Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles

Meier, P. J. and Knickelbein, R. and Moseley, R. H. and Dobbins, J. W. and Boyer, J. L.. (1985) Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. Journal of Clinical Investigation, Vol. 75, H. 4. pp. 1256-1263.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261806

Downloads: Statistics Overview


To determine whether anion exchangers might play a role in hepatic bile formation, we looked for the presence of Cl-:OH- and Cl-:HCO3- exchange in highly purified canalicular (c) and basolateral (bl) rat liver plasma membrane (LPM) vesicles. In cLPM vesicles, a pH gradient (7.7 in/6.0 out) stimulated 36Cl- uptake twofold above values obtained during pH-equilibrated conditions (7.7 in = out). When 50 mM HCO3- was also present inside the vesicles, the same pH gradient (7.7 in/6.0 out) resulted in Cl- uptake to levels fourfold above pH- and HCO3--equilibrated controls and two- to threefold above Cl- equilibrium (overshoot). Initial rates of both pH and HCO3- gradient-stimulated Cl- uptake were completely inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS). A valinomycin-induced K+ diffusion potential (inside positive) also stimulated Cl- uptake in cLPM, but this conductive Cl- pathway was insensitive to DIDS. The DIDS-sensitive, pH and HCO3- gradient-stimulated Cl- uptake demonstrated: saturation with Cl- (Km approximately 6.3 mM; Vmax approximately 51 nmol X mg-1 X min-1); partial inhibition by bumetanide (26%), furosemide (33%), probenecid (37%), and 4-acetamido-4'-isothiocyano-2,2'-disulfonic acid stilbene (49%); cis-inhibition by chloride and nitrate but not by sulfate and various organic anions, and independence from the membrane potential. These data demonstrate the presence of an electroneutral Cl-:OH- and Cl-:HCO3- exchanger in rat liver canalicular membranes that favors Cl-:HCO3- exchange. In contrast, no evidence was found for the presence of a Cl-:HCO3- (OH-) exchange system in blLPM vesicles. Furthermore, neither blLPM nor cLPM vesicles exhibited Na+-stimulatable Cl- uptake, indicating the absence of a NaCl co-transport system in either LPM subfraction. These findings are consistent with a functional role for a Cl-:HCO3- (OH-) exchanger in canalicular bile formation.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Meier-Abt, Peter J.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Society for Clinical Investigation
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:13 Oct 2017 08:18
Deposited On:22 Mar 2012 13:40

Repository Staff Only: item control page