drugs. The inhibitor ritonavir (InR3A = 0.963 [0.873, 1.0]; DPI3A = 0.231 

[0.038, 0.552]) and the inducer etravirine (IcR3A = 0.644 [0.433, 0.882]; DPI3A = 0.336 [0.077, 0.701]) 

were used as victim drugs and the effect of the CYP3A inhibitors cimetidine (weak inhibitor), fluconazole 

(moderate inhibitor), and ketoconazole (strong inhibitor) on ritonavir and etravirine exposures were 

investigated (Figure 7.4). Even with strong inhibitors like ketoconazole, there was only a minor effect on 

ritonavir and etravirine exposure, which is in accordance with observed clinical data. 
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Figure 7.3: Comparison of predicted (white bars) and observed AUC ratios (grey bars) for the five victim drugs 

zolpidem (DPI3A = 0.303 [0.065, 0.661]), macitentan (DPI3A = 0.524 [0.200, 0.810]), maraviroc (DPI3A = 0.792 [0.559, 

0.998]), triazolam (DPI3A = 0.966 [0.898, 1.0]), and simvastatin (DPI3A = 0.979 [0.916, 1.0]) administered together 

with the four CYP3A inhibitors cimetidine (InR3A = 0.256 [0.049, 0.570]), fluconazole (InR3A = 0.700 [0.403, 0.893]), 

itraconazole (InR3A = 0.877 [0.691, 0.986]), and ritonavir (InR3A = 0.963 [0.873, 1.0]). The red line represents the 

calculated value without using Monte Carlo simulations. The solid line, the dotted line, and the dashed line represent 

the 1.25-fold, 2.0-fold and 5.0-fold increase in the AUC ratio according to the FDA classification of DDI magnitudes 

[649]. 

 

Figure 7.4: Comparison of the predicted (white bars) and observed (grey bars) AUC ratio plus standard deviations 

for the two victim drugs with intrinsic inhibitory (ritonavir) and inducing (etravirine) properties administered together 

with the three CYP3A inhibitors cimetidine (InR3A = 0.256 [0.049, 0.570]), fluconazole (InR3A = 0.700 [0.403, 0.893]), 

and ketoconazole (InR3A = 0.943 [0.823, 1.0]). The red line represents the calculated value without using Monte 

Carlo simulations. 
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7.4.5 Prediction of DDIs between tyrosine kinase inhibitors and antiretroviral drugs 

Tyrosine kinase inhibitors being highly metabolized by CYP3A (ibrutinib and dasatinib with DPI3A values 

of 0.971 [0.916, 1.0] and 0.779 [0.524, 1.0]) given with the potent CYP3A inhibitor ritonavir led to strong 

DDIs, with AUC ratios > 5-fold (Figure 7.5). Considering variability estimated by Monte Carlo simulations, 

all predicted AUC ratios of ibrutinib given with ritonavir were above 5-fold. Moderate DDIs were predicted 

for tyrosine kinase inhibitors being intermediately metabolized by CYP3A (lapatinib, nilotinib, and 

gefitinib with DPI3A values of 0.696 [0.403, 0.936], 0.646 [0.333, 0.895], and 0.534 [0.197, 0.884], 

respectively), although some AUC ratios were above 5-fold and therefore, categorized as strong DDIs . 

Tyrosine kinase inhibitors for which CYP3A is a minor pathway (pazopanib, sunitinib, and imatinib with 

DPI3A values of 0.383 [0.106, 0.700], 0.336 [0.079, 0.661], and 0.301 [0.064, 0.627]) showed weak DDIs 

when administered with ritonavir, although considering variability, some predicted AUC ratios had a 

magnitude greater than 2.0-fold, classifying them as moderate DDIs. Sorafenib is almost not 

metabolized by CYP3A (DPI3A of 0.054 [0.006, 0.391]) and showed no DDI with ritonavir. 

 

Figure 7.5: DDI magnitudes between tyrosine kinase inhibitors with increasing DPI3A and the potent CYP3A inhibitor 

ritonavir predicted by running 10,000 Monte Carlo simulations. The solid red line shows the calculated value without 

using Monte Carlo predictions. The solid line, the dotted line, and the dashed line represent the 1.25-fold, 2.0-fold, 

and 5.0-fold increases in the AUC ratio, respectively, according to the FDA classification of DDI magnitudes [649]. 
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Results for the tyrosine kinase inhibitors were similar when administered with the moderate inducer 

etravirine (Figure 7.6). Tyrosine kinase inhibitors being highly or intermediately metabolized by CYP3A 

showed moderate DDIs when given with etravirine, with some predicted AUC ratios being above 5-fold. 

Administration of etravirine with imatinib, sunitinib, and pazopanib led wo weak DDIs. The combination 

of sorafenib and etravirine showed no DDI potential. 

 

Figure 7.6: DDI magnitudes between tyrosine kinase inhibitors with increasing DPI3A and the moderate CYP3A 

inducer etravirine predicted by running 10,000 Monte Carlo simulations. The solid red line shows calculated values 

without using Monte Carlo predictions. The solid line, the dotted line, and the dashed line represent the 1.25-fold, 

2.0-fold, and 5.0-fold increase in the AUC ratio, respectively, according to the FDA classification of DDI magnitudes 

[649]. 

7.5 Discussion 

The management of DDIs involving antiretroviral drugs is often problematic in clinical practice, as 

guidance on dosing recommendations is only provided for a limited number of evaluated drug 

combinations. We present a robust and reproducible method to predict uncharacterized DDIs between 

antiretroviral drugs and comedications. Of interest, the method discriminates between CYP3A 

substrates likely to be significantly, or else marginally, impacted by CYP3A inhibitors and inducers, and 

therefore categorizes DDIs according to their magnitude. The method has the potential to support a 

more rational identification of dose adjustment to overcome DDIs with the perspective to support clinical 

DDI management in the future. In addition, this approach can help to minimize and rationalize future 

clinical studies, providing a valuable characterization of the interaction potential. The integration with 
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modelling techniques such as PBPK will additionally allow to have a comprehensive prediction of DDI 

magnitude as well as identify drug combination that might require more detailed laboratory and clinical 

investigations. 

 

The method predicts DDIs based on the degree of metabolism by a specific enzyme such as CYP3A 

(represented by DPI), and the strength of an inhibitor or inducer (represented by InR and IcR). These 

parameters can be estimated from existing clinical pharmacokinetic studies and are used, in turn, to 

estimate uncharacterized DDIs involving antiretroviral drugs. The derived parameters, DPI3A and InR3A 

/ IcR3A, were consistent with the FDA classifications [682]. CYP3A sensitive substrates such as 

triazolam, midazolam, and tacrolimus had DPI3A values close to 1. Conversely, drugs being partly 

metabolized by CYP3A, such as zolpidem, had lower DPI3A values and were shown to be less sensitive 

to CYP3A inhibitors or inducers, because metabolism can still occur through unaffected CYPs. This 

example highlights how multiple metabolic pathways can modulate the magnitude of DDIs. Furthermore, 

ritonavir, cobicistat, and ketoconazole were predicted to be strong inhibitors, whereas fluconazole was 

found to be a moderate inhibitor. The strength of inducers was also correctly predicted, with rifampicin 

characterized as a strong inducer and etravirine and efavirenz as moderate inducers. Thus, the 

parameters necessary for the method can be reliably derived from existing clinical DDI studies. 

 

The derived parameters were used subsequently to predict DDIs and were compared against existing 

clinical DDI studies to assess the predictive performance of the method. All predicted AUC ratios were 

within 2.0-fold of the observed data, apart from saquinavir and cimetidine. Additionally, 53% and 85% 

of all predictions fell within the 1.25-fold and 1.5-fold interval (Figure 7.2). The reason for the 

underprediction of the saquinavir-cimetidine interaction could be that cimetidine is a weaker inhibitor of 

CYP3A than saquinavir. It is likely that CYP3A is not fully inhibited by cimetidine, thus the inhibitory 

effect of the protease inhibitor saquinavir adds to the total inhibition effect, while strong CYP3A inhibitors 

like ketoconazole inhibit the enzyme completely, thus an additive effect by protease inhibitors would not 

be detectable [360]. Therefore, in the situation of two combined drugs having both the potential to inhibit 

CYP3A, it is recommended to use the inhibitor ratio (InR) of the stronger inhibitor among the two drugs 

to obtain a more accurate prediction. In this case, the lnR3A of saquinavir should be used to calculate 

the DDI magnitude between saquinavir and cimetidine leading to a predicted AUC-ratio of 2.23, which 

is in accordance to the observed one of 2.48 (ratio predicted/observed: 0.90). 
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Of importance, this method allows to categorize the magnitude of DDIs. DDIs of large magnitude are 

expected for drugs being highly metabolized by a given enzyme in the presence of strong and moderate 

inhibitors and inducers of this enzyme (Figure 7.3). Therefore, in this situation, depending on the dose-

exposure relationship of the victim drug, dose adjustment and/or close clinical monitoring might be 

needed unless the drug combination leads to deleterious effects, for instance, the combination of 

dasatinib or ibrutinib and ritonavir, which consequently should be avoided (Figure 7.5) [683]. Conversely, 

drugs metabolized by multiple enzymes are expected to be weakly impacted by strong inhibitors or 

inducers and not affected by moderate and weak perpetrators. Therefore, no dose adjustment would be 

needed a priori unless the drug has a narrow therapeutic index [683]. Furthermore, our results illustrate 

that drugs with strong or at least moderate inhibitory or inducing properties on their own metabolism 

(e.g. ritonavir or etravirine) are minimally impacted by other inhibitors or inducers, as their own effect on 

CYPs counteracts the effect of other drugs (Figure 7.4). 

 

The strengths of this method are that it can potentially be applied to any given CYP enzyme and for any 

given DDI, and that results shown for tyrosine kinase inhibitors can be translated to other drug classes. 

One clinical example would be an HIV-infected patient receiving ritonavir who suffers from hypertension 

which requires treatment with amlodipine, a calcium channel inhibitor. Amlodipine is metabolized by 

CYP3A, and therefore an interaction would be expected with ritonavir. To get an idea about the DDI 

magnitude, the presented approach is used. The package insert usually contains information about 

known DDIs and can therefore be used to estimate DPI3A of the chosen drug. The package insert of 

amlodipine contains the information that diltiazem, a strong CYP3A inhibitor [682], increases amlodipine 

exposure by 60% and other strong CYP3A inhibitors like ketoconazole and ritonavir may increase 

amlodipine concentration to a greater extent without further details on the potential DDI magnitude and 

guidance on how to adjust the amlodipine dose to prevent hypotension and edemas [662]. By deriving 

the inhibitory strength of diltiazem (InR3A = 0.715 [0.427,0.898] by Monte-Carlo simulations or 0.802 by 

single calculation) using an existing midazolam/diltiazem DDI study [678], the fraction of CYP3A-

mediated metabolism of amlodipine can be calculated to be 0.464 [0.117, 1.0] by using Monte Carlo 

simulations or 0.468 by single calculation. The inhibitory strength of ritonavir was 0.963 [0.873, 1.0] by 

Monte-Carlo simulations or 1 by single calculations has been derived from midazolam/ritonavir DDI 

studies [665-669]. Both the fraction of amlodipine metabolism mediated by CYP3A and the inhibitory 

strength of ritonavir were used to calculate the magnitude of the DDI (AUC ratio) using equation 1. The 
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parameters derived from Monte Carlo simulations or single calculations provided similar DDI predictions. 

A 90% increase in amlodipine exposure is expected, suggesting a 50% dose reduction would be 

required when amlodipine is given with ritonavir, which is in agreement with findings from a published 

DDI study [570]. It should be noted that the decision to adjust the dose should not be based only on the 

pharmacokinetic change but should also take into account the possibility to monitor the DDI effect, drug-

response relationship, and the therapeutic index to safely manage DDIs. 

 

Some limitations should be acknowledged. Perpetrators are never completely selective and therefore 

affect more than one pathway. Thus, the method cannot distinguish between effects attributed 

exclusively to the specific CYP enzyme of interest or if the DDI results from a combined effect from other 

CYPs, uridine diphosphate-glucuronosyltransferases (UGTs) and/or drug transporters. In addition, the 

method cannot separate effects from different locations (e.g. intestinal vs. hepatic). However, the 

multiple combined effects of several enzymes and drug transporters and the contribution of different 

sites to a DDI are accounted for in the prediction, because clinical data of similar DDIs with similar 

pathways are used. DDIs of drug pairs can be quantified, but in clinical reality subjects may receive 

concomitantly several drugs, which may interact mutually. The method does not account for the genetic 

background and comorbidities (e.g. liver cirrhosis), which all can impact DDI magnitudes. PBPK models 

are necessary to answer these questions, which are highly established in the field of DDI predictions 

[684, 685]. Our method was verified using the common twofold limit, which might be considered as too 

permissive for drugs with a narrow therapeutic index [638]. However, the potential underprediction of a 

DDI would occur only if the inhibitor / inducer of interest alters a pathway other than that of the paradigm 

perpetrator used to derive the necessary parameters (DPI and InR/IcR). It is therefore recommended 

that DPI and InR/IcR are derived using several perpetrators for the prediction of uncharacterized DDIs 

involving drugs with a narrow therapeutic index and that results are compared to exclude this possibility. 

 

In conclusion, the developed robust method can minimize and rationalize future clinical studies, 

providing an effective prediction of DDI magnitudes. Additionally, it has the potential to support a more 

rational identification of dose adjustment to overcome DDIs, being particularly relevant in an HIV-setting 

giving the treatment’s complexity, high DDI risk, and limited guidance on the management of DDIs. In 

the future, the method could be extended to other drug classes and prediction of multiple DDIs. 



  Chapter 7: Effective Method to Predict Drug Interactions 

 - 218 - 

7.6 Appendix 

A full deviation of the used equation is provided here. The oral clearance of a drug A is defined as 

follows: 

 

���
�� = �¯¼�¼× = �¯Ìµ�2�¯©µ´2�¯�÷÷y� × ×ø × ×ù , (1) 

 

where CLtot = total clearance, F = bioavailability, CLhep = total hepatic clearance, CLren = renal clearance, 

CLadd = additional clearance not via liver or kidney, fa = fraction absorbed, FG = fraction escaping gut 

metabolism and FH = fraction escaping first pass metabolism. 

 

The following assumptions hold true. 

1) The main route of metabolism is the liver. Renal or other pathways are assumed to be negligible: 

 ��
�� = ���		 = 0. (2) 

 

2) The orally administered drug is fully absorbed: 

 �� = 1. (3) 

 

3) The well-stirred liver model holds true: 

 

��0�É = Õù × �¯�´¼ × y��Õù2�¯�´¼ × y�� , (4) 

 

�� = ÕùÕù2�¯�´¼ × y��, (5) 

 

where QH = liver blood flow, CLint = total intrinsic hepatic clearance, fuB = fraction unbound in blood. 

4) Unbound concentration in the intracellular space of the liver and the plasma are similar 

5) The metabolic pathway follows Michaelis-Menten kinetics. 

6) The intracellular, unbound substrate concentration is below KM and therefore clearance of the 

substrate is independent of the dose. 

 

Considering the assumptions and equations 2, 3, 4 and 5, equation 1 changes as follows: 
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���
�� = úù × ���´¼ × ¿»�úùÅ���´¼ × ¿»� 2,2,
; × ×ø∗ úùúùÅ���´¼ × ¿»�

= �¯�´¼ × y��×ø . (6) 

 

In the presence of a perpetrator, oral clearance of drug A changes as follows: 

 

���
��∗ = �¯�´¼∗  × y��×ø∗ . (7) 

 

where the superscript * stands for in the presence of the perpetrator. 

The common metric to assess an interaction of drug A and the perpetrator is the AUC ratio: 

 

4ë�∗
4ë� = ô�¹µ���©�·∗ô�¹µ���©�·

= �¯�©�·�¯�©�·∗ = ���´¼ × ¿»�ûø���´¼∗  × ¿»�ûø∗
= �¯�´¼ × ×ø∗�¯�´¼∗  × ×ø. (8) 

 

It is assumed that gut metabolism is not affected by the interaction: 

 

×ø∗×ø = 1. (9) 

 

The total intrinsic hepatic clearance depends on enzymes, which metabolize drug A. In this work, we 

are interested in CYP3A, but the method is general and can potentially be used for all CYP enzymes: 

 ���� = �ü=4  ×  ���� + +1 − �ü=48  ×  ����, (10) 

 

where fm = fraction metabolized by a certain enzyme. 

Now we assume to have a perpetrator only affecting the CYP3A pathway: 

 

����∗ = y�Çö × �¯�´¼×�Çö + +1 − �ü=48  ×  ����, (11) 

 

where FR is the fold reduction by the perpetrator. FR depends on the type of interaction, which can be 

competitive inhibition (equation 12), mechanism-based inhibition (equation 13) or induction 

(equation 14): 

 

�°=4 = 1 + [ ]��, (12) 

 

�°=4 =  1 + Ü�´�¶¼∗[ ]Ü÷µª∗~����2[ ]�, (13) 
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�°=4 = ;;2§´÷ý�Ë∗[§][§] Å §�ÞÆ
, (14) 

 

where [I] = inhibitor concentration at steady state, Ki = inhibition constant, kdeg = enzyme degradation 

rate, kinact = inactivation rate of an enzyme for mechanism-based inhibition, Kapp = apparent enzyme 

inhibition constant for mechanism-based inhibition (concentration of the inhibitor associated with half 

maximum inactivation rate), IndMax = maximum fold of induction and IC50 = half maximum inhibitory 

concentration. 

 

Considering equation 9, 10 and 11, the AUC ratio can be written as follows: 

 

4ë�∗
4ë� = �¯�´¼�¯�´¼∗ = �¯�´¼¿ÊÇö × ���´¼û�Çö 2+;5y�Çö8× �¯�´¼ = �¯�´¼

�¯�´¼ × �¿ÊÇöû�Çö 2+;5y�Çöþ8¢ = ;¿ÊÇöû�Çö 2;5y�Çö. (15) 

 

The inhibitor ratio (InR) was defined by Hisaka et al. [686] for competitive inhibition, but can be used for 

mechanism-based inhibition as well: 

 

õÒ°=4 = 1 − ;;2[§]Â�
= 1 − ;×�Çö. (16) 

 

The inducer ratio (IcR) can be defined in a similar way as the inhibitor ratio, but the reciprocal needs to 

be used: 

 õ³°=4 = 1 − �°=4. (17) 

 

FR in equation 15 can now be replaced by InR (equation 16) and IcR (equation 17). Because the method 

cannot distinguish between different inhibited enzymes and transporters, fm3A needs to be replaced by 

the broadly defined fraction of disposition pathway altered by the perpetrator (DPI3A). 

For CYP3A inhibitors, the AUC-ratio can be calculated according to equation 18 and for inducers 

according to equation 19: 

 

4ë�∗
4ë� = ;ô�§Çöû�Çö 2+;5ñ� Çö8 = ;;5ñ� Çö∗�;5 ¾û�Çö� = ;;5ñ� Çö∗ ��Çö, (18) 

 

4ë�∗
4ë� = ;ô�§Çö¾À§¶�Çö2+;5ñ� Çö8. (19) 
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Aging people living with HIV (PLWH) are generally excluded from clinical studies leading to a knowledge 

gap how antiretroviral drug pharmacokinetics and drug-drug interaction (DDI) magnitudes are impacted 

by advanced aging. Clinically observed data in combination with modelling and simulation elucidated 

marginal age-related pharmacokinetic changes of antiretroviral drugs und no impact of advanced aging 

on DDI magnitudes. Thus, antiretroviral doses and the clinical management of DDIs can a priori be 

similar in aging men and women living with HIV in the absence of severe comorbidities.  

8.1 The impact of aging on drug pharmacokinetics is marginal 

Effective antiretroviral therapies have led to the same life expectancy of PLWH than the general 

population [38, 39], but no current HIV treatment can eradicate the virus and thus, HIV therapy is a life-

long treatment. In 2018, 37.9 million people lived globally with HIV and 16% were older than 50 years 

[1]. The number is projected to increase in the future showing the importance to establish guidelines for 

safe and effective HIV and geriatric care in aging PLWH [57]. Most product labels of antiretrovirals give 

no dose recommendations for the elderly [76-83], except for atazanavir [85] for which doses do not need 

to be adjusted based on the age of the treated individual. In general, clinical data in this vulnerable 

population are lacking leading to missing guidance whether dose adjustment is necessary based on the 

age of the treated PLWH. 

 

Age-related pharmacokinetic changes of antiretrovirals were found to be marginally, considering the 

large therapeutic index of the current first-line treatment [578]. Thus, a dose adjustment would a priori 

not be necessary in aging male and female PLWH in the absence of severe comorbidities. The results 

presented in this thesis are in line with four studies that investigated age-related pharmacokinetic 

changes of antiretrovirals in aging PLWH. The first clinical study was a pilot study investigating the 

pharmacokinetics of two common antiretroviral regimens in 12 PLWH aged 55 to 65 years. Dumond et 

al. found marginal alterations in drug exposure within the expected interindividual variability for tenofovir, 

efavirenz, and atazanavir. Emtricitabine and ritonavir exposures were increased by 19% to 78% in two 

different groups, demonstrating high variability [71]. A limitation of this pilot study is the small sample 

size and the exclusion of PLWH at least 65 years. In the second study, single sample time points from 

2,447 PLWH aged 20 to 80 years, who participated in the UK Collaborative HIV Cohort Study, were 

analyzed. In agreement with the first study, plasma concentrations of protease inhibitors (e.g. lopinavir, 
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saquinavir, and atazanavir) were increased and concentrations of non-nucleoside reverse transcriptase 

inhibitors (e.g. efavirenz) were not affected by the age of the studied participants [73]. However, most 

of the samples came from PLWH aged 20 to 50 years and therefore, an extrapolation to the elderly is 

hardly possible. In a third clinical study, Elliot et al. investigated dolutegravir exposure in PLWH aged 

60 to 79 years, which was marginally increased by 8% in the elderly compared with young controls [72]. 

The fourth study investigated renally excreted antiretrovirals in young (20 to 49 years) and elderly (65 

to 74 years) PLWH by a physiologically based pharmacokinetic (PBPK) model and found on average a 

40%, 42%, and 48% increase in drug exposure for emtricitabine, lamivudine, and tenofovir, respectively 

[75].  

 

In contrast to the aforementioned clinical studies, this thesis describes for the first time antiretroviral 

drug exposure for all currently recommended antiretrovirals in non-frail PLWH at least 55 years, who 

are representative for the majority of elderly PLWH as observed by the French HIV Cohort [564]. The 

combination of clinically observed data with modelling and simulation allowed to analyze aging as a 

continuous process. Furthermore, age-related pharmacokinetic changes could be understood 

mechanistically; therefore, allowing a general model-based conclusion of the conducted clinical studies. 

The linear increase in drug exposure with an average rate of 0.9% per year throughout adulthood was 

caused by reduced drug elimination resulting from the progressive decline of hepatic and renal blood 

flow and the glomerular filtration rate with advanced aging. Age-related changes of drug 

pharmacokinetics are independent of drug characteristics and thus, are similar for antiretroviral and non-

HIV drugs [512, 578]. Therefore, results of this thesis are broadly applicable and because age-related 

changes in drug exposure are independent of the drug, the general conclusion is valid for future 

therapies. 

 

The cutting-edge concept that pharmacokinetic alterations in the elderly depend only on physiological 

changes and are independent of drug characteristics [512] can probably not be translated to other 

special populations. As soon as enzyme and transporter activities change compared with healthy, young 

adults (e.g. in children [687, 688], in pregnant women [555], in hepatic [332], and renal impairment 

[333]), the difference in drug clearance between the investigated special population and the control 

group will depend on the enzyme(s) metabolizing the drug of interest. 
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8.2 Can clinical pharmacology for elderly individuals do any better? 

Clinical pharmacology of elderly individuals faces several challenges. Firstly, conducted clinical studies 

have a selection bias towards more healthy individuals. Secondly, longitudinal data in the same subject 

are missing and thus, aging is often treated as a discrete (young group vs. elderly group) and not as a 

continuous variable in statistical analysis of the clinically observed data. Thirdly, there is a huge time 

gap between the drug entering the market and first study results being published in the scientific 

literature by mostly academic groups. Fourthly, the full range of prescribed drugs and individuals 

requiring drug treatment cannot feasible or pragmatical be studied 

 

Aging individuals take most of the prescribed drugs [378] and have the highest prevalence for DDIs [95], 

but the elderly are generally excluded from clinical studies for pragmatical and ethical concerns [122]. If 

elderly subjects are included, there is usually a clear selection bias towards “apparently” healthy aged 

study participants [379, 689] and thus, conducted clinical studies are too restrictive, not covering the 

entire range of elderly individuals being frail or suffering from highly prevalent age-related comorbidities 

such as severe renal impairment stage 4 to 5. Therapeutic drug monitoring in the elderly might help to 

measure real-life plasma concentrations of drugs, covering the entire variability of the aged patient 

population. One strength of the clinical study described in Chapter 6 is the inclusion of aging PLWH at 

least 55 years who had a declined kidney function (i.e. the glomerular filtration rate was 65.6 ± 19.2 

mL/min/1.73m²) and common comorbidities (i.e. hypertension) and thus, being representative of the 

majority of elderly PLWH [564]. 

 

Longitudinal studies to investigate the impact of aging on drug pharmacokinetics in the same individual 

are entirely missing. Instead, current clinical studies usually compare the pharmacokinetics between a 

young and an elderly group of subjects. There are three concerns: Firstly, what is the definition and the 

starting age for being “elderly”? The studied “elderly” group often starts at the age of 65 years being the 

age of retirement in most Western Countries; however, there is no pharmacological or clinical definition 

for an “elderly” individual [55]. Studies presented in this thesis assessed when aging leads to differences 

in the pharmacokinetics that are higher than expected from the interindividual variability. Compared with 

a 20 years old, this was the case at the age of 55 years for antiretroviral and non-HIV drugs [512, 578]. 

If the young group in the clinical study would have a mean age older than 20 years, the start age for the 
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“elderly” group would need to be higher, because aging is a continuous process [58]. Secondly, 

calculating the ratio between two group can be impacted by the interindividual variability that is higher 

in the elderly compared with young individuals [690]. Thirdly, statistical differences are assessed by 

comparing data from the two investigated age groups by a parametric t-test, which has a limited 

meaning, because in contrast to for instance sex, aging is a continuous process and not a discrete 

variable. The PBPK approach, verified by the clinically observed data in young and elderly subjects for 

a certain drug, extrapolates pharmacokinetics across adulthood and allows to investigate the continuous 

effect of aging on the pharmacokinetics of the drug of interest [512]. 

 

The regulations to conduct clinical trials are strict before drug approval, because firstly safety and 

effectiveness of a novel agent need to be proven. After drug approval, the pharmaceutical industry has 

often no interest to invest more money in clinical trials for special populations unless there could be a 

potential novel indication. Therefore, clinical studies in special populations are often conducted by 

academic groups and networks like for instance The Pharmacokinetic and Clinical Observations in 

PeoPle Over fiftY (POPPY) study [691] to investigate the effect of aging on antiretroviral treatment in 

elderly PLWH. It needs time to design the clinical studies, establish networks between different study 

sites, include patients, analyze the clinically observed data, and publish the results. There is a hug time 

gap between the drug entering the market after successful approval by the health authorities and the 

first published study in a special population. After market access of a novel drug, there are two 

possibilities to give the drug to special populations in clinical practice: Firstly, the approved drug is given 

“off-label” as drug labels do usually not contain enough information regarding dosing recommendations 

for special population, demonstrating the lack of clinically available data. Clinicians are faced with the 

challenge to adjust the dose based on empirical “guesses” such as the 25 to 50% dose reduction in the 

elderly [502]. However, if the mechanism behind those rules of thumbs are not completely understood, 

it remains challenging to extrapolate those to every patient and every therapy. In case of severe side 

effects, those can be reported to the drug safety of the relevant pharmaceutical company, but again it 

will take time till the information circulates back to the clinics and reaches other patients. Secondly, 

important therapies might be denied for special populations if the prescribing physician follows a more 

conservative approach to wait until clinically observed data are publicly available. Both scenarios could 

harm patients. Therefore, it is proposed to study the safety and efficacy of drugs in special population 
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at a later stage in clinical development in a rigorously controlled environment to guide dosing 

recommendations in the drug label at the time of drug approval. 

 

However, even if more clinical studies would be conducted in the elderly in the future, it would still not 

be feasible or pragmatical to study every single drug or drug combination in the elderly. In clinical 

practice, more drug combinations are prescribed than the usual paradigm substrates, strong 

inhibitors/inducers of enzymes and transporters, that are used in clinical studies before drug approval. 

It is difficult to scale DDI magnitudes obtain for a strong inhibitor in young adults to a moderate inhibitor 

of the same enzyme in an elderly patient without having further data. Modelling and simulation provides 

the possibility to predict DDI scenarios for moderate perpetrator when being appropriately verified with 

existing clinical data (e.g. with DDIs involving strong inhibitors/inducers) [387]. Thus, model-informed 

drug development is important to support the clinical care of patients. The few clinical studies that need 

to be conducted can verify predictive models, which can subsequently be used to explore unknown 

clinical scenarios of interest [118]. One example for model-informed drug development is the study 

investigating the impact of aging on DDI magnitudes in this thesis (Chapter 6). A clinical study in aging 

PLWH at least 55 years was conducted to assess DDI magnitudes between antiretrovirals and 

commonly prescribed cardiovascular agents [577]. The study was underpowered, because not enough 

patients could be included. Nevertheless, the clinical data obtained in this study represent real-life 

plasma concentrations from aging PLWH representative for the majority of elderly PLWH [564] and 

described for the first time DDI magnitudes of antiretrovirals in the elderly. The data served for the 

verification of the PBPK approach to assess the predictive potential to simulate DDIs in the elderly. 

Having a verified model, DDIs that were only investigated in young adults, including moderate inhibitors 

such as nilotinib or etravirine, could be extrapolated to the elderly. The modelling approach allowed for 

a virtual longitudinal study; thus, DDI magnitudes could be investigated across the entire adult lifespan. 

Therefore, the combination of the limited clinical DDI data in aging PLWH for a couple of DDI scenarios 

with modelling and simulation helped to understand that DDI magnitudes are not impacted by advanced 

aging and support the clinical management of DDIs in the elderly [692]. 

 

Another challenge in clinical practice is the huge interindividual variability that can potentially not be 

covered in clinical trials even if more studies would be conducted. The same dose of a drug can lead to 

an inefficacious or unsafe therapy in different patients. It is also necessary to account for the patient’s 
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individual lifestyle such as smoking and genotypes to fully assess and understand the pharmacokinetic 

variability seen in clinical practice. With advanced aging, interindividual variability increases because of 

frailty [690]. Frailty is defined as the cumulative physiological alterations and the subsequent changes 

in health status after a minor stressor event [693]. PLWH are considered to be frail, but the quantification 

of frailty is difficult in this context, because antiretroviral therapy is so effective [694]. Frail individuals, 

despite living with HIV, were not included in our conducted clinical study [74, 577]. There are reports 

indicating that the association between age and altered drug metabolism and elimination are stronger 

with frailty [695]. More studies are warranted to study the combined effect of aging and frailty on drug 

pharmacokinetics and compare them to the results obtained in this thesis for aging alone [512, 578]. 

 

Taken together, the studies in this thesis support the clinical pharmacology for elderly individuals. Firstly, 

with the inclusion of aging PLWH at least 55 years, having a declined kidney function and common 

comorbidities, real-life plasma concentrations from representative elderly PLWH [564] were obtained for 

the first time. Secondly, modelling and simulation helped to extrapolate the limited clinical data obtained 

in two distinct age groups across adulthood. Thirdly, the PBPK approach determined physiological 

alterations with advanced aging as the cause for age-related pharmacological changes. Generally, 

doses would need to be reduced by 25% at 60 years, by 50% at 75 years, and by 75% at 95 years 

depending on the therapeutic index of the drug of interest. As being independent of drug characteristics, 

this rule can be applied to future drugs after marketing authorization and reduces the publication time 

gap.  

8.3 Pharmacodynamic changes of antiretroviral drugs with advanced aging 

Aging can not only affect pharmacokinetic processes, but also the pharmacodynamics of a drug. Clinical 

studies regarding the effect of aging on antiretroviral pharmacodynamics are scarce. Studies presented 

in this thesis focused mainly on drug pharmacokinetics, which are essential to establish the dose-

response-relationship. Furthermore, intracellular and unbound concentrations are important for target 

binding and the effect of the drug. 

 

As drug targets are often not in plasma, it is important to understand age-related changes in intracellular 

drug exposure. Intracellular concentration of tenofovir diphosphate (after administration of tenofovir 
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disoproxil fumarate) and emtricitabine diphosphate were measured in peripheral blood mononuclear 

cells of 12 PLWH aged 55 to 65 years. Intracellular tenofovir diphosphate exposure was increased by 

57.7% and emtricitabine exposure was decreased by 22.4% compared to historical controls in young 

PLWH [71]. The age-related changes in intracellular drug exposure are contradictory for both 

investigated drugs. As more clinical data are missing, a common age-related trend like for plasma 

exposure cannot be given [578]. In the future, more studies investigating intracellular antiretroviral drug 

concentrations in the elderly are warranted. A whole-body PBPK model used in this thesis [118] could 

help to understand age-related changes in intracellular concentration mechanistically that could lead to 

pharmacodynamic alterations with advanced aging. However, the PBPK model needs to be verified 

against existing clinical data, which are currently not available. 

 

Considering the free-binding hypothesis, only the unbound drug can bind to a target and lead to a 

pharmacodynamic action [696]. Albumin concentration declines by 1.5% in each age decade in elderly 

individuals, who have no severe illness or malnutrition, that can both substantially affect albumin levels 

[58]. The age-related changes of albumin are unlikely to be of clinical relevance [697]. The fraction 

unbound of several benzodiazepines (e.g. midazolam, lorazepam, oxazepam, and temazepam) [499, 

698], warfarin [699, 700], and phenytoin [701] was found to be similar between elderly and young 

individuals. However, in a different study the fraction unbound of phenytoin was statistically significantly 

increased in the elderly (12.8% vs. 11.1%), but the increase was of no clinical relevance [702]. The free 

fraction of valproic acid increased from 6.4% in adults aged 20 to 25 years to 10.7% in adults aged 60 

to 88 years [703]. But the unbound concentration of valproic acid was found to be elevated with 

increasing plasma concentrations in young subjects and thus might be more explained by the general 

age-related increase in drug exposure [512] rather than changes in the albumin concentration [704]. 

Alpha-acid glycoprotein, important for the plasma binding of protease inhibitors, is unaltered in the 

elderly [58]. Taken together, it is unlikely that age-related changes in free antiretroviral concentration 

would lead to pharmacodynamic alterations. As the targets of antiretrovirals are intracellular, it is also 

important to consider the passive and active uptake of drugs into cells and the intracellular drug binding. 

 

Once the unbound antiretroviral drug enters the cell, it can bind to the viral target and suppresses the 

HI virus. The molecular structure of viral proteins such as the reverse transcriptase, the HIV protease, 

and the HIV integrase, are unlikely to be changed with advanced aging of the human host. It can be 
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assumed that the binding affinity between antiretrovirals and viral proteins is not altered based on the 

age of the treated PLWH. Transcription and translation could be altered with advanced aging in the 

human host leading to an altered level of viral proteins. Horvath & Levine demonstrated that epigenetic 

methylation patterns in the blood and the brain of PLWH corresponded to accelerated aging of at least 

five years [705]. These epigenetic alterations as well as age-related changes in the histone methylation 

pattern potentially affect the transcription process [706]. The age-related effects on the transcription and 

translation would lead presumably to less viral protein and therefore to an enhanced pharmacodynamic 

effect. 

 

Pharmacodynamic studies in elderly PLWH are barely conducted. In the French HIV Cohort Study, 

suppression of the HIV virus was similar between 16,436 PLWH aged 50 to 74 years and 572 PLWH at 

least 75 years [88], indicating that pharmacodynamic effect of antiretrovirals are not affected with 

advanced aging to a clinically relevant extend. Pharmacodynamic alterations of comedications need 

careful considerations [502] to support the overall care of elderly PLWH beyond HIV. 

8.4 Conclusion and future perspective 

PLWH are aging with high prevalence for age-related comorbidities [93], polypharmacy [92], and 

consequently an increased risk for DDIs [94]. To support the clinical care of elderly PLWH, it is necessary 

to investigate the continuous effect of aging of drug pharmacokinetics and DDI magnitudes.  

 

The studies presented in this thesis demonstrated that age-related pharmacokinetic changes are driven 

by a decline in drug clearance of maximal 1.7-fold difference across adulthood, which itself is caused 

by the physiological decline of the hepatic and renal blood flow as well as of the glomerular filtration 

rate, but is independent of drug characteristics [512, 578]. Given the high therapeutic window of the 

current first line antiretroviral treatment, dose adjustment would a priori not be necessary in aging male 

and female PLWH. Dose adjustment for non-HIV drugs would depend on the therapeutic index of the 

drug of interest. Generally, the “start low and go slow” strategy is recommended when starting drug 

treatment in the elderly. Drug dose should be reduced by 25% at the age of 60 years, by 50% at the age 

of 75 years, and by 75% at the age of 95 years compared with young individuals.  
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DDI magnitudes were not affected by advanced aging regardless of the involved drugs or DDI 

mechanism [692]. Thus, the clinical management of a given DDI (i.e. to reduce or increase the dose to 

overcome a drug inhibition or induction) can a priori be similar in aging men and women. 

 

The conducted studies describe pharmacokinetic alterations in aging individuals, who had a declined 

kidney function (i.e. a reduced glomerular filtration rate) and common comorbidities (i.e. hypertension), 

and thus being representative for the majority of aging PLWH [564]. Future clinical studies are warranted 

to investigate the combined effects of aging and frailty or severe comorbidities on the physiology, 

pharmacokinetics, and DDI magnitudes. 

 

Aging of PLWH is a global phenomenon [1] and the number of PLWH at least 50 years is estimated to 

increase especially in Eastern and Southern Africa [44]. Ethnicity did not impact the age-related 

decrease in drug clearance, driving age-related pharmacokinetic changes; however, only clinical data 

in Asians were found [578]. Clinical studies analyzing the age-related pharmacokinetic and 

pharmacodynamic changes of antiretrovirals in other ethnic groups than Europeans, especially in 

Africans, are highly needed to support the care of elderly PLWH globally. 

 

Pharmacodynamic changes with advanced aging need careful consideration when prescribing 

treatments in the elderly and giving recommendations to adjust drug regimens. Pharmacokinetic 

predictions can be linked to pharmacodynamic models using the PBPK approach [381]; however, 

because of a lack of understanding the molecular mechanisms driving pharmacodynamic effects, these 

models are often empirical rather than mechanistic. Furthermore, the effect of aging on these molecular 

mechanisms is crucial to understand age-dependent pharmacodynamic alterations. In the future more 

pharmacodynamic studies in aging PLWH are warranted.  

 

Intracellular antiretroviral drug concentrations are usually not obtained in clinical studies and thus, 

knowledge regarding the passive and active uptake of antiretrovirals into cells remains sparse. More 

studies are warranted in the future to understand age-dependent changes of the intracellular drug 

concentrations driving the pharmacodynamic effect, also for preexposure prophylaxes. 
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With the “graying” of the HIV epidemics, the clinical care of PLWH needs to be merged with geriatric 

care. Virologic suppression and antiretroviral management remain important for safe and effective HIV 

therapy, but geriatric screening including amongst others an assessment of frailty will become more and 

more important to support the overall care of aging PLWH beyond HIV [57]. Guidelines for geriatric care 

to support HIV clinicians will become more important in the future and need to be properly implemented. 

 

Overall, the studies reported in this thesis support antiretroviral and comorbidity treatments in aging 

male and female PLWH in the absence of severe comorbidities.
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