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Chapter 1

Motivation and Introduction

The aim of this thesis is to give a comprehensive guideline to symmetry and uniqueness
of solutions to various linear and nonlinear PDEs which involve a very general pseudo-
differential operator. The main motivation for such results originated in Enno Lenzmann’s
and Jérémy Sok’s article in [24].

The focus of this work lies on the following two recent articles [5] and [6]. Both papers
revolve around very similar techniques which will be explained thoroughly in the following
pages. This thesis is at it’s core a step by step guide to fully grasp the ideas and conclusions
of the results in [5] and [6].

In [6] we consider dispersion generalized nonlinear Schrédinger equations of the form
i0;u = P(D)u — |u|*u (gNLS)

where P(D) is a very general pseudo-differential operator. In the case of P(D) = (—A)® this
equation naturally occurs as a continuum limit of a discrete model with long-term lattice
interactions. A very specific example is given from the point of mathematical biology. We
could consider the charge transport in a DNA strand. A possible model for such an object
would be the 1-dimensional lattice hZ with given mesh size h > 0. This resembles the
distance between the base pairs, whereas those sit on lattice points x,, := hm with m € Z.
As the DNA strand is twisted in a very complicated and somewhat random way it is plausible
to think about interactions between each base pairs, hence a long-term interaction. Then
we consider a discrete wave function uy : R x hZ — C that satisfies the following discrete
nonlocal Schrodinger equation

Uh(ta xm) — Uh(ta :Cn)

o — P51 i|uh(t,xm)|2uh(t,:z:m).
m n

d
zaUh,(thm) =h Z

n#m

As long as the interaction term is not too strong the authors showed that solutions of the
discrete model converge in a weak sense to solutions of

i0iu = (—A)*u + |u*u.
as the mesh size h > 0 of the lattice tends to 0.

In particular, we are interested in traveling solitary waves for gNLS. From a historical
point of view, John Scott Russel described such a phenomenon for water waves in the
following sense (see [32]):



'T was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stoppednot so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or diminution of
speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot
and a half in height. Its height gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel. Such in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have called Wave of
translation.’

In mathematical terms, a traveling solitary wave is a solutions of the form
u(t, ) = e“'Qu .y (x — vit),

with some non-trivial profile @ : R” — C depending on the given parameters w € R and
v € R™. Clearly, w stands for the frequency of the wave and v for the velocity. In the case
of P(D) = —A there exists a well-known gauge transform which enables us to only consider
the case of a standing wave with v = 0. This enables us to study symmetry properties of
solutions quite easily. However, it is not known if such a boost transform exists for a more
general operator, e.g. for the fractional Laplacian (—A)®.

From a more general point of view consider a functional £ : X — R defined on some
Banach space of complex-valued functions v : R? — C. In many cases of interest the
functional F is rotationally and shift invariant, that means

E(eu(R)) = E(u)

for R € O(n) and 6§ € R. A very natural question is whether optimizers @ € X of E also
share such an invariance property. As a basic model consider the functional

B(w) = [ w3z — [ul o, (1.0.1)

where u € H?(R™) is possibly complex-valued and the normalization |ufz2gn) = 1 is as-
sumed. Clearly, E is radially symmetric, hence we ask ourselves whether minimizers of E
satisfy this property as well. Those kind of questions can usually be answer by the following
three arguments (see [24] for more references)

(I) The Polya-Szego inequality
IVu*|| Lo @y < VUl Lo @n),
where u* is the symmetric decreasing rearrangement of u € WP (R"™).
(IT) The moving plane method for the corresponding Euler-Lagrange equation.

(III) The inequality given by
IVIull e rny < [VulLe@n).-

Neither of these arguments can be applied to (1.0.1). As an example, the corresponding
Euler-Lagrange equation is given by a biharmonic nonlinear Schrodinger equation

A2y + A — [ulP~?u = 0,



where A > 0 is some constant. The lack of a maximum principle for the operator A% 4+ A
readily implies that the second argument does not work. In [24] questions on symmetries
were answer with an approach called Fourier rearrangement, i.e. given f € L*(R") the
Fourier rearrangement is given by

fE=37HEW)").

The main technical part in the proof is to classify the case of equality in the Hardy-Littlewood
majorant problem in R™ for the LP-norms with p € 2N u {oo}. This will be heavily accom-
panied by the property that the set {|u| > 0} is connected in R™. As a matter of fact, this
holds true since |u| = (u)*.

Later, the authors of [24] asked the natural question if such techniques exist for non-
radial Fourier multipliers. Those questions will be the main guidance in this thesis and are
thoroughly discussed in Chapter 8. Again, taking a look at (¢NLS) and considering traveling
solitary waves we can ask the following:

Question. Up to spacial translation and complex phase, i.e. replacing the traveling solitary
wave Qv by € Qu . (- + x0) with constant phase shift 6 € R and translation o € R, do we
have the following symmetries?

(51) Quv is cylindrically symmetric with respect to v e R", n > 2, i. e., we have

Quv(z) = Qu~v(Rz) for all Re O(n) with Rv = v.

(S2) We have the conjugation symmetry given by

Qw,v (:L') = Qw,v(_x)~

That is, Re Qu v : R™ — R is an even function, whereas Im Qv : R™ — R is an odd
Sfunction.

Both symmetry questions will be studied in Chapter 8 and answered for the case of
boosted ground states. Those are special solutions to the traveling solitary wave equation

P(D)Quy +iv-VQuy +wQuv — |Quv|* Quy =0, (1.0.2)

which in addition are obtained as optimizers for a certain variational problem. The argu-
ments are based on rearrangement techniques introduced in Chapter 3 but instead of doing
everything in z-space, we perform a symmetrization in Fourier space. For n > 2 we can
extend the Fourier rearrangement to a Fourier Steiner rearrangement in codimension n — 1,
this is given by

ufe = FH(F(u)*e), (1.0.3)

where v € L?(R™). In Chapter 8 many properties of this symmetrization are mentioned and
proven. The main focus definitely lies on the cylindrical symmetry and closely follows the
results from [24]. Note that in one space dimension the question on cylindrical symmetry
becomes void but the conjugation symmetry is still valid. A proper symmetrization in that
case is given by
fr=9191D,

where f € L?(R). Clearly, this symmetrization concept can easily be generalized for the
higher dimensional cases. This will be extensively done in Chapter 6.

In both articles, [5] and [6], the arguments are heavily dependent on a topological feature

of the set {|§;\V| > 0}, i.e. it has to be connected. The core lemma in most of the symmetry
results is the following (see [24] for an in-depth discussion):



Lemma (Equality in the Hardy-Littlewood Majorant Problem in R™). Let n > 1 and
p € 2N U {0} with p > 2. Suppose that f,g € F(LP (R™)) with 1/p + 1/p’ = 1 satisfy the
majorant condition

I <g(§) forae {eR™
In addition, we assume that f is continuous and that {€ e R™: \f(§)| > 0} is a connected
set. Then equality

Iflze = llglLe
holds if and only if R .
7le) = el(a+ﬁf):q‘(§) for all £ e R™,

with some constants « € R and f € R™.

Clearly, the approaches on proving connectedness vary vastly between Chapter 6 and
Chapter 8. This can be exemplified via one-dimensional half wave equations of the form

i = |V|u — |ul*wu, (HW)

where u : [0,T) x R — C and ¢ € N. Again, consider boosted ground states (see Chapter 8)
Qu.~ € HY/2(R) for (HW). The go-to approach in [5] to show that {|Qu | > 0} is connected
comes from analyticity arguments and Paley-Wiener theory. Clearly, the Fourier symbol
of the operator |V| is not analytic and thus we cannot use the arguments from Chapter 6.
Instead we can study a Minkowski sum of an open set to conclude a symmetry result. This
small lemma is interesting on it’s own and shows again how topological aspects play a key
role:

Lemma. Let Q € R be open and not empty. Assume that

m

Q=@
j=1

for some m = 2. Then it holds that
Q € {R>O7 IR<0) R}

Note that openness is absolutely crucial, otherwise Z would be another solution. In
higher dimensions one might still conjecture that € is connected.

Last but not least, in Chapter 6 we study linear Schrodinger equations of the form
P(D)Y + Vi = EY,

where V' is a given potential and F an eigenvalue. The operator P(D) stands for a self-
adjoint, elliptic constant coefficient pseudo-differential operator of order 2s. Again, we are
interested in existence and symmetry questions concerning ground state solutions. In the
case of P(D) = —A many results are already known and proofs involve the corresponding
heat kernel e*®. For higher order operators, e.g. 2s > 1, uniqueness of ground states
might even fail. Under very natural assumption, for example that the Fourier transform of
the potential V' is negative and V' € L*(R™), we can still show existence and conjugation
symmetry of solutions. This will be done by using the following symmetrization

fr=371FfD.

In the end, this will be a simple phase retrieval problem, i.e. given the modulus of the
Fourier transform of a function one tries to reconstruct its phase. In that case we don’t need
any advanced argument which are otherwise crucial in the nonlinear case.



Chapter 2

Content and Structure

The first parts of this thesis are given by two motivational chapters. These serve the purpose
of giving a short introduction to the main ideas behind some symmetry results. After those
the main articles given by [5] and [6] are included, each of those chapters is preceded by a
simple guideline giving a short breakdown of all ideas.

Chapter 3

Classical Results on Rearrangements

We begin by introducing the main ideas behind most symmetry results in Chapter 8. This
readily leads us to understand the symmetric decreasing rearrangement in R™ and some
slight modifications of it, e.g. Schwarz and Steiner symmetrization. Clearly, the aim of this
chapter is a step by step proof of the Brascamp-Lieb-Luttinger inequality (see [8]) given by

Theorem (Brascamp-Lieb-Luttinger Inequality). Let (f;);en,. be a sequence of nonnegative
functions on R™, vanishing at infinity. Let k < m and let A = (a;;) (i j)en, xN,, be a matri.

Consider .
I(fla"'vfm) ::/ an (ZCL”.’&) dxy -+ - dxg.
(Rm)F

j=1 i=1

Then I(f1, ..., fm) <I(ff, ..., f%).

Chapter 4

Positive Definite Functions

Similar to Chapter 3, we give a basic understanding for properties of positive definite func-
tions. To fully grasp how impactful such a simple generalization of postive definite matrices
is we include a proof of Bochner’s Theorem.

Theorem (Bochner’s Theorem). Let f : R™ — C be continuous. f is positive semi-definite
if and only if there exists a monnegative Borel measure p on R™ such that

@) = F)(e) = i [ edue).



Clearly, many of the smaller results leading to this exact theorem are included and
sometimes a simple proof is sketched to get a feeling for many useful properties. Naturally,
positive definite functions occur in Chapter 6 and Chapter 8 under very simple assumptions,
e.g. if f e L?(R") and f € L'(R") then f*: R" — C is continuous, bounded and positive
definite.

Chapter 5

A Guideline on Symmetry and Ground States

This chapter is included for the sole purpose of giving a short yet understandable overview
to one of the two main articles included in this thesis (see Chapter 6). We introduce the
notion of ground states for a wide class of linear and nonlinear PDEs. Outlines of many
proofs are included and heavily use the introductory results in Chapter 3 and Chapter 4.

Additionally, we give a gentle introduction to the Hardy-Littlewood majorant property
and include a counterexample in the case of the real line R (see Section 5.3).

Theorem. Suppose p > 2 is not an even integer, then there are trigonometric polynomials
P and Q with coefficients in {—1,0,1} such that |P,| = Qn and

1Pl ey > (1 + O)@xll e ()

with . .
‘P)\‘ < Q)\v

where Py (resp. Q,) is the extension to R (see Section 5.3) and C = C(p) is a constant
only dependent on p.

Chapter 6
On Symmetry and Uniqueness of Ground States for Linear and Nonlinear
Elliptic PDEs

This chapter is a direct copy of the article [5] with some minor changes due to formatting.

The aim of this article is to give various uniqueness and symmetry results for ground
states that arise from a wide class of linear and nonlinear elliptic PDEs. Instead of using
classical methods, we take an approach by Fourier methods, i.e. we consider the following
symmetrization

fr=9719fD (2.0.1)

for functions f € L?(R™). Following some ideas introduced in a recent paper (see [24]) we
can conclude an interesting symmetry result.

Theorem (Symmetry for Nonlinear Ground States). Let n = 1, s > 0, and 0 € N with
1 <0 < oy(s,n). Suppose @ € H*(R")\{0} is a ground state solution of (8.1.3) where A € R
satisfies (6.1.6). Finally, we assume that e'lQ € L*(R™) for some a > 0. Then it holds
that

Q(z) = Q" (z + x0)



with some constants a € R and xo € R™. Here Q* : R* — C is a smooth, bounded, and
positive definite function in the sense of Bochner. As a consequence, it holds that

Q°(—z)=Q*(z) and Q°(0) = |Q°(x)| forallzeR™.

If, in addition, the operator P(D) has an even symbol p(§) = p(=¢&), the function Q°
must be real-valued (up to a trivial constant complex phase). Consequently, any ground state
Q for (8.1.3) is real and even, i.e., we have Q(—z) = Q(x) for all x € R™.

Chapter 7

A Guideline on Symmetry for Traveling Solitary Waves

Similar to Chapter 5, this part of the thesis serves as an overview and introduction as well.
Many of the main results in Chapter 8 will be discussed and outlines of proofs will be given.

Additionally, we include a counterexample when imposing non-connectedness on a certain
level set. The argument is based on the recent article [24] but adapted to our symmetrization.
Let f be a special function (for a detailed construction see Section 7.5). Then we can
conclude that [ f] ;) = | f*] z4®) and

F(f) = " F()*,

where the phase function 9 : R? — R does not need to be affine in general.

Last but not least, a small section on a numerical scheme will serve the purpose of a vi-
sualization. The scheme will be based on a spectral renormalization method which is found
in [12].

Chapter 8

On Symmetry for Traveling Solitary Waves for Dispersion Generalized NLS

The last chapter in this thesis contains the article given in [6]. As in Chapter 6, some
changes are made due to formatting.
The main results consider a class of dispersion generalized nonlinear Schrédinger equa-
tions of the form
i0yu = P(D)u — |u|*u,

where P(D) denotes a pseudo-differential operator of proper order. Symmetry results for
traveling solitary waves with o € N are proven with arguments based on a Steiner type rear-
rangement. One of the main results dealing conjugation symmetry and cylindrical symmetry
is the following:

Theorem (Symmetry of Boosted Ground States for n > 2). Let n > 2 and suppose P(D)
satisfies Assumptions 4 and 5 with some s = % and e € S"~1. Furthermore, let v = |v|e € R"
and w € R satisfy the hypotheses in Theorem 8.1.1 and assume o € N is an integer with
0 <o <ox(n,s).

Then any boosted ground state Qv € H*(R™) is of the form

Quyv () = €7 QP (x + o)

with some constants o« € R and xg € R". As a consequence, any such Q. v satisfies (up to
a translation and phase) the symmetry properties (P1) and (P2) for almost every x € R™.



Chapter 3

Classical Results on
Rearrangements

This chapter is devoted to classical results concerning the symmetric decreasing rearrange-
ment which is found in [25]. We will recall some of the basic ideas and definitions, includ-
ing the Steiner and Schwarz symmetrization. Eventually, a proof of the Brascamp-Lieb-
Luttinger inequality will be our goal. The main inspiration for this is found in [8]. We
will prove this result in several clear steps and follow the original article quite closely. This
serves as a gentle introduction yet giving a very deep and useful result.

In [6] we will extend this idea and use methods that were first investigated in [24]. The
following introduction will be very useful to the reader and contains all the techniques needed
to successfully understand many ideas in Chapter 8.

3.1 Preliminaries and Basic Results

In the following, let A < R™ be a Borel measurable set of finite Lebesgue measure. We
define A* as the symmetric rearrangement of the set A as the open ball around the
origin whose volume is equal to the volume of A. To be more specific we have

n—1
A* = B,(0) with £"(A) = Mrn,
n

where |[S"7!| is the surface area of the unit sphere S”~!. One of the main tools in the
following results is clearly the layer cake principle. A proof will be included for the sake of
completeness.

Lemma 3.1.1 (Layer Cake Principle). Let v be a measure on the Borel sets of [0,0) such
that (t) := v([0,t)) is finite for all t > 0. Let (2,3, p) be any measure space and f a
nonnegative measurable function on Q2. Then

/ (00 )(@)uldz) = / WL, 1)) (i),
Q 0

where L(f,t) := {x € R"| f(x) >t} is the superlevel set of [ with respect to t.

Proof. 1t’s easy to see that

/ " WL )t = / " [ xaotutdnan - [ / " atrn @dty(d)



by Fubini’s theorem. The rest follows from rewriting the integral using the definition of the
characteric function. O

Remark. We can generalize Lemma 3.1.1 by the use of a signed measure, e.g. v = v — Vg,
where vy and vy are positive measures on the positive real half-line [0,00). But then one
needs to add the following assumption: Fither

| et < v o [ a(i ot < v
0 0

The layer cake principle from Lemma 3.1.1 allows us to widen the notion of rearrange-
ments from Borel sets in R™ with finite measure to functions which have similar properties
concerning their superlevel sets.

Definition 3.1.1. Let f : R® — C be a Borel measurable function. We say that f is
vanishing at infinity if

LM(L(f|,t)) <400 forallt >0,

where L(|f|,t) := {x € R™| f(x) > t} is the superlevel set with respect to t.

Before giving the full definition for a rearrangement of a proper function we want to take
a look at the simplest one. We define the symmetric-decreasing rearrangement of the
characteristic function of the set A as

XA = Xa#.

Now, a completely natural extension using the mentioned layer cake principle in Lemma
3.1.1 is the following.

Definition 3.1.2. Let f : R™ — C be Borel measurable and vanishing at infinity. We define
the symmetric-decreasing rearrangement of f as

(=) ::/O XL (£, (@)dt. (3.1.1)

This symmetrization has a few simple yet important properties. Those are listed in the
following lemma, but we will prove only a hand full of them as most techniques are very
similar.

Lemma 3.1.2 (Rearrangement Properties). Let f : R®™ — C be Borel measurable and
vanishing at infinity, then

(i) f* is nonnegative.
(ii) f* is radially symmetric and nonincreasing.
(i1i) f* is lower semi-continuous and L(f*,t) = L(|f],t)* for each t > 0.

(i) If ¢ := @1 — po is the difference of two monotone functions w1 and s such that
fR" (¢1 0 f)(x)dx < +o0 or fRn (20 f)(x)dx < +o0, then

| el = [ (oo @i

10



(v) If U : R, — R, is nondecreasing, then (Vo |f])* = Wo f*.

(vi) The symmetric-decreasing rearrangement is order preserving, i.e.
suppose g has the same regularity as f, then

f(x) <g(z) VzeR" = f*(z)<g*(x) VreR™

Proof. We would like to show that L(f*,t) = L(| f],¢)* for each ¢ > 0. The other statements
follow in a similar fashion using the basic definition of a symmetric-decreasing rearrange-
ment in (3.1.1) and the layer cake principle from Lemma 3.1.1.

Fix t > 0 and let g € L(|f],t)*, then for all s € (0,¢] we have

L(If1,t) = L], 5)

and hence it follows that
L(|fl,6)* < L(|f], s)*.

Clearly, from this we deduce that xr(|s|,s)%(¢) = 1 for all s € (0,¢] and therefore f*(q) >t
which implies

L(|f],8)* = L(f*,1).

For the other inclusion we assume that ¢ ¢ L(|f|,t)*. Next for all s > 0 such that ¢ €
L(|f],s)* we conclude that 0 < s < ¢ holds true. Hence f*(q) < t, which readily gives
q¢ L(f*,t). Upon taking the complement in R™ we find

L(f*,t) = L(|f1,.0)*.

3.2 Basic Inequalities for Rearrangements

In this section we recall some of the most basic inequalities dealing with the symmetric-
decreasing rearrangement (e.g. see [25]). With the given theorems it will be easy to un-
derstand how the Brascamp-Lieb-Luttinger inequality in Section 3.2.1 emerges, which is
ultimately proven within the last part of Chapter 3. The following introduction will give
a clear idea on how those inequalities work but many techniques in proving those will be
provided later in the proof of Theorem 3.2.4.

The first theorem is the most basic version of an inequality containing symmetric-
decreasing rearrangements. This is the foundation and even serves as a guideline for Chapter
8.

Theorem 3.2.1. Let f,g : R® — R be nonnegative and vanishing at infinity. Then the
following inequality holds

f@)g(x)de < | f*(x)g*(z)d.
R R

For the next theorem we notice the following generalization: Let f and g be nonnegative
functions in L?(R™) then we have

[ 1@ =g @)Pde < [ 1f@) - g(o)Pda.
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This readily follows from applying Theorem 3.2.1. Clearly, an obvious generalization would
be

If* = g*ler@ny < If — 9lle@nys
which actually turns out to be true as well. We henceforth say that the symmetric-decreasing
rearrangement from Definition 3.1.1 is non-expansive on LP(R™). This fact follows basically
from the convexity of | - |P. The following theorem proves this fact and even gives a slightly
more general result.

Theorem 3.2.2. Let f and g be nonnegative functions on R™ which are vanishing at infinity.
Additionally assume that J : R — R is a nonnegative convez function with J(0) = 0. Then

/ Jo (f* — g*)(z)dx < / Jo (f—g)(z)dz.

The next result is basically the prototype for the Brascamp-Lieb-Luttinger inequality
in Section 3.2.1 and uses convolutions instead of simple products. It’s called the Riesz
inequality (see [25]).

Theorem 3.2.3 (Riesz inequality). Let f, g and h be nonnegative functions on R™ which
are vanishing at infinity. Then we have

f@)(g=h)(z)de < [ f*(2)(g* * h*)(z)dz.
R® R®

3.2.1 The Brascamp-Lieb-Luttinger Inequality

In this part of the introduction we are dealing with a step by step proof of the Brascamp-
Lieb-Luttinger inequality given in Theorem 3.2.4. We will be using this theorem on many
occasions and show it’s usefulness when introducing the main result in Chapter 8. This
inequality was first shown in [8] and proved by induction over the dimension. We will follow
the steps therein and fill out some details which were not included in the original article.

Theorem 3.2.4 (Brascamp-Lieb-Luttinger Inequality). Let (f;)jen,, be a sequence of non-
negative functions on R™, vanishing at infinity. Let k < m and let A = (ai;) @ j)en, xN,, e
a matriz. Consider

m k
I(fla"'afm) = /]R ) nfj (ZalJ%) dxy - - dxy.
nkj 1 )

Then I(f1, ..., fm) < I(ff,..., f%).

Before going to prove this result we need some advanced knowledge concerning convex
sets. The next lemma covers Brunn’s part on a general problem dealing with convexity
(see [8] for references).

Lemma 3.2.1. Let C < R""! be a convex set, let v e R and V(t) := {x e R" T vz =t}
for t € R. Additionally, let S(t) := L™(V(t) n C). Then S(t)'/™ is a concave function of t
in a interval where S(t) > 0.

Corollary 3.2.1. Let C, v and S(t) be as in Lemma 3.2.1. Assume that C is also a balanced
set. Then we have S(t) = S(—t) and whenever 0 < t1 <ty one has S(t2) < S(t1).
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The proof of the Brascamp-Lieb-Luttinger inequality in Theorem 3.2.4 is made in sev-
eral steps and is at its core a proof by induction over the dimension n. The hard part
will be going from dimension n = 1 to n = 2, the rest follows in a more or less straightfor-
ward manner. Nevertheless this will be included as well. Without further ado, assume n = 1.

Using the layer-cake principle from Lemma 3.1.1 and Fubini’s theorem we can restrict
ourselves to a finite sequence of characteristic functions. We will call them Fi, ..., F},, and
for easier notation shall use the same letters for their corresponding sets. The distinction of
those will be clear form the context.

Recalling the outer regularity of the Lebesgue measure (see [25]) we find for all F; a sequence
(F)j.1)ien of open sets such that
Fj - Fj,l o ijlfl

and additionally lim;_,o F}j; = F}. So upon using the dominated convergence theorem we
have
lim I(Fyg,...,Fpy) = I(F1, ..., Fin).

l—0

Recall that every open set of the reals R is given as a disjoint union of countably many open
intervals. A simple proof of this fact goes as follows:

Proof. Let O < R be open and nonempty. For z,y € O we define the following equivalence
relation
x ~ y <= [min(z,y), max(z,y)] < O.

Those equivalence classes are pairwise disjoint open intervals in R, possibly being unbounded.
Let € be the set of equivalence classes, then O = | ;.. I. Clearly for each class I we can
choose 77 € I N Q and find that the map ¢ : &€ — Q with ¢(I) = r; is injective. Hence by
definition € needs to be countable. O

Using the monotone convergence theorem we conclude that it is enough to show a proof
for characteristic functions of finite disjoint unions of open intervals which is a standard
procedure laid out in [25]. This observation leads to the first part of the proof.

Lemma 3.2.2. Let (f;)jen,, be a finite sequence of characteristic functions of intervals with
the following form

Ij = (bJ — Cj,bj + Cj).

Furthermore, assume that k < m, A = (aj) (i jyen, xN,, 8 a matriz. Let t € [0,1] and define

fi(x|t) :== fj(x +b;t)
Then

m k
I(t) := /Rk jl:[lfj <; aijmi|t> dzy - dzy,

is a nondecreasing function of t € [0,1].

Proof. As far as the proof goes, note that I(t¢) is the volume of

S = ﬁ Sj,
j=1
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where

k
Sj = {.’L‘ € Rkl 2 Qa;jT; € (bj(l - t) — Cj,bj(l — t) + Cj)}.
=1

Next, consider the following set

m k
C:= m {x e Rk+1| —¢ < Zaz‘j%‘ —bjTpi1 < i}

j=1 =1

It is clear that C is a convex and balanced set. We remark that I(¢) is also the volume of
the intersection of C' with the plane where z;,1 = 1—1t, for t € R. Recalling Corollary 3.2.1
we see that I(t) has all the desired properties needed. O

Remark 3.2.5. The technique above is called a sliding argument and was introduced in [8].
One easily sees that for each j € Ny, we have f;(z|0) = f;(z) and f;(z|1) = fi(x) by
recalling the definition of a symmetric-decreasing rearrangement in (3.1.1).

Next we let the f;’s be characteristic functions of a finite union of open sets. This
will be the second step in the proof of Theorem 3.2.4. One can already guess how further
advancements will work out.

Lemma 3.2.3. Lemma 3.2.2 from above holds if (f;)jen,, is a sequence of characteristic
functions of a finite union of disjoint open intervals.

Proof. Let f; be a characteristic function of n; open and disjoint intervals where j € N,,.
To prove the claim we make an induction over N := {ny,...,n,,}. We define that M < N
if m; < n; for j € N and m; < n; for some 7. We have already seen that the claim holds
true for N = {1,...,1}, now assume the claim holds for all M < N. Hence let f; be the
characteristic function of the following set

n;
U (qu — Cjgy bjq + qu)a (3.2.1)
g=1

where bjq + cjq < bjg+1 — Cjqr1 for j € N, and p € N,,,. Furthermore define f;(.[t) as
the characteristic function of a shifted version of (3.2.1), i.e.

n

<.

(bjg(1 =) = ¢jq,bjg(1 — 1) + ¢jq)
1

q
for t € [0, 7] with
T = I?lqn (]. — (bj’qul — bj )_1(Cj7q+1 + qu)) > 0.

For 0 < t < 7 we can apply Lemma 3.2.2 interval by interval because those a disjoint
and hence it follows that

m k
/ n fj(z a;jz;)dxy - - - day < I(7).
RE -1 i=1

At t = 7 some intervals might intersect, but then we apply Lemma 3.2.2 again to
(f;(.|7))jen,, but for some N that has been reduces to some M < N. Henceforth the claim

follows from the fact that f;(.|7)* = f¥, ie.
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m k m k
j ijTi|T)dxy - - d < * i )dxy -+ - dx.
/Rkjl—[lfg(izlaﬁ |T)dz1 - - - day, /Rkjl—[lfy(izlaﬂf)xl T

O

The third part uses the Steiner symmetrization for functions to apply Lemma 3.2.3 in
each dimension once. We will give the proper definition and some remark about rotations.
This will be absolutely crucial in the proof of the Brascamp-Lieb-Luttinger inequality in
Theorem 3.2.4 and is later used on several other occations.

Definition 3.2.1. Let f : R™ — C be Borel measurable and vanishing at infinity, then we

define the following symmetrization for the index set I :={2,...,n}
f*I (x) = f('7x27 s 71'n)*($1),
where f(-,xa,...,x,)* is the symmelric-decreasing rearrangement from (3.1.1). We call f*!

the Steiner symmetrization of f with respect to I.

From a simple point of view, the Steiner symmetrization basically does a symmetric-
decreasing rearrangement in x; but fix all the other coordinates. So we could say that it’s
a symmetric-decreasing rearrangement in codimension 1. This terminology is will be used
in Chapter 8 as well.

Remark 3.2.6. Clearly, the rearrangement operator =1 can easily be generalized to any ar-
bitrary coordinate direction. For this let V be a (n—1)-dimensional plane through the origin,
then choose an orthogonal coordinate system in R™ such that the x1-azis is perpendicular to
V. This can be achieved by a proper rotation R € O(n). To be more precise, let e € S*~!
such that Re = e1. Let (Rf)(x) := f(R™12) be the action of R on functions f : R — C,
then we define

V= RTH(RA)™M),
where R is dependent on the plane V.
Lemma 3.2.4. Let (f;)jen,, be a finite sequence of nonnegative Borel measurable functions

on R™, vanishing at infinity. Furthermore, assume that k < m and let A = (aij)(; j)eN, xN,,
be a matrix. Additionally let V' be any plane through the origin of R™. Then

I(fry ooy fon) < I(fFY, .o fEV).

Proof. First choose proper orthogonal coordinates in x € R™ such that the z;-axis is orthog-
onal to V. Then one is in the same position as in Lemma 3.2.3 and hence a proof is a simple
adaption. O

To complete the proof for Theorem 3.2.4 we need some kind of induction step to go from
dimension n = 1 to n = 2. Instead of symmetrizing around one variable, like we did for the
Steiner symmetrization, we take all the other variables and use a similar technique. This is
called a Schwarz symmetrization and is provided in the following definition.

Definition 3.2.2. Let n = 2. Consider f : R" — C to be Borel measurable and vanishing
at infinity, then for x = (x1,2') € R™ we define

(@) = 2, )" (@)

We call f*' the Schwarz symmetrization or Steiner symmetrization in codimen-
ston n— 1.
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Remark 3.2.7. As previously done for the Steiner symmetrization in Definition 3.2.1 we
can generalize the rearrangement operator =1 to any arbitrary direction with the same trick.
Let Re O(n) and e € S"~! with Re = e;. Then we define

fre:=RTH(RF)™).

For a shorter notation we will write *; instead of *e;, where e; is the unit vector in direction
J-

Now we are finally ready to give a proof of the Brascamp-Lieb-Luttinger inequality in
3.2.4. We will closely follow the original paper [8] and let us influence from simpler results
on rearrangements in [25].

Proof. First of all, let n = 2. Again, we restrict ourselves to characteristic functions as
previously done in Lemma 3.2.3.

Fix a rotation R, € O(2) with angle «, where o = 277 with r € R\Q. Now choose any set
F < R? with finite Lebesgue measure and define the following operation

Fl:= TSR,F,

where S is the Steiner symmetrization around the z-axis and T the one around the y-axis.
Clearly SF is given by it’s characteristic function, i.e.
— — N F1
XSF = XF*1 = XF -
Using the definition we see that £2(Fy) = L£2(F) for the Lebesgue measure in R?. Induc-
tively we define the set F'? by applying T'SR,, ¢ times to F.

To prove the theorem we need a finite sequence of sets (Fj)jen,, with finite Lebesgue mea-
sure. Using the procedure above, we define (F})jen,, -
By Theorem 3.2.2 we note that

HTXF-L - TXFJ HLQ(RQ) < HXF1 - XF]' HLZ(]RZ)

and
ISxF, — Sxr;llL2@®2) < |XF — XF; 2 ®2)

hold true for i, j € N,,,. Additionaly, recalling that rotations are measure preserving we find
IRaXF — Raxrllee@®e) = IxF — XF;lz2mey  ford,j e Ny,.

In the end, we want to show that all F J{I converge strongly in L?(R?) to some ball of the
same volume. Note that the short remark from before implies that we can restrict ourselves
to bounded sets. Indeed, for a given € > 0 we find some Fj contained in some centered ball
such that |xr — X7, | 2(r2) < €, hence

HXqu - XFJ?HL2(R2) <€
for all ¢ € N. Once we have shown that F jq converges, it follows immediately for F’ ;1 as well.
So from now on, assume that (F})jen,, is a sequence of bounded sets with finite Lebesgue

measure.

Next consider the upper half-space part of F;]. This set is bounded by a graph of a sym-
metric, nonincreasing function h;, which can be chosen to be lower semicontinuous and
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uniformly bounded (see [25] and the proof of Lemma 3.2.2). Then there exists a sub-
sequence given by h; ;) that converges everywhere to a lower semicontinuous function h;
which bounds the upper half-space part of a set D;. We want to show that each D; is a disk.

Henceforth, consider any strictly symmetric-decreasing function g; for every j € N,, and
define

A? = ng — XF} ”L"’(R2)-

Using Definitions 3.2.1 and 3.2.2 we see that ¢g*! = g*2 = R,g = g. For later use, we shall
write ¢g*2 = Tg and ¢*' = Sg. Again, by Theorem 3.2.2 we find that A? is nonincreasing
for each j and ¢, hence has a limit denoted by A;. Using the previous thoughts on h; 4, we
find that x Fg converges pointwise a.e. to xp;. Since X e is bounded by xp, for each | we

can use the dominated convergence theorem to show that
Aj = lg; — xp,lr2®2)-
Following the simple inequalities already given in the proof, we conclude that
X a1 = TSRaxp, |r2(@2) = ITSRaX puer = TSRaxp,ll12(r2) = 0 as 1 — +o0,
Hence by monotonicity of A? we have
Aj = lg; = TSRaxp, | r2(r2)-

Upon recalling the definition of g; we find it actually is rotationally invariant. Hence

lg; = Raxp, |2 @2) = 95 — xp; |22y = 4y,
and so it’s easy to see that

l9; = Raxp, lz2r2) = |95 = TSRaxD, | L2(r2)-

Again, by Theorem 3.2.2 and recalling that g is strictly decreasing, we see that TSR, xp, =
RaXp,; almost everywhere, but then R, xp, has a symmetry with respect to a reflection P;
around the z-axis. This implies that Roxp, = PjRaXxp, = R-aPjxp; = R_aXxp,;- Whence
it readily gives the invariance of D; under the rotation Rg,, which is a rotation with an
irrational angle. Defining the function p;(6) := ||[xp, — Rexp,|r2(r2) and using a density
argument, we find {g; = 0} is dense in [0, 27). Upon showing that p is continuous we find
Xp; = Roxp, a.e. for every 6 and so D; = F;".

Clearly, it is sufficient to show continuity of

r;(0) = /}R2 xp,Roxp,dx.

Thanks to the approximation of L?(R?) functions using C*(R?) functions by mollification
(see [31]) there exists a sequence (u;4)jen © C*(R?) such that

Ixp;, = ujqlr2mey =0 asq— +oo.

Using Schwarz’s inequality we have

L2(R2) HXDj HL2(R2)

/]Rz (XD, — uj,4)RoXD;dz| < |IXD; — Ujq
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and 50 7j,4(0) = [2 uj,qRoX D, dx converges uniformly to r;(f). It is easily seen that

75,4(0) = /RZ (R-guj,q)xp,;dx

and so r; is continuous. Hence we have that D; is a ball for each j € N,,.

Recall that there exists a subsequence of x Fo converging pointwise a.e. to xp,, where each
F;’ is contained in some fixed ball dependent on j. But then using the dominated convergence
theorem we easily see that this subsequence converges to xp, in L?(R?). Therefore we find
that ||x FI—XD, |2 (r2) is a decreasing sequence by Theorem 3.2.2. So not only subsequences
converge to xp, but also the whole sequence.

Upon inspecting D; again, we find that xr, converges strongly to X}j in L2(R?) for each
7 € N,,,. But then one deduces that

lim I(F{,...,Fl)=I(F},...,E}).

q—0
Upon using Lemma 3.2.4, this proves that I(F},..., F4%) is nondecreasing and hence the
theorem follows for n = 2.

Now let n > 2. The basic idea will be very similar to the two dimensional case. Let T
be the Steiner symmetrization along the xz,-axis and S the Schwarz symmetrization per-
pendicular to the x,-axis, i.e. Sf = f*~. Again, for each j € N,,, we consider the sequence
{(TSR)*xp,}, where R € O(n) is any rotation that rotates the z,-axis by . Recalling the
steps for n = 2, we have the following estimates

ITxE, — Txrll2@ey < IxF — x5 2 @)

and
”SXF7 - SXFJ'HL2(R") g HXF1 - XFJ' HLQ(R")

for i, j € N,,,. Furthermore, the rotation part fulfills
IRXF; — RXF; [ 2®e) = IXF — XF; [ 22mny  for i, 5 € Ny,

Again, we can restrict ourselves to bounded sets. Using the analogous arguments as before
we can deduce that the limiting sets D; for each j € N,,, are rotationally symmetric around
the x,-axis (also RD; satisfies this property). From the induction step we already know
that the respective cross sections are (n — 1)-dimensional balls. Now we only need to deduce
that each D; is a ball. For this consider n € C*(R") radial, such that [, n(z)dz = 1.
Additionally, let n(x) := ¢ "n(z/¢) be the standard mollifier and consider xc ; := 7c * X,
From basic arguments we know that x. ; is smooth for each j € N,,, and that it converges
strongly to xp, in L*(R") as € — 0% (see [31]). As 7 is a radial function one deduces
that x.; has the same symmetry properties as xp,. Let y; := (1,...,2;) where i € N,,.
Recalling that D; and RD; are rotationally symmetric around the x,-axis we find continuous
functions f and g, such that

Xe,j(T) = fj(’\/ [Yn—2|? + xi—lamn) = 9;(V|yn—2|® + 22, 2n_1).

Now let’s consider x,, = 0, then we have for each |y,_a| > 0

gj(‘ynf2|7xn*1) = fj(\/ |yn72|2 + miflvo)'
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This argument can be done for different axes, i.e. D; and RD; are rotationally symmetric
around two perpendicular axes. But this readily implies that

Xe,j(x) = f](|x‘70)a

SO Xe,j is radial and hence xp, is radial as well for each j € N,,. The rest of the argument
to deduce the actual inequality follows analogously to the n = 2 case. O

Remark 3.2.8. The proof of Theorem 5.2.4 is basically done repeating Lemma 5.2./ by
chaining a rotation. As already stated, the hard part was going from n =1 to n = 2, where
we heavily used a simple density argument.

Additionally, one can easily check how the Riesz inequality from Theorem 3.2.3 is a special
case of the Brascamp-Lieb-Luttinger inequality. Later, we will give a version of Theorem
3.2.4 for the Steiner symmetrization in codimension n — 1 (see Chapter 8).

Another possible idea for a proof of the classical Brascamp-Lieb-Luttinger inequality in The-
orem 3.2.4 is to use Helly’s selection theorem. This is discussed in [25] for the Riesz in-
equality.
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Chapter 4

Positive Definite Functions

In this Chapter we will talk about basic properties of positive definite and positive semi-
definite functions in the sense of Bochner (e.g. see [31]). As before we give a gentle intro-
duction with some simple results which lead to the goal of proving Bochner’s theorem in
Section 4.2. Our main references will be [33] and [31].

In particular, Bochner’s theorem will give us a deeper understanding of the main results
and their manifold ramifications in Chapter 6 and 8.

4.1 Preliminaries

A positive semi-definite function is basically an extension of the well known positive-definite
matrices which were probably introduced in the first year of studying mathematics. Without
further ado, the definition is as follows.

Definition 4.1.1. Let f : R® — C be a continuous function. We say f is positive semi-
definite if, for all N € N, all pairwise distinct x1,...,zx € R"™ and all z1,...,zxy € C, the
following quadratic form is nonnegative

N N
Z Z zjzrf(z; —xp) 2 0.
J=lk=1

We say that f is positive definite if the quadratic form above is positive for all pairwise
distinct z1, ..., zn, € C\{0}.

For the first theorem we show some simple properties that will be very useful in the
following results yet will be interesting on their own. For many of those we will include a
short prove for the sake of completeness.

Theorem 4.1.1. Let f : R™ — C be positive semi-definite. Then the following are satisfied.
(1) f(0) = 0.

(2) f(—z) = f(z) for all z € R".
(3) |f(z)| < f(0) for all z € R™.

(4) f =0 if and only if f(0) = 0.

(5) A linear combination with nonnegative coefficients of positive semi-definite functions
is still positive semi-definite, i.e. let (f;)jen,, be a sequence of positive semi-definite
functions and let (bj)jen,, S Rxo then f:= 37", bjf; is positive semi-definite.

20



(6) If one of the f;’s in (5) is positive definite and (b;) en,, S Rso then f := Z;nzl b;f; is
also positive definite.

(7) A product of positive definite functions is still positive definite.

Proof. The proof of the first statement already shows the idea how the others parts will
work out. For (1) simply take N =1, z1 =1 and 27 = 0.

The second property follows by taking N = 2, z; = 1, 2o = ¢ with any complex num-
ber g € C, 1 = 0 and z3 = x for any x € R"\{0}. Upon using Definition 4.1.1 we find

af () +qf(—x) + (1 + |g[*) £(0) > 0.

Henceforth taking ¢ = 1 and g = i respectively we have the following two inequalities

f(@) + f(=2) +2f(0) = f(z) + f(—2) = 0

and
i(f(z) — f(==2)) +2f(0) = i(f(z) — f(—=)) =0,

which both follow from property (1) in the theorem. As a consequence i(f(z) — f(—x)) € R
and also f(z)+ f(—x) € R. Simply splitting f into real and imaginary parts, i.e. f = f1+ifa,
we finally see that

f(z) = f(—=) for all z € R™\{0},

which implies property (2) by using property (1) once more. For the third property one
takes N = 2, 1 = 0, 22 = z for any « € R"\{0}, z; = |f(z)| and 22 = —f(—x). Hence
Definition 4.1.1 and property (2) from above give

2|f (@) (0) = 2/ f(2)° =0,

which readily implies what we were looking for. Notice that property (4) is easily seen to
follow from property (3).

Properties (5) and (6) are obvious and a simple application of Definition 4.1.1.

For the last property we use a Schur decomposition (e.g. see [33]), i.e. if A is a posi-
tive definite matrix then there exists a unitary matrix U, i.e. U¥ = U~!, where UY = UT
is the Hermitian conjugate, such that A = UDU¥ with D being a diagonal matrix filled
with eigenvalues 0 < A; < ... < Ay. Note that this property will be important. Now let
f and g be positive definite, hence using the remark above we can decompose the matrix
Gy = (g(x; _xj)(i7,j)eN?\,> coming from Definition 4.1.1 using the Schur decompositon. Then
it readily implies that

N
g(x; —xj) = Z Wik Wsl -
k=1
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Following this idea we have

N N
Z ZiZj z;)g(x; — Zi f (@i — x5) Z Uik Wk Ak

Mz
5
I

M=

M=
_
ht\z

i=175=1 i=175=1 k=1
N N N
= Z Ak Z Z 2 Zj Uik f (27 — x5)
k=1 i=1j=1
N N
>\ Z 2 2z f Z Uik Uk
i=1j=1
N
=1 ) 2P £ (0).
i=1
This last part is nonnegative for every z = (z1,...,2x) € CV and hence upon assuming
that z € CV\{0} we even see positivity. This concludes the proof for property (7) in the
theorem. O

Remark 4.1.2. For real-valued positive definite functions we can give another character-
ization. From Theorem 4.1.1 it is clear that such a function must be even. So upon taking
z; = a; +ib; we see that

M=
M=

ziZef(x; —xy) = 1 + I

<
Il
—
B
Il

1

where

N
Z ajar + bjby) f(z; — xx)

k=1

|
™=

I
—_

J

and

M=

=i arbj(f(zj — wk) — f(ar — ).

b=

k=1

But recalling that f is even we find I = 0. So a real-valued positive definite function can be
characterized as follows:

Let f : R®™ — R be continuous. Then f is positive definite if and only if f is even and
for all N € N, all pairwise distinct x1,...,zxy € R™ and all z1,...,zxy € R\{0}, the following
quadratic form is positive

N
Zzzkf (xj —xx) > 0.

k=1

™=

Il
—

J
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4.2 Bochner’s Theorem

One of the most influential results in the whole theory of positive semi-definite functions is
their connection to Fourier transforms.

Before going into details, let’s give a simple introduction to the idea. Assume f €
C(R™) n L*(R") such that f e L'*(R™). Upon using the inverse Fourier transform we have

1

I@) = Gy [, JO .
Recalling the quadratic form in Definition 4.1.1 we easily see that
N N 1 A N e 2
2 3% mans ey a0 = e L 1© Yaet| de

So if f is nonnegative we find that

Z Z zjzpf(xy —x) =0,

which implies that f is positive semi-definite. One simple remark is that we could have
taken the Fourier transform instead of its inverse.

It is clear that this approach cannot work in a more general setting. For a better understand-
ing we have to replace the measure. A first result is given by an integral characterization
using test functions from the Schwartz space S(R™).

Lemma 4.2.1. Let f : R™ — C be continuous. Then f is positive semi-definite if and only
if f is bounded and

/ A [z —y)e(@)e(y)dedy = 0
for all test functions ¢ in the Schwartz space S(R™).

Proof. To show the first part we use a classic argument. Suppose that f is positive semi-
definite, then by Theorem 4.1.1 we see that f is bounded hence the integral

I(fK) = /K /K f(& — y)p(@)p(y)dudy

is well defined for K = R™ and all test functions ¢ € S(R™). Using a standard approximation
argument we see that for every e > 0 there exists a cube C < R” with

[I(fs R~ 1(f:0)] < 5.

The very definition of a Riemannian sum gives us

N N
| €
I(FW) = 307 Fy — a)e(a;)e(en)qTe| < 3
j=1k=1
where ¢ = (q1,...,qn) € CV is the properly chosen weight. This readily implies that

I(f;R™) + e > 2 Z flzj = zn)o(z))e(@r)q;ar,

j=1k=1

23



so letting ¢ — 07 and using that f is positive semi-definite imply the first half, i.e.
I(f;R™) = 0.

For the second half we use a Fourier theory based argument and some approximation results
with mollifiers. Assume that f is bounded and I(f;R™) > 0 for all test functions. Let
@(z) := p(—x), then we can rewrite the integral using a convolution in the following way

AR = [ f@)eng)(@)da.

Let (21,...,2x) € CN and (x1,...,2x) € (R™)Y, then choose the following test function

N
= > zime(w — ),
j=1

where
() := L e elel?
Ne = o

From standard methods we deduce that the Fourier transform of ¢, is given by

- , <1012
F (. - - oy ,— €]
(pe)(§) @) j:§1zje e~ sIEF°,

and henceforth we have

Flipe * P)(E) = (2m)"?|F (o) ()
N e,
;é;zje

2

= (2m) /2 e 1lEP°

27 E @I F () (€)

I
1=
||M2

<
Il
-
bl
-

[
Lq
/—\
I Mz

N
> X e~ - m)) (©).

Using basic harmonic analysis we deduce that

N N N N
2, 2, Al —a) = 2, ), 7 lim | f@ne(a = (2 - ww)da
j=1k=1 Jj=1k=1
= lim f(@)(pe * 00)(x)dx
e—0t Jpn
>0
This implies the second part of the lemma and finishes the proof. O

As a second result we need some kind of generalization of Riesz’ famous representation
theorem (see [31] and [33]). Without a proof, the theorem goes as follows:

Theorem 4.2.1 (Riesz’ representation theorem). Let 2 be a locally compact metric space
and J a linear, continuous and nonnegative functional on the space of continuous functions
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with compact support CO(Q)). Then there exists a nonnegative Borel measure u on Q such
that for all continuous functions f € C°(Q) the following holds

If) - /Q fdp.

The following result is a generalization in the case of {2 = R™. In this thesis this space
is sufficient to work but could be generalized in a suitable way if needed.

Theorem 4.2.2. Let J: CL(R™) — C be a linear and nonnegative functional. Then J has
an extension to CO(R™) and there exists a nonnegative Borel measure y such that for all
f € COR™) the following holds

3(5) = [ sin
Proof. First of all we show that the nonnegative linear functional J is locally bounded. For
this let K be a compact subset of R™. We need to show that for all f € C*(K) the following
inequality holds
I < CE)[f Lo (-
Upon choosing g € CP(R™) such that g|x = 1 and ¢ > 0 we have for all real-valued
f e CP(R™) the following inequality

gl flz=xy £ f = 0.
Then this implies that
IO < IHDN Lo (xe)-

Now assume that f is complex-valued. Upon multiplying f by a complex phase such that
eI(f) € R with some ¥ € R, we conclude

I(Re(e™ f)) = e"I(f).

But this readily gives .
9N = 1IN < I f =6

where we used the result from before. Hence we can choose C'(K) = J(g).

The second part will be proving the existence of the local extension of J. If the func-
tional J is restricted to C2°(K) is has a unique extension to C%(K). Now, let f € Co(K) and
let (f;)jen € CF(K) be a sequence such that f; converges uniformly to f, hence defines J( f)
as a limit of J(f;). Notice that the sequence (f;);jen ca be chosen as the convolution of f
with some suitable nonnegative mollifier and hence the extension J to C?(K) is nonnegative.

Using Riesz’ representation theorem from 4.2.1 we can find a unique Borel measure pg
depending on the compact set K which is defined on the Borel o-algebra B(K) such that

I(f) = / fdux  for all fe CO(K).
K
The measure py is finite because the restriction J|co (k) is continuous.
The last step consists of defining a proper pre-measure on a suitable ring (see [25]). Consider

C,,, which is defined to be the ring of finite unions of semi-open cubes, so we use objects
which are of the follwing form C(a,b) := {z € R"| a; < z; < b; for all j € N,,}, where
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a= (a,...,a,) € R" and b = (by,...,b,) € R*. Now let C € C,, and choose j € N big
enough such that C lies in a closed ball around the origin of radius j in R”, i.e. C' < B;(0).
Define the pre-measure 3 on €, as B(C) := ux;(C). Since uk,,,|s(x,) = ptx; we see that
B is well defined and independent of the choice of j. Recall that every pre-measure on a
ring has an extension to a nonnegative measure on the corresponding o-algebra (see [25]).
In our case we can extend 8 on €, to a Borel measure p on o(C,) = B(R"™), hence

If)= [ fdp,

R

for all f e CO(R™). O

Now we can start proving Bochner’s theorem using Lemma 4.2.1 in conjunction with
Theorem 4.2.2.

Theorem 4.2.3 (Bochner’s theorem). Let f : R™ — C be continuous. f is positive semi-
definite if and only if there exists a nonnegative Borel measure p on R™ such that

1 .
= A B3
@) =)o) = g [ (o)
Proof. First assume that there exists a Borel measure 1 on R™ such that

f(@) = F(p) ().

We claim that f is positive semi-definite. Let z1,...,zy € R™ and assume z = (21,...,2n) €
CY, then the quadratic form from 4.1.1 reads

Z Z Zef(ry —ap) =

N
Z / T dp g)

2

||M2

—15 xj

dp(§)-

\\Mz

e n/?/

But the last expression is nonnegative, hence proves the claim by using the definition of
a positive semi-definite function. Continuity of f follows from the finiteness of the Borel
measure [.

Now, suppose that f is positive semi-definite. Let J be the distributional Fourier trans-
form on §(R™), i.e. for ¢ € S(R™) we define

(0):= | F@T (@)

Assume that ¢ = |¢|> for some ¢ € §(R"). Let g := F 1(¢) and additionally define
g(x) := g(—z). Then

W)= | f@)FH(F())(@)dz

RH.
1
= @ /Rnf(w g*g)(z)dz
1
%)n/z /R L 1= @iy

7
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which is a consequence of Lemma 4.2.1. Hence J is nonnegative for Schwartz functions ¢
such that there exists ¢ € §(R™) with the property that ¢ = |¢|2. The next step is to extend
this relation to all nonnegative smooth functions with compact support.

Consider ¢ € CL(R"™) nonnegative and let n(x) = e~17"/2 be a Gaussian, then consider
@ + €2n for € > 0. It is easy too see that this is a positive Schwartz function. Hence we can
define @1 := v/ + €2n € C*®(R™). We can also show that ¢; is a Schwartz function. This
follows from the fact that 1 decays like en(-/2) for large x € R™. With the observation from
above we find

0 < 3(¢1l?) =) + ().

Letting ¢ — 07 we have the extension we were looking for. Now J is a linear nonnegative
functional on CZ(R™) and so by Theorem 4.2.2 there exists a Borel measure p such that for
all ¢ € CY(R™) the following holds

Ip) = / pdy.

The next part is a standard harmonic analysis method, nevertheless we will give some of
the details. Let ¢ € C°(R™) n Ly (R™) be normed with [¢[/;1(gn) = 1 and nonnegative. Then
define 9 (x) := (1/e)™h(e~1x) for x € R™. Additionally we need that F(¢) is in C?(R"™) and
nonnegative. But this can easily be done in the following way:

Let p € C(R™) be nonnegative and define v := ¢F~1(p * p), where the constant ¢ € R
is chosen such that ||[¢)|p1®n)y = 1. This construction even yields that ¢ € §(R") and
F(g) € CL(R™). Using the results above we easily see

[ f@pda)in = [ Twi@ine) = [ ) i),

By Fatou’s lemma we finally find

(27:)”/2/ L= /R im F()(we)dp()

lim [ F(¢)(ze)dp(x)

e—0t Jpn

—tim [ f@)(0)da

e—0t Jpn
= f(0).

This follows because f is bounded by Theorem 4.1.1. Therefore we see that the mass of u
is given by

N

[ dn =y 500,

which implies the finiteness of the Borel measure. Henceforth for the final step we check the
following limit

f(@) = Tim (f =) (x)

i
e—0+

I

m [ e “7F (o) (—€)dE

e—0+ Rn
1

= — e .
- Gy /R e rdu(e)

This readily implies what we were looking for. O
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Remark 4.2.4. There are a few simpler results which follow from Bochner’s theorem in

4.2.3 with a little work. One of those we will highlight in this remark is concerning the initial
reqularity of a positive definite function.

Assume that f is positive definite and f € C?*™(R™) in some neighborhood around the origin.
Upon recalling Bochner’s theorem we find that for every testfunction ¢ € CP(R™) we have

[t = [ a©due)

n

for some finite nonnegative Borel measure p. Now let ne(x) = e "n(x/€) where n is a smooth

function whose support is B1(0) and |n|p1@ny = 1 with e > 0. Then we have
| aeaiemane = [ -,
which converges to (1 — A)™f(0) as e — 07. As
[ it < ca - 2y s0)

we conclude that f is of class C*™(R™) everywhere. This follows from Fatou’s lemma. So
we went from a local property to a global one by simply using positive definiteness of f.
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Chapter 5

A Guideline on Symmetry and
Ground States

In this chapter we give an introduction to some symmetry properties of ground states. In
Chapter 6 a full article on those problems will follow. Last but not least a section on the
Hardy-Littlewood majorant property is included with a counterexample based in techniques
in [24].

5.1 Linear Ground States

Let P(D) be a self-adjoint, elliptic pseudo-differential operator of order 2s with constant
coefficient, where s > 0. We consider consider the linear differential equation for ) € H*(R™)

P(D)y + Vip = Enp,

where E € R is some eigenvalue and V : R — R can be understood as a potential. For
simplicity one may assume that V' is bounded. In the next part we need some growth
estimates on P(D), hence the following assumption is made.

Assumption. Let s > 0. Using the Fourier representation, the pseudo-differential operator
P(D) is given by

F(P(D)Y)(E) = p(&) f(8),
where p € C°(R™) satisfies the following growth estimates

AlE]* + ¢ < p(&) < BIE|* forall € eR™

with proper constants A >0, B >0 and c € R.

Now we can consider the following functional

W(f) == ((P(D)+ V) [, [),

where (-,-) is the inner product in L?(R"). It’s easy to see that the minimization problem
given by
Eo = inf{W(f)| f € H*(R") such that | f| p2@gn) = 1} > —o0 (5.1.1)

is well-defined. If we assume that £L™{|V]| < €} < +0 for every € > 0 we find

EO < inf p(f) = infgess(H)
£eRm
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with H = P(D) + V. Notice that H is defined via the quadratic form W and is self-adjoint.
Recall that oess(H) is the set of complex number A € C such that I — AH is not a Fredholm
operator on the respective Hilbert space (see [31]).

If we assume the existence of a minimizer ¥ € H*(R") it is easy to see that ¢ solves
P(D)y + Vip = Eg. (5.1.2)

On the other side, any solution ¢ € H®(R™)\{0} of (5.1.2) is a minimizer of W with
[¥|2mny = 1 up to some rescaling. We henceforth call ¢ a linear ground state if it
satisfies either of those constraints.

The first example of such an operator is certainly the classical case with P(D) = —A.
Uniqueness of linear ground states (up to a constant) with respect to the Laplacian is a
well known result and can be proven with different techniques (see [12]), for example with
maximum principles. The fractional case with P(D) = (—A)*® with s € (0,1) can be done
with similar methods. For more general operators it’s not quite clear how things work out
regarding the well-known results to tackle the minimization problem. Assuming that the
potential V' has a negative Fourier transform we can state the following uniqueness result
regarding a very general operator P(D). Clearly the assumption on the Fourier symbol of
P(D) we made above will be crucial as is

Ey < glel]}gfn p(§).

Before discussing some techniques used in the proof we recall the first main result from
Chapter 6.

Theorem 5.1.1. Let n > 1, s > 0 and P(D) satisfies the assumption above. Furthermore
assume that V : R® — R has a Fourier transform V € LY(R™) n L?(R™) such that V<0
almost everywhere. Lastly we assume that Ey < infeern p(§) holds for 5.1.2. Then the
following two statements can be made:

(a) Uniqueness: The linear ground state solution v € H*(R™) is unique up to a constant
phase. Moreover we have

e0P(E) >0 for all £ € R,
where 6 € R is a constant.
(b) Symmetries: Up to a constant phase the linear ground state 1 has an even symmetry,
i.e.
Y(—x) =(x) for a.e. x € R™.
Additionally, if the symbol p is even we conclude that ¢ : R™ — R is real-valued.

Remark 5.1.2. [t is quite clear that a linear ground state 1 doesn’t have to be real-valued in
x-space at all. A nice example comes from the linearized problem for traveling solitary waves
for dispersion generalized nonlinear Schridinger equations, e.g. a solution ¢ € H®(R™) for
equations of the form

(A +iv-V+ V) = Ey,
where s = 1/2 and v e R™\{0}. If s = 1/2 we need |v| < 1. Still, under suitable assumptions
on the potential V' one has the strict positivity of 6“912(5) > 0 for all £ e R™.

Recalling Bochner’s theorem 4.2.3 and assuming that 12 e LY(R™) then we can easily see
that ¥ : R™ — C is positive definite.
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5.1.1 Outlines of the Proof

Before going into detail a little preparatlon of equation (5.1.2) has to be done. In the
following we let —\A = F = Ejy and W= —V where the Fourier transform is given by

FHEO=F6) =] fla)e2éda.

Rn

Notice that p(§) + A > 0 for all £ € R™ by assumption. Hence we can write equation (5.1.2)
in the following sense

b(E) = Wi (€).

p(&) + A

Clearly @ =W« LZ because W is a L2 function, additionally W 1; e C°(R™). Now we
make the following claim:

Claim. The Fourier transform of the linear ground state v is positive.

Proof Sketch. First of all we prove that the symmetrization ¢°* = 9’_1(|12|) is also a ground
state. This can be achieved using the autocorrelation function of 1) given by ¥ 1;(5) =

fR,L &+¢) @(f’)dﬁ’ which implies

(W) (&) >0 for all £ € R™.

The positivity of p(-) + A implies the result. O

The next claim will seal the deal in proving Theorem 5.1.1. The proof heavily uses the
structure of equation (5.1.2).

Claim. There exists a constant 6 € R such that for all £ € R™ the following equality holds
D(€) = e“[P(&)-

Proof Sketch. Using the continuity of 12 and that |zz | > 0 we know there exists a continuous
function 6 : R™ — R such that

D(€) = O] for all € e R™.
Knowing that both v and * are linear ground states we deduce
(W 5 W 5)(0) = (W = W, 5)(0).

Now the idea is to show that 6§ = const., this implies the claim. O

Finally, the proof of Theorem 5.1.1 follows with a good investigation of the last claim
above.

5.2 Ground States for the Nonlinear Case

We now turn our attention to solutions @ € H*(R™) of nonlinear elliptic PDEs of the
following form

P(D)Q +2Q —|Q*Q =0, (5.2.1)
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with s > 0, 0 e N and 1 < 0 < 04(n, s) where

2n f <
o4(n,s) = {"25 or s

+00 for s >

NS N3

is the critical exponent. In this thesis we only talk about the H?®-subcritical case. With
further work one can also tackle the critical case when o = o4(n,s). As in Section 5.1 we
need some assumptions on the pseudo-differential operator P(D).

Assumption. Let s > 0 be a real number. We assume that P(D) is a pseudo-differential
operator of order 2s with a Fourier symbol p in the Hormander class Sffo that satisfies the
following conditions:

~

(1) Real-valuedness: The symbol p : R" — R given by F(P(D)u)(&) = p(&)f(§) is
real-valued.

(2) Ellipticity Condition: There exist constants ¢ > 0 and R > 0 such that
p(§) = clgl**  for €| = R.

As a consequence of this assumption we easily see that P(D) = P(D)* is self-adjoint
and bounded from below on L?(R™) with operator domain H?*(R").

Regarding equation (5.2.1) we may say that \ takes the position of a nonlinear eigenvalue.
As in Section 5.1 we need some condition on A\. We assume that

A> inf p(&),

which implies that —A\ lies strictly below the essential spectrum of the operator P(D). As
an additional consequence we have an equivalence of norms in the sense that

(f,(P(D) + N f) = | I @ny-
Note the important fact that we have a Sobolev-type inequality given by
|£[72rs2 < O, (P(D) + 2)f), (5:2.2)

where C' > 0 denotes a suitable constant and f € H*(R™). In the case of subcriticality,
i.e. 0 = 04(n,s), we can use standard variational methods (see [25] and [12]) to deduce the
existence of an optimal constant C' > 0 in the inequality (5.2.2) as well as the existence of
optimizers @ € H*(R™). After a suitable linear rescaling  — a@Q with a constant a one
can show that @Q solves equation (5.2.1). This will be the definition of a ground state in the
nonlinear case. Check the similarity with the given definition in Section 5.1.

Definition. Q € H*(R™")\{0} is called a ground state solution if Q solves equation (5.2.1)
and optimizes inequality (5.2.2).

We could also give the following characterization of ground states using an action func-

tional. For this, let
1 1

and define the set of ground state solutions by
§:={Qe K| A(Q) < A(R) for all Re K},

where K := {u € H*(R")\{0}| A’(u) = 0}. Then the following lemma yields another form
of defining a ground state.

1175
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Lemma 5.2.1. Q € H*(R™) is a ground state solution of equation (5.2.1) if and only if
Qeg.

Having the initial definitions out of the way we can start with the two main theorems.
As a consequence of the real-valuedness of the symbol p we notice the reflection-conjugation
property given by

(P(D)f)(~=) = (P(D))(@)-

A natural question would be whether all ground state solutions to equation (5.2.1) have such
a symmetry property using their variational characterization. The following result gives an
answer to this.

Theorem 5.2.1. Let n > 1, s > 0 and 0 € N with 1 < 0 < 04(n,s). Suppose that
Q € H*(R™)\{0} is a ground state solution of equation (5.2.1) where X satisfies the before
mentioned property. Assume that e*''Q € L2(R™) for some a > 0. Then it holds that

Q(z) = e Q"*(x + x0)

with some constant o € R and shift constant xq € R™. Additionally Q° is a smooth, bounded
and positive definite function in the sense of Bochner and thus satisfies the properties listed
in Theorem 4.1.1. If in addition the Fourier symbol p possesses an even symmetry the
function Q° has to be real-valued. Consequently any ground state QQ is real and even.

Remark. At first the condition that e is in L2 (R™) for some a > 0 might sound a little
artificial, but without listing the argument one can show that there is a nice assumption
which has to be made for P(D) that ensures this condition is met quite easily. For more
details on that see Chapter 6. Those analiticity conditions given therein ensure for example
that operators of the form

P(D) = cp(—A)F + > Co(—i02)"

aeN™, |a|<m/2—1

with positive ¢, > 0, k = 1 and real coefficients ay, € R satisfy all the properties needed.

5.2.1 Outlines of the Proof

Let @ be a ground state solution as in Theorem 5.2.1. Then consider the set
Q= {eR" Q)] > 0}.

Using standard Paley-Wiener arguments (see [31]) we find that @ is analytic and hence |Q)|
is continuous, hence Q is open. This follows from the assumption that e?'!Q e L?(R™).
It’s absolutely important that €2 is connected, in Section 7.5 one finds a counterexample in
nonconnected case. Now we claim the following:

Claim. It holds that €2 = R™.

Proof Sketch. We recall that Q* € H*(R"™) is a ground state solution to equation 5.2.1

as well. Hence we may assume that @ = |@| > 0 is nonnegative. Applying the Fourier
transform to equation 5.2.1 yields



where (C,j CI Q)() is the k-fold convolution with £ = 20 + 1 € N. Then we can show that
Q equals its k-fold Minkowski sum (see Chapter 6 for details)

k
o=@ o

m=1

Hence we have proven the claim if 0 € 2. Arguing by contraction and using that @ is
analytic yields the result we are looking for. O

The next step in proving Theorem 5.2.1 is based on an argument in [24]. We recall the
result therein and state it without a proof.

Lemma 5.2.2 (Equality in the Hardy-Littlewood Majorant Problem in R™). Letn = 1 and
p € 2N U {00} with p > 2. Suppose that f,g € F(LP (R™)) with 1/p + 1/p’ = 1 satisfy the
majorant condition

IF(€) <€) forae £eR™

Additionally, we assume that f is continuous and that {|]?| > 0} is connected. Then equality

I flzr @y = |9l zr@n

holds if and only if R )
fl&) = = 95(6) for allg e R,

where o € R and § € R™ are constants.

The rest of the proof of Theorem 5.2.1 is based on applying Lemma 5.2.2 with f = Q and
g = Q°. The first part follows immediately. For the second part assume that p(—&) = p(€)
for all £ € R™. In this case we need a trick (see Chapter 6 for full details and references) to
show that a ground state @ € H*(R™) has to be real-valued up to a trivial constant complex
phase, i.e. we claim that
e?Q(é) e R for all £ e R™.

This can be shown by using a decomposition into real and imaginary part
Q =Qr+1Qr.

Without stating much details here, we can apply the trick from [14] (see Chapter 6 for
details) to prove our claim.

5.3 Hardy-Littlewood Majorant problem

As already mentioned the proof of Theorem 5.2.1 is based on an argument developed in [24]
(see Lemma 5.2.2). Therein is a counterexample in the case where € is not connected. In
this section we will give a short introduction and a counterexample in the case where p
is not an even integer. This argument is based on an article by Mockenhaupt and Schlag
(see [27]).
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5.3.1 Introduction to the Upper Majorant Property

In the following we denote T : R/27Z the one dimension torus or circle group. Hardy and
Littlewood have investigated the following assumption (e.g. see [3]): f is said to be majorant

to g if |g| < f. Clearly, this implies that f is positive definite. The upper majorant property
is the following statement:

Whenever f e LP(T) is a majorant of g € LP(T) then |g[ zo(ry < | f]Le(m)-

Hardy and Littlewood proved this fact for all p € 2N. This is done using convolutions and
the Parseval identity. In the case p = 3 they found a simple counterexample. Indeed, let
f=1+e +ezand g =1— ey + e3, where ex(z) := e(kx) and e(z) := *™® for x € T.
They concluded that | f]zs(my < [lg]z3(m). Later on Boas showed the failure of the majorant
property for the group T for any p ¢ 2N (see [3]). The construction is very much based on
the original argument and uses

f=1+re + r’”zelﬁ_g and f=1+re — rk+2ek+2,
where 7 is sufficiently small and 2k < p < 2k + 2.
In [27] Mockenhaupt and Schlag proved a failure of the upper majorant property with a
much simpler example.

Theorem 5.3.1. Suppose p > 2 is not an even integer, then there are trigonometric poly-
nomials ¢ and Q with coefficients in {0,1, —1} such that |g(n)| = Q(n) and

lglleery > (1 + Cp)|Q] Lo (1),
where Cp, > 0 is a constant only dependent on p.

Remark 5.3.2. One can also generalize the concept of the upper majorant property to other
groups G. For more details one can take a look at the following article [25].

Failure of the Upper Majorant Property on the Real Line R

In the following we will construct a counterexample for the upper majorant property on the
real line R for p, where p is not an even integer. The idea behind this is heavily dependent
on Theorem 5.3.1 and uses a simple extension technique. The first theorem exemplifies the
ideas in L'(R).

Theorem 5.3.3. Let g € C°(T) be a continuous function. Upon defining the following
extension gx(x) := )\l/zg(sv)e’)“/""2 for A > 0 we conclude

loalzi@) = Clglisy as A — 07,
for some constant C > 0.

Proof. We may assume that g is nonnegative. Fixing § > 0 and using a density result we
find a nonnegative periodic smooth function g° € C*(T) such that

lg = ¢°[| e (m) < 6.

Upon using the Fourier representation we can write g° in the following way

50 = = X e

nez

35



By analogy let g3 (z) := /\1/295(:E)e’>‘““’2 and so we have

2 .
r{—— 2%/dwfmamm
nEZ
nez

with F(f))(€) = % ¢ . Splitting the L'-norm in two parts we finally have

5
7 A

198 @ ==+ D) @F(S)(-n),
\/i nez, n#0

using that |g3 — gx[z1®) < C(A)]g° — gl (1) we conclude

—

5
) gO +
— == asA—0".
Hg/\HLl(R) NG

Furthermore it’s easy to see that

27
diL’ = C 1
90 \/%/ Hg lzrer

and so ||gf\|\L1(R) — CHg(s”Ll(’ﬂ‘) as A\ — 01, Finally, using the uniform convergence of ¢g° — ¢
as 0 — 07 one can conclude the result. O

For the next result let N € N and (¢, ), <y S C be a finite sequence of complex numbers.
Let P(z) = X, <n cne™™” be a trigonometric polynomial then we define

Py(z) := )\ﬁP(x)e_%xz for A\>0andp>1

which extends our given polynomial P from the torus group T to the real line R in a suitable
way.

Corollary 5.3.1. Let P and Py be defined as above, then for all p = 1 we have
|Prlcr@) = ClIP|Lrsty as A — 07,
for some constant C' = C(p) > 0 only depending on p.

Proof. Following the construction of Py, the L,-norm is given by
IPAIL = A2 [ Pa)e ™ .
Let g(z) := |P(2)|P and gx(z) := A\Y/2|P(z)|Pe=**". Then by Theorem 5.3.3 we can conclude

the result. O

The follwing lemma compares the Fourier transform of two extension of trigonometric
polynomials. This will be the final step in proving a failure of the upper majorant property
on the real line R for p which is not an even integer.

Lemma 5.3.1. Let P and Q be trigonometric polynomials with their Fourier coefficients
P and Qn Let Py and Qy_be their respective extensions to R. Additionally assume that
|P | = Q.. Then we have |Py| < Qx
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Proof. Let P(x) = Zlnl <N P,e™*. Then from a simple calculation we have
A%
V2T
_ )\2;7 Z / o p _z(g n)acdaj

\ |I<N

=C(\p) 2 Pe

In|<N

Py(¢) =

IGES 5>2

where C'(A,p) > 0 is a constant only dependent on A\ and p. Hence we have

pn— £>2

IPAE)] < C(A\p) Y Que™ = Qx(©)

In|<N
foral A > 0,p>1and £eC. O
The last part will give a slight modification of Theorem 5.3.1.

Theorem 5.3.4. Suppose p > 2 is not an even integer, then there are trigonometric poly-
nomials P and Q with coefficients in {—1,0,1} such that |P | = Q. and

1Pl e @y > (1 + C)QA] e (r)

with . .
[PAl < Qa,
where Py (resp. Q) is the extension to R and C = C(p) is a constant only dependent on p.

Proof. Following Theorem 5.3.1 we have

1Pl ze(ry > (1 + C)QllLr(t)

Recalling Corollary 5.3.1 and letting A be very small we can conclude the first part. The
second part follows directly from Lemma 5.3.1. O
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Chapter 6

On Symmetry and Uniqueness
of Ground States for Linear and

Nonlinear Elliptic PDEs

This Chapter consists of an article which was written in collaboration with my mentor
Enno Lenzmann and postdoc Jérémy Sok, who also works in the same research group. The
original article is found in [5]. In the following pages the original article undergoes some
small modifications due to formatting but the mathematical content is identical and proper
citations are included as in [5]. Note that due to including the article in this thesis the
reference numbers might be different compared to the original ones.

6.1 Introduction and Main Results

We study symmetry properties and uniqueness of ground states for linear and nonlinear
elliptic PDEs posed on R™. In particular, we will be interested in a general class of problems
(including higher-order PDEs) which cannot be studied by classical methods such as maxi-
mum principles or Polya-Szegé inequalities. Instead our approach here is based on Fourier
methods together with a classification of the Hardy-Littlewood majorant problem in R"™,
which was recently obtained in [24].

Our results on the linear and nonlinear problems are presented in two separate subsec-
tions.

6.1.1 Linear Results

Let s > 0 be a real number. We consider ground states ) € H*(R™) of linear equations of

the from
P(D)y + Vi = Ev, (6.1.1)

where E € R is the eigenvalue and V : R™ — R denotes a given potential. Here P(D) stands
for a self-adjoint, elliptic constant coefficient pseudo-differential operator of order 2s. More
precisely, we assume the following condition.

Assumption 1. Let s > 0. The pseudo-differential operator P(D) is given by

~

(P(D)f)(&) = p(&)f(&),
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with some continuous function p : R™ — R that satisfies the estimates
AlE]* +c < p(&) < BIE|*® forall £ eR™

with suitable constants A >0, B > 0, and c € R.

Let us now suppose that P(D) satisfies Assumption 1. We assume that V' : R” — R is
a bounded potential'. Hence we can consider the well-defined minimization problem

Bo = inf{(f, (P(D) + V)fy: f & H*R"), |f] 2 = 1} > 0. (6.1.2)

Furthermore, if we assume that V(z) — 0 as |z| — oo in the sense that {|V(x)| < e} has
finite Lebesgue measure for every € > 0, it easy to see that

Ey < inf p(§) = inf oess(H), (6.1.3)
£eRn

where o5 (H) denotes the essential spectrum of the self-adjoint operator H = P(D) + V
defined via the quadratic form appearing in (6.1.2). Provided a minimizer ¢ € H®(R")
for (6.1.2) exists, it is easy to see ¢ solves (6.1.1) with E = Ey. Conversely, any solution
¢ € H*(R™)\{0} of (6.1.1) with E = Ejy is a minimizer of problem (6.1.2) up to a trivial
rescaling to ensure the normalization condition |¢] 2 = 1. Following usual nomenclature in
spectral theory of Schrodinger operators, we refer to such minimizing solutions ¢ € H*(R"™)
as ground states for the linear problem (6.1.1). To have a better contradisctinction for
the nonlinear problems discussed below, we will also use the term linear ground state
sometimes.

In the setting of Schrédinger operators when P(D) = —A, we remark that uniqueness
of ground states ¢ (up to a trivial multiplicative constant) is a classical result, which can
be proven by an wide array of known methods such as maximum principles, Polya-Szego
principle, and Perron-Frobenius arguments involving the corresponding heat kernel e*®.
Also, the fractional case for P = (—A)® with 0 < s < 1 can be readily tacked with such
methods.

However, it is fair to say that the study of uniqueness of ground states of linear problems
like (6.1.1) becomes quite elusive in the case of operators P(D) with higher order 2s > 1.
In fact, uniqueness of ground states may fail in such cases. But in certain natural cases
of interest (e.g. arising from linearizations around ground states of nonlinear PDEs), the
potential V' does have the noteworthy property of having a negative Fourier transform V<o
almost everywhere. As our first main result in this paper, we prove that ground states for
(6.1.1) are in fact unique (up to a trivial constant) under this condition on V.

Theorem 6.1.1 (Uniquenes of Linear Ground States). Let n = 1, s > 0, and suppose
that P(D) satisfies Assumption 1. Assume that V : R™ — R has a Fourier transform
V e LY(R™) n LA(R™) with V(€) < 0 for almost every € € R™. Finally, we suppose that
Ey < infeepn p(§) holds in (6.1.2). Then we have the following properties.

(a) Uniqueness: The ground state solution 1p € H*(R™) for (6.1.1) is unique (up to
a constant phase). Moreover, we have the strict positivity property of its Fourier
transform R

(&) >0  for all £ e R™,

where 6 € R is a constant.

'We could relax this condition to unbounded potentials V' € L®(R™) + LP(R™) with p > max{n/2s, 1}.
For the sake of simplicity, we omit this generalization here.
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(b) Symmetries: As a consequence of (i), the ground state (x) (is up to a constant
phase) has the even symmetry

(=)

If, in addition, the symbol p(—§)
to a constant phase).

o(x)
p(€

~

for a.e. x e R™.

~—

is even, then ¢ : R™ — R is real-valued (up

Remarks. 1) Under some technical assumptions, we could also treal the non-generic case
when Ey = infeern p(§) = inf oess(H) coincides with the bottom of the essential spectrum of
H = P(D) + V. However, we omit this discussion here.

2) Note that V € L* by our assumption that Ve LY(R™). As mentioned above, we could
relax our conditions to unbounded potentials V. But again in order to keep our focus on its
simple main argument, we refrain from considering more general cases here.

3) In some sense, the result above yields a Perron-Frobenius type result (i.e. positivity
and uniqueness of ground states) but when viewed in Fourier space. Of course, the ground
state ¥(x) may fail to be real-valued at all (let alone strictly positive) in x-space. In fact, a
simple example arises in the linearized problem for traveling solitary waves for dispersion-
generalized NLS, e. g., the linear ground state of ¢ € H*(R™) for equations of the form

(A +iv-V+ V) =Ey

with s = 1/2 and v € R"\{0} (and |v| < 1 when s = 1/2). It is easy to see that any non-
trivial solutions ¢ € H*(R™) must be complex-valued due to the presence of the ‘boost term’
iv - V. However, the result above shows that (under suitable assumptions on V'), we always

have the strict positivity ei%(g) >0 for all £ € R"™.

4) If we additionally assume that Ve LY(R™) (or more generally 15 is a finite positive
measure on R™), then 1 : R"® — C is a positive definite function in the sense of Bochner.
See also below.

5) Notice since V and V are both assumed to be real-valued, the potential V(—z) = V(z) is
an even function.

6.1.2 Nonlinear Results

We now turn to ground state solutions of nonlinear elliptic PDEs in R™ with pseudo-
differential operators P(D) of arbitrary order. As before, let s > 0 be a real number.
We consider solutions @ € H*(R™) of nonlinear elliptic PDEs of the form

P(D)Q +AQ —|Q*Q = 0. (6.1.4)

Here o > 0 is a given number, which we later assume to be an integer, and A € R denotes
a given parameter, which plays the role of a nonlinear eigenvalue. We opted to use the
letters @ and A instead of v and E above in order to keep the distinction between linear
and nonlinear problems more clearly.

As before, we suppose that P(D) denotes a pseudo-differential operator with constant
coefficients defined in Fourier space as

(P(D)u)(€) = p(E)a(£). (6.1.5)

For the nonlinear problem (8.1.3), we now impose the following conditions on P(D), where
S1"o with m € R denotes the usual Hormander class of symbols for pseudo-differential oper-
ators on R™.
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Assumption 2. Let s > 0 be a real number. We suppose that P(D) is a pseudo-differential
operator of order 2s with a symbol p(§) € S%’SO that satisfies the following conditions.

(i) Real-Valuedness: The symbolp: R™ — R is real-valued.

(17) Ellipticity Condition: There exist constants ¢ > 0 and R > 0 such that
p(&) = clg** for 1€|= R.

For the rest of this subsection, we will always assume that P(D) satisfies Assumption
2. As a consequence, the operator P(D) = P(D)* is self-adjoint and bounded below on
L?(R") with operator domain H?*(R"). Furthermore, we assume the eigenvalue parameter
A€ R in (8.1.3) satisfies the condition

A> inf p(e). (6.1.6)

which is equivalent to saying that —\ lies strictly below the essential spectrum oess(P(D)).
As a direct consequence, we obtain the norm equivalence

o (PD) + N f) ~ [ flFe,

where (f,g) = [;. fg denotes the standard scalar product on L*(R"). Likewise, we intro-
duce the critical exponent o (n,s) (which is not necessarily an integer) given by
2s
Ox (n, 3) = n — 28
+o0 for s = 5.

Thus exponents o < o(n,s) correspond to the H#-subcritical case, which is the situation
we shall consider in this paper?. Note that we have the Sobolev-type inequality

| f122002 < CfL (P(D) + A) f) (6.1.7)

for any f € H*(R™), where C' > 0 denotes a suitable constant. Due to the subcriticality
o < 04(n,s), standard variational methods yield existence of an optimal constant C' > 0
as well as the existence of optimizers Q) € H*(R™) for (6.1.7), which are easily seen to solve
(8.1.3) after a suitable rescaling @) — a@) with some constant «. In fact, we relate this fact
to our definition of ground state solutions for (8.1.3) as follows.

Definition 6.1.1. With the notation and assumptions above, we say that QQ € H*(R™)\{0}
is a ground state solution if Q solves equation (8.1.3) and optimizes inequality (6.1.7).

Equivalently, as shown in Lemma 6.2.3 below, we obtain that Q € H*(R™)\{0} is a
ground state solution for (8.1.3) if and only if ) minimizes the action functional

A) = S (PD) + N — 5 7282, (619

among all its non-trivial critical points. Thus the set of ground state solutions is given by
G={Qe K:AQ) < A(R) for all Re K}, (6.1.9)

where K = {u e H*(R")\{0} : A'(u) = 0}.

2To avoid technicalities, we shall omit the discussion of the critical case ¢ = o (n, s) in this paper.
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We now turn to the question of symmetries for ground states solutions for (8.1.3). As
consequence of the real-valuedness of the symbol p(§), we notice the reflection-conjugation
property

(P(D)f)(=x) = (P(D)f)(x). (6.1.10)

Based on this observation, we may ask whether all ground state solutions @ ‘inherit’ this
symmetry property by their variational characterization. In fact, we will prove the following
result in this paper when the exponent ¢ € N is an integer.

Theorem 6.1.2 (Symmetry for Nonlinear Ground States). Letn > 1, s > 0, and 0 € N
with 1 < 0 < 04(s,n). Suppose Q € H*(R™)\{0} is a ground state solution of (8.1.3) where
A € R satisfies (6.1.6). Finally, we assume that e?'|Q € L>(R™) for some a > 0. Then it
holds that

Q(z) = 2Q*(z + x0)

with some constants a € R and xo € R™. Here Q* : R* — C is a smooth, bounded, and
positive definite function in the sense of Bochner. As a consequence, it holds that

Q°(—z) =Q*(z) and Q°(0) = |Q°(x)| for all zeR™.

If, in addition, the operator P(D) has an even symbol p(§) = p(=¢&), the function Q°
must be real-valued (up to a trivial constant complex phase). Consequently, any ground state
Q for (8.1.3) is real and even, i.e., we have Q(—z) = Q(x) for all x € R™.

Remarks. 1) In Theorem 6.1.3 below, we shall give an analyticity condition on P(D) that
ensures the exponential decay property e*'lQ e L2(R™) for some a > 0. In particular, it
applies to operators of the form

P(D) = cp(—A)F + > Ca(—10,)"

aeN™ |a|<m/2—1

with positive ¢, > 0, k = 1, and real arbitrary coefficients c, € R. For example, we could take
P(D) = A2 —uA with any € R. Another important class is given by the pseudo-differential
operators

P(D)=(1-A)® foranys>0.

2) The proof of Theorem 6.1.2 will be based on the recent characterization [24] of the case
of equality in Hardy-Littlewood majorant problem in R". Here the topological property
that the set Q = {€ € R : |Q(&)| > 0} is connected in R™ will enter in an essential way.

3) The function Q°* : R™ — C will be obtained by taking the absolute value on the Fourier
side, i. e., we set Q* = F1(|FQ|). See Section 6.2 for more details.

4) If the symbol p = p(|€|) is radially symmetric and strictly increasing in |£|, then we
actually can show that Q@ = Q% holds (up to tranlation and complex phase), where QF de-
notes the symmetric-decreasing Fourier rearrangement of Q. See [2/].

Next, we turn to the question whether (not necessarily ground state) solutions @Q €
H*(R™) of (8.1.3) satisfy the exponential decay estimate that e*/'lQ e L?(R") for some a > 0,
which is a condition imposed in Theorem 6.1.2 above. In fact, we can adapt an analytic
continuation argument originally developed to study exponential decay of eigenfunctions of
Schrédinger operators due to Combes and Thomas [11], building upon O’Connors work [29].
Here is a list of sufficient conditions on P(D) to carry out such an argument in our case.
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Assumption 3. Suppose P(D) has a symbol p(§) which has an analytic continuation to
the strip Ts = {z € C™ : [Imz| < 0} with some 6 > 0. Moreover, we assume the following
conditions.

(i) For each k € Ty, there exist constant v € R and 0 € [0,7/2) such that

larg(p(§ + k) — )| <0 for all &eR".

(ii) For each k € Ts, there exist constants ay,as > 0 and by, by € R such that

a1lé]* — by < Re(p(€é + k) < anlé]* + by for all €& eR™

Remark. [t is elementary to check that any polynomial p(§) = Z|a|<m co €™ with coef-
ficients cq € R and infeepn p(§) > —o0 satisfies the above conditions (with m = 2s). In
particular, operators of the form

P(D) =A% —pA+iv-V with peRveR”
fall under the scope of Assumption 3. Also, one can verify that the same is true for operators
P(D) = (1 - A)* with s > 0.

We can now state the following result, which established the assumed exponential decay
e?l'lQ e L2(R™) for some a > 0 appearing in Theorem 6.1.2 above.

Theorem 6.1.3 (Exponential Decay). Let n,s, and o be as in Theorem 6.1.2. If P(D)
satisfies Assumption 3, then any solution Q € H*(R™) of (8.1.3) satisfies e'lQ € L*(R")
for some a > 0. As a consequence, the conclusions of Theorem 6.1.2 hold true.

Remark. For an in-depth analysis of exponential decay of eigenfunctions of P(D)+V with
polynomial symbol p(§), we refer to the recent work [?]. However, for our purposes here, it
is sufficient to obtain a ‘coarse’ exponential decay estimate saying that e'lQ e L2(R™) for
some a > 0.

6.1.3 Strategy of the Proofs

Let us briefly describe the strategy behind the proofs of our main results. The idea to prove
Theorems 6.1.1 and 6.1.2 is based on taking absolute values of the Fourier transform. That
is, for a given function f e L2(R"), we define

o =3Ff). (6.1.11)

By Plancherel’s identity, we immediately find that |f*|z2 = |f|z2 and {f*,P(D)f*) =
{f,P(D)f). Moreover, for potentials V' : R™ — R as in Theorem 6.1.1 as well as for integers
o€ N with 1 < 0 < 04(s,n), we readily obtain the inequalities®

S5V <KV and |[flpzees <7 p20 (6.1.12)

for any f e H%(R™). Thus if vp € H*(R") and Q € H*(R™) are ground states for (6.1.1) and
(8.1.3), respectively, so are the functions 1* and Q°. Therefore, the conclusions of Theorems
6.1.1 and 6.1.2 will follow once we can show that the F

D(€) = €91(€)] and  Q(€) = € @FF|Q(¢))| (6.1.13)

3See also the remark following Lemma 6.2.1 for the case of non-integer o.
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with some constants 6, € R and § € R™. We remark that LZ and @ are easily seen to be
continuous functions in our setting.

In terms of harmonic analysis, we are faced to solve a phase retrieval problem, i.e.,
given the modulus of the Fourier transform of a function, we try reconstruct its phase by
exploiting some additional facts. For the linear problem (6.1.1), this is an elementary task
provided that the potential V' satisfies the hypothesis of Theorem 6.1.1. Not surprisingly,
the nonlinear problem (8.1.3) is harder to analyze. Here, a rigidity result for the so-called
Hardy-Littlewood magjorant problem in R™ (recently obtained in [24]) enters in an essential
way; see also Lemma 8.6.4 below. In order to apply this result, we must verify the topological
property that R

Q={eR": Q)| >0} (6.1.14)
is a connected set in R™. To prove this fact (where indeed we show that Q = R™ holds in our
case), we will make use of analyticity argument: By standard Payler—Wiener arguments, the
exponential decay e?'lQ e L?(R") for some a > 0 will ensure that @(5) is analytic in some
complex strip around R™. The analyticity of @ together with the fact @ solves (8.1.3) will
then yield the desired result.

Finally, we recall from above that the proof of Theorem 6.1.3 is based on a strategy for
deriving exponential decay for N-body Schrédinger operators due to Combes and Thomas
[11] based on O’Connor’s lemma [29].

6.2 Preliminaries
6.2.1 Fourier Inequalities and Hardy-Littlewood Majorant Prob-
lem in R"

For a function f e L'(R™), we define its Fourier transform by

(FNE =) = | J@e s, (62.1)

with the usual extension to f € L?(R") by density. For f € L?(R") given, we recall that the
function f* € L?(R™) is obtained by taking the absolute value on the Fourier side, i.e., we
set

f* =TT f). (6.2:2)
From Plancherel’s identity it is clear that |f|zz = | f*|r2 holds. We record some further
elementary properties of this operation.

Lemma 6.2.1. Letn>1, s> 0, and 0 € N with 0 < 04(s,n).
(i) For any f e H*(R™), we have
5P =L PD)f) and |[flrzove <|f*]L20+2.
(i) For any f € L>(R™), it holds that f*(—x) = f*(z) for a.e. xz € R".

(ii3) If f € L*(R™) and fe LY(R™), then f* : R™ — C is a continuous and bounded function
which is positive definite in the sense that for any points x1,...,zNy € R™ the matrix
[f*(xr — x1)|1<ki<N s positive semi-definite, i. e.,

N
2 fo(xp —x)opv; =0 for allve CN.
k=1

In particular, the inequality f*(0) = |f*(x)| holds for all x € R™.
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Remark. The inequality | f|p20+2 < |f®|p20+2 for integer o € N is a consequence of the
so-called upper majorant property (UMP) for LP-norms with p € 2N U {o0}. That is,
for such p and f,g € F(LP (R™)) we have the implication

1F() <§(&) forae. E€R™ = |flz» < |g]rr-

On the other hand, it is well-known that (UMP) fails for LP-norms when p ¢ 2N u {o0}.
Indeed, the known counterexamples (see e.g. [3, 26, 27]) show the failure of (UMP) in the
torus case, i.e., for LP(T). But these examples can be easily transferred to the real line
case as follows. Suppose p > 2 is not an even integer. Then, as shown in [27], there exist
trigonometric polynomials q and Q with Fourier coefficients |§(n)| = Q(n) for all n € Z
satisfying | qlloeery > |Qlr(r)- We can lift this example to Fourier transform in R by
considering the Schwartz functions

gr(z) = )\ﬁq(:r)e”‘xz, Qx(z) = )\ﬁQ(gv)e*M2

with A > 0. It is elementary to check that ||gx| rr®) — gl zr(ry and [Qx]|rr@) — Q] Lr ()
as A\ — 01, Furthermore, we readily check for the Fourier transforms |g\(£)] < @A(f) for
all £ € R™. Thus by taking X > 0 sufficiently small, we see that (UMP) fails for L?(R) with
non-even integer p.

Proof. First, it is evident that (f, P(D)f) = [o. p(§)|f(E)|>dE = {f*,P(D)f*). Next, let
p =20+ 2 with 0 € N with ¢ < a*(s n). By Holder s mequahty, we note that f e H(R"™)

implies that f € F(L? (R™)), i.e. we have f € LP (R"), where p/ = 5242 denotes the dual
exponent of p = 20 + 2. Thus we can apply to conclude

IFI2552 = (Fx Fx...x Fx F)(0)

with 20+ 1 convolutions on the right-hand side. With the use of the autocorrelation function

~ ~

WAE) = (Fx 1)) = (Fx F(—))(€) = [ Jlererfeae,

we can write
[F13502 = (W% ...% Up)(0),

where the number of convolutions is equal to o. Since | 7|(£) < | fl(g), we deduce
IFI385% < (0w 0 )(0) = 572552,

which completes the proof of item (i).
The proof of (ii) is a direct consequence of the fact that f* = |f| is real-valued. Further-
more, item (iii) is a classical fact _using that f' = |f| = 0 is non-negative and assuming that

f e LY(R™) (or more generally f' is a finite measure on R™); see, e. g., for a discussion of
positive-definite functions and Bochner’s theorem. O

As a next essential fact we recall from [24] the following rigidity result.

Lemma 6.2.2 (Equality in the Hardy-Littlewood Majorant Problem in R™). Letn = 1 and
p € 2N U {00} with p > 2. Suppose that f,g € F(LP (R™)) with 1/p + 1/p’ = 1 satisfy the
majorant condition

1f(€) <€) fora.e R
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In addition, we assume that f is continuous and that {€eR™: \f(§)| > 0} is a connected
set. Then equality

[flze = llglze
holds if and only if

~

F(&) = FPOG(&)  for all € e R™,

with some constants « € R and g € R™.

Remark. The connectedness of the set Q < R™ is essential. See also [2]] for a counterez-
ample when Q) is not connected. However, as we will show below, the set Q = {£ € R™ :
|@(§)| > 0} will turn out to be connected (in fact, we show Q = R™ holds) for the ground
states @ of (8.1.3) in the setting considered in this paper.

6.2.2 Smoothness and Exponential Decay of @)
Recall that we always suppose that P(D) satisfies Assumptions 2.

Proposition 6.2.1. Letn>1, s >0, and 0 € N with 1 < 0 < 04(n,s). Then any solution
Q € H*(R") satisfies Q@ € H®(R") = (5o H*(R™).

Proof. This follows from Sobolev embeddings and regularity theory for pseudo-differential
operators. For the reader’s convenience, we give the details. By picking a sufficiently large
constant 1 > 0, we can assume that p(¢) + p = {(¢)?® holds. Hence Q € H*(R") solves

(P(D) +mQ = (QQ)7Q + (1 — N)Q- (6.2.3)

Indeed, let us first suppose that @ € H*(R") n L®(R"). Then (P(D) + 1)Q = (QQ)’°Q +
(b —N)Q € H® n L*®(R™) holds, since o is an integer and H*(R") n L*®(R™) forms an
algebra. Now since p(&) + p = (£)?*, we have that (P(D) + u)~! belongs to class S;gs.
Therefore (P(D) + p)~! : H™(R") — H™*25(R") for any m € R and we deduce that
Q€ H®(R") = n=oH*(R™) by iterating the equation (6.2.3).

It remains to show that @ € L*(R") follows from our assumptions. If s > n/2, this is
clearly true by Sobolev embeddings. For 0 < s < n/2, we need to bootstrap the equation by
using the mapping properties of the inverse (P(D) + u)~!. Indeed, we note that |Q[*?Q €
L%(R") with px = 2n/(n — 2s) by the Sobolev embedding H*(R™) < LP*(R™). Since
(P(D) + p)~t : H™P(R") — H™*25P(R") for any m € R and 1 < p < o0, we deduce
that Q € H 25,3751 (R™), which is a gain of regularity for Q). We can proceed this argument
to obtain after finitely many steps that Q € H"P(R"™) with m > n/p, which yields that
Q € L*(R"™) by Sobolev embeddings. O

6.2.3 On the Notion of Ground State Solutions

As remarked in the introduction, we have the following simple fact, where we assume n, s, o,
and A satisfy the assumptions of Theorem 6.1.2. Recall the definition of the set G in (6.1.9).

Lemma 6.2.3. Q € H*(R"™) is a ground state solution of (8.1.3) if and only if Q € §.

Proof. Let Q, R € H® (I&") be two non-trivial solutions of (8.1.3). By integrating the equation
(8.1.3) against @ and R, we find

(@, (P(D) +NQ) = Ql75%,  (R.(P(D)+NR) = | R|757%. (6.2.4)

As a consequence, we get

— 1 _ 1 2042 _ 1 _ 1 2042
Q) = (5 5 ) 1R, AR = (- 5t ) IREEE
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Hence we have the equivalence
.A(Q) <A(R) <« HQHL20+2 < HRHL%*Q'

Next, let C' > 0 denote the optimal constant for (6.1.7). From (6.2.4) we obtain the bounds

1
C’
where equality occurs if and only if @ and R are optimizers for (6.1.7), respectively.

Suppose now that @ is a ground state solution, which means an optimizer for (6.1.7) by
definition. Then we must have |R|r20+2 > |Q|20+2. This show that Q € G.

On the other hand, let us assume that @ € §. To show that  must optimize (6.1.7), we
argue by contradiction as follows. Suppose @Q is not an optimizer. Then ||Q|20+2 > C~L.
But by taking R to be an optimizer, we deduce that C~! = ||R| 2042 < |Q]|p20+2, which
contradicts that we must have A(Q) < A(R). O

|QI5.+> =

| Rl =

-

6.3 Proof of Theorem 6.1.1

Let ¢ € H°(R™) be a ground state for (6.1.1) with E = Ey < infeern p(€). If we set A = —F,
we can write (6.1.1) in Fourier space as
~ 1
PO =
© p() + A

Note that W e L2 (R™) by assumption and hence W = W« 12 and, moreover, this is a
continuous function because it is the convolution of two L2-functions. Since p(&) + A > 0

(W =) (€), with W = —V. (6.3.1)

is also continuous by assumption on p, we deduce that the Fourier transform () is a
continuous function from (6.3.1).
Next, we claim that R
[£(€)] >0 for all £ e R™. (6.3.2)

To see this, we first note that R

vt =5 (ly)
is also a ground state solution for (6.1.1). Indeed, in view of V(£) < 0 almost everywhere,
we can argue as in the proof of Lemma 6.2.1 to conclude

W V) = (V0 )(0) > (V # ¥ 5)(0) = (0°, V™),

where Wy(&) = [ 9(€+ &) )g(€') d¢ denotes the autocorrelation function of g. Thus from
Lemma 6 2 (i) we readily find that

@*, (P(D) +V)y*) < (¢, (P(D) + V)i,

whence 1°® is also a ground state, since we trivially have ||¢)*| 2z = |¢] 2.

Therefore, in order to show (6.3.2), we can assume that @ZJ( ) = W;({)| > 0 is non-
negative. But from the assumption that W = -V > 0 almost everywhere we deduce that
(W x4)(€) > 0 for all £ e R™. By the positivity p(§) + A > 0, we immediately deduce that
(6.3.2) holds from (6.3.1).

Next, we establish the following result.

Proposition 6.3.1. There exists a constant 6 € R such that

$(€) = |(€)]  for all £ € R™.
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Proof of Proposition 6.5.1. By the continuity of 772 and the fact that |7$(§)| > 0 for all £ € R™,
there exists a continuous function 9 : R™ — R such that

D(&) = PO)h(€)| for all £ € R (6.3.3)
Since v and ¢* are both ground states for (6.1.1), we must have equality

(W % W)(0) = (W + ¥,5)(0), (6.3.4)

with the autocorrelation function Wy (&) = [, g9(§+n)g(n) dn. Inview of (6.4.5), we conclude

/Rn . W (&)eM =000} 4) (¢ + )¢ ()] dE d = / WD + n)||d(n)| de dn.

R7 xRm™
Since W ()| (€ + n)|[d(n)| > 0 for all (£,1) € R™ x R™, we deduce that
H=E+n)—9(n) € 2nZ for all (§,n) e R™ x R™.

By the continuity of 1, the difference above must be locally constant. Since R™ x R™ is
connected, we infer that

=& +n)—Y(n) =c forall (§,n) e R" x R™, (6.3.5)

with some constant ¢ € 27Z. But by choosing & = 0, we see that ¢ = 0 is the only possibility.
From the functional equation (6.3.5) with ¢ = 0 we readily deduce that ¥(—¢) = 9(0) for all
& € R™. Hence 9 is a constant function and by taking 8 = 9(0) € R, we complete the proof
of Proposition 6.3.1. O

By applying Proposition 6.3.1, we complete the proof of Theorem 6.1.1 part (i).

The symmetry property in part (i) directly follows from the fact that ew@(f) > 0
together with the elementary property f(—z) = f(z) holds a.e. for f € L?(R"™) whenever
f({“) is real-valued. Finally, let us suppose that p(—¢§) = p(€) is even. Then H = P(D) +
V is real operator, i.e., we have Re (Hf) = HRef. In particular, we thus choose any
eigenfunction of H to be real-valued and, in particular, this applies to the ground state .

The proof of Theorem 6.1.1 is now complete. O

6.4 Proof of Theorem 6.1.2

Let @ € H*(R™) be a ground state solution as in Theorem 6.1.2. We define the set
Q={cR":|Q(&)] > 0}. (6.4.1)

This is an open set in R, since the function |@| : R™ — C is continuous due to analyticity
of Q(&) is analytic by our assumption e®'lQ e L?(R™) for some a > 0 and using standard
Paley—Wiener arguments.

Lemma 6.4.1. It holds that 2 = R".

Remark. For non-ground state solutions Q € H*(R") of (8.1.3), we expect that Q vanishes

at certain points. In fact, we expect that the set {|@(§)| > 0} is not connected for non-ground
state solutions Q).
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Proof. In view of Lemma 6.2.1, we remark that Q* € H*(R") is also a ground state solution
for (8.1.3). Hence we can assume that @ = |@| = 0 is non-negative without loss of generality.
Next, by applying the Fourier transform to (8.1.3) and using that o € N is an integer, we

get
1

(&) + A

with £ = 20 + 1 € N convolutions appearing on the right-hand side. From this identity
and Lemma 8.4.1 and iteration, we deduce that 2 < R™ must be identical to its k-fold
Minkowski sum, i.e.,

Q) = (@Q*...xQ)(€) (6.4.2)

k
Q=P o={&+...+& &neQform=1,...,k}. (6.4.3)
m=1

For the moment, let us now suppose that
0e . (6.4.4)

Since 2 is open, this implies that B,(0) < Q for some r > 0. By (6.4.3), this implies that

é B,.(0) c Q.

m=1

On the other hand, we readily see that Bs,.(0) < B,(0) ® B,.(0) ¢ ®*, _,B,.(0). Iterating
this argument, we conclude that

Bn,(0) = forall NeN,

whence it follows that {2 = R™ must hold.
Thus it remains to show that (6.4.4) is true. We argue by contradiction as follows.
Suppose that 0 ¢ Q and define the function F : R" — R by setting

F(¢) = Q((k = 1)9)Q(—¢)
However, we must have
F(¢ =0.

Indeed, if F'(£4) # 0 for some & € R™ then (k — 1)§, € Q and —&; € Q. This implies that
0=(k—1)& —Zf{l £x € ®F _Qsothat 0 e Q by (6.4.3). Thus 0 ¢ Q implies that F(£) =0
vanishes identically. Since @((k —1)¢&) £ 0, this yields that the function @(—f ) must vanish
on some non-empty open set in R™. By the (real) analyticity of @ : R™ — R this implies

~

@ =0 on R™. But this is a contradiction.
Thus we have shown that (6.4.4) holds, which completes the proof. O

With the result of Lemma 6.4.1 at hand, we are ready to finish the proof of Theorem
6.1.2. Indeed, if @ € H*(R™) is a ground state solution, we must necessarily have the equality

[Qlz2e+2 = Q%[ L20+2.

But we can apply Lemma 8.6.4 with f = @ and g = Q° to conclude that @ = ellatfg) \@(§)|
for all £ with some constants « € R and § € R™. Hence we find

Q(z) = Q" (z + x0)
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with the constant xy = fiﬂ € R™. The asserted properties of Q®* now follow from Lemma

6.2.1 together with the fact that Q* € L(R™), since we have (1 + |¢[)"Q e L2(R") for
m > n/2 by Proposition 6.2.1.
Finally, let us additionally assume that the symbol

p(=¢€) = p(¢)

is even. In this case, we can adapt a trick from [14] (see also Lemma 6.6.1) to show that
any ground state @ € H*(R™) must be real-valued up to a trivial constant complex phase,
i.e., we claim that

Q(z)eR forall £eR™ (6.4.5)

with some constant 6 € R. To prove this, we decompose
Q=Qr+1iQ

into real and imaginary part. If either Qg = 0 or Q; = 0, then there is nothing is left to
prove. Hence we assume that both parts are non-trivial. From Lemma 6.6.1 we obtain

(Q, (P(D) + N)Q) ={Qr, (P(D) + N)Qr) +{Qr, (P(D) + \)Qr) =: Drp + Dy,  (6.4.6)
HQH%%H < HQRH%%H + HQIH%%M =: Np + Nj. (6.4.7)

Now let C' > 0 denote the optimal constant for (6.1.7). Since @ is an optimizer, we deduce

C

___ @l s NrtN; <mm(JVR’NM><G
{(f,(P(D)+A)f) = Dr+ Du Dr’" Dy

This shows that we must have equality in (6.4.7), which by Lemma 6.6.1 and Qg #£ 0 # Q;
implies that there is some constant o > 0 such that Q% = a?Q%. We want to establish
Qr = taQgr. To do so, we apply Lemma 6.6.1 now to the decomposition

Q _ ei7r/4Qa + iei‘n'/4Qb

with real-valued functions @, and @Qp. In fact, an elementary computation shows that
Qo = ﬁ(QR—&-QI) and Qp, = %(—QR—I—QI). We still have |Q(2)|? = Qq(2)? + Qp(7)? and
also (@, (P(D)+M)Q) ={Qq, (P(D)+AQa)+{Q%p, (P(D)+A)Qs) by using that p(—&) = p(&)
is even. Now if @, = 0, then we are done since Q; = —Qg in this case. If Q, # 0, we
obtain Q% = 2Q? with some constant 3 > 0. Note that 32 # 1 because otherwise this
would imply QrQr = 0 (which would yield @ = 0 from using Q% = a?Q%). In summary,
we conclude

Q3 =a2Qh and (14?1 - A)Q% = (14 5)QnQ:.

But this implies that Q; = +aQ g, which proves that (6.4.5) is true.
The proof of Theorem 6.1.2 is now complete. O

6.5 Proof of Theorem 6.1.3

We will adapt an elegant idea due Combes and Thomas [11] who proved exponential decay
of eigenfunctions for (N-body) Schrédinger operators by an analytic continuation argument,
which is based on O’Connor’s lemma (see Lemma ?? below) together with standard analytic
perturbation theory (see [21,31]).
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We define the operator H = P(D) + V with V = —|Q|** acting on L?(R"). Note that
V e L*(R"™) is bounded by Proposition 6.2.1. Hence, by standard theory, the operator
H is self-adjoint with operator domain H?*(R"™). In particular, we see that @ is an L*-
eigenfunction of H satisfying

HQ = —)\Q.

Since V(z) — 0 as |z| — o0, we have Tess(H) = Oess(P(D)) = infeern p(§). By our as-
sumption (6.1.6), we see that the eigenvalue —\ lies strictly below the essential spectrum of
H.

We shall now implement an analytic continuation argument to show that e®IlQ e L?(R™)
must hold for some sufficiently small ¢ > 0. To do so, we adapt an argument due to Combes
and Thomas as follows. For real x € R™, we can define the unitary operators

(U(8)f)(@) = 2™ f(x)
acting on L?(R"). Likewise, we consider the family of unitarily equivalent operators
H(k) =U(k)HU (k).
We readily find that
U(k)P(D)U (k)™ = Po(D), U(K)VU(K) =V,

where P, (D) has the shifted symbol p(£ + k).

Now, by standard Paley-Wiener theory, we note that if U(x)Q has an analytic continu-
ation for |[Tm x| < & then e?'lQ € L?(R™) for all 0 < a < &, which would finish the proof. To
see that U(k)Q can be analytically continued if [Im k| < § for some § > 0, we prove that
H(k) is an analytic family of type (B) on the complex strip T5. We use an form argument.
For any k € Ty, we can define the quadratic form

Al = [ e wlFOP e+ [ VifPde for feH®). (65)

n

We claim that {q(k)}.er, is an analytic family of quadratic forms of type (b) with form
domain H*(R™) (in the nomenclature of [31]). That is, we have the following properties.

(1) For each k € Ty, the form q(k) is closed and strictly m-sectorial with domain H*®(R").
(2) For each f e H*(R™), the function x — q(k)[f, f] is analytic in & € Ts.

Indeed, by Assumption 3 item (i), we see that q is strictly m-sectorial (see [31] for the
relevant definition). To show that q(x) is closed on the domain H*(R™), it suffices to show
that its real part Re(q)(x) is closed, i.e., if f, € H*(R") with f, — f in L*(R") and
Re(qQ)(K)[fn — fmsfn — fm] — 0 as m,n — o then f € H*(R™). But this later claim
easily from property (ii) in Assumption 3. This shows (1) above. Finally, we note that (2)
obviously holds by our analyticity assumption on the symbol p. From the fact that q(x) is an
analytic family of form of type (b) it follows that the set of associated operators {H (k)}xer;
defines an analytic family of operators of type (B).

Now, by standard perturbation theory, any discrete eigenvalue E(kg) of H(kg) moves
analytically for k close to kg. But if Im(k — ko) = 0, we have that E(k) = E(kg) since the
operators H (k) and H (kg) are unitarily equivalent in this case. Hence E(k) is constant and
remains an eigenvalue as long as it stays away from oess(H (K)).

Now we recall that @ is an eigenfunction of H = H(0) with the discrete eigenvalue E =
—\ € oaisc(H). By standard perturbation theory [21,31], we find that E(k) € oqisc(H(k))
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provided that || < b with some sufficiently small number b > 0. Since the operators
H(k) = H(iIm k) are unitarily equivalent, we see

Udisc(H(’i)) = Odisc (H(l Im”i))-

Thus we deduce that F € oqisc(H(k)) for all k with |Imk| < b. Hence it follows from
standard perturbation theory that the finite rank projections

Plr) — % e He e

with some small constant r > 0 are analytic in the strip T = {x € C" : |Im x| < b}. We now
apply O’Connor’s lemma to conclude that U(x)Q has an analytic continuation to the strip
Ty, which shows that e?llQ e L?(R™) for all 0 < a < b.

The proof of Theorem 6.1.3 is now complete. O

6.6 Auxiliary Results

Lemma 6.6.1. Suppose P(D) satisfies Assumption 1 with some s > 0 and its multiplier
p(=¢&) = p(§) is an even function and let X\ € R. Let f € H*(R™) with f : R™ — C be of the
form

f(z) = emfR(a?) + ieiﬂff(m)

with some constant ¥ € R and real-valued functions fr, fr : R™ — R. Then we have

(F(PD) + A f) = {fr, (P(D) + A fr) + {f1, (P(D) + A) f1).

Moreover, if f € LY(R™) for some 2 < g < oo then

1170 < 1frIZa + 1 f11Za,
where equality holds if and only if fi =0 or fz = p?f# with some constant p > 0.

Proof. By subtracting the constant A from p(&), we can assume without loss of generality
that A = 0 holds. Since fg, fr : R® — R are real-valued, their Fourier transforms satisfy

fR(—g) = fR(f) and fj(—f) = ]?[(f) Using that p(—¢) = p(€) is even and |e!Vz| = |z| for

all z € C, we calculate

GPOW = [ weliae) +iferRds = [ (@R a+ [ pelfieRde
i [ 0O [Fal©Fi©) ~ F©Fi(©)] de = (S PDI iy + (f1 PO,

as claimed.
Assume now that f € L7(R"™) for some 2 < ¢ < o0. From the triangle inequality for the
L2-norm we find

112 = M fRl + 1Pl < RPN paz + W11l ez = IFRIZ0 + 1 f1]Z0.

By the strict convexity of the L%?-norm for 2 < ¢ < o, we have equality if and only if
fr=0or f& = p?f? for some constant u > 0. O
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Lemma 6.6.2. Let f,g € R® — [0,00) be two non-negative and continuous functions.
Assume that their convolution

(fxg)@)= | fle—ygly)dy
Rn
has finite values for all © € R™. Then it holds that
{(zeR": fxg>0}={zeR": f>0}@{xeR"”:g>0}.

where A@ B ={a+0b:a€ A be B} denotes the Minkowski sum of two sets A, B < R™.

Remark. We could also allow that (f+g)(x) = +o0 for some x € R™ and the result remains
valid. But since we apply this lemma iteratively in the proof of Theorem 6.1.2, we assume
that (f = g)(x) < +o0 for all x € R™.

Proof. The proof is elementary. For the reader’s convenience, we give the details.

Let us write Qf = {f > 0}, Q, = {g > 0} and Qy,y = {f xg > 0}. We suppose that both
f # 0 and g # 0, since otherwise the claimed result trivially follows.

First, we show that Qy ® Q4 < Qfyy. Let x = 21 + 22 with 1 € Qf and xp € . By
continuity of f and g, there exists some ¢ > 0 such that f > 0 on B.(z1) and g > 0 on
B.(x2). Thus, by using that f > 0 and g = 0 on all of R", we get

Fra)@) = [ fla—)y)dy> / Flar + 22— y)gly) dy > 0,

R B, (12)

since 1 + x2 — Yy € B:(21) when y € B.(z2). This shows that Qy @ Qy < Qpyy.
Next, we prove that Q. < Q¢ @ ), holds. Indeed, for every x € R"™, we can write

Feg)@) = [ fla—y)aly)dy = / f(& - y)g(y) dy,
R™ ({z}=Q5)nQy

since f(z —-) =0 on R"\({z} ©Qy))"* and g = 0 on R"\Q,. However, if x ¢ Q; ® Q, then
({z} 2 Qf) nQy = . Thus (f * g)(x) = 0 for any = ¢ Qf @ Q,, whence it follows that the
inclusion Q ¢,y < Qf @y is valid. O

Lemma 6.6.3 (O’Connor’s lemma [29]). Let H be a Hilbert space and suppose U (k) that are
unitary operators on H parametrized by k € R™. Let P be a finite-rank projection on H such
that that P(k) = U(k)PU (k)™ has an analytic continuation to D = {z € C" : [Imz| < a}
for some a > 0. Then any f € ran P has an analytic continuation from D n R to D given

by f(r) = U(r)f-

4We denote A© B = {a —b:a€e A,be B} for subsets A and B in R".
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Chapter 7

A Guideline on Symmetry of
Traveling Solitary Waves

In this chapter we introduce the concept of a boosted ground state and analyze symmetry
properties of traveling solitary waves. Similar to Chapter 5 this serves as a guideline for
reading [5]. In Chapter 8 a full article on those problems will follow. In addition a short
numerical section is included for the sake of a visualization.

7.1 Assumptions and Setup
We consider the following class of nonlinear Schrédinger equations given by
i0yu = P(D)u — |u|*u, (7.1.1)

where u : [0,T) x R™ — C and P(D) denotes a self-adjoint and constant coefficient pseudo-
differential operator defined on the Fourier side as

Let us start with the some assumptions on the operator P(D).

Assumption. The Fourier symbol p of the operator P(D) is real-valued, continuous and
satisfies the following growth assumption

AlE)?* + ¢ < p(€) < BIE*  for all € € R, (7.1.2)

wheres)%,A>0,B>0andce]R.

With the given assumption on the Fourier symbol of P(D) it is easy to see that the
following norm equivalence holds true

[l gy > {u, (P(D) + Ay} = / (p(€) + Nla(e)Pde

with A > 0 sufficiently large. Moreover, with the realy number s > % we define the following

exponent
2s :
if s <
ox(n,s) = {"25

4+  ifs>

)

ISIEENTE
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We say that the range 1 < ¢ < g4 corresponds to the energy-subcritical case for equation
7.1.1. We will mostly focus on this regime and give little comments on the energy-critical
case 0 = Oy.

In the following we are interested in traveling solitary waves for equation (7.1.1). For
this, consider the following ansatz

u(t,z) = e“'Qu.o(x — vt)

with frequency w € R and velocity v € R"™. Plugging this into equation (7.1.1) we see that
Qu.v € H°(R™) has to be a weak solution of

P(D)Qu.v +iv Quo +wWQuwv — |Quw** Quo = 0. (7.1.3)

Remark 7.1.1. For a brief moment, let P(D) = —A, which corresponds to the classical
nonlinear Schrédinger equation. Then there ezists a gauge transform, called a Galilean
transform in this context, which transforms equation (7.1.3) from general v € R™ to vanishing
velocity v = 0. Clearly, consider

Q(z) = 57 Q(x).

Now the analysis of (7.1.3) reduces to
1
~AQ +w,Q - 1QI*Q =0 withw, =w — §|v|2.

Another interesting point is that the Galilean transform preserves the L?-norm, i.e. it is a
unitary transform on L*(R™).

Up to now, for general dispersion operators P(D) such a boost transform is not known.

7.2 Existence Result

The first section is dealing with the basic question of existence of solutions to equation
(7.1.3). To prove this result we need a suitable variational setting. Given v € R™ and w € R
we define a Weinstein-type functional as follows

{u, (Py(D) + w)u)”*"

Jull 7537 ’

3v,w,a’(u) =

where u € H*(R™) with u # 0. Additionally we used
P,(D)=P(D)+iv-V
for a shorter notation. Recalling the assumption on the symbol p of P(D) we find that

By = dnf po(§) > —0,

proved s > 1/2 and v € R" or |v|] < A for the case s = 1. The following result shows the
existence of a minimizer for J, ¢ o
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Theorem 7.2.1. Let n > 1, v € R™ and suppose that P(D) satisfies assumption 7.1.2 with
5= % and A > 0. If s = % we assume that |v| < A. Then, for 0 < 0 < 0y and w > —%,,
every minimizing sequence for Jy ., o is relatively compact in H*(R™) up to translations in
R™. Hence there exists a minimizer Q, ., € H*(R™)\{0}, i.e.

Hv,w,a(Qv,w) = inf 31},&1,0’(“)'

ueHs(R™)\{0}

7.2.1 Outlines of the Proof

We will follow a technique from Dominik Himmelsbach’s PhD thesis (see [18]) and adapt
a proof therein. Suppose that P(D) satisfies assumption 7.1.2. Additionally take all the
proper assumptions in Theorem 7.2.1 for granted.

Recalling that P,(D) = P(D) + iv - V we can define

1/2
|wwv~<muau»+wmf“—(/’@@»—vf+wnaoﬁﬁ) .

n

In the following let
3bop = 10f {Juwp(u) [ue H*(R™), u 0},

*

using a Sobolev-type inequality it’s easy to see that J7 ,

need to prove the following claim:

> ( is strictly positive. Next we

Claim. Let (uj)jeny S H*(R™)\{0} be a minimizing sequence for Jy . 0. Then (u;)jen has
a non-zero weak limit in H*(R™), up to spatial translations and passing to a subsequence.

This is certainly not a trivial result and we need to invoke the following to lemmas given
in the appendix of [6].

Lemma (pqr Lemma; see [15]). Let (2, %, 1) be a measure space. Let 1 < p<q<r <o
and let Cp, Cy, C. > 0 be positive constants. Then there exist constants n,c > 0 such that,
for any measurable function f € L¥,(Q) n L}, (Q) satisfying

1712, < Co 1f1%y > Con If

r
LL’ < CT?

it holds that
dy(n) := p({z e Q; [f(z)] >n}) = c

The constant n > 0 only depends on p,q,Cp,Cy and the constant ¢ > 0 only depends on
b,q,T, vacqacr-

Lemma (Compactness modulo translations in H*(R™); see [1]). Let s >0, 1 <p < oo and
(uj)jen € H*(R™) n LP(R™) be a sequence with

sup ([l e + ujllzn) < oo,
jeN
and, for some n,c >0 (with |- | being Lebesgue measure)
inf [{z € R™; Ju;(2)] > n}] > .
jeN

Then there exists a sequence of vectors (xj)jen < R™ such that the translated sequence
uj(x+x;) has a subsequence that converges weakly in H*(R™)nLP(R™) to a nonzero function

u % 0.

56



Last but not least one needs to check the following claim:
Claim. The limit obtain from the claim above is indeed an optimizer for Jy w.o-

The proof of this claim is done using the Brézis-Lieb refinement of Fatou’s Lemma and
some normalization. For a detailed proof of this fact we refer the reader to Chapter 8.

Recalling Chapter 5 and the definition of a ground state (see Definition 5.2) we will refer
to minimizers of the functional g, ., » as boosted ground states. Additionally, solutions
u(t, z) = " Q. o (z—vt) to equation (7.1.1) will be called ground sate traveling solitary
waves. It’s not hard to check that any boosted ground state Q,. € H®*(R™) satisfies
equation (7.1.3) up to a proper linear rescaling with a positive constant.

7.3 Fourier Rearrangements for n > 2

The following section will give a gentle introduction to one of the main results given in
Chapter 8. In order to prove a symmetry results on boosted ground states for the Weinstein-
type functional J, ., , we will develop techniques based on a recent result in [24]. Recall
that the Fourier rearrangement is defined as

uf = FTH{(Fu)*}  for we L2(R™) with n > 1,

where f* denotes the classical symmetric-decreasing rearrangement introduced in Chapter
3. For a complete introduction to this topic we refer to [24].

Clearly, for non-zero velocities v the boost term breaks the radial symmetry in general.
In such a case, all rearrangement operations that give a spherical symmetric function (for
example #) can’t be applied properly to our problem. Indeed, under a proper assumption on
the dispersion operator P(D) we are still able to make a conclusion concerning cylindrical
symmetries of minimizers with respect to the direction of the velocity term wv.

Definition 7.3.1. We say that f : R™ — C is cylindrically symmetric with respect to a
direction e € S" 1 if we have

(foR)(y) = f(y) for a.e. yeR™ and all R € O(n) with Re = e.

Now the main idea lies behind the following decomposition. If f is cylindrically symmet-
ric then we can write

fy) = flyy lyLl)

where y, is perpendicular to e € S*~! for given dimension n > 2. In that spirit, we introduce
a new notion of rearrangement in Fourier space given by

ufe := FH{(Fu)*e} for ue L*(R") with n > 2,

where u*e : R® — R, denotes the Steiner symmetrization in (n — 1) codimensions
with respect to e € S* !, which is obtained by symmetric-decreasing rearrangements in
n — 1-dimensional planes perpendicular to the direction e. This rearrangement will be called
the Fourier Steiner symmetrization in n —1 codimensions. For a much more detailed
description see Chapter 8 and [24].

Having such a symmetry calls out for P(D) to have another property besides the as-
sumption in 7.1.2.
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Assumption. In addition to 7.1.2 the operator P(D) has a cylindrically symmetric mul-
tiplier function p : R* — R with respect to some direction e € S*~'.  Additionally the
map

1€L] = p(§), 1€L])

1s strictly increasing.

Without further ado, with such an assumption on P(D) and techniques from [24] we can
prove the following theorem.

Theorem 7.3.1 (Symmetry of Boosted Ground States for n = 2). Let n > 2 and suppose
P(D) satisfies the assumptions above with some s > % and e € S""1. Furthermore, let
v = |v|e € R” and w € R satisfy the hypotheses in Theorem 7.2.1 and assume o € N is an
integer with 0 < o < o4(n, s).

Then any boosted ground state Q. , € H*(R™) is of the form

Quv(z) = el Qe (x + x0)

with some constants o € R and zp € R™. As a consequence, any such Q. satisfies (up to
a translation and phase) the following two symmetry properties for almost every x € R™.

(i) Qun is cylindrically symmetric with respect to v e R,

(i) Qu. has a conjugation symmetry, i.e.

Qw,v (QE) = Qw,v(_x)~

7.3.1 Outlines of the Proof

As with every new operation, one should start with the basic properties. For this we basically
follow the same path as in Chapter 3. For a quick breakdown yet still giving a good peak
we state some of those properties without a sketch of a proof.

Lemma 7.3.1. Letn > 2, e S" !, and u e L*(R™). Then the following properties hold.
(i) [uP| 2 = ul L2

(ii) ule is cylindrically symmetric with respect to e, i.e., for every matriz R € O(n) with
Re = e it holds that
ufe(z) = u*(Rz) for a.e. x € R™.

(i) If in addition @ e L'(R™), then ufe is a continuous and positive definite function in
the sense of Bochner, i.e., we have

m
Z uﬁe(a:k — xl)zkzl =0
k=1

for all integers m =1 and x1, ..., 2Zm € R and z € CN. In particular, it holds that

ufe(0) = |ue(z)| for all x € R™.
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With such properties in mind we can start proving many of the main inequalities, for
example a version of the Brascamp-Lieb-Luttinger inequality (see Theorem 3.2.4) which
involves the Fourier Steiner symmetrization instead of a classical symmetric-decreasing re-
arrangement. But those results will not be addressed in this chapter and we forward the
reader to Chapter 8 for a complete breakdown of those results.

Additionally we note that a clear path in proving Theorem 7.3.1 is already outlined
in [24]. We will closely follow this structure and start by recalling the main lemma given in
Lemma 5.2.2. In order to apply this results, the following claim needs to hold.

Claim. Let Q,,, be a boosted ground state, then {|§;\w\ > 0} is connected.

Luckily for us, we can generalize the idea behind such a proof and can state a much more
general result. Note that the idea behind the next lemma still comes from observations we
made for equation (7.1.3) where the model case was P(D) = (—A)*. The following result has
a very topological flavor to it and shows how the n-fold Minkowski sum and connectedness
of sets hold together.

Lemma 7.3.2. Let n > 2 and suppose £ = 2 is an integer. Let [ € LZ/(Z’U(R") >0 be a
continuous nonnegative function with f = f*e with some e € S*' and assume f satisfies
an equation of the form

fl@)="h(x)(f*...« f)(x) forallxzeR"™, (7.3.1)

with £ factors in the convolution product on the left side and h : R™ — (0,+00) is some
continuous positive function. Then the set {f > 0} < R™ is connected.

Proof Sketch. First of all, let Q = {f > 0} and assume that  is not empty. Then for any
set X € R™ and L € N we define the L-fold Minkowski sum of X with itself as

L
Sp(X) := @X.

Clearly, with using a proper rotation R € O(n) we can assume without loss of generality
that e = e;, which denotes the unit vector in z;-direction. Using that

{(f*...xf)>0} =0

we find
Sne(Q) = for any n e N.

Recalling that for any z;R fixed the sets {z' € R"7!| f(z1,2’) > 0} are open balls centered
at the origin. Due to the cylindrical symmetry of f we can find the following map

R — [0, 4], 1 p(z1)
such that Brn-1(0,p(z1)) = {2’ € R"7!| f(x1,2’) > 0}. Hence we can assume that
Qn{r =0} #J.
So one of the two cases must occur:
(A) O\(#1 >0} = &, on
(B) Q\{z1 =0} # .

59



The proof that in both statements €2 is connected is rather convoluted and will be omitted
in this chapter. For a detailed discussion we refer to Chapter 8. O

The rest is the claim then simply follows from the following two facts. First, we can now
show that

Q={Q* >0} = {|Q| > 0}

is connected by Lemma 7.3.2.

Finally, since both ) and Q*e are boosted ground states we have equality in LP-norm.
The rest of the proof of Theorem 7.3.1 follows easily from applying Lemma 7.3.2.

Remark. The main properties in proving that Q € R™ is connected are the following two:
(1) Q= (—ijzl Q for some N € N, and
(2) Q is open and not empty.

In the case of n = 1 we can directly show that € is connected and can give a nice character-
ization of this set as well (see Section 7.4). Forn > 1 this is still a conjecture.

7.4 Fourier Rearrangement for n = 1

Clearly, in the case of one dimension the concept of fo doesn’t make any sense. As seen in
Chapter 6 we define

fr=37FHD) for fe L*(R).

Showing a conjugation symmetry for boosted ground states is possible, but again requires
{|Quv.w| > 0} to be connected. A detailed approach using analyticity is given in Chapter
6. In the following we consider the case where P(D) = y/—A which is referred to as the
half-wave operator. Clearly, the symbol for P(D) is not analytic anymore and hence doesn’t
fall in the same category as symbols considered in Chapter 6. To be more clear, we consider
traveling solitary waves to the one dimension half-wave equations given by

i0u = vV —Au — |u|*7u, (7.4.1)

where u : [0,7) x R — C and ¢ € N is an integer. We remark that o, = +00 in this case,
hence no upper bound for ¢ is needed. The existence of boosted ground states for n = 1 is
covered by Theorem 7.2.1, if [v]| < 1 and w > 0. With similar assumptions we can prove the
following symmetry result.

Theorem 7.4.1 (Conjugation Symmetry for n = 1). Let n = 1 and suppose the hypotheses
of Theorem 7.2.1 are satisfied. Moreover, we assume o € N is an integer. Then any boosted
ground state Q. € Hz (R) is of the form

Quw(z) = eio‘Q;m(a: + 1) fora.e reR,

with some constants o € R and o € R. In particular, any such Q. ., € H? (R) satisfies (up
to translation and phase) the following conjugation symmetry for a.e. x € R

Quw () = Quv(—2).
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7.4.1 Outlines of the Proof

As in Section 7.3 we want to be able to use Lemma 5.2.2. In order to do this, we need to
prove that Q = {|Q, | > 0} is connected. But in the case for n = 1 this is much easier with
the following lemma.

Lemma 7.4.1. Suppose Q < R is an open and non-empty set such that
m
Q= @ Q
k=1

for some integer m = 2. Then it holds that
Qe {R>0, R<0, R}

The proof of Theorem 7.4.1 is now a simple application of the lemma above.

7.5 Counterexample in the Case of Non-Connectedness

We construct an example to show the necessity of the topological assumption in most of the
main theorems concerning the connectedness of Q = {|f| > 0}.

Let y; = (10,0) € R? be a given point with yo = —y; and let U = By(y1) U Bi(y2).
We choose a function ¢ € C%(R?) with ¢ > 0, supp(¢)) = U with Ylp, () # 0 and
Y|, (yo) # 0. Additionally we assume 1) to be cylindrically symmetric, i.e. V(x1,22) € R2 :
(x1,22) = Y(x1,—2x2), and 1 to be non-increasing in the second variable, i.e. for each
(w1,22), (z1,23) € R? with |xa| < |z3| one has ¥(x1,22) = (1, 23).

Now we pick numbers «, 3 € R with a # 3 and choose ¥ € C*(R?,R) such that I, () = @
and Y|, (y,) = . Moreover, we define the function Y e C*(R?) as

P(€) = e Op(¢).

Using the properties of 1) we readily find that the Fourier Steiner rearrangement in 1 codi-
mension is given by

P =,
Next, we consider f := F1(¢)). By construction we have f#1 = F-1(¢) and the function ]?

is continuous and the set 2 = {|]?| > 0} = {¢ > 0} is not connected in R?. We now claim
that

[flps = £ s

By recalling the proof in [24] and taking the notation therein it is sufficient to show that
the following equality holds

2
O(n,&) = > Ik + &) — 9(&) = 0 for all (n,€) € 5.
k=1

To see this, one remembers that (n,€) = ((m1,&1), (n2,&2)) € S implies that

m+mne=0and (g + &, &) €N xQcUxU for k=1,2.
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Therefore we find that ((n, —n), (£1,&2)) € S if and only if (n+&1, —n+&2) € B1(y1) X B1(y2)

or (1 + &1, —n + &2) € Bi(y2) x Bi(y1)-
Hence we conclude that for all (n,&) € S we have

2
D 00k + &) — 9(&) =0,
k=1

where one uses that 9|p,(,,) = a, Y|, (y,) = B and the structure of the set S.
Hence we can conclude that | f] . = | f%]zs and

F(f) = " F()*,

where the phase function ¥ : R? — R does not need to be affine in general.

7.6 Spectral Renormalization Method

In this section we will introduce the spectral renormalization method (see [12]). A rigorous
proof will not be included and we refer to [12] for further details. The main idea of the spec-
tral renormalization theorem is a fixed point argument on the Fourier side of the equation
instead of working in z-space.

In the following consider equations of the form
(~A) —iv-V +a)Q — [QI*"Q = 0, (7.6.1)

where the parameters are given as in Section 7.1 (see Theorem 7.2.1). Upon taking the
Fourier transform one easily sees that

_ TR @)©)

= Tf2s . 1 " 6.2
Q(¢) P v tta (7.6.2)
Thus a first idea is to use a fix point iteration of the following form
Qo)  =e bl
1 (FUQyH I Qy . (7.6.3)
{Q(jﬂ)(l’) =51 <%) (z) for je{0,1,...}.

Note that the initial guess Qo) (z) is a function and not a scalar, certainly other choices
could have been made but not all of them converge to a proper nontrivial solution. For
example, take Q) = 0. The next result shows the convergence with a bad initial guess
which is given by a scalar multiple of a nontrivial solution to equation (7.6.1).

Lemma 7.6.1. Let Q be a nontrivial solution to equation (7.6.1). Consider Qg := cQ to
be the initial guess for the scheme in (7.6.3). Then the following holds

lim Q) = {O  fec(0l) (7.6.4)

j—w +0 ;  ifce (1,+0).
Proof. Clearly, using equation (7.6.2) we see that
F(Q)(©€) = 1T (Q)(€)

for all £ € R". Hence by induction we find

Q) = > H'Q
for each j € {0,1,...}. The result readily follows from that observation. O
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In order to prevent such a behavior we do the following. Multiplying equation (7.6.2) by
the complex conjugate F(Q) and integrating yields

where the functionals £ and R are given by

F(QP7Q)F(Q)(E)
n P —v-Eta

£(Q) = |F(@Q)2ogny and  R(Q) = / dt

Clearly, Q(;y does not need to satisfy £(Q) = R(Q) in general. Hence we choose

Qui+1/2) = ¢ Q)

where ¢; is determined by the fact that Q(;41/2) satisfied the said equation. To be more
precise, consider

L;(Q) :=L(Qy) and  R;(Q) :=R(Q);
then ¢; is chosen such that
L(c;Qu)) = R(¢;Qj))-
Hence we see that
e PL5(Q) = lej |72 R;(Q),
which implies that for c¢; exist three seperate solutions. If ¢; = 0 then Q); converges to 0. If

¢; = +oo then Q; diverges. If ¢; = |£,(Q)/R;(Q)| we are on the good side. Applying the
iteration scheme to Q(;41/2) we end up with

F1Qu+12)*Q+1/2) = &7 F(1QH P Q)
and therefore we define the spectral renormalization scheme for equation (7.6.1) as follows.
Numerical Scheme. Let Q) (r) = elel® for x € R™ be the initial iteration function. Then

we define the following numerical scheme

20+1

> F(Qw*Qy)
[€?* —v- &t a

£;(Q)
R;(Q)

This scheme is called the spectral renormalization method for equation (7.6.1).

F(Qu+1) = ’

7.6.1 Visualization for n =1

In the following we give an example code for such a scheme in the language of Matlab. A
code for the plot is already included and shows the analytical solution to

(-A+1)Q-1QQ =0

for n = 1 next to the numerical one. Clearly, a code for n = 2 is very similar and simply
uses some other function already included in Matlab. For the sake of clarity only the case
n = 1 will be included.
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Matlab Code

function

end

sigma)

% Defining the interval used for the evaluation
Nx=100;

Xmax = 10;

dx = 2xXmax/Nx;

x = [—Xmax:dx: Xmax—dx | ;

% Defining the vector for the Fourier space
dk = pi/Xmax;

k = fftshift ([-Nx/2:Nx/2—1]xdk);

beta = 1 4+ 1/(2%sigma);

% Input function to start the iteration
RO = exp(—x."2);
Rn = RO;

% Conditions on the loop to end

m= 1;

thresh = le—6;
max_iter = 100;
error = 1;

while (error > thresh && m < max_iter)
% Spectral renormalization algorithm
Rn_hat = fft (Rn);
NL_hat = fft (abs(Rn)."(2%sigma).*Rn);
psi = abs(k)."(2xs) — velocity+k + alpha;
SL = dksxsum(conj(Rn_hat).xRn_hat);
SR = dkxsum(conj(Rn_hat).«*NL_hat./(psi));
Rn_hat = (SL/SR) "betaxNL_hat./( psi);
Rn = ifft (Rn_hat);
error = abs(SL/SR—-1);
m = m+1;
end

% plotting the analytic solution for alpha=1, velocity = 0,
=1,

% sigma=1/2 and the numerical solution with the specified
parameters.

R_analytic = (sigma + 1).7(1/(2xsigma))=*(1/sqrt(velocity.
alpha)) " (—1/sigma)*cosh ((2xsigma) /2.xsqrt (velocity . 2
alpha).*xx)."(—1/sigma) ;

plot (x,real (Rn),” =" ,x,R_analytic,”—=");

xlabel (7x7);

ylabel ("R™{(0)}");

legend (" numerical solution”, ”analytic solution for s=1");

"2
+
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Visualization of a Solution to a Boosted Biharmonic NLS

In the following we show a picture for a biharmonic NLS with boost term v given by

(A? + vz + 1)Q(z) — |Q(2)]?Q(x) = 0. (7.6.5)

A good reference for the study of biharmonic NLS is in Fibich’s book (see [12]). To compute
the solution to this equation we use the spectral renormalization method given above for
the case s =2, a = 1, v = 1/2 and o = 1. The real part of the solution will be symmetric

with respect to the origin, this is shown in the following picture on the next page.
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Figure 7.1: Solution to biharmonic NLS with s =2, a =1, v =1/2 and 0 = 1.

The interesting part is actually what the boost term v is doing on the Fourier side.

Clearly, on an intuitive level one might think that it ”shifts” the solution to one side in the
sense that the maximum is shifted to the right if v > 0.

In the next figure we investigate equation 7.6.5 for different types of v (note that in the
spectral renormalization scheme v is called velocity) and let .5 = 40 for the scheme. The
following three pictures show the development for v = 0, v = 1/4 and v = 1/2 on the Fourier

side for the real part of @ To exemplify how severe this shift is a horizontal line through
the origin is added.
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Figure 7.2: Development of a solution to 7.6.5 for v =0, v = 1/4 and v = 1/2.

Visualisation of the Solution to Equation (7.6.5) as a Movie

In the following movie we show the conjugation symmetry of solutions to equation (7.6.5)
and how they shift with different values of v. Note that the actual mathematical backgroup
to this is fully discussed in Chapter 6 and Chapter 8.

In the following code we choose the values from v = 0 up to v = 0.99 and apply a
spectral renormalization method to compute a numerical solution for each velocity. To show
the change of the solution more clearly a fixed plot for the zero-velocity case is included for
the real part of the solution Q.

Matlab Codes

clear; close all;
Nx=100;

Xmax = 10;

dx = 2xXmax/Nx;

x = [—Xmax:dx: Xmax—dx | ;
frames=1:500;

Initial = Spectral_renormalization_method (1,0,2,1, Xmax, Nx);
vidfile = VideoWriter (’biharmonic_movie’);
open(vidfile);
for j = frames
z=Spectral_renormalization_method (1,(j—1)/length(frames) ,2,1,
Xmax, Nx);
subplot (1,2,1)
plot (x,z(1,[1l:end]),”=",x,Initial (1,[1:end]),”=")
xline (0) ;
yline (0) ;
ylim ([ -0.5,1.5]);
title (" Real Part of the Solution”)
subplot (1,2,2)
plot (x,z(2,[1l:end]),”=")
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21 xline (0) ;

22 yline (0),

23 yllm([—05,15]),

24 title (" Imaginary Part of the Solution”)
25 drawnow

26 F(j) = getframe(gcf);

27 writeVideo (vidfile ,F(j));

25 end

20 close(vidfile)

30

a1 function Solution = Spectral_renormalization_method (alpha

velocity , s, sigma, Xmax, Nx)

32

33 % Defining the interval used for the evaluation
34 dx = 2xXmax/Nx;

35 x = [—Xmax:dx: Xmax—dx | ;

36

37 % Defining the vector for the Fourier space
38 dk = pi/Xmax;

39 k = fftshift ([-Nx/2:Nx/2—-1]*dk);

10 beta = 1 + 1/(2+sigma);

41

42 % Input function to start the iteration

13 RO = exp(—x."2);

44 Rn = RO;

45

46 % Conditions on the loop to end

47 m = 1;

18 thresh = le—6;

19 max_iter = 100;

50 error = 1;

51

52 while (error > thresh && m < max_iter)

53 % Spectral renormalization algorithm

54 Rn_hat = fft (Rn);

55 NL_hat = fft (abs(Rn)." (2«sigma).*Rn);

56 psi = abs(k)."(2xs) — velocityxk + alpha;
57 SL = dkxsum(conj(Rn_hat).+«Rn_hat) ;

58 SR = dkssum(conj (Rn_hat).*NL_hat./(psi));
59 Rn_hat = (SL/SR)"betaxNL_hat./( psi);

60 Rn = ifft (Rn,hat);

61 error = abs(SL/SR-1);

62 m = m+1;

63 end

64

65 % Solution x—space

66 Solution_real = real (Rn);

67 Solution_imag = imag(Rn);

68 Solution = [Solution_real; Solution_imag];
60 end
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Chapter 8

On Symmetry for Traveling
Solitary Waves for Dispersion

Generalized NLS

This Chapter consists of an article which was written in collaboration with my mentor Enno
Lenzmann, former research group member Armin Schikorra (now professor at the University
of Pittsburgh) and postdoc Jérémy Sok, who also works in the same research group. The
original article is found in [6]. In the following pages the original article undergoes some
small modifications due to formatting but the mathematical content is identical and proper
citations are included as in [6]. Note that due to including the article in this thesis the
reference numbers might be different compared to the original ones.

8.1 Introduction and Main Results

The aim of the present chapter is to derive symmetry results for traveling solitary waves
for nonlinear dispersive equations of nonlinear Schrédinger (NLS) type. As a model case in
space dimension n > 1, we consider equations of the form

i0ju = P(D)u — |u|*"u (gNLS)

for functions u : [0,7) x R™ — C. Here P(D) denotes a self-adjoint and constant coefficient
(pseudo-)differential operator defined by multiplication in Fourier space as

(P(D)u)(§) = p(&)u(s), (8.1.1)

where suitable assumptions on the multiplier p(§) will be stated below. In fact, the class
of allowed symbols p(§) will be rather broad including e.g. fractional and polyharmonic
NLS, higher-order NLS with mixed dispersions, half-wave and square-root Klein-Gordon
equations (see, e.g., [?,4,7,12,13,20,22]) and also Subsection 5.1 below.

Let us first start with some informal remarks. Due to the focusing nature of the non-
linearity in (gNLS), we expect the existence of solitary waves u(t,z) = € Q(z). In fact,
by the translational invariance exhibited by the problem at hand, we expect that traveling
solitary waves exist, which by definition are solutions of the form

u(t,z) = e“' Qv (x — vt) (8.1.2)
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with some non-trivial profile @ : R* — C depending on the given parameters w € R (fre-
quency) and v € R™ (velocity). However, except for the important but special case of
classical NLS when P(D) = —A and its Galilean invariance (see (8.1.4) below), there is no
known boost symmetry, which transforms a solitary wave at rest with v = 0 into a traveling
solitary wave with v # 0 for a general NLS-type equation like (¢NLS). More importantly,
in the absence of an explicit boost transform, the symmetries of the profile function Qv
remain elusive in general. Yet, by inspecting the known explicit case when P(D) = —A, we
may conjecture that the following symmetries are also present in the general case: Up to
spacial translation and complex phase, i. e., replacing Qv by eieQw’v(- +x9) with constants
f € R and xg € R™, we have that:

(S1) Qv is cylindrically symmetric with respect to ve R", n > 2, i.e., we have

Quv(z) = Quv(Rx) forall Re O(n) with Rv = v.

(S2) We have the conjugation symmetry given by

Qw,V(x) = Qw,v(—l’)-

That is, Re@Q,,v : R® — R is an even function, whereas Im Qv : R” — R is an odd
function.

As our main results below, we will establish the symmetry properties (S1) and (S2) for
so-called boosted ground states ()., which are by definition obtained as optimizers for
a certain variational problem. In fact, we will show that (under suitable assumptions) that
all such boosted ground state must satisfy (S1) and (S2). Our arguments will be based
on rearrangement techniques (Steiner symmetrizations) performed in Fourier space. The
core of our argument to obtain such a sharp symmetry result will be based on a topological
property of the set {{ € R™ : |Quv(§)] > 0} combined with a recent rigidity result [24]
obtained for the Hardy—-Littlewood majorant problem in R™. A more detailed sketch of the
proof will be given below.

8.1.1 Setup of the Problem

Let us formulate the assumptions needed for our result. We impose the following conditions
on the operator P(D) in (gNLS).

Assumption 4. The operator P(D) has a real-valued and continuous symbol p : R™ — R
that satisfies the following bounds

Al¢]* + ¢ <p(§) < BIEP* for all e R,
with some constants s = %,A >0,B >0, and ce R.
Let us assume that P(D) satisfies the assumption above. We readily deduce the norm
equivalence
Julfe = (1= A)*2ulfe = Cu, (P(D) + A)uy = . (p(&) + N[a()[? de,

where A > 0 is a sufficiently large constant. Moreover, we notice that the problem (gNLS)
exhibits (formally at least) conservation of energy and L?-mass, which are given by

1
20 + 2

1 o
Elu] = 5Cu, P(D)u) — lul 7552, Mu] = |lul-.
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Furthermore, with the real number s > % as in Assumption 4, we define the following

exponent (not necessarily an integer number) given by
2s

ox(s,n) =< n—2s
+o0 if s =n/2,

if s <n/2,

which marks the threshold of energy-criticality for exponents, i.e., the range 1 < ¢ < 04
corresponds to the energy-subcritical case for problem (gNLS). In fact, we will focus on
the range in the rest of this paper with some marginal comments on the energy-critical case
o = 04 (which of course can occur only if s < n/2).

We are interested in traveling solitary waves with finite energy for the model problem
(gNLS). By plugging the ansatz (8.1.2) into (gNLS), we readily find that the profile Qv ., €
H?*(R™) has to be a weak solution of the nonlinear equation

P(D)Qu~y +iv-VQuy +wWQuv — |Quv]* Qu.r = 0. (8.1.3)

As briefly mentioned above, there exists a well-known ‘gauge transform’ (corresponding to
Galilean boosts in physical terms) for the classical Schrodinger, where we can reduce the
general case v € R™ to vanishing velocity v = 0. More precisely, if we consider (gNLS) with
P(D) = —A, the Galilean boost transform given by

Qz) = 2" Q(x) (8.1.4)

reduces the analysis of (8.1.3) to the study of the nonlinear equation
1
~AQ+wyQ - Q*Q =0 with w, =w— 5\v|2, (8.1.5)

where the boost term iv - V has been gauged away. An important feature of the Galilean
transform (8.1.4) is that preserves the L?-norm |Qy|r2 = |Q|r2; in fact, it is a unitary
transform on L?(R™).

However, for general dispersion operators P(D) # —A, no such explicit boost transform
in the spirit (8.1.4) is known to exist. Therefore, an alternative approach is needed to deal
with more general P(D) in both respects concerning existence and symmetries of non-trivial
profiles Q.

8.1.2 Existence of Traveling Solitary Waves

We first recall an existence result from [18] for non-trivial solutions @, ., € H*(R™) of (?7?).
To construct these solutions, we introduce a suitable variational setting as follows. For
given v € R” and w € R (satisfying some conditions below), we define the Weinstein-type
functional of the form

_ u, (P(D) + w)u)™!

Jvwp(u) : 557 (8.1.6)
HUHL20+2
where u € H*(R™) with u 0. Here and in what follows, we set
Py(D) := P(D) +iv -V, (8.1.7)

which has the multiplier py(§) = p(§) — v - £&. Recalling that P(D) satisfies Assumption 1
with some s > % and A > 0, it is straightforward to check that

Yy = éler]gn pV(g) = gler]gn {p(f) -V 5} > — 0, (818)

provided that either s > % and v € R™ arbitrary or |v| < A in the special case s = % We
have the following existence result.
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Theorem 8.1.1 (Existence of Boosted Ground States [18]). Letn > 1, v € R™, and suppose
that P(D) satisfies Assumption 1 with some constants s > % and A > 0, where if s = 1/2,
we also assume that |v| < A holds.

Then, for 0 < 0 < 04 and w > =X, every minimizing sequence for Jy ., is relatively
compact in H*(R™) up to translations in R™. In particular, there erists some minimizer

Qv € HX(R")\{0}, i.e.,

gv,w,p(Qv,w) = inf 3’11,‘41,113(”)7

ueH=(R™)\{0}
and Qv ., solves the profile equation (8.1.3).

Remarks. 1) Note that for the borderline case when s = 1 and |v| = A we still have that
the infox reprs (rn) Jv,w,p(f) > —00, but we do not expect this infimum to be attained. For
such non-ezistence result for the (important) special case of the half-wave equations when
P(D) = +/—A and |[v| = 1, we refer to [2].

2) Clearly, the variational ansatz using the functional 3, , will break down if P(D)
satisfies the bounds in Assumption 1 with some 0 < s < 1/2. In this case, the boost term
iv-V cannot be treated as a perturbation of P(D). In this case, we conjecture that the profile
equation has only trivial solutions in H'/?(R™).

3) The infimum X defined in (8.1.8) corresponds to the bottom of the essential spectrum
of the self-adjoint operator P,(D) acting on L*(R™) with domain H?*(R™). For the specific
choices P(D) = (—A)® and P(D) = (—A + 1)%, the number Xy can be explicitly calculated
using the Legendre transform of the convexr maps & — |€]?% and & — (|€]?° +1)%, respectively.
For details on this, we refer to [18].

4) See also [19,22,28], where the existence of boosted ground states for NLS type equations
were shown by concentration-compactness methods for fractional NLS when P(D) = (—A)*®
in the range s € [3,1).

From now on, we will refer to minimizers of the functional J, ., , as boosted ground
states. Correspondingly, the solutions u(t,z) = €@, ,(z — vt) will be called ground
state traveling solitary waves. It is easy to check that any such boosted ground state
Qs,» € H°(R™) satisfies the profile equation (8.1.3) after a suitable rescaling Qs — aQs.»
with some constant o > 0.

8.1.3 Cylindrical and Conjugation Symmetry for n > 2

We now turn to our first main symmetry result, which establishes necessary symmetry
properties of minimizers for the Weinstein-type functional J, , , in space dimensions n > 2,
under suitable assumptions on P(D) and for integer o € N.

In order to prove a symmetry results for minimizers of g, ., , we will further develop the
Fourier symmetrization method recently introduced in [24]. The main idea there is to use
symmetric-decreasing rearrangement in Fourier space. In fact, this approach proves to be a
useful substitute for standard rearrangement techniques in x-space, which are easily seen to
fail for a large class of (e.g. higher-order) operators (such as P(D) = A?) or operators with
non-radially symmetric Fourier symbols such as P, (D) above.

From [24] we recall the notion of Fourier rearrangement which is defined as

uf = FTH{(Fu)*}  for we L2(R™) with n > 1, (8.1.9)

where f* denotes the symmetric-decreasing rearrangement of a measurable function f :
R™ — C vanishing at infinity. For a non-zero velocities, the presence of the boost term
iv - V breaks radially symmetry in general. In this case, all rearrangement operations that
yield spherically symmetric functions (such as £ defined above) cannot be applied to the
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minimization problem for d, ., »(f). However, under a suitable assumption on P(D), we still
expect to be able to show cylindrical symmetry of minimizers with respect to the direction
given by the vector v # 0. Thus we introduce the following notion: We say that f : R* — C
is cylindrically symmetric with respect to a direction e € S*~! if we have

f(Ry) = f(y) for a.e. y e R™ and all R € O(n) with Re = e. (8.1.10)

For such functions f, we will employ some abuse of notation by writing

f=f,lydl),

where we decompose y € R™ as y = y + y. with y, perpendicular to e € S*~1. For
dimensions n > 2, we now introduce the following rearrangement operation defined as

ufe = T {(Fu)*e} for u e L*(R") with n > 2, (8.1.11)

where f*e : R" — R, denotes the Steiner symmetrization in n — 1 codimensions with
respect to a direction e € S*~!, which is obtained by symmetric-decreasing rearrangements
in n — 1-dimensional planes perpendicular to e; see Section 8.3 below for a precise definition.
It is elementary to check that ffe is cylindrically symmetric with respect to e.

We now formulate the following assumption for P(D).

Assumption 5. The operator P(D) has a multiplier function p : R™ — R which is cylin-
drically symmetric with respect to some direction e € S"~t. Moreover, the map

Ll = p(&)182L])
1s strictly increasing.
We have the following general symmetry result.

Theorem 8.1.2 (Symmetry of Boosted Ground States for n > 2). Let n > 2 and suppose
P(D) satisfies Assumptions J and 5 with some s > % and e € S""L.  Furthermore, let
v = |v]e € R" and w € R satisfy the hypotheses in Theorem 8.1.1 and assume o € N is an
integer with 0 < o < o4(n, s).

Then any boosted ground state Qv € H*(R™) is of the form

Quyv () = €°QF (x + o)

with some constants o € R and xg € R™. As a consequence, any such Qv satisfies (up to
a translation and phase) the symmetry properties (P1) and (P2) for almost every x € R™.

—_

Remark. Since the Fourier transform ( 5?\,) = |C§w,v|>i<e = 0 s nonnegative, we conclude
that any boosted ground state Q) v is a positive-definite function in the sense of Bochner,
provided we also assume that @%v e LY(R™) (or more generally a finite Borel measure on
R™). In many examples of interest, it is easy to check that indeed @w,v e LY(R") holds.
Recall that a continuous function f : R™ — C is said to be positive-definite in the sense of
Bochner if for any collections of points x1,...,x, € R™ we have

flag —x)ZKkz =20 forallz = (21,...,2m) € C™,
1

il gk

k

i.e., the complex matriz [f(zr — xk))1<k 1<m 5 positive semi-definite. As a direct conse-
quence, we find that
F0) = |f(z)| for all z € R™.

We refer to [31] for a discussion of positive-definite functions.
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First, we briefly sketch the main line of argumentation for proving Theorem 8.1.2. Using
the fact that o € N is an integer and by applying the Brascamp—Lieb—Luttinger inequality
(a.k.a. multilinear Riesz-Sobolev inequality) in Fourier space, we deduce that any boosted
ground state Q,, v € H*(R") satisfies

Jowp(Qfsy) < Jowp(Quyv)- (8.1.12)

In particular, we see that Q?f,v is also a boosted ground state. More importantly, we find
that equality in (8.1.12) holds if and only if

Qun (€)= |Quy ()] for all £ € R™. (8.1.13)

This fixes the modulus of the Fourier transform @w,v, whereas its phase appears is yet
completely undetermined. However, the conclusion of Theorem 8.1.2 will follow once we
show

Qun(€) = CTPIIQ, o (€)™ (8.1.14)

with some constants @ € R and § € R™. In fact, such a “rigidity result” about the phase
function (i.e. being just an affine function on R™) can be deduce from the recent result
in [24] on the Hardy-Littlewood majorant problem in R™, provided we know that the open
set

Q={eR":|Quv(&)| >0} (8.1.15)

is connected. Establishing this topological fact is the crux of this paper. We remark that
in [24] where the symmetric-decreasing (Schwarz) symmetrization in R” was used, we always
have that € is either an open ball or all of R™; in particular, the set €2 is connected. However,
for the Steiner symmetrization in n — 1 codimensions needed to define fe it is far from clear
that the € is a connected set. Indeed, it is not hard to construct explicit examples of
functions f on R™ such that |f| = |f|*e such that {|f] > 0} is not connected.

To eventually show that 2 above is in fact connected in our case, we will exploit the
equation (8.1.5) in Fourier space. As a consequence, we find that  must be equal to its
m-fold Minkowski sum with the integer m = 20 + 1, i.e., we have

Q=P ={p+... 4 ym:yeQ 1 <k<m} (8.1.16)
k=1

The key step is now to establish the connectedness of 2 < R™ from this information. Sur-
prisingly, we did not succeed in finding a general argument to conclude that any open
(non-empty) set Q < R™ that satisfies (8.1.16) is necessarily connected. However, by ad-
ditionally using the cylindrical symmetry of (2, we are able to conclude that the sets €2 in
question are indeed connected. See also the specific argument for the proof of Theorem 8.1.3
below addressing the one-dimensional case Q2 c R.

8.1.4 Conjugation Symmetry for n =1

In one space dimension, the concept of the symmetrization operation fe becomes void. Still,
we expect the conjugation symmetry (P2) to hold for boosted ground states in the one-
dimensional case. To this end, we define the following operation

fo=9"|Ff]} for fe L*(R").

We may still ask whether the boosted ground states Q. v € H*(R) as given by Theorem
8.1.1 always obey that

Quv = ei“Q;,v(x +xp) for almost every z € R™,
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with some constants o € R and z¢ € R". As already mentioned for the proof of Theorem
8.1.2 above, the key ingredient needed to be shown is that {|Qu.| > 0} is a connected set.
Luckily, by exploiting the one-dimensionality of the problem, we can show that must have
Q € {R-o,R.g, R}, whence it follows that € is connected.

Theorem 8.1.3 (Conjugation Symmetry for n = 1). Let n = 1 and suppose the hypotheses

of Theorem 8.1.1 are satisfied. Moreover, we assume o € N is an integer. Then any boosted
1

ground state Qv € H2(R) is of the form

Quv(z) =€°Q  (x +x0) fora.e. xR,

with some constants o € R and zo € R. In particular, any such Qv € H? (R) satisfies (up
to translation and phase) the conjugation symmetry (P2) for a.e. x € R.

Remarks. 1) As in Theorem 8.1.2 above, we actually obtain that Q. has non-negative

Fourier transform. In particular, if @w,v e LY(R), we see that Q. (up to translation and
phase) is a positive-definite function in the sense of Bochner.

2) For a conjugation symmetry result in general dimensions n > 1, we refer to our
companion paper [5], where an analyticity condition on the Fourier symbol p(§) is imposed
in order to be able to deal with n = 2.

8.1.5 Examples

We list some essential examples, where we can deduce symmetries of boosted ground states
for the following equation of the form (gNLS).

e Fourth-order/biharmonic NLS of the form
i0pu = A%u + pAu — |u*u, (t,r) e R x R",
whereueRandintegeraerith1<a<ooif1<n<4and1<a<ﬁifn>5.
e Fractional NLS of the form
i0pu = (—A)*u — [u|*"u, (t,r) e R xR",
with s > 0 and integers o € N such that 1 < o < g4(s,n).
e Half~-Wave and Square-Root Klein-Gordon equations of the form
0u = \/—A +m2u— |u|*u, (t,r)eR xR,
with m > 0 and arbitrary integer o € N.

Finally, we also remark that the Fourier symmetrization techniques in this paper seem
to be ready-made to be generalized to anisotropic NLS type equations, where the order of
derivatives may depend on the spatial direction. For instance, we could study symmetries
of boosted ground states for the focusing half-wave-Schrodinger type equations of the
form

0w = Agu — yy/—Ayu — [u|*7u, (t,z,y) € R x R¥ x R;

with parameter v > 0 and suitable integers o € N. However, the relevant Sobolev space now
becomes of the form

X = {ue I2(RM) / (€12 + InDIace, )2 de dy < oo},

RE+L

where (¢, ) with (&,7) € RF x R! denotes the Fourier transform of u in R® = R* x R’
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8.2 Existence of Traveling Solitary Waves

This section is devoted to the proof of Theorem 8.1.1 by following the arguments in [18]. In-
stead of concentration-compactness methods, we shall follow a different approach by adapt-
ing the techniques in [1] based on a general compactness lemma in H*® for general s > 0
(originally due to E. Lieb for the case s = 1).

8.2.1 Proof of Theorem 8.1.1

We follow [18] adapted to our setting here. Suppose that P(D) satisfies Assumption 4 with
constants s > %, A, B > 0. Let v € R" with be given, where we additionally assume |v| < A
if s = Finally, we impose that w > —3, with ¥, defined in (8.1.8). Recalling that
P,(D) = P(D) +iv - V, we can define the norm

|| vor=

1/2
Jull,y == Cu, (Po(D) + w)uy'/? = (/ (p(&) —v- €&+ w)a©) di) -
It is elementary to see that we have the norm equivalence

[ty ~a,8v0 [ul e
Note that the functional J, ., , can be written as

2042
lulay

Jvwp(U) = 505
[0 e
In what follows, we shall use X <Y to mean that X < C'Y with some constant C' > 0 that
only depends on s,n, A, B,o,w. We set

g:wp inf {Juwp(u) | ue H*(R™), u# 0}

Since 0 < 0 < 04(n, s), we obtain the Sobolev-type inequality

lull 2o+ S [l s S July v

which shows that g , , > 0 is strictly positive.

Suppose that (uj) c H?(R™)\{0} is a minimizing sequence, i.e., we have Jy . p(u;) —
J% wp @ j — . By scaling properties, we can assume without loss of generality that
ljll 2042 = 1 for all j € N. Obviously, we find that sup; |u;|, , < 1. Hence the sequence
(uj) is bounded in H*(R™).

Next, we show that (u;) has a non-zero weak limit in H*(R™), up to spatial translations
and passing to a subsequence. To prove this claim, let us first assume that s # n/2 holds
and therefore we have the continuous embedding H*®(R") = L2°**2(R"). Now we choose a

number r € (20 + 2,20 + 2). By Holder’s and Sobolev’s inequality, we have

with 20+2 + 2;;_?2 = % Since |uj] 2042 = 1 for all j and [u;] ;. < |u;] 5. < 1, we deduce

from (8.2.1) that there exist constants «, 3, > 0 such that

HUJ HL20+2 HUJ HL2U*+2 N HUJ ||L2o+2 H“J ||Hs ) (8.2.1)

lujllpe < lujllpzoe = 8, luslp <

holds for all j € N. In the borderline case s = n/2, we also deduce the existence of such
constants «, 3,7 > 0, where we just have to replace 20, + 2 above by any number ¢q €
(20 + 2,00) and use that H*(R™) < L4(R™) holds. We omit the details.
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Next, by invoking the Lemma 8.6.1, we deduce that

inf | {z € R" | |u;(z)] > n}| =
jeN

with some strictly positive constants 1, ¢ > 0, where |- | denotes the n-dimensional Lebesgue
measure. Thus we can apply Lemma 8.6.2 to conclude (after passing to a subsequence if
necessary) that there exists a sequence of translations (z;) in R" and some non-zero function
u e H*(R™)\{0} such that

uj(- 4+ x;) — v in H*(R"). (8.2.2)

Next, we show that the weak limit u # 0 is indeed an optimizer for J, ., and that
u; — u strongly in H*(R™). By the translational invariance of g, ., ,, we can assume that
xj = 0 for all j. Moreover, since the sequence (u;) is bounded in H*(R"), we can also assume
pointwise convergence u;(x) — u(x) almost everywhere. Recalling that [u;];2,4. = 1 for
all j, the Brézis-Lieb refinement of Fatou’s lemma yields that

lu; — ul 2552, + Jul 2552 = 1+ o(1).

Furthermore, from Jy . p(u;) — 3%

N wp together with |w;]| 2,4, = 1 for all j we conclude
that

_1
sl = (@5 up) 7T
On the other hand, since u; — w in H*(R") and writing H = P,(D) + w so that {f, Hf) =
||f\|iv for all f e H*(R"), we readily find that
Cuj —u, H(uj —u))y + (u, Huy = (3:’,‘7%,})#1 +o(1)

by using elementary properties of the L2-inner product. In summary, we thus deduce

8 o { s — w3535 + Wl 335% + 0(1)} = 8%,
= {Cu; —u, H(u; = w) + Cu, Hw) !

> (uj —u, H(uj —u))7" + (u, Huy”™* + o(1)
> % Ity — w3557 + Cu Huy™ + (1),

In the first inequality above, we used the elementary inequality (z+%)? > 27+y? for z,y > 0
and ¢ > 1. Passing to the limit 7 — o0 and using that u # 0, we obtain

<u Hu>a+1
ap = W = Jv,wp(u),
L20+2

which shows that v € H*(R™)\{0} must be a minimizer. Also, we remark that we must have
(uj—u, H(uj —u)) = |u; — u||i + — 0as j — oo, since equality must hold everywhere. This
shows that in fact u; — u strongly in H* (R™) due to the equivalence of norms || ;. ~ ||
Finally, we note that an elementary calculation shows that any minimizer Q,, v € H*(
for Jyw,p With [Qu.w| ;2042 = 1 satisfies the corresponding Euler-Lagrange equation

w,v’
n

)\{0}

Py(D)Qur + wQuw — (8% 0 ) 77 |Qu 2 Qo = 0. (8.2.3)

After a rescaling (), v — @@, v with a suitable constant a > 0, we find that @, solves
(8.1.5). This completes the proof of Theorem 8.1.1. O
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8.3 Rearrangements in Fourier Space

In this section, we recall and introduce some notions needed to prove Theorems 8.1.2 and
8.1.3.

8.3.1 Preliminaries

We start by recalling some standard definitions in rearrangement techniques. Let uj denote
the Lebesgue measure in dimension & > 1. For a Borel set A — R* we denote by A*
its symmetric rearrangement defined as the open ball Br(0) centered at the origin whose
Lebesgue measure equals that of A, i.e., we set

A* = {z e R : |z| < R} such that Vi R* = px(A),

where Vi, = p(B1(0)) is the volume of the unit ball in R*. Next, let u : R¥ — C be
measurable function that vaniihes at infinity, which means that p({z € R¥ : |u(z)| > t})
is finite for all ¢ > 0. We recall that the symmetric-decreasing rearrangement of u is
defined as the nonnegative function u : R* — R by setting

o0
u*(z) :/ X{ju|>t}* () dt,
0

where yp denotes characteristic function of a the set B < R¥.

Let us now take n > 2 dimensions and decompose R” = R x R"~!. Accordingly, we write
elements x € R™ often as x = (x1,2’) € RxR""!. For a measurable (Borel) function u : R" —
C vanishing at infinity, we define its Steiner symmetrization in n — 1 codimensions’.

as the function u*! : R x R"~! — R, given by
u* (2, 2') = u(zy, ) *(2),

where # on the right side denotes the symmetric-decreasing rearrangement of the function
2’ — u(xy,2’) in R*7! for each z; € R fixed. Of course, the rearrangement operator !
can be easily generalized to arbitrary coordinate directions. More precisely, given a unit
vector e € S"1 we pick a matrix R € O(n) such that Re = e; = (1,0,...,0) and let
(Ru)(x) := f(R™'z) denote the action of R on functions u : R* — C. We can then define the
Steiner symmetrization in n — 1-dimensions with respect to e as the nonnegative function
u*e : R™ — R, that is given by

u*e := R™Y((Ru)*1).

Recalling the definition in [24], we define the Fourier rearrangement of a function
u € L2(R™) to be given by
uf = FTH{(F(w)*}, (8.3.1)

where * denotes the symmetric-decreasing rearrangement in R™ and F is the Fourier trans-
form

u() = W /]R” u(z)e” " du, (8.3.2)

defined for u € L*(R™) and extended to u € L?(R™) by density. Finally, we come to the main
technical tool used in this paper. Given a direction e € S"~! and u € L?(R"), we define its
Fourier Steiner rearrangement in n — 1 codimensions by setting

Fu(§)

ufe .= FH{F(u)*}. (8.3.3)

I'We follow the nomenclature in [10].
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By a suitable rotation of coordinates in R™, it will often suffice to consider the case e =
e; = (1,0,...,0) and likewise we simply write

uft = FH{(F(u)* ). (8.3.4)
Next, we collect some basic properties of the operation f. as follows.
Lemma 8.3.1. Letn > 2, ee S" !, and u e L2(R™). Then the following properties hold.

(i) Jufe] Lz = [uf 2.

(ii) ufe is cylindrically symmetric with respect to e, i.e., for every matriz R € O(n) with
Re = e it holds that
ufe(z) = u*(Rz) for a.e. x € R™.

(ii) If in addition @ € L'(R™), then ufe is a continuous and positive definite function in
the sense of Bochner, i.e., we have

m
Z uﬁe(xk —x)Zkz =0
k=1
for all integers m > 1 and x1, ..., %m € R™ and z € CN. In particular, it holds that

ufe(0) = |ufe(z)| for all z € R™.

Remark. Note that item (iv) says in particular that u*e(0) is a real number. However, the
values ufe(x) can be complex numbers for x # 0 in general.

Proof. Without loss of generality we can assume that e = e; = (1,0,...,0).

Item (i) follows from elementary arguments. Indeed, by Fubini’s theorem, we find for
any f e L%(R") that

= [ @Pae= [ ([ 15 m)P oo, ) dn

:/ (1 (1,22, 2a) | P day .. dan) day = | £51)2,
R

where used the equimeasurability of the functions f(z1,...) and f(z1,...)*" on R"! for
every z1 € R fixed. By Plancherel’s identity, we conclude that (i) is true.
Likewise, we see that (ii) holds true by elementary properties of the Fourier transform.

Finally, we mention that (iii) follows from the fact that u#1 = (@(¢))** > 0 is non-negative
and classical arguments for positive-definite functions; see, e. g., [31]. O

8.3.2 Rearrangement Inequalities: Steiner meets Fourier

Recall that the operator P(D) is defined as (P/(D\)u)(g) = p(&€)u(§) through its real-valued
multiplier p : R” — R. Furthermore, we recall that for the given velocity v € R™ we define
the operator

P,(D)=P(D)+iv-V,

which has the Fourier symbol py(§) = p(§) — v -&.
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Lemma 8.3.2. Let n > 2. Suppose that P(D) satisfies Assumptions J and 5 with some
s> 1/2. Let e € S"~! be some direction and assume that v € R™ is parallel to e. Then it
holds that

(uPe, Py(D)ufe) < (u, Py(D)u) for all u e H*(R™).
Moreover, we have equality if and only if |a(§)| = (W(§))*e for almost every € € R™.
Proof. By a suitable rotation in R", we can assume without loss of generality that e =

e; = (1,0,...,0) holds and thus v = (|v|,0,...,0). As before, we decompose £ € R™ as
&= (£,¢) e R x R*1. With some slight abuse of notation we can write p(&) = p(&1, |€'])

and py(§) = pv(&1, ‘5/‘) = p(&1, |£/D - |V|51'

We adapt the following arguments in [24] to our setting here.

Step 1. Suppose A = R"~! is a measurable set with finite Lebesgue measure p,,_1(A) <
o0 in n — 1 dimensions. For notational simplicity, we shall simply write y instead of p,—1 in
the following. Let A* denote its symmetric-decreasing rearrangement in R*~!, i.e., the set
A* = Br(0) € R"! is the open ball centered at the origin with measure u(A*) = p(A).
We claim that the following inequality holds

| nlnlghas < [ mienighag (535
A A

for any & € R. Indeed, we have p(A\A*) = p(A4) — u(A n A*) and p(A*\A) = u(A*) —
(A n A*). Since p(A) = p(A*), we deduce that p(A\A*) = p(A*\A). Next we recall that
|€'] — p(&1,]€]) is strictly increasing for all &; € R fixed. Hence the map |£'| — py(&1,|E|) =

p(&'1,1€']) — |v|& is strictly increasing as well. Since |¢'| = R for ¢’ € A\A* and [¢'| < R for
& e A*\ A, this implies that

/ polEn, €) d€' < / po(€1, R) A€ = po (&1, R)u(A™\A)
A%\A A%\A
= pu(€r, Ryp(A\A¥) = / po(€r, R) A€’ < / pu(€r,€) de”
A\A*

A\A*
(8.3.6)

Therefore we conclude

/pv<gl,|f'|)df':/ pv<sm5/\>dg/+/ po(En, [€]) de
A% A*\A A¥nA

= v ’ /d/ v ) /d: v ) /dl7
</A\A*p<51 Dae+ [ penleas = [ utenlen e

which proves (8.3.5).
Step 2. Now let f : R®™ — R, be a nonnegative measurable function vanishing at
infinity. We claim that

/ P (E)pel€r, [€']) A < / F©OpolEr, €]) de, (83.7)
R?L R?’L

where f*! denotes the Steiner rearrangement in n — 1 codimensions. To show the claimed
inequality, we note that f(&) = fooo X{f>#}(§) dt by the layer cake representation and accord-

ingly we have f*1(§) = fom X¢f>ty*1 (§) dt. Thus, by applying Fubini’s theorem, we need to

ShOW lha(
/ | </ </ - X{f>t} 1(61’§l)pv(£17 |§/|)d§/> d§1) dt <
0 R Rn—1
/ </ </ X{1>t}(£1,§’)pv(£1, |£l|)d€/> d€1> dt
0 R Rn—1
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If we use (8.3.5) with the sets Be, = {& e R"™!: f(&,¢) > t} <« R"! with & € R, the
definition of *; implies that

/ Niroeyes (€1, €Dy (€€ A€’ < / Nipony (60, E)pulEr, €] A
Rn—1 Rn—1

for any & € R. By integrating this inequality over &; and ¢, we arrive at the desired inequality
stated in (8.3.7).

Step 3. By Plancherel’s theorem and the definition of u#', the claimed inequality is
equivalent to

| @l P as < [ p@laoP as

We now define the nonnegative function f : R® — R, with f(£) = |a(¢)|?>. Clearly, f
is measurable and vanishes at infinity. Furthermore, we note that f*1(£) = (|u(¢)[?)** =
|(G(€))*1|?, where the last equality follows from basic properties of the rearrangement #;.
By applying (8.3.7), we obtain the claimed inequality stated in Lemma 8.3.2.

Step 3. Finally, we suppose that equality (uf', P,(D)u*) = (u, P,(D)u) holds. Since
[€'] — py (&1, [€']) is strictly increasing, equality holds in (8.3.6) if and only if pu(A\A*) = 0.
Since u(A) = p(A*), this means that the sets A and A* coincide (up to a set of measure
zero). Therefore, by using the layer-cake representation for f = |4|? in (8.3.7), we deduce
the equality f(&) = f*(€) for almost every & € R™, which is equivalent to |a(¢)| = (a(€))*!
almost everywhere.

The proof of Lemma 8.3.2 is now complete. O

Next, we turn to a rearrangement inequality for LP-norms. By arguing along the lines
in [?], we can prove the following result.

Lemma 8.3.3. Letn > 2, pe 2Nu{w}, ande € S""'. Then for allu € L*(R™)nF(L* (R™))
with 1/p + 1/p’ = 1, we have ufe € L2(R™) n F(LP (R™)) and |u|rr < |ufe|Le.

As a technical ingredient needed for the proof of Lemma 8.3.3, we need the follow-
ing result concerning multiple convolutions in R"™, which is a consequence of the classical
Brascamp-Lieb-Luttinger inequality; see Lemma 8.6.3 below.

Proposition 8.3.1. Let n > 2, e € S* !, and m > 2. For any non-negative measurable
functions uy,usa, ..., Uy : R" > R, vanishing at infinity, we have

(ug # .ok ) (0) < (ufe = . .oxuke)(0).

Proof. Without loss of generality we can assume e = e; = (1,0,...,0) € R". A calculation
using Fubini’s theorem yields

(ug * -+ % upy)(0)
m—1
:/ "‘/Infl [ul(y%,'),...,um1(y{"_1,-),um(— Z yi?)]dy% dy?l_l'
R R =1

Here I,,_; is defined according to (8.6.1) with B as the (m — 1) x m-matrix given by

(8.3.8)

10 -~ 0|-1

0 1 0] -1
B =

00 --- 1|-1
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and the matrix in the left block is the (m — 1) x (m — 1)-unit matrix. By applying Lemma
8.6.3 with d = n — 1 and recalling the definition of %7, we deduce that

(ur # - - up ) (0)

_ m—1
://Infl ul(y%a')a"'aumfl(yiﬂl ! ) Um( Z yi’ )]dyl dym '
R R L

1=

1
r m—1
<//1 wr(yh, ), et (5 ( > y) ]dyi--dy;”-l
R R L 1

] -1
=/.../In,1 w1, ), (i (
R Jr

- [

=(uy - xunt)(0),

m

-
Il

MS

3*

yi, )]dyl- - dy!
1

where the last equality again follows from applying Fubini’s theorem. O

Proof of Lemma 8.3.3. Without loss of generality we can assume that e = e; = (1,0,...,0).
The case of p = 2 is clear. Let us assume p = 2m with some integer m > 2 so that the
corresponding dual exponent is given by p’ = 522, Since u € LP(R") n F (L (R™)), we can
apply the version of the convolution lemma in [24] to conclude

lullz, = F(lul*™)(0) = (@@= u)(0), (8.3.9)

where the number of convolutions on the right-hand side equals 2m — 1. By Proposition
8.3.1, we obtain that

(W w - %0 )(0) < (@ (@)% %% (W)* + (@)*)(0) = F(uP)2™)(0) = [uf?,,

where we also used the fact that F(uft) = F(@)** and the definition of #;.
Finally, let us take p = o0 and thus p’ = 1. We find, by using Fubini’s theorem,

ol < [ rde = [ ([ 1aeelae) de
- [ w@era)aa - o
R \JRn—1

Since |ut|z= = u*(0) holds by Lemma 8.3.1 (iii), we complete the proof. O

8.4 Proof of Theorem 8.1.2

We divide the proof of Theorem 8.1.2 into two parts as follows. First, as the essential key
point, we show that {{ € R” : |Q, v(§)| > 0} is a connected set in R”. This fact then enables
us to apply the recent rigidity result [24] for the Hardy-Littlewood majorant problem in R
to conclude the proof.

8.4.1 Connectedness of the Set {]@wv| > 0}

We start with with some notational preliminaries. Given two sets X,Y < R™, we shall use
XoY={x+y:zeX, yeY}
to denote their Minkowski sum. Likewise, we denote their Minkowski difference by

XoY={x—y:zeX, yeY}
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Furthermore, for a function f : R™ — R we use the short-hand notation
{f>0} ={xeR": f(z) > 0}
throughout the following.

Lemma 8.4.1. Let f,g € R" — [0,0) be two non-negative and continuous functions.
Assume that their convolution

(fxg)@)= [ [flx—y)gy)dy
RTL
has finite values for all © € R™. Then it holds that

{f*9>0}={f>0}@{g> 0}

Proof. The proof is elementary. For the reader’s convenience, we give the details. Let us
write Qp = {f > 0}, Q4 = {g > 0} and Qssy = {f * g > 0}. We suppose that both f £ 0
and g # 0, since otherwise the claimed result trivially follows.

First, we show that Qy ® Qg < Qfyy. Let x = 21 + 22 with 21 € Qf and 25 € Q4. By
the continuity of f and g, there exists some € > 0 such that f > 0 on B.(z1) and g > 0 on
B.(x2). Thus, by using that f > 0 and g = 0 on all of R, we get

Fra)@) = [ fle—p)ey)dy> / Flar + 22— y)gly) dy > 0,
R™ B (z2)

since z1 + 2 — y € B:(z1) when y € B.(z2). This shows that Q; @ Qy < Qryy.
Next, we prove that Q. , < Q; @), holds. Indeed, for every z € R", we can write

Fr9)@) = | flz—)aly)dy = / f(z - 1)(y) d,
R7 ({z}o2r)nQy

since f(xz —-) = 0 on R"\({z} © Q¢) and g = 0 on R™\Q,. However, if ¢ Qy @ Q, then
({z} @ Qf) nQy = . Thus (f * g)(x) = 0 for any = ¢ Qf @ Q,, whence it follows that the
inclusion Q ¢,y < Qf @ 4 is valid. O

Next, we establish the following key result in order to prove Theorem 8.1.2.

Lemma 8.4.2. Let n = 2 and suppose £ = 2 is an integer. Let [ € Le/(e_l)(R") =0 be a
continuous nonnegative function with f = f*e with some e € S* ' and assume f satisfies
an equation of the form

fl@)="h(x)(f*...« f)(x) forallxzeR"™, (8.4.1)

with £ factors in the convolution product on the left side and h : R™ — (0,+00) is some
continuous positive function. Then the set {f > 0} < R™ is connected.

Proof. We divide the proof into the following steps. Without loss of generality we can
assume that e = e; is the unit vector pointing in the x;-direction.

Step 1: Preliminaries. For a set X < R” and L € N, we use

L
SLX) =P X
k=1

to denote the L-fold Minkowski sum of X with itself. Let us define the set

Q= {zeR": f(z) > 0}. (8.4.2)
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We assume that €2 # ¢F, since otherwise the result is trivially true. Next, we will denote by
m1(2) € R ~ R x {0} the projection of Q onto the z;-axis, i.e., we have

m1(Q) = {z1 e R: 32/ € R"! with (xq,2') € Q}.

From (8.4.1) we clearly see that {(f #...= f) > 0} = Q. By Lemma 8.4.1 and iteration, this
implies the equality of sets
Sue(2) =Q  for any v e N.

Furthermore, we see that for every subset A <  this implies
Sui(A) € Spe(Q) < Q forall ve N (8.4.3)

Next, we recall that, for any x; € R fixed, the sets {2’/ € R"™1 : f(xq,2") > 0} are open
balls in R"~! centered at the origin, due to the fact that f = f** > 0, which implies that
the map 2/ — f(z1,2’) is radially symmetric in R"~! and non-increasing in |2’|. Thus there
exists a map

R— [07+OO]7 T '—>P(CL'1)

such that
Brn-1(0,p(x1)) = {2/ e R"': f(xq,2") > 0}.

As usual, we use the convention that Bgn-1(0,+00) = R"~! and Bgn-1(0,0) = ¢J. By the
continuity of f, the map x; — p(x1) is continuous on m Q. Next, by replacing f(z) with
f(—x) if necessary, we can henceforth assume that

Qni{z; 20} # .
Clearly, one of the two following cases must occur:
(A) Q\{z1 =0} =g
(B) O\{z1 =0} # &.
Next, we will treat the cases (A) and (B) separately as follows.

Step 2: Discussion of Case (A). In this case, we must have the inclusion Q < {z; >
0}. Let us define the nonnegative number

24 = inf{x; > 0: p(x1) > 0}. (8.4.4)

Thus we have Q < {z; > x,}. But we note that S¢(Q) < {z; > fx,} by elementary
properties of the Minkowski sum. On the other hand, we also have Sy(2) = Q from above.
Thus {z1 > x4} < {z1 = Lz, }. Since £ > 2 and z, > 0, we deduce that

Next, we claim that
p(x1) > 0 and p(z1) is non-decreasing for all z; > 0. (8.4.6)

We first show that p > 0 and that p is non-decreasing on a dense subset in R, . By a density
argument, it then follows that p(xz1) > 0 for all 2; > 0.

Indeed, since we have z, = 0, there exists a sequence of positive reals €, > 0 in R.g
such that €, — 0 and p(e,) > 0 for all n. Without loss of generality, we can henceforth
assume that the sequence €1 > €5 > ... > 0 is strictly decreasing. By continuity of p, we
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find 0 < 8, < &, such that p(t) > 3p(c,) whenever |t — ¢,| < §,. Hence we can find a
sequence of cylindrical sets

1
Cpn = len — On,n + On[ X Bra— <0, 2P(5n)> cf (8.4.7)

If we now apply (8.4.3), we see that S,,(C,) < Q for any integer v € N. Let us now define
the set

+00 iy
D := { Z Pnén * Pn EN» len e/Nuv {1}}7

n=1 n=

which is dense in R~ q. Since we have p(e,) > 0 and (8.4.7) for all n, we get
p(x1) > 0 for all z; € D. (8.4.8)

Next, we show that the function p is non-decreasing on R~ . To show this, we first establish
that
p(x1) < p(y1) for all w1 € D and y1 > 1. (8.4.9)

Indeed, let 21 € D be fixed and take a € (0,1). Since p(xz1) > 0, we can pick a point
(71,2") € suppf with some 2’ € R"~! with |2/| = p(z1), where we assume that p(x;) < +00
for the moment. Since {(z1, az’)} UG, < Q, we deduce from (8.4.3) together with elementary
properties of the Minkowski sum of set that

(k1 + (= 1)(ep —p)yx1 + (£ — 1)(en + 0p),a2’) € Q  for all n e N.
By taking the limit a — 17, we get that for all n € N,
p(x1) < p(y1) when 1 + (L —1)(ep, — p) <31 <1+ (£ — 1)(en + p)-
Iterating the process, we get that for all
p(x1) < p(y1) when &1 + M —1)(e, — 6n) <tn <1+ M —1)(e, +6,)  (8.4.10)

for arbitiray n € N and M € N. We show (8.4.9) by a contradiction argument. Assume the
existence of some real y; > 21 with 0 < p(y1) < p(x1). By continuity of f, this inequality
holds in a small neighbourhood (y; — d,y1 + §). However since &, — 0 as n — +00, there
exist n, M € N such that 1 + M (¢ —1)e, € (y1 — d,y1 + §), contradicting (8.4.10). The case
of infinite p(x1) = +00 follows from a straightforward modification of the arguments above.
This completes the proof of (8.4.9).

Since the set D is dense in R, the monotonicity (8.4.9) together with the continuity of
p on m1(€2) and the positivity of p on D imply that

1. p>0on Ry (hence 71 () = Rsg), and
2. the function z; € Ry — p(x1) is continuous and non-decreasing.

These last two facts then imply that 21 € Rog — p(z1) is increasing on R..
In summary, we have found that the set 2 = {f > 0} must be of the form

Q= |J {&1} x Bre-1 (0, p(21)), (8.4.11)

x1€[0,00)

where 0 < p(z1) < + for all 3 > 0. Clearly, the set Q < R™ is connected.
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Step 3: Disussion of Case (B). In this case, we have Q@ n {z; > 0} # & and
Qn{z1 <0} # . Hence we can define the two nonnegative numbers z,,z_ > 0 by setting

x4y =inf{z; > 0:p(x1) >0} and z_ = —sup{x; <0:p(z1) > 0}.
We claim that
zy =x_ =0. (8.4.12)

We first show that equality z = x_ must hold. By replacing f(z) by f(—z) if necessary,
we may assume z4 > x_ in what follows. By construction, there exist decreasing sequences
en > 0 and 7, > 0 with ¢, — 0 and 7, — 0 such that

plxy +e,)>0 and p(—z_ —mn,) >0 forallneN.

Arguing in a similar way as in the previous step, we can find cylindrical sets

1
G_,_,n = ]I’+ +én — (;n7l'+ +éen + 5n[ X BRn—l (O, 5P(I’+ + €n)> (e Q,

1
Con=1=2— =Ny — On, =T — My + 0p[ X B <0a ip(—il'f - nn)> c @,

with sufficiently small numbers 0 < §,, < min{e,,n,} — 0 as n — .
Let us now assume that x_ > 0 is strictly positive and thus z, > 0 as well. We define
the number

xXr_
=—¢€]0,1].
x=Tmclo]

Let N1, N2 € N be integers to be chosen below. Since Sn,¢(Cy+ ) < Q and Sy, (C_ ,,) = Q,
we deduce that
A= {(N1€($+ =+ T‘»,L),O), (—N2€($_ + ’I“n),O)} cQ

with some small numbers r, > 0 with r,, — 0. Using S2,(A) < Q, we obtain
(N 6% (x4 + 7)) — Nol? (2 +1,),0) € Q. (8.4.13)
However, we now claim that
—x_ < Nyl (2 +7p) — NolP(z_ +1r,) <y (8.4.14)

for a suitable choice of integers N1, N € N\{0} and sufficiently large n » 1. But (8.4.14)
and (8.4.13) then imply that p(x1) > 0 for some —z_ < x1 < x4, which would contradict
the definition of either ;. > 0 or z_ > 0. To show the claimed inequality (8.4.14), we note
that we can find integers Ny, N2 € N\{0} such that

0 < Ny — Nol?se < 1. (8.4.15)

Indeed, assume that » = p/q €]0,1] is a rational number. Then the choice of Ny = p and
Ny = q yields N1#%2 — Nal?5c = 0. Next, we suppose that » € ]0,1]\Q is irrational. By the
pigeonhole principle, we can find integers N1, No > 1 with the property

1
O<N1—N2%< ﬁ,

which also yields (8.4.15).
Therefore, by a suitable choice of integers Ny, Na, we see that (8.4.14) follows from

—x < (Nl — NQ)EQTJ <1,
Lt
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which is true if n » 1 is sufficiently large, as we have r, — 0. This completes our proof
that the case z_ > 0 cannot occur.

Finally, let us assume that x_ = 0. In this case, we can argue as in Step 2 to conclude
that strict positivity p(z1) > 0 holds for all x; < 0. Therefore,

(—y,0) e Q for all y > 0.

Suppose now that z, > 0 holds. Recall that there is a sequence ¢, > 0 with ¢, — 0
such that p(x4 +¢,) > 0 for all n and hence

(x4 +en,0) €.
Applying Lemma 8.4.1 to f and g = (f *...* f) with £ — 1 factors, we deduce that
(x4 +en— (€ —1)y,00eQ forallneNandy>0.

But if x4 > 0 this implies that there is 0 < 1 < x4 with p(x;) > 0, which contradicts the

definition of z . Thus x_ = 0 implies that x, = x_ = 0.
Having established that ;. = x_ = 0, we can argue as in Step 2 above to conclude
Q= U {z1} x Bra-1(0, p(1))
mleR

with p(z1) > 0 for all 2; # 0. Thus (y,0) € Q for all y # 0. Applying Lemma 8.4.1 with
f=fandg=(f=...%f) (£—1 times), we deduce

(x1+ (L —1)y,0) € Q for any z1 # 0 and y # 0.

But this show that (0,0) € 2 and hence p(0) > 0. By continuity of f, there exists an open ball
B(0) c Q with some € > 0. Since S,¢(B:(0)) < Q for any v € N and |,y Sev (B:(0)) = R",
we conclude in fact that €2 = R™, which evidently shows that  is connected. O

8.4.2 Completing the Proof of Theorem 8.1.2
Let Q = Qu v € H*(R™) be a boosted ground state as in Theorem 8.1.2.

It is elementary to check that |Q[*?Q € L'(R™) using that o € (1,04). Hence by (8.1.5)
and taking the Fourier transform, we conclude that Q(¢) = ﬁ(\@@’@)(ﬁ) is a contin-

uous function due to the assumed continuity of p(§). Next, by Lemma 8.3.2 and 8.3.3, we
conclude that Q% is also a boosted ground state and it must hold that

10(6)] = (Q(€))*  for all € € R™.

By writing the equation (8.1.3) in Fourier space, we find that the set

Q={Q" >0} = {|Q(&)| > 0}

is a connected set in R™ by using Lemma 8.4.2 with f = |Q|** and h = (py(€) + w) L.
Finally, since @ and Q*e are both boosted ground states, we must also have the equality
[Qlzr = ||Q*¢|Lr- We can now invoke Lemma 8.6.4 to deduce that

A~

Q&) = TFOQ* e (&) for all £ € R,

with some constants o € R and 8 € R”. Hence it follows that Q(z) = Q" (z + x¢) for
almost every x € R”, where a € R and zg € R™ are some constants.
The proof of Theorem 8.1.2 is now complete. O
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8.5 Proof of Theorem 8.1.3

Let the hypotheses of Theorem 8.1.3 be satisfied and suppose Q = Q,, v € H*(R) is a boosted
ground state. As before, we consider the set

A~

Q={¢eR:[Q()]> 0}

Similarly as in the proof of Theorem 8.1.2, we conclude that @ is a continuous function (and
hence 2 is open). Moreover, it is elementary to see that (using that o € N)

@, P(D)Q*) <{Q, P(D)Q) and [Q[r2r+> < [Q°[ 20+,

see [b][Lemma 2.1]. Hence we conclude that Q* € H*(R) is also a boosted ground state
with Q|2 = |Q°| 2. Furthermore, by arguing in the same way as in the proof of Theorem
8.1.2, we deduce that

Q=P Q, (8.5.1)

which means that the set 2 R is identical to its (20 + 1)-fold Minkowski sum. Using the
one-dimensionality of the problem, we can now prove the following auxiliary result.

Lemma 8.5.1. Suppose Q < R is an open and non-empty set such that
m
Q= @ Q
k=1
for some integer m = 2. Then it holds that

Qe {R>0,R<0,R}.

Remark. For higher dimensions £ < R™ when n = 2, we conjecture that  is always a
connected set.

Proof. We split the proof into the following steps.
Step 1. Let us first suppose that 2 € R holds. We claim that we necessarily have

Q =R.g. (8.5.2)
To see this, we first show that

infQ = 0. (8.5.3)
Indeed, let us denote x, = inf) > 0. For every ¢ > 0, we can find z € ) such that
Ty < T <z +e. Since Q = @12 we can also find xy,..., 2, € Q such that x = Z;nzl Tk
and, of course, we have xp = x4 for k = 1,..., m. Thus we conclude

m
mngzk=x<x*+s.
k=1

Therefore we find that
(m—1)xy <e.

Since € > 0 is arbitrary, we deduce that (8.5.3) holds.
Next, we show that € is connected (and hence it is an open interval since we are in
one dimension). We argue by contradiction. Suppose 2 is not connected, i.e., we can find
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x,y € Q with < y and some b € (z,y) such that b ¢ Q2. Moreover, since 2 is open, we can
always arrange that b is chosen such that

(,) cQ and b¢ Q. (8.5.4)
Recalling that inf 2 = 0 we can now find some c € 2 with 0 < ¢ < 72:61' Hence it follows
x+(m—1)c<b and b+ (m—1)c>b. (8.5.5)

Thus there exists d € (z,b) < Q with d + (m — 1)c = b. Since Q = @7, we deduce from
this that we have b € 2 as well. But this is a contradiction. Hence the open set 2 < R is

connected, i.e., we have
Q = (inf Q,supQ) = (0,sup )

since inf Q2 = 0. From the assumed Minkowski-sum property of ) it is easy to see that
supQ = +oo. Thus we conclude Q = (0,+00) = R.g, provided that @ < R, holds.
Likewise, we can show that 2 = Ry whenever (2 c Rgy.

Step 2. It remains to discuss the case when both @ "nR>g # & and Q nR¢p # . In
this case, we first claim that there exist numbers y < 0 and 7 > 0 such that

(—0,y) v (7, +0) < Q. (8.5.6)

Indeed, by assumption on €2, exist real numbers y_ < 0 and y; > 0 such that y_,y; € Q.
Since € is open, we find B:(y_) c Q and B:(y4) < Q for some £ > 0. Let us introduce the
integer m = 20 + 1 > 2. From the elementary fact By, (z1) @ By, (x2) = By, 11, (21 + 22) for
the Minkowski sum of two open balls together with (8.5.1), we deduce

(‘B B:(y+) = Bne(my,) < Q.
k=1

Using this fact inductively and (8.5.1), we obtain a sequence of intervals {I,,}*°_; with I,,
that are given by the recursion formula

{ Iny1 = Ba-n((m—1y)®IL, forn=>1,
Iy = Be(y4)-

Hence we have
Int1 = Bin-1):((m = 1)y4) ® Be(y+) &' Ban—1)e((m —1)y5)
= Binim-1)+1e((n(m — 1) + Dy,).

Now we claim that
Lii1n o # @ forn = ng, (8.5.7)

where ng > 1 is sufficiently large. This is true if
(n+D)m -1+ Dy —(n+1)(m—-1)+De< (n(m—1)+ Dyy + (n(m—1) + 1)e,

which in turn is equivalent to

<2n+1+ )5>y+.

m—1

Evidently, this holds if n > ng with some sufficiently large integer ng € N.

88



By (8.5.7), we deduce that I = U,>nT,11 < Qis an (open) interval and it is elementary
to check that supl = +oo. Hence we conclude that I = (g,+o) <  for some 5§ > 0.
Likewise, we show that (—oo,y) < Q for some y < 0. This proves (8.5.6).

Finally, we define ¢ = max {7, —y} > 0. Since c € [g,0) € Q and —(m — 1)c € (—0,y) C
Q, we conclude from (8.5.1) that 0 € Q since 0 =c— (m—1)c =c— 22:11 ce @), Q. Since
Q is open, we deduce that B,.(0) < Q for some r > 0. By (8.5.1) and iteration, we conclude
that

Bnmr(0) = Q  for any N e N,

which readily implies that
Q=R.

The proof of Lemma 8.5.1 is now complete. O

With Lemma 8.5.1 at hand, we can now finish the proof of Theorem 8.1.3 as follows.
Since we must have equality |Qy vp20+2 = [Q2, [|£2-+2 for any boosted ground state Q. v €
H?*(R), we deduce from Lemma 8.6.4 below that the conclusion of Theorem 8.1.3 holds. O

8.6 Some Technical Results

Lemma 8.6.1 (pqr Lemma; see [15]). Let (2, %, 1) be a measure space. Let 1 < p < g <
r < 0 and let Cp, Cy, C. > 0 be positive constants. Then there exist constants n,c > 0 such
that, for any measurable function f € L (2) n Ly, () satisfying

[z < Cpr 1fl7g = Cor Iflzy < Cr,

it holds that
dy(n) == p({z e |f(z)| >n}) =c

The constant n > 0 only depends on p,q,Cp, Cy and the constant ¢ > 0 only depends on
p,q,7,Cp, Cq, Cr.

Proof. See [15, Lemma 2.1]. O

Lemma 8.6.2 (Compactness modulo translations in Hs (R™); see [1]). Lets > 0,1 <p < w0
and (uj)jen < H*(R™) n LP(R™) be a sequence with

sup ([u;l o + sl ) < o,
JeN

and, for some n,¢c >0 (with |- | being Lebesgue measure)
inf [{z e R™; |uj(z)| > n}| = ¢
jeN

Then there exists a sequence of vectors (xj)jen < R™ such that the translated sequence
uj(x+x;) has a subsequence that converges weakly in H*(R™)nLP(R™) to a nonzero function

u # 0.
Proof. See [1, Lemma 2.1]. O

Lemma 8.6.3 (Brascamp-Lieb—Luttinger Inequality). Let d = 1 and m > 2 be integers.
Suppose that ui, us, ..., un : R* — Ry are nonnegative measurable functions vanishing at
infinity. Let 1 <k <m and B = [b;;] be a given k x m matriz (with 1 <i<k, 1 <j<m).

If we define
m k
Lifui, ... um] == / / H uJ(Z bijyi) dy'--- dyF, (8.6.1)
Rd Rd

j=1 i=1
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then it holds that
L[ut, . yum] < Igluf, ..o uk],

where % denotes the symmetric-decreasing rearrangement in RY.
We recall from [24] the following result.

Lemma 8.6.4 (Equality in the Hardy-Littlewood Majorant Problem in R™). Letn > 1 and
p € 2N U {00} with p > 2. Suppose that f,g € F(LP (R™)) with 1/p + 1/p’ = 1 satisfy the
magjorant condition

1F(6) <€) forae EcR™.

In addition, we assume that f is continuous and that {€eR™: \f(§)| > 0} 4s a connected
set. Then equality

[flze = llglze

holds if and only if R )
F(&) = et 79G(e)  for allg e R™,

with some constants « € R and p € R™.
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