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Abstract

Background: The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin
combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being
also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine.
While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations
of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas.

Methods: We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214
individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-
treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov
models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection.
The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to
determine the potential public health impact of each drug when used for first-line treatment.

Results: We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7–15.7) for AL and 15.2
days (95% CI 12.8–18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7–18.6
days for AL and 10.2–18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were
transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes
predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL.
Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer
protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter
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population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as
first-line treatments in areas with high, seasonal transmission.

Conclusion: Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local
prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
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Background
Nearly all malaria-endemic countries use artemisinin-based
combination therapies (ACTs) as first-line treatment for
uncomplicated Plasmodium falciparum malaria. In each
ACT, the artemisinin derivative is combined with a different
antimalarial partner drug. There are currently five ACTs rec-
ommended by the World Health Organization (WHO):
artemether-lumefantrine (AL), artesunate-amodiaquine (AS-
AQ), dihydroartemisinin (DHA)-piperaquine, artesunate-
mefloquine, and artesunate-sulfadoxine-pyrimethamine (AS-
SP) [1]. In areas where other ACTs are failing, WHO also
suggest considering a sixth ACT: artesunate-pyronaridine,
now prequalified by WHO [2].
Each of the six drug regimens has different pharmacoki-

netic and pharmacodynamic properties, and these have im-
plications for the public health benefit of the drugs in terms
of their ability to reduce overall malaria transmission in the
community, as well as cure disease [3]. The artemisinin de-
rivatives are highly potent antimalarials that rapidly reduce
the parasite biomass; however, they have a very short half-
life. The partner drugs remain in the blood for longer,
clearing remaining parasites and incidentally providing
chemoprophylaxis against reinfection which may have an
important impact in moderate-to-high transmission areas
[4–6]. Some antimalarials have additional activity against
gametocytes, the transmissible form of the parasite, and
these are better at preventing onward transmission from
the patient after treatment. Gametocyte killing may there-
fore benefit the community through reduction of the over-
all transmission level [5].
Artemether-lumefantrine (AL) is globally the most

widely used ACT, followed by artesunate-amodiaquine
(AS-AQ) [7]. While resistance to artemisinin has emerged
in South-East Asia [8] and a degree of resistance to the
partner drugs exists in some parts of the world, both treat-
ments remain highly effective in most African malaria-
endemic areas [9–12]. The pharmacokinetic properties of
each drug are relatively well characterized: lumefantrine
and its metabolite desbutyl-lumefantrine have terminal
elimination half-lives of 1–10 days [1, 13–16], while
desethylamodiaquine, the active metabolite of amodia-
quine, has a half-life of 4–10 days [1, 17–22]. However,
these estimates do not provide information on the duration

of post-treatment prophylaxis which also depends on the
pharmacodynamics of the drug.
There is evidence that the duration of protection after

AS-AQ and AL treatment is affected by parasite muta-
tions associated with reduced drug sensitivity [9, 11].
These two drugs show collateral sensitivity, such that
the mutations 86Y and 1246Y in the P. falciparum mul-
tidrug resistance transporter 1 (pfmdr1) gene and 76T in
the P. falciparum chloroquine resistance transporter
(pfcrt) gene are linked to reduced sensitivity to AS-AQ
but increased sensitivity to AL, which is thought to be
due to differential sensitivity to the amodiaquine and
lumefantrine partner drugs rather than the artemisinin.
Although the overall efficacy of each drug remains high
in Africa, a meta-analysis found that the N86 wild type
parasite was associated with a fourfold increased risk of
recrudescence after AL treatment [9, 11]. All these muta-
tions were also associated with a reduced time to reinfec-
tion after AS-AQ treatment, and an increased time to
reinfection after AL treatment, although the exact duration
of protection was not estimated since this also depends on
the local rate of transmission and thus reinfection.
The duration of protection can be estimated from clin-

ical trials where reinfection rates are monitored. We pre-
viously estimated the mean protection provided by AL
at 13.8 days, and DHA-piperaquine at 29.4 days [4]. The
duration of protection provided by amodiaquine is not
well known, although there are indications that it might
confer longer protection than lumefantrine [23, 24].
Here, we use a statistical analysis of pooled clinical trial
data from multiple sites in Africa, explicitly incorporat-
ing local transmission intensity as well as drug effects
into analyzing the time to reinfection, to estimate the
duration of post-treatment prophylaxis after AS-AQ and
AL. We use these results in an epidemiological transmis-
sion model to establish the differences in public health
impact when AS-AQ versus AL is used as first-line drug
for P. falciparum case management.

Methods
Overview
To assess the duration of post-treatment prophylaxis
provided by AL and AS-AQ, we analyzed clinical trial
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data obtained from the WorldWide Antimalarial Resistance
Network (WWARN) data sharing platform [25] with the
consent of study authors. Two statistical approaches were
employed: a hidden semi-Markov model allowed for esti-
mation of the actual duration of chemoprophylaxis (which
is shorter than the time to reinfection), and accelerated
failure-time models provided a better understanding of the
factors that modify it. Finally, we used a mathematical
model to simulate the epidemiological consequences of
using AS-AQ or AL as first-line antimalarial drugs.

Data
WWARN invited investigators to contribute individual-
level patient data for this meta-analysis [26] if their stud-
ies fulfilled the following criteria: randomized controlled
trials of uncomplicated P. falciparum malaria; AS-AQ
and AL being compared; follow-up to at least day 28,
with at least one follow-up visit at day 14 and another
before day 28; 100 or more participants per study site or
more than 28 days follow-up; polymerase chain reaction
(PCR)-adjusted efficacy available; at least 95% PCR-
adjusted treatment efficacy in both study arms; PCR-
unadjusted cure rates of < 95% in at least one trial arm
by day 28 (to indicate sufficient number of reinfections
to inform analysis on post-treatment prophylaxis); stand-
ard dose regimens of AL and AS-AQ (we included stud-
ies regardless whether AS-AQ was given as a fixed-dose
combination or not); and known dosage taken for each
patient. Individual patient data from eligible studies were
shared, collated, and standardized using previously de-
scribed methodology [27].
For the present analyses, we used data on PCR-confirmed

reinfections as well as the proportion of patients who were
not reinfected during follow-up, to estimate the duration of
chemoprophylaxis. Time of reinfection is included in the
analysis so that different follow-up times between studies
are accounted for (see also below). Patients who experi-
enced PCR-confirmed recrudescence were excluded. The
majority of included trials did PCR correction using three
molecular markers: glurp, msp1, and msp2 (Table 1). We
also did a sensitivity analysis to explore the possibility that
some of the recrudescences identified by this PCR correc-
tion method could have been misclassified as reinfections.
Recent work suggests that the percentage of patients ex-
periencing recrudescence may be around 1–3% higher than
estimated by standard PCR correction [64–66], with this
error being relatively constant across transmission settings.
We therefore also repeated our analysis after reclassifying
some reinfections in each trial as recrudescences, sampling
a number that would achieve a 3% higher recrudescence
rate overall. We weighted the sampling by timing of recur-
rent parasitemia in each patient as in Fig. 5 of [66], i.e., to
allow for the fact that recrudescences are more likely to

occur early during follow-up (see also Additional file 4: Fig-
ure S3 legend).
In two studies (in Tororo, Uganda and Sikasso, Mali,

see Table 1), the patients were followed up longitudin-
ally across several episodes and consequently treated
multiple times within short intervals. We only used the
first treatment episode and follow-up data collected be-
fore the next episode from these studies in order to
avoid confounding of our results by residual drug levels
from a previous treatment. One included study did not
have available data on the individual ages of participants,
but provided body weight [55], and another study re-
corded age but not body weight [50]. We imputed the
missing values in order to be able to include these stud-
ies. To impute missing age, we randomly sampled ages
of participants of the same gender from all other studies
who had body weights within 0.5 kg of the observed
participants’ weights; to impute missing body weight, we
sampled weights of individuals of the same gender
within 0.5 years of age for those under 25, and within 5
years for those over 25 years of age.
Molecular markers associated with susceptibility to AL

and AS-AQ were not directly measured during these tri-
als. Instead, for each trial, we sought other studies close
in space and time which measured the prevalence of
pfcrt 76T, pfmdr1 86Y, and pfmdr1 1246Y mutations
among infected individuals, using recently completed
systematic reviews [67, 68]. We included matches when
the study was conducted in the same country, within
300 km of the trial site and within 1 year of the trial start
or end year. When more than one matching survey was
found, we took a weighted average of the mutant preva-
lence. For sites with many matching molecular marker
surveys, we applied a stricter distance criterion of 100
km of the trial site. We did not include molecular
marker studies on post-treatment samples.

Prior information on the entomological inoculation rate
(EIR)
The time to reinfection in these trials is only in part
determined by the duration of protection conferred by
the drug. This is because individuals do not immediately
become reinfected after the protection ends, but rather
enter an “at-risk” state. Thereafter, they are reinfected at
a rate dependent on the incidence of patent blood-stage
infections in the population (the force of infection (FOI)
which in turn depends on the entomological inoculation
rate (EIR), the number of infectious bites per person per
year). More specifically, the time span between the end
of the protected period and reinfection follows an expo-
nential distribution with mean 1/φ, assuming a time-
constant FOI φ. We used predictions of the EIR as prior
values in our model, based on prevalence of infection in
2–10-year-olds estimated by the Malaria Atlas Project at
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the location and year in which each trial was carried out
[28, 29]. When the trial took place over several years, we
averaged slide prevalence over this time. These preva-
lence values were transformed into predictions of the
EIR and FOI using the relationships obtained from our
existing mathematical model of malaria transmission
[69], which has a fixed relationship between EIR and
FOI for a given age and history of exposure, allowing
calculation of location-specific prior values for φ as ex-
plained below.

Hidden semi-Markov models
The transition of an individual from a drug-protected
state to a non-protected state, where they are at risk of
reinfection after chemoprophylaxis, is not observed. We
observe only whether the patient has become reinfected,
after a certain time has passed since treatment. This
sequence of events can be interpreted as realization of a
stochastic process belonging to the class of hidden semi-
Markov models, which we used to estimate the duration
of protection provided by treatment. More specifically,
we modeled the time to reinfection Ri in host i as

Ri ¼ Pdi þ Ii þ δ

where Pdi is the duration of chemoprophylaxis of drug d
in host i, Ii is the time until reinfection occurs in host i
once at risk, and δ represents the time required for a
blood-stage infection to become patent after hepatocyte
rupture (assumed 3.5 days [71]). P and I were parameter-
ized as random variables as follows:

Pdi � gamma λdi; rdð Þ
where the drug-specific scale parameter λ and shape

parameter r are to be estimated, and

Ii∼ exp 1=φið Þ
with φi being the force of infection to which individual i
was exposed during the trial follow-up. We assume that
protection by the drug is all-or-nothing and that protec-
tion times in the population follow a gamma distribution,
with a median for each drug that is constant in each trial
site. The variance of this gamma distribution incorporates
the effect of factors that are not specifically modeled, such
as variation in pharmacokinetics, and potentially variation
in sensitivity of different parasite clones to the drugs
within each site. Individual-specific EIR values εi were de-
termined, taking into account that young children are bit-
ten less often due to their smaller body size, according to
the formula

εi ¼ εadult 1−ρ exp −ai=a0ð Þð Þ
where εadult is the estimated site-specific EIR experienced
by fully grown individuals, a is age and parameters a0 =

2920 days and ρ = 0.85 control the shape of the relation-
ship [71]. Pre-erythrocytic immunity, i.e., an immune
response that reduces the proportion of infectious bites
resulting in successful blood-stage infections, was com-
puted for each individual according to their age, prior
exposure and local EIR, using the same mathematical
model referenced above [69]. Both age-related biting and
pre-erythrocytic immunity were therefore fixed for each
individual based on their age and the local EIR based on
this previous work. For sensitivity analysis, we also tried
assuming additional age-independent variation in expos-
ure to mosquito bites, with the distribution of relative bit-
ing rates across people following a lognormal distribution.
We used informative priors on the lognormal distribution
of bites of mean = 1 and variance = 1.76 because these
have been previously estimated [69].
A number of hidden semi-Markov model variants

were fitted via MCMC (Markov-Chain Monte Carlo),
using the JAGS (“Just Another Gibbs Sampler”) soft-
ware for Bayesian inference in conjunction with the
“rjags” package using R statistical software [72]. The
likelihood calculation took into account the interval-
and right-censoring of observations in the data. EIR
values εadult for each site were estimated simultan-
eously with the other parameters, with moderately in-
formative gamma priors with median as predicted by
the Malaria Atlas Project [29] (Table 1) and a shape
parameter of 1.56. Using this prior information on
EIR was essential; otherwise, a slow reinfection rate
could be explained equally well by either a low EIR
or a long drug prophylactic time. The shape param-
eter of the EIR priors was chosen to achieve a com-
promise between being giving a flexible enough prior
that the model could fit the data in each site, to
allow for seasonal variations and uncertainties in Mal-
aria Atlas Project EIR estimates, while not allowing a
systematic drift of posterior EIR estimates to be all
lower or higher than the priors. A prior shape param-
eter much lower than 1.5, giving a less informative
prior, produced poor convergence of EIR MCMC
chains, and at any one point in the chain, the EIR es-
timates could drift to either be all lower or all higher
than the prior medians with a corresponding decrease
or increase in the estimated prophylactic times. We
considered that such a systematic error in the esti-
mates based on the Malaria Atlas Project would be
unlikely. After examining the posterior distributions
of several candidate models, we included heterogen-
eity among trial sites in the mean duration of chemo-
prophylaxis, which was modeled as a gamma-distributed
random effect. A weakly informative, empirical-Bayes
gamma prior was used for the shape parameter r, with
hyperparameters (parameters of the prior distribution) de-
termined using a fit of the hidden semi-Markov model with
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non-informative priors. This improved MCMC conver-
gence. Non-informative gamma priors were chosen for all
remaining estimated parameters. We ran the MCMC pro-
cedure for 1.25 million iterations, retaining 100,000 samples
of the posterior after discarding 4000 adaptation steps,
4000 burn-in steps, and thinning.

Accelerated failure-time models
In order to identify which factors influence the time until
a reinfection is detected, we used accelerated failure-time
models, as implemented in the “survival” package in R
[73]. We explored lognormal and log-logistic distributions
of time to reinfection, which allow the hazard of reinfec-
tion to vary over time, and selected lognormal which pro-
duced lowest Akaike Information Criterion (AIC). Several
covariates were compared with respect to their ability to
predict time to reinfection. Since EIR is such a critical pre-
dictor of the time to reinfection, we adjusted for this vari-
able in all models, initially in bivariate models with each
other covariate, using the log posterior mean EIR esti-
mates from the hidden semi-Markov model analysis for
each site. When analyzing age as a covariate, we explored
polynomial relationships with reinfection time. The small
proportion of individuals in the analysis over 20 years of
age (294/3840 with available age data) were grouped to-
gether, since model convergence problems were created
by lack of data at older ages and because age-dependent
exposure to mosquito bites (related to body surface area)
[74], as well as development of immunity [69], tends to
plateau by 20 years of age. Otherwise, linear relationships
were assumed for continuous variables. We tested for in-
teractions between AL and AS-AQ treatment, prevalence
of the pfmdr1 86Y mutant versus N86 wild type parasites,
and pfcrt 76T mutant versus K76 wild type parasites, since
there is evidence of differential effects of each drug on
these parasite genotypes [9, 11]. We tested for an effect of
different formulations of AS-AQ, i.e., fixed-dose combin-
ation (from Sanofi), blister pack, or loose dose (see also
Table 1 for dose information). For AL, all included studies
used the same fixed-dose combination from Novartis. We
calculated weight-for-age Z scores for patients under 5
years old according to the WHO age- and gender-specific
reference values, using the WHO Anthro software in R
[75]. Individuals were classified as underweight if they had
a Z score of less than − 2. We investigated being under-
weight in the children under 5 years because this was a
factor associated with recrudescence after AL in a previ-
ous analysis [10]. We calculated milligram per kilogram
dose of lumefantrine or amodiaquine for each patient ac-
cording to their dose and weight. Goodness of fit of the
models was assessed by AIC. We used stepwise regression,
with both forward selection and backward elimination to
ensure all covariates of interest were identified. The best-

fitting model was identified using AIC, and covariates sig-
nificantly improving the prediction (likelihood ratio test)
were kept.

Epidemiological simulations
An existing mathematical model of Plasmodium falcip-
arum epidemiology [69] was used to assess the impact
of first-line antimalarial treatment on malaria transmis-
sion outcomes. The model incorporates clinical episodes
by age and exposure and has been fitted to data in a
wide variety of settings [69].We included the results of
the hidden semi-Markov model analysis on the distribu-
tion of protection times of AL and AS-AQ in the model.
The model was first run to equilibrium in the absence of
interventions, then we simulated first-line treatment
with AS-AQ or AL, assuming that 80% of clinical epi-
sodes are treated with an antimalarial, that both drugs
are 95% efficacious at clearing parasites, and that the
switch is instantaneous and complete. Prior to introdu-
cing ACT, we assume SP was in use, also at 80% cover-
age but only 60% efficacy. We simulated a population of
600,000 individuals to smooth stochastic variation. We
adjusted mosquito densities to represent low, medium, and
high transmission areas with and without seasonal variation
(pre-intervention slide prevalence in 2–10-year-olds = 5%,
15%, and 50%, respectively in the non-seasonal settings). In
seasonally varying settings (Additional file 2: Figure S1), we
set the annual EIR to be the same as in each respective low,
medium, or high transmission non-seasonal setting. The
probability of a mosquito becoming infected when feeding
on individuals treated with AL relative to untreated individ-
uals was assumed to be 0.051 [69]. It is uncertain whether
there is any difference in human infectiousness after treat-
ment with AL versus AS-AQ. We therefore ran the simula-
tions twice, assuming firstly that patients are equally
infectious after treatment with either ACT, and assuming
secondly that patients treated with AS-AQ are twice as in-
fectious, in approximate accordance with the ratio of areas
under curves of post-treatment gametocyte prevalence in
Schramm et al. [48] which is consistent with a meta-
analysis showing reduced gametocytemia after treatment
with AL compared with AS-AQ [76].

Results
Duration of protection after AL and AS-AQ treatment in
different trial sites
We analyzed 4214 individual participant data from ran-
domized clinical trials in 12 sites. The median age in the
study population was 2.8 years (IQR 1.5–4.2). With data
pooled across trials, the median duration of protection
against reinfection after AS-AQ treatment, i.e., the time
during which patients have drug levels which would pre-
vent reinfections, was estimated at 15.2 days (95% CI
12.8–18.4) and, after AL treatment, 13.0 days (95% CI
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10.7–15.7) (Fig. 1). There appeared to be a more gradual
transition from a protected to an unprotected state after
treatment with AS-AQ compared to AL (Fig. 1b, c).
However, the site-specific estimates of the duration of
post-treatment prophylaxis for each drug were heteroge-
neous, with median estimates ranging from 10.2 to 18.7
days for AS-AQ and 8.7 to 18.6 days for AL (Fig. 1b, c,
Table 1). The proportion of patients reinfected in the
AS-AQ trial arm was lower than the AL arm in seven
sites, while it was higher in the five other sites by the
end of follow-up (Fig. 2). This heterogeneity was con-
firmed by the posterior estimates of the duration hyper-
parameters, which suggested non-zero variance of the
random site effects. The heterogeneity existed despite
the analysis taking into account variation in EIR, which
ranged from an estimated 2 to 117 infectious bites per
person per year, equating to an incidence of patent
infection of 0.5–23.3 per person per year in this young
study population. While there was, as expected, a re-
duced total time to reinfection with higher EIR, after
accounting for EIR, we found no trend for duration of
drug protection by EIR (Additional file 3: Figure S2).
Overall, the model was able to fit the data well, with the
model predicted values being within the 95% confidence
intervals of the proportion of individuals reinfected at
each follow-up time in almost all sites (Fig. 2). Posterior
EIR values were mostly in line with the prior values but
differed considerably for a small number of locations
(Fig. 3, Table 1). For sensitivity analysis, we tried includ-
ing additional age-independent variation in exposure to
mosquito bites as in a previous analysis (see “Methods”),
since this influences the distribution of reinfection times
within a cohort. Such additional variation represents

factors such as living close to a breeding site, housing
quality, etc. This analysis found similar estimates of the
duration of protection after AS-AQ and AL as did the
model without additional variation in exposure, with
medians of 16.5 days (95% CI 14.2–19.3) and 14.1 days
(95% CI 11.7–16.9), respectively. Therefore, for parsi-
mony, we did not include this factor in the final result.
In a separate sensitivity analysis, carried out to allow for
possible mistakes in PCR correction based on [65, 66],
we reclassified a proportion of reinfections as recrudes-
cences so that the total failure rate (% patients with
recrudescence) in each trial arm increased by 3%. This
caused only a slight increase in the estimated median
duration of protection, to 15.6 days (95% CI 13.0–18.9)
after AS-AQ and 13.8 days (95% CI 11.3–17.1) after AL
(see also Additional file 4: Figure S3 for details).

Factors affecting the duration of prophylaxis
To investigate which factors affect the duration of
prophylaxis after AS-AQ and AL treatment and might
explain the heterogeneity between trial sites, the data
were further analyzed by accelerated failure-time regres-
sion models. As expected, estimated EIR was strongly
associated with time to reinfection (Table 2). We there-
fore adjusted for EIR before testing the effect of any
additional variables. Treatment arm had a small and
significant effect on time to reinfection overall, with AS-
AQ being associated with a 1.09-fold increase in time to
reinfection (95% CI 1.05–1.13) compared to AL, after
adjusting for log EIR. We explored the effect of molecu-
lar markers associated with parasite sensitivity to AL
and AS-AQ, identifying pfmdr1 86Y surveys matching
11 trial sites, and pfcrt 76T matching 10 sites (matches

Fig. 1 Duration of post-treatment prophylaxis. Posterior estimates of the median duration of protection (a) and the proportion of the population
still having drug levels which would protect them from reinfection, over time since first dose with either AS-AQ (b) or AL (c). In b and c, the solid
lines show the median estimate across trial sites, while the dotted lines show the different estimates for each of the 12 trial sites. The equations
of the lines in b and c are reverse cumulative gamma distributions and can be implemented for example in R as 1-pgamma(t, shape = r, scale =
λ), where t is time in days, and r and λ are the shape and scale parameters of the gamma distribution, respectively. For AL, r = 93.5 and mean λ =
0.139. For AS-AQ, r = 16.8 and mean λ = 0.906. The mean of each gamma distribution rλ gives the duration of protection from each drug. The
site-specific lines can be calculated using the median durations of prophylaxis in Table 1, and the same shape parameter (assumed not to vary
between sites for each drug)
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are within 300 km of the trial site and within 1 year of
the trial start or end year in the same country). However,
there were too few matched surveys of pfmdr1 1246Y to
analyze this third mutation further. Local prevalence of
the mutations pfmdr1 86Y and pfcrt 76T significantly
altered the association between drug and time to

reinfection. AS-AQ was associated with a significant
1.37 (95% CI 1.28–1.47)-fold increase in time to reinfec-
tion compared to AL when pfmdr1 86Y prevalence was
20% (the lowest level observed in the trial sites), but a
significantly shorter time to reinfection than AL when
pfmdr1 86Y was 80% (ratio of reinfection times AS-AQ
vs AL = 0.89 95% CI 0.84–0.94). Similarly, AS-AQ was
associated with a 1.54 (95% CI 1.38–1.71)-fold increase
in time to reinfection compared to AL when pfcrt 76T
prevalence was 20%, but a 1.06 (95% CI 1.03–1.10)-fold
change when pfcrt 76T prevalence was 80%. Other fac-
tors that were significantly associated with longer time
to reinfection when adjusting each factor only for log
EIR were younger age and higher dose of lumefantrine
(mg per kg) (Table 2). Increasing age among children
was associated with a shorter time to reinfection in a
non-linear manner, such that the change in reinfection
time with age was most rapid at younger ages, consistent
with observed biting patterns by age [74]. There was a
trend for shorter time to reinfection in underweight in-
dividuals and when the loose non-fixed-dose combin-
ation (NFDC) formulation of AS-AQ was used instead
of the fixed-dose combination (FDC), though the associ-
ation was not statistically significant after adjusting for
log EIR.
We constructed multivariable models for each treatment

arm separately. In the AL arm, EIR, age, lumefantrine dose
(mg per kg), local pfmdr1 86Y prevalence, and pfcrt 76T

Fig. 2 Time to reinfection after treatment and model fits. Proportion of patients reinfected (after PCR correction) during follow-up after treatment at day 0
with AL (blue) or AS-AQ (green) in each of the 12 trial sites. Circles show data with 95% CI, and the lines are the fits of the hidden semi-Markov model in
each site. The AL trial arms include in total 2086 individuals and 642 reinfections and the AS-AQ trial arms, 2128 individuals and 538 reinfections

Fig. 3 Trial-specific EIR estimates. Prior and posterior estimates of
the EIR at each trial site. The prior predictions are based on Malaria
Atlas Project data [28]
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prevalence remained at least borderline significant predic-
tors of time to reinfection (Table 3 and Additional file 1:
Table S1). However, pfmdr1 86Y prevalence and pfcrt 76T
prevalence were so closely correlated (Additional file 5:
Figure S4) that their effects could not be distinguished from
each other in the absence of haplotype data, and we built
separate multivariable models to look at each mutation. In
the AL arm, both the pfmdr1 86Y and the pfcrt 76T muta-
tions were associated with a 1.04-fold increase in time to
reinfection per 10% increase in their prevalence (p = 0.052
and p = 0.005, respectively) after adjusting for EIR, age, and
lumefantrine dose.
In the AS-AQ arm, EIR, age, and pfmdr1 86Y

prevalence remained significantly associated with time

to reinfection overall, with 86Y associated with a
0.97-fold decrease in reinfection time per 10% in-
crease in prevalence (p = 0.011). For sensitivity ana-
lysis, we repeated the regression model including only
the trial sites which used the FDC formulation of AS-
AQ, and here the effect of pfmdr1 86Y was no longer
statistically significant although the effect size
remained similar (0.98 (95% CI 0.95, 1.01)-fold change
in reinfection times, p = 0.159). Again, we looked at
pfcrt 76T in a separate multivariable model in the
AS-AQ arm; here, it was no longer significantly asso-
ciated with reinfection time after adjusting for EIR
and age, although there was still a trend for shorter
time to reinfection as 76T prevalence increased (0.98-

Table 2 Risk factors for reinfection: analysis adjusted for EIR only. Data from 2130 individuals in the AS-AQ trial arms and 2090 in the
AL trial arms were analyzed using accelerated failure-time analysis. Regression coefficients are the ratio of time to reinfection, such
that a coefficient > 1 indicates a longer time to reinfection. All results are adjusted for log EIR. Site-level random effects were
included unless otherwise indicated. Models assume a lognormal time to reinfection

Covariate (unit) Analysis adjusted for EIR only

N Coefficient [ratio of reinfection times] (95% CI) p value

Loge EIR (annual bites per person) 4220 0.79 (0.74, 0.85) < 0.001

AL 2090 1 (ref)

AS-AQ (overall) 2130 1.09 (1.05, 1.13) < 0.001

AS-AQ (20% 86Y)* 1934 1.37 (1.28, 1.47) < 0.001

AS-AQ (80% 86Y)* 1934 0.89 (0.84, 0.94) < 0.001

Age (polynomial, years, > 20 grouped together) 4213 < 0.001

age 0.94 (0.90, 0.98)

(age)2 1.01 (1.00, 1.02)

(age)3 0.9998 (0.9994, 1.0001)

Male gender 3861 0.98 (0.95, 1.02) 0.438

Anemic (hb < 10 g/dl) 3747 0.98 (0.93, 1.02) 0.277

Enlarged spleen† (yes/no) 1390 1.00 (0.87, 1.15) 0.999

Presence of fever (> 37.5 °C) 4220 0.97 (0.93, 1.01) 0.146

Underweight (weight-for-age Z score < −2) 3193 0.98 (0.93, 1.04) 0.613

AQ dose (per 10 mg per kg increase) (AS-AQ arms only) 1839 1.00 (0.95, 1.06) 0.880

Lumefantrine dose (per 10 mg per kg increase) (AL arms only) 1850 1.02 (1.00, 1.04) 0.015

AS-AQ formulation

FDC 1521 1 (ref)

Loose NFDC 373 0.83 (0.59, 1.18) 0.295

Coblistered NFDC (AS-AQ arms only) 233 1.06 (0.68, 1.64) 0.803

pfmdr1 86Y prevalence (per 10% increase)

AL arm‡ 1891 1.03 (0.99, 1.07) 0.091

AS-AQ arm‡ 1934 0.96 (0.94, 0.98) < 0.001

pfcrt 76T prevalence (per 10% increase)

AL arm‡ 1964 1.03 (1.00, 1.07) 0.037

AS-AQ arm‡ 2001 0.97 (0.95, 1.00) 0.052
*In a model including log10 EIR, drug, pfmdr1 86Y prevalence (per 10% increase) and interaction between drug and pfmdr1 86Y prevalence
†Site-level random effects not included because many sites did not measure this covariate
‡p value interaction between drug and pfmdr1 86Y vs N86 prevalence < 0.001, p value interaction between drug and pfcrt 76T vs K76 prevalence < 0.001
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fold change in time to reinfection per 10% increase in
76T prevalence; 95% CI 0.95, 1.01).
We further investigated the relationship of pfmdr1

86Y and pfcrt 76T prevalence with prophylactic time by
examining the site-specific estimates from the hidden
semi-Markov model analysis. The median estimated dur-
ation of protection (adjusted for EIR and age) was 16.9–
17.8 days for AS-AQ in the trial sites with the lowest re-
corded 86Y and 76T prevalence (Bobo-Dioulasso and
Gourcy in Burkina Faso), while it was 10.2–13.1 days in
the trial sites with the highest 86Y and 76T prevalence
(Tororo, Uganda and Fougamou, Gabon) (Fig. 4a, c).
Conversely, the median duration of protection provided
by AL was 8.7–12.5 days in the sites with the lowest 86Y
and 76T prevalence, while in sites with higher 86Y and
76T prevalence, the duration of AL protection was vari-
able but generally higher, at 11.5–18.6 days (Fig. 4b, d).

Model-estimated population-level impact of using AS-AQ
versus AL as first-line treatment
The duration of prophylaxis provided by an antimalarial
used as first-line treatment affects overall clinical inci-
dence in a population because (a) it provides individual-
level protection against reinfection and (b) prevention of
reinfection reduces the total prevalence of infection in a
population, and therefore onward transmission from in-
fected individuals. Simulations comparing the public
health impact of using either AL or AS-AQ as first-line
drug were run using the existing individual-based age-
structured mathematical model of Plasmodium falcip-
arum transmission. Given the variation in prophylactic
time between areas, we chose to use estimates from two
of the trial sites with the most contrasting effects of the
two drugs (Fig. 5). In the trial in Gourcy, Burkina Faso

in 2010–2012, there was low local prevalence of the
pfmdr1 86Y mutation (18%) and the pfcrt 76T mutation
(25%), with a correspondingly long estimated median
duration of protection by AS-AQ at 17.8 days, approxi-
mately twice as long as the median duration of protection
by AL in this site: 8.7 days. Using the prophylactic profiles
estimated in this trial site (Fig. 5a), we introduced either
AL or AS-AQ as first-line treatment into our simulation,
assuming 80% of clinical episodes in all ages are treated
with this drug, and the total number of clinical episodes
occurring in 0–5-year-olds over the subsequent 5 years
was compared between the two treatments. The longer
prophylactic time of AS-AQ reduced clinical episodes in
all transmission scenarios (Fig. 5b, c), but was most pro-
nounced in simulations with higher, very seasonal trans-
mission. When slide prevalence was 50% and transmission
was seasonal, using AS-AQ rather than AL prevented 1.6
clinical episodes per child over the 5 years (Fig. 5b) (14%
of all clinical episodes; Fig. 5c). When considering all age
groups, an estimated 10% of clinical episodes were pre-
vented (Additional file 6: Figure S5).
In Nimba in Liberia (trial conducted 2008–2009), the

local prevalence of pfmdr1 86Y and pfcrt 76T were much
higher at 69% and 95%, and the median duration of
prophylaxis provided by AS-AQ was estimated at only
11.6 days, while the median AL prophylactic time was
17.9 days (Fig. 5d). Here, using AS-AQ rather than AL
increased the cumulative number of clinical episodes per
0–5-year-old child by up to 1.1 over the 5-year simu-
lated period (an increase of 11%), with the largest differ-
ence between drugs again observed in the very seasonal,
high transmission scenario (Fig. 5e, f). When considering
all age groups, clinical episodes increased by up to 8%
(Additional file 6: Figure S5).

Table 3 Risk factors for reinfection: multivariable analysis with pfmdr1. Data from 1934 individuals in the AS-AQ trial arms and 1655
in the AL trial arms were analyzed using accelerated failure-time analysis. Regression coefficients are the ratio of time to reinfection,
such that a coefficient > 1 indicates a longer time to reinfection. Covariates significantly associated with reinfection time after
adjusting for EIR (p < 0.05) were included in the final model. The prevalence of pfcrt 76T also had a significant effect in a
multivariable model with the same covariates (Additional file 1: Table S1) but could not be included in the same model with pfmdr1
86Y due to strong correlation between the two variables. Models assume a lognormal time to reinfection and random site effects

Covariate (unit) AL multivariable model (N = 1655)
EIR, age, dose, pfmdr1 86Y

AS-AQ multivariable model (N = 1934)
EIR, age, pfmdr1 86Y

Coefficient [ratio of reinfection times]
(95% CI)

p value Coefficient [ratio of reinfection times]
(95% CI)

p value

Loge annual EIR 0.81 (0.74, 0.90) < 0.001 0.81 (0.75, 0.87) < 0.001

Age (polynomial, years, > 20 grouped together) < 0.001 < 0.001

age 1.01 (0.93, 1.09) 0.94 (0.88, 1.00)

(age)2 1.00 (0.99, 1.02) 1.01 (1.00, 1.02)

(age)3 1.0001 (0.9992, 1.0009) 0.9998 (0.9993, 1.0003)

Lumefantrine dose (per 10 mg per kg
increase)
(AL arms only)

1.03 (1.01, 1.06) 0.002 – –

pfmdr1 86Y prevalence (per 10% increase) 1.04 (1.00, 1.09) 0.059 0.97 (0.94, 0.99) 0.012
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In both settings, there was minimal difference in im-
pact on clinical episodes (< 1%) if we assumed that pa-
tients treated with AL were half as infectious as those
treated with AS-AQ, compared with the scenarios where
infectiousness was assumed to be equal after each treat-
ment (results not shown). This is because even if there is
some difference between treatments, both are estimated
to have a high impact on gametocytes. Therefore, at a
population level, transmission to mosquitoes is domi-
nated by untreated infections which are thought to last
on average about 6 months, according to our model as-
sumptions and parameters [69, 77, 78].

Discussion
In this analysis of clinical trials from 12 sites in Africa,
we initially estimated that AS-AQ provided a slightly
longer median duration of post-treatment prophylaxis
than AL (15.2 versus 13.0 days) when all data were
pooled together. However, the duration of protection
varied considerably between trial sites. In some loca-
tions, AS-AQ provided up to an estimated 19 days of

protection, ~ 2-fold longer than AL, while in other trial
sites the reverse was true, with AL providing up to 19
days of protection, which was up to 1.5-fold longer than
AS-AQ. This difference between sites appeared to be in
part explained by the local prevalence of pfmdr1 86Y
and pfcrt 76T at the time of the trial, with AS-AQ provid-
ing better protection where wild type parasites with N86
and K76 genotypes were predominant, and AL performing
better where 86Y and 76T mutants were common. This is
consistent with previous studies demonstrating the collat-
eral sensitivity of parasites with these different pfmdr1 and
pfcrt genotypes to AL and AS-AQ. Our analysis extends
previous work [9, 11, 79] by explicitly estimating the dur-
ation of protection provided by each drug in sites with
different prevalence of 86Y and 76T mutants, also taking
into account the different EIRs across the trial sites so as
to distinguish the effect of the drugs from that of the local
transmission intensity on the time to reinfection.
Our transmission modeling suggests that the difference

in duration of protection between the two drugs in areas
with very low or very high mdr1 86Y and crt 76T

Fig. 4 Duration of protection after treatment with a, c AS-AQ and b, d AL, according to local pfmdr1 N86Y (a, b) and pfcrt K76T mutation
prevalence (c, d). Median posterior estimates of duration of protection from hidden Markov model analysis are shown (points) with 95% credible
intervals (vertical lines). Local pfmdr1 N86Y and pfcrt K76T mutation prevalences are from matched surveys within 1 year and 300 km in the same
country as each trial. Horizontal lines indicate the 95% confidence intervals of the mutation prevalence estimates
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prevalence can have a public health impact, especially
where malaria transmission is high and seasonal. We
estimate that up to 14% of clinical episodes could be
prevented in 0–5-year-old children by implementing
first-line treatment with the drug providing optimal
protection in a given setting, due to both individual
protection from reinfection and population-level re-
duction in transmission (when 80% of clinical epi-
sodes receive treatment). Countries with low (< 20%)
or high (> 80%) prevalence of 86Y and 76T and in-
tense transmission could consider the benefit of lon-
ger duration of protection if choosing between AL
and AS-AQ policies. Using a first-line treatment with
longer duration of protection is potentially a cost-
effective way of reducing clinical cases and infections
[4] given the comparable price of AL and AS-AQ
[80]. Compared to published estimates, both AL and
AS-AQ provided a shorter duration of protection than

dihydroartemisinin-piperaquine (estimated at 29.4 days
of > 50% protection [4]), which is predicted to prevent
up to 15% more cases than AL [4, 81].
The pfmdr1 86Y and pfcrt 76T mutations, initially

driven through the parasite population by the previous
widespread use of chloroquine, have been in decline in
many parts of Africa. The decline has occurred fastest in
countries using AL, consistent with the expected direction
of selection [68]. The efficacy of AS-AQ appears to have im-
proved in some countries and there is interest in increasing
the use of the drug regimen [55]. Our results suggest that
some countries with areas of high transmission who cur-
rently use AL might gain better post-treatment protection
by deploying AS-AQ (e.g., Uganda [79], southern Tanzania,
western Kenya) if feasible given other considerations (logis-
tics of changing drug policy, adherence, acceptability etc.).
The prevalence of mutations or the prophylactic benefits
may need to be monitored. Amodiaquine is also widely used

Fig. 5 Duration of prophylaxis and impact on clinical incidence in under 5-year-old children of using AS-AQ rather than AL as first-line treatment,
estimated by the transmission model analysis, contrasting areas with low (a–c) or high (d–f) pfmdr1 86Y and pfcrt 76T prevalence. a The
estimated proportion of individuals protected over time since treatment by AL or AS-AQ in Gourcy, Burkina Faso, where 86Y and 76T prevalences
are low (18% and 25%, respectively) and amodiaquine provides longer chemoprophylaxis than lumefantrine or d Nimba, Liberia, where 86Y and
76T prevalences are high (69% and 95%, respectively) and the prophylactic times are reversed so that lumefantrine provides longer
chemoprophylaxis than amodiaquine. b, c The model-estimated impact in children aged 0–5 years of using AS-AQ rather than AL as first-line
treatment in the whole population, using the prophylactic profiles in a. The outcomes are b the difference and c the % difference in the
cumulative number of clinical episodes occurring during the 5 years after implementing either drug at 80% coverage; here AS-AQ is predicted to
decrease clinical incidence compared with AL. Orange bars show the impact in non-seasonal settings, while red shows the impact in a seasonal
setting (see “Methods”). e, f The corresponding results using the prophylactic profiles in d; here AS-AQ is predicted to increase clinical incidence
compared with AL
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together with SP in seasonal malaria chemoprevention
(SMC) programs in children in the Sahel region of Africa,
given to 17 million children under 5 years of age in 2016 [7,
82]. Our results could be used together with information on
the chemoprophylaxis provided by SP, to inform potential
changes in the efficacy of SMC as 86Y and 76T prevalence
change. The decline in 86Y in many areas may have en-
hanced the efficacy of SP-AQ. This may be particularly im-
portant in areas with partial SP resistance. Our results
support previous findings suggesting that selective pressures
exerted by AL and AS-AQ may counteract each other.
However, our results suggest it would not be possible to
achieve maximal prophylactic effect of either AL or AS-AQ
at the same time in a given setting. Triple ACT which com-
bine an artemisinin derivative with both lumefantrine and
amodiaquine are currently in trials [83] and would be likely
to ensure longer prophylactic protection.
Our finding that the pfmdr1 86Y and pfcrt 76T muta-

tions are associated with a longer time to reinfection after
AL treatment and a shorter time after AS-AQ is consist-
ent with a previous meta-analysis, where individual patient
data on genotypes post-treatment were available [9, 11].
We did not include such a wide range of studies as the
previous meta-analysis because our methods required that
we estimate the EIR for each included trial site, which is
only possible when sufficient numbers of reinfections are
observed per site and we included only randomized trials.
The advantage of our approach, however, is that we can
obtain estimates of prophylactic times after adjusting for
the local transmission intensity. One limitation of our
study was that we did not have individual-level data on ge-
notypes pre and post-treatment, which were not measured
in the trials we included here. This might have allowed a
more precise estimate of the effect of mutations on
prophylactic time and ideally comparison of different pfcrt
and pfmdr1 haplotypes. Also, while we matched trials to
the closest possible measures of mutation prevalence,
these may not reflect the prevalence in the trial sites which
can vary over space and time. We could not distinguish
separate effects of 86Y and 76T in this analysis due to the
close correlation of their prevalence. Other previous meta-
analyses have examined the effect of dosing and other co-
variates on the probability of recrudescence after AL [10]
and AS-AQ [12]. The trends in our analysis looking at re-
infection as the outcome rather than recrudescence agree
well with these previous studies; in particular, the use of
loose NFDC formulation of AS-AQ was associated with
reduced time to reinfection although it was not statisti-
cally significant after adjusting for EIR. Of the three stud-
ies using loose NFDC, two of these showed a longer
prophylactic time by AL, compared to two out of the
remaining 9 studies which used FDC.
Our estimate of the mean duration of prophylaxis after

AL at 13.0 days is in good agreement with our previous

estimate of 13.8 days which was obtained from analysis
of a completely different dataset of clinical trials in six
sites in Africa [4] (although the impact of 86Y and 76T
was not previously investigated). Our estimates of dur-
ation of prophylaxis for both drugs are affected by the
assumed time from release of parasites from the liver
until they multiply to densities detectable by microscopy.
We assumed this time to patency is 3.5 days, but esti-
mates vary from about 2–7 days depending on several
factors, including the assumed number of parasites
released from hepatocytes at the start of blood-stage in-
fection (~ 100,000–300,000 [84]), the volume of blood in
an individual (relatively low in the young children in the
included trials), and the sensitivity of microscopy. The
time to patency is further complicated by the presence
of residual drug concentrations which might slow para-
site growth. A longer time to patency would reduce our
estimate of the duration of protection. Our estimates of
duration of prophylaxis are also dependent to some
extent on the priors used for estimating EIR in each site,
without which we cannot distinguish between low infec-
tion rates and long duration of prophylaxis. The agree-
ment of our estimate of prophylaxis for AL with our
previous estimate from different trial sites with different
EIR, together with the biologically plausible association
of duration of prophylaxis with mdr1 and crt mutation
prevalence, is reassuring.
In the current analysis, we found a more rapid decline

of protection over time after AL treatment than AS-AQ
(Fig. 1), and a similar rapid decline after AL was seen in
our previous analysis. The resolution of data informing
this profile of post-treatment prophylaxis is not perfect,
with most patients observed only weekly after day 7. In
4 of the trial sites in the current analysis, no tests for
reinfection were done until day 14 [23]. Nevertheless,
given the very low proportion of individuals reinfected
at earlier times in the other sites, it is unlikely that many
reinfections were missed. In most trials, the patients
were followed up until day 28, and differential reinfec-
tion rates may have been missed after this time. We
lacked data from a control arm to parameterize the
proportion of individuals reinfected over time in the ab-
sence of treatment. If our model underestimates the rate
of increase in the proportion of individuals reinfected in
the absence of treatment, it could overestimate the rapid
drop off in protection in the AL trial arms to compen-
sate. There is therefore some uncertainty in the shape of
the prophylactic profile but if the rapid drop in protec-
tion is a real finding, it has implications for the selection
of partially resistant parasites to these partner drugs,
with lumefantrine potentially having a relatively short
window of selection compared to amodiaquine [85].
We also did not consider temporal changes in the EIR

during the trial. However, these would affect both trial
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arms equally and could therefore not reverse the relative
order of duration of protection between the drugs in one
site. Variation between studies may occur due to other
factors such as nutritional status, dosage, the genetics of
patients, or variations in the accuracy of PCR in distin-
guishing reinfections from recrudescence. While none of
the trials distributed insecticide-treated nets as part of
the study, trial areas probably varied in levels of vector
control, which is indirectly taken into account in our
analysis since we use estimates of transmission intensity
based on the Malaria Atlas Project, who use data on
prevalence trends and include vector control in their
model.

Conclusions
In summary, both AL and AS-AQ provide post-treatment
prophylaxis which is important for reducing reinfection
rates in individuals in higher transmission settings and
may impact on the incidence of malaria in the whole
population when these regimens are used widely as first-
line treatment. AS-AQ provides longer protection than
AL when most infections are by wild type parasites, while
AL provides longer protection than AS-AQ in areas with
higher prevalence of the pfmdr1 86Y and pfcrt 76T muta-
tions. Countries may wish to consider the prevalence of
these mutations when deciding the first-line treatment. In
future, it will be important to determine the role of other
molecular markers in altering the post-treatment protec-
tion provided by ACT partner drugs, such as increased
copy number of pfmdr1, which is increasing in prevalence
in some parts of Africa [67].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-020-1494-3.

Additional file 1: Table S1. Risk factors for reinfection: multivariable
analysis with pfcrt 76T. Data from AS-AQ and AL trial arms were analyzed
separately using accelerated failure-time analysis. Regression coefficients
are the ratio of time to reinfection, such that a coefficient > 1 indicates a
longer time to reinfection. Covariates significantly associated with
reinfection time after adjusting for EIR (Table 3, main text) were included
in the final model. The prevalence of pfmdr1 86Y also had a significant
effect in a multivariable model with the same covariates (Table 3, main
text) but could not be included in the same model with pfcrt 76T due to
strong correlation between the two variables. Models assume a log-
normal time to reinfection and random site effects.

Additional file 2: Figure S1. Simulated annual seasonal variation in EIR
assumed in the analysis of potential impact of AL and AS-AQ on
population level transmission (Fig. 5, main text). The EIR shown is for the
simulated seasonal medium transmission setting (slide prevalence = 15%),
but the relative EIR variation across the year was the same in the seasonal
low and high simulated transmission settings.

Additional file 3: Figure S2. The duration of post-treatment
prophylaxis at different trial locations in order of increasing estimated EIR.
Posterior estimates of the duration of protection provided by AL or AS-
AQ are shown. The study sites are shown in order of increasing
transmission intensity left to right according to posterior EIR estimates.

Additional file 4: Figure S3. Sensitivity analysis of PCR-correction
misclassification: time to reinfection after treatment and model fits. Here
we repeated the analysis shown in Fig. 2 of the main text on a modified
dataset, in which we explored the impact of reclassifying some
reinfections as recrudescences and removing them from the analysis. To
reclassify reinfections for each trial arm, we sampled a number of
reinfections equal to 3% of the study population, with probability
weighted according to the estimated timings of recrudescence in Fig. 5
of [66] and the relative frequency of apparent ‘reinfection’ timing in the
current dataset (such that the probabilities of sampling of reinfections, if
present, at days 7,14,21,28,35, and 42 were 0.799, 0.100, 0.026, 0.014,
0.049, and 0.012). One site, Ndola in Zambia, was excluded after
reclassification of reinfections, since one trial arm no longer contained
reinfections and the model could not be fitted. The Figure shows the
proportion of patients reinfected during follow up, amongst patients not
experiencing recrudescence, after treatment at day 0 with AL (blue) or
AS-AQ (green) in each of the 11 trial sites included in this sensitivity
analysis. Circles show data with 95% CI, and the lines are the fits of the
hidden semi-Markov model in each site. Here, the AL trial arms include in
total 1956 individuals, 573 reinfections, and the AS-AQ trial arms, 2001
individuals, 475 reinfections.

Additional file 5: Figure S4. Correlation between pfcrt 76T prevalence
and pfmdr 86Y prevalence, in the surveys matched to the trial sites
according to year and geographic distance (within 1 year and 300 km in
the same country as each trial). When more than one molecular marker
survey was matched to a trial site, a weighted average prevalence was
taken. In some cases, these two molecular markers were assessed in the
same matched survey(s), but in other cases matches from different
surveys were found.

Additional file 6: Figure S5. As Fig. 5 in the main text, except panels
B,C,E and F show impact on clinical incidence in the whole population
(rather than 0–5 year old children only).
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