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Chapter 1

Introduction

Moore’s law has predicted feature sizes in the semiconductor industry for more than

several decades [1]: the number of transistors on an integrated circuit doubles every two

years. However, as the feature sizes in transistors approach the nanometer scale, the

semiconductor industry is hitting a physical limit: the electron flow at these small scales

is limited by the quality of the interfaces in all three spatial directions.

Layered van der Waals crystals gained a great interest after K. Novoselov and A. Geim

were awarded the Nobel Prize for their work on graphene [2]. As the name indicates it,

these crystals consist of weakly bound sheets with a thickness of less than a nanometer,

given by the size of the unit cell of the material. The extend of the electron wavefunction

in these materials is mostly limited to the plane of the sheets, so that a single sheet of a

van der Waals material can be used as an active material and be a “clean” interface at

the same time.

Standard semiconductor materials, based on bulk 3D crystals (e.g. silicon, germa-

nium, gallium arsenide...) have strong chemical bonds in the three spatial directions,

imposing strict rules for hetero-epitaxy such as lattice-matching. The weak binding be-

tween the sheets of van der Waals crystals makes it possible to stack different van der

Waals materials without compromises [3, 4] within a van der Waals heterostructure [4],

creating functional devices with semiconductor materials, metals and insulators layers

within a few nanometers. There is a wide variety of van der Waals materials, and new

materials continuously join this growing class of materials. Relevant to this thesis are

the monolayers of the optically active transition metal dichalcogenides (TMDCs) and

in particular molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten

disulfide (WS2) and tungsten diselenide (WSe2). These four materials are semicon-

ductors in the monolayer limit with a direct band-gap in the red part of the optical

spectrum. It was shown that both the optical [5] and electronic transport properties [6]

are significantly improved when the monolayer crystal is placed within two thin layers

of the insulating material hexagonal boron nitride (h-BN), forming a Van der Waals
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Fig. 1.1. Idealised Van der Waals heterostructure presented as Lego bricks. Image from Ref. [4].

heterostructure.

The lack of dangling bonds combined with the atomic thicknesses of van der Waals

materials make them interesting as a way to extend Moore’s law [7]. There are however

a few challenges to overcome before van der Waals materials make it to our private

computers [7]. An obvious challenge is the growth: large scale growth of van der Waals

materials remains challenging. The best properties are still obtained by mechanical

exfoliation (i.e. the scotch tape method, discussed in the Method chapter). This method

provides an easy way to fabricate elaborated heterostructures. Another challenge is to

understand how the truly two-dimensional nature of these materials impact their physical

properties. The reinforced Coulomb interaction in 2D impacts basic properties of the

semiconductor, such as the effective mass of the electrons [8] or the ground state for

instance.

This thesis focusses mostly on the second challenge: understanding how the 2D nature

of van der Waals materials impacts the physical properties of a material. Absorption

and photoluminescence spectroscopy is used to study the optical properties of monolayer

MoS2 with and without the presence of free electrons.

In Section 1, the band structure of TMDCs and their optical excitation spectrum are

disussed, introducing the concept of exciton. Then, Coulomb interaction in a 2D ma-

terial will be introduced. The most important Coulomb matrix elements for TMDCs

are derived in this Section. In Section 3, the fabrication techniques used for the fab-

rication of our sample are explained. In the same Section, the scotch tape technique

and how individual few-nanometer-thick layers can be stacked to form a van der Waals

heterostructure are discussed. The experimental details on photoluminescence and ab-
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sorption spectroscopy are also discussed in this Section.

Excitons, the lowest energy optical excitations of an uncharged semiconductor, are

formed by an electron-hole pair. When an external electric field is applied, the electron

and the hole will tend to separate thus creating a dipole moment aligned with the electric

field, lowering the energy of the exciton. This feedback mechanism is named the Stark

effect, characterised by the polarisability of the exciton. In Section 4, we will discuss

the measurement of the Stark effect in a van der Waals heterostructure formed by a

single layer MoS2 encapsulated in the insulator material hexagonal boron nitride. The

minute polarisability that we measure unambiguously proves the 2D nature of monolayers

TMDCs [9].

The 2D dimensionality of our sample also has dramatic consequences on the electron-

electron Coulomb interaction. We present in Section 5 how we make use of optical

absorption to investigate the ground state of free electrons in a directly contacted mono-

layer of MoS2. The extreme strength of Coulomb interaction in MoS2 allows a regime

in which Coulomb interaction dominates over Pauli-blocking to be probed [10]. We find

that the electronic ground state is spin-polarized up to a large electron density [11].

This spontaneous symmetry breaking was not expected by standard 2DEG , in which

any long-range ferromagnetic order is excluded at finite temperature as a result of the

Mermin-Wagner theorem [12]. In MoS2, the small but finite spin-orbit interaction lifts

the conditions of the Mermin-Wagner theorem and allows for an Ising-type of ferromag-

netic ordering. The roots of the spin-polarisation are to be found in infrared electron-hole

pair excitations near the Fermi surface [13].

In the last part, we will discuss the dramatic effects of the spin-polarised electronic

ground state on the optical properties of electron doped MoS2. We will show how pho-

toluminescence spectroscopy can be used to witness that a MoS2 2DEG undergoes a

first-order phase transition between the ferromagnetic phase and the normal param-

agnetic phase as the electron density increases. The first order nature of the phase

transition is not expected from the standard Gainsburg-Landau theory and relies on

non-analycities in the thermodynamic potential [13].
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Chapter 2

Transition metal dichalcogenides

Layered transition metal dichalcogenides (TMDs) consist of a plane of a transition metal

atom (M) sandwiched between two planes of chalcogen atoms (X), with stoichiometry

MX2. Fig. 2.1(b) shows the atomic structure of a plane of a TMD with the transition

metal in the middle, in grey. Seen from the top, as in Fig. 2.1(a), the lattice is hexag-

onal with each two site corresponding to the two chalcogen atoms (overlapping). From

Fig. 2.1(b), one can clearly see that monolayers of TMDs lack inversion symmetry. The

broken inversion symmetry has profound consequences on the band structure and the

optical properties of monolayers of TMDs.

Fig. 2.1. Crystal lattice of monolayer MoS2. (a) Top view of the crystal lattice. The molybdenum

atoms are depicted in grey and the sulphur atoms are drawn in yellow. The lattice is similar to the

staggered graphene lattice. (b) Drawing of the three dimensions unit cell. One can notice that the

crystal lattice does not respect inversion symmetry. (c) The first Brillouin zone of monolayer MoS2 is

defined by the area defined by the vectors b1 and b2. The Brillouin zone contains both the K and K′

point. Image from Ref. [1].
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2.1 Band structure

Seen from the top, as in Fig. 2.1(a), monolayers TMDs consists of two hexagonal sub-

lattices with lattice constant alatt formed by the chalcogen atoms and the transition

metal atoms. Similar to graphene, TMDs have band edges at the K = 4π
3alatt

and

K ′ = −K points. However, TMDs are semiconductors with a finite band-gap Eg and

exhibit parabolic bands around the K and K ′ points. Fig. 2.2 shows the band structure

of the TMD molybdenum disulfide, MoS2. The large angular momentum of d-orbitals

of the transition metal atom induces a large spin-orbit splitting (∆V B ≈ 150 meV) of

the two valence bands. On the other hand, the states in the conduction band have

mostly a s-orbital nature, limiting the spin-orbit splitting of the two conduction bands

to ∆CB ≈ 3 meV. A direct consequence of the finite spin-orbit interaction and broken

inversion symmetry is the inversion of the spins of the band edges in TMDs. The band

edges are located at the K and K ′ points. The spin (indicated by the arrows and the

colours of the lines) are inverted at the inequivalent K and K ′ points.

In MoS2, there is a strong imbalance between the strength of the spin-orbit splitting

of the bands in the conduction band and the valence bands, making this semiconductor

unique in the family of the TMDs (see Table 2.1). In chapter 5, we will see how the small

value of the spin-orbit interaction in the conduction band of MoS2 has a deep impact on

the electronic ground state of electron-doped MoS2.

The band structure of MoS2 extracted from DFT calculation has been accurately

described in terms of an effective hamiltonian close to the band edges, at the proximity

of the K and K ′ points [2]. For the conduction band, in the absence of an out-of-plane

magnetic field, the band structure can be written simply written as

H =
~2q2

2mτ,s
CB

+ τ∆CBsz , (2.1)

where mτ,s
CB is the electron effective mass in the conduction band in the valley with index

τ and spin sz. τ is defined such that τ = 1(−1) for K (K ′) and sz is defined such that

its eigenvalues are s = ±1. The momentum q is measured from the bottom of the band

at K or K ′. ∆CB is the spin-orbit splitting of the two low energy conduction bands. A

similar hamiltonian can be written for the valence band.

Table 2.1 lists common values of the parameters appearing in the effective hamiltonian

of Eq. 2.1.
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Fig. 2.2. Band structure of monolayer MoS2. MoS2 has four conduction bands and four valence

bands that are experimentally relevant. A direct band-gap Eg ≈ 2.0 eV is formed at the inequivalent

K and K′ points of the Brillouin zone. A small spin-orbit interaction splits the spin states in the

conduction band by ∆CB ≈ 3 meV. In the valence band, the spin splitting is significantly larger with

∆CB ≈ 150 meV. The broken inversion symmetry implies that the spin ordering of the bands at the K

point is the inverse of that of the K′ point.

Material Eg (eV) 2∆CB (meV) 2∆V B (meV) m↓CB m↑CB mV B

MoS2 1.59-2.97 3 148 0.44 0.49 0.54

WS2 1.58-3.11 -38 429 0.27 0.35 0.35

MoSe2 1.34-2.33 23 186 0.56 0.64 0.59

WSe2 1.27-2.51 -46 466 0.3 0.4 0.36

Table 2.1. Calculated band structure parameters for different TMDs. All reported values are from

Ref. [3]. Due to the large spread of the calculated values of the band-gap, I report the upper and lower

bounds of the band-gap energy.

2.2 Optical transitions

Optical transitions conserve the total angular momentum and momentum. As a photon

has a momentum close to zero, photons can only couple bands of the same valley. A

circularly-polarized photon carries an angular momentum of ±1. For a quantum dot

or an atom, we would then just need to verify that the change in angular momentum

between the initial state and the final state is ∆m = ±1. However, as the band edges are

8



Fig. 2.3. Optical selection rules in monolayer transition metal dichalcogenides. Due to the

broken inversion symmetry of the crystal lattice, it is possible to excite an electron-hole pair in a specific

valley using circularly polarised light (σ+ and σ− polarisations). As the spin-orbit splitting is large in

the valence band (≈ 100 meV), we can excite A-excitons at frequency ~ωu and B-excitons at frequency

~ωd. The band ordering here is typical from tungsten-based transition metal dichalcogenides. Figure

from Ref. [5].

located at the K point, the orbital magnetic moment of the electrons have a contribution

stemming from the intercellular current circulation [4]. The sign of this contribution

depends on the position in the Brillouin zone and is opposite at the K point than that

at the K ′ point. For instance, it was shown that in MoS2, the conduction bands with

mz = −2(2) are optically coupled to the mz = 0 valence bands with σ+(σ−) photons [5].

Fig. 2.3 shows the optical transitions in monolayer MoS2.

2.2.1 Excitons

We have previously discussed the inter-band selection rules which dictate which valence

band can be coupled to which conduction band. In a single particle picture, we need at

least a photon energy greater than the bandgap energy Eg in order to promote an electron

from the valence band to the conduction band. This type of transition is characterised

by an absorption threshold in the absorption spectrum: photons with energies higher

than Eg will be absorbed by the single-particle type of transitions.

The many electrons present in the system (full valence band !) are however interacting

via Coulomb interaction. Coulomb interaction impacts the inter-band transitions by

creating a bound state at energy lower than the band-gap. This state can be understood

9



as a bound electron-hole pair: when promoting an electron from the valence band to

the conduction band, an unoccupied state is left in the valence band. This unoccupied

state can be seen as a hole, a positively charged particle that can bind with the photo-

promoted electron. This electron-hole pair is the analogous of a hydrogen atom: the

binding energies are given by the Rydberg in the system and the possible wave-functions

are described by the 2D hydrogen excitation spectrum 1s, 2s... with energies, counted

from the effective bandgap (Eg plus the electron and hole confinement energies) given

as

En = −E0
1

(n+ 1/2)2
, n = 0, 1, ... with E0 =

e2

8πε0εra0
. (2.2)

Here, a0 is the Bohr radius of the exciton,

a0 =
4πε0εr~2

mre2
, (2.3)

which is extremely small in TMDs due to the large electron and hole effective masses and

the relatively small relative dielectric constant εr. These results can be derived under the

assumption of an unscreened ∝ 1/r Coulomb potential [6]. An exciton binding energy of

320 meV was experimentally measured in the TMD WS2 showing the extreme strength

of excitonic features in TMDs [7]. However, the same work [7] reported deviations to

the idealistic hydrogen series of Eq. 2.2, hence showing that the 1/r Coulomb potential

may not be completely valid in TMDs.

2.3 Coulomb interaction in a two-dimensional electron gas

Free electrons interact with each other via Coulomb interaction. In Chapter 5, we will

discuss an experiment where Coulomb interaction is dominating all other energy scales

in the system.

2.3.1 Non-interacting electron gas

Electrons carry a spin-1/2 and are therefore Fermions. In the frame of the second quan-

tisation, we can define a†k,σ and ak,σ, the creation and annihilation operators for an

electron with wave-vector k and spin σ. The particle operator nk,σ = a†k,σak,σ informs

about the occupancy of the state with quantum numbers (k, σ). As two Fermions cannot

populate the same state, nk,σ ∈ {0, 1}, ∀(k, σ). For parabolic bands with energy disper-

sion εσ(k) = ~k2/2m, the 2DEG ground state can be written in the form of a Fermi sea

10



|FS〉:
|FS〉 =

∏
{k: ‖k‖≤‖kFσ ‖}

a†k,σ |0〉 (2.4)

where ‖kFσ ‖ is the Fermi wave-vector and |0〉 is the state where describing the intrinsic

semiconductor with a filled valence band and an empty conduction band.

2.3.2 Coulomb interaction

Electrons interact via Coulomb interaction. The density of electrons at a given point r,

ρ(r) can be used to measure the overall energy from Coulomb interaction EC as

EC =

∫
d2rd2r′ρ(r)ρ(r′)V (r − r′)

[
1− δ(r′ − r)

]
, (2.5)

where the term [1− δ(r′ − r)] takes the term r′ = r out of the integration as it is an

infinite contribution stemming from the Coulomb interaction of an electron with itself

(self-energy).

The density ρ = n(r) can be expressed in term of the field operators

ρ(r) =
∑
σ

ψ†σ(r)ψσ(r) (2.6)

By definition of the field operators,

ψσ(r) =
∑
k

ak,σe
ikr , (2.7)

we can obtain the Hamiltonian for Coulomb interaction in term of the creation and

annihilation operators

HC =
1

2

∑
(k,σ)

∑
(k′,σ′)

∑
q 6=0

Vqa
†
k+q,σa

†
k′−q,σ′ak′,σ′ak,σ (2.8)

In order to derive Eq. 2.8, the only assumption is that the interaction energy depends

on the density at point r and at point r′. The r − r′ dependence of the interaction is

translated in Fourier space by the wavevector q being the Fourier transform of r − r′.
The energy needed to bring a particle with charge e from far away at a distance |r− r′|
from another particle with charge at r is given by

V (r − r′) =
1

4πε0

e2

|r − r′|
Vq =

e2

2ε0L2

1

q
, (2.9)
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where L is the size of the crystal on taking the 2D Fourier transform. Details of the

Fourier transform can be found in Ref. [6].

Inter- and intra- valley Coulomb interaction

The Coulomb interaction Hamiltonian in Eq. 2.8 shows that Coulomb scattering pro-

cesses conserve both the spin and the total momentum: a momentum q is transferred

from a particle with spin σ and momentum k to a particle with spin σ′ and momentum

k′. In the case of the TMDs, there are four valence bands that can be filled. The addi-

tional valley degree of freedom needs to be taken into account by the Hamiltonian. The

non-interacting Hamiltonian H0 is given by Eq. 2.1, that we rewrite within the frame of

the second quantization:

H0 =
∑
k,σ,τ

(
~2k2

2mτ,s
CB

+ τ∆CBsz

)
︸ ︷︷ ︸

εσ,τ (k)

a†k,σak,σ =
∑
k,σ,τ

εσ,τ (k)a†k,σak,σ . (2.10)

In Eq. 2.10, the sums over the degrees of freedom of the electron states now account for

the valley index τ , therefore restricting the sum over wavevector k in the vincinity of

the τ ·K point with τ ∈ {−1; 1}.
We rewrite now the Coulomb interaction of Eq. 2.8 in two parts: the intra-valley part

H intra
C and the inter-valley part H inter

C . The intra-valley Coulomb interaction is basi-

cally described by the same hamiltonian as in Eq. 2.8, while the inter-valley interaction

describes scattering processes between electrons living in different valleys.

H intra
C =

1

2

∑
q 6=0

∑
(k,σ,τ)

∑
(k′,σ′,τ ′)

Vqâ
†
k+q,σ,τ â

†
k′−q,σ′,τ ′ âk′,σ′,τ ′ âk,σ,τ (2.11)

H inter
C =

1

2

∑
q

∑
(k,σ,τ)

∑
(k′,σ′,τ ′)

Vq+K â
†
k+q,σ,−τ â

†
k′−q,σ′,−τ ′ âk′,σ′,τ ′ âk,σ,τ (2.12)

As q is an intra-valley wave-vector, it is extremely small compared to the Brillouin-zone

sized wave-vector K. The inter-valley Coulomb scattering elements Vq+K can therefore

be considered as a constant

Vq+K ≈ VK =
e2

2ε0L2

3alatt
4π

(2.13)

12



Hartree-Fock approximation

The Fermi sea was discussed as the ground state of the non-interacting electron gas.

Here, the impact of Coulomb interaction is discussed within the frame of the Hartree-

Fock approximation. The Hartree-Fock calculation is a variational computation based

on a non-interacting initial Hamiltonian and Coulomb interaction is added as a per-

turbation. The mechanism of exchange will appear from the calculation, a mechanism

yielding a reduction of the energy due to Coulomb interaction.

We perform here a variational computation of the energy of the 2DEG. We consider

that the 2DEG wavefunction is described by a Fermi sea occupying an area Ω in the

Hilbert space. The goal is to minimize the 2D electron gas energy by finding the optimal

geometry for Ω.

The domain Ω is defined in terms of the Fermi wavevectors kσ,τF in the different valleys

(momentum measured from the bottom of the bands). Ω can be written (see Appendix B)

as

Ω =
⋃

σ=±1, τ=±1

{k , s.t. |k| < kσ,τF } (2.14)

|ΨΩ〉 =
∏

(k,σ,τ)∈Ω

â†k,σ,τ |0〉 (2.15)

The Hamiltonian of the system is made of the three parts discussed in Eq. 2.10,

Eq. 2.11 and Eq. 2.12. The energy EΩ of the variational wave-function |ΨΩ〉 is evaluated

for a given domain Ω :

EΩ = 〈ΨΩ| Ĥ |ΨΩ〉 = 〈ΨΩ|H0 |ΨΩ〉+ 〈ΨΩ|H intra
C |ΨΩ〉+ 〈ΨΩ|H inter

C |ΨΩ〉 (2.16)

In Appendix B, the details of the computation of the energy are given. After lengthly

operator algebra, the energy EΩ can be expressed in term of the population nσ,τ of each

of the Fermi seas

EΩ
0

L2
=
∑
(σ,τ)

2nσ,τ∆CBτsz + πn2
σ,τ

~2

m︸ ︷︷ ︸
Single-particle energy

−2V|K|L
2
∑
σ,τ

nσ,−τnσ,τ︸ ︷︷ ︸
Inter-valley exchange

−
∑
σ,τ

e2C

3πε0
(2πnσ,τ )3/2

︸ ︷︷ ︸
Intra-valley exchange

,

(2.17)

where

C =
∑

l=0,2,...,∞

2

l + 2

[
1

2l

(
l

l/2

)]2

≈ 1.26 . (2.18)

13



Coulomb interaction yields an energy reduction to the the single-particle energies. This

energy reduction is named exchange and it is known that the Hartree method overesti-

mates its value [6]. An interesting feature is that the unscreened intra-valley exchange

scales as n3/2 whereas the single particle energies scale as n2. At low carrier densities, it

can therefore be expected that exchange could dominate and create a spin- and valley-

polarization. This exact mechanism was proposed to explain population of a single Fermi

sea at low carrier density in WS2 [8].

The inter-valley term derived from the Hartree-Fock calculation shows that the elec-

tron population of one band drags the energy of the other band with the same spin but

opposite valley index to lower energy [9]. Although this simple Hartree-Fock approach

is crude and incorrect, it already underlines the importance of inter-valley exchange as

a means to favour spin-polarisation. In Chap. 5, we present an experiment where the

inter-valley exchange term dominates over all other energy scales in the system: we

demonstrate that the 2DEG electronic ground-state at “low” electron density is spin-

polarised.

In the absence of spin-orbit interaction, Mermin-Wagner theorem however excludes

the creation of a spin-polarized 2DEG ground state at finite temperature. The reason

is that fluctuations are extremely strong in two dimensions. In presence of spin-orbit

interaction, the Mermin-Wagner theorem doesn’t hold anymore. Fluctuations remain

nevertheless important and should be taken into account. The Hartree-Fock mechanism

presented here is based on a mean-field description which neglect fluctuations and is

therefore inaccurate. A complete computation accounting for fluctuations is presented

in Ref. [10].

2.3.3 Screening

In the computation presented above, the Coulomb potential was considered to be a

diverging function of the wave-vector q. Translated into a real-space picture, electrons

that are far away from each other interact. However, in our experiments, we typically

have electron densities of 1012 cm−2. These electrons create charge density fluctuations

that screen the interaction at long distance. These density fluctuations can be caused by

either collective excitations, named plasmons, or by simple electron-hole pair excitations.

In order to account for the effect of the many electrons around, one should consider

that the electric potential at a given point is given by the sum of the Coulomb potential of

a test charge and of the potential stemming from the feedback of all the other electrons:

Veff = V + Vind , (2.19)
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where Veff is the effective Coulomb interaction, V is the Coulomb potential of a test

charge and Vind stems from the feedback of all the other electrons. It can be shown that

within the framework of the rotating phase approximation (RPA), the screened Coulomb

potential Veff can be related to the unscreened Coulomb interaction V via the dielectric

function ε(ω, k) obtained with the Lindhard formula

ε(ω, q) = Vq
∑
k

fk−q − fk
~ω + iδ + ε(k − q)− ε(k)

, (2.20)

where fk is the occupancy of an electronic state with wavevector k, such that

Veff (q) =
Vq

ε(ω, k)
(2.21)

Thomas-Fermi screening and Coulomb matrix elements

The evaluation of the Lindhardt formula 2.20 for the case of a degenerate semiconductor

with one single conduction band yields the Thomas-Fermi screened Coulomb potential.

Veff,TF (q) = Vq
1

1 + kTF /q
=

e2

2ε0L2

1

q + kTF
, (2.22)

where the Thomas-Fermi screening wave-vector kTF for a degenerate semiconductor is

given by

kTF =
2

a0
, (2.23)

with the Bohr radius a0.

In the case of TMDs, the Coulomb interaction has two contributions, the inter-valley

scattering processes and the intra-valley processes. In typical gating, a Fermi wave-

vector on the order of kF ≈ 109 m−1 is obtained at large densities. The Bohr radius of

the exciton is a0 ≈ 0.4 nm. The intra-valley Coulomb matrix elements can therefore be

replaced by

Vintra ≈
e2

2ε0L2

1

kTF
=

e2

4ε0L2
a0 =

1

L2

π~2

mr
=

1

Nν
, (2.24)

where ν is the parabolic density of states in two-dimension and N is the number of

bands [10]. On the other hand, the Thomas-Fermi wave-vector is small compared to the

inter-valley scattering wave-vector K, so that we can simplify the inter-valley matrix

elements with

Vinter ≈
e2

2ε0L2

3alatt
4π

=
1

Nν

3

2π

alatt
a0

(2.25)
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As the Bohr radius is almost as small as the unit cell in transition metal dichalcogenides,

it turns out that inter-valley scattering are only ≈ 2 times weaker than intra-valley

scattering. This is a property unique to transition metal dichalcogenides !
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Chapter 3

Methods

3.1 Sample fabrication

A great advantage of the van der Waals materials is that they can be easily combined

with another material to add some functionality to a material. A stack of different van

der Waals material is named a van der Waals heterostructure. All the samples discussed

within this thesis are van der Waals heterostructures. The basic idea for building a van

der Waals heterostructure is to stack layers of different materials which are 10 nm thick

or less, down to atomic monolayers.

3.1.1 Exfolation and identification of monolayers

Before stacking the different materials, one needs to prepare the layers. For this purpose,

we use the basic property of van der Waals materials: they consist of weakly bound layers.

Using scotch tape, we can tear off the first layers from a bulk crystal of a given material

on a scotch tape. By folding the scotch tape a few times, we can spread fragments

of the crystal on the whole surface of the scotch tape. The tape is then placed on a

substrate, and when peeled off the substrate, a few pieces of the crystal decide to stay

on the substrate. The method using scotch tape to isolate thin crystals on a substrate is

often referred to as “mechanical exfoliation” in the literature. The thicknesses, sizes and

shapes of the different layers left on the substrate can be characterized using different

techniques, such as optical microscopy, Raman spectroscopy and AFM.

Fig. 3.1 shows in greater details the exfoliation technique that was used to produce

the samples discussed within this thesis. (a) Bulk crystal (here, natural MoS2); (b) we

press the crystal on a scotch tape (Nitto tape) and (c) we remove the bulk of the crystal

gently, leaving some material on the tape. (d) By folding the tape a few times, a large

dense homogeneous area (d) of the tape is covered by the crystal. A reddish glare of the

crystal indicates that the crystals on the tape are thin, a good prerequisite to obtain thin

18



Company Product

Nitto (scotch tape) ELP BT-150P-LC

Ultron Systems (scotch tape) 1005R-6.0

Gel-Pack (PDMS strip) WF-25-X4

Table 3.1. References of the different exfoliation material used for exfoliation in the frame of this thesis.

Material Type Reference

MoS2 Natural SPI Supplies

MoSe2 Synthetic HQ Graphene

WSe2 Synthetic HQ Graphene

Graphite Natural NGS Nanographit

h-BN Synthetic K. Watanabe & T. Taniguchi [1]

Table 3.2. References of the different bulk crystals used in the frame of this thesis.

layers on the substrate. (f) We press a strip of PDMS onto the scotch tape to transfer

some flakes from the blue tape to the PDMS. This step is not necessary, but tends to

reduce the amount of scotch tape residues on the final substrate. For increasing the

exfoliation yield, the blue tape as well as the PDMS strip can be exposed for 2 minutes

in a UVO cleaner before putting the two surfaces into contact. The contact between the

two surfaces should hold for two minutes with a mild force (≈ 2 N). (g) We remove the

PDMS from the tape and we place it on the substrate. As before, the contact should

be held for around 2 minutes with a mild force. (h) When we peel the PDMS off the

substrate, a few crystals are left on the chip. The purple colour of the chip comes from

the 290 nm of silicon oxide grown on the silicon. (f) When looking at the chip with a

x5 microscope objective, a lot of small crystal fragments can be seen. We are mostly

interested into purple-blue-green thin crystals, as they are only a few monolayers thick.

(g) With a 100x objective, we show a picture of a monolayer of MoS2.

Optical contrast

As we are mostly looking for crystals of thicknesses of less than 10 nm, these crystals

do not absorb and reflect white light significantly. They are therefore extremely difficult

to see with an optical microscope on a general substrate. However, by choosing an

appropriate wafer, one can create interference effects. Fig. 3.1(i) shows the surface of

a SiO2/Si substrate after exfoliation of molybdenum disulfide. When looking carefully

(Fig. 3.1(j)), some crystals look blue/purple-transparent. This are the colours that we

expect from thin crystals. In Fig. 3.1(j), one can see a monolayer of MoS2. In the 2D
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(a) (b) (c) (d)

(e) (f) (g) (h)

Monolayer MoS2

X5 X100
(i) (j)

Fig. 3.1. Mechanical exfoliation process. A bulk crystal is exfoliated on a Si/SiO2 substrate.

material community, a silicon wafer with a 290 nm thick layer of SiO2 is often used as

substrate. The first reason is that it is cheap and the second reason is that the 290 nm

of oxide on the highly reflective silicon enhance the contrast obtained with a white light

source when looking at few-layers thick crystals. An advantage of using silicon is the

possibility to use heavily doped silicon wafers as bottom gates for the samples placed on

the oxide surface.

Raman spectroscopy

Although a well-trained eye can easily spot monolayers by looking at them with an

optical microscope, Raman spectroscopy can be used to determine the number of layers.

When the thickness of the crystal varies, the interaction between the layers changes [2].
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Fig. 3.2. The energy of in-plane (E1
2g) and out of plane (A1g) Raman modes changes with the number

of layers in MoS2. (a) Raman spectra of a crystal of MoS2 with different thickesses given in monolyer

(L) units. (b) Energy of the Raman peaks as a function of layer number. Image from Ref. [2].

Consequently, the Raman frequency of the out-of-plane phonon mode (A1g) and the in-

plane Raman mode (E1
2g) shifts when the crystal becomes thinner. The energy difference

between the two Raman modes can be used to identify monolayers accurately, as shown

in Fig. 3.2

3.1.2 Building van der Waals heterostructures

To fabricate our van der Waals heterostructures, we use a dry-transfer technique [3].

This technique uses the fact that exfoliated flakes on a substrate are only loosely at-

tached to the substrate. If we put in contact with the flake a stamp of a material that

sticks more to the flakes than the flake sticks to the substrate, then the flake will come

with the stamp when we peel it off. It turns out the van der Waals materials tend to

stick better to most of the polymers (poly(methyl methacrylate), polydimethylsiloxane,

polycarbonate...) than to SiO2.

We use a stamp made of 5 mm x 5 mm layer of thickness ≈ 3 mm of polydimethylsilox-

ane (PDMS) placed on a clean microscope slide. As PDMS residues are extremely hard

to remove, we add a thin layer of polycarbonate (PC) on top of the PDMS stamp. The

PC layer will be the layer in contact with the flakes of the heterostructure. In contrast

to PDMS, PC can be simply dissolved in chloroform. Fig. 3.3 shows the different steps

for the fabrication of a stamp and Table 3.3 show the references of the different polymer

materials we use for the dry transfer method.

In order to obtain a clean van der Waals heterostructure, it is important to build it

quickly with freshly exfoliated material. Prior to starting the stacking of the different

materials, the stamps and the different layers to be stacked should be already prepared.

When we are ready, we can start by picking up the first layer of the van der Waals

21



(b) (c)

(e) (f) (g)

(h) (i)

(a) (d)

Fig. 3.3. Fabrication of the stamp. (a-c) Preparation of a thin PC film. A bit of liquid PC dissolved in

chloroform is poured on a clean microscope glass slide and directly after, another glass slide is pressed

onto it to create a homogeneous film. Slide the microscope glass slide to the side and let dry. A thin

PC film is now ready on the two microscope glass slides. (e) Chop a little piece of PDMS and leave it

standing on a clean microscope side in a UVO cleaner for 5 minutes (in d). Then, let the flat side of the

PDMS touch the glass slide (as in h). (f-g) Prepare a window in a doubled piece of scotch tape with a

cutter. The window should be larger than the PDMS piece. Stick it on the glass slide with the PC film

and cut the PC at its sides with a cutter. (h) Peel slowly the scotch with the window from the glass

slide. The thin PC film should normally stick to it. Place the scotch tape on the slide with the PDMS

stamp such that the PC covers the PDMS. (i) Use more scotch tape to secure the PC film at its position.

The stamp is ready.

Polymer Company & product name Mix & recipe

PC Sigma-Aldrich, polycarbonate 0.8 g dissolved overnight
in 20 mL chloroform

PDMS Down Corning, sylgard 184, silicon elastomer 10 g (big bottle) mixed
with 1 g (small bottle)

Table 3.3. References and recipes of the different polymers used for stamp fabrication.
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heterostructure on the stamp. In this method, we pick up first the top layer of the stack.

Fig. A.1 shows the whole process to obtain the samples discussed in chapter 5. The

initial pick up works best if the first layer is a h-BN flake.

We use an optical microscope with a modified sample stage to stack our layers. The

sample stage allows to move the chip with exfoliated material and the stamp indepen-

dently, as shown in Fig. 3.4. The sample stage also has a heater that we will use in the

last step to melt the PC layer.

For picking up the first layer, we centre the flake in the centre of the field of view of the

microscope and then place the stamp on the stamp positioning stage a few millimeters

above the surface of the sample. We ensure that the stamp is also centred with the

field of view of the microscope. We can then lower the stamp. The stamp should not

be completely parallel to the surface of the sample. A few degrees angle between the

chip and the stamp will help for stacking as the contact will happen at a slower pace.

When the stamp is in contact with the chip, a change in colour can be seen through

the microscope. Place the contact line (see Fig. 3.4) after the flake. The sample stage

should then be heated to 85◦C. With heat, the PDMS stamp expends. The height of

the stamp should be adjusted during the heating to always keep the contact line a few

tens of micrometer past the flake. When the stage is at 85◦C, we turn the heater off and

as the PDMS retracts slowly, the flake will be gently peeled off from the substrate.

When the stamp retracted enough that the flake sticks completely to the stamp, the

stamp positioning stage can be elevated until the stamp is not in contact with the chip

anymore. We remove the first chip and we can place on the sample stage the chip with

the next layer to stack. Again, the second layer should be placed in the centre of the

field of view of the microscope. The stamp should be then aligned with the flake on the

substrate such that the two layers to stack overlap. While coming into contact, always

check that the two layers always stay aligned. Once in contact, we can again heat the

stage to 85◦C and repeat the steps mentioned before until the layer before last.

The last layer will stay on its substrate and it is the rest of the stack that will be

deposited onto it. Usually, the substrate of the last layer contains some alignment marks

for electron-beam lithography. These marks tend to make the pick up of layers difficult,

so only the last layer is exfoliated on such a substrate. The stamp now contains all the

layers expect the last one, that is on the substrate with markers. As always, we align the

full stack on the stamp with the last layer, come into contact and then we lower the stage

until the whole surface of the chip is in contact with the stamp. We heat then the sample

stage to 190◦C in order to melt the PC layer. We can then remove slowly the PDMS

stamp. The stack with the PC layer on top should stay on the substrate. Afterwards,
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(b) (c)

(d) (f)

(g) (h) (i)

(a)

(e)

(j) (k)

Fig. 3.4. (a) Stacking stage. Two independent positioning stages allow for moving both the sample and

the substrate. (b) We place the chip on the stage and we centre the stamp such that the microscope

light goes through the PDMS. We ensure that the stamp and the substrate are slightly not parallel. (c)

We localise the flake to be picked up through the stamp by moving the sample stage. (d) As we go down

with the stamp, we start to see the contact line. We place it next to the stamp, heat up to 85◦ and then

turn off the heater. (e) When the PDMS cools down, it retracts slowly and the flake will stick to the PC

film. (A change in colour of the flake can be noticed between (c) and (e)). (f) We go up with the stamp,

place the substrate with the next layer under the microscope and align the two layers. We can see the

next layer in light blue in the middle of the first flake. (g) We pick up the flake similarly as in (d+e)

and we can see that the second flake has been successfully picked up. We repeat this step until the end,

when we heat up the stage to 190◦. At this temperature, the PC melts and we can remove the PDMS

only. Then, place the substrate with the stack on a hot plate for 3 minutes at 200◦, as in (h). (j) We

can see the melted PC on the substrate. (i) We remove the PC by leaving the substrate in chloroform

at 40◦ for several hours. (k) A three layers stack is finished.
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the substrate should be placed on a hotplate at 200◦C for 3 minutes to ensure that the

PC is completely melted. The PC is then dissolved in chloroform at 40◦C for a couple of

hours. If the stack still looks good when coming out of the choloroform, congratulations:

the stack is now ready!

3.1.3 Electrical contacts to Van der Waals heterostructure

In the frame of this thesis, we investigated two types of contacts: few layers graphite

and metallic contact. While we haven’t characterised the quality of our contacts with

transport measurements, they were generally good enough for gating.

Metallic contacts

There are two ways of contacting a specific layer within a van der Waals heterostructure:

either the layer can be accessed from the top and electron beam lithography can be

performed once the stack is finished, or the layer is too small and the contacts must be

made during the middle of the stacking process.

In the case where we can print the contacts once the stack is finished, we have usually

used Ti (5 nm)/Au (45 nm) or Cr (5 nm)/Au (45 nm) as contacts. It was, however,

shown that the best contacts to semiconducting monolayers are obtained with the dual-

gating scheme: two contacts are made on top of each other, but are insulated by a h-BN

flake. The lower contact touches the layer while the top contact serves as a local gate.

The contact area near the middle contact can then be locally doped by field-effect by the

top contact. The dual-gating scheme has allowed recently the measurement of extremely

clean Shubnikov de Haas oscillations in monolayer MoS2, where an ohmic resistance of

25 kΩ was achieved [4]. Note that the contact resistances tend to decrease significantly

when the sample is annealed for more than 12 hours in vaccuum at 100◦C.

FLG contacts

Another way of contacting a layer within a van der Waals heterostructure is to use a few

layers of graphite or graphene (FLG) to contact the layer. The use of FLG as a contact

ensures that the surface between the FLG electrode and the flake to be contacted is

clean. The FLG flake can be contacted easily from the top using metallic Ti (5 nm)/Au

(45 nm) or Cr (5 nm)/Au (45 nm) contacts defined by electron beam lithography.
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3.2 Optical characterisation setup

In this thesis, two types of optical measurements were carried out: photoluminescence

and reflectivity measurements. In a photoluminescence experiment, photons of energy

higher than the exciton energy are used to excite the sample and the light emitted by the

sample is collected at lower energy. In a reflectivity experiment, white light is sent on

our sample and reflected light is collected. Although the two methods seem quite similar

in practice (light-in, light-out), the information they provide is extremely different.

In order to understand the difference between absorption and photoluminescence, we

could think of the difference between a guitar and a harp. Let us focus on one specific

note, for instance a the low E (82.41 Hz) of a guitar. In a reflectivity experiment, we

would fix firmly one extremity of the string and drive the other extremity with a small

amplitude at various frequencies (see for instance https://www.youtube.com/watch?

v=BSIw5SgUirg). As the frequency sweeps, we would find that the guitar string would

absorb energy at n× 82.42 Hz, n = 1, 2, .... These are the eigenmodes of the string. The

same eingenmodes would be found if we were to use the harp string. The equivalent of the

photoluminescence experiment would be to hit quickly the string with the fingers. When

we hit the cord with the fingers swiftly, the Fourier spectrum of the sound is different

whether we use a guitar or a harp. The reason is that the relaxation mechanisms toward

the lowest energy eigenmode are different in these two instruments.

In an absorption measurement, we excite the sample at different energies and we see

when the material can absorb energy. The absorption spectrum comes from changes

in the dielectric function in the material and it is an intrinsic property of the material.

On the other hand, in photoluminescence spectroscopy, we excite the material with

energy and we see how it relaxes toward its ground-state. From the example above, we

understand that we learn very different information about the system when we perform

a photoluminescence (PL) measurement and an absorption measurement.

Our optical setup is modular and allows for room-temperature or cryogenic tempera-

ture (4.2 K) characterisation of our samples. The setup can be split into three parts: the

microscope head, the microscope skeleton and the sample holder, as shown in Fig. 3.5

The sample holder consists of a titanium housing that holds a microscope objective or

an aspherical lens, a set of x-, y-, z-piezo nano-positionners (Attocube steppers, Premium

series), a sample holder with 24 electrical lines for contacting the sample (if needed) and

a small heater and thermometer for monitoring the sample’s temperature.

The microscope skeleton consists simply of a cage made from three or four non-

magnetic stainless steel rods that make the link between room temperature and cryogenic
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(b) (c)(a)

Fig. 3.5. The setup consists of three components: (a) the microscope head (b) the skeleton and (c) the

sample holder.

temperature. The length of the cage is designed such that our sample sits in the center of

the magnetic field in our cryostat systems. For quick room temperature characterisation,

the microscope skeleton can be omitted.

The modularity of our setups is best illustrated with the concept of the microscope

head. A microscope head is in itself an optical setup that can be placed on the micro-

scope skeleton. We have two different microscope head designs used in this thesis: a

photoluminescence head and an absorption head. We can change the type of measure-

ment by changing the design of the head. The two designs are optimised for the one

or the other application, but have the following in common: a camera with a red LED

are used for sample positioning, an out-coupler brings light from a light source (laser or

LED...) to the sample via a fibre, and an in-coupler brings the light resulting from the

experiment (photoluminescence or reflected light...) into a fibre that is connected to a

spectrometer.

3.2.1 Photoluminescence measurement

The photoluminescence measurements presented into this Thesis were performed using

an orange (594 nm, 2.09 eV) HeNe laser or a red HeNe laser (633 nm, 1.96 eV). The

laser light is coupled into an optical single-mode fiber (Thorlabs, HP630) in order to

be sent to the microscope head. The use of a single-mode fiber has the advantage of

performing a mode filtering of the light in the fiber. Fig. 3.6 shows the optical design of

the microscope head. A laser clean-up filter removes the fibre luminescence and leaves

spectrally pure laser light in the microscope head. The light passes then through a linear

polariser followed by a liquid crystal variable retarder that is here used as a +λ/2 ↔
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Fig. 3.6. Design of the photoluminescence microscope head.

−λ/2, such that when the light reaches the λ/4 waveplate, we can electronically switch

from a left-handed circular polarisation to a right-handed polarisation. The light then

reaches the microscope objective (or the lens) and is focussed onto the sample. The

emitted light is collected by the objective and goes through the λ/4 and 90% is sent

into the collection arm. The polarisation selection occurs by going through the λ/2 and

linear polariser combination. After spectral filtering, we filter out the reflected laser light

with a long-pass filter.

In order to locate the samples, we can turn on a red LED on the microscope head.

The 50:50 beamsplitter right under the LED can be removed during measurements in

order to limit the light losses in the collection arm. The LED light disperse light on a

large area on the sample and the reflected light is partially sent to a CCD camera.

3.2.2 Absorption measurement

The microscope head, depicted in Fig. 3.7 for the absorption measurement is quite simi-

lar to the PL head (Fig. 3.6). When we measure absorption, we use a white LED coupled

into our microscope head with a multimode fibre. The use of a multimode fibre is con-
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venient, as it disperses the light onto a large area on the sample, allowing the sample to

be observed on the camera without need for an extra LED, as in PL. We collect the light

from a diffraction limited small spot with the use of a single-mode fibre for collection

of the reflected light. For reflectivity measurement, we do not need to filter out the

polarisation of the collected light.

The big problem in an absorption measurement is that, as the signal is broadband,

etaloning becomes a problem. Etaloning is caused by optical interferences within the

CCD chip. In order to limit etaloning, defocussing the light at the input of the spec-

trometer helps, as it spreads the light over a large area of the CCD chip, averaging out

etalon effects.

In Appendix A.3, we will discuss how we can deduce the imaginary part of the optical

susceptibility from the reflectivity spectrum by using the Kramers-Kronig relations.
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Chapter 4

Quantum-Confined Stark Effect in a MoS2

Monolayer van der Waals Heterostructure

Adapted from: Jonas Gaël Roch, Nadine Leisgang, Guillaume Froehlicher, Peter Makk,

Kenji Watanabe, Takashi Taniguchi, Christian Schönenberger, and Richard John War-

burton,

“Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostruc-

ture”,

Nano Lett., 18 (2), 1070-1074 (2018)

The optics of dangling-bond-free van der Waals heterostructures containing transition

metal dichalcogenides are dominated by excitons. A crucial property of a confined

exciton is the quantum confined Stark effect (QCSE). Here, such a heterostructure is used

to probe the QCSE by applying a uniform vertical electric field across a molybdenum

disulfide (MoS2) monolayer. The photoluminescence emission energies of the neutral and

charged excitons shift quadratically with the applied electric field provided the electron

density remains constant, demonstrating that the exciton can be polarized. Stark shifts

corresponding to about half the homogeneous linewidth were achieved. Neutral and

charged exciton polarizabilities of (7.8 ± 1.0) × 10−10 D m V−1 and (6.4 ± 0.9) ×
10−10 D m V−1 at relatively low electron density (≈ 1012 cm−2) have been extracted,

respectively. These values are one order of magnitude lower than the previously reported

values, but in line with theoretical calculations. The methodology presented here is

versatile and can be applied to other semiconducting layered materials.
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4.1 Introduction

The recent emergence of optically-active layered semiconductors [1, 2], such as molybde-

num disulfide (MoS2), and of the so-called van der Waals heterostructures (vdWhs) [3, 4]

pave the way towards engineered quantum structures. Excitons in MoS2 and other tran-

sition metal dichalcogenides have particularly large exciton binding energies [5] such

that excitons dominate the optical properties, even at room temperature. Therefore,

the fundamental properties of the excitons need to be elucidated. A basic feature of

semiconductor nanostructures is the quantum confined Stark effect (QCSE), the change

in optical response on applying an electric field perpendicular to the layers [6]. On the

one hand, the QCSE characterizes the sensitivity of the exciton energy to charge noise

as charge noise results in a fluctuating electric field within the device. The QCSE is

therefore important in optimizing and understanding optical linewidths. On the other

hand, the QCSE can be exploited to trap and manipulate excitons on the nano-scale by

applying a locally varying vertical electric field [7, 8].

When a DC electric field is applied perpendicular to a MoS2 monolayer (z-axis), elec-

trons and holes will tend to move apart in order to decrease their electrostatic potential

energy. The resulting energy shift ∆E of the exciton energy is known as the QCSE and

is given by ∆E = −µzFz − βzF 2
z where Fz is the component of the electric field, µz the

excitonic dipole moment and βz the excitonic polarizability along the z-direction. Owing

to the reflection symmetry about the molybdenum plane, µz = 0 in a MoS2 monolayer

embedded in a symmetric dielectric environment [9] such that the QCSE is expected to

be quadratic in Fz.

Measurement of the Stark shift of the A-exciton in a MoS2 monolayer has been re-

ported [10]. However, the experiment was performed on monolayers encapsulated in

standard oxides (aluminium and silicon oxides) which have poor optical quality and,

most probably, contain a significant density of charge traps [11]. Lately, a theoretical

study [12] has predicted βz to be more than one order of magnitude below the reported

experimental value. An unambiguous measure of the QCSE in MoS2 is therefore missing.

A particular challenge is that the exciton energies depend strongly on the electron den-

sity in the MoS2 monolayer [13]. Furthermore, the description of the optical excitations

in the high-density regime has a strong many-electron flavor: the quasi-particles are no

longer the simple excitons [14, 15]. These considerations mean that the QCSE should

be measured at a low and constant electron density.

In this Letter, high quality MoS2 monolayers, obtained by encapsulation in hexagonal

boron nitride (h-BN), are used to determine precisely the QCSE of the neutral X0
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Fig. 4.1. (a) Three-dimensional schematic view of the device used to measure the quantum confined Stark

effect. The device consists of a MoS2 monolayer sandwiched between two layers of h-BN and covered by

a few-layer graphene (FLG) top electrode, deposited onto a highly p-doped Si/SiO2 substrate. A voltage

VG is applied between the Si substrate and the top electrode to create a uniform electric field across the

MoS2. (b) Optical micrograph of the device. The different layers have been artificially highlighted with

colors. Photoluminescence is carried out on the part of the MoS2 monolayer which is fully encapsulated

in h-BN.

and negatively charged X− A-excitons. The photoluminescence (PL) spectra of these

samples show narrow linewidths (≈ 8 meV), close to the ideal limit (1 − 2 meV [16]),

allowing the X0 and X− to be identified unambiguously. Both spectral features shift

when applying an electric field. However, at the same time, the ratio between the

integrated intensities of X− and X0 varies. The change in this ratio signifies a change in

the electron density which, in turn, shifts the emission energies. To separate carefully

QCSE and doping contributions to the energy shifts, additional measurements were

performed on a directly contacted MoS2 device. These measurements quantify precisely

both the X− to X0 intensity ratio and the exciton energy shifts as a function of the

electron density. We use this information to find a region in the encapsulated device

where the electric field can be changed at a constant and relatively low electron density.

In this region, we demonstrate a clear QCSE. We determine excitonic polarizabilities

typically one order of magnitude smaller than the values reported in Ref. [10] but in

good agreement with calculations in Ref. [12].

4.2 Device and device characterization

The QCSE was measured using the encapsulated device with geometry as depicted in

Fig. 4.1(a): two thick h-BN layers are used as dielectric spacers and the top few-layer

graphene (FLG) acts as a transparent electrode (see Methods for a description of the
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Fig. 4.2. (a) Colormap of the photoluminescence spectra of MoS2 as a function of VG. The neutral

X0 and negatively charged X− excitons and the four states defined in (c) are labeled. (b) Typical

photoluminescence spectrum recorded at S4. (c) The gate voltage VG in the device was varied along a

loop from state S1 (−85 V) to S3 (+85 V) and back, reaching VG = 0 twice (states S2 and S4). (d)

Emission energy of X0 as a function of VG. The experimental data points extracted from the spectra in

(b) are represented by circles where the purple circles correspond to the data used to measure the Stark

shift. The solid line is a guide to the eye and the black arrows indicate the changes made to VG. (e)

Ratio between the integrated intensity of the X− and X0 features extracted from the data in (a) as a

function of VG. The range of integration is indicated by the white double-headed arrows in (a).

fabrication process). Applying a DC voltage VG between the FLG and the highly doped

bottom Si substrate creates a uniform electric field in the MoS2 monolayer, oriented

perpendicular to the basal plane of the sample. PL spectra were recorded at 4 K as a

function of VG in a home-built confocal microscope (see Methods).

Figure 4.2(a) shows typical PL spectra recorded over a voltage loop as illustrated

in Fig. 4.2(c): VG varies from the initial state (S1) at −85 V to +85 V (S3) via S2

(0 V) and then back to S1 via S4 (0 V). Two prominent features can be clearly iden-

tified (see Fig. 4.2(b)): a low-energy peak near 1.92 eV and a high-energy peak near

1.95 eV attributed to the negatively charged X− and the neutral X0 A-excitons [16, 17],

respectively. The emission energies of X− and X0 change with VG, as seen in Fig. 4.2(d)

where the X0 energy has been plotted. However, as demonstrated in the colormap in

Fig. 4.2(a), the intensities of the X− and X0 features also vary with VG. The ratio

between the integrated PL intensities of X− and X0, I(X−)/I(X0) (Fig. 4.2(e)), cannot

be explained by the QCSE as it depends on the gate voltage sweep direction. Instead,
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Fig. 4.3. Directly contacted MoS2 device (reference sample). (a) Separation between the emission energy

of the neutral E(X0) and negatively charged E(X−) excitons as a function of the electron density in

the MoS2 monolayer. (b) Variation of the photoluminescence energy of X0 (purple circles, left axis)

and X− (blue squares, right axis) as a function of the electron density. (c) Ratio between the integrated

intensity of the X− and X0 photoluminescence features as a function of the electron density. Inset: three-

dimensional schematic view of the device. The MoS2 is contacted at one side by a few-layer graphene

electrode.

the change in relative intensity arises from a change in the electron density [18]. The

noticeable hysteresis appearing in Fig. 4.2 (d) and Fig. 4.2 (e) reflects the fact that

the electron density depends on the direction of the voltage sweep. The hysteresis, not

the focus of the present investigation, arises as a combined consequence of photodoping

effects [19, 20], tunneling [21] from the FLG top gate through the insulating h-BN top

layer, and, possibly, charge trapping [22] at the SiO2/h-BN interface.

4.3 Measurement of the Stark shift at low electron

concentration

In order to monitor the electron density and its relation to I(X−)/I(X0), a reference

sample consisting of an encapsulated yet contacted MoS2 monolayer was fabricated as

sketched in the inset to Fig. 4.3(c). In this case, the MoS2 layer is directly contacted

by a few-layer graphene sheet. This is a capacitive device and as such the electron

density in the sample is expected to change linearly with the applied gate voltage [17].

This expectation was confirmed experimentally by measuring the energetic separation

between the X0 and X− features in the PL spectra: we find a linear dependence of the X0

and X− energy separation with gate voltage (see Fig. 4.3(a)). At low electron densities,

the energetic separation between X0 and X− scales linearly with the Fermi level, as
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ionization of X− requires that an electron is moved up to the Fermi level [17, 23]. Given

the linear dependence of Fermi energy on electron density for a two-dimensional system,

the PL itself demonstrates that the reference sample charges as a capacitive device (with

a capacitance ≈ 12 nF cm−2). It is noteworthy that the X0 and X− emission energies

show opposite dependences on the electron density (Fig. 4.3(b)): X0 blue-shifts while

X− red-shifts with increasing electron density [13]. As in the main sample, the reference

sample shows hysteresis effects on ramping the voltage up and down. The voltage at

which the electron density is close to zero changes depending on the history of the device.

Despite this, we find a robust relationship between the intensity ratio I(X−)/I(X0) and

the X0, X− splitting, equivalently the electron density. Fig. 4.3(c) plots I(X−)/I(X0) as

a function of the electron density extracted from the PL spectra recorded at various gate

voltages on the reference sample. The monotonic increase of this ratio with the electron

density can be well described by a phenomenological exponential fit. This means that the

ratio I(X−)/I(X0) provides a highly sensitive tool to monitor any changes in the electron

density. Of course, spatial inhomogeneities and sample-to-sample variations [16, 24] may

also influence I(X−)/I(X0) but for a particular location on a particular sample, this ratio

is a very useful probe of the electron density. We exploit this feature but determine the

absolute electron density from the energetic difference E(X0)−E(X−) as this is a robust

quantity without the sample-to-sample variations.

We return to the main sample. Using the energetic difference E(X0)− E(X−) along

the voltage loop displayed in Fig. 4.2(c), we find a total variation of the electron density

of ∼ 1012 cm−2. In order to isolate the QCSE contribution to the exciton energy, it is

important to identify regions where the gate voltage can be swept without changing the

ratio I(X−)/I(X0), which, as explained above, is extremely sensitive to changes in the

electron density. Inspection of the I(X−)/I(X0) data in Fig. 4.2(e) shows that there are

no significant changes in MoS2 electron density around S3 and S4. These two regions

are therefore good candidates for measuring the QCSE in MoS2.

Between S2 and S3, the ratio I(X−)/I(X0) is small and corresponds to a region where

MoS2 has a low electron density (. 1012 cm−2). In this region, the X− signal is weak and

evaluation of the ratio I(X−)/I(X0) becomes unreliable. It is therefore difficult to attest

that the Fermi level in this region remains absolutely constant. Moreover, it is in this

range of Fermi energy that photo-induced doping from the h-BN layers occurs leaving

charged defects in the h-BN that potentially induce electric field screening [19]. The

region around S3 is therefore problematic with regards to the QCSE. The region around

S4, between +30 V and −30 V, exhibits a stronger X− feature and the ratio I(X−)/I(X0)

can therefore be reliably measured. From this ratio, the electron density is evaluated
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to remain constant to within 5%. Using the energetic difference E(X0) − E(X−), the

electron density is estimated to be of (1.5 ± 1.0) × 1012 cm−2. The large uncertainty

arises through spatial inhomogeneities in E(X0) − E(X−), a feature of both the main

and reference samples.

Fig. 4.4 displays the change in X− and X0 emission energies, ∆E(X−) and ∆E(X0)

respectively, in the region around S4. Fz was determined by dividing VG by the electrode-

to-electrode distance of 300 nm and adding a constant built-in electric field of 0.66 MV/cm.

This value was chosen such that ∆E(X−) and ∆E(X0) vanish at Fz = 0, i.e. it is as-

sumed that µz = 0. This built-in electric field arises from space charge within the layers

of the heterostructure. Both ∆E(X−) and ∆E(X0) exhibit a quadratic dependence on

Fz, equivalently a linear dependence on F 2
z , as shown in Fig. 4.4. This is the signature

of a QCSE. We argue that the experiment reveals a QCSE and not a residual effect of

any small changes in electron density. First, for each point the measurement error in

I(X−)/I(X0) results in an electron density variation which leads to possible changes in

∆E(X−) and ∆E(X0) even without a QCSE. However, these changes (shown by the

error bars in Fig. 4.4) are considerably smaller than the ∆E(X−) and ∆E(X0) values

observed experimentally: the uncertainties in electron density cannot account for the

shifts in X− and X0 emission energies. Second, both X0 and X− red-shift around S4 yet

a change in electron density would result in ∆E(X−) and ∆E(X0) values of opposite

sign (see Fig. 4.3(b)). (Note that X0 and X− are measured simultaneously.) From a fit

to a second order polynomial, ∆E(X−) and ∆E(X0) versus Fz, excitonic polarizabilities

of βz(X
−) = (6.4 ± 0.9)× 10−10 D m V−1 and βz(X

0) = (7.8 ± 1.0)× 10−10 D m V−1

are deduced at an electron density of (1.5 ± 1.0) × 1012 cm−2. These values are nearly

one order of magnitude lower than the previously reported values [10].

It is striking that the polarizabilities of the neutral and charged excitons are almost

the same yet the emission energies are quite different on account of the different Coulomb

interactions. The experiment itself therefore implies that Coulomb interactions in the

excitons, equivalently screening by the electron gas, is unimportant in determining the

QCSE. This in turn allows us to compare the experimental result to a single-particle

theory. The excitonic polarizabilities have been theoretically calculated with a finite

barrier quantum well model [12]. Using barriers of 2.8 eV [21] for both electron and

hole, a quantum well thickness of 0.65 nm and effective electron and hole masses of 0.35

bare electron mass [17], an exciton polarizability of 7.5 × 10−10 D m V−1 is deduced.

This is in good agreement with the experimental values reported here and strengthens

the claim that the measured QCSE is dominated by single-particle energy shifts. This

point can be understood by considering the highly anisotropic nature of the confinement.
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blue lines are parabolic fits. The inset shows the same data points as a function of the squared electric

field F 2
z in order to highlight the quadratic dependence of the Stark shift.

In the vertical direction, the confinement is dominated by single particle effects, i.e.

confinement in a deep potential well. In the lateral direction, the exciton is much more

polarizable [12, 25].

In detail, the experiment shows that the trion is slightly less polarizable than the neu-

tral exciton, Fig. 4.4. This can be explained, at least qualitatively, by a subtle change in

the Coulomb interactions. Specifically, in the X− complex there is an additional decrease

in the exciton binding energy with electric field. This is induced by the localization of

the two electrons on one side of the monolayer and the hole on the other side, increasing

the electron-electron repulsion, decreasing the electron-hole interaction [26], thus leading

to a decrease in the trion binding energy. We measure here the polarizability at a rather

low electron density where the conventional excitonic picture is valid [14, 15]. The tran-

sition to a many-body description occurs at higher electron densities than those used

here and it is an open question to what extent the many-body interactions, screening

and so on, cause a departure from the single-particle QCSE.
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4.4 Conclusion

In conclusion, the QCSE of excitons has been extracted from photoluminescence mea-

surements on a high quality MoS2 monolayer embedded in a vdWh. As the electron

density in the monolayer is observed to vary with electric field, a careful data analysis

exploiting reference measurements on a directly contacted MoS2 device was performed.

Regions were identified in which the electron density in the monolayer remains constant

as the electric field is varied. Having ruled out any contribution of a changing electron

density to the exciton energy shift, a QCSE was unambiguously identified. The small

exciton polarizability is in line with theoretical computation [12]. The maximum QCSE

achieved here corresponds to just half the homogeneous linewidth despite the fact that

large electric fields were applied. The insensitivity of the exciton to an electric field in

MoS2 has profound implications on its optical properties. On the one hand, we believe

that the minute QCSE renders the exciton energy insensitive to charge noise. This, along

with the super-fast radiative decay, explains the observation of optical linewidths close

to the homogeneous limit in MoS2 vdWhs [16]. On the other hand, electrical control of

the exciton based on the QCSE would require larger polarizabilities or a non-zero dipole

moment as observed in heterobilayers for instance [27]. The methodology used here to

determine the QCSE in MoS2 can be used also in other semiconducting monolayers,

where similar values of the polarizability should be obtained owing to the extreme out-

of-plane confinement of both electrons and holes, as confirmed by recent measurements

on monolayer WSe2 [28].

4.5 Methods

Device fabrication Van der Waals heterostructures were fabricated by stacking two-

dimensional materials via a dry-transfer technique [29]. All layers were mechanically

exfoliated from bulk crystals (natural MoS2 crystal from SPI Supplies, synthetic h-

BN [30] and natural graphite from NGS Naturgraphit). MoS2 monolayers were treated

by a bis(tri-fluoromethane)sulfonimide (TFSI) solution following Ref. [31] before full

encapsulation between h-BN layers. Few-layer graphene was employed as a top trans-

parent electrode or as a contact electrode to MoS2 [32]. Metal contacts to FLG were pat-

terned by electron-beam lithography and subsequent metal deposition of Au (45 nm)/Cr

(5 nm). The flake thickness of each layer was characterized by a combination of optical

contrast, atomic force microscopy, PL and Raman spectroscopy. The data shown in this

Letter were measured on a device consisting of SiO2 (300 nm)/h-BN (5.4 nm)/MoS2
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(0.65 nm)/h-BN (12 nm)/FLG (17 nm).

Photoluminescence measurements Photoluminescence spectroscopy was performed

in a liquid He bath cryostat using a home-built confocal microscope setup. The main

sample and the reference sample were optically excited using a linearly polarized diode

laser at photon energy 2.32 eV (wavelength 535 nm) and a HeNe laser at photon energy

2.09 eV (wavelength 594 nm) with an intensity below 2 kW cm−2, respectively. The

collected light was dispersed onto a charged-coupled device array by a single monochro-

mator equipped with a 1500 grooves/mm grating.
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Chapter 5

Spin-Polarized Electrons in Monolayer MoS2

Adapted from: Jonas Gaël Roch, Guillaume Froehlicher, Nadine Leisgang, Peter Makk,

Kenji Watanabe, Takashi Taniguchi and Richard John Warburton,

“Spin-polarized electrons in monolayer MoS2”,

Nat. Nanotechnolog., 14, 432-436 (2019)

Coulomb interactions are crucial in determining the ground state of an ideal two-

dimensional electron gas (2DEG) in the limit of low electron densities [1]. In this regime,

Coulomb interactions dominate over single-particle phase-space filling. In practice, elec-

trons in silicon and gallium arsenide are typically localized at these low densities. In

contrast, in transition metal dichalcogenides (TMDs), Coulomb correlations in a 2DEG

can be anticipated at experimentally relevant electron densities. Here, we investigate

a 2DEG in a gated monolayer of the TMD molybdenum disulfide [2]. We measure

the optical susceptibility, a probe of the 2DEG which is local, minimally-invasive and

spin-selective [3]. In a magnetic field, we present evidence that the ground state is spin-

polarized. Of the four available conduction bands [4, 5], only two are occupied. These

two bands have the same spin but different valley quantum numbers. Our results sug-

gest that only two bands are occupied even at low magnetic fields. The spin-polarization

increases with decreasing 2DEG density suggesting that Coulomb interactions are a key

aspect of the symmetry breaking. We propose that exchange couplings align the spins [6].

The Bohr radius is so small [7] that even electrons located far apart in phase-space in-

teract with each other [6].
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Fig. 5.1. Monolayer MoS2. (a) Band structure of monolayer MoS2. The colour corresponds to the

electron spin state. (b) A van der Waals heterostructure consisting of monolayer MoS2 embedded in h-

BN all placed on a Si/SiO2 substrate. The MoS2 is contacted by a few-layer graphite (FLG) electrode [8].

The FLG is covered with a Cr/Au layer to which a voltage VG is applied.

5.1 Introduction

A two dimensional electron gas (2DEG) is formed when the movement of free electrons

is limited to two spatial dimensions. As the electron density n increases, single particle

effects (phase-space filling) increases more rapidly than the Coulomb interactions. This

ratio is described with the Wigner-Seitz parameter, rs = 1√
πn

1
aB

where aB is the effective

Bohr radius. Coulomb interactions dominate at large values of rs. However, in 2DEGs

in silicon and gallium arsenide, the electrons are typically localized at large values of rs.

Monolayer transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2 and

WSe2 represent a natural host for a 2DEG. There are two inequivalent conduction band

valleys at the K and K ′ points of the Brillouin zone. The large electron effective mass [4]

and the weak dielectric screening result in an extremely small Bohr radius [7], ∼ 0.5

nm. The immediate consequence is that rs is pushed towards relatively large values at

experimentally relevant electron concentrations.

MoS2 is a special TMD as the spin-orbit splitting in the conduction band is small

compared to typical 2DEG Fermi energies [5]. There are four available bands: K↑,

K↓, K
′
↑ and K ′↓. In a single-particle picture at realistic electron concentrations, the

low temperature ground state consists of a close-to-equal filling of the four bands. We

present here an experiment which overturns this single-particle picture.
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Fig. 5.2. Optical susceptibility of a gated monolayer of MoS2. The optical reflectivity is measured

from a 400 nm diameter region on the device at low temperature (4.2 K) using a confocal microscope and

ultra-weak, incoherent light source [9]. The imaginary part of the optical susceptibility is deduced from

the reflectivity by accounting for optical interferences [9, 10]. At the optical resonance, the reflectivity

contrast is very large, 60%; equivalently, the susceptibility is 30. The colour-maps show the optical

susceptibility as a function of the photon energy (vertical axis) and electron concentration (horizontal

axis) in a perpendicular magnetic field Bz of 0.0, 3.0, 6.0 and 9.0 T with σ+-polarized light (top panels)

and with σ−-polarized light (bottom panels).

5.2 Methods

We probe the 2DEG ground state in MoS2 by measuring the susceptibility at optical

frequencies. This probe is particularly powerful. First, it is a local measurement: sig-

nal is gleaned from a few-hundred-nanometer diameter spot on the sample. On this

length scale, close-to-ideal optical linewidths have been demonstrated [11, 12] yet there

are clearly inhomogeneities on larger length scales even with state-of-the-art material.

Secondly, the measurement represents a weak perturbation to the ground state: in our

experiments, there is on average less than one photo-created excitation (an exciton, an

electron-hole pair) [9]. Thirdly, the optical probe is valley- and spin-selective via the

polarization of the light [3].

Interpreting our results with the established theory of the 2DEG optical susceptibility

shows that up to n ' 5 × 1012 cm−2, two and not four bands are occupied. The

electrons have the same spin but reside in different valleys. This is our main result: the

spontaneous creation of a spin-polarized 2DEG.

Monolayer MoS2 has a graphene-like structure with Mo and S sub-lattices [2, 3]. The

band edges are located at the K and K ′ points; an energy gap of about 2 eV separates

46



the conduction band (CB) from the valence band (VB) (Fig. 6.1(a)). Spin degeneracy

is lifted by spin-orbit coupling. In each valley, the two CBs are split by ∆CB ≈ 3

meV [4, 5, 13] and the the two VBs are split by ∆VB ≈ 150 meV [5]. In MoS2, the upper

VB has the same spin as the lower CB [14]. Optical absorption promotes an electron

from a VB state to a CB state with strict selection rules [3]: a circularly polarized σ+

photon couples the VB and CB with spin-↓ at the K point; a σ− photon couples the VB

and CB with spin-↑ at the K ′ point (Fig. 6.1(a)).∗

Fig. 6.1(b) shows the structure of our sample. A monolayer of MoS2 forms a pla-

nar capacitor with respect to a conductive substrate. The carrier density n in the

monolayer is determined by a voltage VG applied to the capacitor [9]. The MoS2 mono-

layer is encapsulated in hexagonal boron nitride (h-BN): this allows close-to-ideal optical

linewidths [9, 11] and Shubnikov-de Haas oscillations [15] to be observed at low temper-

ature. We measure the optical susceptibility. At n ' 0, the optical spin-valley effect is

very pronounced [9].

5.3 Optical susceptibility of a monolayer of MoS2 at various

electron concentrations

Fig. 6.2 shows the local optical susceptibility as a function of electron concentration at

various Bz. We focus initially on the susceptibility at Bz = 9.0 T for n ≤ 6×1012 cm−2.

At low electron density, the peak labeled X0 dominates the susceptibility for both

σ+ and σ−. This resonance corresponds to the creation of a neutral exciton. As n

increases, the X0 blue-shifts (on account of band-gap renormalization), broadens and

weakens, eventually disappearing into the noise. With σ+ polarization, as X0 weakens,

two resonances emerge, labelled X−LE and X−HE. These two resonances are red-shifted

with respect to X0. In the opposite photon polarization, σ−, as n increases the X0

resonance blue-shifts and weakens but for low to modest n there are no X− features.

The excitons injected into the 2DEG by our optical probe interact with the electrons in

the Fermi sea. Theory has been developed to describe an exciton interacting either with a

spin-degenerate Fermi sea at the Γ-point of the Brillouin zone [16, 17] or a spin-polarized

Fermi sea [18], and successfully stress-tested against experiments on quantum wells [16]

and monolayer MoSe2 [19]. When the exciton-electron interaction is attractive, the

exciton resonance splits into two exciton-polarons [18, 19]. The upper exciton-polaron

corresponds to X0; the lower exciton-polaron corresponds to X− (and becomes the trion

∗In the literature, there is often the opposite convention that σ+ and σ− are defined such that a σ+

(σ−) photon addresses the transition between two bands with spin-↑ (spin-↓).
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Fig. 5.3. Analysis of the optical susceptibility of a gated monolayer of MoS2. (a) Optical

susceptibility at Bz = 9.0 T and n = 2.0 × 1012 cm−2 for both σ+ and σ− photons. For σ+, two trion

resonances (X−LE and X−HE) dominate the spectrum. (LE stands for low-energy; HE high-energy.) For

σ−, X0 dominates and X0 has a high energy tail. (b) Energetic difference E(X0)−E(X−) for the two

trions at Bz = 9.0 T as a function of n. Linear fits give slopes of 6.1× 10−15 and 6.3× 10−15 eVcm2 for

X−LE and X−HE, respectively. (c) As in (b), but at Bz = 0.0 T. Linear fits give 5.6×10−15 and 5.9×10−15

eVcm2 for X−LE and X−HE, respectively. The trion binding energies are 17 meV (X−LE) and 25 meV (X−HE).

(d) Linewidth of X−LE and X−HE at Bz = 9.0 T versus n. (e) Contrast C (as defined in the text) versus

Bz for n = 1.1×1012 cm−2 (red) and for n = 3.7×1012 cm−2 (blue). The solid lines are a fit to two-level

Maxwell-Boltzmann statistics with notional g-factor g = 1.6 ± 0.1 (red) and g = 0.4 ± 0.1 (blue). (f)

Notional g-factor as a function of n. Taking a Bohr radius of 0.48 nm, n = 1.0× 1012 cm−2 corresponds

to rs = 11.8.

in the single-particle limit [14, 20, 21]). On the other hand, when the exciton-electron

interaction is repulsive, only the X0 appears in the susceptibility with a tail on the high

energy side [9]. In these theories, the interaction is attractive only if the electron in

the exciton and the electron in the Fermi sea have opposite spins, a spin-singlet. The

interaction is repulsive for parallel spins, a spin-triplet.

We apply the exciton-polaron theory to the MoS2 susceptibility. With σ+ photons,

we observe not one but two lower exciton-polarons, X−LE and X−HE. This implies that the

exciton interacts with two Fermi seas, the energy splitting arising from different exciton-

electron scattering cross-sections. Specifically, the electron in the exciton has spin-↓.
To form spin-singlets, both Fermi seas must have spin-↑, i.e. the K ′↑ and K↑ bands are

occupied. The different binding energies (defining the binding energy as the energy
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Fig. 5.4. Electrons and exciton states in monolayer MoS2. (a) The conduction bands at Bz = 9

T. The minima all have different energies due to Zeeman shifts [9]. The “first” electrons injected from

the contact populate the band with the lowest energy, K′↑. (b) Strong intra- and inter-valley exchange

pull the bands of the same spin to lower energy, creating a spin-polarized 2DEG. (c) Exciton-Fermi

sea interaction resulting in X−LE. (d) Exciton-Fermi sea interaction resulting in X−HE. The trions in (c)

and (d) both correspond to electron spin-singlets. (e) A trion with an electron spin-triplet. This trion

resonance is unbound and results in the high energy tail of the X0 with σ− photons.

separation between the two exciton-polarons in the limit n→ 0) arise from the fact that

the two Fermi seas are at different locations in phase-space. The X−LE has a constant

linewidth whereas the X−HE has a linewidth which increases with n (Fig. 5.3(d)). This

difference also points to the fact that the exciton interacts with two different Fermi seas.

With σ− photons, the spectra follow the exciton-polaron theory for a repulsive exciton-

Fermi sea interaction. This means that the photo-excited spin-↑ electrons interacts with

spin-↑ electrons in the Fermi sea: there are no spin-↓ partners to create spin-singlets in

this case. For both σ+ and σ− photons, the details of the measured spectra match the

exciton-polaron theory [9].

We are led to the conclusion that at Bz = 9.0 T, two bands are occupied, both

with spin-↑. Fig. 5.4(c-d) show how we understand the two X− resonances. A photon-

generated electron-hole pair with electron spin-↓ interacts attractively with spin-↑ elec-

trons from two different bands. The trion binding for the inter-valley scattering process

(Fig. 5.4(c)) is larger [22, 23] as the electrons have both opposite spin and valley indices,

similar to MoSe2 [10]. We associate this process to the resonance X−LE. The intra-valley

scattering process (Fig. 5.4(d)) leads to the resonance X−HE. The absence of an X−

resonance in σ− polarization tells us that the triplet process in Fig. 5.4(e) is unbound.

Of the four bands, only two are occupied. This conclusion on the number of occupied

bands can be verified via another feature of the susceptibility spectra. In the limit of

large hole mass, the energetic separation between the upper and lower exciton-polarons

is simply δE = E(X0)−E(X−) = EB +EF where EB is the trion binding energy and EF

the Fermi energy [24], a result demonstrated experimentally on CdTe quantum wells [25].

For the equal hole and electron masses of MoS2, this result applies at EF ≥ 20 meV [9].

The gradient dδE/dEF increases from 1.0 to 2.0 as EF → 0. Our experimental data
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lie mostly in the high-EF regime [9]. This enables us to determine EF from the optical

spectra. As EF is linked to n by the two-dimensional density of states, we can determine

how many bands are populated. Taking an electron effective mass of m∗e = 0.44mo [4],

the measured dδE/dn (Fig. 5.3(b)) implies that 1.9±0.1 bands are occupied at Bz = 9.0

T [9]∗.

We turn now to the magnetic field dependence. At Bz = 0.0 T, the X−LE and X−HE

features are equally strong for both σ+ and σ− photons (Fig. 6.2). As Bz increases, the

X−LE and X−HE gradually disappear for σ− photons. At Bz = 0.0 T, the gradients dδE/dn

(Fig. 5.3(c)) change by less than 10% with respect to Bz = 9.0 T, suggesting that even in

this limit, only two bands are occupied. Given the equivalence of the spectral signatures

at Bz = 0.0 T with respect to those at Bz = 9.0 T (Fig. 6.2), the same two bands are

occupied, the two with the same spin but different valley indices. We define a contrast

C as

C =
ILE+HE(σ+)− ILE+HE(σ−)

ILE+HE(σ+) + ILE+HE(σ−)
, (5.1)

where ILE+HE(σ+) [ILE+HE(σ−)] is the integrated susceptibility of X−LE and X−HE in σ+

[σ−] polarization. C increases from C = 0% at Bz = 0.0 T to C = 95% at Bz = 9.0

T (Fig. 5.3(e)). Phenomenologically, we imagine that there are two states, one with

spin-polarization ↑, the other with spin-polarization ↓. The two states are separated by

gµBBz where µB is the Bohr magneton and g is a g-factor. Maxwell-Boltzmann statis-

tics applied to this notional two-level system gives C(B) = tanh(gµBBz/kBT ), where

kB is the Boltzmann constant and T the temperature. C follows this dependence on B

(Fig. 5.3(e)). The notional g-factor decreases strongly with increasing n (decreasing rs)

(Fig. 5.3(f)). This n-dependence (and the temperature dependence [9]) suggests strongly

that the spin polarization arises as a consequence of Coulomb correlations [27]. A mi-

croscopic interpretation of these two spin-polarized states represents an open question.

It is worth adding that despite the large value of Bz = 9 T, no hints of Landau levels

are observed in the low electron concentration regime, as in monolayer MoSe2 [10] and

WSe2 [28]. Even at 9 T, Coulomb interactions are indeed so strong that the exciton

is in the weak field regime [29]. The experiment would therefore suggest that Landau

quantization is not crucial for the spontaneous spin-polarization.

For n ≥ 6× 1012 cm−2, X−LE and X−HE weaken and the susceptibility is dominated by

∗Here, an effective electron mass of 0.44 explains well our results. Recent theoretical work by Miserev
et al. [26] supports the idea of an equal two-band filling of the conduction bands (the two conduction
bands with the same spin). Improvements of the sample fabrication techniques have increased the
efficiency of the electron injection in the MoS2 2DEG. Our results are now compatible with an effective
mass of 0.8 under the assumption of an equal two-bands filling. These results are compatible with the
recent electronic transport by Pisoni et al. [15]
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a broad, red-shifted peak labeled Q (Fig. 6.2). There is no established theory for the

optical susceptibility in this regime where the Fermi energy exceeds the trion binding

energy. Nevertheless, we speculate that the absence of a marked contrast between σ+

and σ− signals that the 2DEG is no longer spin-polarized.

The spin-polarization of the MoS2 2DEG can be qualitatively understood by ex-

change [30] and the strong inter-valley Coulomb scattering [6, 31, 32]. At low temper-

ature, the “first” injected electrons populate the band with lowest energy (Fig. 5.4(a)).

Intra-valley and inter-valley exchange will then favour population of the bands with the

same electron spin (Fig. 5.4(b)): the small CB spin-orbit splitting implies a moderate

cost in kinetic energy. These results highlight a very particular feature of TMDs. The

Bohr radius is only slightly larger than the lattice constant such that the two-body

Coulomb interaction connecting an electron at the K point with an electron at the K ′

point (far apart in phase-space) is comparable to the two-body Coulomb interaction

between two electrons close together in phase-space [6].

5.4 Conclusion

At first sight, the spin polarization mimics Stoner ferromagnetism. However, the Stoner

mechanism is based on a mean-field theory which is invalid in two-dimensions for which

ferromagnetic order is excluded by the Mermin-Wagner theorem [33]. However, the

conduction band spin-orbit splitting, small but non-zero, establishes an in-built quan-

tization axis such that a spontaneous symmetry-breaking is feasible, Mermin-Wagner

notwithstanding. Theory is lacking and should go beyond the standard random-phase-

approximation [34].

Full spin polarization is achieved here at rather large external magnetic fields. It may

be possible to create spin polarizations at lower magnetic fields by using a magnetic

substrate [35]. In turn, patterning this substrate may allow a textured spin polarization

to be generated.
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Chapter 6

First order phase transition in a MoS2

itinerant ferromagnet

6.1 Introduction

Electrons in a two-dimensional electron gas (2DEG) experience a repulsive interaction

due to their charge. By preferably populating states with the same spin, they can save

energy with electron-electron exchange despite the kinetic energy cost. However, a ferro-

magnetic order at any finite temperature is excluded by the Mermin-Wagner theorem [1].

In a semiconducting 2DEG, electrons behave similarly to that of an ideal 2DEG, with

the band structure dictating their dispersion. Monolayer MoS2 has four conduction

bands at Fermi energies experimentally relevant, two with opposite spins in the two

inequivalent K and K ′ points of the Brillouin zone. Spin-orbit interaction lifts the

degeneracy of the spin states at K and K ′ by ≈ 3 meV [2, 3, 4]. An out-of-plane

anisotropy results from the small but finite spin-orbit interaction and lifts the validity of

the Mermin-Wagner theorem. Recent theoretical work by Miserev et al. [5] has shown

that non-analycities [6] in the Taylor expansion of the free-energy in term of the mag-

netisation M are important in the case of MoS2. The free-energy F expansion then goes

beyond standard Ginzburg-Landau theory and reads

F (M) ≈ aM2 + c|M |3 + bM4 + ... , (6.1)

where a, b and c are functions of the electron density. The parameter b comes from Pauli

blocking and must therefore be positive as a high magnetisation has a kinetic energy cost.

The parameter a can be negative, in which case a spontaneous magnetisation (Stoner

magnetism) can occur (even with c = 0). In this case, as a would increase with the carrier

density n due to the reduced strength of Coulomb interactions at high carrier density,

the magnetisation would gradually shift to zero. This scheme would then describe a first
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Fig. 6.1. First order transition in monolayer MoS2.(a) Free energy F as a function of the magneti-

sation M , as in Eq. 6.1. Due to the cubic term c|M |3, F is minimised by a large magnetisation M∗ of

the 2DEG. For the Free-energy plotted here, we have a, b > 0, c < 0. The dashed functional is plotted

for c = ccr, the critical value of the parameter c for which the magnetisation jumps from 0 to M∗. (b)

The electron density n acts as a control of the order parameter M . The transition from a spin-polarised

2DEG ground state to a paramagnetic state occurs abruptly at the critical density n∗.

order phase transition. On the other hand, when the non-analycities are accounted for

with c < 0, the functional in Eq. 6.1 has a global minimum at a high magnetisation [5].

When the term c increases with n, the magnetisation can jump abruptly from a finite

and large magnetisation to a zero magnetisation, as in Fig. 6.1(b). A jump of the

magnetisation is a consequence of the first order nature of the phase transition.

In a single-particle picture, a near-to-equal filling of the four lowest energy conduction

bands (see Fig. 6.2) is expected when the Fermi level lies above the spin-orbit splitting. In

our recent work on the absorption of a gated monolayer MoS2, we have used absorption

spectroscopy to show that inter-valley electron exchange overturns the single-particle

picture [7]. The electronic ground state is spin-polarised and consists of two Fermi seas

sharing the same spin but having different valley quantum numbers [7]. Here, we use

photoluminescence and absorption spectroscopy to show that the 2DEG formed by a

monolayer of MoS2 undergoes a first-order phase transition from a ferromagnetic state

to a paramagnetic state at a critical electron density n∗ = 4.5 · 1012 cm−2.
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Fig. 6.2. Sample and band dispersion of MoS2.(a) Band structure of monolayer MoS2 in a single-

particle picture. The spin states are indicated by the arrows. (b) The device forms a planar capacitor

where the monolayer MoS2 acts as an electrode separated to the conducting silicon substrate by an oxide

layer. The monolayer MoS2 is fully encapsulated into h-BN.

6.2 Methods

The photoluminescence is obtained by exciting the MoS2 with a red HeNe laser at

an energy of 1.96 eV using a home-built confocal setup. Our setup is polarisation-

resolved and we can use liquid crystal variable retarders to excite and detect in the two

circular polarisations of light. This is particularly important in the case of MoS2: by

exciting the sample with σ+ (σ−) photons, we create an exciton in the K (K ′) valley

(see Fig. 6.2(a)), as a consequence of the optical spin-valley effect [3]. We can therefore

analyse the photoluminescence of MoS2 in the presence of a 2DEG in four polarisations

configurations (excitation/collection): (σ+/σ−), (σ−/σ+), (σ+/σ+) and (σ−/σ−). For

clarity, from now on, the polarisation of the excitation laser is defined as if the experiment

were carried out in a forward scattering geometry.

Absorption was determined from reflectivity contrast measurement using Kramers-

Kronig relations [7]. A white LED was used to illuminate the sample and the light was

gleaned from a diffraction limited spot on the sample surface.

In order to use optics to probe the ground-state of the 2DEG, we used low optical

excitation power to ensure that the number of electron-hole pair excitations at a time

are out-numbered by more than four orders of magnitude by the 2DEG electrons.

The 2DEG is formed by a monolayer of MoS2 fully encapsulated in hexagonal boron

nitride (h-BN). The h-BN encapsulation is known to be a critical step to obtain transform

limited line-width [8]. A gold metallic contact within the van der Waals heterostructure

is used to inject electrons efficiently in the 2DEG [9]. A capacitance C between the

doped substrate and the MoS2 flake is formed by a 300-nm thick silicon oxide layer.

The electron density in the 2DEG is then controlled via the voltage VG applied across

the capacitance, n = CVG. As a consequence of the photon-doping effect [10, 11], the
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Fig. 6.3. Optics of a monolayer MoS2 as a function of electron density. (a) Polarisation resolved

photoluminescence of the MoS2 2DEG at various electron density n as a colour-map. The two lines of

colour-maps correspond to the two excitation photons’ circular polarisations. The two columns of colour-

maps decompose the photoluminescence signal into the two ciruclar polarisations. (b) Imaginary part

of the optical susceptibility (absorption) as a function of n as colour-maps. The colour-map left (right)

shows the optical response to σ+ (σ−) photons. Data obtained in an out-of-plane magnetic field of 9 T

and a temperature of 4 K.
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interaction, two lower exciton-polarons (X−LE and X−HE) exist in σ+ polarisation, while only the X0

exists in the σ− polarisation. (b) When the electronic ground state changes to a paramagnetic state,

the optics is dominated by band-to-band absorption.

carrier density in the 2DEG decreases with time as the laser light exposure is long during

a measurement. In order to circumvent the problem, after each spectrum acquisition,

we re-initialise the charge state of the 2DEG by depleting it with the gate and sweeping

back again to the same voltage.

Our measurements are all performed in a magnetic field of 9.0 T. It has little implica-

tions on the nature of the 2DEG ground state, but it helps stabilising a given spin state

of the 2DEG [7].

6.3 Results and discussion

Fig. 6.3(a) shows colour-maps of the polarisation-resolved photoluminescence and the ab-

sorption spectra of a gated monolayer MoS2 at varying n and in an out-of-plane magnetic
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field Bz = 9.0 T. Using the spin-valley selection rules, we can deterministically create an

exciton in the K (K ′) valley by exciting the sample with σ+ (σ−) circularly-polarised

light [3]. We collect the light from a given valley by filtering the photoluminescence sig-

nal using the σ+ and σ− basis. In Fig. 6.4(a) shows the polarisation-resolved absorption

spectrum at the same location on the sample with the same electron densities.

At low n ≈ 0, light is emitted solely from the neutral exciton, labelled as X0. A signifi-

cantly higher signal is seen in the configurations (σ+/σ+) and (σ−/σ−), as expected from

the valley-spin selection rules [3]. Due to the non-resonant photoluminescence excitation,

we measure a finite signal in the (σ+/σ−) and (σ+/σ−) configurations [12]. However, in

absorption, the selection rules are robust and no cross-talk between the two polarisations

is measured. Robustness of the absorption selection rules tells us that the momentum is

a good quantum number and that we do not suffer from spatial inhomogeneities in the

≈ 500 nm spot from which we collect the light.

At 0 < n < n∗ = 4.5 · 1012 cm−2, the optical susceptibility is described by the Suris’

model [13, 14, 15]. The exciton interacts attractively with the 2DEG when the spin

of electron component of the exciton is anti-parallel to that of the 2DEG electrons. In

this case, two resonances appear at energy lower than the X0. As a consequence of the

spin-polarised 2DEG, the two lower exciton-polarons (X−LE and X−HE) appear in the σ+

polarisation only. The two peaks come from the different trion binding energies of an

exciton with an electron of the K or the K ′ valley.

In the photoluminescence, at 0 < n < n∗, light is emitted at energy lower than

X0 (feature labelled X− in Fig. 6.3(a)) only when we collect the σ+-polarised light

or, equivalently, the light emitted from the K valley. This can be understood from

the absorption spectra: the energetically favourable X−LE state exists only in the σ+

polarisation.

When n = n∗, the optical response in both photoluminescence and absorption changes

dramatically. The absorption changes from sharp excitonic-like resonances to a broad

peak labelled as Q. The transition to the Q peak is abrupt and a jump in the photo-

luminescence energy can be observed at n = n∗. In photoluminescence, strict valley-

conservation rules are again observed with light emitted from the Q peak solely in the

momentum conserving (σ+/σ+) and (σ−/σ−) configurations.

Fig. 6.4(b) shows the valley contrast as a function of n for the different spectral

features in photoluminescence for both circular polarisations of the excitation. The
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valley contrast in the excitation polarisation σ+, C(σ+), is defined as

C(σ+) =
I(σ+)− I(σ−)

I(σ+) + I(σ−)
(6.2)

where Iσ+ (Iσ−) is the light intensity in the σ+ (σ−) polarisation . A purely valley-

conserving transition would have a valley contrast of +1.

At n ≈ 0, the contrast only reaches around 40%, which can be explained by the non-

resonant excitation [12]. Our exciton transition is indeed 20 meV lower in energy than

our excitation laser.

As n increases, the contrast of X0 decreases in one polarisation while it increases in

the other polarisation. On the contrary, the X− is highly valley conserving when excited

with σ+- photons while clearly anti-valley-conserving when excited with σ−- photons.

This behaviour can be explained using the Suris’ model as in Fig. 6.5(a) : the X− states

exist only in the valley excited by σ+ and will therefore be highly polarised. In the other

polarisation, the excitons can be scattered to the other valley where they will be able to

create the X−, thus yielding a σ+ photon.

When n reaches the critical density n∗, the polarisation behaviour changes completely

and a high positive valley polarisation is observed again. This means that the ferromag-

netic phase with a broken symmetry disappears suddenly to give rise to a new phase

with the same symmetry as the one in the absence of electrons.

The electron’s effective mass in the ferromagnetic phase can be computed using Suris’

model of the absorption in a 2DEG (see Appendix A and Refs. [13, 14, 15]). The energetic

difference between the upper and lower exciton-polaron is a measure of the Fermi level

EF with

d

dEF
(E(X0)− E(X−LE)) = 1.2 =

[
∂

∂n
(E(X0)− E(X−LE))

]
︸ ︷︷ ︸
Experiment: 2.93·10−15 eVcm2

dn

dEF︸ ︷︷ ︸
me
π~2

(6.3)

where E(X0) and E(X−LE) are the upper and lower exciton-polarons energies. From the

experimental data, the n dependence of the energetic splitting E(X0)−E(X−LE) can be

extracted to be 2.93 ·10−15 eVcm2. Accounting for two-bands filling, we can deduct that

the electron mass in the ferromagnetic phase is me = 0.97m0. This mass is significantly

higher than the mass of me = 0.45m0 extracted from DFT calculation. It is however

in agreement with the me ≈ m0 mass deduced from the temperature dependence of
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Shubnikov-de Haas oscillations in a recent electronic transport experiment [9]. The mass

extracted here is subject to a systematic error as we cannot measure the carrier density.

In comparison, in Chapter 5, the Q-peak would appear at a density n∗ = 6 · 1012 cm−2

and the slope
∂

∂n
(E(X0) − E(X−LE)) = 6.1 · 10−15 eVcm2. We are however confident

that the mass extracted from the data presented in Fig. 6.3 is accurate as the transition

to the Q-peak appears at 4.5 · 1012 cm2, density at which the density of states of states

changes abruptly in the recent electronic transport experiment [9].

Knowing the mass in the interacting phase, it is possible to compute the Fermi level

E∗F = 14 meV at the phase transition. This value is significantly higher than the spin-

orbit splitting of the conduction bands and underlines the robustness of the ferromagnetic

phase: up to temperature of the order of T ∗ = E∗F /kB ≈ 150 K, we predict that the

ferromagnetic phase is stable. Similar results as in Fig. 6.3 (a) were indeed obtained at

T = 40 K, showing no smearing of the phase transition.

In the paramagnetic phase we cannot extract an effective mass as we lack of a complete

understanding of the optical response in this density regime. However, in the param-

agnetic phase, the mass should be close to the DFT value of me ≈ 0.45 [4], as a result

of the reduced strength of Coulomb correlations. Note also that the exciton-polarons

disappear in the paramagnetic phase. A likely reason for this would be a significant

decrease of the trion binding energy induced by a decrease of the electron mass.

The optical response of a 2DEG at high density is described by the Fermi-edge sin-

gularity (FES) [16, 17, 18]. Absorption occurs at the Fermi level, as in Fig. 6.5(a),

minus the residual electron-hole Coulomb interaction. In the case of a localised hole, the

photoluminescence will form a band with a width of EF and peaking at the Fermi-edge

at the high energy side, due to the enhanced oscillator strength at the Fermi level [17].

In the finite mass case, the emission takes place from the bottom of the conduction

band, as in Fig. 6.5(b) [16, 19]. Fig. 6.4(b) shows the Stoke’s shift (i.e. the difference

in energy between absorption and photoluminescence) as a function n for both (σ+/σ+)

and (σ−/σ−). Starting at n∗, the Stoke’s shift increases monotonously with increasing

carrier concentration. In WSe2, at similar electron densities, Landau levels have been

observed in the optical response [20], showing the quasi-single-particle nature of the op-

tical response in this density regime [19]. We believe that the comparatively heavier

effective electron mass of MoS2 explains the difficulty to detect hints of Landau levels in

our experiment [21].

It is known that electron-electron interaction renormalises parameters as the electron

mass or g-factors. In the event of a second-order phase transition, a continuous evolution

from the electron masses and g-factors toward the non-interacting parameters is expected
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as n crosses n∗. Here, as the Stoke’s shift is linear with n, no signs of a continuous second

order phase transition can be detected.

6.4 Conclusion

We show compelling evidence that the ground-state of a MoS2 2DEG changes abruptly

from a ferromagnetic state to a normal paramagnetic state when the carrier density n

increases. The phase transition occurs at a carrier density n∗ = 4.5 · 1012 cm−2. No

hints of a continuous renormalisation of the Fermi liquid parameters at the phase tran-

sition can be detected experimentally. We therefore conclude that the magnetic phase

transition in monolayer MoS2 is of the first order.

The first order nature of the phase transition was expected from the recent theoretical

work by Miserev et al. [5]. Its experimental observation underlines the importance of

non-analycities in the expansion of the free energy in term of the magnetisation.
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Chapter 7

Conclusion

In the introduction, I placed this work within the context of understanding the physics of

transition metal dichalcogenides. The atomic thickness of their monolayers make them

truly two-dimensional materials. The different studies presented in this Thesis illustrate

very well the challenges of understanding the physics of these materials. While a small

polarisability of excitons in monolayer MoS2 was expected (Chapter 4), the spontaneous

creation of a spin-polarised 2DEG in MoS2, as discussed in Chapter 5 was unexpected.

The physics behind the spin-polarisation was further investigated in Chapter 6, where

we have found that the standard phase transition theory (Ginzburg-Landau) cannot be

applied to the doped MoS2 monolayer case.

The small polarisability of excitons in monolayer MoS2 has important implications for

the design of optoelectronic devices. A main result of our work is that a control of the

emission wavelength of a monolayer of transition metal dichalcogenide cannot be easily

controlled by an out-of-plane electric field. Nevertheless, van der Waals heterostructure

also present great opportunities to tailor the excitonic emission energy. By stacking

monolayers of different materials within van der Waals heterostructures, it becomes pos-

sible to create heterostructures where the lowest energy excitation is a spatially indirect

exciton: the electron and the hole components of such an exciton live in the different

materials. This spatial separation of the electron to the hole gives the indirect excitons

a permanent dipole moment. Due to the large binding energy of excitons in TMDs, the

emission energy of indirect excitons can be controlled over tens of meV using an external

electric field.

The spin-polarisation of the electronic ground-state in monolayer MoS2 presented

in Chapter 5 and further discussed in Chapter 6 has important consequences to the

understanding of the physics in two dimensions. The Coulomb interaction is so strong

in monolayer MoS2 that electrons prefer populating a single spin-state, despite the large

kinetic energy cost. The first-order nature of the phase transition from a ferromagnetic

state to a paramagnetic state observed in Chapter 6 shows that the roots of the spin-
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polarisation resides in high-orders of the Coulomb interaction. Recent theoretical work

by Miserev et al. has shown that Coulomb interaction can explain the first order nature

of the phase transition. Although the importance of non-analycities from high orders

of the Coulomb interaction in the thermodynamic potential was foreseen already for

standard Fermi-liquids, monolayer MoS2 is the first material system in which these high

orders of Coulomb interaction dominates the complete dynamics of the system.
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Appendix A

Supplementary information to chapter 5

“Spin-Polarized Electrons in Monolayer

MoS2”

In chapter 5 “Spin-Polarized Electrons in Monolayer MoS2”, optical susceptibility mea-

surement is presented as a tool to investigate the ground-state of a two-dimensional

electron gas (2DEG) formed by a monolayer of MoS2. We found that the ground-state

of the 2DEG is spin-polarised, inter-valley Coulomb interaction likely to be responsi-

ble for the spontaneous symmetry breaking. Here, we provide more details about the

experiment, the data analysis, the sample and the modelling.
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Fig. A.1. Sample fabrication. Using a PDMS/PC stamping procedure, flakes are picked up (1-7) and

stacked on the PC film. At the last step (8), the PC film is left on a SiO2/Si substrate by heating. After

dissolving the PC film (9), electron beam lithography (EBL) and contact deposition can be performed

(10). The final sample structure is sketched in (11).

A.1 Sample fabrication

Van der Waals heterostructures were fabricated by stacking two-dimensional materi-

als via a dry-transfer technique[1], as depicted in Fig. A.1. A polydimethylsiloxane

(PDMS) stamp with a thin polycarbonate (PC) layer is used to pick up flakes exfoliated

on SiO2(300 nm)/Si substrates. Exfoliation was carried out from bulk crystals (natu-

ral MoS2 crystal from SPI Supplies, synthetic h-BN[2], and natural graphite from NGS

Naturgraphit). MoS2 monolayers were treated by a bis(trifluoromethane)sulfonimide

(TFSI) solution, following Ref. [3], before full encapsulation between h-BN layers. Few-

layer graphene (FLG) was employed as a contact electrode to MoS2[4]. Metal contacts

to the FLG were patterned by electron-beam lithography (EBL) and subsequent metal

deposition of Au (45 nm)/Cr (5 nm).

The capacitance of the device was estimated using electrostatics: the MoS2 flake and

the p-doped silicon are considered as two electrodes separated by the thickness dBN of

the bottom h-BN and the thickness dSiO2 of the SiO2. The capacitance per unit area is

then given by

C =
1

dBN

εBN
+
dSiO2

εSiO2

, (A.1)

where εBN = 3.76[5] and εSiO2 = 3.9 are the dielectric constants of h-BN and SiO2,

respectively. Using dBN = 10 nm and dSiO2 = 300 nm, we obtain C = 11.1±0.5 nFcm−2,

where an overall 5% uncertainty in the layers thicknesses is taken into account.

Due to the small size of the sample (∼ 10 µm2), it is difficult to measure directly its

absolute ∼ fF capacitance. Fig. A.2 shows the gate voltage dependence of the leakage

current through the oxide layer at cryogenic temperature (4 K). No gate leak (> 10 GΩ)

was observed up to 100 V between the top electrode and the bottom gate.
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Fig. A.2. Electrical characterization of our device. Leakage current IG through the oxide layer as

a function of the gate voltage VG at cryogenic temperature (4 K).

Experimentally, we apply a voltage VG to inject carriers in the 2DEG. For a capacitive

device, the carrier concentration n is given by n = CVG and it is expected that n = 0

when VG = 0. Before sweeping VG, the optics tell us that our as-fabricated devices

are undoped: the optical response consists only of the neutral exciton. However, as

a combined consequence of photo-doping effect [6, 7] and charge trapping [8] at the

different interfaces in the van der Waals heterostructure, the device exhibits hysteresis

when VG is swept in a loop. When we increase VG from 0 to 100 V for the first time,

the optical response remains the same, suggesting that the Fermi level is pinned to the

bottom of the conduction band of MoS2. Taking advantage of this hysteresis, we can

set the n ≈ 0 density when VG(n ≈ 0) = 100 V. Optically, the absence of negatively

charged excitons in the absorption spectra in both polarisations can be used to attest

the absence of electrons in the 2DEG. As soon as we sweep the voltage down to a lower

voltage, the optical response changes, attesting the injection of carriers in the monolayer

MoS2. At different gate voltages, n reads

n(VG) = −C (VG(n ≈ 0)− VG) . (A.2)

In the main text, we use equation (A.2) to determine the electron density n.

A.2 Experimental setup

The absorption spectra displayed in Fig. 2 in the main text were recorded with the setup

sketched in Fig. A.3. The red part of a white (Osram warm white) light emitting diode
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Fig. A.3. Experimental setup.

(LED) is filtered by a 600 nm longpass filter and coupled into a multi-mode fiber. The

output of the fiber is connected to a home-built microscope. A CCD camera mounted

on the microscope is used to visualise the sample. In the microscope, the light is first

sent through a linear polarizer. A computer controlled liquid crystal (LC) retarder

that can produce a +λ/2 or −λ/2 retardance of the initial beam is used to produce

two perpendicular linear polarizations on demand. An achromatic quarter-wave plate

retarder (λ/4) is subsequently used to produce circularly polarized light. By controlling

the voltage on the LC retarder, we can then circularly polarize the LED light with right-

or left- handed orientation. The circularly polarized light goes then in a helium bath

cryostat at 4.2 K and is focused on the sample using a microscope objective (NA=0.65).

The position of the sample with respect to the focus can be adjusted with cryogenic

nanopositionners. The reflected light is coupled into a single-mode fiber, ensuring a

confocal detection, and sent to a spectrometer. Ligth was dispersed by a 1500 grooves per

millimeter grating, before being focused onto a liquid-nitrogen cooled charged coupled

device (CCD) array. The spectral resolution of the spectrometer setup is 0.05 nm. In

this way, reflectivity spectra were acquired.
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A.3 Reflectivity of a thin film: determination of the

susceptibility

Monolayers MoS2 or h-BN are visible when placed on a SiO2 substrate. Optical con-

trast is induced by interferences in the thin films. Thin film interferences thus play an

important role when measuring the reflectivity of a van der Waals heterostructure.

For a monolayer placed on a thick substrate, the system can be modeled by a three

layer system, as depicted in Fig. A.4(a). A thin-film is at the interface between two semi-

infinite systems, namely vacuum and the SiO2 layer. As the monolayer thickness d is

much smaller than the wavelength of light λ, the differential reflectivity of the monolayer
∆R
R at normal incidence can be written as [9]:

∆R

R
= −8πdn1

λ
Im
(
ε1 − ε̃2
ε1 − ε3

)
, (A.3)

where εj is the dielectric function of the j-th layer and n1 is the refractive index of

the first medium. The meaning of the tilde in ε̃2 will be explained later. In the linear

response approximation, εj = 1 + χj , where χj is the optical susceptibility of larger

j. As the first medium is air, ε1 = 1 and the numerator in equation (A.3) simplifies

to ε1 − ε̃2 = 1 − (1 + χ̃2) = −χ̃2. Assuming that the glass substrate has a negligible

absorption (Im(ε3) = 0), equation (A.3) can then be rewritten as,

Im(χ̃2) =
λ(1− ε3)

8πd︸ ︷︷ ︸
β

∆R

R
≈ −49.1

∆R

R
, (A.4)

where we use an effective monolayer thickness d = 0.65 nm, ε3 = 2.25 and a constant

wavelength λ = 642 nm, corresponding to to the centre position of the spectrometer

grating during the measurements. Equation (A.4) allows a measured ∆R
R to be converted

into the imaginary part of the susceptibility. We define here β = λ(1−ε3)
8πd ≈ −49.1.

In our sample, we have more than three layers. In the experiment, when we measure
∆R
R , we actually probe an effective susceptibility χ̃2 of the MoS2 monolayer. Reflection

on the SiO2/Si interface, as well as the multiple thin-film interferences in the h-BN layers

will indeed mix the real and imaginary part of the dielectric function of the MoS2.

As the susceptibility is a complex number, a phase factor eiζ can be used[10, 11] to

mix the imaginary and real part of the dielectric function of the monolayer MoS2. The

effective susceptibility χ̃2 of the thin-film that we probe in our measurement is then

related to the susceptibility χ2 of MoS2 by χ̃2 = e−iζχ2.
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Fig. A.4. From reflectivity to the optical susceptibility. (a) Three layer system: light comes from

a semi-infinite medium 1 (top) and is reflected at the thin-film (middle). Multiple interferences in the

thin-film create optical interferences. (b) Using a Kramers-Kronig relation, the raw reflectivity data

(blue) around the X0 energy at zero electron concentration can be turned into a Lorentzian absorption

lineshape. Here, we used a phase factor ζ = 0.69 rad to account for multiple thin-film interferences.

We are not interested in the value of the effective susceptibility, but we want to access

to the value of χ2, which is intrinsic to MoS2. However, equation (A.4) links the measured
∆R
R to the effective optical susceptibility

∆R

R
=

1

β
Im(χ̃2) =

1

β
χ̃2
′′ , (A.5)

where we decomposed χ̃2 in its real and imaginary part χ̃2 = χ̃2
′ + iχ̃2

′′. As before,

β ≈ −49.1. By definition, χ2 = eiζ χ̃2 and therefore

χ′′2 = cos(ζ)χ̃2
′′ + sin(ζ)χ̃2

′ . (A.6)

Our experiment measures ∆R
R = 1

β χ̃2
′′. In order to compute χ̃2

′′ from equation (A.6),

we need to know the value of χ̃2
′. The causality of the dielectric function χ̃2 implies

that we can make use of the Kramers-Kronig relation in equation (A.6).

χ′′2(ω) = cos(ζ)χ̃2
′′ + sin(ζ)

2

π
P
∞∫

0

ω′χ̃2
′′(ω′)

ω′2 − ω2
dω′

︸ ︷︷ ︸
χ̃2
′

, (A.7)

where ω denotes the angular frequency. Using equation (A.4), we can express the imag-

inary part of the dielectric function of MoS2 as a function of the differential reflectivity
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ζ = 0.69 rad.

∆R
R that we measure experimentally:

χ′′2 = β

sin(ζ)
2

π
P
∞∫

0

ω′∆RR (ω′)

ω′2 − ω2
dω′ + cos(ζ)

∆R

R

 . (A.8)

As interference effects depend on the wavelength, the phase eiζ also depend on the

wavelength (ζ = ζ(ω)). However, as the wavelength range we access in a single spectrum

is small compared to the wavelength itself, to first order, we can set ζ to a constant value.

The imaginary part of the susceptibility of a neutral exciton (X0) has a Lorentzian

lineshape in the absence of free carriers. A differential reflectivity spectrum at near

zero electron density is transformed using the Kramers-Konig relation in equation (A.8)

with different values of ζ to compute the susceptibility. The integral appearing in equa-

tion (A.8) is only computed over the wavelength range corresponding to the experimental

spectra. The value of ζ for which the X0 has a Lorentzian lineshape in the absence of

carriers is then used for transforming the spectra at higher electron densities. Fig. A.5(b)

shows the sum of the squared residues (SSR) of a Lorentzian fit of the exciton resonance.

With ζ = 0.69 rad, the X0 is well described by a Lorentzian, as in Fig. A.5(c). On the

other hand, in A.5(a), at a value of ζ = −0.92 rad, the residues are maximized and

the data cannot be fitted by a Lorentzian. Fig. A.4(b) shows the differential reflectivity

of X0 as measured and the imaginary part of the susceptibility extracted using equa-

tion (A.8).

The optical susceptibility spectrum of the X0 in Fig. A.5(c) is typical for our sample.
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The line-width of the X0 in the absence of electron is extracted from a Lorentzian fit.

We measure a line-width of 5 meV, close to the state-of-the-art (4 meV) observed in ab-

sorption in samples with similar structure [12]. As the exciton life-time was measured to

be sub-picosecond [13], the resonances observed in our susceptibility spectra are mostly

homogeneously broadened, demonstrating a superior sample quality.

In the main text, we present absorption as a tool to non-invasively probe the 2DEG.

To attest that our probe is non-invasive, we compute here the density of photo-generated

electron-hole pairs and compare it to the injected electron density.

The total power of the LED sent on the sample is PLED = 500 nW. The LED has a

broad spectrum spreading on ΓLED ≈ 100 meV. The power density of the LED can be

estimated to be ILED = PLED/ΓLED ≈ 5 nWmeV−1.

The main absorption of the sample occurs when n ≈ 0. In this density regime, the

absorption is dominated by the X0 at an energy of E(X0) = 1.95 eV. We obtain an upper

bound for the density of photo-generated electron-hole pairs if we assume that all the

photon coming from the LED are absorbed at the X0 resonance. As the X0 resonance

has a line-width of ΓX0 = 5 meV, the absorbed power is Pabs = ILEDΓX0 ≈ 25 nW.

The focal spot of the LED coming from a multi-mode fiber on the sample has an area

of A ≈ 100 µm2. The electron-hole pair generation rate seh can be therefore estimated

as seh = Pabs
AE(X0)

≈ 5× 1017 s−1cm−2.

The average population of electron-hole pair is given by the product of the generation

rate seh with the lifetime of the electron-hole pairs τeh. The electron-hole pair lifetime

in MoS2 can be extracted from the homogeneous line-width obtained from four wave

mixing experiments. It was measured to be τeh < 1 ps [13]. Using τeh = 1 ps, we

can estimate neh = seh/τeh ≈ 5 × 105 cm−2. As the typical electron concentrations are

n > 1011 cm−2, n is more than 5 orders of magnitude larger than neh, showing that our

optical probe can be considered as non-invasive.

In order to evaluate the differential reflectivity ∆R
R , we compare a reflectivity spectra

R obtained on the MoS2 flake at a given gate voltage with a reference spectrum R0,

such that ∆R = R − R0. As the trion features in the reflectivity have a weak signal

(∆R
R ≈ 5%), special attention need to be taken in the choice of the reference spectrum.

A small interference pattern (amplitude of ≈ 5%) appears indeed in the raw reflectivity

spectra due to reflections in the experimental setup. As they have approximatively the

same amplitude as the weak signals that we want to measure, they can only be canceled

by a careful choice of the reference. Ideally, R0 could be acquired on the h-BN, at a
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Fig. A.6. Valley Zeeman effect. (a) When increasing the magnetic field from Bz = 0 to a finite value,

the energy of the different bands changes. Valley pseudo-spin, spin and orbital momentum contribute

to the energy shift of a band. (b) Energy of the X0 at different magnetic fields in the two circular

polarizations. The energy dependence of the exciton transition energies in both polarisations are ex-

tracted from the linear fit. In σ+ (σ−) polarisation, the exciton energy varies with magnetic field as -112

(73) µeVT−1.

position next to the MoS2 flake. However, by moving the sample, the optical path length

changes slightly and the interference pattern appearing in the raw reflectivity spectra

does not cancel. The reflectivity spectra R change significantly with varying electron

density. The median of the several spectra obtained while sweeping the gate voltage can

therefore be used as the reference R0 : the features appearing in ∆R
R will be then only be

related to changes in electron density. As R and R0 are all obtained at the same position,

the interference pattern is canceled in ∆R and very clean differential reflectivity spectra

can be acquired.

A.4 Selection rules and valley Zeeman effect

For monolayer MoS2, the optical response depends on the valley in which the photo-

generated electron-hole pair is created. Broken inversion symmetry ensures that the

electrons from the same band in the two valleys carry opposite spin, angular momentum

and valley angular momentum. An out-of-plane magnetic field shifts a band in energy

by a Zeeman shift ∆E:

∆E = ∆s︸︷︷︸
spin

+ ∆α︸︷︷︸
angular momentum

+ ∆v︸︷︷︸
valley

, (A.9)

where ∆s = 1
2gsµBszBz and ∆v = 1

2gvµBτzBz, with gs = 1.98[14] and gv = 0.75[14]. sz

and τz are the spin and pseudo-spin (valley) operators perpendicular to the monolayer.

We write τz = 1(τz = −1) for the valley pseudo-spin corresponding to the K (K ′)
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valley. The states at the conduction band edge are mostly made from dz2 orbital with

a zero orbital angular momentum mCB
z,τz = 0, yielding ∆CB

α = 0. On the other hand,

the valence band is mostly composed of dxy and dx2−y2 orbitals with a finite orbital

angular momentum ~mV B
z,τz = −2~τz[15]. In the valence band, the angular momentum

contribution to the Zeeman shift is finite: ∆V B
α = µBm

V B
z,τzBz.

An optical transition must satisfy conservation of the total angular momentum, spin

and momentum. The conservation laws are enforced by the selection rules that dictate

which transitions can be coupled by the light field. In transition metal dichalcogenides,

as the band edges are located at the K and K ′ points of the Brillouin zone, it was shown

that circularly polarised light can be used to address a specific valley [16]. A σ+(σ−)

polarised photon couples the top valence band states to the bottom conduction band at

the K (K ′) valley.

When in Bz > 0, the Zeeman shifts of two bands coupled via an optical transition

have the same spin and valley contribution as a result of conservation rules. For an

inter-band transition, only the orbital angular momentum contribution differs between

the two coupled bands, as mV B
z,±K 6= mCB

z,±K . The neutral exciton (X0) correspond to the

coupling of the top valence band to the bottom conduction band. Its transition energy

E(X0) is dictated by

E(X0) = ECB − EV B − Eb(X0) , (A.10)

where ECB and EV B are the energies of states in the conduction band and valence band,

respectively, and Eb(X
0) is the exciton binding energy. We define ECB−EV B = EBz=0

g .

In magnetic field, E(X0) is modified by the Zeeman shift of both conduction and valence

band. As sz and τz are the same in an optical transition, the spin and valley contributions

cancel:

E(X0) = EBz=0
g + (∆s + ∆v)− (∆s + ∆v + ∆V B

α )− Eb(X0)

E(X0) = EBz=0
g − µBmV B

z,τzBz − Eb(X
0). (A.11)

As mV B
z is opposite in the two valleys, the X0 energy in a finite magnetic field is

different when observed in different circular polarisation of light. Fig. A.6(a) depicts

the Zeeman shifts of the different bands and shows that, when in magnetic field, the

energy of the X0 is different for the two circular polarisations of light. The energy dif-

ference ∆E(X0) between E(X0) in the two valleys is given by |∆E(X0)| = 2µB|mV B
z,τz |Bz.

The absorption energy E(X0) of the X0 can be extracted from our experimental data.

Fig. A.6(b) displays E(X0) as a function of the magnetic field. It is clear that for posi-
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tive magnetic fields the energy of X0 increases for σ− polarization, while the opposite is

seen for σ+ polarization. The energetic difference ∆E(X0) is extracted from the fits an

is 185 µeVT−1, yielding |mV B
z,τz | = 1.6, close to the expected value of 2, but differing from

measured values on samples with similar structure [12]. The measurement in Fig. A.6(b)

is used to verify that σ+ light addresses the K valley.

We can make use of the valley Zeeman effect to verify that the optical selection rules

are robust in our experiment. In magnetic field, the X0 transition energy changes in

the two polarizations of light, but its lineshape remains constant. If selection rules were

not conserved in our experiment, the absorption spectrum in one polarization would

contain a small amount of the features of the other polarization. A mixing of the two

polarisations can be detected by computing the integrated difference between the spectra

obtained in the two polarisations. We show here that up to noise level, the integrated

difference between the two susceptibility spectra goes down to zero when one of the

spectrum is shifted in energy by the Zeeman shift.

The absorption signal S± in polarization σ± can be written as

S±(Ei) = S̄±i +N±i , (A.12)

where the index i accounts for the discrete nature of the energy E axis in the experimental

spectra, S̄±i is the absorption at energy Ei, and N±i is an independent random variable

with zero mean modelling noise on the data. To prove that the optical selection rules

are conserved in our measurements, we compute the sum of the absolute value of the

difference ∆S between the two spectra when they are shifted in energy by ∆Ej :

∆S(Ej) =
∑
i

|S+(Ei)− S−(Ei + ∆Ej)|. (A.13)

The expected value and variance of ∆S(Ej) are given by

E(∆S(Ej)) =
∑
i

|S̄+(Ei)− S̄−(Ei + ∆Ej)| (A.14)

and

Var(∆S(Ej)) = Var

(∑
i

N+
i

)
+ Var

(∑
i

N−i

)
. (A.15)

The Central Limit Theorem implies that a sum of random variables tends to a Gaussian

random variable as the number of elements in the sum increases. Furthermore, the
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Fig. A.7. Robustness of optical selection rules. The optical selection rules are verified with an

accuracy reaching the noise level. ∆S is the integrated difference between the X0 spectra at 9 T in the

two polarizations (see equation (A.13)). The spectra are shifted in energy. The two spectra are identical

when the energy shift is equal to the valley Zeeman shift.

variance of the sum is given by the sum of the variances of the independent random

variables in the sum. Here, assuming that the noise amplitude is the same at all points

and in both polarizations (i.e. Var(N+
i ) = Var(N−j ), ∀ i, j), we have

Var(∆S(Ej)) = 2hσ2
N , (A.16)

with σN is the standard deviation of the noise N and h the number of elements in the

sum. σN was measured on the spectra in a spectral region away from the X0 resonance.

Fig. A.7 shows ∆S as a function of detuning when S± are normalized such that

1 =
∑
i

S±(Ei) . (A.17)

If the detuning is large, ∆S is 2 as the two spectra do not overlap at all. When the

detuning reaches the value of the Zeeman shift, ∆S should reach zero. However, noise

prevents reaching a zero value. The red domain in Fig. A.7 shows possible values of ∆S

taking noise into account, in the case of perfect selection rules. As the minimal value of

the measured ∆S (blue curve) falls in the noise level (red domain) at the value of the

Zeeman shift, we can conclude that selection rules are conserved to the detection limit

of our setup.
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Fig. A.8. Suris model of 2DEG optical susceptibility. Optical susceptibility of an exciton simulated

following equation (A.19). The exciton interact with a fully spin-polarised Fermi sea. (a) The electron

of the photo-generated excitons have opposite spin to that of the electrons of the Fermi sea. Excitons

interact attractively with electrons (singlet collisions). A low energy peak emerges around 1.9 eV as

consequence of interactions, while the X0 stays at 1.95 eV. (b) The electron of the photo-generated

excitons have the same spin as the electrons of the Fermi sea. Excitons experience a repulsive interaction

with electrons (triplet collisions). The X0 peak becomes more asymmetrical toward the high energy side

with higher electron density. (c) Optical susceptibility in the case of singlet collision as a colormap at

different Fermi levels and different photon energies. (d) Same as in (c) but for triplet collisions. The

simulations presented here were obtained using m∗CB = 0.44[14], m∗V B = 0.5 [17], Eb(X
0) = 260 meV,

Eb(X
−) = 17 meV, E(X0) = 1.952 eV, α = 1, and γ = 2.0 meV.

A.5 Theory of trion absorption in a 2DEG

When the Fermi level EF is of the same order of magnitude as the trion binding energy

Eb(X
−) and less than the exciton binding energy Eb(X

0), the description of the trion

as a three particle body is no longer valid [18, 19, 20]. In this limit, trions appear as

a consequence of the exciton - Fermi sea interaction: the exciton energy splits in two
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Fig. A.9. Optics as a measure of the Fermi level. The susceptibility in equation (A.19) can be

computed at various Fermi-level, as in Fig. A.8. From the simulated spectra we can extract the energy

of the X0 and of the X−. (a) Gradient of δE as a function of the Fermi level. At high Fermi level, the

gradient tends to a value of 1. (b) δE as a function of the carrier density. The red solid line is a linear

fit of the simulated δE in the range of densities where trion and exciton can be experimentally resolved

in the susceptibility spectra. The parameters used for this simulation are the same as those used in

Fig. A.8.

branches when it interacts with a Fermi sea, forming exitons and trions. In this picture,

it is more accurate to name the two branches in terms of Fermi polarons [21, 22]. The

upper energy branch, the exciton, is then the repulsive polaron, while the trion forming

the lower energy branch is referred to as the repulsive polaron [21].

Photo-generated excitons interact with the Fermi-sea in two ways: either an exciton

captures an electron and creates an X− (attractive interaction) or an electron scatters off

an exciton (repulsive interaction). These two interactions contributes to the self-energy
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(Ξ) in the 2D exciton optical susceptibility [18, 19, 20, 23].

χ(~ω) = −2|dcv|2
|ψ(r = 0)|2

~ω + iγ − E(X0)− Ξ
, (A.18)

where E(X0) is the exciton energy, γ accounts for broadening, dcv is the intervalley

optical dipole moment and ψ is the exciton wavefunction.

It was shown that in the regime when EF < Eb(X
−), the self energy Ξ can be written

as [18]

Ξ(~ω) =

∞∫
0

g2DfFD(ε)T (~ω + ε)dε , (A.19)

where fFD(ε) is the Fermi-Dirac distribution describing the occupation of the Fermi-sea,

g2D =
m∗CB
2π~2 is the two-dimensional density of states (without spin-degeneracy), m∗CB is

the effective electron mass in the conduction band and T (ε) is the two-particle T -matrix.

Under the assumption that the electrons of a Fermi-sea interact only with excitons

composed with an electron of opposite spin (singlet collision) forming a bound state

(singlet trion) the T -matrix elements are [18]∗

T (~ω) = Ts(~ω) =
2π~2

µT

1

ln

(
−Eb(X−)

~ω − E(X0) + iγ

) , (A.20)

where µT is the reduced exciton-electron mass. µT can be written as

1

µT
=

1

m∗CB
+

1

m∗V B +m∗CB
, (A.21)

with m∗V B the effective electron masses in the valence band.

Suris [19, 20] derived a model of absorption of a 2DEG considering the effect of both

singlet and triplet collisions. In a singlet collision, exciton-electron interaction has a

bound state corresponding to the singlet trion. On the contrary, in triplet collision, they

are no bound states of the exciton-electron interaction. The absence of a bound state

comes the fact that triplet trions are unbound in the absence of magnetic fields [24].

In his model, [19, 20] the two types of interactions are introduced by decomposing the

T -matrix in two parts T = 1
2Ts + 3

2Tt, with Ts accounting for singlet interactions and Tt

∗The terms presented here neglect the center of mass motion of trions and also neglect the impact
of Pauli blocking on the trion wavefunction. Taking the center of mass motion of the trion and the
modification of the trion’s wavefunction do not change significantly the results shown here.
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for triplet interactions in the scattering of an electron on an exciton. As his scattering

matrix elements Ts are in agreements with those of equation (A.20), we generalize here

the results from Ref. [18] to the case of singlet and triplet interactions inspired by the

work from Suris [19, 20].

The T -matrix elements accounting for triplet interactions can be written as [19, 20]

Tt(~ω) =
2π~2

µT

1

ln

(
−Eb(X0)

~ω − E(X0) + iγ

Eb(X
0)

αEb(X−)

) , (A.22)

where α ≈ 1 is a number.

Fig. A.8 shows the contributions of the different T -matrix components to the optical

susceptibility. Fig. A.8 (a, c) show the optical susceptibility resulting only from singlet

scattering (T = Ts)
∗. A sharp peak around 1.9 eV emerges with a finite Fermi level. It

corresponds to the X−, or more precisely to the attractive polaron. The X0 resonance

at 1.95 eV (repulsive polaron) is also influenced by the interaction. The X0 resonance

looses indeed quickly in amplitude and the line-shape becomes more asymmetrical as

the Fermi-level increases.

When only triplet scattering (T = Tt) is allowed, as in Fig. A.8(b, d), there is no low

energy peak, as there are no bound triplet trions. The X0 resonance is however still

modified by the presence of the Fermi sea. The amplitude of the X0 decreases and the

X0 shifts to higher energy. The line-shape of the X0 is also modified by the presence of

electrons: as the Fermi level increases, the X0 peak becomes less and less Lorentzian as

a tail grows on its high energy side.

Comparison between Fig. A.8 (a) and Fig. A.8 (b) informs that an attractive electron-

exciton interaction is responsible for a sharp low energy resonance (the X− or attractive

polaron), while a repulsive electron-exciton interaction tends to create a high energy

tail to the X0. The prediction of the polaron model is in good agreement with our

experimental data presented in Fig. 2 of the main text. However, the high energy trion

X−HE has its line-width increase with increasing electron density due to the different

nature of the Coulomb interaction.

The energetic difference between neutral exciton and trion, δE = E(X0) − E(X−)

can be used to measure variations of the Fermi level [25]. Hawrylak [26] showed that

the X− is the ground state of an electron-hole pair in a Fermi sea. The X0 is then an

ionised X−. In the ionisation process, the electron must be dragged to the first available

∗T = Ts is actually an approximation. As we have two trions, the oscillator strength is somehow
shared between the two trions. However, the low energy trion has a large part of the oscillator strength.
It is therefore a good approximation to write T = Ts for the X−LE .
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state in the conduction band, at the Fermi level. The energy cost of ionising an X−

is therefore increasing with the Fermi-level, pushing the X0 toward higher energies. In

this picture, δE varies as the Fermi level EF , i. e. d
dEF

δE = 1.

In the framework of exciton-polarons, changes in δE can also be related to changes

in Fermi level. Fig. A.9(a) shows the evolution of the gradient d
dEF

δE as a function of

the Fermi level extracted from simulations, as in Fig. A.8. In the high density regime,

the slope d
dEF

δE = 1 is in agreement with Ref. [26]. However, as the electron density

decreases, the slope increases up to d
dEF

δE = 2.

In our experiment, we can observe trions at Fermi levels ranging from 5 meV to

25 meV (two bands filled). In this regime, the gradient is varying slightly from 1.5 to 1,

and equals on average 1.2. Fig. A.9(b) shows δE as a function of the electron density n.

We find that in the regime where we can observe the trion, δE varies as 6.6×10−15 eVcm2

with n, using an electron mass m∗CB = 0.44[14].

The gradients d
dEF

δE measured experimentally presented in the main text forX−LE(X−HE)

are 6.1 × 10−15 eVcm−2 (6.3 × 10−15 eVcm−2) in a 9 T magnetic field and 5.6 ×
10−15 eVcm−2 (5.9 × 10−15 eVcm−2) in the absence of a magnetic field. These values

are in good agreement with the slope d
dEF

δE = 6.6× 10−15 eVcm−2 extracted from our

simulations, as shown in Fig. A.9(b). In this rather limited range of electron densities,

we cannot observe a significant change of the slope d
dEF

δE.

A.6 Band filling and optics in MoS2

In the main text, we explain our optical spectra by a spin polarization of the 2DEG

electrons. This section aims at describing how only a spin polarization of the 2DEG

with two bands filled can explain the optical susceptibilities presented in the main text

in Fig. 2. The optical susceptibility of MoS2 in a magnetic field is dominated by two

peaks at lower energy than the neutral exciton (X0) in one polarization. In the other

polarization, the optical susceptibility is dominated by the neutral exciton and no other

resonances appear in the susceptibility before the appearance of the Q-peak. We review

here the different ways of filling the bands and their consequence on the optics by com-

menting Fig. A.10.

One band filled. When only one band is filled the 2DEG is simultaneously spin- and

valley-polarized. Such a band filling, as in Fig. A.10(a) is observed in MoSe2 when placed

in a magnetic field [11]. It was observed [11] that when an electron-hole pair is created
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Fig. A.10. Possible band filling in MoS2 and consequences on the optical susceptibility.

in the filled band, only the neutral exciton (X0) appears in the optical susceptibility

(Fig. A.10(c)). On the other hand, when the electron-hole pair is created in the empty

band with opposite spin as in Fig. A.10(b), a low energy resonance identified as a trion

or, more accurately, an attractive polaron dominates the susceptibility. This result is

completely compatible with theory presented in the previous Section : an attractive

polaron (low energy resonance) is formed when the spin of the electrons in the 2DEG is

opposite to that of the electron component of the photo-generated electron-hole pairs.

As we find that we have two types of low energy resonances, we can conclude that we

fill more than a single band.
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Two bands filled. If the two spin-split conduction bands were energetically well far

apart, in the absence of many-body interactions, it would be expected that only the two

lowest energy bands would be populated, as in Fig. A.10(d). In this case, the 2DEG

filling is symmetric in both spin and valley population. The optical response is therefore

also expected to be independent on the polarization of the light, in contradiction to our

measurements.

Another possibility of two bands filling is to create a valley polarization: all electrons

are located at the K ′ of the Brillouin zone with both spin up and spin down population,

as depicted in Fig. A.10(g). When an electron-hole pair is formed in the same valley

K ′ as the 2DEG electrons (Fig. A.10(i)), the optical response should be similar to that

of two dimensional structures of conventional direct band-gap semiconductor with band

edges at the Γ-point, such as GaAs. In the absence of magnetic field, in GaAs, only the

singlet trion is observed [27]. As the magnetic field increases, the triplet trion emerges as

a low energy shoulder of the X0, before being resolved as a separated resonance at high

magnetic field. In our case, it would then be expected that when an electron-hole pair is

created in the K ′ valley (σ− polarized light), as in Fig. A.10(i), where the 2DEG electrons

are, at least one resonance should appear in the optical susceptibility. When measuring

the susceptibility using σ+ polarized light (Fig. A.10(h)), there is also one possibility of

creating a singlet trion. If the 2DEG was forming a valley polarization in MoS2 with

two filled bands, we would then have at least one resonance in both polarizations. This

is also in contradiction with our measurements.

As written in the main text, our results are best explained by a spin polarization

(Fig. A.10(j)): when an electron-hole pair is formed in the K valley (σ+ polarized

light), the promoted electron carries opposite spin to that of the electrons, as shown in

Fig. A.10(k). Two possible singlet trions can be observed in this polarization. On the

other hand, when a σ− polarized photon promotes an electron with spin up (Fig. A.10(l))

it can only interact repulsively with electrons of the same spin, as explained in the previ-

ous Section. No bound states are then observed in this polarization, in agreement with

our experimental results.

Three bands filled. The experimental results obtained on MoSe2 tell us that the op-

tical response of an electron-hole pair created in a filled band is barely modified by the

presence of the electrons [11]. Merely a decrease in oscillator strength and an energetic
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shift of the X0 resonance are indeed observed. The three bands filling case as represented

in Fig. A.10(m), when probed with σ+ light (Fig. A.10(n)) is therefore similar to the

case of the two bands valley polarization in Fig. A.10(h). At least one resonance should

then be observed in this polarization. When the light is σ− polarized (Fig. A.10(o)), the

three bands case is then similar to the two bands spin-polarized case in Fig. A.10(k) and

at least two resonances should be observed in this polarization. The three bands filling

case is therefore in contradiction with our measurements.

Four bands filled.

Similarly to the unpolarized two-band case, as thefour bands 2DEG band filling, as in

Fig. A.10(p), is symmetric in both spin and valley filling, the optical response should

also be similar in both polarizations.

A.7 Temperature dependence of the optical susceptibility

As temperature increases, electrons in the 2DEG start to populate excited states of the

2DEG. These fluctuations mitigate the Coulomb effects and eventually kill the spin-

polarization [28, 29]. Fig. A.11 shows the evolution of the trion contrast, C with

increasing temperature. The data was obtained in a magnetic field Bz = 9 T and

at an electron density n = 2.1 1012 cm−2. The red solid line show the dependence

one could expect from our phenomenological description of the trion contrast C(T ) =

tanh(µBgBz/kBT ), where µB is the Bohr magneton, kB the Boltzman constant and

g = 1.0 was extracted from Fig. 3(f) in the main text. It is however difficult to interpret

high temperature data as the features in the optical susceptibility broaden.

A.7.1 Reproducibility of the data

Five different samples, labelled as D1, D2, D3, D4 and D5 were fabricated to verify the

reproducibility of the data presented in the main text (data obtained on sample D5).

We begin our analysis by showing that the optical properties behave qualitatively the

same way in all samples. Fig. A.13 shows the imaginary part of the optical susceptibility

in the two polarisations of light (left column, σ−, and right column, σ+) in an out-of-

plane magnetic field Bz = 9.0 T. The different rows correspond to different samples. All

samples demonstrate charging and spin-polarisation. In σ+ polarisation, the oscillator

strength is transferred from the neutral exciton (X0) to the negatively charged excitons
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Fig. A.12. Temperature dependence of the imaginary part of the optical susceptibility.

(X−LE and X−HE) to the Q-peak. On the other hand, in σ− the oscillator strength is

transferred directly from the X0 to the Q-peak, hence demonstrating the unavailability

of electrons with spin-down.

In samples D3 and D5, the monolayer MoS2 was passivated in TFSI acid prior to

encapsulation, while in D1, D2 and D4, no passivation was performed. As the optical

qualitatively remain the same in all the different samples, we can conclude that the

TFSI acid passivation does not modify fundamentally (i.e. the density of states remains

unchanged) the optical properties of encapsulated monolayer MoS2.

When a voltage VG is applied between the contacts on the MoS2 and the doped-silicon

back-gate, the electron density n can be deduced from the back-gate capacitance. How-
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Table A.1. Measured variation of the Fermi level with changing back-gate voltage.

Sample dEF /dVG (meV/V)

D1 0.22
D2 0.26
D3 0.11
D4 0.24
D5 0.36

Theory 0.37

ever, n can be only deduced from the gate capacitance in the case of perfect ohmic

contacts (no potential barrier at the contact) and are assuming a zero contact capac-

itance [30]. Our optical experiment can measure the Fermi-level EF variation as VG

changes, as
dEF
dVG

=
1

1.2

d

dVG

(
E(X0)− E(X−)

)
, (A.23)

where E(X0) is the energy of the neutral exciton, E(X−) is the energy of a negatively

charged exciton and the factor 1/1.2 is a correction coming from the exciton-polaron

model (See Section A.5). The gradient dEF /dVG extracted experimentally in the main

text (sample D5) is in good agreement with the values expected from theory, using DFT

predicted effective electron mass [14]. This good agreement tells us that the electron

injection in sample D5 is working well. Table A.1 shows the measured variations of the

Fermi level as a function of the gate voltage. We used the different slopes to rescale

the electron density axis in Fig. A.13, such as the energetic separation between X0 and

X−LE and X−HE varies the same way with a variation of the electron density as in sample

D5. With the rescaling, we can see that the two peaks X−LE and X−HE always appear

at the same carrier densities and that the onset of the Q-peak always takes place at the

same carrier densities (≈ 6 1012 cm−2), which demonstrate that the sample to sample

difference can be explained by a less efficient carrier injection.
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Appendix B

Details of the Hartree-Fock calculation

In this Appendix, we present the details of the operator algebra needed to derive the

Hartree-Fock results presented in Section 2.3.

B.1 Idea of the computation

We perform here a variational computation of the energy of the 2DEG. We consider

that the 2DEG wavefunction is described by a Fermi sea occupying a volume Ω in the

reciprocal space. The goal is to minimize the 2D electron gas energy by finding the

optimal Ω.

The domain Ω is defined in terms of the Fermi wavevectors kσ,τF in the different valleys

(momentum measured from the bottom of the bands). Using the definitions of Fig. B.1,

Ω can be written as

Ω =
⋃

σ=±1, τ=±1

{k , s.t. |k| < kσ,τF } (B.1)

|ΨΩ〉 =
∏

(k,σ,τ)∈Ω

â†k,σ,τ |0〉 (B.2)

∆σ

(σ,τ)=(+1,−1)
(σ,τ)=(−1,−1)

(σ,τ)=(−1,+1)
(σ,τ)=(+1,+1)

-K

-K

kF

∆τ ∆σ

Fig. B.1. The four bands are distinguished by their spin index σ = ±1 and their valley index τ = ±1.

The two valleys are at −K (τ = −1) and at +K (τ = 1).
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The Hamiltonian of the system is given by the sum of the kinetic energy and potential

energy

Ĥ = Ĥkin + Ĥpot , (B.3)

where

Ĥkin =
∑

(k,σ,τ)

εσ,τ (k) â†k,σ,τ âk,σ,τ . (B.4)

εσ,τ (k) are the single particle energies given by

εσ,τ (k) =
∆σ

2
σ +

∆τ

2
τ +

~2k2

2m
, (B.5)

where the spin index σ and the valley index τ take values 1 or -1.

τ, σ ∈ {+1;−1} .

The potential energy operator Ĥpot is made of two contributions: the intravalley Coulomb

interaction Ĥ intra
pot and the intervalley Coulomb interaction Ĥ inter

pot

Ĥ intra
pot =

1

2

∑
q 6=0

∑
(k,σ,τ)

∑
(k′,σ′,τ ′)

Vqâ
†
k+q,σ,τ â

†
k′−q,σ′,τ ′ âk′,σ′,τ ′ âk,σ,τ (B.6)

where (SI units)

Vq =
e2

2ε0εrL2

1

q
(B.7)

is the Fourier transform of the Coulomb potential. The intervalley Coulomb interaction

can be described by this term:

Ĥ inter
pot =

1

2

∑
q

∑
(k,σ,τ)

∑
(k′,σ′,τ ′)

Vq+2τK â
†
k+q,σ,−τ â

†
k′−q,σ′,−τ ′ âk′,σ′,τ ′ âk,σ,τ (B.8)

However, as q is of the order of kF � K, it seems reasonable to approximate the

intervalley scattering by replacing Vq+τK by VK and simplify the intervalley scattering

term:

Ĥ inter
pot ≈ 1

2

∑
q

V|K|
∑

(k,σ,τ)

∑
(k′,σ′,τ ′)

â†k+q,σ,−τ â
†
k′−q,σ′,−τ ′ âk′,σ′,τ ′ âk,σ,τ (B.9)

Now that we have the Hamiltonian of the system, we need to measure the energy EΩ
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for each trial wavefunction |ΨΩ〉.

EΩ = 〈ΨΩ| Ĥ |ΨΩ〉 = 〈ΨΩ| Ĥkin |ΨΩ〉+ 〈ΨΩ| Ĥ intra
pot |ΨΩ〉+ 〈ΨΩ| Ĥ inter

pot |ΨΩ〉 (B.10)

B.2 Kinetic energy term

EkinΩ = 〈ΨΩ| Ĥkin |ΨΩ〉 =
∑

(k,σ,τ)

εσ,τ (k) 〈ΨΩ| â†k,σ,τ âk,σ,τ |ΨΩ〉︸ ︷︷ ︸
Θ(|k|<kσ,τF )

(B.11)

where the function Θ(x) equals 1 when x is true and 0 otherwise. The summation over

k can be replaced by an integral up to the Fermi wavevector

EkinΩ =
∑
(σ,τ)

L2

π2

kσ,τF∫
0

dk 2πkεσ,τ (k) =
∑
(σ,τ)

L2

π

[
(kσ,τF )2

(
∆σ

2
σ +

∆τ

2
τ

)
+

1

4
(kσ,τF )4~2

m

]

As the Fermi wavevector kF is related to the carriers in a band by the simple relationship

kσ,τF =
√

2πnσ,τ , the kinetic energy may also be rewritten as

EkinΩ =
∑
(σ,τ)

L2

π

[
2πnσ,τ

(
∆σ

2
σ +

∆τ

2
τ

)
+ π2n2

σ,τ

~2

m

]
(B.12)

B.3 Intervalley Coulomb term

Epot,interΩ = 〈ΨΩ| Ĥ inter
pot |ΨΩ〉

Epot,interΩ =
1

2

∑
q

V|K|
∑

(k,σ,τ)

∑
(k′,σ′,τ ′)

〈ΨΩ| â†k+q,σ,−τ â
†
k′−q,σ′,−τ ′ âk′,σ′,τ ′ âk,σ,τ |ΨΩ〉 (B.13)

Let’s start by rewritting the term â†k+q,σ,−τ â
†
k′−q,σ′,−τ ′ âk′,σ′,τ ′ âk,σ,τ in an easier way:

â†k+q,σ,−τ â
†
k′−q,σ′,−τ ′ âk′,σ′,τ ′︸ ︷︷ ︸
swap (τ ′ 6=−τ ′)

âk,σ,τ = −â†k+q,σ,−τ âk′,σ′,τ ′ â
†
k′−q,σ′,−τ ′ âk,σ,τ

= −â†k+q,σ,−τ âk′,σ′,τ ′δσ,σ′δτ,−τ ′δk,k′−qΘ(k < kστF ) (B.14)

In the last equation, the Kroenecker functions appear by the fact that the hole created

by âk,σ,τ can only be filled by the creation operator â†k′−q,σ′,−τ ′ , as the other creation
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operator only operates in the other valley (−τ). This result can be plugged into the

expression for Epot,interΩ :

Epot,interΩ = −1

2

∑
q

V|K|
∑

(k,σ,τ)

∑
(k′,σ′,τ ′)

〈ΨΩ| â†k+q,σ,−τ âk′,σ′,τ ′δσ,σ′δτ,−τ ′δk,k′−q |ΨΩ〉Θ(k < kσ,τF )

= −1

2
V|K|

∑
(k,σ,τ)

∑
q

〈ΨΩ| â†k+q,σ,−τ âk+q,σ,−τ |ΨΩ〉Θ(k < kσ,τF )

= −1

2
V|K|

∑
(σ,τ)

∑
k,k′

〈ΨΩ| â†k′,σ,−τ âk′,σ,−τ |ΨΩ〉Θ(k < kσ,τF )

= −1

2
V|K|

∑
(σ,τ)

∑
k,k′

Θ(k′ < kσ,−τF )Θ(k < kσ,τF )

= −1

2
V|K|

∑
(σ,τ)

(
L2

π2

)2
kσ,−τF∫
0

dk′ 2πk′

kσ,τF∫
0

dk 2πk

Epot,interΩ = −1

2
V|K|

L4

π2

∑
(σ,τ)

[kσ,−τF ]2[kσ,τF ]2 = −2V|K|L
4
∑
σ,τ

nσ,−τnσ,τ (B.15)

B.4 Intravalley Coulomb term

Epot,intraΩ = 〈ΨΩ| Ĥ inter
pot |ΨΩ〉

Epot,intraΩ =
1

2

∑
q 6=0

∑
(k,σ,τ)

∑
(k′,σ′,τ ′)

Vq 〈ΨΩ| â†k+q,σ,τ â
†
k′−q,σ′,τ ′ âk′,σ′,τ ′ âk,σ,τ |ΨΩ〉 (B.16)

Let’s rewrite the term sandwiched between the brakets in an easier way: as q 6= 0,

â†k+q,σ,τ â
†
k′−q,σ′,τ ′ âk′,σ′,τ ′︸ ︷︷ ︸
swap (q 6=0)

âk,σ,τ = −â†k+q,σ,τ âk′,σ′,τ ′ â
†
k′−q,σ′,τ ′ âk,σ,τ︸ ︷︷ ︸

swap

= −â†k+q,σ,τ âk′,σ′,τ ′(δk,k′−qδσ′,σδτ,τ ′ − âk,σ,τ â
†
k′−q,σ′,τ ′︸ ︷︷ ︸

=0 (|k′−q|<kσ,τF )

) (B.17)
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Inserting the last expression in the expression for the intervalley potential energy yields

Epot,intraΩ = −1

2

∑
σ,τ

∑
(k,k′,k 6=k′)

Vk′−k 〈ΨΩ| â†k,σ,τ âk,σ,τ |ΨΩ〉Θ
(
|k′| < kσ,τF

)
(B.18)

Epot,intraΩ =
∑
σ,τ

−1

2

∑
(k,k′,k 6=k′)

Vk′−kΘ
(
|k| < kσ,τF

)
Θ
(
|k′| < kσ,τF

) (B.19)

The expression between brakets is the standard Coulomb potential term that also ap-

pears in semiconductors with a single band located at the Γ point. This term can be

computed in the 2D case, following Haug and Koch (Chapter 7.3)

Epot,intraΩ = −
∑
σ,τ

L2e2C

3πε0
(2πnσ,τ )3/2 (B.20)

where

C =
∑

l=0,2,...,∞

2

l + 2

[
1

2l

(
l

l/2

)]2

≈ 1.26 (B.21)

In the case of transition metal dichalcogenides, the Thomas-Fermi screening length

kTF = 2/a0 is on the order of the Brillouin zone size. The Coulomb potential for an

intravalley scattering is then essentially independent of the k vector. The Coulomb

matrix element Vk can be then replaced by VkTF . In such a case, the final result has the

same form as the intervalley exchange term:

Epot,intraΩ = −1

2
VkTF

L4

π2

∑
(σ,τ)

[kσ,τF ]2[kσ,τF ]2 = −2VkTFL
4
∑
σ,τ

n2
σ,τ (B.22)

B.5 Expression of the 2DEG as a function of carrier densities

Now that we have computed the different contributions to the total energy, we can put

them all together.

In the abscence of screening:

EΩ

L2
=
〈ΨΩ| Ĥ |ΨΩ〉

L2

=
∑
σ,τ

[[
2nσ,τ

(
∆σ

2
σ +

∆τ

2
τ

)
+ πn2

σ,τ

~2

m

]
− 2L2V|K|nσ,−τnσ,τ −

e2C

3πε0
(2πnσ,τ )3/2

]
(B.23)
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With screening:

EΩ

L2
=
∑
σ,τ

[[
2nσ,τ

(
∆σ

2
σ +

∆τ

2
τ

)
+ πn2

σ,τ

~2

m

]
− 2L2V|K|nσ,−τnσ,τ − 2L2VkTF

∑
σ,τ

n2
σ,τ

]
(B.24)

With kTF = 2/a0, noting that a0 = 4πε0εr~2
me2

V Intra
q =

e2

2ε0εrL2

1

q + kTF
=︸︷︷︸

q<<kTF

e2

2ε0εrL2

1

kTF
=

2π

L2

~2

2m
(B.25)

V Inter
K =

e2

2ε0εrL2

1

K + kTF
=︸︷︷︸

K= 4π
3a

4π

L2

~2

2m

3a/a0

4π + 6a/a0
(B.26)
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