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Abstract

The X-ray image inspection of passenger baggage contributes substantially to aviation secu-
rity and is best understood as a search and decision task: Trained security officers — so called
screeners — search the images for threats among many harmless everyday objects, but the
recognition of objects in X-ray images and therefore the decision between threats and harmless
objects can be difficult. Because performance in this task depends on often difficult recognition,
it is not clear to what extent basic research on visual search can be generalized to X-ray image
inspection. Manuscript 1 of this thesis investigated whether X-ray image inspection and a tradi-
tional visual search task depend on the same visual-cognitive abilities. The results indicate that
traditional visual search tasks and X-ray image inspection depend on different aspects of com-
mon visual-cognitive abilities. Another gap between basic research on visual search and applied
research on X-ray image inspection is that the former is typically conducted with students and
the latter with professional screeners. Therefore, these two populations were compared, reveal-
ing that professionals performed better in X-ray image inspection, but not the visual search task.
However, there was no difference between students and professionals regarding the im-
portance of the visual-cognitive abilities for either task.

Because there is some freedom in the decision whether a suspicious object should be de-
clared as a threat or as harmless, the results of X-ray image inspection in terms of hit and false
alarm rate depend on the screeners’ response tendency. Manuscript 2 evaluated whether three
commonly used detection measures — d', A', and d, — are a valid representation of detection
performance that is independent from response tendency. The results were consistently in favor
of d, with a slope parameter of around 0.6. In Manuscript 3 it was further shown that screeners
can change their response tendency to increase the detection of novel threats. Also, screeners
with a high ability to recognize everyday objects detected more novel threats when their re-

sponse tendency was manipulated.
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The thesis further addressed changes that screeners face due to technological develop-
ments. Manuscript 4 showed that screeners can inspect X-ray images for one hour straight with-
out a decrease in performance under conditions of remote cabin baggage screening, which
means that X-ray image inspection is performed in a quiet room remote from the checkpoint.
These screeners did not show a lower performance, but reported more distress, compared to
screeners who took a 10 min break after every 20 min of screening.

Manuscript 5 evaluated detection systems for cabin baggage screening (EDSCB). EDSCB
only increased the detection of improvised explosive devices (IEDs) for inexperienced screen-
ers if alarms by the EDSCB were indicated on the image and the screeners had to decide
whether a threat was present or not. The detection of mere explosives, which lack the triggering
device of IEDs, was only increased if the screeners could not decide against an alarm by the
EDSCB. Manuscript 6 used discrete event simulation to evaluate how EDSCB impacts the
throughput of passenger baggage screening. Throughput decreased with increasing false alarm
rate of the EDSCB. However, fast alarm resolution processes and screeners with a low false
alarm rate increased throughput.

Taken together, the present findings contribute to understanding X-ray image inspection as a
task with a search and decision component. The findings provide insights into basic aspects like
the required visual-cognitive abilities and valid measures of detection performance, but also into
applied research questions like for how long X-ray image inspection can be performed and how

automation can assist with the detection of explosives.
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Introduction

The screening of passenger baggage is a crucial element in aviation security and it is typi-
cally done by recording X-ray images of the baggage, which are then analyzed by security offic-
ers (screeners). This screening is not a trivial task and mistakes can have fatal consequences.
The terrorist attacks of 11 September 2001 painfully brought these consequences to public
awareness and as a result a growing body of research on X-ray image inspection of passenger
baggage emerged (for recent reviews see for example Biggs, Kramer, & Mitroff, 2018; Biggs &
Mitroff, 2015). When inspecting X-ray images, screeners search for prohibited items among
many harmless everyday objects. In that sense, X-ray image inspection might be seen as visual
search task: the act of looking for targets amongst an array of distractors (e.g. Treisman &
Gelade, 1980). When visual search aims at finding familiar targets, it relies on object recognition
(Wolfe, 1998). Compared to other visual search tasks, performance in X-ray image inspection
might depend even more strongly on object recognition. The recognition of objects in our every-
day life is often effortless and almost always accurate (Kosslyn, 1980). In an X-ray image, the
color and transparency of objects depend on the effective atomic number and material density
(Singh & Singh, 2003). Therefore, objects can look very different in an X-ray image compared to
everyday life (Halbherr, Schwaninger, Budgell, & Wales, 2013). In addition, some of the threat
items are not known from everyday life (e.g. an improvised explosive device, IED) and other
threat items can look similar to harmless objects (e.g. a knive can resemble a pen;
Schwaninger, 2005). Objects in X-ray images of passenger bags are therefore more ambiguous
and difficult to detect for untrained individuals (Halbherr et al., 2013; Koller, Hardmeier, Michel,
& Schwaninger, 2008). Because performance in X-ray image inspection depends heavily on the
recognition of ambiguous targets, it is better described as consisting of a search component and
a decision component that comprises the decision whether a target object is a threat or harm-
less, which includes recognition processes (Koller, Drury, & Schwaninger, 2009; Wales,

Anderson, Jones, Schwaninger, & Horne, 2009).
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Considering that performance in X-ray image detection likely depends more strongly on the
recognition of ambiguous objects, it is not clear to what extent the vast body of research on tra-
ditional visual search generalizes to X-ray image inspection (for reviews see e.g. Carrasco,
2011, 2014, 2018; Chan & Hayward, 2013; Eckstein, 2011; Humphreys & Mavritsaki, 2012;
Nakayama & Martini, 2011). In Manuscript 1, we therefore investigated whether traditional vis-
ual search and X-ray image inspection rely on the same visual-cognitive abilities. To this end,
potentially relevant visual-cognitive abilities were derived from the literature and it was investi-
gated whether these abilities are comparably relevant for X-ray image inspection and a tradi-
tional visual search task. Research on traditional visual search is typically conducted with stu-
dent samples, whereas participants in research on X-ray image inspection are mostly profes-
sionals. Therefore, the study of Manuscript 1 was conducted with students and professionals to
allow a direct comparison.

Early psychophysical experiments that investigated the detection of weak auditory or visual
signals encountered a challenge: How study participants responded did not only depend on
sensory factors, but also on their decision process (Green & Swets, 1966). Under the term of
signal detection theory (SDT), Green and Swets (1966) established a theoretical foundation with
methods to conduct experiments and analyze data that aimed at separating detection perfor-
mance and response tendency. Since then, SDT has been extended and broadly applied to
problems beyond psychophysics (Macmillan & Creelman, 2005). Also X-ray image inspection
includes a decision component and screeners can shift their response tendency, i.e. they can
change the frequency of target present responses in relation to target absent responses.
Thereby, they unidirectionally change their hit rate and false alarm rate. This can make it difficult
to compare the performance between individuals, groups, or conditions that have different re-
sponse tendencies, which is not unlikely when evaluating different conditions of X-ray image in-
spection (e.g. Hattenschwiler, Merks, & Schwaninger, 2018). It seems plausible that study par-
ticipants can feel less confident in their decisions when they are tested with images or technol-

ogy that are unfamiliar. Such a change in confidence can affect response tendency. In addition,
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other factors like the relative frequency with which targets occur — the target prevalence — and
the respective cost of hits and false alarms can have an impact (Macmillan & Creelman, 2005).
Performance in X-ray image inspection is therefore often compared based on detection
measures that are supposed to be independent of response tendency, like d'or A’ (e.g.,
Brunstein & Gonzalez, 2011; Halbherr, Schwaninger, Budgell, & Wales, 2013; Ishibashi, Kita, &
Wolfe, 2012; Madhavan, Gonzalez, & Lacson, 2007; Mendes, Schwaninger, & Michel, 2013;
Menneer, Donnelly, Godwin, & Cave, 2010; Rusconi, Ferri, Viding, & Mitchener-Nissen, 2015;
Schwaninger, Hardmeier, Riegelnig, & Martin, 2010; Yu & Wu, 2015). However, several studies
raise doubt on the validity of d"and A’ (Godwin, Menneer, Cave, & Donnelly, 2010; Hofer &
Schwaninger, 2004; Van Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van Wert, 2010). We in-
vestigated the validity of these detection measures with two experiments in Manuscript 2 and
one experiment in Manuscript 4.

That response tendency can shift could also be useful for practical purposes. If screeners
can willingly shift their response tendency, they could e.g. inspect the baggage of high-risk pas-
sengers more thoroughly. It could also be useful for detecting novel threats. Maybe screeners
are able to shift their response tendency to a point where bags are only declared as harmless if
the screener is certain that the bag only contains harmless everyday objects. How effective
such an inspection strategy is, likely depends on a screener’s ability to recognize everyday ob-
jects. Manuscript 3 therefore investigated how well screeners can detect known and novel
threats by applying different inspection strategies. It was further investigated how performance
depends on the ability to recognize everyday objects in X-ray images and whether an e-learning
module could assist with the application of the new inspection strategy.

As described above, Manuscript 4 built upon Manuscript 3 and also investigated the validity
of detection measures. To change response tendency, the share of images that contain threats
— the target prevalence — was manipulated (compare e.g. Macmillan & Creelman, 2005; Wolfe
et al., 2007)Manuscript 4 further investigated a research question that has become more promi-

nent because of technological developments in the screening of passenger baggage: the effect
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of time on task and breaks on screening performance. More and more airports pool X-ray im-
ages on servers and then redistribute them to screeners in order to increase capacity and re-
duce cost (Kuhn, 2017). Removing the one-to-one relationship between machine and screeners
also created the option to conduct the X-ray image inspection remotely from the checkpoint in a
separate office. This so called remote cabin baggage screening (RCBS) has the potential ad-
vantage of reduced distractions and noise, but isolates the screeners from their team members
who work the other positions of the airport security checkpoint (instructing passengers on how
to load trays, manually searching bags, etc.). This does not only limit communication, but also
makes it more difficult to rotate from the screening position to other positions — which currently
takes place every 20 min at most European airports because the screening duration is regu-
lated to this limit (Commission Implementing Regulation [EU], 2015/1998). It is still unclear how
the work should be optimally designed with RCBS. It is also unclear whether regulation should
constrain the options of work design by limiting screening to 20 min. This limit is likely based on
research into vigilance (personal communication with airport security expert, fall 2017), for
which many studies have revealed decreases in vigilance within the first 15—-30 min of the task
(Mackworth, 1948; Nuechterlein et al., 1983). Manuscript 4 therefore investigated in an experi-
ment how performance in X-ray image inspection develops over 60 min. Thereby, one group of
participants had a 10-min break every 20-min according to current EU regulation (Commission
Implementing Regulation [EU], 2015/1998) and each participant completed the task twice with
different levels of target prevalence.

IEDs are one of the biggest concerns for aviation security (Baum, 2016; Novakoff, 1993;
Singh & Singh, 2003). A fully functional IED consists of triggering device, a power source, and a
detonator, which are typically connected by wires, plus explosive material (Wells & Bradley,
2012). Through training, screeners can learn to recognize these components and thereby
achieve a high detection of IEDs (e.g. Halbherr et al., 2013; Koller et al., 2008). Bare explo-
sives, however, lack these distinctive features and often look like harmless organic mass

(Jones, 2003), which makes them more difficult to detect. To assist with the detection of IEDs
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and explosives, so called explosive detection systems for cabin baggage (EDSCB) have been
developed. EDSCB use high and low energy X-ray from different angles to estimate the effec-
tive atomic number and material density at each location within the bag and match it against
these attributes from explosives (Singh & Singh, 2003). A difficulty with EDSCB is that it gener-
ates a high number of false alarms (15-20% according to personal communication with EDSCB
experts, summer 2016) and it is unclear how to best resolve them. One option is that the
screener is informed about an alarm and then has to decide whether a bag contains a threat or
not. Thereby, a “cry wolf” effect might occur with operators ignoring system warnings due to
many false alarms and only few hits, as it has been found in other domains (Breznitz, 1983;
Bliss, 2003). EDSCB could alternatively be implemented with a higher level of automation by
automatically diverting all bags that trigger an alarm to secondary search. Whereas this elimi-
nates the potential problem of a cry wolf effect, a secondary search has to be conducted for
each false alarm by the EDSCB, which usually consists of a manual search or explosives trace
detection (ETD). Manuscript 5 therefore evaluated two different levels of automation for
EDSCB: on-screen alarm resolution and automated decision. Familiarity with automation can
affect how people interact with it (Parasuraman, Sheridan, & Wickens, 2000; Sauer, Chavaillaz,
& Wastell, 2016; Strauch, 2017). Whereas participants of the first experiment were not familiar
with automation aids, the second experiment was conducted with participants that were. Fur-
thermore, the selection of an optimal level of automation depends on human performance
(Parasuraman et al., 2000) and screener performance depends on job experience (Halbherr et
al., 2013). The second experiment therefore also took job experience into account.

The question of how to implement EDSCB not only concerns detection performance, but also
how the throughput of checkpoints is affected by the false alarms of the EDSCB. Manuscript 6
therefore used discrete event simulation to investigate how EDSCB with automated decision af-
fects throughput depending on the false alarm rate of the EDSCB, the false alarm rate of the

screener, and the duration of alarm resolution with explosives trace detection (ETD). It was also
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evaluated how an additional security officer and the screener helping with secondary search

would affect the impact of the EDSCB.

12
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Manuscript 1: Traditional visual search versus X-ray image inspection in students and

professionals: Are the same visual-cognitive abilities needed?

Motivation and aim of the study. Visual search, i.e. the act of looking for targets amongst
an array of distractors is a cognitive task that has been studied extensively over several dec-
ades (for reviews see e.g. Carrasco, 2011, 2014, 2018; Chan & Hayward, 2013; Eckstein, 2011;
Humphreys & Mavritsaki, 2012; Nakayama & Martini, 2011) and has many real-world applica-
tions. Research shows that specific visual-cognitive abilities are needed to efficiently and effec-
tively locate a target among distractors. It is, however, not clear whether the results from such
traditional, simplified visual search tasks extrapolate to real-world inspection tasks in which pro-
fessionals search for targets that are more complex, ambiguous, and/or less salient (e.g. Biggs
& Mitroff, 2015; Radvansky & Ashcraft, 2016).

A known example of a traditional visual search task that has been studied in many variations
is the L/T-letter search task, in which participants are e.g. asked to identify the perfectly shaped
letter T (target) surrounded by many distractor letters including Ls and symmetrical and asym-
metrical Ts (a so called conjunction search task; Treisman & Gelade, 1980). In professional,
real world search tasks like X-ray image inspection, searchers must use their prior knowledge in
order to accurately and efficiently locate more ambiguous targets (Wolfe, Cain, & Aizenman,
2019) such as guns and knives or cancer cells and so forth among distractors with much more
complex features compared to a traditional conjunction search task. As mentioned above,
searching for familiar targets relies on object recognition (Wolfe, 1998). Here, top-down pro-
cessing allows searchers to more efficiently identify targets with greater complexity (Zhaoping &
Frith, 2011). X-ray image inspection is therefore best described as a search and decision task
(Koller et al., 2009; Spitz & Drury, 1978) that relies more heavily on the decision component
compared to traditional search tasks with unambiguous targets. Nonetheless, visual search with
complex objects is assumed to rely on the same active scanning processes as conjunction

search (e.g. L/T-letter search task) with less complex, contrived laboratory stimuli (Alexander &



HUMAN FACTORS IN X-RAY IMAGE INSPECTION 16

Zelinsky, 2011, 2012). The partial overlap between professional and laboratory search tasks
raises the question whether they rely on the same visual cognitive abilities and whether findings
can be easily transferred from traditional visual search to X-ray image inspection.

Today, the Cattell-Horn—Carroll theory (CHC) is widely accepted as a comprehensive and
empirically supported theory on the structure of human cognitive abilities, and it informs a sub-
stantial body of research (McGrew, 2005). CHC differentiates between three hierarchical strata
of abilities. Visual processing (Gv), short-term memory (Gsm), and processing speed (Gs) are
Stratum Il abilities that are accepted components with a known influence on visual search per-
formance. Visual processing (Gv) describes a broad ability to perceive, analyze, synthesize,
and think in visual patterns, including the ability to store and recall visual representations. Short-
term memory (Gsm) is characterized as the ability to apprehend and hold information in immedi-
ate awareness and then perform a set of cognitive operations on this information within a few
seconds. Because analyzing, synthesizing, and thinking in visual patterns are also cognitive op-
erations, Gv and Gsm are closely related, but can be distinguished by the limited capacity of
short-term memory. Processing speed (Gs) describes the ability to quickly and accurately per-
ceive visual details, similarities, and differences.

Several studies have confirmed the influence of higher scores in Gv, Gsm, and Gs on better
performance in traditional visual search tasks (Alvarez & Cavanagh, 2004; Eriksen & Schultz,
1979). Comparable cognitive abilities have also been linked to X-ray image inspection of profes-
sionals (Bolfing & Schwaninger, 2009; Hardmeier, Hofer, & Schwaninger, 2005; Hardmeier &
Schwaninger, 2008; Wolfe, Oliva, Horowitz, Butcher, & Bompas, 2002) or visual inspection in
general (e.g. Lavie & De Fockert, 2005; Poole & Kane, 2009; Roper, Cosman, & Vecera, 2013).
However, a direct comparison between the visual-cognitive abilities needed for traditional and
professional visual search is difficult to draw from these findings, because they are based on dif-
ferent tests.

When adopting findings from traditional visual search tasks for professional X-ray image in-

spection, also the different populations have to be considered. University students are usually
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the first choice as participants for traditional visual search research (Clark, Cain, Adamo, &
Mitroff, 2012). On the other hand, professional searchers are selected and trained to perform
well in the inspection tasks they perform (Commission Implementing Regulation [EU],
2015/1998; Halbherr et al., 2013).

The goal of the study was to compare influence of Gv, Gsm, and Gs on performance be-

tween traditional and professional visual search tasks and between students and professionals.

Method. 128 students (age: M = 25.7, SD = 6.4; 74% female) and 112 professional screen-
ers (age: M =43.7, SD = 11.9; 55% female) completed 10 standardized test scales from estab-
lished intelligence tests based on the CHC theory of intelligence (Carroll, 1993, 2003; Cattell,
1941; Horn, 1965; a more detailed description of the scales can be found in the manuscript) to
measure Gv, Gsm, and Gs. In addition, they also completed the Raven Standard Progressive
Matrices Plus (SPM), a language-independent test of fluid intelligence (Raven, Raven, & Court,
2003). All tests were computer-based. Afterwards, participants completed the L/T-letter search
task. In line with Biggs, Cain, Clark, Darling, and Mitroff (2013), the test had an increasing diffi-
culty level and a search and decision component.

In a second session about two weeks later, participants completed an X-ray image inspection
task that was designed to be solvable by people without domain-specific knowledge. The test
included 256 black-and-white X-ray images, one-half containing a threat item. As threats, guns
and knives with common shapes were used. In each trial, an X-ray image of a piece of luggage
was presented for a maximum of 4 s.

Results. In a first step, a confirmatory factor analysis was conducted to confirm the CHC-
model structure of the visual-cognitive abilities. The overall model fit was good with Chi?(32) =
56.56, p =.005, CFl =.961, TLI = .946 and RMSEA = .036. The fit remained good when tested
for each population separately. The correlation between the factors Gs and Gsm (r=0.65, p <
.001), as well as between Gs and Gv (r = .53 p <.001) was moderate, whereas there was a

strong correlation between Gsm and Gv (r = .83, p <.001).
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In a next step, we calculated multiple linear regression analyses to predict detection perfor-
mance on the L/T-letter search task and the X based on the z-standardized summarized scale
scores of Gv, Gsm, and Gs and group (students vs. professionals; see Table 1). For the perfor-
mance of the L/T-letter search task, d’' was used, for the performance of the X-ray image inspec-
tion task, analyses are reported as d,, which is more appropriate for X-ray image inspection of
passenger bags (as will be shown in Manuscript 2 and 4, and has been suggested by other
studies; Godwin, Menneer, Cave, & Donnelly, 2010; Wolfe et al., 2007; Wolfe & Van Wert,
2010). However, all analyses were also repeated with d' without resulting in meaningful differ-
ences. The analyses revealed a significant effect of Gv on performance in the L/T-letter search
task and the X-ray inspection task and of Gsm on the X-ray image inspection task (see Table
1). The analyses further revealed no moderation effect of group (students vs. professionals),
F(3, 232) = 1.83, p = .143. Furthermore, we found strong evidence against the moderation
model using the Bayes Factor (BF1o = 90.9). A mediation analysis revealed that only a small
part of the effect of Gsm and Gv on the X-ray inspection task was mediated by the L/T-letter
search task, which means that different aspects of Gsm seem to be relevant for each of the two

tasks.
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Table 1

Multiple Linear Regression Analyses and Mediation Model for Detection Performance

(Baezsic Model LT Task (d') X-ray Inspection Task (d,)

8 SE(®) valul; valug- B SE(®) valute- valug-
zGs -.013 .078 -0.164 .870 -.039 .044 -0.893 .373
zGsm 119 .079 1.513 132 104 .044 2.348 .019*
zGv .299 .078 3.83 .000 195 .044 4.463 .000
zGroup .029 .070 -0.416 .678 -.834 .039 -21.37 .000
adj. R? 126 726
f\ﬁ())deration Model

B SE(®) valul; vaIuIeJ:- B SE(®) valug vaIuIeJ)-
zGs -.018 .079 -0.223 .823 -.03 .044 -0.675 .501
zGsm 27 .080 1.567 119 113 .045 2.533 .012*
zGv .286 .082 3.504 .001 190 .045 4.132 .000
zGroup -.028 .070 -0.4 .700 -.835 .040 21 .4-58 .000
zGs*zGroup -.030 .079 -0.378 .705 .064 .044 1.461 145
zGsm*Group .036 .080 0.451 .652 .064 .045 1.426 155
zGv*Group -.034 .080 -0.418 .676 -.054 .045 -1.206 229
adj. R? 17 .730
F\%diation Model B SE®) valuz valug-
zLT da A3 .04 35 .000
zGs -.04 .044 -0.88 .382
zGsm .09 .044 2.05 .042*
zGv .16 .044 3.58 .000
zGroup -.83 .044 -21.77 .000
adj. R? 740

Conclusion. We investigated whether the same visual cognitive abilities predict performance
in students and professionals performing two tasks: a traditional visual search task—the L/T-let-
ter search task—and an X-ray image inspection task. We tested students and professionals on
three known facets of visual-cognitive abilities: visual processing (Gv), short-term memory

(Gsm), and processing speed (Gs). Visual processing (Gv) was a predictor of performance for
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both tasks. This result is in accordance with earlier studies showing a correlation between per-
formance and visual processing for traditional visual search and an influence of mental rotation
and figure-ground segregation on higher performance in X-ray screening (Bolfing &
Schwaninger, 2009; Wolfe et al., 2002), which are narrow abilities of visual processing (Gv).
However, our results showed that different aspects of visual processing explain variance in the
traditional visual search task and the X-ray image inspection task. Possible reasons are that tar-
gets in the traditional visual search task (Ls and Ts) have salient shapes, whereas targets (guns
and knives) and distractors in the X-ray image inspection task are not salient and may addition-
ally produce clutter and superposition. Short term memory (Gsm) was a significant predictor of
X-ray image inspection performance, but not for the traditional visual search task. However, the
standardized coefficient for Gsm was not smaller for the L/T-letter search task, but it did not
reach significance as a predictor for the L/T-letter search task (due to larger standard errors)
and its relevance for that task is therefore unclear.

For both groups, visual-cognitive abilities were comparably relevant for their performance on
the traditional visual search task and the X-ray image inspection task. However, professionals
outperformed students on the X-ray image inspection task. Because the relevance of the visual-
cognitive abilities tested in this study proved to be independent of the population and they had
similar levels of visual-cognitive abilities, the higher detection performance of the professionals
in the X-ray image inspection task cannot be explained by differences in visual-cognitive abili-
ties. Such a difference could be due to the selection of the security personnel or, more likely, job
experience and training. Objects possibly need fewer recognized features in order to be identi-
fied successfully (Koller et al., 2009), and features are known and recognized better and faster
with repeated exposure (Halbherr et al., 2013; Koller et al., 2009, 2008; McCarley, Kramer,
Wickens, Vidoni, & Boot, 2004).

In summary, the study implies that X-ray image inspection and traditional visual search tasks
both depend on visual-cognitive abilities, but not on the same aspects of those. Future studies

with more statistical power should investigate the difference on the level of narrow abilities.
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Also, the amount of variance in visual search performance explained by the investigated visual
cognitive abilities suggests the presence of other predictors of performance, which should be

investigated in the future.
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Manuscript 2: Detection Measures for Visual Inspection of X-ray Images of Passenger

Baggage

Motivation and aim of the study. The most direct way to assess detection performance in
X-ray image inspection is to calculate the hit rate and the false alarm rate. However, the hit and
false alarm rate change unidirectionally when the response tendency changes (Green & Swets,
1966; Macmillan & Creelman, 2005). To analyze detection performance independently from re-
sponse tendency, researchers often use detection measures like d'and A’ that are calculated
from the hit and false alarm rate (e.g., Brunstein & Gonzalez, 2011; Halbherr, Schwaninger,
Budgell, & Wales, 2013; Ishibashi, Kita, & Wolfe, 2012; Madhavan, Gonzalez, & Lacson, 2007;
Mendes, Schwaninger, & Michel, 2013; Menneer, Donnelly, Godwin, & Cave, 2010; Rusconi,
Ferri, Viding, & Mitchener-Nissen, 2015; Schwaninger, Hardmeier, Riegelnig, & Martin, 2010;
Yu & Wu, 2015). Each of these detection measures imply a specific so called receiver operating
characteristic (ROC) curve: the pairs of hit rate and false alarm rate values that keep the detec-
tion measure constant. Previous studies that looked into the effect of target prevalence (the
share of target images) on the performance in X-ray image inspection suggest that d'is actually
not independent of response tendency (Godwin, Menneer, Cave, & Donnelly, 2010; Hofer &
Schwaninger, 2004; Van Wert, Horowitz, & Wolfe, 2009; Wolfe et al., 2007; Wolfe & Van Wert,
2010), instead d, (Simpson & Fitter, 1973) with a slope parameter of 0.6 seems more valid. In
terms of signal detection theory, d. assumes that the noise and the signal-plus-noise distribution
are of unequal variance, whereas both d'and A’ are symmetric—any point (HR,, FAR,) leads to
the same value of d"and A'as (1 — HR,, 1 — FAR,)—which implies equal variance (Macmillan &
Creelman, 2005).

The aim of our study was to investigate the validity of the detection measures d', A', and d,
and to derive recommendations on how to calculate detection performance in future studies on

X-ray image inspection. We explored this using two experiments, in which professional X-ray
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screeners completed a simulated X-ray baggage inspection task. In the first experiment, re-
sponse tendency (criterion) was manipulated through instruction to test whether it affected the
detection measures. The experiment included targets that were known from training and targets
that were novel, which resulted in two levels of sensitivity. In the second experiment, the partici-
pants provided confidence ratings that were used to investigate whether the ROC curves are
approximately linear in zZROC space (i.e. when the hit and false alarm rate are transformed with
the inverse of the cumulative distribution function of the standard normal distribution), as as-
sumed by both d' and d,, and to estimate the zZROC slope.

Method of Experiment 1. A total of 31 professional screeners (20 females, between 26 and
61 years old, M =45.4, SD = 8.9, between 2 and 26 years of work experience, M = 8.4, SD =
5.5) from an international airport participated in this experiment. The experiment used a 2 x 2
design with two instructions to manipulate response tendency (normal decision vs. liberal deci-
sion) and with two levels of task difficulty (targets known from training vs. novel target items) as
within-subject factors. Dependent variables were HR, FAR, d', d, with a slope parameter of 0.6,
A', Aq (a detection measure derived from confidence ratings), response times, and eye-tracking
data.

The participants completed an X-ray image interpretation test that consisted of 128 X-ray im-
ages of passenger bags, 64 of which contained one prohibited item: 16 X-ray images contained
a gun, 16 images a knife, 16 images an IED, and 16 images contained other prohibited items.
For each category, half the images were known to the screeners from their computer based
training. For eye tracking, we used an SMI RED-m eye tracker with a gaze sample rate of 120
Hz, gaze position accuracy of 0.5°, and spatial resolution of 0.1°. For half the test, participants
were instructed to inspect (i.e., search and decide) the image as if they were working at a
checkpoint (normal decision). For the other half, they were instructed to visually analyze each
object in the X-ray image and decide that the bag was harmless only if each object in the image

could be recognized as harmless (liberal decision). Participants then had to inspect each image
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and decide whether its content was harmless or not by pressing a key, and then had to give a
confidence rating on a 10-point scale ranging from 1 (very unconfident) to 10 (very confident).
Results of Experiment 1. A manipulation check revealed that 10 of the participants did not
even show a small increase in the rejection rate (i.e., increase smaller than a Cohen's d of
0.20). Because we were interested in whether the detection measures change when partici-
pants change their response tendency (and not how successfully we could induce such a
change), we excluded participants that did not change their rejection rate from further analysis.
Table 2 shows the dependent variables and effect sizes for known and novel threats and the
two decision conditions. Exact permutation tests revealed a significantly lower d' in the liberal
decision condition for both known (p = .041) and novel (p = .002) targets. Moreover, A’ was sig-
nificantly lower for both known (p = .034) and novel (p = .017) targets. For both d, (known tar-
gets: p =.714, novel targets: p = .383) and A, (known targets: p = .322, novel targets: p = .750),
differences did not attain significance. For both target-present and target-absent trials, permuta-
tion tests indicated a higher response times for liberal decision compared to normal decision
and (target-present trials: p = .004, target-absent trials: p < .001). The proportion of target trials,
where participants fixated the target — an indicator for search errors (McCarley, 2009; Rich et
al., 2008) — did not differ significantly between liberal decision and normal decision.
Conclusion Experiment 1. In line with studies that manipulated target prevalence (Godwin,
Menneer, Cave, & Donnelly, 2010; Wolfe et al., 2007; Wolfe & Van Wert, 2010) our results
showed a decrease in d'and A’ when participants were instructed to decide more liberally. This
decrease is unlikely to be an actual decrease in detection performance but rather in response
tendency, as suggested by the increased response times (in line with the argumentation of
Wolfe et al., 2007) and by the eye-tracking data, which did not indicate changes in search errors

(in line with the argumentation of McCarley, 2009; Rich et al., 2008).
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Table 2
Mean (SD) of the Normal and Liberal Decision Condition and the Effect Size (Standardized Dif-
ference) of the Decision Condition for Hit Rate (HR), False Alarm Rate (FAR), and Detection

Measures d', A’, da, and Ag

Decision condition HR FAR d' da A Ag

Known targets

Normal decision 79(10)  .09(.08) 2.25(0.61) 2.03(0.57)  .916 (.044)  .894 (.072)
Liberal decision 90(.10)  .25(13)  2.01(0.58) 2.08(0.61)  .899(.049)  .906 (.073)
Effect size -0.40 -0.08 -0.42 0.23

Novel targets

Normal decision .58 (0.14) .09 (.08) 1.63 (0.41) 1.28 (0.38) .851 (.040) .799 (.082)
Liberal decision .71 (0.13)  .25(.13) 1.27 (0.44) 1.19 (0.43) .817 (.074) .793 (.076)
Effect size -0.70 -0.19 -0.50 -0.07

Method Experiment 2. In Experiment 1, we calculated d', A’, and d,, for which we set the
slope to 0.6 based on previous findings (Godwin, Menneer, Cave, & Donnelly, 2010; Wolfe et
al., 2007; Wolfe & Van Wert, 2010). d, was found to be a more valid detection measure than o'
and A'. However, Experiment 1 did not allow for a precise estimation of the slope parameter.
Further, 10 of the participants were excluded because they failed the manipulation check, which
might have biased the sample. Experiment 2 was therefore intended to provide a more precise
estimation of the slope parameter and to further investigate the validity of detection measures
using another methodological approach: multiple ROC points were obtained by analyzing confi-
dence ratings. Therefore, 124 professional screeners (68 female; between 22 and 64 years old,
M =443, SD = 11.2, one participant did not report his/her age; up to 29 years of work experi-
ence, M=7.1, SD = 5.6, seven participants did not report their work experience) completed an
X-ray image inspection task. The task consisted of 128 X-ray images of real passenger bags,

half of which contained a prohibited item: 16 images contained a gun, 16 a knife, 16 an IED,
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and 16 explosive material. For each image, participants had to press a key to decide whether
the bag was harmless or not, and they then had to assign a confidence rating on a 5-point scale
ranging from 1 (very unconfident) to 5 (very confident).

Results Experiment 2. The averaged zROC curves displayed in Figure 1 seem to better fit
the zROC curve predicted by d, than those predicted by d'or A'. Individual slope parameters
(i.e. angles of incline) estimated using the LABROC3 algorithm (Metz, Herman, & Shen, 1998)

show a mean of 0.54 (95%-BCa-CI [0.50, 0.60]) and median of 0.50 (95%-BCa-Cl [0.46, 0.55]).
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Figure 1. Individual (grey; jittered) and pooled (black) empirical zZROC curves, the lines corre-

sponding to the mean A’, d', and d. with a slope of 0.6, and the chance line (dashed).

General conclusion. To investigate the validity of two detection measures commonly used

in visual search and decision tasks such as X-ray image inspection, we conducted two studies
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with different methodological approaches. Experiment 1 manipulated the criterion by direct in-
struction, whereas Experiment 2 used confidence ratings to generate multiple ROC points. For
both studies, d"and A’ were found to be invalid detection measures: they would have wrongly
indicated lower sensitivity for a more liberal decision criterion.

In our experiments, the slope parameter was around 0.5-0.6, which corresponds well to the
findings in other experiments that investigated the X-ray baggage inspection task (Godwin,
Menneer, Cave, & Donnelly, 2010; Wolfe et al., 2007; Wolfe & Van Wert, 2010). However, one
should be cautious to always adopt d, with a slope of 0.5-0.6 for any X-ray baggage inspection
or other visual search task. For low sensitivity, a non-unit slope zZROC implies that the ROC
curve falls meaningfully below chance performance (Macmillan & Creelman, 2005, p. 68).
Therefore, the slope parameter is likely higher for low levels of sensitivity.

To better understand what factors influence the slope parameter, a better understanding of
the inspection process is needed. From the perspective of Gaussian SDT, a zROC slope
smaller than one implies that the signal-plus-noise distribution has a higher standard deviation
than the noise distribution. A possible explanation for this is that prohibited items can vary
strongly in how well they can be recognized, for example, depending on item category (Halbherr
et al., 2013; Koller et al., 2009) and the exemplar within categories (Bolfing, Halbherr, &
Schwaninger, 2008; Schwaninger et al., 2007). The SDT framework might have to be extended
to provide a better model of the visual inspection process, e.g. by assuming a sequence of deci-
sions for single items within the image with both a decision and a quitting threshold (Koller et al.,
2009; Wales, Anderson, et al., 2009; Wolfe & Van Wert, 2010).

In conclusion, X-ray image inspection research and related domains will have to be cautious
when using one-point estimates of sensitivity such as d'and A'. We recommend always starting
by performing an analysis and discussion of the directly accessible HR and FAR. For the use of
detection measures, it should be considered that the zZROC slope can be expected to lie some-

where between 0.5 and 1 for X-ray baggage inspection tasks. With d,, effects on sensitivity can
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be estimated for these two slopes separately to test the two limits of the assumption of constant

sensitivity (where the upper limit with a zZROC slope of one corresponds to d’).
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Manuscript 3: Relevance of Visual Inspection Strategy and Knowledge about Everyday

Objects for X-Ray Baggage Screening

Motivation and aim of the study. In order to effectively inspect X-ray images for prohibited
items, security personnel need to know which items are prohibited and what they look like in X-
ray images (Halbherr et al., 2013; Koller et al., 2009, 2008). Knowing what everyday objects
look like in X-ray images could further facilitate the differentiation between harmless and prohib-
ited items. (Hattenschwiler, Michel, Kuhn, Ritzmann, & Schwaninger, 2015) revealed a negative
correlation between everyday object knowledge measured in an X-ray object categorization and
naming test and false alarm rate in an X-ray baggage screening task. An intuitive explanation of
this result could be that once an item is identified as harmless, it can no longer be mistaken for
a threat item and thereby not result in a false alarm. This assumption implies that screeners
search an X-ray image and decide for one object after another whether it is harmless or not (for
a description of such a model see e.g. Spitz & Drury, 1978; Wales, Anderson, et al., 2009;
Wolfe & Van Wert, 2010).

Knowledge about everyday objects could be especially relevant for the detection of prohib-
ited items that the screeners have never seen before. Since they lack the knowledge about their
appearance (knowledge based factors), such novel prohibited items are harder to detect, when
they less resemble known prohibited items. It is possible that screeners with good knowledge
about everyday objects can detect novel prohibited items by an exclusion principle: They could
only declare a bag as harmless if all contained objects are identified as harmless everyday ob-
jects, which in terms of SDT means to shift the response tendency, i.e. to apply a liberal deci-
sion criterion. If screeners can successfully be instructed to apply such a liberal decision crite-
rion, this could allow for interesting practical applications, e.g. for increased effectiveness when
screening bags of high-risk passengers. Our study therefore investigated whether such a
search strategy can be instructed and/or trained and how performance relates to the knowledge

of everyday objects.
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Method. The experiment used a mixed factorial design with two differently instructed inspec-
tion strategies (normal decision vs. liberal decision) as within-subjects factor and training of a
new inspection instruction (short e-learning module vs. instruction only) as between-subjects
factor. 31 professional screeners (64.5% female; between 26 and 61 years old, M = 45.4,

SD = 8.9; between 2 and 26 years of work experience, M = 8.4, SD = 5.5) were each tested
twice. At the first test date, all screeners completed three pre-tests: a test on the ability to recog-
nize everyday objects, the X-Ray CAT (Koller & Schwaninger, 2006), and X-Ray ORT
(Hardmeier, Hofer, & Schwaninger, 2006). The test on the ability to recognize everyday objects
consisted of 32 X-Ray images of cabin baggage. In each image, three objects per bag were
marked with a red frame and had to be named by typing their name into a textbox. At the sec-
ond test date, participants were divided into two groups that were balance with regard to their
performance in the pre-tests and work experience. One group first completed an e-learning
module of about 10 min that consisted of a short definition of the new inspection strategy liberal
decision followed by some examples with feedback. The other group only received a short in-
struction of the new inspection strategy. All participants then completed an X-ray image inspec-
tion task that consisted of 128 X-ray images of passenger bags with half the images containing
one prohibited item of the categories guns, knives, IEDs and other prohibited items (16 images
each). For each category, half of the prohibited items were known from training, the other half
was novel. For one half of the test, participants were instructed to visually inspect the X-ray im-
ages like they were used to from their job (normal decision). For the other half, screeners were
instructed to visually analyze each object in the X-ray image and only decide that the bag was
harmless if each object in the image could be recognized as harmless (liberal decision). For
each image, screeners had to decide whether it was harmless or not by pressing a key, followed
by confidence ratings on a scale from 0 to 10. During this test, eye tracking was conducted using
the SMI RED-m eye tracker with a gaze sample rate of 120 Hz, a gaze position accuracy of 0.5°

and a spatial resolution of 0.1°.
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Results. The hit rate (see Figure 2) was higher for known than for novel prohibited items, W
= 1934, p <.001. In comparison to normal decision, liberal decision resulted in a higher hit rate
for known prohibited items, W = 85, p = .02, and for novel prohibited items, W = 95.5, p = .02. In
addition, the false alarm rate was significantly higher, W = 60.5, p < .001. Sensitivity (Ag, calcu-
lated from confidence ratings) did not differ between the two inspection strategies, neither for
known, W = 240, p = .88 (normal decision: M = .889, SD = .066; liberal decision: M = .890, SD =
.068) nor for novel items, W = 262.5, p = .78 (normal decision: M = .794, SD = .079; liberal deci-
sion: M =.789, SD = .067). In contradiction to our expectation, these effects were not signifi-
cantly larger for the group who received the e-learning, neither for the hit rate of known items, U

=145, p = .16, novel items, U = 141.5, p = .20, the false alarm rate, U = 141, p = .21.
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Figure 2. Box plots of hit and false alarm rates depending on decision condition and prohibited
item class (known vs. novel). (Note: Performance values are multiplied by an arbitrary constant
for security purposes.)

The eye tracking data showed that the overall increased response times in the liberal deci-

sion condition were associated with on average (mean) 22% longer scan paths (measured in
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pixels) for target present trials, W = 75, p = .009, and 28% longer scan paths for target absent
trials, W =49, p < .001. However, this increase was disproportionate for target absent trials,
leading to a shorter average scan path per response time, W =292, p = .002, but not signifi-
cantly so for target present trials, W = 228, p = .23. Also the total number of fixations increased,
W =271, p =.014, but also the average duration of these fixations increased, W = 38, p < .01.
When instructed for normal decision, screeners with a high ability to recognize everyday ob-
jects also detected more known prohibited items, had a marginally significant lower false alarm
rate, but did not detect more novel items (see Table 3). Looking at the condition liberal decision,
the pattern changes: the ability to recognize everyday objects was not associated with lower

false alarm rates but with higher hit rates for novel prohibited items.

Table 3

Correlations between Everyday Object Test Score and Variables of the X-ray Inspection Task

Variable of X-ray image inspection task
HR?# known HR? novel

Decision orohibited  prohibited | 2S¢ alarm
o . . rate
condition items items
- rs = .430 rs=-117 rs =-.298
Normal decision p=.008 p=.735 p=.052
. . rs = .391 rs=.322 rs=-.018
Liberal decision p=.015 p=.038 p = .462

aHit rate

Conclusion. The experiment showed that instructing professional screeners to apply a more
liberal decision led to increased hit and false alarm rates in an X-ray image inspection task.
Sensitivity remained constant, implying that the observed change in hit and false alarm rates
was due to a change in the decision criterion. We therefore conclude that screeners are gener-
ally capable to shift their criterion based on an instruction. Because this criterion shift leads to
higher false alarm rates and response times, the application of the liberal decision strategy
would decrease the efficiency of X-ray screening at security checkpoints. However, it could be

useful for a targeted increase in hit rate, e.g. for high-risk flights.
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In our experiment, we also investigated whether an e-learning module could assist with the
application of the new inspection strategy, but found no improvement. For the liberal decision
strategy, there was a correlation between the ability to recognize everyday objects and the hit
rate for novel threat items. It should therefore be investigated whether specific training of every-
day object recognition would assist with the criterion shift.

The eye tracking data shows that for images of harmless bags screeners have longer scan
paths and more fixations in the liberal decision condition. Nevertheless, at the same time scan-
ning was slower and fixations longer. This suggests that applying the liberal decision not only
extended the search duration but also affected underlying cognitive processes, e.g.

(Meghanathan, van Leeuwen, & Nikolaev, 2014).
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Manuscript 4: Why stop after 20 minutes? Breaks and target prevalence in a one hour X-
ray image inspection task

Aim and motivation: Current EU regulations restrict the duration of X-ray image inspection
of passenger baggage at airport security checkpoints to 20 min as a precautionary measure to
prevent performance decrements (Commission Implementing Regulation [EU], 2015/1998).
However, this rule is not founded on solid empirical research. At the same time, the restriction of
screening to 20 min limits the options of work organization at airport security checkpoints con-
siderably. This is especially the case for remote cabin baggage screening (RCBS). With RCBS,
security personnel visually inspect X-ray images in an office-like environment separate from the
checkpoint and therefore need more time and coordination to rotate between positions com-
pared to the conventional X-ray image inspection at the checkpoint (Kuhn, 2017). Manuscript 4
therefore investigated how performance changes over time (i.e., as a function of time on task).

Empirical research into how performance in X-ray image inspection develops over time is
scarce. (Meuter & Lacherez, 2016) analyzed 4 months of threat image projection (TIP) data
from an Australian airport. TIP is a technology that projects prerecorded threat items onto real
X-ray images of passenger baggage during baggage screening at airport security checkpoints
(Cutler & Paddock, 2009; Hofer & Schwaninger, 2005). The TIP hit rate (or percent detected)
refers to the proportion of projected fictional threat items that screeners have detected. Meuter
and Lacharez (2016) found a small decrease of approximately 2% in the hit rate with time on
task, only when workload was high (operationalized as more than 5.4 images screened per min
during one session of continuous screening). However, the study says little about the develop-
ment of performance beyond 20 min and could not clear whether the decrease in hit rate was
due to a criterion shift or a lower sensitivity. In a study by Ghylin, Drury, Batta, and Lin (2007),
professional screeners completed an X-ray image inspection task over the course of four hours,
showing a decline in hit rate and false alarm rate but not in the sensitivity measure A’, indicating
a criterion shift. The study does not provide any conclusions about the development of perfor-

mance within the first hours.
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In vigilance tasks, depending on task difficulty or task demands, performance decrements
can already occur after 5 min (Arrabito et al., 2015). Most studies have revealed decreases in
vigilance within the first 15-30 min of the task (Mackworth, 1948; Nuechterlein et al., 1983).
However, besides the similarities, there are also considerable differences between X-ray image
inspection and typical vigilance tasks (Wolfe et al., 2007).

Because time on task is likely to affect the decision criterion (Ghylin et al., 2007), it is im-
portant to use a valid sensitivity measure that is independent of the criterion. Based on findings
regarding the target prevalence effect (Godwin et al., 2010; Wolfe et al., 2007; Wolfe & Van
Wert, 2010) and Manuscript 2, we assumed d, with a slope parameter of around 0.6 to be ap-
propriate. In order to validate the appropriate detection measure, we also investigated the target
prevalence effect in our experiment.

In the current study, we investigated the effect of time on task on screener performance
when X-ray images were analyzed for 60 min. One group screened for 60 min continuously,
whereas the other group took 10-min breaks between 20-min screening blocks. Because previ-
ous research found increased stress and less engagement after vigilance tasks (Helton, 2004;
Matthews et al., 2002), we also monitored the perceived stress of the task by asking screeners
to complete the Short Stress State Questionnaire (SSSQ; Helton, 2004).

Method. 75 professional screeners (46.47% female, between 20 and 67 years old, M =
32.01, SD =12.78, 0.3 to 28 years of working experience, M = 2.26, SD = 3.132) participated
during their regular working hours. A 2 (break condition: with vs. without breaks) x 2 (prevalence
condition: high vs. low prevalence) x 3 (time on task: 0—20 min, 20—40 min, 40—-60 min) mixed
factorial design was employed. The two break conditions with breaks and without breaks served
as between-subject variable. All screeners completed the test twice, once in the low prevalence

condition and once in the high prevalence condition.

2 Two participants did not report their demographics
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The test consisted of 864 X-ray images of passenger cabin (carry-on) baggage. In the high
prevalence condition, one in eight images contained a threat item; in the low target prevalence
condition, one in two images contained a threat item. Threat items belonged, in equal numbers,
to the categories guns, knives, and improvised explosive devices (IEDs). To ensure that each
participant’s performance was assessed on the basis of the same images, the test was divided
into 12 blocks of 72 images and after 5 min, the test jumped to the next block. The order of
these blocks was counterbalanced. During the test, the group with breaks had a 10-min break
after each 20 min of screening, whereas the group without breaks analyzed X-ray images for 60
min continuously and had a 20-min break thereafter. After completing the X-ray image inspec-
tion task, screeners filled out the SSSQ and provided information on their shift schedule, work
experience, age, and gender.

Results. For the analysis, we computed 2 (with breaks and without breaks) x 2 (high preva-
lence and low prevalence) x 3 (0—20 min, 20—40 min, 40—60 min) ANOVAs with hit rate, false
alarm rate, d', ds, ¢, ¢, and processing time as dependent variables. The high prevalence condi-
tion had a higher hit rate, F(1, 69) = 37.92, p < .001, ny?2 = .36, and a lower false alarm rate, F(1,
69) = 118.53, p < .001, n,? = .63 (see Figure 3). The individual differences in hit and false alarm
rate between the two prevalence conditions was used to estimate the slope parameter. The re-
sulting 0.65 (95% BCa-ClI [0.41, 0.89]) was lower than the slope of 1 assumed by d', suggesting
to use ds (with the estimated slope of 0.65) as a sensitivity measure instead, in line with the ar-
gumentation of Wolfe et al. (2007). The results showed that the effect of time on task depended
on the prevalence condition for the false alarm rate, F(1.97, 136.18) = 17.9, p < .001, ny,? = .21,
(interaction of Prevalence x Time on task) and for the criterion c¢,, F(1.95, 134.28) = 11.82, p <
.001, np? = .15, but not quite significantly so for the hit rate, F(1.96, 134.94) = 3.06, p = .051, n,?
= .04, and not at all for d,, F(1.95, 134.72) = 0.11, p = .895, n,? = .00 (see Figure 4). More spe-
cifically, the criterion decreased from the first 20-min block (0—20 min) to the second 20-min
block (20-40 min) for high prevalence, whereas the criterion increased for low prevalence. For

d» there was a small main effect of time on task, F(1.97, 135.91) = 3.43, p = .036, ny? = .05, with
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post-hoc tests revealing a small increase from the first 20-min block to the second 20-min block.

There was no effect of breaks, neither for hit rate, false alarm rate, da, nor ca.
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Figure 3. Hit rate (a) and false alarm rate (b) for the group with breaks and the group without

breaks for both prevalence conditions as a function of time on task. Error bars represent stand-

ard errors.
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Figure 4. Sensitivity measure d, (a) and criterion ¢, (b) for the group with breaks and the group

without breaks for both prevalence conditions as a function of time on task. Error bars represent

standard errors.
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For the subjective stress levels, we calculated 2 (with vs. without breaks) x 2 (high vs. low
prevalence) ANOVAs with the three levels of stress distress, worry, and engagement as de-
pendent variables. For distress, the ANOVA revealed a significant main effect of break, F(1, 66)
=9.17, p = .004, ny,?= .12. Because the data do not meet the assumptions of normal distribution
or homoscedasticity, a Wilcoxon rank sum test was carried out, which also revealed a signifi-
cant difference between the two break conditions (W = 1616, p = .003).

Conclusion. To examine time on task and the influence of breaks on screener performance,
two groups of X-ray screeners performed an X-ray image inspection task for 60 min. Whereas
one group took breaks in line with the 20-min rule in EU regulations, the other group worked for
60 min without breaks. Target prevalence was varied to determine the valid detection measure
for this task.

In line with Wolfe et al. (2007), we would argue that it is implausible for screeners to become
faster and better at detection when they expect fewer targets. It is more plausible that the equal
variance assumption of d'is not met, and that the observed change in hit rate and false alarm
rate is a mere change in response tendency (criterion ¢ and c¢,) as assumed in signal detection
theory. Comparing the z-transformed hit rate and false alarm rate between the two target preva-
lence conditions resulted in an average slope parameter of 0.65. This is close to the slope of
around 0.6 that Manuscript 2 and other previous studies have found for the task of X-ray image
inspection (Godwin et al., 2010; Wolfe et al., 2007; Wolfe & Van Wert, 2010).

We found that a lower target prevalence caused a shift in response tendency resulting in a
lower hit rate and false alarm rate. Previous studies have found that the target prevalence effect
depends on implicit learning rather than on explicit instruction, and that it therefore takes some
time until searchers adapt to the prevailing target prevalence by shifting their criterion accord-
ingly (Ishibashi et al., 2012; Lau & Huang, 2010). Lau und Huang (2010) have found that the in-
structed target prevalence is not sufficient to create the target prevalence effect. In our study as

well, although participants were instructed about the target prevalence, the target prevalence
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effect evolved over time, supporting the notion that implicit learning plays an important part in
evoking the target prevalence effect. In the high target prevalence condition, participants first
shifted their criterion to a more liberal location, meaning that they increased their tendency to
declare that an X-ray image contained a prohibited item. In the low target prevalence condition,
they shifted their criterion to a more conservative location and thereby increased the ratio of im-
ages declared to be harmless. In both conditions, the criterion stayed stable after the initial 20
min. The effect of time on task on sensitivity did not depend on target prevalence. d, increased
in the beginning of the test and then remained constant. It is possible that there is a warm-up
phase in X-ray image inspection, during which the cognitive processes necessary for this task
are fully activated, as can be observed in other recognition tasks (e.g. Allport & Wylie, 1999;
Monsell, 2003). It is however also possible that the observed ramp-up in performance was an
accustomization to the specifics of the task employed in our experiment.

Whereas breaks have often had a positive effect on performance in previous studies
(Arrabito et al., 2015; Balci & Aghazadeh, 2003; Colquhoun, 1959; Kopardekar & Mital, 1994;
Steinborn & Huestegge, 2016), breaks are mainly thought to offer rest, recuperation, and pre-
vention of fatigue (Tucker, 2003). Considering that participants who performed 60 min of contin-
uous screening did not show a decrease in performance, there was no room for recuperation
during breaks. Even though there was no effect of breaks on detection performance, there
seems to have been an effect on well-being in terms of stress. The screeners in the condition
without breaks reported more distress in the SSSQ. Hence, whereas screeners were able to
maintain detection performance over 60 min without breaks, this led to increased distress. In the
long term, increased distress could have an effect on performance. It has, however, to be noted
that there was considerable variance between screeners in the condition without breaks.
Whereas the longer screening without breaks caused distress in some participants, it did not in
others.

Whereas our study has shown that screeners can maintain detection performance over 60

min without breaks, it is still too early to conclude that the rule of a maximum of 20 min of
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screening should be lifted. Our results show that 60 min of continuous screening caused dis-
tress for some screeners. Considering that participants only did 60 min of screening twice with 3
to 5 weeks in between, it is unclear how prolonged screening would affect performance and dis-
tress if repeated multiple times a day and over months. Further limitations to ecological validity
are that poor performance did not have any consequences in our experiment whereas a miss
can be disastrous in practice. This might make prolonged screening time more stressful in prac-
tice. Further, target prevalence is lower in practice and this might make it more difficult to sus-
tain attention and performance. These limitations should be addressed by follow-up field stud-
ies. By showing to regulators that more than 20 min of screening can be possible without nega-

tively affecting performance, our study paves the way for these field studies.
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Manuscript 5: Automation in airport security X-ray screening of cabin baggage: Examin-

ing benefits and possible implementations of automated explosives detection

Motivation and aim of the study. To assist with the detection of improvised explosive de-
vices (IEDs), explosives detection systems for cabin baggage screening (EDSCB) have been
developed (Singh & Singh, 2003). EDSCB use high and low energy X-ray from different angles
to estimate effective atomic number and density information at each location within bag (Singh
& Singh, 2003). The EDSCB triggers an alarm if this information is similar to the effective atomic
number and density of explosives. With the foreseeable spread of EDSCB in European coun-
tries, regulators and airport operators are currently discussing two implementation scenarios dif-
fering in their level of automation and human—machine function allocation: on-screen alarm res-
olution (OSAR) and automated decision (Sterchi and Schwaninger, 2015). EDSCB might be es-
pecially important for the detection of bare explosives, which lack a triggering device and can
therefore be difficult to detect (Jones, 2003), but still pose a threat in cabin baggage screening.

In the OSAR scenario, automation is implemented as a diagnostic aid: EDSCB indicates po-
tential explosive material by either marking an area on the X-ray image of a passenger bag with
a colored rectangle or highlighting it in a special color (Nabiev and Palkina, 2017). EDSCB sys-
tems with high hit rates (close to 90%) have false alarm rates in the range of 15—-20% (personal
communication with EDSCB experts, summer 2016). Also in other domains, designers of auto-
mation aids often set low thresholds, because the consequences of automation misses are con-
sidered to be more costly than false alarms (Parasuraman and Wickens, 2008). However, if the
base rate of dangerous events to be detected is low, the result will be many false alarms and
only few hits (Parasuraman and Riley, 1997). This can produce a ‘cry wolf’ effect with operators
ignoring system warnings (Breznitz, 1983; Bliss, 2003). Such an effect can drastically reduce or
even eliminate the benefits of automation when it is implemented as a diagnostic aid.

The automated decision scenario uses a higher level of automation with a different human—

machine function allocation. Bags on which the EDSCB raises an alarm are sent automatically
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to secondary inspection using manual search and/or explosive trace detection (Sterchi and
Schwaninger, 2015). Because secondary inspection is time-consuming, false alarm rates of 15—
20% from EDSCB are not operationally acceptable in this scenario. Instead, the threshold of the
EDSCB would have to be lower, resulting in a lower false alarm rate but also a lower hit rate. To
compare the two scenarios that require different thresholds, the reliability of the EDSCB can be
defined in terms of signal detection theory (Wickens and Dixon, 2007; Parasuraman and Wick-
ens, 2008; Rice and McCarley, 2011).

The present study examined the benefits of automated explosive detection systems for cabin
baggage screening (EDSCB) in two realistic implementation scenarios differing in the level of
automation and human—machine function allocation (EDSCB with OSAR vs automated deci-
sion). It addressed the following three research questions: 1) Does EDSCB lead to higher hu-
man—machine system performance for detecting IEDs and explosives? 2) Does this depend on
the level of automation (OSAR vs automated decision)? 3) Is this dependent on screener work
experience? To address these research questions, two experiments using a simulated baggage
screening were conducted at different European airports with screeners differing in work experi-
ence.

Method Experiment 1. 61 professional screeners with at least two years of work experience
(M =7.68, SD = 4.85) participated the experiment. These participants were not familiar with au-
tomation aids for cabin baggage screening, were in average 42.5 years (SD = 10.52, range 24—
60 years) of age, and 57.37% of them were female. The participants were assigned to one of
three conditions that were balanced with regard to age, work experience, and performance in an
X-ray image competency test (Koller and Schwaninger, 2006): baseline, OSAR, and automated
decision. The participants had to solve a test that consisted of 640 X-ray images, of which 80
contained a threat (target prevalence of 12.5%) from one of the following categories: IEDs, ex-
plosive materials, guns, gun parts, and knives (16 images for each threat category). In the base-

line condition, screeners inspected each image on a laptop and reported whether the depicted



HUMAN FACTORS IN X-RAY IMAGE INSPECTION 43

bag was harmless or not by clicking on a button on the screen. In the OSAR condition, screen-
ers were instructed that they were supported by an EDSCB marking most of the IEDs and ex-
plosives and that this EDSCB can cause false alarms. In the OSAR condition, 14 of the 16 IEDs
and 14 of the 16 explosives were marked with a read frame; and 94 of the 560 images without a
threat displayed red frames as false alarms. This corresponds to an EDSCB with a reliability of
d'= 2.1, a hit rate of 88%, and a false alarm rate of 17%. In the automated decision scenario,
screeners were instructed that they were assisted by an EDSCB and if the EDSCB detected an
IED or explosives, the X-ray image would not be displayed for analysis. They were further in-
structed that the EDSCB can miss some IEDs or explosives. In the automated decision condi-
tion, 10 of the 16 IEDs and 10 of the 16 explosives were predefined as detected by the EDSCB
and not displayed to the participants for inspection. In addition, 20 images without a threat were
not displayed for inspection, because they were predefined as triggering a false alarm of the
EDSCB. This corresponds to an EDSCB with a reliability of d'= 2.1, a hit rate of 63%, and a
false alarm rate of 4%. Participants needed up to 2 hr to complete the test, which included three
breaks of 10 min.

Results Experiment 1. The results were analyzed with a series of ANOVAs and, when indi-
cated, post-hoc tests with Holm-Bonferroni corrections were calculated (Holm, 1979). The re-
sults (see Figure 5) revealed that the EDSCB had no impact on the hit rate for guns, gun parts,
or knives. The hit rate of the human—machine system for IEDs was higher in the automated de-
cision condition than in the OSAR condition, whereas there was no significant difference be-
tween the baseline condition and any of the two condition with EDSCB. The hit rate for explo-
sives was significantly higher in the automated decision condition compared to each of the other
two conditions. However, the automated decision condition also had a higher false alarm rate
compared to each of the other two conditions. When comparing the baseline and automated de-
cision conditions only considering the human performance without hits and false alarms by the

EDSCB, no significant difference was found.
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Figure 5. Mean human—machine hit rates by condition (baseline, OSAR, automated decision)
and prohibited item categories (guns, gun parts, knives, IEDs, and explosives). Absolute values
of hit rate are not shown due to security restrictions in this project. Error bars are + one standard

error.

Conclusion Experiment 1. The first experiment showed that screeners can detect IEDs
fairly well even without EDSCB whereas they have difficulty detecting explosives on their own.
However, EDSCB increased the number of detected IEDs and explosives only in the automated
decision condition but not in the OSAR condition. A limitation of the first study was that partici-
pants had no prior experience in X-ray image inspection with decision aids, which might have
affected how they interacted with it (Parasuraman and Manzey, 2010; Sauer et al., 2016;
Strauch, 2016). Another limitation was that only screeners with at least two years of work expe-
rience were tested. Screeners with less work experience and training might benefit when it
comes to detecting IEDs and explosives in the OSAR condition due to their lower baseline per-

formance (Halbherr et al., 2013).
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Methods Experiment 2. For Experiment 2, 77 professional screeners who were familiar with
automation aids completed the same test already conducted in Experiment 1. Group 1 (44
screeners, 14 females) was as well-trained and experienced as the screeners in Experiment 1
(years of work experience: M = 8.45 years, SD = 5.66). Their average age was 36.55 years (SD
= 8.46, range 21-53 years). Group 2 (33 screeners, 19 females) had less work experience and
training (less than one year). Their average age was 30.81 years (SD = 10.93, range 18-53
years)?3.

Results Experiment 2. Again, EDSCB did not affect the hit rate for guns, gun parts, or
knives (see Figure 6). For IEDs, the effect of the experimental condition on the hit rate differed
between the inexperienced and experienced screeners: the inexperienced screeners achieved
a higher hit rate in each of the conditions with EDSCB compared to the baseline condition,
whereas experienced screeners did not differ significantly between the conditions. For explo-
sives, inexperienced and experienced screeners both achieved a higher hit rate in the auto-
mated decision condition compared to the baseline and the OSAR conditions. For the false
alarm rate, the analyses revealed a significant main effect of condition, but none of the post-hoc
comparisons attained significance. A follow-up analysis on the benefit of OSAR for inexperi-
enced screeners revealed that the OSAR condition had a higher sensitivity d"and a more con-

servative decision criterion ¢ compared to the baseline condition.

3 Two screeners did not report their age.
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Figure 6. Mean human—machine hit rates by condition (baseline, OSAR, automated decision),
threat categories (gun, gun parts, and knives), and variation of work experience (tenure < 1 year
and tenure > 1.5 years). Absolute hit rate values are not shown due to security restrictions in

this project. Error bars are * one standard error.

General conclusion. This study examined the use of automation for the airport security
screening of cabin baggage by testing two levels of automation that are currently being dis-
cussed by regulators and airport operators: on-screen alarm resolution (OSAR) and automated
decision (Sterchi and Schwaninger, 2015). Two experiments were conducted with screeners
working at two European airports and verying in their work experience.

The EDSCB in the OSAR condition provided a hit rate of 88%. For explosives, using EDSCB
as a diagnostic aid lost its potential benefit, not increasing hit rate compared to no EDSCB. The
OSAR scenario was beneficial for the detection of IEDs, but only for the less experienced
screeners. We argue in line with (Cullen et al., 2013) that the automation system with OSAR as-
sisted in the search component of X-ray image inspection by guiding attention to the relevant

area — the first processing stage of sensory processing in the taxonomy proposed by Parasura-
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man et al. (2000). OSAR did not improve the hit rate of experienced screeners for IEDs, possi-
bly because they already achieved high hit rates for IEDs in the baseline condition without auto-
mation and therefore there was not much room for improvement through OSAR. In addition, ex-
perienced screeners may also have judged their own ability to detect prohibited items to be su-
perior to the automation support — a reason for noncompliance also reported in other domains
(e.g. Lee and Moray, 1992, 1994). Moreover, the low target prevalence in our study and, there-
fore, the low base rate led to many false alarms. This probably led to a ‘cry wolf’ effect with ex-
perienced screeners, meaning that they might simply have ignored the system warnings (Brez-
nitz, 1983; Bliss, 2003). Future research could also explore whether specific training and famili-
arity with the automation aid (Sauer et al., 2016) might provide screeners with a mental model
of its capabilities. Such mental models could be important for an effective use of an automation
aid (Strauch, 2016).

In the automated decision condition, EDSCB did not affect human performance. Hence, the
observed increase in detection performance was determined by the amount of explosives
missed by screeners but detected by the EDSCB. Automated decision therefore increased the
human-machine hit rate for explosives and for inexperienced screeners also for IEDs, but also

increased the false alarm rate.
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Manuscript 6: A first simulation on optimizing EDS for cabin baggage screening regard-

ing throughput

Motivation and aim of the study. The introduction of EDS into cabin baggage screening is
certainly an advantage security wise. But how does EDS affect throughput, i.e. the amount of
items that can be screened within a certain time? Butler and Poole (2002) argued that EDS can
reduce throughput, but since then EDS machines have become faster and more reliable. It
would therefore be interesting to examine effects of EDS on throughput taking into account up-
to-date information on technology, humans and processes. In this study this was explored for
one specific process using discrete event simulation. In addition, two measures to cope with po-
tential negative effects on throughput were tested for their effectiveness: The first measure is to
assign a second security officer to the task of resolving alarms using manual search and/or
ETD. This should double the rate at which alarms can be resolved (assuming there is sufficient
room and equipment provided). The second evaluated measure was to instruct the X-ray
screener to resolve one of the alarms when the backlog of bags queueing for secondary search
causes the screening to stop.

Process description and assumptions. Once the EDS generates an alarm, there are at
least two different approaches to resolve these alarms. One is on-screen alarm resolution:
When the screener reviews the X-ray image of the bag that triggered the alarm by the EDS, a
frame is displayed around the area of the X-ray image which might contain explosives. The
screener then decides whether the bag needs further alarm resolution. Another approach is to
increase the level of automation (for an overview of levels of automation see (Sheridan &
Verplank, 1978)) and automatically redirect items that caused an alarm for alarm resolution by
explosives trace detection (ETD) and/or manual search. In this study, we evaluated this second
approach, which will be referred to as "automatic decision scenario”.

In the evaluated automatic decision scenario, false alarms by the EDS are resolved with an

ETD conducted by the same security officer that also resolves alarms by the X-ray screener.
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The first and quite obviously relevant aspect of this process is the time needed for using an ETD
to resolve the alarm by the EDS. It should be noted that modern ETD technology is fast, for ex-
ample (“IONSCAN 500DT,” n.d.) report 5-8 s for their IONSCAN 500DT ETD machine. How-
ever, the overall time needed for alarm resolution using ETD depends strongly on where and
how many trace samples are taken (Butler & Poole, 2002).

Method and procedure. The simulation was implemented in FlexSim (see www.flexsim.com
for more information), an off the shelf 3D modelling and discrete event simulation software. The
basic layout, processes, and parameters of the model were set in accordance with a specific
checkpoint design of a European airport. To take into account that different durations for alarm
resolution with ETD are possible depending on swab sampling (Butler & Poole, 2002), three dif-
ferent scenarios were tested in the current study in the range reported by Butler and Poole
(2002): One with a low average duration of 30 s, a second taking 60 s, and a third taking 120 s
on average. Screening performance and duration was estimated based on the empirical data
from Manuscript 5. For the response time it was thereby differentiated between hits, false
alarms, and correct rejections and misses (see Table 4). For the false alarm rate, the three sam-
ples from Manuscript 5 were used as different simulation scenarios (see Table 5) to investigate
the effect of the screener population. For the EDSCB, false alarm rates ranging from 1 to 15%
were explored.

Separate simulations were run for each combination of the three reference groups, 15 false
alarm rate levels of the EDS (1-15%) plus one level without EDS, and the three durations for
alarm resolution using ETD (30 s, 60 s, 100 s). To test the effectiveness of the two measures
described in the previous section, they were also run for each of the 15 false alarm rate levels of
the EDS plus one level without EDS. To keep the results manageable, the measures were only
tested in combination with the first reference group (which was recruited from screeners working
at the checkpoint that served as reference for the model and therefore seemed most adequate)
and only for the medium duration of alarm resolution using ETD (60 s). For each of the resulting

192 conditions, one hour of the baggage screening process was simulated 200 times.
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Table 4

Model Parameters

Parameter Distribution Mean (SD)
Placing item on con- Gamma 5s(55s)
veyor

Items per Poisson (translated) 3 (12)
passenger

Evaluation time X-ray
screener

Duration of alarm res-
olution with manual
search

Duration of alarm res-
olution with ETD

Empirical

Lognormal

Gamma (translated,
shape = 1)

CR?#/Miss: 3.90 s (1.32 s)
FA% 5.13 s (2.67 s)

Hit: 4.05 s (1.67 s)

116 s (132s)

Condition 1: 30 s (5s)
Condition 2: 60 s (10 s)
Condition 3: 120 s (20 s)

aCR: correct rejection; FA: false alarm

Table 5

Characteristics of Reference Groups, Mean (SD)

Tenure /
Reference False Training work experi-

Group Airport  alarm rate hours ence Age
Reference .025 101.40 7.68 42.50
group 1 Airport 1 (.039) (31.47) (4.85) (10.52)
Reference .040 28.56 8.24 36.55
group 2 Airport 2 (.046) (12.41) (5.78) (8.46)
Reference .049 2.582 <1 vyear 30.81
group 3 Airport 2 (.031) (2.00) (-) (10.93)

aReference group 3 received initial training using another computer based training; the number of training hours could
therefore not be determined exactly.
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Figure 7. Mean human Mean and standard error (over 200 simulation runs) of throughput in
items per hour, depending on false alarm rate of EDS (zero representing the baseline without
EDS) and on reference group, green dashed: reference group 1 (airport 1, tenure > 2 years),
blue dotted: reference group 2 (airport 2, tenure > 2 years), red solid: reference group 3 (airport
2, tenure < 1 year), and mean duration of alarm resolution using ETD of 30, 60 and 120s.
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Figure 8. Mean and standard error of throughput in items per hour, depending on false alarm
rate of EDS, either with: red solid: single security officer resolving alarms, blue dotted: X-ray
screener assisting with alarm resolution in case screening process is interrupted, green dashed:
second security officer assigned to resolution of alarms.

Results. Figure 7 shows the simulated throughput for a single checkpoint lane depending on
reference group and false alarm rate of the EDS, whereby zero represents the absence of an
EDS. As expected, capacity was negatively affected by the EDS's false alarm rate if no adap-
tions were made to cope with the increased workload due to additionally required alarm resolu-

tions with ETD. This negative effect strongly depended on the average time required to resolve
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the alarms by the EDS using ETD. The results were also largely dependent on whether X-ray
screeners were well trained and experienced.

Figure 8 shows the relationship between capacity and the false alarm rate of the EDS for the
standard security lane and the two measures that could be used to minimize negative effects on
throughput as explained in the previous section. As could be expected, assigning a second se-
curity officer to the task of resolving alarms massively reduced the impact of the EDS's false
alarm rate on throughput. Within the simulation, instructing the X-ray screener to resolve one
alarm while the screening process is interrupted only started having a positive effect on through-
put at higher levels of false alarm rate.

General Conclusion. The results of the discrete event simulation indicate that the baggage
throughput of an airport security checkpoint can be strongly affected by EDS. This effect is
mainly due to the time needed for alarm resolution using ETD, which highlights the importance
of fast ETD alarm resolution procedures (e.g. efficient trace sampling) and a short analysis time
of the equipment. Not only the false alarm rate of the EDS machine and alarm resolution time of
ETD, but also the false alarm rates of the X-ray screeners were found to be very important.
Training has been shown to reduce false alarm rates (Koller et al., 2009). Potential decreases in
baggage throughput due to the introduction of an EDS could therefore be at least partially com-
pensated by having well trained X-ray screeners.

Having a second security officer to expedite alarm resolution could reduce the negative im-
pact of an EDS on throughput, while help by the X-ray screener with alarm resolution seems not
to be a useful option based on the simulation results. A field study or a further work analysis
combined with simulation could clarify if more coordinated assistance with alarm resolution by
the X-ray screener (i.e. by only performing tasks that do not prolong the interruption of the X-ray

screening process) has the potential to increase capacity.
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General Discussion

This thesis addresses several research questions regarding the X-ray images inspection of
passenger baggage, from a comparison with traditional visual search to the effects of automa-
tion on the X-ray image inspection performance and checkpoint capacity.

Manuscript 1 found visual processing and short-term memory, but not processing speed to
be associated with higher performance in X-ray image inspection. Visual processing was also
associated with performance in a variant of the L/T-letter search task. A mediation analysis
however showed that other aspects of visual processing (a broad ability in terms of the Cattell-
Horn—Carroll theory; Carroll, 1993; 2003; Cattell, 1941; Horn, 1965) are relevant for the two
tasks. A comparison between students and professionals revealed that professionals outper-
formed students in the X-ray image inspection task, but not in the L/T-letter search task. Yet, for
both tasks, the two samples did not differ significantly regarding the associations between the
visual-cognitive abilities and performance.

In Manuscript 2, it was shown that d, with a slope parameter of 0.5-0.6 is a more valid detec-
tion measure than d'and A'. Especially when there are large differences in response tendency,
the use of an invalid detection measure can wrongly indicate a significant difference in detection
performance (sensitivity) or lack thereof. In terms of signal detection theory (SDT), the slope pa-
rameter of 0.5-0.6 means that the signal-plus-noise distribution has a higher variance than the
noise distribution.

Manuscript 3 investigated whether screeners can apply a decision strategy that focuses on
the detection of novel threats. The study showed that the application of such a decision strategy
resulted in a criterion shift, increasing both the hit rate and false alarm rate, whereas sensitivity
remained constant. An e-learning module did not increase the criterion shift, screeners that
scored higher on a test on the recognition of everyday objects in X-ray images found more

novel items when they shifted their decision criterion.
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Roughly in line with Manuscript 2, Manuscript 4 found d. with slope of 0.65 to be a more valid
detection measure for X-ray image inspection than d'. The experiment further showed that par-
ticipants were able to screen for 60 min without a decline in detection performance. Perfor-
mance thereby did not differ between participants that had a 10-min break every 20 min and
participants that screened for 60 min straight. Participants without breaks however reported
more distress.

Manuscript 5 evaluated two different scenarios for the introduction of explosive detection sys-
tems for cabin baggage (EDSCB) with two experiments, taking into account that the optimal use
of automation might depend on the screeners’ performance without automation and their famili-
arity with automation aids (Parasuraman & Manzey, 2010; Sauer et al., 2016; Strauch, 2017).
The results show that, without automation, humans have difficulty with the detection of mere ex-
plosives. EDSCB with automated decision was shown to improve the detection of explosives
and the detection of IEDs for inexperienced screeners. However, on-screen alarm resolution
(OSAR) improved only the detection of IEDs for inexperienced screeners.

Manuscript 6 evaluated how EDSCB with automated decision, as investigated in Manuscript
5, would affect the baggage throughput of an airport security checkpoint by using discrete event
simulation. The results suggest that without countermeasures, throughput declines with an in-
creasing false alarm rate of the EDSCB, but also strongly depends on the false alarm rate of the
screeners and the duration of alarm resolution with ETD.

All manuscripts include studies that were conducted in laboratory settings with experimental
designs, providing high internal validity. However, as applied research projects, the studies also
focused on providing high ecological validity. To increase the chance that the findings also hold
in the everyday work life of airport security screening, all studies were conducted with profes-
sional participants and real X-ray images of passenger bags displayed on a user interface that
is similar to practice — with the exception of Manuscript 1, which explicitly compared profession-
als with students and X-ray image inspection with traditional visual search. Conducting research

with the specific population of professional screeners and in the specific context of X-ray image
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inspection allows to test the robustness of theories developed in other contexts and with other
participants (Brewer & Crano, 2014). This can provide theoretical contributions by revealing im-
portant moderators of the investigated effects (Petty & Cacioppo, 1996).

Theoretical contributions. Manuscript 1 found visual-cognitive abilities derived from CHC to
be relevant for L/T-letter search tasks and for professional X-ray image inspection. However,
the results also imply that other aspects of the visual-cognitive abilities are relevant for the two
tasks. This suggests that the abstract search for certain deviations in letters has different under-
lying cognitive processes compared to searching for familiar objects, for which recognition is
needed (Wolfe, 1998). When considering that recognition improves with familiarity of the target
object, it is not surprising that professionals performed better in the X-ray image inspection task,
even despite this task being designed to not require experience or training (by using black-and-
white images and only guns and knives as threats). However, the visual-cognitive abilities were
also relevant for the professional screeners. Future research should verify whether the associa-
tion between the visual-cognitive abilities and performance in X-ray image inspection really is
similar for students and professional screeners and thereby independent of expertise, or
whether our study failed to find a moderation effect due to a lack of statistical power.

Manuscript 1 confirmed that X-ray image inspection is not a mere visual search task, but also
strongly depends on object recognition and should therefore be seen as a search and decision
task (Koller et al., 2009). Because the decision in X-ray image inspection is difficult and imper-
fect, the hit rate and false alarm rate depend on response tendency. This dependency can be
well described with signal detection theory (for an introduction see Gescheider, 1997; Green &
Swets, 1966; Macmillan & Creelman, 2005; T. D. Wickens, 2001). Our studies showed in line
with research in other domains (Macmillan & Creelman, 2005) that response tendency (the cri-
terion) can be manipulated with instruction, indirectly by using confidence ratings (Manuscript
2), or target prevalence (Manuscript 4).

The results further suggest a zZROC slope of smaller than one, which in terms of signal detec-

tion theory means that the target present distribution has a higher standard deviation than the



HUMAN FACTORS IN X-RAY IMAGE INSPECTION 56

target absent distribution. Similar slope parameters have been found in other studies of passen-
ger baggage screening and for the inspection of medical X-ray images (Kundel, 2000). How-
ever, we make the theoretical argument that the slope parameter cannot be fix and likely de-
pends on sensitivity and the target set. It would be interesting and useful to identify the exact
determinants of the slope parameter and the underlying cognitive process in the future. This
would likely require a more detailed model of X-ray image inspection. Attempts to model X-ray
image inspection as a series searches and decisions on the level of single objects in a bag
(Wales, Halbherr, & Schwaninger, 2009; Wolfe & Van Wert, 2010) have offered some explana-
tion on the interaction between the criterion and response times but do not yet provide an expla-
nation for the slope parameter. The eye tracking data of Manuscript 2 strongly supports that X-
ray image inspection heavily depends on a decision component in addition to a search compo-
nent. Beyond replicating the target prevalence effect, Manuscript 4 supports the finding that the
target prevalence effect is caused by implicitly learning the prevalence rather than by instruction
(Ishibashi & Kita, 2014; Lau & Huang, 2010), which is in turn consistent with approaches to
model visual search as Bayesian optimal foraging (Cain, Vul, Clark, & Mitroff, 2012).
Manuscript 2 and Manuscript 4 also provide methodological contributions. It was shown that
the use of d' or A’ can lead to wrong conclusions when criterion shifts are involved and d, with a
slope parameter of 0.5-0.6 is a more valid detection measure. However, as already mentioned
above, the slope parameter is not necessarily constant and a conservative approach to test for
a difference in sensitivity would be to use slope parameters of 1 (i.e. d') and of 0.5 as upper and
lower bounds. Also Aq estimated with confidence ratings showed promising results and should
be further investigated in the future. Besides the validation of detection measures, Manuscript 2
shows with a simulation (in the appendix of the manuscript) that pooling hit rates and false
alarm rates across participants can severely distort the shape of an ROC curve and therefore
pooling z-transformed hit rates and false alarm rates is recommended (under the assumption

that Gaussian signal detection theory holds true).
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Manuscript 5 has mainly contributed to research on automation. Sauer et al. (2018) found an
automation aid to increase the performance of students inspecting X-ray images for guns and
knives when system reliability was high. Whereas one might expect that these results translate
to professionals and other threat categories, the two experiments of Manuscript 5 showed that
EDSCB as an automation aid (i.e. with on-screen alarm resolution, OSAR) was very limited in
increasing detection performance despite high system reliability in terms of sensitivity (as de-
fined by signal detection theory). The experiments suggest that the evaluation of automation
should differentiate between the search component and the decision component of X-ray image
inspection. OSAR only increased the detection of IEDs for inexperienced screeners and did not
increase the detection of explosives, neither for experienced nor inexperienced screeners. In
contrast to IEDs, bare explosives lack distinctive features and look like harmless organic mass
(Jones, 2003). In line with (Cullen et al., 2013), OSAR therefore likely helps with guiding atten-
tion. After the screeners’ attention is guided to the critical object, they can make the correct de-
cision in case of IEDs. However, they do not comply with the automation aid when the distinc-
tive features of IEDs are lacking, possibly because of the high number of false alarms as found
in other studies (Dixon, Wickens, & McCarley, 2007; Meyer, Wiczorek, & Gunzler, 2014; C. D.
Wickens & Dixon, 2007). This phenomenon is known as the “cry-wolf effect” (Bliss et al., 1995;
Parasuraman et al., 2000). Future research should identify the preconditions that allow automa-
tion aids to assist with the decision component of X-ray image inspection. On a more general
level, Manuscript 5 shows that it is difficult generalize findings in automation across different
tasks but might actually even be specific to sub-tasks (e.g. separately for search and decision).

Practical implications. Beyond the theoretical implications mentioned above, this thesis
provides several practical implications. When the X-ray image inspection performance of
screeners is evaluated by security companies, airports, or regulators, our findings suggest that
this should either be done on the basis of hit and false alarm rates or, when the evaluation
should be independent of response tendency, based on d, with a slope of around 0.6 (Manu-

scripts 2 and 4). When d'is used instead, screeners with the tendency to declare a bag as “not
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ok” are likely disadvantaged. It was also shown that screeners can shift their criterion when in-
structed accordingly (Manuscript 3). This could be used to screen the baggage of high risk pas-
sengers more thoroughly. The results also suggest that improving the recognition of everyday
objects might increase the screeners’ ability to shift their criterion and assist with the detection
of novel threats.

Manuscript 4 further showed that screeners can inspect X-ray images for 60 min without a
decrease in performance and without a lower performance compared to screeners that received
a 10-min break every 20 min. Because this result does not necessarily generalize to everyday
work and because screeners without a break reported more distress, it would certainly be too
early to recommend relaxing the regulatory restriction to 20 min of screening. However, based
on the results regulators will likely allow to investigate longer screening durations with field stud-
ies, which then might result in more flexibility in designing the screening process.

Manuscript 5 showed that explosive detection systems for cabin baggage (EDSCB) are of
limited use if implemented as automation aid without any further consideration. Future research
should evaluate whether specific alarm resolution protocols or trainings allow screeners to in-
corporate the detection capability of the EDSCB and whether multi-view or 3D-CT images pro-
vide better results. Otherwise, EDSCB as automation aid seems to only provide some assis-
tance with guiding attention of less experienced screeners. In that case, automated decision
would be the better option — provided regulation allows to use EDSCB with a threshold that re-
sults in an acceptable false alarm rate. It was also shown with a discrete event simulation model
that EDSCB with automated decision can be operationally feasible if fast explosive trace detec-

tion can be used to resolve the alarms of the EDSCB.
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Conclusion

Inspecting X-ray images of passenger baggage is an important element of aviation security.
Because mistakes in this task can have huge, even fatal consequences, research can provide a
valuable contribution by reducing these errors. Existing research — e.g. on visual search, object
recognition, automation, and vigilance — offers a good basis to investigate questions raised by
new technologies, but the generalizability of findings across settings and populations is often
unclear. By putting this generalizability to test, the experiments of this thesis provide important
insights for practitioners in airport security and extend the theories and findings on which they
are based by narrowing down their boundary conditions and identifying potential moderators.
Manuscript 1 highlights that X-ray image inspection should not be seen as a mere visual search
task by showing that the two tasks depend on different aspects of visual-cognitive abilities,
whereas there was no difference found between students and professionals regarding the effect
of these visual-cognitive abilities. Because X-ray image inspection often relies on decisions un-
der uncertainty, the screeners’ response is influenced by their response tendency. The experi-
ments of this thesis show that the screeners’ response tendency can be affected by instruction
(Manuscript 2 and 3), but also depends on the screeners’ confidence (Manuscript 2) and the tar-
get prevalence (Manuscript 4). It can therefore be crucial to evaluate performance in X-ray im-
age inspection on valid detection measures that are independent of response tendency. When
investigating the effect of time on task and breaks, Manuscript 4 showed that X-ray image in-
spection is not directly comparable to findings in vigilance research. Manuscript 5 suggests that
EDSCB as an automation aid assists with attention allocation, but not necessarily with the deci-
sion. This distinction can explain why automation aids help students to find guns and knives and
less experienced screeners to find IEDs, but do not increase the detection of explosives or for
experienced screeners in general. EDSCB with automated decision however increases the de-
tection of explosives (Manuscript 5) and can be operationally feasible when alarm resolution is

fast and screeners produce few false alarms (Manuscript 6).
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This thesis shows that a more integrative theoretical framework on search and recognition is
needed that also covers recognition under high uncertainty. Also extending the existing frame-
works on automation aids to more strongly differentiate between different subtasks seems

promising for future research.
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Visual-Cognitive Abilities Needed?
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The act of looking for targets amongst an array of distractors is a cognitive task that
has been studied extensively over many decades and has many real-world applications.
Research shows that specific visual-cognitive abilities are needed to efficiently and
effectively locate a target among distractors. It is, however, not always clear whether
the results from traditional, simplified visual search tasks conducted by students wiill
extrapolate to an applied inspection tasks in which professionals search for targets
that are more complex, ambiguous, and less salient. More concretely, there are several
potential challenges when interpreting traditional visual search results in terms of their
implications for the X-ray image inspection task. In this study, we tested whether
a theoretical intelligence model with known facets of visual-cognitive abilities (visual
processing Gv, short-term memory Gsm, and processing speed Gs) can predict
performance in both a traditional visual search task and an X-ray image inspection
task in both students and professionals. Results showed that visual search ability
as measured with a traditional visual search task is not comparable to an applied
X-ray image inspection task. Even though both tasks require aspects of the same
visual-cognitive abilities, the overlap between the tasks was small. We concluded that
different aspects of visual-cognitive abilities predict performance on the measured tasks.
Furthermore, although our tested populations were comparable in terms of performance
predictors based on visual-cognitive abilities, professionals outperformed students on
an applied X-ray image inspection task. Hence, inferences from our research questions
have to be treated with caution, because the comparability of the two populations
depends on the task.

Keywords: visual search, visual inspection, letter search task, X-ray image inspection, visual-cognitive abilities,
students, professionals

INTRODUCTION

Visual search, the act of looking for targets amongst an array of distractors, is a demanding cognitive
task (e.g., Treisman and Gelade, 1980) that has many real-world applications. Some individuals
conduct visual search tasks professionally, for example, airport security officers (screeners) who
visually inspect X-ray images of passenger baggage to search for prohibited items or radiologists
who are looking for cancer in mammograms. Because search errors can have huge, even fatal,
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consequences in such professional applications, research can
provide a valuable contribution by reducing these errors. The
ability to locate a target amongst an array of distractors has
been studied extensively over many decades (for reviews see
e.g., Carrasco, 2011, 2014, 2018; Eckstein, 2011; Nakayama
and Martini, 2011; Humphreys and Mavritsaki, 2012; Chan
and Hayward, 2013). Research also shows that specific visual-
cognitive abilities are needed to effectively and efficiently locate
a target among distractors. However, many of the studies on
visual search have been conducted using traditional, simplified
tasks with salient stimuli and have been done with non-
professional searchers (mostly students). These studies have
provided vital insights into the cognitive mechanisms underlying
visual search due to the high experimental control. It is, however,
not clear whether the results from such traditional, simplified
visual search tasks extrapolate to real-world inspection tasks in
which professionals search for targets that are more complex,
ambiguous, and/or less salient (e.g., Biggs and Mitroff, 2014;
Radvansky and Ashcraft, 2016, p. 257). It is also unclear to what
extent findings based on student samples can be transferred
to professionals who often rely on extensive training and
experience. To address these issues, we first introduce visual
search in general before comparing insights on traditional visual
search tasks vs. a real-world application, namely X-ray image
inspection, and considering the populations conducting these
search tasks.

Visual Search and Visual Search Tasks
Visual search typically involves an active scan of the visual
environment for a particular target among many distractors.
This is a demanding cognitive task requiring specific visual-
cognitive abilities (Treisman and Gelade, 1980). Over the past
several decades, psychological research has made tremendous
headway in understanding the underlying cognitive processes
when performing visual search tasks and the mechanisms
that allow a successful identification of target items (Clark
et al, 2012). Search thereby involves several processes such
as perception (i.e., processing and interpreting visual features),
attention (i.e., allocating resources to the relevant areas of a visual
area), and memory (for reviews see e.g., Carrasco, 2011, 2014,
2018; Eckstein, 2011; Nakayama and Martini, 2011; Humphreys
and Mavritsaki, 2012; Chan and Hayward, 2013; storing a
representation of the target item or items). To conduct visual
search and inspection, certain visual-cognitive abilities such as
attention, memory, visual processing, or processing speed have
been found to correlate with higher performance.

A known example of a traditional visual search task that
has been studied in many variations is the L/T-letter search
task. According to Treisman and Gelade (1980), this is called a
conjunction search task. Conjunction search involves distractors
(or a group of distractors) that may differ from each other but
exhibit at least one common feature with the target and therefore
require a combination of features to distinguish them (Shen et al.,
2003). For example, the letters T and L share exactly the same
features, differing only in their spatial arrangement (L/T-letter
search task: Treisman and Gelade, 1980). In one variation of
this task, participants are asked to identify the perfectly shaped

letter T (target) surrounded by many distractor letters including
Ls and symmetrical and asymmetrical Ts. The efficiency of such
a conjunction search in terms of accuracy and reaction time
depends on the distractor ratio and the number of distractors
present (McElree and Carrasco, 1999), and the negative effect
of limiting reaction time on accuracy is alleviated by training
(Reavis et al., 2016).

In more complex real-world visual search applications,
humans sometimes conduct visual search and inspection tasks
professionally. For example, radiologists inspect mammograms
for cancer (e.g., Nodine and Kundel, 1987; Krupinski, 1996;
Horowitz, 2017) or screeners inspect X-ray images for prohibited
items (Drury, 1975; Koller et al., 2009; Wales et al., 2009;
Mitroff et al.,, 2015). In these scenarios, professionals search
for targets that are less artificial and more familiar to them.
They must use their prior knowledge in order to accurately
and efficiently locate more ambiguous targets (Wolfe et al,
2019) such as guns and knives or cancer cells and so forth
among distractors with much more complex features compared
to a traditional conjunction search task. Searching for familiar
stimuli relies on object recognition (Wolfe, 1998). Here, top-
down processing allows searchers to more efficiently identify
targets with greater complexity (Zhaoping and Frith, 2011). X-
ray image inspection is therefore best described as a search and
decision task (Spitz and Drury, 1978; Koller et al., 2009) that
relies more heavily on the decision component compared to
traditional search tasks with unambiguous stimuli. Nonetheless,
visual search with complex objects is assumed to rely on the
same active scanning processes as conjunction search (e.g., L/T-
letter search task) with less complex, contrived laboratory stimuli
(Alexander and Zelinsky, 2011, 2012).

When translating results from a traditional visual search task
such as an L/T-letter search task to X-ray image inspection
and vice versa, it is necessary to consider differences in the
nature of stimuli and the characteristics of searchers. Differences
in stimuli include target and distractor complexity as well as
the requirement of domain-specific knowledge of the searcher
in order to successfully recognize the target (e.g., Biggs and
Mitroff, 2014). On the other hand, targets in a traditional
visual search task are often commonly known to have salient
shapes and colors, whereas targets in X-ray image inspection
tasks are not well-specified, not salient, and not predictable
through the context (Bravo and Farid, 2004). The large variety of
potential threat items and distracting objects in passenger bags
makes X-ray image inspection a difficult task (Héttenschwiler
et al.,, 2015; Sterchi et al., 2017). This calls for domain-specific
knowledge, because screeners must know which items are
prohibited and what they look like in X-ray images (Schwaninger,
2004, 2005, 2006). Due to the differences between traditional
visual search tasks and X-ray image inspection, it is unclear
whether they require the same visual-cognitive abilities. We
shall discuss this in the next section. Because research on
traditional visual search tasks and X-ray image inspection
differs in regard to not only the task but also the examined
population, we shall discuss differences between students
and professional screeners in section Populations Conducting
Visual Search.
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Cognitive Abilities for Visual Search

Both traditional visual search and X-ray image inspection can
be characterized as a basic, core cognitive task. As defined by
Carroll (1993), a cognitive task is any task in which correct
processing of mental information is critical for successful
performance. Therefore, specific cognitive abilities are needed to
perform such a task successfully. These abilities can be assessed
with specific correlated measures that can predict performance.
With regard to visual search and inspection, certain visual-
cognitive abilities such as attention, memory, visual processing,
or processing speed have been found to correlate with higher
performance (Wolfe et al., 2002; Bolfing and Schwaninger, 2009).
If individual differences in performance are found on visual
search or inspection tasks, these can be seen as the direct
manifestation of differences in an underlying ability or latent trait
(Carroll, 1993, 2003).

There is a large number of such abilities and many
theories aiming to integrate cognitive abilities. Today, the
Cattell-Horn-Carroll theory (CHC) is widely accepted as the
most comprehensive and empirically supported theory on
the structure of human cognitive abilities, and it informs a
substantial body of research and the ongoing development
of intelligence tests (McGrew, 2005). The CHC theory states
that the relationships among these cognitive abilities can
be derived by classifying them into three different strata:
Stratum I, “narrow” abilities; Stratum II, “broad abilities”; and
Stratum III, a single general ability also called g (Flanagan
and Harrison, 2005). The factors describe stable and observable
differences between individuals. However, the structure of
the three strata is hierarchical, meaning that the abilities
within one stratum (e.g., the narrow abilities of Stratum I)
are positively intercorrelated, thereby allowing an estimation
of Stratum II, the broad abilities. Likewise, the abilities of
Stratum II have non-zero intercorrelations, thereby allowing an
estimation of Stratum III. Hence, whereas the abilities within
Strata I or II are related, a large amount of evidence shows
that they are unique and reliably distinguishable (see e.g.,
Keith and Reynolds, 2012).

Visual processing (Gv), short-term memory (Gsm), and
processing speed (Gs) are broad Stratum II abilities that
are accepted components with a known influence on visual
search and inspection performance. Therefore, they are
included in most commonly used measures of intelligence
(e.g., Stanford-Binet: Roid, 2003a,b; Wechsler Intelligence
Scale: Wechsler, 1997). Visual processing (Gv) describes a
broad ability to perceive, analyze, synthesize, and think in
visual patterns, including the ability to store and recall visual
representations. Short-term memory (Gsm) is characterized as
the ability to apprehend and hold information in immediate
awareness and then perform a set of cognitive operations on
this information within a few seconds. Because analyzing,
synthesizing, and thinking in visual patterns are also
cognitive operations, Gv and Gsm are closely related, but
can be distinguished by the limited capacity of short-term
memory. Processing speed (Gs) describes the ability to
quickly and accurately perceive visual details, similarities,
and differences.

Several studies have confirmed the influence of higher scores
in Gv, Gsm, and Gs on better performance in traditional
visual search tasks (Eriksen and Schultz, 1979; Alvarez and
Cavanagh, 2004). Cognitive abilities have also been linked to
inspection performance in studies on X-ray image inspection
with professionals (e.g., Schwaninger et al., 2004; Hardmeier
et al., 2005; Hardmeier and Schwaninger, 2008). Detection
performance decreases significantly if threat items are shown in
close-packed bags, if threats are more superimposed by other
items, and if they are shown in an unusual view. Studies linked
the influence of mental rotation and figure-ground segregation,
which are narrow abilities of visual processing (Gv), to higher X-
ray image inspection performance (Wolfe et al., 2002; Bolfing and
Schwaninger, 2009). Items presented from unusual or rotated
viewpoints become more difficult to detect (effect of viewpoint;
Palmer et al, 1981). Similarly, the position of a prohibited
item in a bag and its superposition by other objects (effect
of superposition), or the number and types of items in a bag
that could attract attention (effect of bag complexity) also affect
the difficulty in recognizing prohibited items. Bag complexity
comprises the factors clutter (disarrangement, textural noise,
chaos, etc.) and opacity (X-ray penetration of objects; see
Schwaninger et al., 2008). Memory capacity, which can be
classified as short-term memory (Gsm), is strongly associated
with visual inspection in general (e.g., Lavie and DeFockert,
2005; Poole and Kane, 2009; Roper et al., 2013). In addition,
processing speed (Gs) might be relevant for the efficiency of the
visual inspection task (Salthouse, 1996). Based on the reviewed
literature, the question arises whether the same visual-cognitive
abilities can predict performance in a traditional visual search
task and an X-ray image inspection task.

Populations Conducting Visual Search

As a positive correlation was found between certain visual-
cognitive abilities and performance in X-ray screening, many
European airports conduct preemployment assessments that test
for these visual abilities and aptitudes when recruiting new
personnel (e.g., X-Ray Object Recognition Test; see Hardmeier
et al., 2005; Hardmeier and Schwaninger, 2008). Professional
screeners conducting X-ray image inspection have therefore been
selected accordingly, and they usually have a lot of experience
on this specific task through many hours of training and years
of job experience. In comparison, university students are the
first choice as participants for traditional visual search research
because they are an easily accessible population. Therefore,
differences between professional screeners and students could be
due either to characteristics of the searchers as a result of self and
pre-employment selection or to training and job experience as
professionals (Clark et al., 2012).

Training for threat detection has the goal of creating internal
visual representations of objects and storing them in memory.
To identify whether an object in an X-ray image is a threat or
not, a searcher must successfully match the visual information of
this object to representations stored in visual memory (Kosslyn,
1975, 1980). Depending on the similarity of objects and its
features presented in an X-ray image to those stored in visual
memory, the screener will then decide whether the respective
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object is harmless or not. More familiar objects therefore need
fewer recognized features in order to be identified successfully
(Koller et al., 2009). Detection of objects—known and especially
unknown—should therefore improve with training because
features become familiar and are recognized better through
repeated exposure. For example, features of guns and knives are
known from everyday life and can therefore also be detected
by novices without specific experience or training. However,
screeners have been exposed to these objects more often and
have therefore more detailed and specific target templates and
are more familiar with them (Koller et al., 2009). However,
other prohibited items that are rather uncommon or have never
been seen before (e.g., improvised explosive devices, IEDs)
become very difficult to recognize for novices if they have
not been trained to recognize certain features of these threats
(Schwaninger, 2004, 2005).

Current Study

Over the past several decades, psychological research has
made tremendous headway in understanding the underlying
cognitive processes when performing visual search tasks and the
mechanisms that allow for the successful identification of target
items (Clark et al., 2012).

However, most of the research on this theoretical basis was
conducted with students using tasks applying artificial stimuli
to allow for maximum experimental control (for reviews, see
e.g., Duncan and Humphreys, 1989; Wolfe, 1994, 1998; Eckstein,
2011). It is therefore unclear to what extent professional X-ray
image inspection relies on the same cognitive processes. Because
the tasks in traditional visual search and X-ray image inspection
are often conducted by different populations, it is also necessary
to ask whether the two populations rely on the same cognitive
processes. To date, no study has examined the influence of visual-
cognitive abilities on visual search performance by comparing a
traditional visual search task and an X-ray image inspection task.

Based on the literature on visual-cognitive abilities, we
postulate a theoretical model in which several known facets
(visual processing Gv, short-term memory Gsm, and processing
speed Gs) can predict performance in a traditional visual search
task and an X-ray image inspection task. We shall test this
model on two populations (students and professionals) using the
same experimental stimuli. This will provide an indication on
whether the two populations require the same visual-cognitive
abilities or whether visual-cognitive abilities can be compensated
by experience and training in X-ray image inspection. To have
a fair comparison, we created a traditional visual search task
with Ls and T5 on a high difficulty level and an X-ray image
inspection task with no need for domain-specific knowledge
that included only black and white images as well as familiar
target items such as guns and knives. Features of guns and
knives as well as letters such as L or T, are known from
everyday life experience and can therefore be recognized without
specific experience and training. We used this comparison to
address the following research questions: (1) Do different visual-
cognitive abilities predict performance in a traditional visual
search task and an X-ray image inspection task? (2) Do the
results differ between students and professionals? Answers to

TABLE 1 | Description of participants.

N Age Gender SPM
Students 128 M =257 74% female M =30.8
SD =6.4 SD =3.0
Professionals 112 M = 43.7 55% female M =283
SD =119 SD =42

255 participants gave informed consent to be part of this experiment. 15 participants
had to be excluded from statistical analyses (5.9% of the sample) due to a malfunction
of a simulator (n = 4) or performance below chance (n = 11). Therefore, the final sample
included 240 participants. SPM, Standard Progressive Matrices raw scores as a baseline
measure of fluid intelligence.

these questions could provide important information on how
well studies conducted with students and traditional visual search
tasks can be generalized to professional X-ray image inspection.

METHODS

Participants

Table 1 reports the participants’ descriptives. 128 participants
were students from the University of Applied Sciences and Arts
Northwestern Switzerland. 112 participants were professionals
(airport security screeners employed at an international airport)
who were selected, qualified, trained, and certified according to
the standards set by the appropriate national authority (civil
aviation administration) in compliance with the relevant EU
regulation (European Commission, 2015). The current research
complied with the American Psychological Association Code
of Ethics and was approved by the Institutional Review Board
of the University of Applied Sciences and Arts Northwestern
Switzerland.

Apparatus

We used six HP ProBooks 4730s and 4720s with Intel Core
i5 2410M and 520M processors and 19" TFT monitors. The
six testing stations were separated, and the room was dimly
lit for testing. Participants sat approximately 50 cm away from
the monitor. Non-professional searchers were tested in the
laboratory at the University of Applied Sciences and Arts.
Professional searchers were tested at the test facilities of
the Center for Adaptive Security Research and Applications
(CASRA) using the same computers and monitors.

Stimuli

Visual Cognitive Test Battery

A visual-cognitive test battery (VCTB) was developed to measure
a broad spectrum of visual-cognitive abilities assessing a wide
variety of narrow abilities underlying visual processing (Gv),
short-term memory (Gsm), and processing speed (Gs) in order
to make predictions on visual search performance. The VCTB
consists of 10 standardized tests scales taken mostly from
well-established intelligence tests based on the CHC theory of
intelligence (Cattell, 1941; Horn, 1965; Carroll, 1993, 2003).
Four scales came from a major German intelligence test, the
Leistungspriifsystem 2 (LPS-2; Kreuzpointner et al., 2013). Three
tests were taken from a cognitive development test, that assesses
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TABLE 2 | Psychometric criteria of the VCTB test scales (objectivity, reliability, validity).

Test Scale Objectivity Reliability Validity
LPS LPS 6: Mental rotation (Gs) Standardized Cronbach’s a: 0.86-0.94 Factor analyses
LPS 7: Number of surfaces (Gs) Split-half: 0.81-0.96 Correlations with g
LPS 8: Shape Comparison (Gs)
LPS 10: Row comparison (Gs)
WSI WS Slices (Gsm) - - -
WSI Mental rotation (Gsm)
WSI Unfold (Gsm)
TVPS TVPS Visual Memory (Gv) Standardized Cronbach’s a: 0.74 -
TVPS Form Constancy (Gv) Test-Retest: 0.71
TVPS Figure Ground (Gv)
SPM SPM: Speed-Test Standardized Cronbach’s a: 0.97-1.00 Correlations with

Split-half: > 0.90
Test-Retest: 0.80-0.90

nonverbal IQ

Psychometric criteria are retrieved as follows: LPS from Kreuzpointner et al. (2013); TVPS from Brown et al. (2010); SPM from Horn (2009).

visual perceptual weaknesses and strengths—the Test of Visual
Perceptual Skills (TVPS-3; Martin, 2006). Another three scales
were used from a Swiss online assessment test for students (WSI;
Hell et al., 2009; Pafller and Hell, 2012) In addition, we included
Raven’s standardized progressive matrices (SPM; Horn, 2009) as
a general measure of fluid intelligence. Because most scales were
originally in paper-and-pencil format, we created computer-
based versions. Table 2 reports the psychometrical criteria of the
test scales.

Visual processing (Gv)

We assessed visual processing with three scales from the TVPS-3
(visual memory, form constancy and figure-ground segregation;
see Figure 1). For visual memory, participants have to memorize
a design for 5s and then recognize this pattern from four
alternatives presented on the next slide. The scale consists of
16 tasks and the score is the sum of correct responses. To
measure form constancy, participants are instructed to find a
target shape within five alternative, more complex patterns that
can be rotated, increased, or decreased in size. There are 16
trials and the score is the number of correct responses. Figure-
ground segregation is defined as the ability to recognize a target
shape within a very cluttered, busy background. Participants have
to choose one out of four complex patterns that include the
target shape. There are 16 trials, and the score is the number of
correct responses.

Short-term memory (Gsm)

Short-term memory was measured using three scales from the
WESI (slicing, spatial rotation, and unfold; Figure 2). Slicing can
be referred to as another form of three-dimensional visualization.
During the task, participants see a full three-dimensional object
and next to this a cube with two or three dividers. The task is to
visualize how the presented dividers slice the full objects and then
choose all these pieces from a series of alternatives. Each correctly
chosen piece is scored. We used spatial rotation to have another
measure of the ability to mentally rotate objects. Participants see
different three-dimensional objects. Besides one original figure,
six additional figures are shown and the participants task is

to choose which of the figures represents the original figure
when rotated or moved. The score is the number of correct
responses. Unfold is another measure of visualization in which
participants see a three-dimensional object and a series of folding
templates. They then have to visualize the template that forms
the original three-dimensional object. The score is the number of
correct responses.

Processing speed (Gs)

Processing speed was measured with Subtests 6, 7, 8, and 10
of the LPS-2 (spatial relation, visualization, perceptual speed,
and scan/search; see Figure 3). All scales measure the ability
to quickly and accurately perceive visual details, similarities,
and differences. Spatial relation was measured with Subtest 6 in
which participants have to search for the one mirror-inverted
number or letter in a list. Several signs can be rotated, but only
one sign is mirrored and has to be marked. The scale consists
of 40 trials. Scored are the correct responses reached within
2 min. We measured visualization, the ability to visualize a three-
dimensional object, with Subtest 7. The participants’ task is to
determine the number of surfaces of a given geometrical figure.
To do this, they need to visualize the figure in a three-dimensional
space by counting the number of sides of the given object and
indicating the number of sides by clicking on the corresponding
number. There are 40 trials. The score is determined by counting
the number of correct responses reached within 3 min. In subtest
8, perceptual speed, the participants’ task is to recognize one out
of five shapes embedded in a more complex pattern. The scale
contains 40 patterns of increasing complexity. The score is the
number of correct responses reached within 2 min. In subtest
10, scan and search, participants have to compare two lists of
characters shown next to each other and mark characters that
are different in the second list. Whereas, some rows are identical,
others can differ in more than one character. The score is the
number of correct markings within 2 min.

Fluid intelligence
The Raven Standard Progressive Matrices Plus (SPM) is a
language-independent test of fluid intelligence. Participants see
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FIGURE 1 | Image example of the three scales of TVPS-3: (A) visual memory, (B) form constancy, and (C) figure—ground segregation.
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FIGURE 2 | Image example of the three scales from the WSI: (A) slicing, (B) spatial rotation, and (C) unfold.
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a matrix of logical patterns and have to choose the missing piece
out of six to eight abstract figures (Raven et al., 2003). The tests
consists of 48 items of increasing complexity. The score is the
number of correct responses reached within 10 min.

Simulated Baggage Screening Task

The simulated baggage screening task (SBST) was created based
on the X-Ray Object Recognition Test (X-Ray ORT, Schwaninger
et al, 2005; Hardmeier et al, 2006). The original ORT was
designed to measure how well professional and non-professional

searchers can cope with image-based factors that impact on
the detection of prohibited items (viewpoint, superposition,
and bag complexity) rather than measuring knowledge-based
determinants of threat detection performance (which is largely
dependent on training). To this end, guns and knives are used
in the ORT, that is, object shapes that can be assumed to be
known by most people. All X-ray images are in black and white,
because colors mainly diagnose the material of the objects in
the bag, and thus, could primarily help experts. In addition,
all guns and knives are shown for 10s before the test starts,
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FIGURE 3 | Image example of Subtests 6, 7, 8, and 10 of the LPS-2: (A) spatial relation, (B) visualization, (C) perceptual speed, and (D) scan/search.
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thereby further reducing the role of knowledge-based factors in
this test.

The SBST created for this experiment included 256 X-ray
images, with one half of the images containing threat item. As
threats, eight guns and eight knives with common shapes were
used. The X-ray images used in the SBST vary systematically
in image difficulty by varying the degree of view difficulty,
bag complexity, and superposition, both independently, and in
combination (see Figure 4 for examples). Therefore, each gun
and each knife was displayed in an easy view and a rotated view
to measure the effect of viewpoint. Each view was combined
with two bags of low complexity: once with low superposition,
and once with high superposition. These combinations were also
generated using two close-packed bags with a higher degree of
bag complexity. In addition, each bag was presented once with
and once without a threat item. Thus, there were a total of 256
trials: 2 weapons (guns, knives) x 8 (exemplars) x 2 (views) X 2
(bag complexities) x 2 (superpositions) x 2 (harmless vs. threat
images). The test was divided into four blocks of 64 trials each.
The order of blocks was counterbalanced across four groups of
participants using a Latin square. Within each block, the order of
trials was random.

L/T-Letter Search Task
Comparable to previous research using laboratory visual search
tasks, we created an L/T-letter search task to evaluate visual

search abilities that are independent of a specific domain. In line
with Biggs et al. (2013), we created a test with an increasing
difficulty level and a search and decision component. The test
consisted of 96 trials. Each image comprised 25 pseudo-Ls as
distractors, and one-half of the images contained one target T
against a gray background (see Figure 5 as an example). Items
were randomly located in a 8 x 7 grid. Each item comprised two
perpendicular black lines that varied on six levels of transparency
(70, 67, 65, 40, 35, and 30%) and four levels of rotation. Target Ts
had a crossbar directly in the middle, whereas distractor Ls had a
crossbar sliding to variable distances away from the center. The
distractor stimuli varied in shape with some being very similar to
the target Ts. This increased task difficulty in line with a complex
conjunction search task. All items were distractors for the target-
absent condition, and in the target-present condition, all items
were distractors except for one target T.

Procedure
All participants were first tested with the visual-cognitive test
battery (VCTB). In addition, the participants conducted a basic
visual L/T- letter search task. In a second session, all participants
were invited to conduct a simulated baggage screening task
(SBST) using single-view X-ray images.

For the VCTB, all tests were computer-based and not
conducted in the original paper-and-pencil format. Each of
the 10 subtests started with general instructions followed by
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FIGURE 5 | Example of an image from the L/T-letter search task. Image containing several pseudo-Ls as distractors and one target T against a gray background.
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an example. The same procedure was applied to the SPM
following the VCTB scales. The test was divided into three
blocks and participants were asked to take a break of 10-15 min
between blocks. For the SBST, participants came to the testing
facilities again, approximately 2 weeks later. Each participant sat
approximately 50 cm away from the monitor. The X-ray images
covered about two-thirds of the screen. After task instructions,

an introductory session followed using two guns and two knives
not displayed in the test phase. In each trial, an X-ray image
of a piece of luggage was presented for a maximum of 4s. We
chose this duration to match the demands of high passenger flow
in which average X-ray image inspection time at checkpoints is
in the range of 3-5s. The participants’ task was to decide as
accurately and as quickly as possible whether the bag was OK
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TABLE 3 | Definition of hit, false alarm, miss, and correct rejection according to
SDT (Green and Swets, 1966).

Stimulus Target-present Target-absent
response response

Target-present stimulus Hit Miss

Target-absent stimulus False alarm Correct rejection

(no threat item) or NOT OK (a gun or knife present) by clicking
on the respective button. Prior to the actual test phase, the eight
guns and eight knives used in the test were each presented for
10s. Feedback was provided after each trial, but only in the
introductory phase. For the L/T- letter search task, the same
computers and monitors were used as for the SBST. Again,
participants sat approximately 50 cm away from the monitor and
the images covered about two-thirds of the screen. Each trial
started with a fixation cross in the middle of the screen. After
0.5s, a grid with 25 stimuli was presented for a maximum of
15s. Each grid had 0 or 1 T’s. If participants recognized a target
T, they had to press “Y” on the keyboard and then mark the
target T with the mouse. If they did not see a target T, they
had to press “space” on the keyboard. As soon as participants
marked the target T with the mouse or pressed the spacebar,
the next trial started. If there was no decision after 15s, the
next trial started.

Analyses

Both tasks used in this experiment can be described as a
visual inspection consisting of visual search and decision (Spitz
and Drury, 1978; Koller et al.,, 2009; Wales et al., 2009). The
outcome of this task is based on the searchers decisions on
whether a target is present or absent. According to signal
detection theory (SDT) (Green and Swets, 1966), there are
four possible outcomes depending on stimuli and participant
responses (Table 3). Because individuals with identical detection
ability can have different levels of hit rate and false alarm rate due
to different response tendencies, it is often more appropriate to
express detection performance in terms of a sensitivity measure
(Green and Swets, 1966; Macmillan and Creelman, 2005). We
therefore used d’ as detection measure for the L/T-letter search
task based on the following formula in which z refers to the
inverse of the cumulative distribution function of the standard
normal distribution (Green and Swets, 1966; Macmillan and
Creelman, 2005):

d = z(HR) — z(FAR) (1)

d’ is based on the equal variance Gaussian model, a common
model of SDT (Pastore et al., 2003). SDT can also assume
other underlying evidence distributions. One example is a
SDT model that assumes the two evidence distributions to be
normal but with unequal variance. For a given ratio s between
the standard deviation of the target-present and target-absent
distribution, the resulting zZROC has slope s. For this SDT model,
Macmillan and Creelman (2005) propose using Simpson and

Fitter’s (1973) detection measure:

[ 2
ds = Te x [z (HR) — sz(FAR)] )

Concerning the task of X-ray screening, several studies have
raised doubts about the equal variance Gaussian model. Wolfe
et al. (2007) proposes a zROC slope of 0.6, which indicates
that the noise (target-absent) distribution has a smaller standard
deviation than the signal-plus-noise (target-present) distribution.
Further publications (Van Wert et al., 2009; Godwin et al., 2010)
have reported zROC slopes similar to those reported by Wolfe
et al. (2007) while a study reported by Wolfe and Van Wert
(2010) found a slope of 0.56 and a study by Sterchi et al. (2019)
a slope of 0.5 to fit the data more accurately. In our study, data
from the basic visual search task (L/T-letter search task) were
analyzed under the assumption of an equal variance model using
d’, whereas data from the X-ray image inspection task SBST were
analyzed under the assumption of an unequal variance model
with a zROC slope of 0.5 using d,".

In a first step, we examined descriptive statistics (means
and standard deviations) as well as correlations (Spearman
correlations; Spearman, 1927) with basic functions of R Statistics
version 3.44 (R Core Team, 2018). We then performed
confirmatory factor analysis (CFA) using maximum likelihood
methods of estimation with the package “lavaan” (Rosseel, 2012)
in R Statistics version 3.4.4 (R Core Team, 2018). We report
factor loadings of CFA, which should be minimally 0.50 and
optimally higher than 0.70. To estimate the goodness of fit for
the models, we report Chi? values, the comparative fit index
(CFI), the Tucker-Lewis index (TLI), and the root-mean-square
error of approximation (RMSEA). CFI and TLI values close to
0.95 or higher (Hu and Bentler, 1999) and RMSEA values up to
0.07 (Steiger, 2007) indicate a good fit between the data and the
proposed model. For the multiple regression analyses, predictors
were entered into the regression using the “enter method” (forced
entry). For results, we report R?, F, and p to evaluate the overall
model fit. Furthermore, we report B, SE, t, and p for each
predictor. In order to compare regression models, we used Wald’s
test and the Bayes factor. Bayes factor was calculated with the
package “BayesFactor” (Morey et al., 2018) in R Statistics version
3.4.4 (R Core Team, 2018). The interpretation of the Bayes factor
as evidence for the alternative hypothesis was reported in line
with Raftery (1995).

RESULTS

We first report descriptive statistics and Spearman correlations.
In accordance with the CHC model of intelligence (e.g., Flanagan
and Dixon, 2013), we then computed a CFA over the VCTB
scales with three latent factors: visual processing (Gv), short-term
memory (Gsm), and perceptual speed (Gs) in order to confirm
the construct validity of the used VCTB. Further, we performed

'The choice between d, and d’ would be a concern if there was systematic variance
in the criterion. Although we did not expect this in our study, we recalculated the
data using d’ and found no relevant differences in the results; that s, all significant
effects remained significant.
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TABLE 4 | Means and standard deviations.

Students Professionals
Max. score n M SD Cronbach’s « n M SD Cronbach’s o

da SBST 3.5 128 1.6 0.3 0.83 112 2.6 0.4 0.80

RT SBST 4.0 128 3.2 11 112 2.6 0.7

d uT 3.5 128 1.0 0.5 0.71 112 1.0 0.5 0.70

RT L/T 15.0 128 8.1 1.3 112 8.2 11.4

Gs 116 128 80.9 13.7 0.86-0.95 112 64.2 16.6 0.89-0.94
Gv 48 128 37.4 5.1 0.20-0.65 112 36.3 6.2 0.45-0.77
Gsm 31 128 21.7 5.5 0.56-0.75 112 19.8 5.7 0.62-0.68

n, number of participants; M, mean; SD, standard deviation; Cronbach’s o, internal consistency of scale; SBST, simulated baggage screening task; L/T-letter search task; Gs, processing
speed; Gv, visual processing; Gsm, visual memory; statistical abbreviations: da and d’, detection performance measures; RT, reaction time in seconds.

TABLE 5 | Correlational analyses.

da SBST RT SBST d L/T RT L/T SPM Gs Gsm Gv
STUDENTS
da SBST -
RT SBST 0.20* -
d uT 0.34*** 0.08 -
RT L/T 0.23* 0.26™ 0.45*** -
SPM 0.28™ 0.03 0.24** 0.20* -
Gs 0.22* 0.07 0.16 —0.03 0.57* -
Gsm 0.46** 0.23* 0.32%* 0.25™ 0.47* 0.33"* -
Gv 0.40™* 0.25™ 0.35"* 0.30™* 0.37* 0.30™* 0.64** -
Age 0.19* 0.06 0.14 0.16 —0.08 -0.14 0.13 0.11
PROFESSIONALS
da SBST -
RT SBST 0.18 -
d uT 0.35"* 0.02 -
RT L/T 0.23* 0.09 0.39"* -
SPM 0.25" —0.02 0.33* 0.21* -
Gs 0.11 —-0.17 0.26™ 0.02 0.61" -
Gsm 0.24* 0.07 0.28" 0.16 0.60"* 0.43"* -
Gv 0.39"* 0.16 0.38"* 0.34 0.62 0.43"* 0.58™* -
Age —0.05 0.48" —0.03 —0.05 -0.19* —0.36"" -0.15 —0.11

Spearman Correlations. *p < 0.05. **p < 0.01. and **p < 0.001.

multiple regression analyses to test whether the z-standardized
summarized scale scores of Gv, Gms, and Gs could predict
performance in the traditional L/T-letter search task and the
X-ray image inspection task (SBST). Last, we tested whether
the performance of the L/T-letter search task could mediate the
effects of Gv, Gms, and Gs on the performance of the SBST.

Descriptive Statistics and Correlations

Table 4 shows means and standard deviations of all independent
(Gs, Gv, Gsm) and dependent variables (d, SBST, RT SBST, d’
L/T, RT L/T) for students and professionals. Table 5 reports
the Spearman correlations between all variables separately for
students and professionals. Correlations with SPM scores served
as a control and showed high significance with all the VCTB

scales and a significant relationship with performance in both
tasks. Correlations among the detection performance of the
L/T-letter search task and SBST with the VCTB measures Gv and
Gsm were all statistically significant within both populations. Gs
correlated with detection performance of the L/T-letter search
task for professionals and with the X-ray image inspection task
for students. The intercorrelations of the VCTB scales were
mostly in a medium range. We also correlated age as a control
variable with both tasks as well as the VCTB scales. Within
the population of professionals, we found negative correlations
between age and SPM and between age and Gs as well as a positive
correlation between age and detection performance in the SBST.
These are expected results, because fluid intelligence, processing
speed, and performance in SBST are known to decrease with
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age. In the student population, we did not find these relations.
This could be due to the lower mean and range of age in
this population.

Measuring Model-Confirmatory

Factor Analysis

In order to confirm the CHC-model structure of the VCTB scales,
we constructed three latent factors: visual processing (Gv), short-
term memory (Gsm), and perceptual speed (Gs). CFA showed
that the theoretical model fitted the data well. All factor loadings
reached statistical significance (p < 0.001), even though the factor
loading of LPS10 was minimally under the recommended quality
criterion of 0.50 (Hair et al., 2014) and the factor loading of
LPS6 was clearly under 0.50. The overall model fit was good with
Chi? (32) = 56.56, p = 0.005, CFI = 0.961, TLI = 0.946 and
RMSEA = 0.0359. As postulated by the CHC-model, the broad
abilities of Stratum II were related, but distinct constructs. The
correlation between the factors Gs and Gsm (r = 0.65, p < 0.001)
as well as between Gs and Gv (r = 0.53, p < 0.001) was moderate,
whereas there was a strong correlation between Gsm and Gv
(r = 0.83, p < 0.001). The CHC-model structure was further
tested for both populations separately and showed a good fit.
This was taken as confirming the construct validity of the VCTB.
For further analyses, we used the summarized and standardized
scale scores of Gv, Gsm, and Gs in order to investigate those three
abilities as more heterogeneous constructs.

Multiple Linear Regression Analyses

In a next step, we calculated multiple linear regression analyses
to predict detection performance on the L/T-letter search task
and the SBST based on the z-standardized summarized scale
scores of Gv, Gsm, and Gs and group (students vs. professionals).
For predicting detection performance d’ on the L/T-letter search
task, we found a significant regression equation F(4, 135y = 9.64,
p < 0.001, with an adjusted R?> of 0.13. zGv was the only
significant predictor of detection performance (Table 6A). The
same analysis was calculated again with group as moderator
variable. However, the moderation did not improve the model
fit (adjusted R? = 0.12, see Table 6B) and the comparison of the
two models using Wald’s test did not reach statistical significance
F3,232) = 0.14, p = 0.939. Using the Bayes Factor to compare
the two models revealed strong evidence against the moderation
model (BF;o = 40.4).

For predicting detection performance d, on the SBST,
we found a significant regression equation F(4 335 = 159.3,
p < 0.001, with an adjusted R? of 0.73. Group, zGsm, and zGv
were significant predictors of detection performance (Table 6A).
The same analysis was calculated again with group as moderator
variable. However, the moderation did not improve the model
fit (adjusted R? 0.73, see Table 6B) and the comparison
of the two models using Wald’s test did not reach statistical
significance F(3 737 = 1.83, p = 0.143. Furthermore, we found
strong evidence against the moderation model using the Bayes
Factor (BFjp = 90.9). Because the explained variance was much
higher in the SBST compared to the L/T-letter search task, we
wanted to test whether this was due to the effect of group, which
was only found for the SBST. When partialing out the group

variable, the R? decreased to 0.23. To further explore the effect of
group, we tested whether work experience of professionals (years:
M = 6.83, SD = 5.82) could explain some variance. However,
there was no significant correlation between performance in the
SBST and the log-transformed work experience (p = 0.09) and
the model fit did not improve when including work experience as
an additional variable (adjusted R?> = 0.72).

Up to this point, we found indication that both populations
require the same visual-cognitive abilities to predict performance
in both measured tasks. The regression models showed that
performance on both visual search tasks was predicted by zGv
and also zGsm (although only significantly for performance
on SBST). Based on this result, it could be concluded that
performance on, the L/T-letter search task and the SBST are
predicted by the same visual-cognitive abilities. If this was the
case, performance on the L/T-letter search task should fully
mediate the effect of zGv and zGsm on performance in the SBST.
This mediation effect would provide important information
on whether results from traditional visual search tasks can be
directly applied to professional X-ray image inspection. We
investigated this hypothesis by conducting a mediation analysis
using performance on the L/T-letter search task as mediator
between the visual-cognitive abilities and performance on the
SBST. We found a significant regression equation for the
mediation model F(s 534y = 135.9, p < 0.001, with an adjusted
R? of 0.74. Table 6C shows that even though performance on
the L/T-letter search task significantly predicted performance
on the SBST, the direct effects of Gv, Gsm, and group still
attained significance. The mediation model therefore showed
that the effect of Gv and Gsm on performance of SBST was
only partially mediated by performance on the L/T-letter search
task. This means that L/T-letter search task performance by itself
explains only part, but not all of the direct effects of Gv and
Gsm on performance on the SBST, while Gv and Gsm explain
an additional part of variance in performance on the SBST. To
explore this result in more detail, we tested the size of the indirect
effect of the visual-cognitive abilities on performance on the
SBST through performance on the L/T-letter search task using
bootstrapping procedures. These calculations give indication on
how much variance of the total effect on performance on SBST
can be explained by the effect of visual-cognitive abilities on
performance on the L/T-letter search task, which in turn has an
effect on performance on the SBST task. Indirect effects were
computed for each of 10,000 bootstrapped samples, and the 95%
confidence interval was computed by determining the indirect
effects at the 2.5 and 97.5th percentiles. The bootstrapped indirect
effects were 0.00 for Gs (SD =0.01, 95% CI [—0.02, 0.02]); 0.01 for
Gsm (SD = 0.01, 95% CI [—0.01, 0.04]); 0.04 for Gv (SD = 0.02,
95% CI [0.01, 0.08]); and —0.01 for group (SD = 0.02, 95%
CI [—0.05, 0.03]). Thus, the indirect effects were small and not
statistically significant, revealing that only a small part of the
effect of Gv and Gsm on performance of the SBST was mediated
by performance on the L/T-letter search task.

Since Gs did not show any effect on performance on the
visual search tasks, we calculated the same analyses using
response times (RT) as dependent variables (Table 7). For the
L/T-letter search task, we found a significant regression equation
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TABLE 6 | Multiple linear regression analyses and mediation model for detection performance.

L/T-letter search task (d’) SBST (d3)
B SE(B) t-value p-value B SE(B) t-value p-value
(A) BASIC MODEL
zGs —0.013 0.078 —-0.164 0.870 —0.039 0.044 —0.893 0.373
zGsm 0.119 0.079 1.513 0.132 0.104 0.044 2.348 0.019*
zGv 0.299 0.078 3.830 0.000*** 0.195 0.044 4.463 0.000***
zGroup 0.029 0.070 —-0.416 0.678 —0.834 0.039 —21.370 0.000***
adj. R2 0.126"** 0.726***
(B) MODERATION MODEL
zGs —0.018 0.079 —0.223 0.823 —0.03 0.044 —0.675 0.501
zGsm 0.127 0.080 1.567 0.119 0.113 0.045 2.533 0.012*
zGv 0.286 0.082 3.504 0.001** 0.190 0.045 4132 0.000***
zGroup —0.028 0.070 —0.400 0.700 —0.835 0.040 —21.458 0.000***
zGs*zGroup —0.030 0.079 —-0.378 0.705 0.064 0.044 1.461 0.145
zGsm*Group 0.036 0.080 0.451 0.652 0.064 0.045 1.426 0.155
zGv*Group —0.034 0.080 —-0.418 0.676 —0.054 0.045 —1.206 0.229
adj. R2 0.117** 0.730*
B SE(B) t-value p-value
(C) MEDIATION MODEL
zL/T da 0.13 0.04 3.5 0.000***
zGs -0.04 0.044 -0.88 0.382
zGsm 0.09 0.044 2.05 0.042*
zGv 0.16 0.044 3.58 0.000"**
zGroup —0.83 0.044 —21.77 0.000***
adj. R2 0.740%*
*p < 0.05; and ***p < 0.001.
p = 0.85. Using the Bayes Factor for model comparison,

TABLE 7 | Multiple linear regression analyses for response times (RT).

B SE B t-value p-value
L/T-LETTER SEARCH TASK
2Gs —0.209 0.077 —2.721 0.007**
zGsm 0.078 0.078 1.002 0.317
zGv 0.383 0.077 4.953 0.000"**
Group 0.048 0.138 0.350 0.727
X-RAY IMAGE INSPECTION TASK SBST
zGs —0.149 0.076 —1.963 0.051
zGsm 0.114 0.077 1.484 0.139
zGv 0.176 0.076 2.307 0.022*
Group -0.777 0.136 —5.699 0.000***

‘0 < 0.05; *p < 0.07, **p < 0.001.

F, 235 = 10.95, p < 0.001, with an adjusted R? of 0.14. zGs
and zGv were significant predictors of response times (Table 7).
We recalculated the same analysis including group as moderator
variable. However, the moderation did not improve the model fit
(adjusted R? = 0.14) and the comparison of the two models using
Wald’s test did not reach statistical significance F(3 537y = 0.26,

results suggested strong evidence against the moderation model
(BF1p = 37.46). For the SBST, the regression equation was also
significant F(y 235 = 12.74, p < 0.001, with an adjusted R* of
0.16. Group and zGv were significant predictors of response times
(Table 7). Using group as moderator variable slightly improved
the model fit (adjusted R*> = 0.18), however, the comparison
of the two models using Wald’s test did not reach statistical
significance F(3 232y = 2.37, p = 0.07. Using the Bayes factor
for model comparison, results suggested only weak evidence
against the moderation model (BF;o = 2.40). Again, to further
explore the effect of group, we entered work experience as
an additional variable, but this did not improve the model fit
(adjusted R? =0.18).

DISCUSSION

Many studies on the topic of visual search have been conducted
with students using traditional, simplified visual search tasks and
salient stimuli. Although such research is vital to explore the
underlying cognitive mechanisms in a controlled environment,
it is not always clear whether the results extrapolate to real-
world inspection in which professionals search their visual
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fields for targets that are more complex, ambiguous, and
less salient (e.g., Radvansky and Ashcraft, 2016, p. 257).
Furthermore, visual search research is often conducted with
students, who differ systematically from professional searchers.
We investigated whether the same visual cognitive abilities
predict performance in students and professionals performing
two tasks: a traditional visual search task—the L/T-letter search
task—and an X-ray image inspection task. We tested students
and professionals on three known facets of visual-cognitive
abilities: visual processing (Gv), short-term memory (Gsm),
and processing speed (Gs). We shall now use our results
to answer the following research questions: (1) Do different
visual-cognitive abilities predict performance and response
times in a traditional visual search task and an X-ray image
inspection task? (2) Do the results differ between students
and professionals?

Our results show that visual search ability as measured with
a traditional visual search task involves different underlying
visual-cognitive processes compared to an applied X-ray image
inspection task. Whereas, visual search ability as measured with
the L/T-letter search task was significantly predicted by visual
processing (Gv), performance on the SBST was significantly
predicted by visual processing (Gv) and short-term memory
(Gsm). However, the mediation model revealed that only a small
part of the effect of Gv and Gsm on performance of the SBST
was mediated by performance on the L/T-letter search task.
This leads to the conclusion that different aspects of Gv and
Gsm predict performance in the measured tasks. Furthermore,
the influence of the measured visual-cognitive abilities on
performance did not differ between students and professional
screeners. However, professionals outperformed students in the
X-ray image inspection task.

Traditional Visual Search vs. X-Ray

Image Inspection

Multiple linear regression analyses were calculated for both visual
search tasks in order to predict performance based on three
visual-cognitive abilities (Gv, Gsm, Gs) and group (students vs.
professionals). We further added the L/T-letter search task as
a mediator of the effects of the visual-cognitive abilities to the
model. The L/T-letter search task should reduce the direct effect
of the visual-cognitive abilities on the X-ray image interpretation
test if the two tasks depend on the same aspects of these abilities.
However, the mediation model showed that only a small amount
of the effects from the visual-cognitive abilities on X-ray image
interpretation performance was mediated through the L/T-letter
search performance. That different visual-cognitive abilities are
relevant for the two tasks, is therefore indicated by the different
underlying cognitive processes.

In the regression model, visual processing (Gv) was a
predictor of performance for both tasks. This result is in
accordance with earlier studies showing a correlation between
performance and visual processing for traditional visual search
(Wolfe et al., 2002; Bolfing and Schwaninger, 2009) and an
influence of mental rotation and figure-ground segregation on
higher performance in X-ray screening (Wolfe et al, 2002;

Bolfing and Schwaninger, 2009), which are narrow abilities
of visual processing (Gv). However, our results showed that
different aspects of visual processing explain variance in the
traditional visual search task and the X-ray image inspection
task. According to the CHC theory, visual processing describes
a broader ability to perceive, analyze, synthesize, and think
with visual patterns, including the ability to store and recall
visual representations. Both, the L/T-letter search task and the
X-ray image inspection task require visual processing abilities,
that is, the ability to mentally rotate objects and see them in
their spatial relation and the ability to visualize and recognize
patterns (e.g., visual memory, figure-ground segregation, or
form constancy). However, visual processing includes a broad
spectrum of abilities. Even though the traditional visual search
task and X-ray image inspection task in this study were created
to make them comparable, the tasks differed in regard to stimuli
and distractor complexity. Targets in the traditional visual search
task (Ls and T5) have salient shapes, whereas targets (guns and
knives) and distractors in the X-ray image inspection task are not
salient and may additionally produce clutter and superposition.
These are all potential reasons for our finding that different
aspects of Gv are needed to perform faster and better in the
measured tasks.

Short term memory (Gsm) was a significant predictor of X-ray
image inspection performance, but not for the traditional visual
search task. However, even though the standardized coefhicient
for Gsm was not smaller for the L/T-letter search task, it did
not reach significance as a predictor for the L/T-letter search
task (due to larger standard errors) and its relevance for that
task is therefore unclear. Gsm is characterized as the ability
to apprehend and hold information in immediate awareness
and then use it within a few seconds. When comparing the
stimulus complexity of the L/T-letter search task and the X-
ray image inspection task, one would assume that Gsm might
be especially important for a real-world task such as the SBST,
which uses more complex and realistic stimuli and needs more
top-down processing and the use of memory capacity, whereas
simple letters are easy to remember. It can be further assumed
that short-term memory becomes even more important when
predicting performance in tasks with increasing complexity and
unknown features that need previous knowledge. Regarding
the X-ray image inspection task, the differentiation of targets
from distractors needs memory capacity, because distractors
appear in the form of everyday objects that can look similar to
target items (Hittenschwiler et al.,, 2015; Sterchi et al., 2017),
and prior object knowledge is needed to differentiate targets
from non-targets.

Processing speed, the ability to quickly and accurately perceive
visual details, similarities, and differences, did not predict
detection performance in the measured tasks. We therefore
additionally calculated a model for response times, in which
processing speed predicted performance in the L/T-letter search
task but fell short of significance for the X-ray image inspection
task (significance in the SBST: p = 0.051). Participants with
higher Gs scores therefore performed faster. This result is
consistent with previous research that found processing speed to
be relevant in terms of efficiency (Salthouse, 1996).
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Comparison of Students and Professionals
For both groups, visual-cognitive abilities were comparably
relevant for their performance on the traditional visual search
task and the X-ray image inspection task. However, professionals
outperformed students on the X-ray image inspection task.
Because the relevance of the visual-cognitive abilities tested
in this study proved to be independent of the population
and they had similar levels of visual-cognitive abilities, the
higher detection performance of the professionals in the SBST
cannot be explained by differences in visual-cognitive abilities.
Consistent with this interpretation, after removing the group
variable from the analyses in the X-ray image inspection task,
a similar amount of variance could be explained as in the
L/T-letter search task (especially when considering that the
SBST was more reliable). This leaves mainly two possible
explanations for this difference: Students and professionals might
differ in other cognitive abilities than the ones measured,
and these other abilities account for the improved detection
performance only on the SBST but not the L/T-letter search
task. Such a difference could be due to the selection of the
security personnel. Or more likely, the group effect could be
due to differences related to training and job experience of
the professionals.

Halbherr et al. (2013) found that the biggest increase in
performance is seen incrementally up to 40h of training. The
professionals participating in this study all had more than 2
years of training and work experience. Additional training hours
might therefore not result in a large performance increase.
This is consistent with our finding that partialling out age
and work experience did not improve the model fit. McCarley
et al. (2004) found detection performance improvements to be
based on improvements in object recognition rather than the
visual search task per se. Based on that, more familiar objects
possibly need fewer recognized features in order to be identified
successfully (Koller et al., 2009), and features are known and
recognized better and faster with repeated exposure (McCarley
et al., 2004; Schwaninger and Hofer, 2004; Koller et al., 2008,
2009; Halbherr et al., 2013). In our study, we created a traditional
visual search task with a higher difficulty level and an X-ray
image inspection task containing targets with no need of domain-
specific knowledge. Features of guns and knives as well as
letters such as L or T are known from everyday life and can
therefore be detected without specific experience and training.
However, the X-ray screening task requires the ability to resolve
object occlusion, whereas the L/T-letter search task does not.
Therefore, inferring the full shape of occluded objects may be
superior in professionals due to higher object familiarity. It
can further be assumed that work experience leads to richer
object templates or representations of everyday objects in X-
ray images (Hittenschwiler et al., 2015). As discussed above,
distractors in an X-ray image inspection task are merely everyday
objects that can look like threat items, especially if no target
representation is stored. In comparison to a traditional L/T-letter
search task in which distractors are salient and known, many
everyday object distractors cannot be recognized easily in X-
ray images without prior knowledge. This lack of knowledge
can be a disadvantage for students who are not used to X-ray

images and might lead them to incorrectly judge a bag to be
harmful (Sterchi et al., 2017).

Regarding response times, the visual-cognitive abilities were
comparably relevant for both groups in the traditional visual
search task and the X-ray image inspection task. Using group
as moderator variable only resulted in a small and not quite
significant increase of the model fit. We, however, believe
that this difference in R? is too small to indicate a relevant
moderation. Also the Bayes factor provides weak evidence against
the moderation model. Therefore, differences between groups
as discussed above only seem to be relevant for detection
performance and not response times.

Taken together, the influence of the measured visual-cognitive
abilities on performance did not differ between students and
professional screeners. However, professionals outperformed
students in the X-ray image inspection task, which we assume
to be due to training and job experience of the professionals.
The presence of a group difference, but apparent absence of a
moderation suggests that experience (or any alternative reason
for the group difference) does not interact with the relevance of
the visual-cognitive abilities for the X-ray image inspection task.
However, we would caution against assuming that this pattern
can be generalized to other visual-cognitive abilities or other
implementations of the X-ray image inspection task. The X-ray
image inspection task as used in this study is not the same task as
the one screeners conduct at checkpoints—particularly regarding
target prevalence, coloring of images, and target categories.
Prohibited items that are rather uncommon or have not been seen
before (e.g., improvised explosive devices, IEDs) become very
difficult to detect without training in the recognition of certain
features of these threats (Schwaninger, 2004, 2005). Assuming
that the performance in detecting such threats is still dependent
on certain visual-cognitive abilities and that only professionals
can detect them, these visual-cognitive abilities would only be
relevant for the performance of professionals. We therefore
expect that results would look different if a task was used that
requires domain-specific knowledge.

LIMITATIONS AND FUTURE DIRECTIONS

One limitation of this study is the representativeness of the
tested populations. Our samples of students and professionals
showed similar means and standard deviations on the measured
visual-cognitive abilities. Professionals participating in this study
all passed a preemployment test for these visual abilities (e.g.,
X-Ray Object Recognition Test; see Hardmeier et al., 2005;
Hardmeier and Schwaninger, 2008). It could therefore be possible
that they have high levels of certain other relevant visual-
cognitive abilites that were not included in this study. Future
studies could investigate applicants for the screening job and
investigate how far preemployment assessment limits variation
in visual-cognitive abilities. It would further be interesting to
observe whether the influence of the visual-cognitive abilities
really remains stable when the screeners’ performance increases
through training and job experience. Further, the students tested
in our study proved to be a very heterogeneous sample, especially
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with a high variance in age, which is not directly comparable to
a typical student sample (students from universities of applied
sciences tend to be more heterogeneous than students at other
universities). This raises the question whether regression results
would be affected if the tested sample were more homogeneous
on some variables.

Our results suggest that different aspects of Gv and Gsm are
relevant for performance on the L/T-letter search task and X-ray
image inspection. Future studies should investigate the influence
of narrow (Stratum I) abilities on these tasks. Implications based
on current results could be that either a simple and short
version of the visual-cognitive test battery (Gv scales) could be
used to measure abilities and predict performance in students
and professionals. Or in an applied setting, the SBST could
be used as a criterion for abilities. Because there are major
individual differences in visual-cognitive abilities, it should be
tested whether someone is suited to perform well in a visual
search and inspection task. Especially with regard to X-ray
screening, airports could conduct preemployment assessments
that test for certain visual abilities and aptitudes when recruiting
new personnel. However, visual-cognitive abilities might become
less important as performance predictors for tasks in which
domain-specific knowledge is not only helpful but necessary. For
example, when radiologists search for cancer in mammograms
or screeners search for improvised explosive devices that include
unknown features, training for these features should have a
stronger influence on performance than visual-cognitive abilities.
Future studies could also investigate whether visual-cognitive
abilities change over time, and whether these abilities could be
trained through repeated exposure to visual search tasks.

CONCLUSION

With this study, we tried to determine how far results on a
traditional visual search task can be translated to an X-ray
image inspection and vice versa, and whether populations of
students and professionals are comparable. Comparing visual-
cognitive abilities and their influence on performance revealed
that the different visual-cognitive abilities were able to predict
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Abstract

In visual inspection tasks, such as airport security and medical screening, researchers often use the detection measures d'or A’ to
analyze detection performance independent of response tendency. However, recent studies that manipulated the frequency of
targets (target prevalence) indicate that d, with a slope parameter of 0.6 is more valid for such tasks than d"or A". We investigated
the validity of detection measures (d', A’, and d,,) using two experiments. In the first experiment, 31 security officers completed a
simulated X-ray baggage inspection task while response tendency was manipulated directly through instruction. The participants
knew half of the prohibited items used in the study from training, whereas the other half were novel, thereby establishing two
levels of task difficulty. The results demonstrated that for both levels, d"and A’ decreased when the criterion became more liberal,
whereas d, with a slope parameter of 0.6 remained constant. Eye-tracking data indicated that manipulating response tendency
affected the decision component of the inspection task rather than search errors. In the second experiment, 124 security officers
completed another simulated X-ray baggage inspection task. Receiver operating characteristic (ROC) curves based on confidence
ratings provided further support for d,,, and the estimated slope parameter was 0.5. Consistent with previous findings, our results
imply that d’' and A’ are not valid measures of detection performance in X-ray image inspection. We recommend always
calculating d, with a slope parameter of 0.5 in addition to d’ to avoid potentially wrong conclusions if ROC curves are not
available.

Keywords X-ray image inspection - Visual search - Signal detection theory - Detection measures

Introduction harmless (farget absent) or might contain a prohibited item

(target present) determines whether a secondary search must

X-ray baggage screening at airports is an essential component
for securing air transportation. To prevent passengers from
bringing potential threats onto an aircraft, airport security of-
ficers visually search X-ray images of passenger bags and
decide within seconds whether a bag contains a prohibited
item or is harmless. This task can be described as visual in-
spection consisting of visual search and decision making
(Koller, Drury, & Schwaninger, 2009; Wales, Anderson,
Jones, Schwaninger, & Horne, 2009) in line with the two-
component model of Spitz and Drury (1978). An airport se-
curity officer's (screener's) decision on whether a bag is
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be conducted at airport security checkpoints (typically using
explosive trace detection and a manual search of passenger
bags; Sterchi & Schwaninger, 2015). Table 1 presents the four
possible decision outcomes and associated terminology from
visual search studies (e.g., Biggs & Mitroff, 2015; Eckstein,
2011; Wolfe, 2007, p. 99), signal detection theory (SDT; e.g.,
Gescheider, 1997, p. 106; Green & Swets, 1966, p. 34), and
X-ray baggage screening (e.g., Cooke & Winner, 2007;
Schwaninger, Hardmeier, & Hofer, 2005).

In detection theory (Macmillan & Creelman, 2005), the
percentage of bags that contain a prohibited item that are cor-
rectly classified as such is called the /it rate (HR), whereas the
percentage of harmless bags that are falsely considered to con-
tain a prohibited item is the false alarm rate (FAR). There is a
trade-off between the HR and the FAR: If, for example, some-
one's tendency to respond with farget present increases, both
the HR and FAR will increase. At its extremes, someone could
decide to always respond with target present, thereby resulting

@ Springer
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Table 1T Outcome of decisions depending on stimulus using the terminology of visual search, signal detection theory, and X-ray baggage inspection
Decision

Stimulus Target absent Target present
No signal Signal

Bag is harmless

Bag requires secondary search

Target absent

Noise

No prohibited item present
Target present Miss
Signal plus noise

Prohibited item present

Correct rejection

False alarm

Hit

Note. Target present and target absent are terms used in visual search studies (Biggs & Mitroff, 2015; Eckstein, 2011; Wolfe, 2007, p. 99). Noise, no
signal, signal plus noise, signal, hit, miss, false alarm, and correct rejection are terms used in signal detection theory (Gescheider, 1997, p. 106; Green &
Swets, 1966, p. 34). The other terms have been used in X-ray baggage inspection studies (Cooke & Winner, 2007; Schwaninger, Hardmeier, & Hofer,

2004)

in a HR and FAR of 100%. Individuals with the same ability to
detect prohibited items can have different HRs and FARs be-
cause of differences in their response tendency (also referred to
as response bias; Macmillan & Creelman, 2005). SDT pro-
vides measures (such as d' and A’) for assessing detection per-
formance. These can be calculated from HR and FAR and are
assumed to be (relatively) independent of the observer’s re-
sponse tendency (Macmillan & Creelman, 2005, p. 39).
Since 9/11, a growing body of research on X-ray image inspec-
tion of passenger bags has led to an increasing use of d"and A’
in this domain (e.g., Brunstein & Gonzalez, 2011; Halbherr,
Schwaninger, Budgell, & Wales, 2013; Ishibashi, Kita, &
Wolfe, 2012; Madhavan, Gonzalez, & Lacson, 2007;
Mendes, Schwaninger, & Michel, 2013; Menneer, Donnelly,
Godwin, & Cave, 2010; Rusconi, Ferri, Viding, & Mitchener-
Nissen, 2015; Schwaninger, Hardmeier, Riegelnig, & Martin,
2010; Yu & Wu, 2015). Moreover, d"and A" are also frequently
used in related domains, such as the inspection of medical X-
ray images (e.g., Chen & Howe, 2016; Evans, Tambouret,
Evered, Wilbur, & Wolfe, 2011; Evered, Walker, Watt, &
Perham, 2014; Nakashima et al., 2015) and visual search tasks
with artificial stimuli (e.g., Appelbaum, Cain, Darling, &
Mitroff, 2013; Huang & Pashler, 2005; Ishibashi & Kita,
2014; Miyazaki, 2015; Russell & Kunar, 2012).

However, as will be discussed in more detail below, the
results of several studies in recent years cast doubt on the
validity of using d' or A’ for X-ray image inspection tasks
(i.e., visual search and decision tasks). Before discussing these
findings, we shall briefly summarize the theory behind ¢’ and
A’, and the methods used to evaluate their validity.

First, d’ is based on SDT, which, in turn, has its roots in
statistical decision theory. For a detailed introduction to SDT,
we recommend Green and Swets (1966), Macmillan and
Creelman (2005), Wickens (2002), and Gescheider (1997, pp.
105—-124). The basic idea of SDT is that when confronted with
a binary detection or decision task, cognitive information

@ Springer

processing will ultimately result in some type of one-
dimensional subjective evidence variable for or against one of
the two alternatives (Wickens, 2001, p. 150). This subjective
evidence variable is also called the decision variable
(Macmillan & Creelman, 2005, p. 16). Figure la and b show this
evidence/decision variable on the x-axis. Because the process
leading to the evidence is noisy, target-absent (noise) and target-
present (signal plus noise) trials both produce a distribution of the
decision variable. Whereas the expected value is higher for the
target-present trials than for the target-absent trials, the two distri-
butions overlap and do not allow a perfect distinction between the
two alternatives. SDT further assumes that individuals derive their
decisions by setting a threshold, called the criterion, to the deci-
sion variable. If the evidence falls short of the criterion, subjects
decide that a target is absent (noise); if it exceeds the decision
criterion, then they decide that a target is present (signal plus
noise). The HR and FAR then each correspond to the cumulative
density of one of the two evidence distributions with the criterion
as the lower bound (colored areas in Fig. la and d). SDT assumes
that the criterion can be shifted, with a /iberal criterion resulting in
a higher HR and FAR, and a conservative criterion, resulting in a
lower HR and FAR. Figure la presents an example based on the
assumption that the evidence distributions of the two alternatives
are normal with equal variance. This equal-variance Gaussian
model is the most common model of SDT (Pastore, Crawley,
Berens, & Skelly, 2003) and the basis for the detection measure
d". In the equal-variance Gaussian model, d' is the distance be-
tween the means of the two distributions in units of their standard
deviation and it fully defines the detection performance, called
sensitivity. The detection measure d' can be calculated as

d' = z(HR)—z(FAR) (1)

where z is the inverse of the cumulative distribution function
of the standard normal distribution (Green & Swets, 1966). The
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Fig. 1 Illustration of noise and signal-plus-noise distribution (first column), receiver operating characteristic (ROC) curves (second column), and ROC
curves in z-transformed space (zZROC; third column) corresponding to d’ (first row), d,, (second row), and A’ (third row)

receiver operating characteristic (ROC) curve (Fig. 1a) de-
scribes pairs of HR and FAR values for constant levels of d".
If these ROC curves are illustrated in z units with z(FAR) as the
abscissa and z(HR) as the ordinate (hereafter, ZROC), they form
lines with slope 1 and d" as their intercept (Fig. 1b).

Whereas SDT is often interpreted as implying the equal
variance Gaussian model (Pastore et al., 2003), SDT can also
assume other underlying evidence distributions. One example
is an SDT model that assumes the two evidence distributions
to be normal, but with unequal variance. For a given ratio s
between the standard deviation of the target-absent (noise) and
target-present (signal-plus-noise) distribution, the resulting
zROC has slope s. For this SDT model, Macmillan and
Creelman (2005) proposed using Simpson and Fitter's
(1973) detection measure:

2
1452

d, X [z(HR)—sz(FAR)]. (2)

If the ROC curve is known empirically, there are also de-
tection measures that can be estimated without any model
assumptions. The most popular of these measures is the area
under the curve (AUC; Pepe, Longton, & Janes, 2009). When
only one point of the ROC curve is known, Pollack and
Norman (1964) provide a one-point estimation of the AUC:

(HR—FAR)(1 + HR-FAR)

A =0.
S T A HR(1-FAR)

HR>FAR.

(3)

By estimating the AUC with one ROC point, A’ should not
be considered assumption-free (Macmillan & Creelman,
2005, p. 103; Wickens, 2001, p. 71). Whereas SDT models
make explicit assumptions about the decision process that
define the shape of the ROC curves, A" also implicitly defines
very specific ROC curves as specified by the formula for its
calculation. This results in the ROC curves shown in Fig. 1g.
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To summarize, each one-point detection measure (detec-
tion measure based on only one ROC point, i.e., one value
for HR and one for FAR), such as d' or A’, implies a
specific ROC curve; that is, a specific assumption about
how HR and FAR change when response tendency (i.e.,
the decision criterion) changes. Whether the implied ROC
curve is approximately correct determines whether the de-
tection measure is a valid measure of detection perfor-
mance. Most importantly, because different detection mea-
sures imply different ROC curves, they can lead to differ-
ent conclusions when, for example, interpreting results of
X-ray image inspection tasks.

The shape of the ROC curve for a specific task can be
investigated by empirically measuring multiple points of the
ROC curve. Macmillan and Creelman (2005) describe four
methods with which to gather ROC data from study partici-
pants. The first is based on confidence ratings. Instead of
providing only a binary decision, the participants provide a
rating on a k-point Likert scale — for example, ranging from
target certainly absent to target certainly present.
Alternatively, the participants deliver the binary response
(e.g., target present or target absent) and then rate their con-
fidence regarding that decision. Each change in level of con-
fidence is then considered as a possible decision criterion
(Macmillan & Creelman, 2005, pp. 51-54). With this ap-
proach, £ - 1 ROC points can be derived for k response
categories.

The other three methods for deriving multiple points of the
ROC curve are based on manipulating response tendency (i.e.,
criterion; Macmillan & Creelman, 2005, p. 71). One method is
to manipulate the rewards and costs of a decision (e.g., study
participants can be paid according to the amount of hits and
false alarms, and the reward of a hit and cost of a false alarm
can be manipulated). A second method is to instruct the par-
ticipants directly to change their criterion by, for example,
being conservative in responding target present on one set
of'trials and being more liberal on another set. The third meth-
od for gathering ROC points is to manipulate the presentation
probability of the signal (Macmillan & Creelman, 2005, p. 72)
— the so-called farget prevalence (Wolfe, Horowitz, & Kenner,
2005). If, for example, most trials contain a prohibited item,
subjects will shift their response tendency toward target
present and therefore achieve a higher HR and FAR.
Manipulating the criterion means that each point of the ROC
curve requires a separate condition (payoff, instruction, or
target prevalence).

Of these four methods, gathering confidence ratings can be
applied relatively easily and rapidly, but it is heavily based on
the concept of SDT. It is assumed that the subject's decision
process is based on a decision variable and that a subject
derives a confidence rating from that variable. The other three
methods do not require such assumptions because they mea-
sure actual decisions under different conditions.

@ Springer

When multiple ROC points are gathered, they can be inter-
polated to calculate A, — an estimate of the AUC — without
relying on assumptions about the shape of the ROC
curve (Pollack & Hsieh, 1969). Hofer and Schwaninger
(2004) compared different measures of detection performance
and investigated ROC curves derived from confidence ratings
in an X-ray image inspection task. They derived ROC curves
from pooled confidence ratings and found deviances from
symmetrical ROC curves that would be more consistent with
the two-state low-threshold theory (Luce, 1963) or non-equal
variance Gaussian SDT. However, they also found that d’, A’
and Am (a measure for non-equal variance SDT; Wickens,
2001) were highly correlated.

Several other studies using target prevalence manipulations
have cast further doubt on the validity of ¢’ and A’ for X-ray
baggage inspection. Wolfe et al. (2007) conducted a series of
experiments in which subjects performed an X-ray baggage
inspection task under varying target prevalence conditions.
They found a reduced HR and FAR in low target prevalence
conditions with averaged results seeming to lie on a zZROC line
with a slope of 0.6. Two further publications (Godwin,
Menneer, Cave, & Donnelly, 2010a; Van Wert, Horowitz, &
Wolfe, 2009) reported zROC slopes similar to those reported
by Wolfe et al. (2007), and another study reported a slope of
0.56 (Wolfe & Van Wert, 2010), which is also close to 0.6.

Under Gaussian SDT assumptions, a zZROC slope of 0.6
indicates that the target-absent (noise) distribution has a small-
er standard deviation than the target-present (signal-plus-
noise) distribution. A possible explanation for this is that
prohibited items vary in difficulty and this brings additional
variation into the target-present distribution.

The aim of our study was to investigate the validity of
the detection measures d’, A, and d,, and to derive recom-
mendations on how to calculate detection performance in
future studies on X-ray image inspection, visual search,
and decision tasks. We explored this using two experi-
ments, in which professional X-ray screeners completed a
simulated X-ray baggage inspection task. In the first exper-
iment, response tendency (criterion) was manipulated
through instruction to test whether it affected the detection
measures. The experiment included targets that were
known from training and targets that were novel, which
resulted in two levels of sensitivity. Valid detection mea-
sures should be independent of response tendencies; how-
ever, they should differentiate well between different levels
of sensitivity. We therefore calculated the effect size of the
difference in the detection measures between known and
novel targets as an indicator of how well they differentiate
between the two levels of sensitivity. In the second exper-
iment, the participants provided confidence ratings that
were used to investigate whether the ROC curves are ap-
proximately linear in zZROC space, as assumed by both d’
and d,,, and to estimate the zZROC slope.
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Experiment 1

For this study, we reanalyzed data from Sterchi,
Hattenschwiler, Michel, and Schwaninger (2017). The origi-
nal study evaluated how the rejection rate of screeners can be
manipulated, and how performance was related to knowledge
about everyday objects. In the experiment, 31 professional
screeners completed a simulated X-ray baggage screening
task in which the criterion was manipulated directly through
instructions. Half of the prohibited items used in the study
were known to the screeners from training, whereas the other
half were novel. This corresponds to two levels of task diffi-
culty. This experiment allowed us to observe a criterion shift
with two levels of sensitivity induced by other means than the
previously applied manipulations of target prevalence.

For a detection measure to be valid, it should not be affect-
ed by a shift in the decision criterion. In line with the results of
the previous studies mentioned above (Godwin, Menneer,
Cave, & Donnelly, 2010a; Hofer & Schwaninger, 2004; Van
Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van Wert,
2010), we expected the zROC slope to be around 0.6, and
therefore for d' to decrease when the criterion was shifted to
a more liberal level (more target-present responses) in
Experiment 1. Both d’ and A’ are symmetric — any point
(HR,, FAR,) leads to the same value of d' and A" as (1 —
HR,, 1 —FAR,) — and this implies equal variance in terms of
SDT (Macmillan & Creelman, 2005, p. 103). We therefore
also expected A’ to decrease when the criterion decreased.
As aresult of the expected zZROC slope of 0.6, a criterion shift
should not affect d, based on that slope. We also aimed at
validating A,. As already described in the introduction, A, is
an estimate of the AUC that does not assume a specific shape
of the ROC curve but requires multiple ROC points (e.g.,
derived from confidence ratings) and is therefore not a one-
point detection measure like d’, d,,, or A". Because A, should
not depend on the shape of the ROC curve, it was expected to
remain constant. A detection measure should not change when
the decision criterion changes; however, it should differentiate
well between different levels of ability to detect targets. We
therefore analyzed effect sizes of the detection measures when
comparing detection performance for the two levels of task
difficulty resulting from known and novel prohibited items.

Method
Participants

A total of 31 screeners (20 females) from an international
airport participated in this experiment. They were all certified
screeners, which means that they were qualified, trained, and
certified according to the standards set by the appropriate na-
tional authority (civil aviation administration) in accordance

with the European Regulation (European Commission, 2015).
The participating screeners were between 26 and 61 years old
(M= 45.4,SD = 8.9) and had between 2 and 26 years of work
experience (M = 8.4, SD = 5.5). The research complied with
the American Psychological Association Code of Ethics and
was approved by the Institutional Review Board of the School
of Applied Psychology, University of Applied Sciences and
Arts, Northwestern Switzerland. Informed consent was ob-
tained from each participant.

Design

The experiment used a 2 X 2 design with two instructions to
manipulate response tendency (normal decision vs. liberal de-
cision) and with two levels of task difficulty (targets known
from training vs. novel target items) as within-subject factors.
Dependent variables were HR, FAR, d', d,, A', A,, response
times, and eye-tracking data.

Stimuli and materials

The simulated X-ray baggage inspection task contained 128
X-ray images of passenger bags. Of these, 64 images
contained one prohibited item (target-present images). They
were merged into X-ray images of passenger bags using a
validated X-ray image merging algorithm (Mendes,
Schwaninger, & Michel, 2011). Four categories of prohibited
items were used to create these target-present images: 16 X-
ray images contained a gun, 16 images a knife, 16 images an
IED, and 16 images contained other prohibited items. To cre-
ate these 16 X-ray images per threat category, eight threat
items per category were each used twice, once in an easy view
(as defined by the two X-ray screening experts and the au-
thors) and once rotated (by 85° around the horizontal or ver-
tical axis).

Further, for each threat category, half of the prohibited
items were part of the training system (Koller, Hardmeier,
Michel, & Schwaninger, 2008; Schwaninger, 2004) used at
the particular airport (known targets). The other half of the
prohibited items were newly recorded (novel targets). Visual
comparisons were used to ensure that they were different from
the prohibited items contained in the training system (see Fig.
2 for an example).

All 128 X-ray images were equally divided into four test
blocks such that each block contained the same number of
known and novel targets per category and viewpoint. X-ray
images were presented in a random order within each of the
four blocks. The order of the blocks was counterbalanced
across the participants.

For eye tracking, we used an SMI RED-m eye tracker with
a gaze sample rate of 120 Hz, gaze position accuracy of 0.5°,
and spatial resolution of 0.1°. This noninvasive, video-based
eye tracker was attached to a 22-in. TFT LCD screen with a
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Fig. 2 Two examples of the prohibited item category knife: (a) example
of a known target item and (b) example of a novel target item (Asian
combat knife)

resolution of 1,280 x 1,024 pixels placed 50-75 cm from the
participant. The stimuli (X-ray images) covered about two-
thirds of the screen. Eye tracking was used to examine the
users’ eye movements using a post hoc analysis of visual
fixations falling within a certain area of interest (AOI).
Therefore, in each target-present image, a screening expert
manually drew the AOI around the target item (BEGAZE
Software; SensoMotoric).

Procedure

The screeners were tested individually. Each session began
with a 9-point calibration of the eye-tracking apparatus. The
participants had to follow a moving black dot with their eyes.
Then, the task was introduced with on-screen instructions.
The screeners were instructed to visually inspect X-ray images
of passenger bags by searching for prohibited items and de-
ciding whether each bag was harmless (target absent) or
might contain a prohibited item (farget present) and would
therefore require a secondary search. The screeners were fur-
ther instructed that the test contained four blocks. For two
blocks, they should inspect (i.e., search and decide) the image
as if they were working at a checkpoint (referred to in this
article as a normal decision). For the other two blocks, they
were instructed to visually analyze each object in the X-ray
image and decide that the bag was harmless only if each object
in the image could be recognized as harmless (/iberal
decision). After the instructions, ten practice trials followed
to familiarize the screeners with the task itself and the user-
interface of the simulator. The practice trial consisted of five
target-absent and five target-present images presented in ran-
dom order without any feedback on the correctness of the
response.

For the test, each trial started with a fixation cross displayed
at the center of the screen. After this had been fixated contin-
uously for 1.5 s, it was replaced by an X-ray image. Screeners
had to decide whether the content of this image was harmless
or not by pressing a key, and then had to give a confidence
rating on a 10-point scale ranging from 1 (very unconfident) to
10 (very confident). There was no feedback on the correctness
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of responses, and the participants took about 30 min to com-
plete the test.

Data analysis

A HR of one or FAR of zero leads to an infinite value of d"and
d,. For the calculation of d"and d,,, HR and FAR values were
therefore transformed using the log-linear rule to correct for
extreme proportions (Hautus, 1995), which is one of the two
common adjustments to avoid infinite values (Macmillan &
Creelman, 2005, p. 8). All within-subject contrasts were tested
with exact permutation tests that are appropriate for skewed
data and smaller sample sizes. For the estimation of d,, the
slope parameter was set to 0.6 in accordance with previous
findings from studies that manipulated target prevalence
(Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe et al.,
2007; Wolfe & Van Wert, 2010). For zZROC slopes and effect
sizes, we report bootstrapped BCa-Cls (Efron, 1987) based on
20,000 resamples.

In a review of ROC curves in recognition memory,
Yonelinas and Parks (2007) raised the concern that the
manipulation of the criterion (i.e., pay-off, instruction, or
target prevalence) might also influence sensitivity. In our
experiment, we analyzed eye-tracking data to control
whether our manipulation also affected search performance
and not just decision making. It can be assumed that failure
to detect a target can arise from a scanning error (Cain,
Adamo, & Mitroff, 2013; Kundel, Nodine, & Carmody,
1978; Nodine & Kundel, 1987), where the target is never
fixated. If the target is fixated, inspection can still fail be-
cause of recognition or decision errors, and it is unclear
whether a distinction between recognition and decision er-
rors is possible and useful (Cain et al., 2013).

In accordance with McCarley's (2009) study, we tested the
effect of our manipulation by calculating the proportion of
target-present trials with one or more fixations within the
AOI (i.e., the location of the target). Rich et al. (2008) also
distinguished fixated and non-fixated targets to analyze search
errors. They noted that if a target is not fixated, this does not
necessarily mean that it was missed during the visual search.
However, a target missed during the visual search is more
likely to not have been fixated. If the proportion of target-
present trials on which the target was fixated is not affected
by the manipulation of the criterion, this indicates that the
changes in HR and FAR are not caused by search errors in
which the study participants simply failed to look at the rele-
vant part of the image (Rich et al., 2008).

Results

The instructions for the liberal decision condition were de-
signed to change response tendency, that is, to increase the
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participants' relative frequency of responding with target
present (rejection rate). A manipulation check revealed an
effect of the instruction on the rejection rate with a Cohen's
d of 0.58. However, ten of the participants did not even show a
small increase in the rejection rate (i.e., increase smaller than a
Cohen's d 0 0.20). Because we were interested in whether the
detection measures change when participants change their re-
sponse tendency (and not how successfully we could induce
such a change), we excluded participants who did not change
their rejection rate from further analysis. The excluded partic-
ipants did not differ significantly in their HR for known targets
(excluded: M = .78, included: M'=.79, p = .636), HR for novel
targets (excluded: M = .63, included: M = .58, p = .298), or
FAR (excluded: M = .11, included: M = .09, p =.570). Table 2
shows the means and standard deviations of the normal deci-
sion and liberal decision condition for HR, FAR, d’, d,, A’, and
A,. Exact permutation tests revealed a significantly lower d’in
the liberal decision condition for both known (p = .041) and
novel (p = .002) targets. Moreover, A’ was significantly lower
for both known (p = .034) and novel (p = .017) targets. For
both d,, (known targets: p = .714, novel targets: p = .383) and
Ag (known targets: p = .322, novel targets: p = .750), differ-
ences did not attain significance. Table 2 also shows the stan-
dardized average difference of the detection measures be-
tween the two decision conditions as an indicator for the
within-subject effect.

The HR and FAR of the two decision conditions were used
to calculate individual zZROC slopes for known and novel
targets separately. The estimated slope had a median of 0.53
(95% BCa-CI[0.24, 0.75]) and a mean of 0.62 (95% BCa-CI
[0.34, 1.04]) for known target items, and a median of 0.56
(95% BCa-CI [0.00, 0.83]) and mean of 0.49 (95% BCa-CI
[0.27,0.78]) for novel target items (slopes were first converted
into angles of incline and converted back after averaging be-
cause steep slopes would otherwise disproportionately influ-
ence the mean).

Table 3 summarizes the response time (time from the onset
of image display until the submission of the decision by the
participant) for correct responses by image type (target-

present trials vs. target-absent trials) and decision condition
(normal decision vs. liberal decision). For both target-present
and target-absent trials, permutation tests indicated a signifi-
cant difference in response time between normal and liberal
decision (target-present trials: p = .004, target-absent trials: p <
.001).

To control whether the criterion manipulation affected
search errors, we calculated the proportion of target-present
trials with at least one fixation within the AOI (i.e., the
location of the target; see McCarley, 2009). Three participants
had to be excluded from the analysis of eye-tracking data be-
cause they had either no fixations or no saccades recorded in
73%, 52%, or 24% of their trials, which indicated difficulty
with eye tracking for these participants. The remaining 18 par-
ticipants had a total of 1,151 target-present trials. Twelve (1%)
of these had to be excluded because either no fixations or no
saccades were recorded. One further trial was excluded because
the fixation was in the AOI at the time of stimulus onset. Then,
for each participant, the proportion of target images on which
the participant fixated the target was calculated separately for
the two decision conditions (normal and liberal decision) and
the two target types (known and novel targets). Table 4 shows
the means and standard deviations of these proportions. The
difference between the two decision conditions did not attain
significance for either known targets (p = .459) or novel targets
(p = .675), which suggests that the instruction to decide with a
more liberal criterion did not affect search errors.

To investigate the statistical power of the detection mea-
sures in terms of reflecting differences in task difficulty
(known vs. novel targets) for each detection measure and each
of the two decision conditions, we calculated standardized
differences (i.e., differences divided by the standard deviation
of the differences) as effect sizes of the detection measures
between known and novel targets (Table 5). Because d,, is a
linear transformation of d' when the false alarm rate is con-
stant, the effect sizes of d' and d, were identical.

Figure 3 shows the ROC curves based on the three detec-
tion measures d’, A’, and d, of the normal decision condition
for known targets (curves with higher HR for a given FAR)

Table2 Mean (SD) of the normal and liberal decision condition and the effect size (standardized difference) of the decision condition for hit rate (HR),

false alarm rate (FAR), and detection measures d', A’, d,,, and A,

Decision condition HR FAR d' d, A’ Ay
Known targets
Normal decision 79 (.10) .09 (.08) 2.25(0.61) 2.03 (0.57) 916 (.044) .894 (.072)
Liberal decision .90 (.10) 25 (.13) 2.01 (0.58) 2.08 (0.61) .899 (.049) .906 (.073)
Effect size -0.40 -0.08 -0.42 0.23
Novel targets
Normal decision .58 (0.14) .09 (.08) 1.63 (0.41) 1.28 (0.38) .851 (.040) 799 (.082)
Liberal decision 71 (0.13) 25 (.13) 1.27 (0.44) 1.19 (0.43) .817 (.074) 793 (.076)
Effect size -0.70 -0.19 -0.50 -0.07
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Table 3  Response times [ms] for correct responses

Normal decision Liberal decision

M (SD) Mdn M (SD) Mdn
Target-present 6,000 (2,407) 4,295 8,018 (4,331) 6,291
Target-absent 6,813 (2,798) 5,873 11,162 (6,872) 9,464

Note. The reported means and standard deviations are based on individual
mean response times, and the reported medians on individual median
response times

and novel targets (curves with lower HR for a given FAR).
Because this figure is based on pooled data, it should be
interpreted with caution: The aggregation of individual ROC
curves can distort their shape, and the figure is therefore not a
one-to-one illustration of the tested hypotheses (Yonelinas &
Parks, 2007; see the Appendix for a discussion of pooling).

Discussion

In Experiment 1, we instructed X-ray screeners for one con-
dition to visually inspect X-ray images in the same manner
used when they performed their job. For another condition,
they were instructed to apply a more liberal decision criterion.
Half of the target-present trials contained target items known
from training, the other half contained novel target items. As
can be seen in Fig. 3, the resulting four points defined by the
pooled HR and FAR fit the ROC curve implied by d,, that was
set to a slope of 0.6, as suggested by previous research
(Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe et al.,
2007; Wolfe & Van Wert, 2010). The permutation tests re-
vealed that d" and A’ values decreased when screeners were
instructed to apply a more liberal decision, which casts doubt
on the validity of these detection measures in the context of X-
ray image inspection. By contrast, d,, with a slope of 0.6 and
A, did not change significantly between the two experimental
conditions.

The fact that the instructed, more liberal criterion caused a
decrease in d'and A'is in line with previous findings of chang-
es in d' when target prevalence manipulations induced a shift

Table4 Mean (SD) share of images per subject with a recorded fixation
within the area of interest

Share AOI fixations
Image type Normal decision Liberal decision
Known target 713 (.237) 740 (.258)
Novel target 742 (.165) 730 (.180)
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in the criterion (Godwin, Menneer, Cave, & Donnelly, 2010a;
Wolfe et al., 2007; Wolfe & Van Wert, 2010). The results of
these studies also suggest that ' and A’ can lead to wrong
conclusions when used to decompose a unidirectional change
of HR and FAR into sensitivity and criterion changes.

When trying to induce a criterion shift using experimental
manipulation, there is a risk that the manipulation might also
affect sensitivity (Yonelinas & Parks, 2007). In our experi-
ment, the given instruction to decide more liberally slowed
the response times. Similarly, studies that manipulated target
prevalence also found slower responses in high target preva-
lence conditions (Godwin, Menneer, Cave, & Donnelly,
2010a; Wolfe et al., 2007; Wolfe & Van Wert, 2010). Our main
findings should be robust regarding a potential change in sen-
sitivity for two reasons: First, we found no difference in the
share of images with target fixation between the two decision
conditions. This supports the assumption that the observed
change in HR and FAR was caused by a change in decision
making and not a change in search errors (McCarley, 2009;
Rich et al., 2008). Second, if the manipulation affected sensi-
tivity, then one would expect higher sensitivity in the liberal
decision condition in which response times were longer
(following the line of argument in Wolfe et al., 2007). Such
an accidental effect on sensitivity could therefore not explain
the decrease we found in d"and A".

Experiment 2

In Experiment 1, we calculated d’, A’, and d,,, for which we set
the slope to 0.6 based on previous findings (Godwin,
Menneer, Cave, & Donnelly, 2010a; Wolfe et al., 2007,
Wolfe & Van Wert, 2010). d, was found to be a more valid
detection measure than d’and A’. However, estimations of the
slope parameter with the data from Experiment 1 resulted in
large confidence intervals. Further, ten of the participants were
excluded because they failed the manipulation check, which
might have biased the sample. Experiment 2 was therefore
intended to provide a more precise estimation of the slope
parameter and to further investigate the validity of detection
measures using another methodological approach: multiple
ROC points were obtained by analyzing confidence ratings.
In comparison to Experiment 1, the criterion was not manip-
ulated directly, and the test therefore included more trials per
participant and condition.

Methods
Participants

A total of 124 professional, certified cabin baggage screeners
(68 female) from an international airport participated in
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Table 5  Effect size (standardized difference) [and 95% confidence intervals] of target novelty (known vs. novel targets)

d'ld, A’ A,
Normal decision 1.60 [1.21,2.10] 1.72 [1.34,2.15] 1.24 [0.84, 1.64]
Liberal decision 1.98 [1.20, 3.02] 1.73 [1.11,2.48] 2.20 [1.35, 3.04]

Experiment 2. The participants were between 22 and 64 years
old (M =44.3, SD = 11.2; one participant did not report his/her
age) and they had up to 29 years of work experience (M = 7.1,
SD = 5.6; seven participants did not report their work experi-
ence). The research complied with the American
Psychological Association Code of Ethics and was approved
by the Institutional Review Board of the School of Applied
Psychology of the University of Applied Sciences and Arts,
Northwestern Switzerland. Informed consent was obtained
from each participant.

Stimuli and materials

The test consisted of 128 X-ray images of real passenger bags.
Half of these images contained a prohibited item. The merging
of the prohibited items into the bag images was performed in
the same manner as in Experiment 1 using a validated algo-
rithm (Mendes et al., 2011). Four categories of prohibited
items were used: 16 images contained a gun, 16 images a
knife, 16 images an IED, and 16 explosive material. Each
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Fig. 3 Receiver operating characteristic (ROC) curves implied by d', A,
and d,, estimated by the pooled hit rate (HR) and false alarm rate (FAR) of
the normal decision condition for known prohibited items (higher HR)
and novel prohibited items (lower HR)

prohibited item appeared twice, once in an easy view and once
rotated. None of the prohibited items were part of the training
system used at the particular airport. The 128 images were
equally divided into two blocks with each block containing
the same number of targets per category and view. Images
were presented in a random order within the block. The order
of the two blocks was counterbalanced across the participants.

Procedure

The participants were tested in groups of maximally six
screeners at a time. The screeners had to inspect the X-ray
images for prohibited items. If they detected a prohibited item,
they had to mark its location in the image (this was conducted
for another study). They had to press a key to decide whether
the bag was harmless or not, and they then had to assign a
confidence rating on a 5-point scale ranging from 1 (very
unconfident) to 5 (very confident). To become familiar with
the test, the instruction was followed by eight practice trials,
on which the screeners received feedback on the correctness
of the responses. During the test itself they did not receive
feedback. Participants were allowed to take a short break after
the first half of the test that lasted for 1 min in average.
Participants took about 20 min to complete the test.

Data analysis

For each participant, the HR and FAR were calculated for the
different levels of confidence rating according to Macmillan
and Creelman (2005, pp. 51-54), resulting in nine ROC points
per participant.

To estimate individual slope parameters based on the con-
fidence ratings, we used the maximum likelihood estima-
tion algorithm LABROC4 developed by Metz, Herman,
and Shen (1998). Because the slope parameter is the ratio
of two differences in two variables, it is inappropriate to
directly calculate its mean (because steep slopes result in
large numbers, a horizontal zZROC, for example, has a
slope of zero and a vertical zROC has a slope of infinity
and the mean of the two slopes would only consider the
vertical slope). We therefore arctan-transformed the slope
parameters into angles of incline before averaging, and
then transformed them back for interpretability.
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Results

One participant provided the maximum confidence level for
all trials and was therefore excluded. A second participant had
to be excluded because all derived ROC points for FAR were
either zero or one, not allowing for a maximum likelihood
estimation of the slope parameter. The remaining 122 partic-
ipants achieved a mean HR of .70 (SD = .07) with a mean FAR
of .07 (SD = .05). The response time (time from the onset of
the image display until the submission of the decision by the
participant) is summarized in Table 6 for correct responses by
image type (target-present trials vs. target-absent trials).

Figure 4 shows individual zROC points and the averaged
zZROC curves based on confidence ratings (for a discussion of
pooling ROC curves see the Appendix). The averaged zROC
curves seem to better fit the zZROC curve predicted by d, based
on a slope of 0.6 than those predicted by d' or A’ (one excep-
tion is the mean of the leftmost zZROC point, which, however,
is distorted downwards as a result of the necessary exclusion
of ROC points with a false alarm of zero that are not defined in
ZROC space).

Arctan-transformed individual slope parameters (i.e., an-
gles of incline) estimated using the LABROC3 algorithm
(Metz et al., 1998) are illustrated in Fig. 5. When transformed
back, they show a mean of 0.54 (95% BCa-CI [0.50, 0.60])
and median of 0.50 (95% BCa-CI [0.46, 0.55]).

Discussion

In Experiment 2, the participants completed an X-ray baggage
inspection task providing confidence ratings for each image.
The pooled zZROC points and the estimated zZROC slopes of
around 0.5-0.6 confirm the findings of Experiment 1 that d’
and A’ overestimate HR, or underestimate FAR when the cri-
terion is shifted and becomes more liberal. The pooled zROC
curves were approximately linear, which supports the validity
of d, for the X-ray baggage inspection task in line with the
results of Wolfe and Van Wert (2010). The results show a
mean slope of 0.54, close to other studies that reported
zROC slopes of around 0.6 (Godwin, Menneer, Cave, &
Donnelly, 2010a; Wolfe et al., 2007) and another study that
reported a slope of 0.56 (Wolfe & Van Wert, 2010).

Table 6 Response times [ms] for correct responses

M (SD) Mdn
Target-present 4,781 (1,087) 3,816
Target-absent 5,079 (1,959) 4,008

Note. The reported group means and standard deviations are based on
individual mean response times, and the reported medians on individual
median response times
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Fig. 4 Individual (grey; jittered) and pooled (black) empirical ZROC
curves, the lines corresponding to the mean A, d', and d, with a slope
of 0.6, and the chance line (dashed)

Despite the similar ZROC slopes found in these studies, one
should be cautious to always adopt d,, with a slope of 0.5-0.6
for any X-ray baggage inspection or other visual search task.
A non-unit slope zZROC implies that there is a point at which
the ROC curve falls below the chance line, where the FAR
exceeds the HR (Macmillan & Creelman, 2005, p. 68). When
sensitivity is sufficiently high, this becomes negligible be-
cause it only concerns values very close to the limits of the
ROC space. However, for low sensitivity (e.g., for difficult
items or inexperienced X-ray screeners), a zZROC with a slope
of 0.5-0.6 implies below-chance performance for a possibly
relevant range of the decision criterion (see Fig. le). It would
therefore be reasonable to assume that the zROC slope con-
verges to a unit slope with decreasing sensitivity. Such a con-
vergence has been found repeatedly in research on recognition
memory (Brown & Heathcote, 2003; Glanzer, Kim, Hilford,
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Fig. 5 Distribution, mean (red dashed line), and median (solid blue line)
of arctan-transformed individual slope parameters
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& Adams, 1999; Hirshman & Hostetter, 2000; Ratcliff,
McKoon, & Tindall, 1994).

In addition to the level of sensitivity, other factors might
influence the slope parameter. There is some empirical evi-
dence that the zZROC slope might vary between different
implementations of the X-ray baggage inspection tasks or de-
pending on the participants: Alongside our findings and other
studies reporting zZROC slopes around 0.5-0.6 (Godwin,
Menneer, Cave, & Donnelly, 2010a; Wolfe et al., 2007;
Wolfe & Van Wert, 2010), one study found a lower d’ for
lower target prevalence (Wolfe, Brunelli, Rubinstein, &
Horowitz, 2013), which indicates a zROC slope larger than
one. There are also a few studies that show an effect of target
prevalence on HR and FAR without a significant effect on d’
(Godwin, Menneer, Cave, Helman, et al., 2010b; Ishibashi
et al., 2012) or A’ (Godwin, Menneer, Cave, Thaibsyah, &
Donnelly, 2015). They therefore do not contradict a unit-
slope zROC. To summarize, whereas it is reasonable to infer
that a zZROC slope is around 0.5-0.6 for many visual inspec-
tion, visual search, and decision tasks with X-ray images, this
might not be always true. In the following section we discuss
how this issue can be addressed in future studies.

General discussion

To investigate the validity of two detection measures com-
monly used in visual search and decision tasks such as airport
security and medical screening, we conducted two studies
with different methodological approaches. Experiment 1 ma-
nipulated the criterion by direct instruction, whereas
Experiment 2 used confidence ratings to generate multiple
ROC points. For both studies, d’ and A" were found to be
invalid detection measures for the investigated X-ray baggage
inspection tasks. More specifically, d' and A’ would have
wrongly indicated lower sensitivity for a more liberal decision
criterion.

Studies investigating the effect of target prevalence on X-
ray baggage inspection tasks also found d’ to indicate lower
sensitivity for more liberal decision criteria where equal or
lower sensitivity would be expected (Godwin, Menneer,
Cave, & Donnelly, 2010a; Wolfe et al., 2007; Wolfe & Van
Wert, 2010). Our studies extend this research by showing that
this phenomenon is not specific to the effect of target preva-
lence but also holds for other means of manipulating the cri-
terion, and therefore seems to be a property of the ROC curve
of the X-ray baggage inspection task in general.

Despite A’ not making any assumptions about the underly-
ing decision processes, A’ implies a very specific and symmet-
ric ROC curve (Macmillan & Creelman, 2005). It should
therefore not be expected to have an advantage over d', which
the results of our studies confirmed. The general discussion
and our recommendations will therefore focus on d' and d,,.

When lifting the assumption of equal variance, the
Gaussian SDT model is extended by an additional parameter:
the ratio s between the standard deviation of the signal-plus-
noise (target-present) and noise (target-absent) distribution.
The Gaussian SDT model assumes an ROC curve that be-
comes a straight line when z-transformed with parameter s
as its slope. For detection measure d,, which corresponds to
this model, to be valid for X-ray baggage inspection tasks,
zZROC curves should be approximately linear. In line with a
study from Wolfe and Van Wert (2010), the results of
Experiment 2 show approximately linear pooled zROC
curves. In our experiments, the slope parameter was around
0.5-0.6, which corresponds well with the findings in other
experiments that investigated the X-ray baggage inspection
task (Godwin, Menneer, Cave, & Donnelly, 2010a; Wolfe
et al., 2007; Wolfe & Van Wert, 2010). However, the slope
parameter might depend on the level of sensitivity and might
vary between different implementations of the X-ray baggage
inspection tasks or depending on the participants.

To better understand what factors influence the slope pa-
rameter, a better understanding of the inspection process
would be useful and should be the focus of future studies.
From the perspective of Gaussian SDT, a zROC slope smaller
than one implies that the signal-plus-noise distribution has a
higher standard deviation than the noise distribution. A possi-
ble explanation for this is that prohibited items can vary
strongly in how well they can be recognized — for example,
depending on item category (Halbherr et al., 2013; Koller
et al., 2009) and the exemplar within categories (Bolfing,
Halbherr, & Schwaninger, 2008; Schwaninger et al., 2007).
The SDT framework might have to be extended to provide a
better model of the visual inspection process. For instance,
Wolfe and Van Wert (2010) described the task as successive
decisions for single items within the X-ray image. This model
assumes that the observer makes a decision according to SDT
for one item after the other until the observer either decides
that an item is prohibited or a quitting threshold is reached.
Conceptually, this is similar to the two-component model of
visual inspection by Spitz and Drury (1978), which has been
applied to the visual inspection of X-ray images and consists
of visual search and decision processes (Koller et al., 2009;
Wales et al., 2009). For modeling recognition memory, SDT
has been extended in various forms by assuming that recog-
nition can be based on either recollection or familiarity
(Yonelinas & Parks, 2007). Similarly, different types of rec-
ognition might apply in X-ray baggage inspection — some
items might be recognized with certainty, whereas for other
items, a decision has to be made under high uncertainty.

Our studies and the reviewed literature focus on the task of
inspecting X-ray images of passengers’ cabin baggage. Our
findings do not necessarily directly translate to related do-
mains, such as the inspection of medical X-ray images or other
visual search tasks with artificial stimuli; however, such
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related domains should also not expect d’ and A’ to be valid
without further consideration. Future research should specifi-
cally investigate to what extent the findings we report also
apply in related domains.

‘We hope that future research will provide more insights into
the image inspection process; however, we suggest a critical yet
pragmatic approach when investigating performance in image
inspection tasks. As famously stated by Box (Box & Draper,
1987, p. 424), “all models are wrong, but some are useful.” In
X-ray image inspection, the main use of a detection measure is to
identify whether a unidirectional difference in HR and FAR (i.e.,
when both HR and FAR are higher in one group or condition) is
only a difference in the decision criterion or also a difference in
detection performance in terms of sensitivity. That is, a compar-
ison of detection measures should answer the question of who
would have the higher HR and lower FAR if everyone used a
similar decision criterion.' For one-point detection measures, the
implied ROC curve therefore needs to be approximately correct.
Our studies and the reviewed literature show that for X-ray bag-
gage inspection, this is often not the case for d"and A". Instead, d,
with a ZROC slope of 0.5 to 0.6 often seems to provide the better
measure. However, while it is not clear what factors determine
the zZROC slope, we recommend testing d,, with a slope of 0.5 in
addition to d,, with a slope of 1 (i.e., d') as the upper and lower
bound, respectively. Another approach is to gather confidence
ratings and use A, as a detection measure. Whereas d’, A', and
d,, imply a specific shape of ROC curve, A, is conceptually valid
for any form of ROC curve. However, it requires the collection of
confidence ratings, and is based on the assumption that these
confidence ratings allow a prediction of alternative criterion lo-
cations at an individual level. Moreover, some methodological
problems can arise because A, estimates the AUC by linearly
interpolating empirical ROC points (Pollack & Hsieh, 1969).
This approach increasingly underestimates the AUC with a de-
creasing number of ROC points (Macmillan & Creelman, 2005,
p. 64). A, might therefore require a relatively high number of
trials to be a valid detection measure. In Experiment 1, A, per-
formed acceptably well — it was not significantly affected by the
manipulation of the decision condition, and differentiated be-
tween known and novel targets with statistical power comparable
to d,. However, this is only limited support for the measure, as
the results are restricted to a within-subject comparison of a small
sample. Future research might clarify whether confidence ratings
allow a reliable prediction of criterion shifts induced by changes
in target prevalence or instruction.

In conclusion, X-ray image inspection research and related
domains will have to be cautious when using one-point esti-
mates of sensitivity such as d'and A. We recommend always
starting by performing an analysis and discussion of the directly
accessible HR and FAR. Estimating the sensitivity and criterion

! For different levels of sensitivity, it is conceptually not clear what constitutes
an equal decision criterion (Macmillan & Creelman, 2005, pp. 36—44).
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is often only necessary if HR and FAR are affected unidirec-
tionally. In that case, it should be considered that a zZROC slope
can be expected to lie somewhere between 0.5 and 1 for X-ray
baggage inspection tasks. With d,, effects on sensitivity can be
estimated for these two slopes separately to test the two limits
of the assumption of constant sensitivity (where the upper limit
with a zZROC slope of 1 corresponds to d'). Collecting confi-
dence ratings allows to directly estimate the ZROC slope for the
investigated task, to calculate A,, which provides an additional
estimation of sensitivity, and help to further understand the
shape of the ROC curve in X-ray image inspection.

Appendix
Pooling and ROC curves

When investigating receiver operating characteristic (ROC)
curves based on the framework of signal detection theory
(SDT), in almost all experiments of real interest, some type
of averaging must be performed (Macmillan & Creelman,
2005, p. 331). For X-ray image inspection, combining differ-
ent stimuli in an experiment seems reasonable because this is
representative of this task in the real world. However, when
responses from different subjects are averaged, the resulting
ROC curve can deviate systematically from individual ROC
curves, as we will illustrate in the following paragraphs.
Figure 6 assumes two subjects with an identical ROC curve
in the shape assumed by Gaussian SDT. If these subjects differ
in their decision criterion, their averaged ROC point (i.e., hit
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Fig. 6 When the two points A and B from the same receiver operating

characteristic (ROC) curve are averaged, the resulting ROC point C is
below the original ROC curve
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and false alarm rate) will lie in the middle of the line
connecting their individual ROC points and therefore below
their true ROC curve. How far away the averaged ROC point
is from the true ROC curve depends on the difference between
the decision criteria (i.e., the distance between the individual
ROC points) and on the curvature of the ROC. When looking
at pooled ROC points, it is therefore important to consider the
between-subject variation in decision criteria. Plotting ROC
curves based on confidence ratings now assumes that each
level of the confidence rating could be a possible criterion
and therefore each confidence level provides an ROC point
(one of them is guaranteed to be at a HR and FAR of one,
therefore & confidence levels result in £-1 meaningful ROC
points). Figure 7 shows that for Experiment 2, the variation
between the individual criteria is different between the confi-
dence levels. Some of the ROC points based on pooled data
should therefore be further away from the "true" ROC curve.

Figure 8 shows individual and pooled ROC points of
Experiment 2 in comparison with the theoretical ROC curves
based on the average d', d,, and A". As expected, particularly
the two most liberal (i.e., rightmost) ROC points fall below the
theoretical ROC curves.

To test whether the deviation from the theoretical ROC curves
could be the mere result of pooling, we ran a simulation. The
simulation assumed that the ROC curve based on d, with a slope
parameter of 0.6 holds true for each individual and, for simplifi-
cation, that individuals deviate normally from the mean d, of
Experiment 2 (M = 1.37) with the standard deviation of
Experiment 2 (SD = 0.26). Additionally, for the criterion ¢, of
each confidence level, it was assumed that subjects vary normally
around the group's average, and again, these parameters were
estimated using Experiment 2. According to these assumptions
10,000 observations were created for each confidence level and
pooled. The result of this quite simple simulation is also depicted
in Figure 8 and falls close to the pooled ROC points from the
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Fig. 8 Receiver operating characteristic (ROC) points based on individ-
ual (gray) and pooled confidence rating data of dataset 2 (black, dashed),
created from a simulation (red, dashed), as assumed by the average d’
(green), d,, (blue), and A’ (red)

original data. This suggests that the pooled ROC points might
simply deviate from the ROC curve based on d, because of the
variation in the criterion and sensitivity between subjects (how-
ever, this does not, of course, prove that the pooled ROC curve
would look like the ROC curve based on d,, if all pooling artifacts
were eliminated).

As illustrated, pooling ROC points can severely distort the
shape of ROC curves. The illustrated problems of pooling
should not occur if averaging is performed after z-transforma-
tion and the zROC curves are linear. However, z-transformation
before pooling is often not fully possible because of FAR or HR
values of zero or one on an individual level, for which the z-
transformation (i.e., the inverse of the cumulative distribution
function of the standard normal distribution) is undefined.
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Abstract—The screening of passenger bags at airports can be
understood as a visual inspection task that consists of visual
search and decision. Security officers (screeners) visually search
for prohibited items in X-ray images and decide whether
secondary search (e.g. using manual search or explosive trace
detection) is needed. A screener's decision can be explained with
signal detection theory and its measures (hit rate, false alarm
rate, sensitivity and decision criterion). In this experiment tested
whether a specifically instructed visual inspection strategy can
influence the hit and false alarm rate. In addition, it was
investigated whether knowledge about the visual appearance of
harmless everyday objects in X-ray images is relevant for the
detection of prohibited items. To this end, 31 screeners of an
international airport conducted a simulated X-ray baggage
screening task with two different instructions (normal vs. liberal
decision) on how to conduct visual inspection: In the normal
decision condition, screeners were instructed to visually inspect
the X-ray images like they were used to from their job. In the
liberal decision condition, screeners were instructed to visually
analyze each object in the X-ray image and only decide that the
bag was harmless if each object in the image could be recognized
as harmless The screeners knew half of the prohibited items from
computer-based training while the other half were novel
prohibited items. In addition, knowledge about the visual
appearance of everyday objects in X-ray images was measured.
The results show that screeners were able to change their decision
criterion depending on the instructed visual inspection strategy.
Knowledge about harmless everyday objects was positively
associated with detection performance and most notably
correlated with the hit rate for novel threat items in the liberal
decision condition. Implications for improving X-ray screening at
airports using a risk-based and adaptive approach are discussed.

Keywords—aviation security, detection performance, everyday
object recognition, visual inspection, visual search, X-ray screening

L INTRODUCTION

Secure air transportation is essential for economy and
society. Over the past decades, airports and governments have
invested heavily into further development of airport security
checkpoints. At these checkpoints, airport security officers
(screeners) visually inspect passenger baggage with X-ray

screening technology to make sure that no prohibited items
(IEDs: improvised explosive devices, knives, guns, and other
prohibited items) can enter the security restricted area of an
airport.

Initial and recurrent training to detect known and novel
prohibited items in X-ray images is an essential factor for
screener performance. Several studies have shown the
importance of computer-based training to learn which items are
prohibited and what they look like in X-ray images, e.g. [1]-
[3]. In addition to these so-called knowledge-based factors,
studies also show the relevance image-based factors (rotation
of the prohibited item, superposition by other items, complexity
of the bag) for X-ray image inspection, e.g. [4], [5].

Screening of passenger bags can be understood as a visual
inspection task that consists of visual search and decision [2],
[6] inspired by the work of Spitz and Drury [7]. The decision
whether an X-ray image of a passenger bag contains a
prohibited item or not can be described with signal detection
theory (SDT) [8], [9]. Important measures in this context are
the hit rate (share of passenger bags with prohibited items
correctly classified as containing prohibited items), and the
false alarm rate (share of harmless bags falsely classified as
containing prohibited items). SDT assumes that the hit and false
alarm rate of a person result from his or her sensitivity and
criterion. Sensitivity is the ability to differentiate between noise
(in our case the harmless bag containing everyday objects) and
signal plus noise (bag containing a prohibited item and
everyday objects). The criterion is the response tendency that is
assumed to be independent from sensitivity. A more
conservative criterion is a tendency towards deciding in favor
of noise, resulting in fewer false alarms but also fewer hits. A
more /iberal criterion is a tendency towards deciding in favor of
signal plus noise, resulting in more hits but also more false
alarms (see Fig. 1A). So the assumption is that for a given
sensitivity, the criterion can be changed, leading to a change in
both the hit and false alarm rate in the same direction. The
thereby possible pairs of hit and false alarm rate are described
by the so-called receiver operating characteristic curve (ROC
curve; Fig. 1B).
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Fig. 1. Illustration of SDT. A: Noise and signal plus noise distribution,
decision criterion and resulting hit rate (HR) and false alarm rate (FAR).
B: Receiver operating characteristic curve resulting from shifting the criterion
in Fig. 1A.

Measures used to estimate sensitivity and criterion are often
derived from one hit and false alarm rate value (e.g. d’ or A’).
These measures assume a specific shape of ROC curve (for
more information on detection measures and implied ROC
curves see [8], [9]). However, some studies in the last ten years
indicate that these assumptions might not apply to visual
inspection of X-ray images [10]-[13]. As an alternative to the
one-point measures, confidence ratings allow estimation of
empirical ROC curves and use of the area under the curve
(AUC) as sensitivity measure [8].

Sensitivity is high if the person who visually inspects X-ray
images knows which items are prohibited and what they look
like in X-ray images [1]-[3]. Knowing what everyday objects
look like in X-ray images could further facilitate the
differentiation between harmless and prohibited items as
recently found by Hittenschwiler et al. [14]. The authors
revealed a negative correlation between everyday object
knowledge measured in an X-ray object categorization and
naming test and false alarm rate in a simulated X-ray baggage
screening task. An intuitive explanation of this result could be
that once an item is identified as harmless, it can no longer be
mistaken for a threat item and thereby not result in a false
alarm. This assumption implies that screeners search an X-ray
image and decide for one object after another whether it is
harmless or not, in accordance with the model proposed by
Wolfe and Van Wert [15]. This model is similar to the two-
component model by [7], in which search continues until an
inspector either finds what she or he is looking for (e.g. a
prohibited item) or determines that enough time has been spent
searching.

From an efficiency perspective, a low false alarm rate is
desirable, as each false alarm requires resources for its
resolution (e.g. using explosive trace detection and manual
search of the bag). From a security effectiveness perspective, it
would be interesting to investigate whether knowledge about
everyday objects can also be used to increase the hit rate.
According to SDT, this should be possible, if screeners can
apply a more liberal criterion, i.e. increase their tendency to
classify a bag as needing alarm resolution. This should increase
both hit and false alarm rates. Assuming that the overall
decision for a bag is based on decisions on the level of single
objects within the bag, a more liberal criterion on bag level
results from a more liberal criterion on the level of single items
in the bag [15].

Based on the assumptions above, knowledge about
everyday objects could be especially relevant for the detection
of prohibited items that the screeners have never seen before.
Since they lack the knowledge about their appearance
(knowledge based factors), such novel prohibited items are
harder to detect, when they less resemble known prohibited
items. It is possible that screeners with good knowledge about
everyday objects can detect novel prohibited items by an
exclusion principle: They could only declare a bag as harmless
if all contained objects are identified as harmless everyday
objects, which in terms of SDT means the application of a very
liberal decision strategy. If screeners can successfully be
instructed to apply such a liberal decision criterion, this could
allow for interesting practical applications, e.g. for increased
effectiveness when screening bags of high-risk passengers.

To our knowledge, there is no study yet that investigated the
effects of instructing such an inspection strategy on detection
performance. We therefore pursue this question in this
exploratory study.

II.  METHOD AND PROCEDURE

A. Participants

A total of 31 screeners from one international airport completed
this experiment (one participant dropped out after the first test
due to illness). They were all certified screeners, meaning they
were qualified, trained and certified according to the standards
set by the appropriate national authority (civil aviation
administration) consistent with European Regulation [16]. The
participants were between 26 and 61 years old (M = 454,
SD =8.9) and had between 2 and 26 years of work experience
(M =18.4,SD =5.5). 64.5% were female.

B. Experimental Design

The experiment used a mixed factorial design with two
differently instructed inspection strategies (normal decision vs.
liberal decision) as within-subjects factor and training of a new
inspection instruction (short e-learning module vs. instruction
only) as between-subjects factor. Since we were not sure
whether the participants could apply the liberal decision
strategy after only receiving a short instruction, the screeners
were allocated into two groups. In addition to the instruction,
one group received a short e-learning module explaining the
liberal decision strategy in more detail to assist with switching
from the normal decision strategy to the liberal decision
strategy.

Performance measures and eye tracking data were
calculated as dependent variables. Performance was assessed in
terms of effectiveness (percentage detection of prohibited
items, hit rate) and efficiency (false alarm rate, response times
and scan paths).
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Fig. 2. Tllustration of the study design.

C. Procedure

All participants came to the test facilities twice. At the first
test date, all screeners completed the same pre-tests (test on
detection of everyday objects, X-Ray CAT [17] and X-Ray
ORT [18]) to get an indication of their visual search
performance. They were then divided into two groups
counterbalanced regarding their detection performance scores
and work experience. In the second test session, screeners were
assigned to a simulated X-ray baggage screening task (SXBST)
using eye tracking. One group completed an e-learning module
right before starting the SXBST while the other group directly
started with the SXBST.

In the normal decision condition, screeners were instructed
to visually inspect the X-ray images like they were used to from
their job. In the liberal decision condition, screeners were
instructed to visually analyze each object in the X-ray image
and decide that the bag is NOT OK if at least one object could
not be recognized as harmless.

D. Materials

a) Everyday objects test (EOT): The EOT contains 32
X-Ray images of cabin baggage. In each image, three objects
per bag were marked with a red frame (Fig. 3). Out of these
objects, 17 were prohibited items out of the categories IEDs or
other prohibited items and 79 were everyday objects. This
resulted in 19 X-ray images containing only harmless everyday
objects, nine X-ray images containing two harmless objects
and one prohibited item, and four X-ray images containing one
harmless object and two prohibited items. To solve the test,
three items per X-ray image had to be categorized and named.
For each item, participants had to click on one of three option
buttons describing the categories: harmless everyday object,
IED, and other prohibited item (e.g. gun, knife, electric shock
device, etc.). After categorizing an object, participants had to
enter the name of the object into a textbox and rate how
confident they were in their decision. In case an object could
not be named, participants left the corresponding textbox
empty. There was no time limit and completing the test took
about 45-60 minutes.

Fig. 3. Screenshot showing an X-ray image of a passenger bag from the
everyday objects test with framed harmless everyday objects.

b) E-learning Module: The e-learning module consisted
of a short definition of the new inspection strategy liberal
decision followed by some examples with feedback. Screeners
needed approx. 10 minutes to complete the module.

¢) Simulated X-ray Baggage Screening Task (SXBST):
128 color X-ray images of passenger bags were selected by X-
ray screening experts. In half of the X-ray images, one
prohibited item was added using a validated X-ray image
blending software [19]. Four categories of prohibited items
were used (guns, knives, IEDs and other prohibited items). For
each category, eight exemplars were used. Each exemplar was
displayed once in canonical view (as defined by the two X-ray
screening experts and the authors) and once rotated (around the
horizontal or vertical axis by 85 deg.). For each category, half
of the prohibited items were part of the training system used at
this airport (known items). The other half were newly recorded
(novel items) and visual comparison was used to make sure that
they were different from the prohibited items contained in the
training system. SXBST trials were structured as follows: After
a fixation cross had to be fixated for 1.5 seconds, the X-ray
images were displayed on the screen without time limit and
screeners had to decide whether it was harmless or not by
pressing a key, followed by confidence ratings on a scale from
0 to 10. The test was divided into four blocks. For two blocks
screeners were instructed to visually inspect the X-ray images
like they were used to from their job (normal decision). For the
other two blocks, screeners were instructed to visually analyze
each object in the X-ray image and only decide that the bag
was harmless if each object in the image could be recognized
as harmless (liberal decision). The order of the blocks was
counterbalanced. There was no feedback on the correctness of
responses and the participants took about 30 minutes to
complete the test.

E. Eye Tracking Apparatus

Eye tracking was conducted using the SMI RED-m eye
tracker with a gaze sample rate of 120 Hz, a gaze position
accuracy of 0.5° and a spatial resolution of 0.1°. This non-
invasive, video-based eye tracker was attached to a 22-inch
screen that was placed 50 to 75 cm from the participant. The
RED-m tracks both eyes (binocular) and works with two



infrared light sources, the reflection of which from the retina is
recorded by a camera. Consequently, the participants could
move freely in the limited area that the tracking system can
record accurately. Two screen monitors were attached to a
laptop: one showing the X-ray images to the participant, the
other one showing the eye movements simultaneously to the
facilitator.

F. Analyses

Confidence ratings were used to calculate AUC with the R-
package pROC [20], [21]. All dependent variables were
aggregated on individual level before statistical analysis. Since
the dependent variables were substantially dispersed and not
normally distributed, within-subject comparisons were tested
for significance with the Wilcoxon signed-rank test and
between-subject comparisons with the Mann-Whitney test.

III.  RESULTS

Fig. 4 displays the hit rate for novel and known prohibited
items and the false alarm rate. As expected, the hit rate was
higher for known than for novel prohibited items, W = 1934,
p < .001. In comparison to normal decision, liberal decision
resulted in a higher hit rate for known prohibited items, W = 85,
p = .02, and for novel prohibited items, W = 95.5, p = .02. In
addition, the false alarm rate was significantly higher, W= 60.5,
p <.001. In contradiction to our expectation, these effects were
not significantly larger for the group who received the
e-learning, neither for the hit rate of known items, U = 145,
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Fig. 4. Box plots of hit and false alarm rates depending on decision condition
and prohibited item class (known vs. novel). (Note: Performance values are
multiplied by an arbitrary constant for security purposes.)

p = .16, novel items, U = 141.5, p = .20, nor the false alarm
rate, U=141,p=21.

Sensitivity (AUC values) did not differ between the two
inspection strategies, neither for known, W = 240, p = .88
(normal decision: M = .889, SD = .066; liberal decision: M =
.890, SD = .068) nor for novel items, W = 262.5, p = .78
(normal decision: M = .794, SD = .079; liberal decision: M =
789, SD = .067).

For the analysis of the eye tracking data, five participants
had to be excluded due to technical difficulties that led to 20-
100% of their trials without any recorded saccades or fixations.
From the remaining participants, 38 of 3316 trials had to be
excluded (again due to the lack of any saccades or fixations
being recorded in these trials). Not surprisingly, the overall
increased response times in the liberal decision condition were
associated with on average (mean) 22% longer scan paths
(measured in pixels) for target present trials, W =75, p = .009,
and 28% longer scan paths for target absent trials, W = 49,
p <.001. However, this increase was disproportionate for target
absent trials, leading to a shorter average scan path per response
time, W = 292, p = .002, but not significantly so for target
present trials, W = 228, p = .23. We further analyzed whether
this slower scanning might be due to more frequent fixations or
longer fixations, revealing that the number of fixations per
response time actually decreased for target absent trials, W =
271, p = .014, but the average duration of these fixations
increased, W= 38, p <.01.
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Fig. 5. Boxplot of individual median response times [s] depending on
decision condition and separate for target absent and target present trials.

! We also analyzed whether e-learning affected sensitivity. There was
no significant difference in AUC between the two groups neither for
known, U= 138.5, p = .48 (e-learning: M = .896, SD = .059; control
group: M = 883, SD = .060), nor novel items, U =121, p = .98 (e-
learning: M = .787, SD = .059; control group: M =.789, SD = .051)



In a next step, we analyzed whether everyday object
knowledge was associated with a higher hit rate and a lower
false alarm rate. Table 1. shows based on rank correlations® that
when instructed for normal decision, screeners with a high
performance in the EOT also detected more known prohibited
items, had a marginally significant lower false alarm rate, but
did not detect more novel items. Looking at the condition
liberal decision, the pattern changes: EOT performance was not
associated with lower false alarm rates but with higher hit rates
for novel prohibited items.

TABLE L CORRELATIONS
SXBST?" variable
Correlations EOT® and HRC known HR* novel Ful
SXBST® prohibited | prohibited ase
. . alarm rate
items items
Normal decision ;=430 re==17 ) r=-298
p=.008 | p=735 | p=.0%2
Liberal decision =391 r=.322 r=-018
p=015 | p=.038 | p=.462

 Everyday object test score
b Simulated X-ray baggage screening task
© Hit rate

IV. DISCUSSION

In our experiment, we investigated whether screeners can be
instructed to apply a more liberal decision criterion when
visually inspecting X-ray images of passenger bags resulting in
higher hit rates at the cost of increased false alarm rates.
Further, we explored whether knowledge about the appearance
of everyday objects in X-ray images was associated with
detection performance. The results show that an instruction to
decide more liberal led to increased hit and false alarm rates.
Sensitivity — estimated with the AUC based on confidence
ratings — remained constant for the two inspection strategies.
This implies that the observed change in hit and false alarm
rates was due to a change in the decision criterion. We therefore
conclude that screeners are generally capable to shift their
criterion based on an instruction. However, this criterion shift
also led to longer response times, especially for target absent
trials, which are most relevant in practice, where the majority of
images do not contain any prohibited items. It is not surprising
that participants need more time when instructed to decide
carefully for each object whether it is harmless or not. In this
regard, it should also be noted that SDT does not explain how
response times are linked to sensitivity or the criterion [22].
Reference [15] also found a criterion shift as the result of
changes in target prevalence (share of target present trials) to
influence response times without a change in sensitivity. In
their proposed model, they explain the overall criterion as the
result of the decision criterion on the level of single objects
within the X-ray image (as already mentioned in the
introduction) and in addition assume a quitting threshold. The
assumption is that participants continue searching until they
either come across an item that requires further inspection or
until their quitting threshold is satisfied, which thereby governs

2 Due to the lack of linearity between the variable pairs, we refrained
from Pearson correlations.

the response time for target absent responses. As explained in
the introduction, this is comparable to the model of [7]. Also
[10], [12], [15] found response times to be longer when
participants had a more liberal criterion due to higher target
prevalence. Our results hence fall in line with criterion shifts
induced by different levels of target prevalence.

The eye tracking data from our experiment shows that for
images of harmless bags screeners have longer scan paths and
more fixations. Nevertheless, at the same time scanning was
slower and fixations longer. This suggests that applying the
liberal decision not only extended the search duration but also
affected underlying cognitive processes, e.g. [23].

In our experiment, we also investigated whether an e-
learning module could assist with the application of the new
inspection strategy. However, the liberal decision condition did
not have a stronger effect for the e-learning group, neither for
their hit rates, false alarm rates nor response times. This means
that the e-learning module, as designed for this experiment, was
not effective or necessary, since screeners without e-learning
were also able to shift their criterion based on the instruction.
Further, the e-learning module did also not interact with the
effect of decision strategy on response times.

In the normal decision condition, screeners with more
everyday object knowledge had lower false alarm rates (though
only marginally significant), which is in line with the findings
of [14]. In both decision conditions, screeners with more
everyday object knowledge had higher hit rates for prohibited
items known from computer-based training, possibly because
these screeners had both more knowledge about everyday
objects and about prohibited items included in training.
Interestingly, when applying the liberal decision strategy,
screeners with more everyday object knowledge no longer had
lower false alarm rates but had higher hit rates for novel
prohibited items. This is a first indication that good knowledge
about the visual appearance of everyday objects might be useful
for better detection of novel prohibited items.

V. SUMMARY, CONCLUSIONS AND LIMITATIONS

Our results show that the instruction of a more /liberal
decision for visual inspection of X-ray images led to an
increased hit and false alarm rate without affecting sensitivity.
This implies that the observed change in hit and false alarm
rates was due to a change in the decision criterion alone. These
findings are consistent with understanding visual inspection of
X-ray images as a task consisting of visual search and decision,
where the decision is made according to signal detection theory.
Regarding practical implications, the instruction of visually
inspecting X-ray images using a liberal decision on a regular
basis is not advised because of increased false alarm rates and
slower response times, which would reduce efficiency of X-ray
screening at security checkpoints. However, visual inspection
using a liberal decision strategy could be very valuable for
increased effectiveness when screening bags of high-risk
passengers and/or flights. This would be particularly useful to
increase detection of novel threat items.

Since our findings regarding everyday object knowledge
was merely correlative, future studies are needed to prove that
everyday object knowledge can decrease false alarm rates and



increase hit rates depending on decision strategy. In that case, a
specific training of everyday objects would have a high
potential to increase effectiveness and efficiency of X-ray
screening.
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Abstract
Current EU regulations restrict the duration of X-ray inspection of passenger baggage at
airport security checkpoints to 20 min as a precautionary measure to prevent performance
decrements. However, this limitation to 20 min is not based on clear empirical evidence on
how well screeners can sustain their performance over time. Our study tested screeners in a
60-min simulated X-ray baggage screening task. One group of screeners took 10-min breaks
after 20 min of screening, whereas the other group worked without breaks. We varied target
prevalence in order to determine a valid measure for detection performance in the X-ray
inspection of passenger baggage. Results showed that d, with a slope of 0.65 was a valid
measure of performance. Moreover, there were no performance decrements over the course
of 60 min. Breaks did not affect performance, but reduced the amount of subjective distress.
However, there were high interindividual differences in the amount of distress reported by
screeners working without breaks. These results provide a basis for designing field studies of
prolonged screening durations, and open the discussion on whether to consider new break

policies such as flexible work schedules.

Keywords: X-ray image inspection, visual search, time on task, breaks, detection measures,
target prevalence effect.
1. Introduction

Throughout the world, passenger baggage is scanned at airports with X-ray machines,
and security officers (screeners) inspect these X-ray images for prohibited items (guns,
knives, bombs and other prohibited items). Current European regulations restrict X-ray image
inspection of passenger baggage to a maximum of 20 min of continuous screening as a
precautionary measure to prevent any decrease in detection performance (European

Commission, 2015). Therefore, after 20 min of screening, screeners usually rotate to another
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SCREENER PERFORMANCE OVER TIME ON TASK 3

position at the airport security checkpoint where they carry out other tasks such as assisting
passengers with loading trays or conducting body searches. A new technology called remote
cabin baggage screening (RCBS), which is being employed increasingly by airports, creates
operational challenges for the 20-min rule. With RCBS, security personnel visually inspect
X-ray images in an office-like environment separate from the checkpoint. RCBS allows for a
higher utilization of X-ray machines and screeners while also providing a quieter workplace
for X-ray screeners without the distractors at the checkpoint (Kuhn, 2017). However,
relocating image inspection away from the checkpoint into a remote room makes rotating
between X-ray image inspection and other tasks at the checkpoint more costly and difficult to
coordinate. Screening durations longer than 20 min would alleviate such concerns. Our study
investigated how performance changes over time (i.e., as a function of time on task) by
instructing screeners to review X-ray images continuously for 60 min. In another condition,
screeners took 10-min breaks after each 20 min of screening. The following subchapters
provide a theoretical overview on performance over time and the measurement of screener

performance.

1.1. Performance decrements in X-ray screening

In X-ray image inspection screeners need to search for many different prohibited items
among a great variety of harmless objects (Harris, 2002). Both prohibited and harmless
objects look different in X-ray images from the way they look in reality, and usually many
items superimpose each other in X-ray images (Schwaninger, 2003). Hence, it is not
surprising that this task can be tiring, and this explains why European regulations limit X-ray

image inspection to 20 min as a precautionary measure (European Commission, 2015).
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However, the introduction of this limitation was not undisputed (Ref) and likely based on
research into vigilance (personal communication with airport security expert), because
research on this issue is scarce. Few studies exist investigating time on task in X-ray image
inspection. . A study by Meuter and Lacherez examined the effect of time on task on screener
performance in the field (Meuter & Lacherez, 2016). Said study analyzed 4 months of threat
image projection (TIP) data from an Australian airport. TIP is a technology that projects
prerecorded threat items onto real X-ray images of passenger baggage during baggage
screening at airport security checkpoints (Cutler & Paddock, 2009; Hofer & Schwaninger,
2005). The TIP hit rate (or percent detected) refers to the proportion of projected fictional
threat items that screeners have detected. Meuter and Lacherez (2016) found a small decrease
of approximately 2 percentage points in the hit rate with time on task when workload was
high (operationalized as more than 5.4 images screened per min during one session of
continuous screening). No decrease in performance was found when workload was low. A
closer examination of high workload sessions revealed that performance started to decrease
after 10 min. Although this is a very interesting and valuable study, there are some caveats
when trying to use it to derive recommendations for time on task. First, the observed decrease
in the hit rate was very small. Because the 20-min rule also applied to the screeners that
participated in the study, it is unclear how performance would evolve for longer screening
durations. It should also be noted that Meuter and Lacherez (2016) analyzed data from
conventional checkpoints. It is therefore unclear whether the results would also apply to
RCBS, in which screeners work in an office-like environment with much less noise and
distraction. Another limitation of their study is that they were unable to analyze the false
alarm rate, because the TIP system can tell only whether a rejected X-ray image contained a
TIP, but not whether it contained an actual prohibited item. When measuring only the hit rate,

one cannot determine whether an observed change in hit rate is due to a change in response
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SCREENER PERFORMANCE OVER TIME ON TASK 5

tendency, and/or whether it reflects a change in detection performance in terms of sensitivity.
A study conducted by Ghylin et al. (2007) provides more insight into this. In the study,
airport security screeners completed a test with images of passenger carry-on bags over the
course of four hours. Results were aggregated for each of the four hours. The study found
significantly lower hit rates in the third and fourth hour compared to the first. For the false
alarm rate, the difference between hour one and two, and hour two and four also attained
significance. However, there was no significant change in the sensitivity measure 4'. The
mutual decline of hit and false alarm rate therefore suggests a shift in response tendency.
Reaction times decreased from the first to the second and from the second to the third hour.
The authors concluded that vigilance decrements occurred, which we will address in the next
subchapter. Whereas the study of Ghylin et al. (2007) provides very interesting results, it only
compares full hours and does not report hit rate, false alarm rate, or 4" values. Conclusions
about performance changes within the first hour of screening and an evaluation of the 20 min

rule are therefore limited.

1.2. Performance decrements in vigilance tasks

The effect of time on task has been investigated quite extensively for vigilance tasks, which
share some similarities with X-ray image inspection. Both are characterized by long search
periods and require the searcher to stay alert to few targets appearing (Davies &
Parasuraman, 1982). In both tasks, the infrequent appearance of targets causes higher misses
(Wolfe et al., 2007). In vigilance tasks, for very difficult tasks, performance decrements can
already be observed as early as after 5 min (Nuechterlein, Parasuraman, & Jiang, 1983; Rose,
Murphy, Byard, & Nikzad, 2002) Most studies have revealed decreases in vigilance within
the first 15t030 min of the task (Mackworth, 1948; Teichner, 1974). Nonetheless, it is not

clear whether the performance decrement within the first 15 to 30 min often found in
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vigilance tasks can also be expected for X-ray image inspection, because the tasks differ in
several respects. In vigilance tasks, a short distraction can lead to missing a target, whereas in
an X-ray image inspection, one has to actively declare that no target is present in an image
(Wolfe et al., 2007). Vigilance tasks present mostly one stimulus at a time, whereas detection
tasks require the detection of a target among distractors (Wolfe et al., 2007). Also, in X-ray
image inspection, only certain types of targets are very rare (e.g., bombs, guns), whereas
other targets occur more frequently in carry-on baggage (e.g., bottles and laptops). In addition
to the effect that time on task has on performance in vigilance tasks, research has also shown
that people report more distress and less engagement after a vigilance task (Helton, 2004;

Matthews et al., 2002).

1.3. The effects of breaks on performance

Further insight into the effect that time on task has on performance can be gained from
inspecting research on the effect of breaks. Current research reveals mainly positive effects of
breaks on the performance of a variety of different tasks (Arrabito, Ho, Aghaei, Burns, &
Hou, 2015; Colquhoun, 1959; Kopardekar & Mital, 1994; Steinborn & Huestegge, 2016).
Breaks have been found not only to have positive effects on performance but also to decrease
subjectively perceived workload (Arrabito et al., 2015) as well as perceived fatigue and
discomfort (Galinsky, Swanson, Sauter, Hurrell, & Schleifer, 2000). The frequency and
length of breaks depends on the type, difficulty, and duration of the task (Tucker, 2003).
Generally, short breaks can already help to restore attention and counter performance decline.
Nonetheless, the current literature provides no clear indication on how frequent and long

breaks should be for X-ray image inspection.
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1.4. Measuring performance in X-ray image inspection

Some challenges emerge when investigating screener performance. Common measures
for this task are the hit rate (percentage of detected prohibited items) and the false alarm rate
(percentage of harmless baggage falsely sent to secondary search). Because the hit rate (HR)
and false alarm rate (FAR) depend on the response tendencys, it is recommended to use
detection measures that are considered to be independent of response tendency (MacMillan &
Creelman, 2013). Many of these detection measures are based on signal detection theory
(SDT). This provides a general framework for defining detection performance, called

sensitivity, independently from response tendency, called criterion.

Research in X-ray image inspection often uses d' as such a measure of sensitivity
(Sterchi, Héttenschwiler, & Schwaninger, 2019)), which is calculated as
d' = z(HR) — z(FAR)
whereby z is the inverse of the cumulative distribution function of the standard normal

distribution (Green & Swets, 1966)A commonly used measure for the criterion that is con

However, recent research has found d’ to be invalid for X-ray image inspection. Several
studies investigating the effect that the hit rate decreases when targets become rare—the so-
called target prevalence effect—have found that d' increases as targets become less frequent
(Godwin et al., 2010; Wolfe et al., 2007; Wolfe & Van Wert, 2010). This is paradoxical,
especially when it is considered that response times are usually faster when targets appear
infrequently (low prevalence) compared to when they are frequent (high prevalence).
Moreover, SDT assumes that target prevalence affects only the criterion and not sensitivity.

Instead of assuming that sensitivity actually increases when target prevalence decreases,
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Wolfe et al. (2007) have argued that X-ray image inspection does not fulfil the assumptions
that underlie d'. SDT assumes a decision process in which target-present and target-absent
trials each result in a distribution of evidence for the presence of a target, and d’ assumes that
these distributions have equal variance (MacMillan and Creelman, 2013). If the assumption
of equal variance is not met, d, offers an extension of d' with the slope s as an additional open

parameter that is the ratio of the two standard deviations.

2
d, = 112 X [z(HR) — sz(FAR)]

Wolfe et al. (2007) have argued that d,, is more appropriate (in line with Kundel, 2000,
who found the same target prevalence effect for the inspection of medical X-ray images), and
estimated the slope parameter to be around 0.6 (again in line with Kundel, 2000). Following
this approach, several other studies have found the slope parameter to be around 0.6 when
investigating the effect of target prevalence on X-ray image inspection (Godwin et al., 2010;
Wolfe et al. 2007; Wolfe & Van Wert, 2010). Consistent with these findings, Sterchi et al.
(2019) have reported slope parameters between 0.5 and 0.6 based on one experiment
manipulating the criterion through instruction and another experiment using confidence
ratings.

Our experiment investigates the target prevalence effect in order to determine which
detection measure is valid when analyzing the effect that time on task has on detection
performance. It is therefore also worth discussing how time on task and target prevalence
interact. The target prevalence effect has been shown to depend on implicit learning: People
rely more on the prevalence they experience rather than the prevalence they have been told to

expect (Ishibashi, Kita, & Wolfe, 2012; Lau & Huang, 2010a) ). Hence, the target prevalence
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effect evolves over time, because people need to experience the prevailing prevalence
(Ishibashi et al., 2012; Lau & Huang, 2010; Wolfe & Van Wert, 2010) ).

In the current study, we investigated the effect of time on task on screener performance
when X-ray images were analyzed for 60 min. One group screened for 60 min continuously,
whereas the other group took 10-min breaks between 20-min screening blocks. Based on
current evidence, we cannot formulate clear hypotheses on performance decrements
depending on time on task. However, we assume, in line with previous research (Godwin et
al., 2010; Wolfe et al., 2007; Wolfe & Van Wert, 2010), that d’, which assumes a slope
parameter of 1, is an invalid measure of detection performance for this task and might
therefore be affected by target prevalence. We expect the slope parameter to be around 0.6,
and that d, based on that slope will be more appropriate. We investigated this assumption by
varying target prevalence. We also monitored the perceived stress of the task by asking

screeners to complete the Short Stress State Questionnaire (SSSQ; Helton, 2004).

2. Methods

2.1. Participants

71 screeners working at a European airport completed the study. All had been recruited by
the airport’s security service provider and participated during their regular working hours.
Screeners were aged between 20 and 67 years (M = 32.01, SD = 12. 82)", had 0.3 to 12 years
of working experience (M = 2.08, SD = 2.23), and 46.38% of them were female. The study
complied with the American Psychological Association Code of Ethics and was approved by
the Institutional Review Board of the University of Applied Sciences and Arts Northwestern

Switzerland. Informed consent was obtained from all screeners prior to their participation.

" Two participants did not report their demographics.
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2.2. Design

A 2 (break condition: with vs. without breaks) % 2 (prevalence condition: high vs. low
prevalence) x 3 (time on task: 0—20 min, 20—40 min, 40—60 min) mixed factorial design was
employed. The two break conditions with breaks and without breaks served as between-
subject variable. All screeners completed the test twice, once in the low prevalence condition
and once in the high prevalence condition (within-subject). In the high prevalence condition,
one out of two bags (50%) contained a prohibited item. A target prevalence of 50% is
typically employed by studies investigating target prevalence effects (Godwin et al., 2010) .
Furthermore, it matches the prevalence of the screeners’ training. In the low prevalence
condition, one out of eight bags (12.5%) contained a prohibited item. This is higher than in
practice, but it was necessary to collect enough target present trials within the experiment to
calculate a reliable hit rate. The order of the two prevalence conditions was counterbalanced
between test sessions. To analyze the effect of time on task, the test was broken down into
three 20-min blocks: 0-20 min, 20-40 min, and 40—60 min.

The following performance measures served as dependent variables: hit rate, false alarm
rate, sensitivity (d’, d.) criterion (c, cq), and processing time. We also investigated the
influence of the break condition and prevalence condition on the three factors of the SSSQ

(distress, worry, engagement; Helton, 2004).

2.3. Materials

The test consisted of 864 X-ray images of passenger cabin (carry-on) baggage. For a
subset of the images, prohibited items were merged into the bags using a validated X-ray
image merging algorithm (Mendes, Schwaninger, & Michel, 2011). Prohibited items
belonged to one of three categories: guns, knives, and improvised explosive devices (IEDs).

Each image contained a maximum of one prohibited item.
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To create enough content for the test, each image of a passenger bag and each prohibited
item appeared twice in the test. For the passenger baggage, one of the two images was
presented in a mirrored version in order to reduce recognition. For prohibited items, both an
easy and a difficult rotation (as defined by X-ray image inspection experts) of each prohibited
item was projected into different bag images. Figure 1 shows two bags as an example. The
complexity of the bag images and the superposition of the prohibited items, which are both
known to affect difficulty in detecting the prohibited item (Schwaninger, 2003), were held at

a medium level and not varied systematically.

Bag with prohibited item Harmless bag
(bag mirrored)

Difficult rotation of
prohibited item

Easy rotation of
prohibited item

Fig. 1. Examples of images of passenger bags and prohibited items used in the test.

The test was so constructed as to allow all participants to be compared on the basis of the

same images, regardless of their processing time and total amount of images analyzed during
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the test. Therefore, the test was divided into 12 blocks, each containing 72 images in a fixed
order. After analyzing images for 5 min, the system automatically switched to the next block.
With a time restriction of 12 s per image, we expected each screener to analyze a minimum of
24 images within 5 min. Therefore, the first 24 images of each 5-min block were used to
measure screening performance.

In the low-prevalence condition (12.5%), one gun, one knife, and one IED appeared
among the first 24 images. In the high-prevalence condition (50%), four images per category
were presented within the first 24 images of each block. The order of the 12 blocks was
counterbalanced between participants with a Latin square design, ensuring that the images
did not vary between the three 20-min blocks.

We measured perceived stress levels with the SSSQ (Helton, 2004). This 24-item
questionnaire is a valid measure of task-related stress. It taps three different factors of stress:
distress, worry, and engagement. The three factors address the motivational, cognitive, and
affective aspects of task-related stress: Engagement refers to the willingness to act; worry, to
self-regulation; and distress, to negative emotions. Items were rated on 5-point scales ranging

from 1 (not at all) to 5 (extremely).

2.4. Procedure

The airport’s security provider scheduled groups of 6 to 12 screeners to participate in the
experiment. These groups were then randomly assigned to either the group with breaks or the
group without breaks.? Each participant completed the test twice, once with low prevalence
and once with high prevalence. The two test times were separated by an interval of 3 to 5

weeks.

2A post-hoc comparison showed that the two groups were similar with regard to work experience, age, and gender.
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Testing sessions took place in a training room at the airport. Screeners were informed
about the test procedure and instructed to analyze images as quickly and accurately as
possible as if they were working. Because screeners are used to a target prevalence of 50% in
training and certification, instructions also informed them about the target prevalence of the
respective test condition to avoid confusion.

Several groups belonging to the same break condition participated in one test session
simultaneously. Due to organizational constraints, screeners from the group with breaks and
screeners from the group without breaks had to complete the test simultaneously in the last
two test sessions. Therefore, the participants in the two break conditions were separated
spatially in the room. Each test session lasted about 1.5 hrs and was made up of three parts:

1. Practice trials. After receiving verbal and written instructions, screeners completed
practice trials containing 16 images. They first completed these trials without time restriction,
and then repeated the same training with the 12 s time restriction per image used in the actual
test. The training was designed to familiarize participants with the interface and the
procedure.

2. X-ray image inspection task. Screeners completed 60 min of X-ray image inspection.
The group with breaks had a 10-min break after each 20 min of screening, whereas the group
without breaks analyzed X-ray images for 60 min continuously and had a 20-min break
thereafter. For the X-ray image inspection, participants had to inspect the images as if they
were working remotely. They were instructed to press a button labeled OK if they perceived
an image as harmless. If they thought the image contained a prohibited item, they had to
locate the prohibited item by double clicking on it (marking); select whether it was a gun,
knife, or IED (categorizing); and then press a button labeled NOT OK. Screeners had 12 s per
image to decide whether the image was OK or NOT OK. Feedback was given in the same

manner as provided by TIP systems: immediate feedback for images containing a prohibited
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item informing about the correctness of the final decision between OK and NOT OK, the
marking, and the categorizing. Screeners did not receive feedback if the image did not
contain a prohibited item.

3. Questionnaire. After completing the X-ray image inspection task, screeners filled out
the SSSQ and provided information on their shift schedule, work experience, age, and

gender.

2.5. Analyses

To ensure that the same images were used to measure performance in all participants,
only the first 24 images of each 5-min block and only images that appeared in both the high-
and low-prevalence conditions were analyzed. For the descriptive statistics and analyses,
dependent variables were first aggregated separately for each participant, and then separately
for each 20-min block and prevalence condition.

The hit rate was calculated as the share of images correctly declared as NOT OK without
taking marking and categorizing into account. This corresponds to operations at the
checkpoint where all bags declared as NOT OK are sent to secondary search.

The detection measures d' and d, as well as the slope parameter were based on the z-
transformed hit rate and false alarm rate, whereby z refers to the inverse of the cumulative
distribution function of the standard normal distribution (Green & Swets, 1966). Because this
function is undefined for extreme proportions (e.g., a hit rate of one or false alarm rate of
zero), the hit rate and false alarm rate were corrected with the log-linear rule (Hautus, 1995)
when calculating d’, du, and the slope parameter. The slope parameter was estimated by
calculating the difference in z-transformed hit rate and false alarm rate between the two target
prevalence conditions for each participant. The average slope parameter then corresponded to

the average difference in z-transformed hit rate divided by the difference in z-transformed
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false alarm rate. For the slope estimation, we report bootstrapped BCa-Cls (Efron, 1987)
based on 20,000 resamples.

The processing time of the images refers to the time from image appearance until the OK
or NOT OK button was pressed. For images with a prohibited item, this included the marking
and categorizing of the prohibited item. This processing time is therefore not directly
comparable to conventional reaction times.

All ANOV As were carried out in R version 3.5.1 (R Core Team, 2018). The
Greenhouse-Geisser correction (Greenhouse & Geisser, 1959) was used where applicable and
effect sizes are reported with 12, (partial eta squared). Cronbach alpha was calculated for the
first test time point and each factor of the SSSQ seperately. In case of significant interactions
between target prevalence and time on task, post hoc analyses were calculated comparing the
first block (0—20 min) with the second block (20-40 min) and the second block with the third
block (40—60 min) for both levels of target prevalence separately. Post hoc tests were Holm—

Bonferroni corrected (Holm, 1979).

3. Results

Four participants were not able to take part in the second testing session and were
therefore excluded from the analysis. We report results on the hit rate and false alarm rate;
the sensitivity (d" and d,) and the criterion (c and c,); the processing time (PT); and the three
factors of the SSSQ. We computed 2 (with breaks and without breaks) % 2 (high prevalence
and low prevalence) % 3 (0-20 min, 20—40 min, 40—60 min) ANOV As with hit rate, false

alarm rate, d', du, ¢, c., and PT as dependent variables.

3.1. Hit rate and false alarm rate
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Fig. 2. Hit rate (a) and false alarm rate (b) for the group with breaks and the group without
breaks for both prevalence conditions as a function of time on task. Standard errors are

represented in the figure by the error bars.

Figure 2a shows the hit rate for the two groups, with breaks and without breaks, in both
prevalence conditions as a function of time on task. The ANOVA for the hit rate revealed a
significant main effect of prevalence, F(1, 69) =37.99, p < .001, n,> = .36; but no effect of
break, F(1, 69) = 1.84, p = .180, n,> = .03, or time on task, F(1.93, 133.17) = 1.78, p = .174,
ny° = .03. None of the two-way interactions were significant: Break x Prevalence, F(1, 69) =
0.25, p = .621, n,> = .00; Break x Time on task, 7(1.93, 133.17) = 1.75, p = .179, n,* = .02;
and Prevalence x Time on task, F(1.96, 134.94) = 3.06, p = .051, > = .04. The three-way
interaction did not attain significance either, £(1.96, 134.94) = 0.31, p = .731, n,> = .00.

Figure 2b shows the false alarm rate for both break conditions and prevalence conditions
as a function of time on task. The ANOVA with false alarm rate as dependent variable
revealed a significant main effect of prevalence, F(1, 69) = 118.53, p <.001, n,>=.63; no
effect of break, F(1, 69) = 0.00, p = .957, n,° = .00; and no effect of time on task, F(1.87,
129.37) = 0.24, p = .776, n,° = .00. The two-way interaction between Prevalence x Time on

task attained significance, F(1.97, 136.18) = 17.9, p < .001, n,? = .21. No other interactions
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were significant: Break x Prevalence, F(1, 69) = 0.01, p = .917, n,>= .00; Break x Time on
task, F(1.87, 129.37) = 1.23, p = 294, n,> = .02; Break x Prevalence x Time on task F(1.97,
136.18) = 0.30, p = .737, n,> = .00. Post hoc analyses for the significant interaction of
Prevalence x Time on task revealed a significant increase in the false alarm rate from 0—20
min to 20—40 min in the high-prevalence condition (p =.004) and a significant decrease from
0—-20 min to 20—40 min in the low-prevalence condition (p = .004). No significant difference
was found between 20—40 min and 40—60 min in either the high-prevalence (p = .811) or low-

prevalence condition (p = .649).

3.2. Sensitivity and criterion

(a) (b)

2.0 2.0
]
e el
15 sli— 3 $ 15- .
© =i =T
® 1.0 & 101
(1] O
= == \ith breaks =
0.54 = Without breaks 0.5
==High prevalence
0.0- = *Low prevalence 0.0-
0-20 min 20-40 min 40-60 min 0-20 min 20-40 min 40-60 min
Time on task Time on task

Fig.3. Sensitivity measure d’ (a) and sensitivity measure d, (b) for the group with breaks and
the group without breaks for both prevalence conditions as a function of time on

task.Standard errors are represented in the figure by the error bars.

Figure 3a shows the sensitivity measure d’ for both break and prevalence conditions as a
function of time on task. The ANOVA with d" as a dependent variable revealed a significant
main effect of prevalence, F(1, 69) = 12.83, p = .001, n,°> = .16; but no effect of break, F(1,

69) = .80, p =375, 1,° = .01; or time on task, F(1.99, 136.97) = 3.62, p = .030, n,* = .05. The
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interaction Prevalence x Time on task attained significance, F(1.93, 133.34) = 1.08, p = .340,
ny> = .02. All other interactions were not significant: Break x Prevalence, F(1, 69) = .15, p =

697, 1> = .00; Break x Time on task, F(1.99, 136.97) =2.77, p = .067, n,* = .04; and Break

x Prevalence x Time on task, F(1.93, 133.34) = 1.83, p = .166, np2 =.03.

Post hoc analyses revealed no significance in d’ between 0—20 min and 20—40 min for the
high prevalence condition (p = .835) nor for the low prevalence condition (p = .060). Also no
significant difference was found between 20—40 min and 40—60 min in either the high-
prevalence (p = 1.000) or low-prevalence (p = 1.000) condition.

The estimated slope parameter was 0.65 (95% BCa-CI [0.41, 0.89]) and thereby lower
than the slope assumed by d'. Figure 3b shows the sensitivity measure d, based on this slope
estimation as a function of time on task.

The ANOVA for d, revealed a main effect of time on task, F(1.97, 135.91)=3.43,p =
.036, 1, = .05; no significant main effects of prevalence, F(1, 69) = .65, p = .423, n,> = .01
(whereby the main effect of prevalence has no informative value, because this main effect
was used to estimate the slope parameter) or break, F(1, 69) = 1.03, p = .314, n,> = .01. No
interactions attained significance: Break x Prevalence, F(1, 69) = .22, p = .638, n,*> = .00;
Break x Time on task, F(1.97, 135.91) =2.49, p = .088, TL,,Z = .03; Prevalence x Time on task,
F(1.95,134.72) =0.11, p = .895, np2 =.00; and Break x Prevalence x Time on task, F(1.95,

134.72) = 1.53, p = .221, > = .02.
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Fig. 4. Criterion c and c. for groups with breaks and without breaks for both prevalence
conditions as a function of time on task. Standard errors are represented in the figure by the

error bars.

Figure 4 displays the criterion measures ¢ and c,. In accordance with calculating d,, a
slope of 0.65 was used to determine the criterion c.. Because ¢, is a linear transformation of ¢
and does not affect significance testing, ANOVA and post hoc results are identical for both ¢
and ¢, and are reported only once. The ANOVA with ¢ and ¢, as a dependent variable
revealed a significant main effect of prevalence, F(1, 69) = 141.58, p < .001, n,> = .67; but no
effect of break, F(1, 69) = 0.96, p =.329, n,> = .01; or time on task, F(1.93, 133.02) = 0.40, p
= .665, 1> = .01. The interaction Prevalence x Time on task, F(1.95, 134.28)=11.82, p <
.001, 1, = .15, was significant. No significant effects were found for Break x Prevalence,
F(1,69) = .25, p = .619, n,> = .00; Break x Time on task, F(1.93, 133.02) = .24, p = .782, 1,
=.00; or Break x Prevalence x Time on task, F(1.95, 134.28) =.02, p =.977, n,,z =.00. Post
hoc analyses for the significant interaction of Prevalence x Time on task revealed a
significant increase in ¢ and ¢, from 0—20 min to 20—40 min for high prevalence (p = .002)

and a significant decrease in ¢ and ¢, for low prevalence (p = .038). The criterion (¢ and c¢,)
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did not change significantly from 20—40 min to 40—60 min for either high prevalence (p =

.995) or low prevalence (p = .995).

3.3. Processing time
Figure 5 shows screeners’ processing time for target-absent and target-present trials for both

break and prevalence conditions as a function of time on task.

Target Absent Target Present
? -
EG 4 -'—.1-:_ -
. . Fag - P; -------- L
E 54 I o ~ . s ¥
o4 B S R ;
c i

‘» 34 =With breaks

§ = Without breaks

o ==High prevalence
o = *Low prevalence

0-20 min 20-40 min 40-60 min  0-20 min 20-40 min 40-60 min
Time on task

Fig. 5. Processing time for target-absent and target-present trials for both breaks and
prevalence conditions as a function of time on task. Standard errors are represented in the

figure by the error bars.

The ANOVA for target-absent trials revealed a significant main effect of prevalence,
F(1,69)=89.01, p <.001, 1> =.56, and time on task, F(1.69, 116.40) =127.51, p < .001, 1,
= .65. The main effect of break was not significant, F(1, 69) =1.27, p = .264, n,> = .02. The
interaction Prevalence x Time on task attained significance, F(1.54, 105.92) =37.07,p <
.001, > = .35. The other interactions did not attain significance, Break x Prevalence, F(1,
69) =.34, p = .560, n,> = .00; Break x Time on task, F(1.69, 116.40) = 2.93, p = .066, n,° =
.04; Break x Prevalence x Time on task, F(1.54, 105.92) = .53, p = .543, n,> = .01. Post hoc

tests for the interaction of Prevalence x Time on task revealed a significant decrease from 0-



10

11

12

13

14

15

16

17

SCREENER PERFORMANCE OVER TIME ON TASK 21

20 min to 20-40 min for the high prevalence (p = .010) and low prevalence condition (p <
.001). The decrease was also significant from 20-40 min to 40-60 min for the high prevalence
(p =.001) and the low prevalence condition (p < .001).

For target-present trials, the ANOVA revealed significant main effects of prevalence,
F(1,69)=6.67, p = .012, n,> = .09; break, F(1, 69) = 5.28, p = .025, n,> = .07; and time on
task, F(1.97, 136.22) = 26.98, p < .001, n,> = .28. The interaction Prevalence x Time on task
also attained significance, F(1.97, 135.76) = 4.61, p = .012, n,> =.06. The interactions Break
x Prevalence, F(1, 69) =.04, p = .851, np2 =.00; Break x Time on task, F(1.97, 136.22) =
43, p=.649, n,”> = .01; and Break x Prevalence x Time on task, F(1.97, 135.76) = .29, p =
745, m,> = .00, were not significant. Post hoc tests for the significant interaction of
Prevalence x Time on task revealed no significant decrease in reaction time between 0-20
min and 20-40 min for high prevalence (p = .161) but a significant decrease for the low
prevalence condition (p =.000). Also between 20-40 min and 40-60 min there was no
significant decrease for the high prevalence condition (p =.071) but a significant decrease for

the low prevalence condition (p = .016).
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3.4. Subjective measures of distress, worry, and engagement
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Fig. 6. Subjectively reported levels of distress, worry, and engagement. The lower and upper

hinges correspond to the 25th and 75th percentiles. Each point represent a single measurement.

Figure 6 shows the reported levels of distress, worry, and engagement for both break and
prevalence conditions. Two participants did not fill in the questionnaire and are therefore not
in these results. Cronbach’s alpha was .75 for distress, .81 for engagement, and .70 for worry.
For the subjective stress levels, we calculated 2 (with vs. without breaks) % 2 (high vs. low
prevalence) ANOV As with the three levels of stress distress, worry, and engagement as
dependent variables. For distress, the ANOVA revealed a significant main effect of break,
F(1,66)=9.17, p = .004, n,> = .12. Because the data do not meet the assumptions of normal
distribution or homoscedasticity, a Wilcoxon rank sum test was carried out, which also
revealed a significant difference between the two break conditions (W = 1616, p = .003). The
main effect of prevalence, F(1, 66) = 1.44, p = 234, n,> = .02, and the interaction Break x
Prevalence, F(1, 66) = 1.59, p = 212, n,> = .02, were not significant. For worry, the ANOVA

revealed no significant effects: break, F(1, 66) =2.35, p = .13, n,> = .03; prevalence, F(1, 66)
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= .58, p = .449 > = .01; or Break x Prevalence, F(1, 66) = .04, p = .847, n,> = .00. For
engagement, the ANOVA also revealed no significant effects for either break, F(1, 66) = .70,
p = .406, n,* = .01, prevalence, F(1, 66) = .56, p = .455, n,> = .01, or for the interaction Break

x Prevalence, F(1, 66) =.04, p = .847, np2 =.00.

4. Discussion

To examine time on task and the influence of breaks on screener performance, two
groups of X-ray screeners performed an X-ray image inspection task for 60 min. Whereas
one group took breaks in line with the 20-min rule in EU regulations, the other group worked
for 60 min without breaks. Target prevalence was varied to determine the valid detection
measure for this task. The detection measure d, with a slope of approximately 0.6 seems to be
a more valid measure of detection than d' for X-ray image inspection. We confirmed the
typical prevalence effect to be a shift in response tendency (criterion) and found that it
developed at the beginning of testing. Performance did not decrease over the course of 60
min of X-ray screening. Moreover, breaks had no effect on performance. However, screeners
without breaks reported more distress.

Because our findings on time on task and breaks depend on selecting an appropriate
detection measure, we first discuss the main effects of target prevalence and the change of hit
rate, false alarm rate, sensitivity, criterion, and processing time in relation to the target
prevalence effect. Then, we discuss the screeners’ ability to maintain performance over time

and the effect of breaks.

4.1. Detection measures for X-ray image inspection
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Screeners showed a lower hit rate and false alarm rate in the low target prevalence
condition compared to the high target prevalence condition. This is the typical effect of target
prevalence on hit rate and false alarm rate: People adjust their criterion depending on the base
rate with which targets occur. When comparing d’ between the two target prevalence
conditions over the full length of the test (i.e. the main effect of target prevalence), we found
higher d' values for the low target prevalence condition in line with previous research
(Godwin et al., 2010; Wolfe et al., 2007; Wolfe and Van Wert, 2010). At the same time,
screeners needed less time to inspect an image in this condition.

In line with Wolfe et al. (2007), we would argue that it is implausible for screeners to
become faster and better at detection when fewer targets occur. It is more plausible that the
equal variance assumption of d' is not met, and that the observed change in hit rate and false
alarm rate is a mere change in response tendency (criterion ¢ and c¢,) as assumed in signal
detection theory. Comparing the z-transformed hit rate and false alarm rate between the two
target prevalence conditions resulted in an average slope parameter of 0.65. This is close to
the slope of around 0.6 that previous studies have found for the task of X-ray image
inspection (Godwin et al., 2010; Sterchi et al., 2019; Wolfe & Van Wert, 2010). Therefore, in
line with these previous studies, d, seems to be the appropriate detection measure here. A
comparison of the two target prevalence conditions regarding the criterion again showed a
clear prevalence effect. As mentioned, screeners needed less time to inspect an X-ray image
in the low target prevalence condition. This was more strongly the case for target-absent trials
in line with previous research (Godwin et al., 2010; Wolfe et al., 2007; Wolfe & Van Wert,
2010). In summary, we found that a lower target prevalence causes a shift in response
tendency resulting in a lower hit rate and false alarm rate. Whereas d’ would suggest that

sensitivity also decreases, this is implausible with regard to shorter processing times.
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Moreover, previous research suggests that d, with a slope of around 0.6 is more appropriate.

Consistent with this, our data suggest a zROC slope of 0.65.

4.2. Interaction between target prevalence and time on task

Previous studies have found that the target prevalence effect depends on implicit learning
rather than on explicit instruction, and that it therefore takes some time until searchers adapt
to the prevailing target prevalence by shifting their criterion (Ishibashi et al., 2012; Lau &
Huang, 2010) ). For the false alarm rate, we found a significant interaction between target
prevalence and time on task. More specifically, within the first 20 min of the task the false
alarm rate increased in the high target prevalence condition and decreased in the low target
prevalence condition. This is consistent with the shift in criterion (c.) that we found.
However, for the hit rate, the interaction between target prevalence and time on task did not
attain significance. Considering the p-value was close to significance, this could have been
due to insufficient statistical power. The hit rate was calculated from fewer images than the
false alarm rate, which led to higher standard errors. Our analyses of the criterion, which
takes the hit rate and the false alarm rate into account, clearly confirm that the effect of target
prevalence increased within the first 20 min of the test. In the high target prevalence
condition, participants increased their tendency to declare that an X-ray image contained a
prohibited item. In the low target prevalence condition, they increasingly reported images to
be harmless. In general, our results are consistent with previous studies showing that
participants first have to experience the prevalence of the targets for the target prevalence
effect to fully develop (Ishibashi et al., 2012; Lau & Huang, 2010). In addition, consistent
with the findings of Lau & Huang (2010), we found that instructions alone were not sufficient

to evoke the target prevalence effect.
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4.3. Effect of time on task on screener performance

As mentioned in the previous section, we found a criterion shift within the first 20 min of
the test, which depended on the target prevalence condition. To discuss the effect of time on
task on detection performance, it makes therefore sense to focus on the sensitivity measure d,
(with a slope of 0.65), which is not affected by this criterion shift. Whereas some of the
previous research found performance decrements, we found a small increase in d, over the
first 20 min of the test and no change thereafter. The initial ramp-up could be due to
accustomization to the task. It is possible that there is a warm-up phase in X-ray image
inspection, during which the cognitive processes necessary for this task are fully activated, as
can be observed in other recognition tasks (e.g. Monsell, 2003; Allport & Wylie, 1999). It is
however also possible that the observed ramp-up in performance was an accustomization to
the specifics of the task employed in our experiment.

Whereas our study found no decline in performance over the course of 60 min, Meuter
and Lacherez (2016) found a small decrease of two percentage points in hit rate after 10 min
of screening under high workload (i.e., when screeners analyzed more than 5.4 baggage
images per min). There are several possible explanations for this difference. The decrease
Meuter and Lacherez found was quite small but based on a large amount of data. Our
statistical power would not allow us to confirm a decrease in the hit rate of two percentage
points. We further found that screeners adapted to the target prevalence by shifting their
criterion at the beginning of the test. The change found by Meuter and Lacherez might also
have been a shift in criterion. However, this cannot be determined, because it was not
possible to measure false alarm rate in their study. Finally, whereas their study analyzed data

from a conventional checkpoint where screening was performed in the lane, our study
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investigated remote screening. It may be more difficult to maintain performance in an
environment with more noise and distractors.

The pattern within the 60 min of screener performance from our study is similar to what
Ghylin, Drury, Batta, and Lin (2007) found when testing how screener performance changed
after the first hour up to hour four. They found the hit, false alarm rate, and reaction time to
decrease while sensitivity (measured with 4") remained constant, concluding the presence of
a criterion shift.

As we already argued in the introduction, X-ray image inspection shares certain
similarities with vigilance tasks, but it also reveals clear differences. Whereas performance
decreases within the first 15-30 min (Mackworth, 1948; Teichner, 1974)) on most vigilance
tasks, our participants were able to maintain their performance over the course of 60 min.
This also argues against classifying X-ray image inspection as a typical vigilance task. One
could argue that our study contrasts more strongly with vigilance tasks than the conventional
X-ray image inspection task, because we used a higher target prevalence. However, whereas
threats such as IEDs and guns are rare in practice, other prohibited items such as liquids and
laptops left in baggage still provide quite common targets.

Another measure to consider regarding performance is processing time. Processing times
decreased throughout the test. This decrease cannot be associated with a speed—accuracy
tradeoff, because there was no decrease in the performance measure d,. It is more likely that
screeners adapted to the test conditions and interface settings. We cannot be sure whether this
effect would also occur in practice after screeners become familiar with the interface of the

X-ray analysis software.

4.4. The effects of breaks on performance
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Closely linked to how performance changes over time is the question regarding what
effect breaks have on performance. We did not find effects of breaks on the hit rate, false
alarm rate, sensitivity, or response tendency (criterion). Whereas breaks have often had a
positive effect on performance in previous studies (Arrabito et al. 2015; Balci and
Aghazadeh, 2003; Colquhoun, 1959; Kopardekar and Mital, 1994; Steinborn and Huestegge,
2016), breaks are mainly thought to offer rest, recuperation, and prevention of fatigue
(Tucker, 2003). Considering that participants who performed 60 min of continuous screening
did not show a decrease in performance, there was no room for recuperation during breaks.
We found a main effect of breaks on processing times for target-present trials, but not for
target-absent trials. However, the effect was already present within the first 20 min and did
not increase thereafter, indicating that it was not the result of the breaks themselves. Because
the effect was not highly significant, it could also be coincidental. But if this effect of the
break condition truly exists, it must be due to the instruction that there will or will not be
breaks. Maybe knowing that there will not be breaks induced a bit of stress, and the
associated arousal, in turn, led to faster processing times.

This is related to the effects we found in terms of well-being or stress. The screeners in
the condition without breaks reported more distress in the SSSQ. Hence, whereas screeners
were able to maintain detection performance over 60 min without breaks, this led to increased
distress. In the long term, increased distress could have an affect on performance. It has,
however, to be noted that there was considerable variance between screeners in the condition
without breaks. Whereas the longer screening without breaks caused distress in some

participants, it did not in others.
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4.5. Limitations and future research

Whereas our study has shown that screeners can maintain detection performance over 60
min without breaks, it is still too early to derive implications for practice.

Our results show that 60 min of continuous screening caused distress for some screeners.
Considering that participants only did 60 min of screening twice with 3 to 5 weeks in
between, it is unclear how prolonged screening would affect performance and distress if
repeated multiple times a day and over months. One the one hand, distress levels could
decrease with increasing practice, or could also induce more distress with time. This could in
turn have a negative impact on well-being and on performance in the long term. Therefore,
field studies are needed to determine how longer screening durations will affect performance
and well-being of individuals in the long term. Such field studies would also tackle other
limitations of our study. In our lab study, poor performance did not have any consequences
whereas a miss can be disastrous in practice. This might make prolonged screening time more
stressful in practice. Further, target prevalence is lower in practice and wherefore sustaining
attention and performance could be more difficult.

Our results suggest that people react very differently to prolonged working sessions.
Future studies should try to identify the reasons behind such interindividual differences and
test whether flexible break schedules could provide a solution, although that might often be
difficult in practice. Because interindividual differences seem likely, it is advisable to test
different populations of security officers (at different airports and in different countries).

There is also a potential issue of researching different work settings with professional
screeners in general. It would be reasonable for them to conclude that the results of such

research is likely to affect their work in the long run and might let them act biased.

5. Conclusions
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Our study shows that for X-ray image inspection of cabin baggage d, with a slope of
approx. 0.6 is a more valid measure of detection performance than d'. This performance
measure is independent of the target prevalence effect that we have found to evolve at the
beginning of the task. Further, it seems that the target prevalence effect is a shift in criterion
rather than a loss in sensitivity. The examination of d' reveals that performance does not
decrease in continuous X-ray inspection over the course of 60 min. Moreover, breaks do not
influence performance. However, breaks do seem to have an effect on well-being, in the
sense that screeners without breaks report more distress. It is also evident that people working
without breaks evaluate the task quite differently with regard to the amount of distress caused
by the task. These results provide the necessary evidence that longer screening durations are
possible, and they allow implications for trials in the field. We conclude that trials of longer
screening durations in the field should include a careful monitoring of screeners’ performance
and well-being. If field trials succeed, relaxing the 20-min rule would provide additional
flexibility that could be helpful when implementing new technologies such as remote
screening.. Further research will reveal clearer recommendations regarding optimal break

schedules.
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ARTICLE INFO ABSTRACT

Bomb attacks on civil aviation make detecting improvised explosive devices and explosive material in passenger
baggage a major concern. In the last few years, explosive detection systems for cabin baggage screening (EDSCB)
have become available. Although used by a number of airports, most countries have not yet implemented these
systems on a wide scale. We investigated the benefits of EDSCB with two different levels of automation currently
being discussed by regulators and airport operators: automation as a diagnostic aid with an on-screen alarm
resolution by the airport security officer (screener) or EDSCB with an automated decision by the machine. The
two experiments reported here tested and compared both scenarios and a condition without automation as
baseline. Participants were screeners at two international airports who differed in both years of work experience
and familiarity with automation aids. Results showed that experienced screeners were good at detecting im-
provised explosive devices even without EDSCB. EDSCB increased only their detection of bare explosives. In
contrast, screeners with less experience (tenure < 1 year) benefitted substantially from EDSCB in detecting both
improvised explosive devices and bare explosives. A comparison of all three conditions showed that automated
decision provided better human-machine detection performance than on-screen alarm resolution and no au-
tomation. This came at the cost of slightly higher false alarm rates on the human-machine system level, which
would still be acceptable from an operational point of view. Results indicate that a wide-scale implementation of
EDSCB would increase the detection of explosives in passenger bags and automated decision instead of auto-
mation as diagnostic aid with on screen alarm resolution should be considered.
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1. Introduction systems (Neffenger, 2015), they have not been implemented widely in

European countries and on other continents (Pochet, 2016). We in-

Secure air transportation is vital for both the economy and society
(Abadie and Gardeazabal, 2008). For several decades now, airplanes
have been interesting targets for terrorists (Baum, 2016). Looking at the
history of attacks against airplanes (both successful and near misses),
one of the biggest concerns is bombs - that is, improvised explosive
devices (IEDs; Novakoff, 1993; Singh and Singh, 2003; Baum, 2016).
The Global Terrorism Database (2017) lists 893 attacks on airports or
aircrafts with explosives, 247 of which occurred after 2001. Quite re-
cently, on the 29th of July 2017, a terrorist plot was prevented at
Sydney airport when an IED was found concealed inside a bag
(Westbrook and Barrett, 2017). In response to heightened risk, espe-
cially since 9/11, airports and governments have increased their in-
vestments in aviation security (Gillen and Morrison, 2015). In the last
few years, explosive detection systems for cabin baggage screening
(EDSCB) have also become available (Sterchi and Schwaninger, 2015).
Whereas a few countries such as the United States are using these

vestigated the benefits of EDSCB with two different levels of automa-
tion that are both being discussed currently by regulators and airport
operators. We were able to recruit airport security officers (screeners)
from two different European airports to work on two experiments using
a simulated cabin baggage screening task. In this introduction, we first
summarize previous research on visual inspection and conventional
cabin baggage screening before going on to discuss automation and
EDSCB.

1.1. Visual inspection and conventional cabin baggage screening

To prevent terrorist attacks and other acts of unlawful interference,
passengers and their belongings have to be screened before they are
allowed to enter the secure areas of airports and board airplanes
(Thomas, 2009). Screeners visually inspect X-ray images of cabin bag-
gage for prohibited items such as guns, knives, and improvised
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explosive devices (IEDs) as well as other items such as self-defence gas
sprays or Tasers (Schwaninger, 2005). This inspection involves visual
search and decision making (Koller et al., 2009; Wales et al., 2009;
Wolfe and Van Wert, 2010). The challenges when performing visual
search in X-ray baggage screening include a low target prevalence, the
variation in target visibility, the search for an unknown target set, and
the possible presence of multiple targets (for recent reviews, see Biggs
and Mitroff, 2014; Mitroff et al., 2015). When deciding whether or not a
bag contains a prohibited item, screeners need to know which items are
prohibited and what they look like as X-ray images (Schwaninger,
2005, 2006). Whereas even novices can recognize certain object shapes
such as guns and knives in X-ray images (Schwaninger et al., 2005),
other prohibited items such as IEDs are difficult to recognize without
training (Schwaninger and Hofer, 2004; Koller et al., 2008, 2009;
Halbherr et al., 2013). An IED is composed of a triggering device, a
power source, a detonator, and explosive that are usually all connected
by wires (Turner, 1994; Wells and Bradley, 2012). Through computer-
based training, screeners can learn to recognize these components, and
they can achieve and maintain a high detection performance for [EDs
(Schwaninger and Hofer, 2004; Koller et al., 2008, 2009; Halbherr
et al., 2013; Schuster et al., 2013). In cabin baggage screening, bare
explosives also pose a threat, because these could be combined with
other IED components after passing an airport security checkpoint.
Detecting bare explosives can be a challenge even for well-trained
screeners, because they often look like a harmless organic mass (Jones,
2003). So far, no study has investigated how well screeners can detect
bare explosives and whether automation and EDSCB can increase hu-
man-machine system performance in response to such threats. Before
discussing automation and EDSCB as a specific application, it is worth
considering important findings and concepts on automation and hu-
man-machine system performance in general.

1.2. Automation and human-machine system performance

Automation refers to functions performed by machines (usually
computers) that assist or replace tasks performed by humans (for re-
views, see Parasuraman and Wickens, 2008; Sheridan, 2011; Vagia
et al., 2016). One form of automation assisting humans is the diagnostic
aid (Wickens and Dixon, 2007). This provides support in the form of
alerts or alarms and influences attention allocation (Cullen et al., 2013).
Examples include collision warning systems for driving and air traffic
control (Lehto et al., 2000; Abe and Richardson, 2006; Liu and Jhuang,
2012; Biondi et al., 2017) or aids assisting radiologists in making di-
agnostic decisions from mammograms (e.g. Vyborny et al., 2000;
Fenton et al., 2007). Other examples are systems that indicate poten-
tially threatening objects in X-ray images of passenger baggage. These
systems have been investigated in laboratory studies with student
participants (Wiegmann et al., 2006; Rice and McCarley, 2011).
Common to this type of automation is that it categorizes events into
target or non-target states (Wickens and Dixon, 2007). Signal detection
theory (Green and Swets, 1966, 1972) provides a useful framework
with which to describe the performance (reliability) of such diagnostic
automation (Wickens and Dixon, 2007; Parasuraman and Wickens,
2008; Rice and McCarley, 2011). In signal detection theory, high per-
formance (reliability) in terms of d' is achieved when targets are de-
tected well (high hit rate) and the false alarm rate is low. The criterion
(or response bias) is a threshold that can be changed while d' remains
constant (Macmillan and Creelman, 2005). The criterion can be
changed by adjusting thresholds for alerts, resulting in a trade-off be-
tween two types of automation errors: misses and false alarms
(Parasuraman, 1987; Parasuraman and Riley, 1997; Wickens and
Colcombe, 2007). Designers often set low thresholds, because the
consequences of automation misses are considered to be more costly
than false alarms (Parasuraman and Wickens, 2008). However, if the
base rate of dangerous events to be detected is low, the result will be
many false alarms and only few hits (Parasuraman and Riley, 1997).
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This can produce a ‘cry wolf’ effect with operators ignoring system
warnings (Breznitz, 1983; Bliss, 2003). Such an effect can drastically
reduce or even eliminate the benefits of automation when it is im-
plemented as a diagnostic aid.

Alongside automation as a diagnostic aid, other levels of automation
are possible. Sheridan and Verplank (1978) proposed a taxonomy with
10 levels of automation ranging from fully manual to fully computer
automated. Parasuraman et al. (2000) proposed a taxonomy with four
processing stages: 1) sensory processing, 2) perception/working
memory, 3) decision making, and 4) response/action. Several other
taxonomies for different levels of automation have been proposed (for a
review, see Vagia et al., 2016). Kaber and Endsley (2003) have pointed
out that specifying the ‘best’ level of automation is not as straightfor-
ward as one might think. Moreover, familiarity with automation can
affect how people interact with it (Parasuraman and Manzey, 2010;
Sauer et al., 2016; Strauch, 2016; Sauer and Chavaillaz, 2017). Indeed,
deciding how best to organize human-machine function allocation and
the level of automation remains a difficult task that can also depend on
the specific application (Sheridan, 2011). Parasuraman et al. (2000)
have suggested that appropriate criteria for selecting the level of au-
tomation for a particular application are human performance, auto-
mation reliability, and the cost associated with outcomes.

1.3. Automation and EDSCB

For X-ray screening of cabin baggage, regulators and airport op-
erators are currently discussing two EDSCB implementation scenarios
differing in their level of automation and human-machine function
allocation: on-screen alarm resolution (OSAR) and automated decision
(Sterchi and Schwaninger, 2015). In the OSAR scenario, automation is
implemented as a diagnostic aid. Screeners visually inspect every piece
of cabin baggage. During this inspection, EDSCB indicates potential
explosive material by either marking an area on the X-ray image of a
passenger bag with a coloured rectangle or highlighting it in a special
colour (Nabiev and Palkina, 2017). Screeners then have to resolve this;
that is, they have to visually inspect the X-ray image and decide whe-
ther the area indicated by the machine is harmless (EDSCB false alarm)
or whether it actually could be explosive material, making it necessary
to subject the baggage to a secondary inspection. This is also conducted
at the airport security checkpoint and involves explosive trace detec-
tion, opening the bag, and manually searching it (Sterchi and
Schwaninger, 2015). EDSCB systems with high hit rates (close to 90%)
have false alarm rates in the range of 15-20% (personal communication
with EDSCB experts, summer 2016). As mentioned above, system re-
liability can be described by d' from signal detection theory (Green and
Swets, 1966, 1972). For example, an EDSCB with a hit rate of 88% and
a false alarm rate of 17% would have a system reliability of d' = 2.1. In
operation, most of the EDSCB alarms are cleared by screeners, leaving
only a small percentage of bags on which EDSCB has raised an alarm
that then requires a secondary inspection. Although OSAR is the sce-
nario currently employed at airports that have already introduced
EDSCB, its effectiveness can be questioned, because screeners might not
be able to distinguish explosive material from benign material (as
pointed out already by Jones, 2003). Moreover, EDSCB false alarm rates
of 15-20% could result in a cry wolf effect leading screeners to po-
tentially ignore system warnings (Breznitz, 1983; Bliss, 2003).
Screeners might therefore be prone to mistakenly clearing bags that
contain explosives. This would drastically reduce the effectiveness of
EDSCB in the OSAR scenario. In other words, the probability of de-
tecting explosives on the human-machine system level equals about
90% (EDSCB) minus the erroneously cleared alarms by screeners. This
could result in a much lower detection rate.

The automated decision scenario uses a higher level of automation
with different human-machine function allocation. Bags on which the
EDSCB raises an alarm are sent automatically to secondary inspection
using manual search and/or explosive trace detection (Sterchi and
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Schwaninger, 2015). Because secondary inspection is time-consuming,
EDSCB false alarm rates of 15-20% are not acceptable in this scenario.
To be operationally feasible, EDSCB thresholds can be adjusted, which
corresponds to moving the criterion in signal detection theory (Green
and Swets, 1966; Macmillan and Creelman, 2005). For example, given a
system reliability of d' = 2.1, like that in the OSAR scenario explained
above, adjusting EDSCB thresholds to achieve a false alarm rate of 4%
would result in an EDSCB hit rate of 63%. It is important to remember
that in the automated decision scenario, screeners visually inspect all X-
ray images on which the EDSCB does not raise an alarm. In the current
example, this equals 96% of all bags (assuming a false alarm rate of the
EDSCB of 4%). The probability of detecting explosives on the hu-
man-machine system level therefore equals 63% (EDSCB hit rate) plus
detections by screeners on the 96% of bags on which the EDSCB has not
raised an alarm. Therefore, in this example, the probability of detecting
explosives on the human-machine system level equals 63% (EDSCB)
plus the detections by screeners.

In summary, for a given EDSCB, the effectiveness of OSAR and the
automated decision scenario depends finally on the screeners' ability to
clear alarms by the EDSCB (in the OSAR scenario) and to detect ex-
plosives missed by the EDSCB (in both scenarios). Which scenario re-
sults in better human-machine system performance is difficult to pre-
dict and well worth investigating.

1.4. Present study

The present study examined the benefits of automated explosive
detection systems for cabin baggage screening (EDSCB) in two realistic
implementation scenarios differing in the level of automation and hu-
man-machine function allocation (EDSCB with OSAR vs automated
decision). It addressed the following three research questions: 1) Does
EDSCB lead to higher human-machine system performance for de-
tecting IEDs and explosives? 2) Does this depend on the level of auto-
mation (OSAR vs automated decision)? 3) Is this dependent on screener
work experience? To address these research questions, two experiments
using a simulated baggage screening were conducted at different
European airports with screeners differing in work experience.

Based on previous research, we derived three hypotheses: 1) EDSCB
should improve human-machine system performance for detecting bare
explosives because these often look like a harmless organic mass (Jones,
2003). 2) We expected better results for the automated decision sce-
nario compared to OSAR, because clearing EDSCB alarms can be diffi-
cult (Jones, 2003) and false alarm rates of 15-20% in the OSAR sce-
nario may result in a cry wolf effect with screeners ignoring system
warnings (Breznitz, 1983; Bliss, 2003). 3) Effects should depend on
screener work experience because previous research has shown that
regular computer-based training, which is mandatory in Europe, results
in large increases in IED detection during the first few years (Halbherr
et al., 2013). Experiment 1 examined the first two hypotheses. The aims
of Experiment 2 were to perform a replication, to address the limita-
tions of Experiment 1, and to test all three hypotheses.

2. Experiment 1
2.1. Method

2.1.1. Participants

The current research complied with the American Psychological
Association Code of Ethics and was approved by the Institutional
Review Board of the University of Applied Sciences and Arts
Northwestern Switzerland. Informed consent was obtained from all
participants. The study was conducted with 61 screeners who had been
qualified, trained, and certified according to the standards set by the
appropriate national authority (civil aviation administration) in com-
pliance with the relevant EU Regulation (Commission Implementing
Regulation [EU]J, 2015/1998). Screeners had been employed for at least

60

Applied Ergonomics 72 (2018) 58-68

two years (M = 7.68, SD = 4.85) and were not familiar with automa-
tion aids for cabin baggage screening. They participated on a voluntary
basis, were recruited by a security service provider at the airport, and
compensated by regular salary. Their average age' was 42.5 years
(SD = 10.52, range 24-60 years), and 57.37% of them were female.

2.1.2. Design

The experiment used a between-subjects design with condition (no
automation as baseline, OSAR, and automated decision) as independent
variable and hit rate (percentage detection of prohibited items) and
false alarm rate of the human-machine system as dependent variables.
The three experimental groups were balanced with regard to their de-
tection performance score in a pre-test (X-ray CAT), age, and work
experience (baseline, n = 20; OSAR, n = 20; automated decision,
n = 21).

2.1.3. Materials

Pre-test: The X-Ray Competency Assessment Test (X-Ray CAT) is a
reliable, valid, and standardized computer-based test used to assess the
X-ray image interpretation competency of screeners (Koller and
Schwaninger, 2006). It has been applied in several previous studies and
is used for the mandatory X-ray screener certification at a number of
European airports (e.g. Koller et al., 2008; Michel et al., 2007; Koller
et al., 2009; Steiner-Koller et al., 2009; Halbherr et al., 2013). To solve
the X-Ray CAT, screeners have to visually scan X-ray images for pro-
hibited items and decide whether a bag can be considered either to be
harmless (OK) or to contain a prohibited object (NOT OK). For a more
detailed description of the X-Ray CAT, see Koller and Schwaninger
(2006).

Main test: We measured human-machine system performance in the
three automation conditions (baseline, OSAR, and automated decision)
with 640 unique X-ray images of real passenger bags. These were se-
lected by two experts (former screeners) from a pool of about 2000 X-
ray images recorded during regular airport security screening opera-
tions. This selection procedure included making sure that no prohibited
items were contained in the X-ray images. Target-present images were
created by the screening experts using previously recorded prohibited
items that were placed into 80 of the 640 X-ray images using a software-
and image-merging algorithm that had been validated in previous
studies (von Bastian et al., 2009; Mendes et al., 2011). This corresponds
to a target prevalence of 12.5%. Five different threat categories were
included in this test: IEDs, explosive materials, guns, gun parts, and
knives (see Fig. 1 for examples).

The category gun parts was included to compare detection perfor-
mance with explosives because the latter are parts of IEDs. Each cate-
gory contained eight different prohibited items. As in the X-Ray CAT
(Koller and Schwaninger, 2006), each item was depicted twice: once
from an easier, canonical viewpoint, and once from a more difficult,
rotated viewpoint.

Fig. 2 illustrates the three automation conditions. In the baseline
condition (Fig. 2a), no automation is available and detecting prohibited
items relies only on the screener. In the OSAR condition, automation is
implemented as a diagnostic aid and red frames highlight areas in the
X-ray image on which the EDSCB has raised an alarm (Fig. 2b). For the
OSAR condition, an EDSCB was emulated by showing a red frame
around 14 of the 16 IEDs and explosives and around 94 of the 560
images of harmless bags. The frames on the images were set manually
by a screening expert and were based on available information and
professional experience with existing EDSCB machines. The emulated
EDSCB had a hit rate of 88% and an alarm rate of 17% (as mentioned in
the introduction, EDSCB systems in service at airports using OSAR have
hit rates close to 90% and false alarm rates of 15-20%).

For the automated decision condition, a set of images of 10 IEDs, 10

1 One X-ray screener did not report her or his age.
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Fig. 1. Examples of the five threat categories.

explosives, and 20 harmless bags was randomly selected from the set of
images with an alarm in the OSAR condition. These images were then
removed (Fig. 2¢) from the test (in order to emulate the implementation
scenario in which bags that trigger an alarm by the EDS are sent directly
to secondary inspection). The emulated EDS had a hit rate of 63% and a
false alarm rate of 4%. This corresponds to the same system reliability
of the EDS in terms of d’' with a more conservative criterion (a re-
quirement of the automated decision scenario, as explained in the in-
troduction).

2.1.4. Procedure

All screeners came to the test facilities to conduct the pre-test (X-
Ray CAT) and completed the main test on a second test date (mean
interval between tests: 53 days, SD = 11). For the tests, eight laptops
were set up in a normally lit room. Screeners sat approximately 60 cm
away from the laptop screen. The X-ray images covered about two-
thirds of the screen. Before starting the test, screeners were given
general instructions on the number of images, the target prevalence,
and the different prohibited item categories. They performed the test
quietly, individually, and under supervision.

Screeners were instructed to inspect each image visually and report
as quickly and accurately as possible whether a bag was harmless (OK)
or not (NOT OK) by clicking on a button on the screen. In the OSAR
condition, screeners were informed that they would be receiving sup-
port from an EDSCB that usually marks IEDs and explosives with a red
frame. They were further instructed that red frames can also occur
when the bag contains no IED or explosive (false alarm). In the auto-
mated decision condition, screeners were informed that this test con-
dition would include support from an automated explosives detection
system. They were told that if an IED or an explosive is detected by the
EDSCB, the bag will be sent automatically to secondary inspection and
will not be shown to the screener. They were further informed that in
some cases, I[EDs and explosives will not be detected by the EDSCB.
After the instructions, all participants practiced on 20 sample images to
familiarize themselves with the images and the task.

Following the European Commission (Commission Implementing
Regulation [EU], 2015/1998) regulation, screeners have to take a break
of at least 10 min after 20 min of continuous visual inspection of X-ray
images. Therefore, the EDSCB test was divided into four equally long
blocks, and screeners were asked to take a 10-min break after com-
pleting each block. Threat bags, threat categories, and harmless bags

(a)

Fig. 2. Illustration of the three automation conditions: (a) baseline condition without automation, (b) OSAR, and (c) automated decision.

(b)
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were distributed equally across the four blocks. The order of blocks was
counter-balanced between conditions to minimize any training or order
effects. Within a block, images appeared in random order. All partici-
pants completed the pre-test (X-Ray CAT) in less than 40 min and the
main test in less than 2 h including breaks.

2.1.5. Analyses

All ANOVAs were conducted with SPSS version 22 and alpha was set
at 0.05 unless otherwise stated. Post hoc comparisons were conducted
with R version 3.22 (R Core Team, 2015) and Holm-Bonferroni cor-
rections were applied (Holm, 1979). Effect sizes of ANOVAs are re-
ported with npz (partial eta-squared); effect sizes of t tests, with Cohen's
d.

ANOVAs were calculated using the hit and false alarm rate on the
human-machine system level as dependent variables. Because hit and
false alarm rates are bound between 0 and 1, normality and homo-
geneity of variances was generally not fully met. Traditionally, ANOVAs
are assumed to be quite robust towards non-normality and homogeneity
(e.g. Glass et al., 1972). However, because reviews question this ro-
bustness (Harwell et al., 1992; Erceg-Hurn and Mirosevich, 2008), all
ANOVAs were also performed on scores that had been arcsine trans-
formed for homogenization of variances and normalization (for more
information on the application of arcsine transformations to proportion
data, see McDonald, 2007). Results on transformed values are reported
only when the transformation affected whether an effect attained sig-
nificance.

2.2. Results

Fig. 3 shows the results of human-machine hit rate by prohibited
item category and automation condition.

First, we conducted a univariate ANOVA with the hit rate of only
the baseline condition. This revealed a significant effect of prohibited
item category, F(4, 76) = 83.03, p < .001, npz = 0.81. Post hoc ana-
lyses revealed a significant effect between all category comparisons for
prohibited items (p < .017) except for the comparison between knives
and explosives (p = .365). Then, we conducted a 3 (prohibited item
category: gun, gun parts, and knives) x 3 (condition: baseline, OSAR,
and automated decision) ANOVA. We found no main effect of auto-
mation, F(2, 58) = 1.05, p = .356, qu = 0.03, and no interaction be-
tween prohibited item category and condition, F(3.45, 100.05) = 0.63,
p = .622, np2 = 0.02. To examine the benefits of EDSCB, we conducted
a 2 (IED and explosives) x 3 (condition: baseline, OSAR, and automated
decision) ANOVA. This revealed main effects for the prohibited item
category, F(1, 58) = 238.89, p < .001, np2 = 0.80, condition, F(2,
58) = 34.74, p < .001, n,?>=0.55, and their interaction, F(2,
58) = 37.06, p < .001, n,”> = 0.56. For IEDs, there was a significant
difference between OSAR and automated decision (p = .041) in favor of
the automated decision condition. For explosives, direct post hoc
comparisons showed a significant difference between the baseline
condition and the automated decision condition (p < .001) as well as

(c)
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Fig. 3. Mean human-machine hit rates by condition (baseline, OSAR, automated decision) and prohibited item categories (guns, gun parts, knives, IEDs, and
explosives). Absolute values of hit rate are not shown due to security restrictions in this project. Error bars are + one standard error.

between OSAR and automated decision (p < .001).

Further analyses were conducted with the false alarm rate of the
human-machine system as a dependent variable. A univariate ANOVA
revealed a significant effect of condition, F(2, 58) = 12.41, p < .001,
r]pz = 0.30. Post hoc pairwise comparisons using Holm-Bonferroni
corrections revealed a significant difference between the baseline con-
dition and automated decision (p = .008) as well as between OSAR and
automated decision (p < .001). The false alarm rate in the automated
decision condition was significantly higher than the false alarm rates in
the two other conditions (see Fig. 4).

We further analysed whether automated decision affected hu-
man-machine system performance only through its direct contribution
(i.e. producing hits and false alarms) or whether it also affected human
performance. Therefore, the detection scores for images of IEDs and
explosives shown to screeners in the automated decision condition (i.e.
not sorted out by the automation aid) were compared with the detec-
tion scores for the same images from the baseline condition. Images that
triggered the EDS alarm in the automated decision condition were ex-
cluded from this analysis for both conditions. Independent t tests were
calculated for the hit rate for IEDs and for the hit rate for explosives.
There were no significant effects for either IEDs, t(39) = 0.40, p = .689,
or explosives, t(39) = 0.34, p = .732. Another t test was conducted

.06

04 - Condition

.02 1 . Automated decision

False alarm rate

.00 1

Fig. 4. Mean human-machine false alarm rates by condition (baseline, OSAR,
and automated decision). Error bars are + one standard error.
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with false alarm rate as the dependent variable. This revealed no dif-
ference between conditions, #(39) = 0.64, p = .525. In conclusion, it
can be assumed that automated decision did not influence human
performance.

2.3. Discussion

The results for the baseline condition replicated those found in
previous studies: guns were detected very well, IEDs only slightly less
well, and knives came third (Koller et al., 2007, 2009; Halbherr et al.,
2013). Gun parts were more difficult to detect than whole guns, pre-
sumably because configural representations of whole gun shapes cannot
be accessed and only component representations of gun parts are
available for recognition (Schwaninger, 2004). Explosives were difficult
to detect, which could be due to the fact that they lack the diagnostic
features of an IED and because explosive material often looks like a
harmless organic mass (Jones, 2003). Automation had no impact on the
detection of guns, gun parts, and knives. This is not surprising, because
automation highlighted only potential explosives.

The screeners in Experiment 1 did not benefit from automation
when OSAR was used with a realistically high false alarm rate of 17%.
This is consistent with results found in earlier studies using different
tasks indicating that automation with high false alarms can induce a cry
wolf effect with operators ignoring system warnings (Bliss et al., 1995;
Parasuraman et al., 2000). Results revealed a highly significant differ-
ence between the baseline condition and the automated decision con-
dition — but only for explosives. Because the screeners' performance on
detecting IEDs was already very high without the automated system
(baseline), not much room was left for improvement. In Experiment 1,
automated decision provided benefits only for the detection of ex-
plosives. This came at the cost of a higher false alarm rate, because all
EDS alarms that are false alarms automatically add to the false alarms
of screeners.

3. Experiment 2

The aims of Experiment 2 were to replicate Experiment 1 with
screeners from a different airport, to address the limitations of
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Fig. 5. Mean human-machine hit rates by condition (baseline, OSAR, automated decision), threat categories (gun, gun parts, and knives), and variation of work

experience (tenure < 1 year and tenure > 1.5 years). Absolute hit rate values are not shown due to security restrictions in this project. Error bars are

standard error.

Experiment 1, and to test all three hypotheses.

The following limitations of Experiment 1 were addressed in
Experiment 2: as described in the introduction, familiarity with auto-
mation can affect how people interact with it (Parasuraman and
Manzey, 2010; Sauer et al., 2016; Strauch, 2016). Therefore, Experi-
ment 2 was conducted at an international airport with screeners who
were familiar with automation (this airport used EDSCB as diagnostic
aid and screeners were familiar with OSAR). Moreover, screeners with
less work experience and training might benefit when it comes to de-
tecting IEDs and explosives in the OSAR condition due to their lower
baseline performance (Halbherr et al., 2013). Therefore, Experiment 2
was conducted with two screener groups: experienced screeners (te-
nure > 1.5 years) and less experienced screeners (tenure < 1 year).

Experiment 2 addressed all three hypotheses: 1) As in Experiment 1,
EDSCB should improve human-machine system performance for de-
tecting bare explosives because these often look like a harmless organic
mass (Jones, 2003). 2) We again expected better results for the auto-
mated decision scenario compared to OSAR, because clearing EDSCB
alarms can be difficult (Jones, 2003) and because false alarm rates of
15-20% in the OSAR scenario may result in a cry wolf effect with
screeners ignoring system warnings (Breznitz, 1983; Bliss, 2003). 3)
Extending Experiment 1, we hypothesized for Experiment 2 that effects
should depend on screener work experience because previous research
has shown that regular computer-based training, which is mandatory in
Europe, results in large increases of IED detection in the first few years
(Halbherr et al., 2013).

3.1. Method

3.1.1. Participants

Experiment 2 was conducted with 77 screeners from another in-
ternational European airport who were familiar with automation aids.
As in Experiment 1, they had been qualified, trained, and certified ac-
cording to the standards set by the appropriate national authority in
compliance with the relevant EU Regulation (Commission
Implementing Regulation [EU], 2015/1998). The screeners partici-
pated on a voluntary basis, were recruited by a security service provider
at the airport, and compensated by regular salary. Informed consent
was obtained from all participants. Group 1 (44 screeners, 14 females)
was as well-trained and experienced as the screeners in Experiment 1
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+

one

(years of work experience: M = 8.45 years, SD = 5.66). Their average
age was 36.55 years (SD = 8.46, range 21-53 years). Group 2 (33
screeners, 19 females) had less work experience and training (less than
one year). Their average age was 30.81 years (SD = 10.93, range
18-532 years).

3.1.2. Design

The experiment used a mixed design with condition (baseline,
OSAR, automated decision) and years of work experience (tenure >
1.5 years or tenure < 1 year) as between-subjects independent vari-
ables and threat categories as within-subjects independent variables.
The dependent variables were the hit rate (percentage detection of
prohibited items) and false alarm rate of the human-machine system.
As in Experiment 1, the three experimental groups were balanced ac-
cording to their detection performance score in the pre-test (X-ray CAT)
and the variables age and work experience within both tenure groups
(> 1.5yearsor < 1 year; baseline, tenure < 1:n = 10, tenure > 1.5:
n = 14; OSAR, tenure < 1: n = 11, tenure > 1.5: n = 15; automated
decision, tenure < 1: n = 12, tenure > 1.5: n = 15).

3.1.3. Materials, procedure, and statistics

The same tests and procedure were used as in Experiment 1. All
participants completed the pre-test in less than 40 min and the main test
in less than 2h including breaks. The mean interval between the pre-
test and the main test was 82.86 days (SD = 6.65). The same statistics
were used as in Experiment 1.

3.2. Results

The same analyses were conducted as in Experiment 1 but with
tenure as an additional between-subject factor. Fig. 5 shows hu-
man-machine system hit rates for both tenure groups by category and
automation condition.

A two-way ANOVA on hit rates for the baseline condition with
prohibited item category (guns, gun parts, knives, [EDs, and explosives)
as within-subjects factor and work experience (tenure > 1.5 years vs.
tenure < 1 year) as between-subjects factor revealed significant main

2 Two screeners did not report their age.
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Fig. 6. Mean human—-machine false alarm rates by condition (baseline, OSAR, automated decision) and work experience (tenure < 1 year and tenure > 1.5 years).
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effects of the prohibited items category, F(4, 88) = 63.38, p < .001,
qu =0.74, and work experience, F(1, 22)=5.233, p =.032,
npz = 0.19, as well as their interaction, F(4, 88) = 4.927, p < .001,
np> = 0.12. Post hoc pairwise comparisons were calculated separately
for each screener group. For tenure > 1.5 years, there were significant
comparisons between all threat categories (p < .014) except for those
between gun parts and [EDs (p = .943) and between knives and ex-
plosives (p = .277). For <1 year, all comparisons were significant
(p < .038) except for those between knives and I[EDs (p = .699), knives
and explosives (p = .699), and IEDs and explosives (p = .229).

To rule out an effect of condition on the categories gun, gun parts,
and knives, we calculated a 3 (prohibited item category: gun, gun parts,
and knives) x 3 (condition: baseline, OSAR, and automated decision) x
2 (work experience: tenure > 1.5 years vs tenure < 1 year) ANOVA.
This revealed no significant effect for condition, F(2, 71) = 0.50,
p = .610, but a significant effect for work experience, F(1, 71) = 8.07,
p = .006, 1,”> = 0.10. This indicated that experienced screeners had a
better detection performance on these three categories. Surprisingly,
the interaction between category and condition was also significant, F
(3.88, 137.66) = 2.51, p = .047, n,> = 0.07. However, when we used
the arcsine transformed scores, this effect no longer attained sig-
nificance, F(3.79, 134.57) = 2.37, p = .059.

Furthermore, a 2 (categories: IEDs and explosives) x 3 (condition:
baseline, OSAR, and automated decision) x 2 (work experience: te-
nure > 1.5 years vs tenure < 1 year) ANOVA for the hit rate revealed
a significant effect of category, F(1, 71) =109.50, p < .001,
ny> = 0.61, condition, F(2, 71) = 39.28, p < .001, n,> = 0.53, and
work experience, F(1, 71) = 5.81, p = .019, npz = 0.08, together with
significant interactions between category and condition, F(2,
71) = 15.66, p < .001, npz = 0.31, and between category and work

experience, F(1, 71) = 9.55, p = .003, npz =0.12, as well as a sig-
nificant three-way interaction, F(2, 71) = 4.58, p = .014, np2 =0.11.
This shows that the effect of automation did not just depend on pro-
hibited item category, but that this dependency also related to work
experience.

In our next step, we calculated post hoc pairwise comparisons be-
tween the conditions within each screener group for IEDs and ex-
plosives separately. For IEDs, the less experienced screeners revealed a
significant difference between the baseline condition and OSAR
(p = .039) as well as between the baseline and automated decision
(p < .001). In contrast, no comparison on the detection of IEDs was
significant for experienced screeners. For explosives, there was a sig-
nificant effect for the less experienced screeners between the baseline
condition and automated decision (p < .001) as well as between OSAR
and automated decision (p < .001). The same effects were found to be
significant (p < .001) for explosives in experienced screeners.

Further analyses were conducted with false alarm rate as the de-
pendent variable (see Fig. 6). A 3 (condition: baseline, OSAR, and au-
tomated decision) x 2 (work experience: tenure > 1.5 years vs te-
nure < 1 year) ANOVA revealed a significant effect for condition, F(2,
71) = 4.043, p = .022, npz = 0.10, but not for either work experience,
F(1, 71) = 2.19, p = .143, or the interaction between work experience
and condition, F(2, 71) = 0.268, p = .76. Moreover, post hoc pairwise
comparisons within each screener group showed no significant differ-
ence between any two automation conditions.

Effect of OSAR. As reported above, the appearance of frames in-
creased the hit rate for IEDs in less experienced screeners. Although
there was no statistically significant increase in the false alarm rate
between the baseline and OSAR condition, this does not mean per se
that OSAR does not affect the false alarm rate in less experienced

Tenure < 1 year Tenure > 1.5 years

Tenure < 1 year Tenure > 1.5 years
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OSAR Baseline OSAR

Condition

T
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OSAR Baseline  OSAR
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T
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Fig. 7. (a) Mean response bias (c) of screeners by condition (baseline, OSAR, automated decision) and work experience (tenure < 1 year and tenure > 1.5 years).
(b) Mean sensitivity measure d’ of screeners by condition (baseline, OSAR, automated decision) and work experience (tenure < 1 year and tenure > 1.5 years).

Error bars are + one standard error.
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screeners (see Fig. 6). Therefore, it is worth investigating whether there
was a change in the response bias of the screeners (tendency to respond
with NOT OK to images with frames) that can explain the increased hit
rate for IEDs. In a next step, we compared the response bias ¢ and the
associated sensitivity measure d' (derived from signal detection theory
using log-linear correction; Macmillan and Creelman, 2005) for IEDs
between the baseline and OSAR condition in the less experienced
screeners. This revealed an increase in both response bias, t
(18.33) =2.68, p=.015, d=1.18, and sensitivity d, ¢t
(17.89) = —2.49, p = .023, d = 1.07. Therefore, the results imply that
OSAR leads to a higher sensitivity for detecting IEDs but is also re-
sponsible for a shift in response bias in less experienced screeners (see
Fig. 7).

As in Experiment 1, we also tested whether human performance was
affected by the implementation of automated decision by comparing
only the images analysed by participants in both the baseline and au-
tomated decision condition. For the dependent variables hit rate for
IEDs and hit rate for explosives, we calculated independent ¢ tests se-
parately for both experienced and less experienced screeners.
Comparable to Experiment 1, automated explosives detection did not
affect the detection of IEDs and explosives (p > .182). The same
comparisons were made for false alarm rates, revealing no significant
effects for either tenure group (tenure < 1 year: t[20] = 0.27,
p = .789; tenure > 1.5 years: t[27] = 0.15, p = .880).

3.3. Discussion

In the baseline condition, the same results were found for well-
trained and experienced screeners as in Experiment 1. Experiment 2
replicated the results from Experiment 1 while additionally revealing
that screeners with less experience and training showed a lower de-
tection of prohibited items than experienced screeners. This is con-
sistent with previous research on the visual inspection of X-ray images
without automation aids (Schwaninger and Hofer, 2004; Koller et al.
2008, 2009; Halbherr et al., 2013; Schuster et al., 2013). In the OSAR
condition, results were as follows: as in Experiment 1, automation as a
diagnostic aid (OSAR) did not increase detection performance for the
experienced screeners in Experiment 2, despite their previous famil-
iarity with such aids. The less experienced screeners detected more IEDs
in the condition with OSAR, which was partly due to an increase in
sensitivity and partly to a shift in response bias. The detection of ex-
plosives did not improve through OSAR. The use of automated decision
resulted in the highest detection of explosives in both experienced and
less experienced screeners. Less experienced screeners also detected the
most [EDs in this condition, whereas it did not lead to any significant
increase in experienced screeners. This was probably due to their al-
ready high level of performance as shown in the baseline condition.
Regarding efficiency, results were consistent with Experiment 1; that is,
automated decision resulted in a higher false alarm rate of the hu-
man-machine system, because screeners could not clear EDSCB alarms
in this condition.

4. General discussion

This study examined the use of automation for the airport security
screening of cabin baggage by testing two levels of automation that are
currently being discussed by regulators and airport operators: on-screen
alarm resolution (OSAR) and automated decision (Sterchi and
Schwaninger, 2015). In the OSAR scenario, automated explosive de-
tection systems for cabin baggage screening (EDSCB) assist airport se-
curity officers (screeners) by highlighting areas that could be explosive
in X-ray images. This type of automation influences attention allocation
and is comparable to diagnostic aiding used in other domains (Wickens
and Dixon, 2007; Cullen et al., 2013). The automated decision scenario
uses a higher level of automation and different human function allo-
cation. Bags on which the EDSCB raises an alarm are sent automatically
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to secondary inspection, which involves manual search and/or ex-
plosive trace detection (Sterchi and Schwaninger, 2015). A simulated
baggage screening task was used in two experiments with screeners
working at two European airports who varied in their work experience.
As expected, human-machine system performance varied between the
two scenarios. In the following, we discuss both implementation sce-
narios in terms of their human-machine system performance.

4.1. Automation as diagnostic aid (OSAR)

Previous research has shown that fully functional improvised ex-
plosive devices (IEDs) can be detected very well by experienced and
trained screeners even without automation (Schwaninger and Hofer,
2004; Koller et al., 2008, 2009; Halbherr et al., 2013). However, de-
tecting bare explosives proves to be a challenge even for experienced
screeners, because they often look like a harmless organic mass (Jones,
2003). Indeed, with automation as a diagnostic aid (OSAR), hu-
man-machine hit rates for bare explosives were similar to the baseline
condition without automation. This is remarkable when it is considered
that for OSAR, the EDSCB has a hit rate of 88% for explosives. In other
words, using automation as a diagnostic aid, which means that
screeners have to resolve EDSCB alarms, drastically reduces or even
eliminates the benefits of EDSCB for detecting bare explosives.

However, the OSAR scenario is beneficial for the detection of IEDs
but only for the less experienced screeners. We argue that the auto-
mation system with OSAR assists in the search component of X-ray
image inspection by guiding attention (Cullen et al., 2013) to the re-
levant area — the first processing stage of sensory processing in the
taxonomy proposed by Parasuraman et al. (2000). OSAR can further
assist by providing relevant information and therefore support the de-
cision component (i.e. an X-ray image that triggers an alarm is more
likely to contain an IED or explosive). As explained, the main difference
between IEDs and bare explosives is that screeners can learn to re-
cognize IED components (triggering device, power source, detonator,
and cables connecting these components to an explosive) in an X-ray
image (Turner, 1994). In the presence of these components, less ex-
perienced screeners are able to profit from the attentional guidance
provided by OSAR and increase their hit rate. Our further investigation
of the increased hit rate for [EDs revealed an increase in sensitivity and
simultaneously a decrease in response bias. This suggests that the au-
tomation system affects not only the visual search component but also
the decision component in the less experienced screeners' inspection.

But, why did experienced screeners not profit from attentional
guidance through OSAR? First, experienced screeners already achieved
high hit rates for IEDs in the baseline condition without automation and
this thereby does not leave much room for improvement through OSAR.
In addition, experienced screeners may also have judged their own
ability to detect prohibited items to be superior to the automation
support — a reason for noncompliance also reported in other domains
(e.g. Lee and Moray, 1992, 1994). However, as even experienced
screeners could not profit from OSAR in regard to explosives, future
research should explore whether specific training and familiarity with
automation aids (Sauer et al., 2016) such as OSAR might provide
screeners with a mental model of its capabilities. Such mental models
could be crucial for an effective use of the automation aid (Strauch,
2016). Moreover, the low target prevalence in our study and, therefore,
the low base rate led to many false alarms (Parasuraman and Riley,
1997). This probably led to a ‘cry wolf effect with experienced
screeners, meaning that they might simply have ignored the system
warnings (Breznitz, 1983; Bliss, 2003). This problem should be even
more pronounced in practice where real IEDs and explosives almost
never occur and almost all EDSCB alarms are false.

4.2. Automation as automated decision

We expected better results for the automated decision scenario
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compared to OSAR, because clearing EDS alarms can be difficult (Jones,
2003) and the EDSCB false alarm rate of 17% in the OSAR scenario
could result in a cry wolf effect with screeners ignoring system warn-
ings (Breznitz, 1983; Bliss, 2003). Indeed, in both experiments, we
found that screeners did not achieve high hit rates for bare explosives.
However, EDSCB with automated decision was able to compensate for
this, leading to better human-machine hit rates in both airports and
both tenure groups. This came at the expense of higher false alarm rates
(an increase by ca. 4 percentage points) — a rate that is still oper-
ationally feasible.

Because there was no direct interaction between the automation
system and the screener, it is not surprising that the automated decision
did not affect screener performance. Hence, the observed increase in
detection performance was determined by the amount of explosives
missed by screeners but detected by the EDSCB. This also explains why
the detection of IEDs improved significantly only in less experienced
screeners. As shown in the baseline condition, experienced screeners
already detected IEDs well, and this left little room for improvement
through EDSCB. As expected, automated decision showed a higher false
alarm rate. Assuming that screener performance remains unaffected by
the implementation of an automated decision when applying different
hit and false alarm rates to the ones tested in this study, system hit and
false alarm rates can be manipulated directly by the choice of the
EDSCB machine and the machine settings (criterion of the machine) for
a given screener performance. It is important to remember that with the
EDSCB threshold settings used in our experiments, humans (screeners)
still have an important role. They visually inspect all X-ray images on
which the EDSCB does not raise an alarm. This would be 96% of all X-
ray images in an operational environment (as the EDSCB alarms only on
4% of all bags).

4.3. Practical implications, limitations, and future research

Replication of psychological experiments is an important part of the
scientific process — particularly in psychology (Rovenpor and Gonzales,
2015; Baker, 2016). This is why we regard the replication aspect of
Experiment 2 as a specific strength. However, in addition to the re-
plication, the effects in Experiment 2 also depend on screener work
experience, as to be expected from previous research showing that
regular computer-based training results in large increases of IED de-
tection in the first few years (Halbherr et al., 2013).

Like most previous studies on visual inspection and automation, this
study also uses laboratory experiments that simulate aspects of tasks
that human operators conduct in the real world. Therefore, it is im-
portant to consider both the limitations of such simulations and their
practical implications when discussing the similarities and differences
between the baggage screening task used in this study and X-ray
screening at airport security checkpoints. One difference is that airport
security checkpoints are often noisy and stressful environments (Michel
et al., 2014; Baeriswyl et al., 2016). Research in other domains (e.g.
Sauer et al., 2013) has found that operators prefer higher levels of
automation under noise than in quiet conditions. If this also proves to
be the case for cabin baggage screening, it would generate further
evidence in favor of automated decision instead of diagnostic automa-
tion (OSARP). Another difference is target prevalence; that is, the base
rate of target-present events (Wolfe et al., 2007). In our study, one out
of eight images contained a threat item and one out of 20 images either
an IED or explosive. In practice, such threats are much less frequent.
Assuming that airports conduct covert tests (Schwaninger, 2009) and
use threat image projection, a technology that projects X-ray images
containing threats during the routine X-ray screening operation (Hofer
and Schwaninger, 2005), target prevalence would be about 2%. With
regard to our findings, two expected effects of lower target prevalence
need to be discussed. The first effect is that lower target prevalence
probably leads to a shift in decision bias and therefore lower hit and
false alarm rates in screeners (Wolfe et al., 2007, 2013). If detection of
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IEDs by screeners is lower in practice, this will leave more room for
improvement through EDSCB. The second and much more important
effect of lower target prevalence is a decrease in the positive predictive
value (Meyer et al., 2014) of the EDSCB with OSAR. As a result, in
practice, EDSCB alarms are very often false alarms. This accentuates the
problem of the cry wolf effect and makes the successful implementation
of OSAR more challenging. Another limitation of this study is the fact
that it used single view imaging. This was because the participating
screeners from the two European airports only had experience with
single view X-ray machines. It would be interesting for a follow-up
study to explore whether results would be different when using multi-
view X-ray imaging.

Future research could also explore whether specific training and
familiarity with the automation aid (Sauer et al., 2016) might provide
screeners with a mental model of its capabilities. Such mental models
could be important for an effective use of an automation aid (Strauch,
2016). These mental models could also be supported by artificially in-
creasing the presence of IEDs and explosives in operation that interact
with EDSCB in a realistic way by carrying out covert tests
(Schwaninger, 2009) and using threat image projection (Hofer and
Schwaninger, 2005) more frequently. Future studies should also use
real EDSCB false alarms from an operational environment because
screeners might learn to correctly resolve certain types of false alarms
(e.g. those caused by certain types of harmless items).

Comparing automation as a diagnostic aid and a higher level of
automation with automated decision could also be important in other
areas such as diagnostic radiology in medicine. For example, automa-
tion as a diagnostic aid is also used for early detection of breast cancers
from mammograms (e.g. Vyborny et al., 2000; Astley, 2004; Giger,
2004; Fenton et al., 2007). This task shares features with X-ray baggage
screening that are relevant for selecting the appropriate level of auto-
mation such as imperfect automation performance, the prominence of
false alarms due to a low target prevalence, and the potentially severe
consequences associated with misses (Sampat et al., 2005; Nishikawa,
2007). Future research in different fields might provide a more detailed
understanding of the optimal degree of automation depending on
human and machine performance in different stages of information
processing.

4.4. Conclusion

We investigated the benefits of automation for airport security
screening of cabin baggage using two levels of automation that are
currently being discussed by regulators and airport operators. Our three
research questions can be answered as follows: We found that EDSCB
improves human-machine system performance for detecting bare ex-
plosives. When comparing the two levels of automation, hu-
man-machine system performance using automated decision proved to
be superior to automation as a diagnostic aid. EDSCB with automated
decision has the potential to greatly increase the detection of ex-
plosives, but at the expense of some efficiency — depending on the
criterion setting of the EDS algorithms. EDSCB as a diagnostic aid is
false-alarm prone and results in a cry wolf effect with experienced
screeners ignoring the system warnings; it is only beneficial for
screeners with limited experience. Our results indicate that the wide-
scale implementation of EDSCB can be recommended because it can
greatly improve the detection of explosives in cabin baggage. The ad-
vantage of automated decision over automation as a diagnostic aid
should be investigated further by also carrying out operational trials at
airport security checkpoints.
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Abstract—Airport security screening is vital for secure air
transportation. Screening of cabin baggage heavily relies on
human operators reviewing X-ray images. Explosive detection
systems (EDS) developed for cabin baggage screening can be a
very valuable addition security-wise. Depending on the EDS
machine and settings, false alarm rates increase, which could
reduce throughput. A discrete event simulation was used to
investigate how different machine settings of EDS, different
groups of X-ray screeners, and different durations of alarm
resolution with explosives trace detection (ETD) influence
throughput of a specific cabin baggage screening process. For the
modelling of screening behavior in the context of EDS and for the
estimation of model parameters, data was borrowed from a
human-machine interaction experiment and a work analysis. In a
second step, certain adaptations were tested for their potential to
reduce the impact of EDS on throughput. The results imply that
moderate increases in the false alarm rate by EDS can be
buffered by employing more experienced and trained X-ray
screeners. Larger increases of the false alarm rate require a fast
alarm resolution and additional resources for the manual search
task.

Keywords—aviation security; explosive detection systems
(EDS); human factors; discrete event simulation; throughput

I. INTRODUCTION

A secure air transportation system is essential for society
and economy. Repeated terror attacks [1] have led to increased
aviation security measures. All passengers and their belongings
are screened at an airport security checkpoint (ASC) to ensure
that they are not carrying any prohibited items (guns, knives,
improvised explosives (IEDs), and other threat items). At a
typical ASC passengers first have to divest themselves of their
luggage and other items like pocket content, jackets, and
headwear. These are then scanned by an X-ray machine and an
airport security officer (ASO) searches the X-ray images for
prohibited items. If a suspicious item is detected, the ASO
reviewing the X-ray images (X-ray screener) declares the image
as "not OK" (which is also referred to as an “alarm”) and the
corresponding bag or item is redirected for further inspection
(secondary search). This is referred to as "alarm resolution" and
typically includes a manual search of the bag and/or explosives
trace detection (ETD), which consists of taking a swab at
several locations of the bag and then having a machine analyze

that swab for traces of explosive residue [2], [3]. If the
suspicious item turns out to actually be a prohibited item, the X-
ray screener's alarm (i.e. declaring the item as "not OK") is
called a "hit". If the suspicious item turns out to be harmless,
the X-ray screener’s alarm is called a "false alarm". As
described, both technology and humans are involved in the
process. How well the whole system performs therefore
depends on human factors, machine attributes, and the process
defining their interaction [4]-[7].

In recent years, the detection of explosives has been
increasingly in the focus of security in civil aviation [3].
Manufacturers of detection equipment have recognized the
increasing threat by explosives and the difficulty to detect them
without additional technological assistance [8]. Singh and
Singh [9] or Wells and Bradley [3] provide a good overview of
different technologies developed for the detection of explosives.
As Sing and Singh [9] point out, X-ray technology is the most
common method for luggage inspection at airports. In recent
years, X-ray based EDS machines have been made available for
cabin baggage screening. Such machines can use dual energy
X-ray imaging to detect explosives via the estimation of the
effective atomic number and material density [8], [9].

The introduction of EDS into cabin baggage screening is
certainly an advantage security wise. But how does EDS affect
throughput, i.e. the amount of items that can be screened within
a certain time? Butler and Poole [2] argued that EDS can reduce
throughput, but since then EDS machines have become faster
and more reliable. It would therefore be interesting to examine
effects of EDS on throughput taking into account up-to-date
information on technology, humans and processes. In this study
this was explored for one specific process using discrete event
simulation. In addition, two measures to cope with potential
negative effects on throughput were tested for their
effectiveness.

II. PROCESS DESCRIPTION AND ASSUMPTIONS

System performance of an ASC depends on technology,
humans, and the process defining their interaction. The
difference between a conventional X-ray machine and an X-ray
machine with EDS is that the latter analyzes the X-ray image
information for potential explosives before the X-ray image is
displayed to the X-ray screener. The analysis by the EDS can



be quite fast and does not necessarily delay the reviewing of the
X-ray images by the X-ray screener. Once the EDS generates
an alarm, there are at least two different approaches to resolve
these alarms. One is on-screen alarm resolution: When the ASO
reviews the X-ray image of the bag that triggered the alarm by
the EDS, a frame is displayed around the area of the X-ray
image which might contain explosives. The ASO then decides
whether the bag needs further alarm resolution (e.g. using ETD
and/or manual search). Another approach is to increase the
level of automation (for an overview of levels of automation
see [10]) and automatically redirect items that caused an alarm
for alarm resolution by ETD and/or manual search. In this study
we restricted ourselves to this second approach, which will be
referred to as "automatic decision scenario". Further, the alarm
resolution process has to be specified. It seems to be more
adequate to resolve alarms by the EDS using ETD instead of
manual search, as ETD is specialized for detecting explosives.
But ETD is not suited for detecting other prohibited items. If an
X-ray image triggers an alarm by the EDS, the X-ray screener
would still need to review this image for prohibited items other
than IEDs and explosives and pass it on for manual search, if
required. If for example there was a knife in a bag that set off
the alarm by the EDS and this alarm was only resolved with
ETD, the knife would pass undetected. For this study the
process is specified as illustrated in Fig. 1.

A. Relevant Variables of Machine and Human

With regard to ASC throughput the most important
attributes of an EDS machine seem to be its ability to detect
explosives, the amount of false alarms it generates, and how
long it needs to process a bag. Comparable to an alarm by the
X-ray screener, an alarm by the EDS can either be a hit (if an
explosive is present) or a false alarm (if no explosive is
present). If the EDS does not generate an alarm for a certain
bag or item, this is called a "correct rejection” in the case that
the decision was correct and no explosives were present and a
"miss" in the other case. How likely these events are, depends
of course on the machine, but also on the machine settings. If a
more sensitive machine setting is chosen, the frequency of an
alarm for bags containing explosives - the so called "hit rate" -
rises. At the same time the frequency of an alarm for bags not
containing any explosives - the so called "false alarm rate" -
also increases. Choosing a more sensitive machine setting
therefore leads to more alarms that need resolution. The hit rate
of an EDS should not directly influence throughput, as real
explosives are rarely encountered in operation. But the hit rate
needs to meet regulatory requirements and the false alarm rate
of an EDS machine can only be reduced to the point where its
hit rate still meets the regulatory requirements. The false alarm
rate of an EDS therefore depends on the intended hit rate and
the machine itself, as different machines can have different
false alarm rates for a predefined hit rate. This allows for a wide
range of possible false alarm rates for EDSs. Authorities, who
test and certify EDS machines, reported to us possible values of
false alarm rates between 6% and 18.6%. But even lower false
alarm rates are possible if only a share of the items is analyzed
by the EDS. E.g. an EDS with a false alarm rate of 6% could
randomly analyze half the items, which would then result in a
false alarm rate of 3%. In this study, EDS false alarm rates
ranging from 1% to 15% were considered.

X-ray
screener

screener

Fig. 1. Alarm resolution depending on alarm of EDS and X-ray screener.
Note: Instead of only manual search, an X-ray screener could also decide for a
manual search in combination with ETD, separation (i.e. unpacking the bag
and X-ray screening certain items separately), or rescreening the bag with a
different placement on the conveyor belt.

To investigate the effect of EDS on ASC throughput other
variables should also be taken into account, which are not
directly related to the EDS machine's performance with regard
to its false alarm rate and evaluation time. In our automatic
decision scenario, false alarms by the EDS have to be resolved
with an ETD conducted by the same ASO that also resolves
alarms by the X-ray screener. The first and quite obviously
relevant aspect of this process is the time needed for using an
ETD to resolve the alarm by the EDS. It should be noted that
modern ETD technology is fast, for example [11] report 5-8 s
for their IONSCAN 500DT ETD machine. However, the
overall time needed for alarm resolution using ETD depends
strongly on where and how many trace samples are taken [2].
To take into account that different durations for alarm
resolution with ETD are possible, three different scenarios were
tested in the current study: One with a low average duration of
30 s, a second taking 60 s, and a third taking 120 s on average.

Beside the duration of the ETD, a second aspect is
important with regard to resolving the alarms by the EDS: The
number of the alarms by the X-ray screener. The more alarms
(both false alarms and detected prohibited items, e.g. liquids or
scissors) the X-ray screener generates, the more busy the ASO
responsible for alarm resolution by secondary search will be
and the less capacity he or she will have to resolve alarms by
the EDS. There are several factors known to produce
substantial variance in X-ray screeners’ hit and false alarm
rates. Especially important is initial and recurrent individually
adaptive computer-based training, which has been shown to be
an effective and efficient tool to learn which items are
prohibited and what they look like in X-ray images [7], [12]—
[14]. Such training has also been shown to reduce false alarm
rates [6]. Several studies did not find an effect for job
experience alone, if not accompanied by training [5], [15]. Age
was found to have a negative effect [5], but a rather small one
compared to the effect of training [16]. In order to take into
account potential influences of differences in training, age, and
job experience of X-ray screeners, the simulation will be based
on data from three different X-ray screener populations, which
vary with regard to training hours, job experience, age, and
airport.

So far, attributes of technology and humans which seem the
most important for the effect of EDS on throughput have been



discussed. A third aspect to consider is human-machine
interaction. To test whether X-ray screeners reduce their false
alarm rate when EDS is available, [17] conducted a laboratory
experiment, where 150 certified X-ray screeners had to review
X-ray images either with on-screen alarm resolution, automatic
decision, or without any assistance by an EDS'. There were no
significant differences in X-ray screeners' false alarm rates or
evaluation times between the baseline condition without
assistance and the condition with automatic decision. For the
simulations of the present study we will therefore assume that
the performance of X-ray screeners is not affected by EDS.

As explained above, the false alarm rate of the EDS
machine, the false alarm rate of the X-ray screener, and also the
duration for applying ETD are crucial for the effect of EDS on
throughput in our automatic decision scenario, because these
three factors affect the workload of the ASO responsible for
resolving the alarms. In this study, two possible measures were
examined on their effectiveness to reduce the workload of this
ASO. The first and quite obvious measure is to assign a second
ASO to the task of resolving alarms using manual search and/or
ETD. This should double the rate at which alarms can be
resolved (assuming there is sufficient room and equipment
provided). Typically there is a limit to the number of items that
can queue for alarm resolution. If this queue limit is reached,
the X-ray screening process is interrupted until the responsible
ASO has finished resolving one of the alarms and the queue is
below its limit again. A second possible measure to expedite
secondary search could be to instruct the X-ray screener to
resolve one of the alarms as soon as the queue limit is reached
and the screening process is interrupted. This allows the X-ray
screener to use the time productively that he or she would
otherwise spend waiting. A disadvantage of this measure is that
the X-ray screener can still be busy resolving the alarm using
manual search and/or ETD while the X-ray screening process is
ready to be continued. Both these measures were tested in the
simulation of the present study for their potential to reduce the
impact of EDS on throughput.

III. METHOD AND PROCEDURE

The simulation was implemented in FlexSim, an off the
shelf 3D modelling and discrete event simulation software.
Fig. 2 shows a screenshot of the model ASC lane. The basic
layout, processes, and parameters of the model were set in
accordance with a specific ASC design of a European airport,
hereafter referred to as "reference ASC". To gain insight into
the processes and parameters of the reference ASC, data from
a previous work analysis were used. Further information was
provided by ASOs working at the reference ASC and by
experts in the field of aviation security.

In this section the model assumptions are described in their
order within the baggage screening process. TABLE 1. gives
an overview of the assumed model parameter values and
distributions. At the beginning of the baggage screening
process is the arrival of the passenger at the ASC. The model is

" The study was conducted using an X-ray screening simulator

software and the EDS detection performance and settings were
provided by authorities who are responsible for testing and certifying
X-ray screening equipment with EDS functionality.

set up to provide a constant flow of passengers to simulate
capacity, i.e. the throughput that can be achieved if there
constantly are passengers ready to be screened. In a second
step, passengers place their baggage and other belongings on
the conveyor belt with the help of an ASO. According to
several interviewed ASOs working at the reference ASC, this
should take only about 5 s per item, as most passengers prepare
their belongings while waiting for their turn to place their
items on the conveyor belt. In accordance with [18] divesting
time was modeled to be gamma distributed. For the baggage
screening process it is not directly relevant how many items
each passenger carries; an average of 3 items per passenger
with a minimum of 1 was assumed.

TABLE L MODEL PARAMETERS

Mean and Standard

Distribution Deviation in Brackets

Parameter

Placing item on

Gamma 5s(5s)
conveyor
Items per Poisson (translated) | 3 (V2)
passenger

CR*/Miss: 3.90 s (1.32 5)

Evaluation time

X-ray screener Empirical FA" 5.135(2.67s)
Hit: 4.05 s (1.67 s)
Duration of alarm
resolution with Lognormal 116 s (132s)

manual search

Condition 1: 30 s (5 s)
Condition 2: 60 s (10 s)

Duration of alarm
resolution with
ETD

Gamma (translated,
shape = 1)

Condition 3: 120 s (20 s)

% CR: correct rejection; FA: false alarm

After the items have been placed on the conveyor belt, the
items are screened by the X-ray machine. Then, the X-ray
image is analyzed by the EDS and reviewed by the X-ray
screener. For this component of the process the false alarm rate
and evaluation time of both the X-ray screener and EDS
machine have to be defined for the simulation. To model the
alarm rate and evaluation time of the X-ray screener, empirical
data from three groups of [17] was used.” TABLE II. shows
how these reference groups differ with regard to their false
alarm rate, training hours conducted with X-ray Tutor Version
33, work experience, age, and the airport they work at.
Separate simulations were conducted for the false alarm rates
of these three reference groups to explore how differences

2 [17] tested four groups: from two different airports and with two
different levels of work experience (less than one year or more than
two years). Due to the low number of new ASOs at the first airport,
the group of ASOs with less than one year work experience from the
first airport was only tested for the control condition and is therefore
not considered in this study.

? Information on the X-ray Tutor computer-based training software
can be found at www.casra.ch and for an earlier version of the
software in [14]. Reference group 3 received initial training using
another computer based training; the number of training hours per
ASO could not be determined.



between X-ray screener groups affect the relationship between
EDS and throughput.

TABLE II. REFERENCE GROUPS
Group Averages and Standard Deviations in Brackets
False
alarm Trainin Tenure/
Airport rate h s work Age
. ours .
baseline experience
condition
Reference Airport 1 .025 101.40 7.68 42.50
group 1 P (.039) (31.47) (4.85) (10.52)
Reference Airport 2 .040 28.56 8.24 36.55
group 2 P (.046) (12.41) (5.78) (8.46)
Reference . .049 2.58° <1 year 30.81
Airport 2
group 3 e (031) | (2.00) (-) | (1093

In addition to false alarms there are some quite common
prohibited items (e.g. liquids, gels, or scissors) that require
alarm resolution. For the simulation, the empirical value from
a work analysis at the reference ASC of 1.23% bags and trays
containing detected prohibited items was taken.

At the reference airport, the X-ray screener has a minimum
of 3.5 s to review an X-ray image before the next X-ray image
appears on the screen. This minimum is defined by the belt
speed, the required distance between the screened items, and
the average size of these items. If an X-ray screener needs
more than 3.5 s to evaluate an X-ray image, he or she can stop
the belt temporarily. To model these durations, empirical
evaluation time distributions of [17] were used and capped at
the minimum of 3.5 s. These evaluation times did not differ
much between the three reference groups, but depended on the
decisions of X-ray screeners ("OK" or "not OK") and in case
of "not OK" on whether there actually was a prohibited item
present (hit) or not (miss). These differences were taken into
account by using three different empirical distributions.

There are EDS machines available which have the same
belt speed as the current X-ray machines at the reference ASC,
meaning that an EDS would not necessarily affect the rate at
which items are X-rayed. Hence the EDS was assumed not to
require additional evaluation time in the simulation model. As
explained in the previous section, EDS machines can greatly
vary in their false alarm rates depending on technology,
machine type, and targeted hit rate. Therefore, false alarm rates
ranging from 1 to 15% were explored.

After the item leaves the X-ray machine, it can be picked
up by the passenger if both the X-ray screener and the EDS
have cleared the item (i.e. not generated an alarm). In case the
X-ray screener, the EDS, or both produce an alarm, the item
has to be redirected for alarm resolution. This can either be
done manually or automatically. In the automatic decision
scenario modeled in this study, the alarms were redirected
automatically to not disrupt the X-ray screening process. If an
item has been declared as "not OK" by the X-ray screener, it is
assumed that the alarm resolution follows the same procedures
as they are currently applied at the reference ASC. The time
needed to resolve alarms of the X-ray screener was measured
at the reference ASC and could be approximated well with a

lognormal distribution with a mean of 116 s and a standard
deviation of 132 s.

In case the EDS generates an alarm, this alarm is assumed
to be resolved with ETD with an average duration of either 30
s, 60 s or 120 s, as explained in the previous section.* It is
assumed that the X-ray screener also reviews X-ray images
which triggered the alarm by the EDS in order to detect
prohibited items other than explosives. If that occurs, the X-ray
screener sends the screened item to secondary search including
a manual search (see also Fig. 1).

Fig. 2. Screenshot of the 3D model in FlexSim. Passengers have brown shirts,
airport security officers have blue shirts. Passenger bags and other passenger
belongings which have been judged as harmless are in green, bags and other
passenger belongings that have been sent to secondary search are in red, and
the bag currently being insepected using secondary search is in orange.

After the alarm has been resolved, the passenger can
recollect his or her belongings.” How long the passenger needs
for the recollection should not affect baggage throughput, as
long as there is enough space available. Recollection was
therefore modeled not to influence the baggage screening
process in terms of throughput. At the reference ASC there is a
limit of three items that can queue for alarm resolution and the
X-ray screening process is interrupted if this limit is reached.
This was modeled accordingly.

Separate simulations were run for each combination of the
three reference groups, 15 false alarm rate levels of the EDS
(1-15%), one level without EDS, and the three durations for
alarm resolution using ETD (30 s, 60 s, 100 s). To test the
effectiveness of the two measures described in the previous
section, they were also run for each of the 15 false alarm rate
levels of the EDS plus one level without EDS. To keep the
results manageable, the measures were only tested in
combination with the first reference group (which was

* It was assumed that alarm resolution by an ASO using ETD requires
25, 50 or 100 s respectively in most cases but that it can require
longer in some cases. This was modeled with a gamma distribution
with a shape factor of 1 and a mean of 5, 10 or 20 s respectively
added to the mentioned minima.

3 In rare occasions passenger screening can produce a disruption in
baggage screening, e.g. if a security officer has to wait for the
passenger before manual search of a bag can be conducted. As the
focus of this study is on the baggage screening process, passenger
screening will not be considered in the model, also because it is not
directly affected by the introduction of an EDS. But the baggage
screening process can be affected by the passenger screening process
and can therefore not be expected to always achieve its full potential
throughput in operation.
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Fig. 4. Mean and standard error of throughput in items per hour, depending
on false alarm rate of EDS, either with: red solid: single security officer
resolving alarms, blue dotted: X-ray screener assisting with alarm resolution in
case screening process is interrupted, green dashed: second security officer
assigned to resolution of alarms.

recruited from ASOs working at the reference ASC and
therefore seemed most adequate) and only for the medium
duration of alarm resolution using ETD (60 s). For each of the
resulting 192 conditions one hour of the baggage screening
process was simulated 200 times (resulting in 38'400 simulated
screening hours) and then aggregated.

IV. RESULTS AND DISCUSSION

Fig. 3 shows the simulated throughput for a single ASC lane
depending on reference group and false alarm rate of the EDS,
whereby zero represents the absence of an EDS. As expected,
capacity was negatively affected by the EDS's false alarm rate
if no adaptions were made to cope with the increased workload
due to additionally required alarm resolutions with ETD. This
negative effect strongly depended on the average time required
to resolve the alarms by the EDS using ETD. The results were
also largely dependent on whether X-ray screeners were well
trained and experienced.

As pointed out previously, a false alarm rate of 6% is
feasible for certain currently available EDS equipment. For an
average of 120 s for a secondary search with ETD, throughput
was reduced by almost 40% compared to the baseline
condition without EDS. If an alarm resolution with ETD only
takes 60 s on average, then the reduction in throughput was
much less, but also depended on the reference group of X-ray
screeners: 19% for the first (i.e. the most experienced and best
trained X-ray screeners), 23% for the second, and 25% for the
third reference group (i.e. the least experienced and trained X-
ray screeners). If the duration of alarm resolution with ETD
was reduced to an average of 30 s, then throughput only
decreased by 12% for the first, 15% for the second, and 17%
for the third reference group. In this condition the well trained
and experienced X-ray screeners of the first reference group
still achieved a higher throughput than the third reference
group with less than one year of job experience in the baseline
condition without EDS (see Figure 2). Thus, the simulation
results imply that a high throughput is still possible with EDS,
if fast alarm resolution procedures using ETD can be
implemented and if X-ray screeners are well trained.

Fig. 4 shows the relationship between capacity and the
false alarm rate of the EDS for the standard security lane and
the two measures that could be used to minimize negative
effects on throughput as explained in the previous section. As
could be expected, assigning a second ASO to the task of
resolving alarms massively reduced the impact of the EDS's
false alarm rate on throughput (assuming the tools and space
for parallel alarm resolution are available). Within the
simulation, instructing the X-ray screener to resolve one alarm
while the screening process is interrupted only started having a
positive effect on throughput at higher false alarm rate levels.
In practice however, the X-ray screener might coordinate with
the ASO responsible for alarm resolution and support him or
her with tasks short enough not to delay the screening process
too much. Therefore, having the X-ray screener assist with
alarm resolution could be more useful in practice than it was
found to be the case in the simulation.



V. SUMMARY, CONCLUSIONS, AND LIMITATIONS

The results of the discrete event simulation indicate that the
baggage throughput of an ASC can strongly be affected by
EDS. This effect is mainly due to the time needed for alarm
resolution using ETD, which highlights the importance of fast
ETD alarm resolution procedures (e.g. efficient trace sampling)
and a short analysis time of the equipment. Not only the false
alarm rate of the EDS machine and alarm resolution time of
ETD but also the false alarm rates of the X-ray screeners were
found to be very important. Training has been shown to reduce
false alarm rates [6]. Potential decreases in baggage throughput
due to the introduction of an EDS could therefore be at least
partially compensated by having well trained X-ray screeners.

Having a second ASO to expedite alarm resolution could
effectively reduce the negative impact of an EDS on
throughput, while help by the X-ray screener with alarm
resolution seems not to be a useful option based on the
simulation results. A field study or a further work analysis
combined with simulation could clarify if more coordinated
assistance with alarm resolution by the X-ray screener (i.e. by
only performing tasks that do not prolong the interruption of the
X-ray screening process) has the potential to increase capacity.

Another limitation of the present model is that the false
alarm probabilities of the items were assumed to be
independent from each other. This does not necessarily need to
be the case in practice. Certain passenger groups are likely to
have increased or reduced alarm probabilities. Especially at
small airports or decentralized ASCs, where passenger groups
are less mixed, there might be periods requiring more alarm
resolutions than other periods. This might mitigate average
capacity due to the non-linear relationship between alarm rate
and capacity.

Common cause failure of X-ray screeners and EDS
machines could be investigated empirically and considered in
future models. Also, more research is needed on the effect of
EDS on X-ray screeners' performance under varying machine
settings. The performance of the X-ray screeners working with
EDS should also be examined over longer periods and in the
field, as there is indication that the influence of automatic
decision aids changes with experience [19] and training [20].
Another limitation concerns the 1.23% of detected prohibited
items measured with a work analysis. The first reference group
was a sample of the ASOs working at the reference ASC where
the work analysis was conducted. It could however be expected
that the other reference groups with less training and higher
false alarm rates might also detect less prohibited items.

In sum, this first study on the effect of introducing EDS in
cabin baggage screening provided important results, which
could already have practical implications. However, more
research including data collection from different ASCs as well
as laboratory and field experiments are needed to validate and
enhance these discrete event simulation results.
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