edoc

Regulation of rat organic anion transporters in bile salt-induced cholestatic hepatitis: effect of ursodeoxycholate

Rost, Daniel and Herrmann, Thomas and Sauer, Peter and Schmidts, Hans-Ludwig and Stieger, Bruno and Meier, Peter J. and Stremmel, Wolfgang and Stiehl, Adolf. (2003) Regulation of rat organic anion transporters in bile salt-induced cholestatic hepatitis: effect of ursodeoxycholate. Hepatology, Vol. 38, No. 1. pp. 187-195.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261615

Downloads: Statistics Overview

Abstract

Hepatic uptake of organic anions, including bile salts, is mediated by members of the organic anion-transporting polypeptide (Oatp) family. In rat liver, Oatp1 (Slc21a1), Oatp2 (Slc21a5), and Oatp4 (Slca10) are expressed at the basolateral membrane of hepatocytes and may be differentially regulated under pathophysiologic conditions such as cholestasis. The aim of this study was to determine the effects of cholic acid (CA) and ursodeoxycholic acid (UDCA) on the expression of Oatp4 compared with Ntcp, Oatp1, and Oatp2. Wistar rats were fed with CA (0.5%) or both CA (0.5%) and UDCA (0.25%) for 3 weeks. Oatp expression was studied by Northern and Western blot analysis as well as immunofluorescence analysis. Transport function was compared measuring biliary secretion of (14)C-CA and (14)C-taurocholic acid (TCA). In CA-fed animals, biliary secretion of (14)C-CA and (14)C-TCA was markedly delayed over 40 minutes compared with controls. Accordingly, Oatp4 protein was significantly down-regulated in CA-fed animals together with Oatp1 and Ntcp. Cofeeding of CA plus UDCA prevented the impairment of (14)C-CA and (14)C-TCA secretion and the down-regulation of Oatp4. Oatp4 messenger RNA (mRNA) levels did not differ significantly between bile salt-fed groups, suggesting a posttranscriptional effect of CA on Oatp4 expression. In contrast to Oatp1 and Oatp4, Oatp2 protein expression was increased by CA feeding, indicating a differential regulation of Oatp transporters. In conclusion, we show that CA feeding may cause cholestasis associated with a posttranscriptional down-regulation of Oatp4. UDCA may prevent impairment of hepatic function by restoring hepatic transporter expression.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Meier-Abt, Peter J.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Saunders
ISSN:0270-9139
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:24
Deposited On:22 Mar 2012 13:37

Repository Staff Only: item control page