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ABSTRACT 

Objective. To identify an appropriate cell source for the generation of meniscus substitutes, among 

those which would be available by arthroscopy of injured knee joints. 

Methods. Human inner meniscus cells, fat pad cells, synovial membrane cells and articular 

chondrocytes were expanded with or without specific growth factors (Transforming Growth Factor-

beta1, TGF-β1, Fibroblast Growth Factor-2, FGF-2 and Platelet-Derived Growth Factor bb, PDGF-

bb, TFP) and then induced to form 3D cartilaginous tissues in pellet cultures, or using a hyaluronan-

based scaffold (Hyaff®-11), in culture or in nude mice. Human native menisci were assessed as 

reference. 

Results. Cell expansion with TFP enhanced glycosaminoglycan (GAG) deposition by all cell types 

(up to 4.1-fold) and mRNA expression of collagen type II by fat pad and synovial membrane cells 

(up to 472-fold) following pellet culture. In all models, tissues generated by articular chondrocytes 

contained the highest fractions of GAG (up to 1.9% of wet weight) and were positively stained for 

collagen type II (specific of the inner avascular region of meniscus), type IV (mainly present in the 

outer vascularized region of meniscus) and types I, III and VI (common to both meniscus regions). 

Instead, inner meniscus, fat pad and synovial membrane cells developed tissues containing 

negligible GAG and no detectable collagen type II protein. Tissues generated by articular 

chondrocytes remained biochemically and phenotypically stable upon ectopic implantation. 

Conclusions. Under our experimental conditions, only articular chondrocytes generated tissues 

containing relevant amounts of GAG and with cell phenotypes compatible with those of the inner 

and outer meniscus regions. Instead, the other investigated cell sources formed tissues resembling 

only the outer region of meniscus. It remains to be determined whether grafts based on articular 

chondrocytes will have the ability to reach the complex spatial organization typical of meniscus 

tissue.  

Key Indexing Terms: Chondrogenesis, meniscus, fibrocartilage, tissue engineering 

Running headline: Comparison of chondrogenic cells 
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Meniscus is a complex fibrocartilaginous tissue, which is essential in the knee joint for shock 

absorption, load distribution, maintenance of stability and protection of articular cartilage (1-3).  

Injuries to the meniscus are often treated by partial or total meniscectomy, which is known to be 

associated with detrimental changes in joint function, ultimately increasing the risk of early 

degenerative joint diseases (4-6). Surgical approaches currently in use to substitute the damaged 

meniscus (e.g., the use of allografts or of a collagen-based material) can initially restore a stable and 

pain-free joint, but long-term clinical results, especially related to the protection of the articular 

surface, are still uncertain (7; 8). Recently, tissue engineering strategies have been proposed for the 

generation of meniscus substitutes, based on the loading and culture of suitable cells into 

appropriate biodegradable porous scaffolds (9-12). The promising approach has been pre-clinically 

validated by several studies (11; 13), indicating the potential of cell-based meniscus substitutes to 

improve healing of meniscus tissue.  

Several cell sources have been used for meniscus repair, including meniscus fibrochondrocytes (11; 

12; 14; 15), chondrocytes (13; 16; 17) or bone marrow-derived mesenchymal progenitor cells (18-

20), but to the best of our knowledge a direct comparison of the different cell types has not yet been 

established. With the ultimate goal to identify an appropriate cell source for the generation of 

meniscus substitutes, the aim of our work was to compare the growth and post-expansion 

chondrogenic capacity of different cell types that would be readily available during meniscectomy 

or arthroscopic examination of an injured knee joint. In particular, we investigated the following 

human cell types: (i) inner meniscus cells (hereafter referred to as “meniscus cells”), which 

constitute the native target tissue and can be expanded even following meniscus injury (15); (ii) fat 

pad cells, known to include multipotent mesenchymal progenitor cells (21); (iii) synovial membrane 

cells, reported to have a progenitor nature (22; 23) and to be involved in healing of cartilage lesions 

(24; 25); and (iv) articular chondrocytes, currently in clinical use for articular cartilage repair and 

capable of differentiation into a variety of mesenchymal tissues (26-28). All cells were expanded 

with or without growth factors previously reported to enhance chondrogenesis of different 
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chondrocyte types (29; 30), and then induced to form 3D cartilaginous tissues in a scaffold-free 

model system (i.e., pellet culture), or using a hyaluronan-based scaffold, following in vitro culture 

or in vivo ectopic implantation. Each model included a culture phase in the presence of 

chondrogenic supplements, typically used to induce the expression of GAG and collagens (31; 32). 

Tissues were assessed for the content of GAG, and the expression pattern of different collagen types 

was compared to that in the different regions of native human menisci. 

 

Materials and Methods 

Human material 

Meniscus, fat pad and synovial membrane tissues were obtained from a total of 15 donors (26-68 

years of age, mean 45), after informed consent. Biopsies were harvested during partial 

meniscectomy or anterior cruciate ligament reconstruction, no longer than 2 months after trauma. 

At the time of surgery, knee joints were not overtly inflamed or osteoarthritic, although a few cases 

displayed minor inflammation (4/15 donors), ICRS Grade 1 cartilage damage (2/15 donors), or 

moderate osteoarthrosis (3/15 donors). Meniscus (n=15), fat pad (n=7) and synovial membrane 

(n=12) biopsies were all relatively small in size, with a weight range of respectively 10-500 mg, 10-

100 mg, and 20-400 mg. Meniscus biopsies were only from the inner avascular region, where 

injured tissue is typically resected. Synovial membrane was from the suprapatellar recess and 

adipose tissue from the infrapatellar fat-pad. For ethical reasons, articular cartilage could not be 

harvested from the same donors. Cartilage tissues were thus collected from the medial femural 

condyle of 6 cadavers (22-55 years of age, mean 42), with no known clinical history of joint 

disorders, within 24 hours after death. Based on a preliminary study, the growth and differentiation 

ability of chondrocytes isolated from macroscopically normal cartilage shortly after knee joint 

trauma was within the range of chondrocytes isolated from cadaver joints. The weight range for the 

articular cartilage specimens was 500-1000 mg.  
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Complete human meniscus specimens were also obtained with ethical permission and consent from 

32 individuals made anonymous (18-86 years of age, mean 56), undergoing above knee amputation 

or partial meniscectomy for traumatic or degenerative tears. Complete meniscus specimens were 

processed for immunohistochemical analysis as described below and used to define the pattern of 

collagen types expressed in the deep inner avascular and deep outer vascularized regions of the 

native meniscus tissue. Analysis did not include characterization of the superficial fibroblastic layer 

of the meniscus. 

Cell Isolation and Culture 

Inner meniscus and articular cartilage biopsies were finely minced and digested by incubation for 

22 hours at 37°C in 0.15% type II collagenase (Worthington Biochemical Corporation, Lakewood, 

NJ) (1ml solution per 100mg tissue) (33). Meniscus cells and articular chondrocytes were 

resuspended in Dulbecco’s Modified Eagle’s Medium (DMEM; 4.5 g/L glucose with nonessential 

amino acids), containing 10% fetal bovine serum, 4.5 mg/mL glucose, 0.1mM nonessential amino 

acids, 1 mM sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL 

streptomycin and 0.29 mg/mL L-glutamine (control medium).  

Fat pad and synovial membrane biopsies were grossly cut and digested by incubation respectively 

for 7 hours and for 22 hours in 0.4% type II collagenase (1ml solution per 40mg tissue). For the 

isolation of fat pad cells, floating adipocytes were removed by centrifugation at 300g for 5 minutes 

(34). Collagenase concentration and incubation times were selected by adapting a previously 

published protocol (22), following preliminary tests. 

Meniscus, fat pad, synovial membrane cells and articular chondrocytes were plated in tissue culture 

flasks, at a density of 104 cells/cm2, and cultured in a humidified incubator at 37°C and 5% CO2. 

Throughout the phase of expansion in monolayer, all cell sources were cultured in control medium, 

without or with further supplementation of 1 ng/mL Transforming growth factor-β1 (TGF-β1), 5 

ng/mL Fibroblast growth factor-2 (FGF-2) and 10 ng/mL Platelet-derived growth factor-bb (PDGF-

bb) (TFP medium). The growth factors (all from R&D Systems, Minneapolis, MN) were selected 
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based on their previously reported capacity to enhance the growth and post-expansion chondrogenic 

ability of different human chondrocyte types (29; 30). 

Differentiation assays 

Upon reaching subconfluence, meniscus, fat pad, synovial membrane cells and articular 

chondrocytes were detached using 0.05% trypsin/ 0.53mM EDTA (GIBCO-BRL, CH) and replated 

at a density of 5x103 cells/cm2. Following an additional passage of expansion, cells were used in the 

three different models described below.  

Model I: chondrogenic differentiation in 3D pellet culture 

Meniscus, fat pad, synovial membrane cells and articular chondrocytes  from all donors, expanded 

with or without TFP, were suspended in a defined serum free medium, consisting of DMEM 

supplemented with ITS+1 (10 µg/mL insulin, 5.5 µg/mL transferrin, 5 ng/mL selenium, 0.5 µg/mL 

bovine serum albumin, 4.7 ng/mL linoleic acid, from Sigma Chemical, St Louis, MO), 1 mM 

sodium pyruvate, 100 mM HEPES buffer, 100 U/mL penicillin, 100 µg/mL streptomycin, 0.29 

mg/mL L-glutamine, 0.1 mM ascorbic acid 2-phosphate, 1.25 mg/mL human serum albumin, 10 

ng/mL TGF-β1 and 10-7 M dexamethasone. The serum free medium was initially developed for the 

chondrocytic differentiation of human mesenchymal progenitor cells (35) and is typically used for 

the redifferentiation of human articular chondrocytes (29). Aliquots of 5 x 105 cells in 0.5mL of 

serum free medium were centrifuged in 1.5 mL conical polypropylene tubes (Sarstedt, Nümbrecht, 

D) at 1300 rpm for 4 min to form spherical pellets. These were placed on a 3D orbital shaker 

(Bioblock Scientific, Frenkendorf, CH) at 30 rpm in a humidified incubator at 37°C and 5% CO2.  

Pellets were cultured for 2 weeks, with medium changes twice per week, and subsequently 

processed for histological, immunohistochemical, biochemical or mRNA analysis as described 

below. Each analysis was performed independently in at least two entire pellets for each primary 

culture and expansion condition. 

Model II: chondrogenic differentiation in 3D scaffold based cultures 
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Meniscus, fat pad, synovial membrane cells and articular chondrocytes  from 2 donors, expanded 

with TFP, were seeded into non-woven meshes (5 mm diameter, 2 mm thick disks), made of 

esterified hyaluronan (Hyaff®-11, Fab, Abano Terme, IT) at the density 4 x 106 cells/scaffold (7 x 

107 cells/cm3). The scaffold was selected based on previous reports indicating that it supports 

redifferentiation of human articular chondrocytes (36) and since it is already in clinical use for 

articular cartilage repair (37). Cells were resuspended in 28μL of control medium and slowly 

dispersed over the top surface of the dry meshes with a micropipette. The seeded scaffolds were 

transferred to a 37°C incubator to allow for initial cell attachment. After 45 minutes, 100 μL of 

medium were carefully added to the base of each well. After a further 1.5 hours of incubation, 2 mL 

of medium were slowly added along the side of each well to cover the scaffold. Cell-scaffold 

constructs were cultured in control medium supplemented with 1ng/ml of TGFβ-3, 0.1 mM ascorbic 

acid 2-phosphate and 10μg/ml of human insulin, with medium changes twice a week. After 2, 4 and 

6 weeks, the resulting tissues were processed for histological, immunohistochemical, biochemical 

or mRNA analysis as described below. Each analysis was performed independently in at least three 

engineered tissues for each primary culture and cell source. 

Model III: ectopic implantation in nude mice  

Meniscus, fat pad, synovial membrane cells and articular chondrocytes from 1 donor, expanded 

with TFP, were loaded and cultured for 2 weeks into Hyaff®-11 meshes as described for Model II 

and implanted subcutaneously in nude mice (CD-1 nude/nude, Charles River, Germany). After 6 

weeks, mice were euthanised and explants processed for histological, immunohistochemical, 

biochemical or mRNA analysis as described below. Each analysis was performed independently in 

two engineered tissues for each cell source. 

 
Analytical methods 

Proliferation rate during expansion 

 7 



The number of doublings of meniscus, fat pad, synovial membrane cells and articular chondrocytes 

during the second passage of expansion was determined as the logarithm in base 2 of the fold 

increase in the number of cells during expansion. The proliferation rate was defined as the number 

of doublings during the second passage of expansion divided by the time required for expansion and 

was expressed as doublings/day.  

Real time RT-PCR (global amplification) 

Total RNA was prepared from pellet cultures using Tri-Reagent (Sigma, UK).  Pellet cultures were 

ground up in the Tri-Reagent using Molecular Grinding Resin (Geno Technology Inc, St Louis, 

USA). cDNA was synthesised from 10-100ng of total RNA by global amplification (38). Globally 

amplified cDNA was diluted 1:1000 and 1µl aliquots of the diluted cDNA were amplified by real 

time RT-PCR in a 25μl reaction volume on a MJ Research Opticon using a SYBR Green Core Kit 

(Eurogentec, Seraing, Belgium), with gene specific primers designed using ABI Primer Express 

software. Relative expression levels were normalised using glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and calculated using the 2-ΔCt method (39). All primers were from 

Invitrogen, Paisley, UK. Primer sequences were for (i) GAPDH: Forward 5’-3’ 

CACTCAGACCCCCACCACAC, and Reverse 5’-3’ GATACATGACAAGGTGCGGCT; (ii) 

collagen type I: Forward  5’-3’ TTGCCCAAAGTTGTCCTCTTCT, and Reverse 5’-3’ 

AGCTTCTGTGGAACCATGGAA; (iii) collagen type II: Forward 5’-3’ 

CTGCAAAATAAAATCTCGGTGTTCT, and Reverse 5’-3’GGGCATTTGACTCACACCAGT; 

(iv) SOX9: Forward 5’-3’ CTTTGGTTTGTGTTCGTGTTTTG, and Reverse 5’-3’ 

AGAGAAAGAAAAAGGGAAAGGTAAGTTT. The expression levels of collagen types I, II and 

SOX-9 were investigated to determine the relative extent of cell differentiation towards a 

fibrocartilaginous or hyaline-like phenotype.  

Biochemistry 

Tissues generated by meniscus, fat pad, synovial membrane cells and articular chondrocytes were 

digested with protease K (1mg/mL protease K in 50 mM Tris with 1 mM EDTA, 1 mM 
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iodoacetamide, and 10 mg/mL pepstatin- A; 0.5 mL solution for cell pellets and 1mL for Hyaff®-11 

based constructs) for 15 h at 56°C (34). The glycosaminoglycan (GAG) content was measured 

spectrophotometrically using dimethylmethylene blue (40), with chondroitin sulfate as a standard, 

and normalized to the DNA amount, measured using the CyQUANT cell proliferation assay kit 

(Molecular Probes, Eugene, OR), with calf thymus DNA as a standard. 

Histology 

Tissues were rinsed in PBS, fixed in 4% buffered formalin for 24 h at 4°C, embedded in paraffin, 

and sectioned to a thickness of 5 µm for cell pellets and of 7 µm for Hyaff®-11 based constructs. 

Sections were stained with Safranin-O for sulfated GAG. 

Immunohistochemistry 

Cryostat sections (3 to 5 µm thick) were cut from tissues and pellets stored frozen at -70°C. 

Sections, on Superfrost slides (BDH, Poole, UK), were fixed for 5 minutes in ice cold acetone and 

then stored at -20°C until required for immunostaining by standard ABC immunoperoxidase 

method with a panel of antibodies against collagen type I (COL-1 Mouse, Sigma, Gillingham, UK), 

collagen type II (CIIC1, Developmental Studies Hybridoma Bank, Iowa City, USA), collagen type 

III (FH-7A, Sigma, Gillingham, UK), collagen type IV (CIV22 Dako, Ely, UK) and collagen type 

VI (poly, Dako, Ely, UK). Sections immunostained with anti-type I and type II collagen antibodies 

were pre-incubated with 1mg/ml hyaluronidase (Sigma type 4 hyaluronidase from bovine testes) for 

30 minutes at 37°C. Negative control sections with appropriate IgG or non-immune animal serum 

were run in parallel with the experimental sections to confirm the specificity of any positive 

staining. 

The slides were blindly examined by light microscopy and the results were scored based on the 

percentage of positive tissue as: no matrix positive (-); <50% of matrix positive (+/-); >50% of 

matrix positive (+). 

Statistical Analysis 
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Values are presented as mean ± standard deviation. Differences between the experimental groups 

were evaluated by Mann Whitney U tests and considered statistically significant with p < 0.05. 

 
Results 

Characterization of native human meniscus 

The inner and outer regions of human native meniscus displayed a uniformly positive 

immunohistochemical staining for collagen types I, III and VI. Instead, staining for collagen type II, 

the major fibril collagen in articular cartilage, was weakly positive only in the inner meniscus 

region. Staining for collagen type IV, usually absent from articular cartilage, was positive, 

predominantly in a dendritic pattern, in the outer vascular zone of the meniscus and also, but to a 

lower extent, in the inner meniscus (Table I, section A), as previously described for ovine meniscus 

(41).  

Cell proliferation during monolayer expansion 

Meniscus, fat pad, synovial membrane cells and articular chondrocytes cultured in control medium 

proliferated at similar rates (Fig. 1). However, probably due to the limited biopsy size (i.e., if lower 

than 20 mg), some cultures of meniscus (three primaries), fat pad (four primaries) and synovial 

membrane cells (one primary) could not be expanded. 

TFP supplementation during expansion significantly increased the proliferation rate of all four cell 

types, and allowed cell expansion even in cases of limited biopsy size. In the presence of TFP, 

articular chondrocytes proliferated significantly faster than all other cell sources.  

Model I: 3D pellet cultures 

After two weeks of culture, meniscus, synovial membrane cells and articular chondrocytes 

expanded in control medium formed spherical pellets, in contrast to fat pad cells, which did not 

generate regular tissue structures (Fig. 2). Following expansion in control medium, only articular 

chondrocytes generated tissues positively stained for GAG. Medium supplementation with TFP 

during expansion of all cell sources resulted in pellets more intensely stained for GAG. A 
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chondrocytic cell morphology and overtly positive staining for GAG was observed in pellets 

generated by articular chondrocytes and in restricted regions of pellets generated by fat pad and 

synovial membrane cells.  

Pellets generated by all cell sources, expanded with or without TFP, contained similar amounts of 

DNA (data not shown). Following expansion in control medium, articular chondrocytes generated 

pellets with significantly higher GAG/DNA fractions than the other cell sources (Fig. 3A). Medium 

supplementation with TFP during expansion induced a significant increase in the GAG/DNA 

content of pellets generated by all cell sources (1.4, 4.1, 1.9 and 3.1 fold, respectively for meniscus, 

fat pad, synovial membrane cells and articular chondrocytes). Following TFP expansion, tissues 

formed by articular chondrocytes contained the largest fractions of GAG/DNA.  

Following expansion in control medium and differentiation in pellets, articular chondrocytes 

expressed the highest mRNA levels of collagen types I, II and SOX-9 (Fig. 3B, C, D). Medium 

supplementation with TFP during expansion induced a significant increase in the mRNA expression 

of collagen type II by fat pad and synovial membrane cells (respectively 66- and 472-fold). 

Following TFP expansion and differentiation in pellets, articular chondrocytes expressed mRNA 

levels of SOX-9 higher than all other cell sources and of collagen type II higher than meniscus and 

synovial membrane cells. 

Pellets generated by all cell sources displayed positive immunohistochemical staining for collagen 

types I, III, IV and VI, with generally increased levels of staining following TFP expansion (Table 

I, section B). Only articular chondrocytes, expanded with or without TFP, formed tissues positively 

stained for collagen type II, although only in discrete areas. 

Model II: culture into Hyaff®-11 meshes  

All cell sources, expanded in medium supplemented with TFP and loaded into Hyaff®-11 scaffolds, 

generated tissues which developed with in vitro culture time. In particular, DNA fractions of wet 

weight decreased with time, reaching after 6 weeks similar levels in all constructs (between 0.062% 

and 0.071% of the wet weight). The GAG content of all constructs, expressed as percentage of wet 
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weight, increased with culture time, and after 6 weeks’ culture were the highest in tissues generated 

by articular chondrocytes (1.90 ± 0.09% of the wet weight, respectively 2.6-, 2.9- and 3.0-fold 

higher than in tissues formed by meniscus, fat pad and synovial membrane cells), approaching the 

levels measured in the inner region of native menisci (approximately 2%, calculated based on 

AufderHeide et al. (42)). Histological staining of tissue cross-sections indicated that only articular 

chondrocytes were able after 6 weeks to engineer cartilaginous tissues positively stained for GAG 

(Fig. 4). 

The pattern of collagen types deposited in cell-Hyaff®-11 constructs was similar to that described in 

cell pellets (Table I, section C). In particular, tissues generated by articular chondrocytes were 

positively stained for all assessed collagen types, including collagen type II, thus indicating a hybrid 

fibro-hyaline cartilaginous nature (Fig. 5). Instead, tissues formed by meniscus, fat pad and synovial 

membrane cells were negatively stained for collagen type II. 

Model III: ectopic implantation following culture into Hyaff®-11 meshes 

In order to assess the intrinsic capacity of engineered cartilage tissues to further develop upon 

implantation in an environment supportive, but not inductive, of chondrogenesis (43), constructs 

generated by all cell sources, following two weeks of pre-culture in vitro (44), were implanted in 

subcutaneous pockets in nude mice for 6 weeks. Following in vivo implantation, the DNA content 

decreased and reached similar levels in all constructs (between 0.030% and 0.047% of the wet 

weight). In parallel, the GAG content increased in all constructs, and reached the highest levels in 

tissues generated by articular chondrocytes (1.4 ± 0.3% of the wet weight, respectively 2.6-, 1.9- 

and 3.5-fold higher than in tissues formed by meniscus, fat pad and synovial membrane cells). 

Histologically, tissues formed by articular chondrocytes were qualitatively similar to those 

maintained in culture for a total of 6 weeks (Model II), with a mixture of fibroblastic and 

chondrocytic cell phenotypes, large intercellular spaces positively stained for GAG, and no 

evidence of vascularization (Fig. 6). Instead, tissues formed by meniscus, fat pad and synovial 

membrane cells contained mostly fibroblastic cells and negligible extracellular matrix, with no 
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detectable positive stain for GAG. As compared to articular chondrocytes-based constructs, the 

lower amount of extracellular matrix in meniscus-, fat pad- and synovial membrane cells-based 

tissues appeared to be associated with a more advanced degradation of the esterified hyaluronan 

fibers, which were markedly more swollen, likely due to increased absorption of water (Fig. 6). 

Immunohistological staining of explant cross-sections indicated that tissues generated by articular 

chondrocytes were positively stained for all assessed collagen types, including type II (Table I, 

section D). Instead, the amount of extracellular matrix in meniscus-, fat pad- and synovial 

membrane cells-based tissues was too limited to allow for reliable immunohistochemical 

characterization.  

 
Discussion 

In this study, with the ultimate goal of identifying a suitable cell source for engineering autologous 

meniscus grafts, we compared the growth and post-expansion chondrogenic capacity of human 

meniscus, fat pad, synovial membrane cells and articular chondrocytes using three different model 

systems. Our results indicate that (i) articular chondrocytes reached the highest proliferation rates 

and (ii) only tissues formed by expanded articular chondrocytes contained molecules typically 

found in the inner avascular region of the meniscus (i.e., GAG and collagen type II), in the outer 

vascularized region of the meniscus (i.e., collagen type IV), and common to both regions (i.e., 

collagen types I, III and VI). Instead, under our specific experimental setup, tissues formed by 

meniscus, fat pad, and synovial membrane cells contained negligible GAG amounts and no 

detectable collagen type II. 

We initially studied the response of the different cell sources to a specific growth factor 

combination (i.e., TFP) supplemented during cell expansion. Medium supplementation with TFP 

induced a significant increase in the proliferation rate during expansion and in the deposition of 

GAG in pellet cultures by all cell sources. In addition, it induced an upregulation of the mRNA 

levels of collagen type II in pellet cultures by fat pad and synovial membrane cells. We previously 
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reported that in addition to articular chondrocytes (29), also chondrocytes from ear and nasal 

septum increased their growth and post-expansion ability to generate cartilaginous tissues in 

response to TFP (30). The fact that different chondroprogenitor cells and mature chondrocytes from 

different cartilage sources similarly responded to the TFP growth factor combination during 

expansion suggests that these different cell types share certain pathways controlling chondrogenic 

commitment; in this context, it would be interesting to assess which common specific gene sets are 

up- or down-regulated in the different cell sources when exposed to TFP.  

Expanded meniscus, fat pad and synovial membrane cells displayed evidences of differentiation 

towards the chondrogenic lineage, as assessed by the detection of type II collagen and Sox-9 mRNA 

expression. However, these cells developed merely fibrocartilaginous tissues, as indicated by the 

low amounts of deposited GAG and by the immunohistochemical detection of all the investigated 

collagen types, with the exception of type II collagen. Previous studies reported the production of 

type II collagen by meniscus cells (45), fat pad cells (21) and synovial membrane cells (22). The 

apparent discrepancy might be explained by the use of different detection methods and/or by the 

fact that biopsies taken with different methods or from healthy vs injuried knees may result in a 

different quality of the isolated cells. Indeed, one main limit of our study is related to the use of 

likely heterogeneous cells, without definition of typical phenotypes by assessment of surface 

markers. Our in vivo results are anyway consistent with the work by De Bari et al. (46), reporting 

that no stable cartilage could be formed ectopically by synovial membrane cells, and with that by 

Park et al., indicating that chondrogenesis by synovium-derived cells was not complete, and anyway 

inferior – with respect to type II collagen and Sox 9 mRNA expression – to that by articular 

chondrocytes (47). In terms of mRNA expression of chondrogenic genes and GAG deposition, our 

findings are also in line with other recent studies, reporting the chondrogenic differentiation of 

human synovial membrane cells in the presence of high concentrations (500 ng/ml) of bone 

morphogenetic protein (BMP)-2 (23,48). However, since these studies did not include assessment 
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of type II collagen at the protein level, a direct comparison with our data, potentially addressing the 

role of BMP-2 in the system, cannot be established.  

In all investigated models, cartilaginous tissues generated by articular chondrocytes contained all 

the investigated collagen types in addition to abundant GAG and thus displayed a mixed 

hyaline/fibrous phenotype, consistently with several previous studies (33; 49-51). The quality of 

engineered cartilage based on articular chondrocytes seeding into Hyaff®-11 meshes improved 

during time in culture or during the time of subcutaneous implantation, as assessed by the increased 

content of GAG and decreased cellularity. Moreover, cells remained phenotypically stable and 

tissues implanted in vivo were not vascularized, also consistent with a previous report (44). The fact 

that the GAG content of articular chondrocytes-based constructs was in the range of that measured 

in the inner region of the native meniscus would be important to guarantee initial resistance of the 

graft upon implantation (42; 52) and biological responsiveness to compressive loads (53). 

Moreover, the expression and deposition by articular chondrocytes of all collagen types identified in 

the native meniscus indicates a compatibility of their phenotype with meniscus cells. Last but not 

least, the relatively higher proliferation rate of articular chondrocytes, especially in the presence of 

the growth factor combination TFP, would allow to generate a sufficient number of cells in a 

shorter time. 

Although we cannot exclude that different experimental conditions (e.g., use of different sets of 

growth factors) might result in a different trend, data generated using the described model systems 

indicate that articular chondrocytes represent a more appropriate cell source than meniscus, fat pad 

or synovial membrane cells for the generation of a meniscus substitute. Recent studies have already 

explored the possibility to heal lesions in the avascular region of the meniscus using lamb (16) or 

swine articular chondrocytes (17), with promising results. Clearly, tissues engineered by articular 

chondrocytes only remotely mimic the complex structure of native meniscus; moreover, in our 

study we have not investigated the spatial organization of aggrecan or of collagen fibers, which is 

known to be highly specific in meniscus cartilage (54; 55). In this regard, it should be pointed out 
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that differential localization of specific matrix molecules in articular chondrocytes-based tissues 

may be induced by appropriate physical conditioning in vitro, e.g. by application of hydrodynamic 

forces (Marsano et al., Biorehology, In Press). Moreover, it is likely that the composition and 

mechanical properties of the graft will correctly develop by adapting to local mechanical forces 

upon implantation, as it is described during the process of embryonic joint development (56-58). In 

this context, studies are ongoing in a sheep model to assess the efficacy of autologous articular 

chondrocytes loaded into appropriately shaped scaffolds as engineered substitutes for total 

meniscectomies.  
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Figure Legends 

 
Figure 1. Proliferation index for inner meniscus cells (IMC), fat pad cells (FPC), synovial 

membrane cells (SMC) and articular chondrocytes (AC) expanded without (CTR) or with growth 

factors (TFP). * = significantly different from same cells expanded without TFP. °  = significantly 

different from IMC, FPC and SMC. 

Figure 2. Representative sections of pellets generated by meniscus (A,B), fat pad (C,D), synovial 

membrane cells (E,F) and articular chondrocytes (G,H) expanded with (B, D, F, H) or without (A,C, 

E, G) the growth factor combination TFP and stained by Safranin O. Bar = 100 µm. 

Figure 3. Fractions of GAG (A) and mRNA expression levels of collagen types I (B), II (C) and 

Sox9 (D) in pellets generated by inner meniscus cells (IMC), fat pad cells (FPC), synovial 

membrane cells (SMC) and articular chondrocytes (AC), expanded without (CTR) or with growth 

factors (TFP).  * = significantly different from same cell source expanded without TFP. ° = 

significantly different from all the other cell sources, expanded in the same condition. § = 

significantly different from AC, expanded in the same condition. 

Figure 4. Representative Safranin-O stained sections of tissues generated by culture of inner 

meniscus cells (A), fat pad cells (B), synovial membrane cells (C) and articular chondrocytes (D) 

into Hyaff®-11 for 6 weeks. Bar = 300 µm.  

Figure 5. Representative immunohistochemical stain for collagen types I (A,B), II (C,D), III (E,F), 

IV (G,H) and VI (I,J) of cartilaginous tissues generated by culture of articular chondrocytes (A, C, 

E, G, I) and synovial membrane (B, D, F, H, J) into Hyaff®-11 for 4 weeks. Immunohistochemical 

stains were similar in tissues generated by inner meniscus, fat pad and synovial membrane cells. 

Bar = 100 µm. 

Figure 6. Representative Safranin O-stained sections of tissues generated by culture of meniscus 

(A), fat pad (B), synovial membrane cells (C) and articular chondrocytes (D) into Hyaff®-11 for 2 

weeks, followed by 6 weeks of ectopic implantation. Bar = 300 µm. 
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Table 1. Immunophenotypic characterization of native and engineered tissues. 

The expression of Collagen types I, II, III, IV and VI was assessed in the inner avascular (IN) and 

outer vascular (OUT) regions of native human meniscus (section A), in pellets generated by inner 

meniscus cells (IMC), fat pad cells (FPC), synovial membrane (SMC) cells and articular 

chondrocytes (AC) expanded without (CTR) or with TFP, after 2 weeks (section B), in tissue 

constructs generated by the four different cell sources after 6 weeks of culture into Hyaff®-11 

(section C), and in tissue constructs generated by AC cultured for 2 weeks into Hyaff®-11 and 

implantated ectopically for 6 weeks (section D). Scores are based on the percentage of positive 

tissue as: no matrix positive (-); <50% of matrix positive (+/-); >50% of matrix positive (+). 

 

 

 

A  

Meniscus 

B                                Model I C            Model II D   Model III 

IMC FPC SMC AC IMC FCP SMC AC AC 

 IN OUT CTR TFP CTR TFP CTR TFP CTR TFP   

Col I + + + + + + + + + + + + + + + 

Col  II +/- - - - - - - - +/- +/- - - - + + 

Col  III + + +/- + +/- + +/- + + + + + + +/- + 

Col  IV +/- + + + +/- + + + +/- + + +/- + + + 

Col  VI + + + + + + + + + + + + + + + 
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