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1 Overall introduction 

The knowledge of toxicological properties of compounds (e.g. drugs, chemicals, and 

contaminants) is crucial for drug development, definition of toxicological thresholds and 

exposure limits. However, toxicological testing, either in vitro or in vivo, is time-consuming, 

labour intensive and expensive. Furthermore, the 3R-principle1 aims to reduce and replace 

animal testing in vivo. Therefore, especially for natural occurring contaminates, not all 

substances are tested, but only a few selected. To complicate the matter even more, this 

selection is often not based on a toxicological point of view, but on commercial availability. 

Based on these few results, the notion is often to deduce toxicological limits for the whole 

substance group from data of few substances, without considering that not all substances from 

this substance group have the same toxicity.  

Another problem, which is more often encountered within the pharmaceutical industry, is that, 

even if toxicological testing was performed, this information is usually not available in the 

public domain. Additionally, more often than not, especially when considering more complex 

endpoints, the results are not comparable to each other due to different experimental set-ups. 

One way to overcome the two afore mentioned issues, is the use of computational (in silico) 

approaches, such as machine learning. For machine learning, it is assumed that substances with 

comparable structure or molecular features also exhibit the comparable pharmacological or 

toxicological action. Based on the comparison of substances with known pharmacological or 

toxicological action to substances with unknown properties, models, which were generated 

using machine learning methods, are able to predict the action of the latter substances. The 

prediction of toxicity by machine learning complements the traditional in vitro and in vivo 

                                            
1 The 3R-principle aims to refine, reduce and replace animal experiments. 
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experiments in several ways. On one hand, huge datasets may be analysed in a short period 

and, as the prediction is done by the same model, the results are comparable to each other. This 

helps to establish a rank order between the different substances and identify substances, which 

might be interesting to be selected to study in vitro or in vivo, e.g. the most toxic ones. 

Furthermore, as many substances are analysed, relationships between e.g. specific structural 

features and the toxic potential may be established. This might contribute to the elucidation of 

the mode of action or dependencies. 

1.1 Machine learning 

Machine learning is a branch of artificial intelligence (AI). A computer learns, using a machine 

learning method, based on substances with known pharmacological/ toxicological properties 

(outcome) what features of these substances contribute to the specific outcome. The dataset, 

which is used for the training of the computer, is often referred to as training dataset. The 

computer is then able to apply the resulting predictive model to a new or unseen dataset, also 

referred to as testing dataset, and predict the outcome of the substances thereof. 

To create a predictive model, using machine learning methods, with a good predictivity, several 

steps need to be undertaken, which are explained shortly in the following section and in, greater 

detail, in the following chapters. The general steps, which need to be undertaken for the training 

and validation of a predictive model using machine learning, are shown in Figure 1. 
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Figure 1: General procedure of generating a predictive model using machine learning 
methods.  
RFE: recursive feature elimination  

Before a predictive model can be generated, the substances of interest and their specific 

structural features need to be converted in a computer-readable form. One common way is the 

use of unambiguous alphanumeric strings (e.g. SMILES, see chapter 1.2.1.1), which describe 

the structure of the substance. Based on the structure, numerical values describing the 

substance, also called descriptors, can be calculated. Each numerical descriptor relates to a 

different property of a substance, e.g. pH, lipophilicity, amounts of nitrogen atoms, amount of 

double bonds, or molecular size (see chapter 1.2.1.2).  
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For the training dataset, not only the descriptors, but also the pharmacological/ toxicological 

action, the outcome, of the substances is important. The outcome defines the problem that the 

machine learning model has to solve. When the outcome separates the substances into two or 

more classes and has therefore a categorical value (e.g. ‘1’ (toxic) and ‘0’ (not toxic)), a 

classification problem needs to be solved. The model will try to sort the substances of the 

testing dataset into one of the available classes. For regression problems, the outcome is a real 

or continuous variable (e.g. IC50). Based on the data, the models try to predict the actual values 

for the substances of the testing dataset. 

Furthermore, the knowledge of the outcome of the training dataset also determines the general 

approach to the learning strategy of the model. If the outcome for all substances in the training 

dataset is known (labelled data), a supervised learning strategy can be pursued. The model will 

try to find a correlation between the outcome and the substances of the dataset. This enables 

the user to uncover relationships between the outcome and physico-chemical or structural 

properties of the substances studied and, furthermore, to make predictions about new 

substances, where the respective outcome is unknown. However, sometimes, the outcome 

variables of the training dataset are unknown (unlabelled data). In these cases, an unsupervised 

learning strategy can be employed. While unsupervised learning cannot directly be used for a 

classification or regression problem, as the outcome variables are unknown, it is, however, able 

to detect the underlying structures or patterns in the dataset. A combination of supervised and 

unsupervised learning strategy is semi-supervised learning. In these cases, the training datasets 

contains substances with known and substances with unknown outcome (labelled and 

unlabelled data). This is advantageous in cases, where not enough labelled data are present. 

The inclusion of unlabelled data increases the size of the training dataset and might help to 
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better define the border between the different classes of the labelled dataset, as underlying 

pattern become more pronounced.  

Before the actual training of the model, the training dataset need to be pre-processed. As 

mentioned above, usually, hundreds to a few thousand descriptors (also called features) are 

calculated per substance. Some of these descriptors are actually related to the outcome and 

others are not. Descriptors, which are related to the outcome can be used for its prediction, and 

are therefore often called predictors. The other, unrelated descriptors are noise in the dataset, 

and need to be identified and eliminated prior to the training of the model. This process is 

referred to as feature selection (see chapter 1.2.1.4). 

Another equally important part of data pre-processing apart from the feature selection is data 

preparation. Missing and incomplete values in the dataset need to be identified, as not all 

machine learning models are able to deal with missing data. Depending on the size of the 

training dataset, these values might be replaced by other values, such as the descriptor mean or 

median. This procedure of replacement is called imputation. Otherwise, the whole substance 

or whole descriptor, which contains missing data, might be deleted. Furthermore, improperly 

formatted records need to be reformatted.  

The selection of the machine learning method, the algorithm, depends largely on the question 

at hand and the available data. For example, the results of classification algorithms such as 

Decision Trees and Random Forest (see chapter 1.2.2.1) could be easily be used to interpret 

the importance of used variables (descriptors). This might be especially useful if the 

mechanism is also in the focus of the study. Deep Learning Networks (see chapter 1.2.2.2) are 

best suited for highly complex problems where sufficient amount of data is available. For 

simpler problems and smaller datasets, Deep Learning Networks tend to adapted too much to 

the training dataset (overfitting) and consequently show poor generalisation on new data. A 
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detailed description of different machine learning algorithms and their strengths and 

weaknesses is provided in chapter 1.2.2. 

1.2 Training of a machine learning model 

The training of a predictive model includes two main steps, data pre-processing, which includes 

data cleaning and descriptor (feature) selection, and the actual modelling with the 

corresponding validation. These steps are described in more detail in the following sections. 

1.2.1 Data preparation 

1.2.1.1 Computational description of molecular structures 

Molecules and chemical structures need to be translated into an alphanumeric string to be 

interpretable for a computer. One of the most encountered form is the Simple Molecular Input 

Line Entry Specification (SMILES). To simplify the string, hydrogens are usually omitted.  

As SMILES strings are unambiguous, they are used as index keys in chemical databases (i.e. 

PubChem). Furthermore, SMILES can be used in cheminformatics for the calculation of 

molecular properties (descriptors, see chapter 1.2.1.2). There are two different forms of 

SMILES, canonical SMILES, which do not contain stereochemical information, and isomeric 

SMILES, which do contain stereochemical information of the molecule.  

Some examples for SMILES are provided in the table below (Weininger 1988). 

Table 1: Examples for representation of molecular structures by SMILES 

Common name Structure SMILES 
Water H2O O 
Oxygen O2 O=O 
Methane CH4 C 
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Common name Structure SMILES 
Ethane CH3CH3 CC 
Ethylene CH2=CH2 C=C 
Ethanol CH3CH2OH CCO 
Benzene 

 

C1=CC=CC=C1 

Pentane 
 

CCCCC 

3-methylpentane 

 

CCC(C)CC 

 

Another, very abstract way of encoding the structure of a molecule, is called molecular 

fingerprints. Most commonly they are a string of binary numbers (0 and 1) that indicate the 

presence or the absence of a particular substructure in a molecule (Open Babel community 

2011). The similarity of small molecules can be assessed using molecular fingerprints through 

bit string comparison. It is assumed that structurally similar molecules also exhibit a similar 

biological activity. Therefore, the comparison of the fingerprint of a target molecule with 

unknown activity to molecules with known activity can be used to predict the biological 

activity of the target molecule. This process commonly referred to as virtual screening (VS) 

(Muegge & Mukherjee 2016). 

1.2.1.2 Descriptors 

For machine learning studies, chemical substances are characterized in numerical form by 

different types of descriptors. Physicochemical descriptors describe physical and chemical 

properties of a molecule estimated by examination of its two-dimensional (2D) structure. 

Examples for physicochemical descriptors are lipophilicity and molecular weight. Topological 

descriptors represent the 2D connectivity of atoms in molecules, whereas geometrical 
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descriptors capture the three-dimensional (3D) information regarding the molecular size, 

shape, and atoms distribution (Khan & Khan 2016). Those descriptors, which are actually used 

for the generation of the predictive model, are often referred to as predictors. 

1.2.1.3 Data pre-processing 

Before the actual training of a potentially predictive model, the training dataset has to be 

prepared. This pre-processing has a huge influence on the model. First, textual content needs 

to be converted into a numeric system (e.g. ‘toxic’ to ‘1’, ‘not toxic’ to ‘0’). Missing values 

(‘N/A’ values) need to be identified and the approach to handle these instances (imputation, 

deletion) defined. If the training dataset is large and N/A values are very common in some 

descriptors or substances, one approach might be to delete these (redundant) descriptors or 

substances. However, when the training dataset is rather small or N/A values are more or less 

equally distributed over the whole dataset, deletion would adversely affect the size of the 

training dataset and therewith the predictive power of the model. In these cases, it might be 

feasible to impute the missing value e.g. replace these N/A values with the most common value, 

the mean or median value of the descriptor column, or by applying machine learning methods 

which can handle N/A values, to calculate the most probable value. 

The values of different descriptor have very different ranges, e.g. between ‘-1’ and ‘1’ or 

between ‘0’ and ’10000’. Models might incorrectly overestimate the importance of descriptors 

with large ranges or numerical values and underestimate descriptors with small ranges or 

numerical values. Therefore, for some machine learning methods, a normalization of the 

descriptor column might yield better results for the predictive model. Different approaches are 

possible. During range transformation, the range of all descriptors is harmonised, e.g. all 

descriptors have only values between ‘0’ and ‘1’. During centre transformation, the mean of 

the descriptor is subtracted from each descriptor value. The division of each descriptor value 
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by the standard deviation is called scaling. A further procedure is called rank transformation, 

in which the descriptor values of each descriptor are assigned rank numbers, e.g. the smallest 

descriptors is assigned the rank’1’, the second smallest the rank ‘2’, and so on. In each case of 

normalization, it has to be kept in mind that the same approach needs to be applied to the testing 

dataset. 

1.2.1.4 Feature selection 

For most machine learning methods, it is important to reduce the number of descriptors 

(features) to those who are actually related to the specific outcome and thus contribute to the 

accuracy of the model. On the one hand, irrelevant descriptors, meaning descriptors, which are 

not related to the outcome, are noise in the dataset and adversely affect the calculation time and 

performance of the computer. On the other hand, the major problem is that irrelevant 

descriptors might generate overly complex models. These overly complex models have often 

a very poor generalisation performance as the model adapts too much to the noise (unrelated 

descriptors) in the training dataset. This phenonomen is called overfitting, which reduces the 

predictive power of the model. Overfitting results in an excellent performance on training data 

but a poor performance on unseen test data (see Figure 2). 

 

Figure 2: Under- and overfitting in machine learning.  
Red and green diamonds symbolize instances of the training dataset belonging to different classes 
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Therefore, reduction of the descriptors to those actually related to the outcome is one important 

method to reduce overfitting. The reduction of the number of descriptors is of specific 

importance in datasets, where the number of substances in the training dataset is lower than the 

number of descriptors. The procedure of reducing the number of descriptors is called feature 

selection. 

As a first step, descriptors, which show low or zero variance, may be deleted. Low or zero 

variance means that less than 10% of the values of one descriptor are unique or that the 

frequency of the most common value to the second most common value is more than 95% (e.g. 

95 substances with the most common value versus 5 or fewer substances with the second most 

common value). Furthermore, descriptors that are highly correlated are redundant and may be 

removed. These two approaches do not take the outcome of the training dataset into account. 

Further reduction of the number of descriptors is performed by considering the outcome. 

Different method can be used for this step. Filter methods try to rank the descriptors based on 

the usefulness to generate the model. These are usually statistical methods such as ANOVA or 

Chi-square test. Wrapper methods train the predictive model on different subset of descriptors 

and compare model performance. One example for this approach is recursive feature 

elimination. During recursive feature elimination, a predictive model is generated recursively 

on smaller and smaller subset of descriptors. First, a predictive model is trained with all 

descriptors, and the least important descriptor is excluded. Then a new predictive model is 

trained with the reduced subset of descriptors. This procedure is repeated until only a pre-

defined number of descriptors are left. Embedded methods are a combination of filter and 

wrapper methods, such as LASSO (Least Absolute Shrinkage and Selection Operator): LASSO 

is a regression method, which performs regularisation and feature selection. The regularisation 

is done by putting a constraint on the sum of the absolute values of the regression coefficients 
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so that is becomes less than a fixed value (penalisation). That forces some coefficients to be set 

to zero. The larger the constraint, the more coefficients are shrunk to zero. For the feature 

selection process, only the descriptors are used, which have a coefficient of non-zero (Fonti 

2017). 

1.2.1.5 Balancing of the outcome 

A dataset is considered unbalanced if the number of substances with specific outcomes are 

unequally distributed, e.g. 90% with outcome ‘toxic’ versus only 10% with outcome ‘non-

toxic’. Whereas minor unbalanced outcomes may not adverse effect the performance of the 

model, models based on highly imbalanced datasets tend to favour the majority outcome. This 

is due to the tendency of the model to reduce prediction error. In the above-mentioned 

examples, a prediction of all substances as ‘toxic’ would lead to a prediction error of only 10%. 

However, the usefulness of the predictions would be questionable, as the model would not be 

able to identify ‘not toxic’ compounds. 

Different approaches may be used to address this problem, the most common being: 

- Oversampling: add copies of substances from the minority outcome to the dataset 

- Undersampling: delete substances from the majority outcome 

- SMOTE (Synthetic Minority Oversampling Technique): generation of synthetic 

minority outcome substances based on real minority class (Chawla et al. 2002) 

- a combination of over- and undersampling 

- Penalisation: increase the influence of the substances from the minority outcome by 

putting a penalty on the model for wrong prediction of this outcome.  
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1.2.2 Modelling 

Different computational algorithms may be used for the actual generation of a predictive 

model. A graphic representation of the general principal of each machine learning algorithm is 

provided in the figure below. 

 
 

Figure 3: Principles of the different machine learning techniques.  
Red and green diamonds symbolize instances of the training dataset belong to different classes. 
Decision tree: each violet circle stands for a binary decision that has to be made.  
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1.2.2.1 Decision trees and Random Forest 

Decision trees (Figure 3.A) are among the most popular algorithms for machine learning. One 

main advantage is the easy interpretability of the outcome, as the most important descriptors 

used for the prediction can be extracted from the model. These descriptors may shed a light on 

the biological process. For example, Newby et al. (2015) revealed the influence of permeability 

and solubility on intestinal absorption using decision trees.  

However, one huge disadvantage of decision trees is the tendency of overfitting to the training 

dataset. Besides the reduction of descriptors, the main approach to reduce overfitting in 

decision trees is called pruning, which means the restriction of the model to generate a tree 

with higher number of branches (pre-pruning) or removing parts of an already generated tree 

(post-pruning) (Bramer 2013). Another approach is the generation of a forest of decision trees, 

where every tree is only trained on a random sample of the training dataset. This approach is 

called Random Forest. The probability for a specific outcome is calculated based on the votes 

from every single tree. 

1.2.2.2 Artificial Neural Networks and Deep Learning 

Artificial Neural Networks (aNN) (Figure 3.B) are, as the name suggests, a brain-inspired 

algorithm, intended to replicate the way humans learn. An aNN consist at least of input and 

output layers, and in most cases also one or more hidden layer(s). Each unit is called artificial 

neuron. The input neurons are the input interface for the network and have therefore no 

predecessor. The output neurons are the output interface of the network and have no successor. 

According to the input, the artificial neurons (input, hidden, and output) change their internal 

state (activation), and produce output depending on the input and activation method, which is 

then forwarded to the connected artificial neurons, if present.  
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A further development in aNN is called Deep Learning Network (DL). They have a greater 

depth of layers compared to aNN, which is defined by having at least two hidden layer (making 

a total of at least four layer including the input and output layer). Each layer of the deep learning 

network trains on a distinct set of features, which is based on the output of the preceding layer. 

Thus, with each successive layer, the network is able to identify more and more complex 

features. 

1.2.2.3 Support Vector Machines 

Support Vector Machines (SVM) (Figure 3.C) try to find a hyperplane (lower dimensional 

separation2) that best divides the dataset into two classes for classification purpose. The best 

hyperplane results in the largest separation of the classes, with the largest distance to the data 

points nearest to the hyperplane. The data points that are nearest to the hyperplane are called 

support vectors. Removal of these points would alter the position of the dividing hyperplane. 

Because of this, support vectors are critical elements of the dataset. New substances are 

classified according to their position in relation to the hyperplane. 

1.2.2.4 k-nearest neighbour 

k-nearest neighbour (kNN) (Figure 3.D) algorithm assigns test substances to the most common 

class in its neighbourhood, with the neighbours being substances from the training dataset. The 

variable k defines the number of neighbours that shall be taken into account, e.g. if k=1, only 

the single nearest neighbour is considered (and consequentially the test substance is assigned 

to the same class).  

                                            
2 in a two-dimensional room, the hyperplane is a line, in a three-dimensional room a plane (surface) 
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In comparison to the other machine learning algorithms, no explicit training of the model is 

required, as only the ‘neighbourhood’ of the testing substance is considered, but the method 

does not learn rules, based on which the outcome is predicted. 

1.2.2.5 Comparison of the different machine learning models 

It is not possible to use the same machine learning method for all problems, as each has 

different strength and weaknesses. A tabulated comparison of the different models is provided 

in the table below. 

Table 2: Strength and weaknesses of different machine learning approaches (modified from 
(Blower & Cross 2006)) 

Characteristic  Decision 
trees  

Artificial 
Neural 

Network 

Support 
Vector 

Machines  

k-nearest 
neighbour 

Natural handling of data of mixed type + - - - 
Handling of missing values + - - + 
Robustness to outliers in input space  + - - + 
Insensitive to monotone transformations of inputs  + - - - 
Computational scalability (large N) + + - - 
Ability to deal with irrelevant inputs + - - - 
Ability to extract linear combinations of features  - + + o 
Interpretability  + - - - 
Predictive power  - + + + 

+ = good o = fair    - = poor 

Generally, it is a good approach to train at least two predictive models with different machine 

learning methods for a specific problem and compare the outcome. A comparable prediction 

from different models increases the confidence in the results. 

1.2.3 Validation 

Validation of the predictive model is an important step to assess how accurately the model will 

performance on new/ unseen data from the testing dataset. One approach is called internal 
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cross-validation. During cross-validation, the training dataset, for which the outcome is known, 

is randomly separated, usually in a split containing 90% of the substances (training data) and a 

split containing the remaining 10% of the substances (validation data). The bigger split is used 

to train the model. This model is then used to predict the outcome of the smaller split. If a 

feature selection method was applied that considered the outcome, this procedure needs to be 

included in the validation (that means that the split of the dataset needs to be made before that 

step). To assess the performance of the model, the actual outcome of the smaller split is 

compared with the predicted outcome of the model. This procedure is often repeated multiple 

times with different, random splits. For example, if this procedure is repeated 10-times, a 10-

fold cross-validation was performed. For the assessment of the predictive power of the model, 

the results are displayed in a confusion matrix (see Figure 4.A).  

 

Figure 4: Confusion matrix and ROC (Receiver Operating Characteristics)-curve.  
The area under the ROC-curve (AUC) is a measure of the predictive power. Higher AUC of the 
ROC-curve indicates higher predictive power 

Based on these amounts of True Positives (TP), False Positives (FP), False Negatives (FN) 

and True Negatives (TN), different parameters of the model are calculated, e.g.: 
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- 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

- 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

- 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 𝐹𝐹𝐹𝐹
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 

The predictive power of the model can be graphically displayed as Receiver Operating 

Characteristics (ROC)-curve (see Figure 4.B). In this case, the Area Under the Curve (AUC) 

can also be used to assess the power of the model, the closer the value is to ‘1’ or ‘0’ (for 

inverse prediction), the better is the power, and therefore the predictivity of the model. 

After cross-validation, the final model is generated on basis of the complete training dataset. 

Another validation approach is called y-randomisation. This validation aims to exclude chance 

relationships between the outcome and any of the numerous descriptors. For this purpose, the 

outcome values (sometimes also referred to as y-variable) of the training dataset is randomly 

permuted while the rest of the training dataset is unchanged. Then the whole process of model 

generation, including feature selection, is performed. The predictive power of this model is 

assessed e.g. using internal cross-validation. The y-randomisation is successful when the 

accuracy of the randomised model drops to around 50%, which means that the prediction is 

only by chance. This is because no relationship could be established between the randomised 

outcomes and the descriptors. From this, it is concluded that a real relationship between the 

actual outcome and the descriptors is present. 

1.3 Applicability domain 

The physicochemical, structural or biological descriptors of the training dataset create a highly 

dimensional virtual space, where each descriptor represents one dimension. This space is called 
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applicability domain of the predictive model. Within this space, the model is applicable and 

able to predict the outcome new substances. Substances, which are not within the applicability 

domain of the model, cannot be predicted correctly. For example, if a model is trained to predict 

the toxicity of small molecules, it is not able to correctly predict the toxicity of proteins. The 

model will still predict something, but the prediction is not reliable. Therefore, for each testing 

dataset, applicability of the model has to be confirmed. 

For this purpose, the closeness of the training and the testing dataset can be analysed using 

statistic approaches, e.g. the Jaccard distance or the Tanimoto coefficient. The resulting values 

range from ‘0’ to ‘1’, and indicate the similarity of the datasets. Lower values of the Jaccard 

distance stand for similarity, whereas higher values indicate diversity. Only if the testing 

dataset is close to the training dataset, it can be assumed that the former is within the 

applicability domain of the latter. 

1.4 Limitations of machine learning 

While machine learning is a useful tool, especially in drug development and toxicology, the 

limitations need to be kept in mind.  

The accuracy of a predictive model is in general below 100%. Usually, model with a correct 

classification rate of 65% or above in the validation are published in literature (Hammann et 

al. 2018). However, when using these models on compounds with unknown properties, 

misclassification is still common and needs to be considered. Therefore, especially in drug 

development, machine learning is mainly useful of large scaled screening of potential drug 

substances, discarding those with unwanted properties and identify potential candidates for 

further development. Still, further in vitro and in vivo testing of potential candidates cannot be 
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omitted based on in silico results, but selection of promising drug candidates for time- and cost-

expensive in vitro and in vivo testing can be facilitated. 

A further issue, which needs to be kept in mind, is the specificity of the model. Models are 

trained on one or more endpoints and are only able to predict the outcome of these endpoints. 

The data for the training dataset have to be rather homogenous considering the outcome. It is 

known that different animals react differently to toxins. If the training dataset consists of 

toxicological data from different animal species, some outcomes may be equivocal. 

Furthermore, the machine learning algorithm might encounter problems to clearly separate 

toxic substances from non-toxic substances. The same is true for toxins, which require 

metabolic activation and those, which do not. The quality of the training dataset has therefore 

a significant influence on the performance of the model.  

1.5 Summary and aim of conducted studies 

The aim of this work was the development of predictive machine learning models for the 

estimation of risk of hepatotoxicity and genotoxicity. These models were then applied on two 

different substance groups and the outcome was compared to available literature data. 

In the first study (see chapter 2), which was conducted under the lead of F. Hammann, four 

different machine-learning models, Decision Trees, k-nearest neighbour, Support Vector 

Machines, and artificial Neural Networks, were trained to predict clinically relevant acute 

hepatotoxicity /drug-induced liver injury (DILI). The training dataset was taken from an expert-

committee reviewed DILI dataset. The corrected classification rates of the models were up to 

89%. Additionally, the association of drug’s interaction with carriers, enzymes, and 

transporters, and the relationship of defined daily doses (DDD) with hepatotoxicity was 

investigated. The results presented here are useful as a screening tool both in a clinical setting 
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in the assessment of DILI as well as in early stages of drug development to rule out potentially 

hepatotoxic candidates. 

Based on these results, it was decided to use the training dataset of this study to assess the acute 

hepatotoxic potential of over 600 different pyrrolizidine alkaloids (PAs) (see chapter 3). For 

this purpose, the training dataset was used to train two different models, using the methods 

Random Forest and artificial Neural Networks. The correct classification rates of these models 

were 89.0 and 76.2%, respectively. The predicted qualitative hepatotoxicity of both models 

was highly correlated. Furthermore, specific structural motives showed different hepatotoxic 

potential. Overall, the obtained results fitted well with already published in vitro and in vivo 

data on the acute hepatotoxic properties of PAs. 

As the main safety problem with PAs is not the acute hepatotoxicity, but the genotoxic/ 

mutagenic potential, this issue was addressed in a further study (see chapter 4). Different 

machine learning methods were used to train models for the prediction of the mutagenic 

potential, LAZAR (Lazy Structure-Activity Relationships, which works in principle like k-

nearest neighbour by direct comparison of the PA structure to other structures with known 

mutagenic potential), Support Vector Machines, Random Forest and Deep Learning Networks. 

The PA dataset was partly outside the applicability domain of LAZAR. Training of the other 

four models, Random Forest, Support Vector Machines, and Deep Learning (using two 

different approaches), did result in significant predictions, however, the models achieved only 

low to moderate accuracy rates between 59 and 68%  

In a further study, the models for the prediction of acute hepatotoxicity, which were already 

established during the study concerning the acute hepatotoxicity of PAs, were used on a dataset 

of 165 protein kinase inhibitors (PKIs) (see chapter 5). The models confirmed clinical 

observations that PKIs have in general a high probability for inducing hepatotoxicity. However, 
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interestingly, there seemed to be a target specific difference, with inhibitors of Janus kinases 

having the lowest hepatotoxic probability of 60-67%. 

To confirm the in silico results on the hepatotoxic potential of PAs in vitro, it was decided to 

compare the toxicity of commercially available PAs in different hepatic cell lines. Therefore, 

an in vitro screening method to compare the toxic potentials of PAs was developed (see chapter 

6). K. Forsch was mainly responsible for the experimental design and conduction of lab work 

and was supported by the author of this work during the analysis and interpretation of the results 

and preparation of the manuscript.  
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2.1 Abstract 

Drug induced liver injury (DILI) is the most common cause of acute liver failure and often 

responsible for drug withdrawals from market. Clinical manifestations vary, and toxicity may 

or may not appear dose-dependent. 

We present several machine-learning models (decision tree induction, k-nearest neighbour, 

support vector machines, artificial neural networks) for the prediction of clinically relevant 

DILI based solely on drug structure, with data taken from published DILI cases. Our models 

achieved corrected classification rates of up to 89%. We also studied the association of a drug’s 

interaction with carriers, enzymes, and transporters, and the relationship of defined daily doses 

                                            
3 This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of Applied 
Toxicology following peer review. The version of record ‘Hammann F, Schöning V, Drewe J. 2018. Prediction 
of clinically relevant drug‐induced liver injury from structure using machine learning. J Appl Toxicol. 2018 Oct 
16 is available online at: https://doi.org/10.1002/jat.3741. In course of harmonisations for this manuscript, the 
numbering and sometimes also the allocations of figures, annexes, and supplementary material was amended. 
Furthermore, terms were harmonised. No other changes were made. 
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with hepatotoxicity. The results presented here are useful as a screening tool both in a clinical 

setting in the assessment of DILI as well as in early stages of drug development to rule out 

potentially hepatotoxic candidates. 

2.2 Introduction  

Drug induced liver injury (DILI) is a diagnosis of exclusion for hepatotoxicity causally linked 

to a xenobiotic (synthetic drugs, herbal preparations, dietary supplements) when all other 

explanations have been ruled out. It is the most common cause of acute liver failure in 

developed countries, and a major reason for withdrawal of approved drugs from the US market 

(Lasser et al. 2002; Reuben et al. 2010). The manifestations range from asymptomatic elevation 

of liver enzymes to outright acute liver failure. The two main clinical pictures are hepatocellular 

damage and cholestasis, with many intermediate presentations, as well as changes as liver 

damage progresses and resolves (Benichou et al. 1993; Danan & Benichou 1993). This 

heterogeneity is reflected by the various forms of pathophysiological mechanisms implicated, 

which include disruption of mitochondrial metabolism, changes in transport protein function, 

immunological processes and hypersensitivity, and direct hepatocellular damage (Kock et al. 

2014). Antibiotics are a common source of DILI, with amoxicillin / clavulanic acid posing the 

greatest risk. 

Risk factors are bio-activation by metabolic enzymes (Boelsterli & Lee 2014; Thompson et al. 

2016), higher lipophilicity (logP ≥ 3), and dose (daily dose ≥ 50 mg) (Chalhoub et al. 2014; 

Chen et al. 2013; Yu et al. 2014b). Also, DILI has been observed after low-dose medications 

(Lammert et al. 2008) in patients with a predisposition due to genetic polymorphisms or other 

ADMET particularities that have gone unrecognized until now, resulting in a false labelling of 

an adverse event as idiosyncratic. 
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A well-described risk factor for causing cholestatic injury is the inhibition of the canalicular 

bile salt export pump (BSEP). Hepatocytes are thought to be flooded with bile salts, eventually 

leading to apoptosis (Morgan et al. 2010). The basolateral ATP-dependent efflux pumps MRP3 

(ABCC3) and MRP4 (ABCC4) can be recruited to shift bile salts into the sinusoidal veins (they 

are in fact upregulated in cholestasis), and inhibition can among other factors (Aleo et al. 2014; 

Guo et al. 2015) contribute to cholestatic DILI (Chai et al. 2012; Gradhand et al. 2008). 

Immunological processes have also been shown to play a role in flucloxacillin cholestatic DILI, 

wherein hepatic biliary cells are destroyed preferentially in HLA-B*5701-positive patients 

(Daly et al. 2009). 

Previous research, showing higher risk for certain DILIs in specific countries or ethnicities, 

supports the existence of a genetic component (Ibanez et al. 2002). Also, females appear to be 

more susceptible to DILI than males (Parkinson et al. 2004). 

While risk factors can predispose an individual to develop DILI, these risk factors are often not 

known, and such cases are then often labelled as ‘idiosyncratic’. However, in order to assess 

DILI clinically, drug-related risk factors also need to be taken into account, e.g. certain 

structural motifs or other physicochemical properties. To our knowledge, there is still a lack of 

a predictive model for clinically manifest DILI, a tool, which could be a valuable adjunct in 

evaluating hepatic dysfunction in a given patient. 

A drug’s defined daily dose (DDD) is a standardized measure of drug consumption. 

Interestingly, it appears that high daily doses are predictive of DILI, especially when 

administered with cytochrome P450 inhibitors (Chen et al. 2013; Yu et al. 2014b). The 

respective authors believed this to be the result of an increased exposure to mother substances 

of a drug both through higher dose and decreased detoxification. Another possibility is that 
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more complex (that is, heavier) drugs have greater hepatotoxic potential. An analysis of molar 

DDDs could answer this question. 

2.3 Methods 

2.3.1 Data collection and preparation 

2.3.1.1 Data acquisition and structure analysis 

The datasets of DILI-positive compounds were taken from different sources, consisting of 311 

drugs, that were withdrawn from the market in the USA (Ekins et al. 2010) or European 

countries due to hepatotoxicity, not marketed there, have received a black box warning because 

of hepatotoxicity, or are well-known hepatotoxic agents. Other sources were literature-based 

databases (Ekins et al. 2010; Greene et al. 2010; Stine & Lewis 2011), and 319 drugs from the 

three Western DILI registries (USA, Sweden and Spain) (Stine & Lewis 2011). We found a 

total of 627 individual substances in the literature. From these, we removed ambiguous 

identifiers (for example, ‘oestrogens’).  

We also removed proteins and peptides as well as metallic or inorganic compounds (e.g. arsenic 

trioxide, iron sulphate). This restricted our dataset to one of small molecule substances 

chemically similar to what is used in most areas of pharmacotherapy today. Furthermore, the 

structural and physicochemical parameters calculated in this study are largely applicable only 

to smaller molecules with a unique structure. We used the PubChem Substance and 

Compounds databases (http://pubchem.ncbi.nlm.nih.gov/) to find the associated two-

dimensional structures in simplified molecular-input line-entry system (SMILES; isomeric if 

available, canonical otherwise). Finally, we stripped the molecules of associated salts under the 
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assumption that they are pharmacologically inert. This process ultimately gave us a list of 588 

compounds labelled either ‘hepatotoxic’ or ‘non-hepatotoxic’.  

Initial physicochemical calculations were performed with the PaDEL-Descriptor package 

(version 2.21). We computed the entire range of available 1D and 2D descriptors (n=1381) for 

all compounds. As some descriptors cannot be calculated for all molecules for technical 

reasons, this resulted in 526 complete cases (i.e. molecules with complete sets of descriptors). 

Most incomplete cases were due to only a select few descriptors. We therefore excluded all 

descriptors that failed in 5% of molecules, which brought the number of complete cases to 

n=575. The descriptors removed (n=63) included several eigenvalues of the Burden matrix 

(BCUT) (Burden 1989), simple and valence chi chain descriptors (SCH, VCH), valence and 

average valence path descriptors (VP, AVP), and a van-der-Waals volume descriptor (VABC). 

The remaining incomplete cases were gallium nitrate, trichloroethylene, bromoethanamine, 

sodium bicarbonate, carbon tetrachloride, chloroform, cadmium chloride, thioacetamide, 

probucol, dichloroethylene, hydrazine, nitrosamine, and ferrous sulphate. We removed them 

as they are not representative of small molecular drugs. Afterwards, we removed low-variance 

descriptors, which were mostly counts of substructural motifs. The final set consisted of 575 

compounds and 1’001 descriptors. 

For metabolic information, we turned to DrugBank Version 4.3 (https://www.drugbank.ca). 

DrugBank is a freely available resource maintained by the University of Alberta, Canada, 

which, amongst other things, provides curated information on drug targets and metabolic 

pathways. We downloaded the entire database and constructed the network of drugs to bio-

entities (BE; an umbrella term comprising metabolic enzymes, transporters, carriers, and 

targets). From this network we removed all substances not in our dataset as well as bio-entities 

that had no association with the remaining substances (i.e. if an enzyme did not interact with 
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any of the compounds in our dataset, it was deleted from the network). A total of 417 substances 

(70.9 %) were listed in DrugBank. Because some of the interactions are asymmetrical (drug to 

target) and some are not (a drug can be metabolized by and / or induce / inhibit an enzyme’s 

activity) we chose an undirected network architecture. The network is also bipartite since no 

drugs were assumed to interact directly with each other, and the same assumption was made 

for BEs. We then constructed unipartite projections so that drugs are removed from the 

network, and edges (connections) were inserted where two BEs interact with the same drug. 

For example, the lipid lowering drug simvastatin is a substrate of both cytochrome P450 

CYP3A4 and CYP2D6. This would correspond to a connection (edge) between the two 

isoforms when simvastatin is removed. We performed these steps separately for hepatotoxic 

and non-hepatotoxic compounds, leaving us with two different networks that can help 

understand differences in metabolism in DILI and non-DILI situations. The complete 

architecture is given in Annex 4.  

2.3.1.2 Structural similarity 

The structural heterogeneity of a collection of molecules can be quantified by considering 

individual molecules as points in a high-dimensional space wherein each axis corresponds to a 

descriptor. Similar compounds will then lie closer together, and a set of compounds is 

considered homogenous if it is tightly packed. The Tanimoto coefficient is a widely adopted 

method, where the similarity between compounds i and j is calculated from a set of k descriptors 

as  
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The values of the coefficient range from 0 to 1, with low values indicating diversity and high 

values similarity. 

2.3.1.3 Model learning process 

All models discussed here were learned with 10-fold cross-validation to avoid overfitting. 

Overfitting arises when models with high degrees of complexity and a high accuracy are 

created that are not generalizable, i.e. perform much worse on unseen data. Additionally, we 

repeated the cross-validated learning runs ten times with different random seeds to detect any 

variations in model quality. The final reported models were chosen from these ten runs. 

We judged model performance based on their corrected classification rate (CCR), given as 

 

for the two-class case. TN and TP represent the number of true negative and positive predictions, 

respectively, and N0 and N1 the total number of negative and positive observations in the model. 

This measure is more appropriate for skewed datasets such as the one presented here where 

one class (hepatotoxic compounds) outnumbers the other (non-hepatotoxic compounds). 

We surveyed several commonly used machine learning paradigms: decision tree induction 

(DTI), k-nearest neighbour classification (kNN), support vector machines (SVM), and artificial 

neural networks (aNN). We implemented these models in GNU R Version 3.3.3. 

Decision tree induction is not considered to require feature selection as the number of attributes 

included in the models is limited by the learning parameters (e.g. maximal tree depth, minimum 

number of instances per split, minimum number of instances per node). For other paradigms 

(kNN, SVM, aNN), we performed separate feature selection (dimensionality reduction) with 
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two commonly used methods: recursive feature elimination (RFE) and correlation-based 

feature subset selection (CFSS). We provide a full list of the descriptors selected by each 

method in the supplementary material S5. 

As a last step, we repeated the model building processes with y-randomization (Rücker et al. 

2007). Here, the observed activities were replaced with random activities with the same 

proportions of classes as the original data. This is useful to ensure models detect true 

relationships between attributes and outcomes in situations where the number of attributes and 

the dimensionality of the paradigms (which can equal infinity in SVM setups) are very large. 

2.3.1.4 Defined daily doses (DDD) 

The WHO Collaborating Centre for Drug Statistics Methodology maintains a list of drugs and 

their DDDs (https://www.whocc.no/atc_ddd_index). We manually checked the 588 substances 

in our original dataset against this database and noted the maximum DDD. No DDD was 

recorded when the mode of application was topical or local (creams, inhalers, etc.), assuming 

that no systemic exposure (and, consequently, hepatotoxicity) occurs with their use. We found 

245 (41.6 %) drugs for which we recorded the dose in mg/d and the millimolar dose (mmol/d; 

conversion made with molecular mass as per PaDEL calculations). 

2.4 Results 

2.4.1 Dataset 

The final set for the creation of the machine learning models contains 384 (66.8%) DILI-

positive drugs and 191 (33.2%) DILI-negative drugs (total n=575), and is reproduced in the 

supplementary material S3. The overall Tanimoto similarity index value was fairly low at 0.24, 

indicating a heterogeneous dataset based on the descriptors employed. 
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2.4.1.1 Decision Tree Induction 

We performed decision tree analysis with an implementation of the CART algorithm in GNU 

R (‘r-part’). The minimum number of cases per split was set to 10, and the minimum number 

of instances per node was set to 5. Models were learned from the original data with ten-fold 

cross-validation. The final model performed with a CCR of 0.89 and is reproduced in Figure 

5. Y-randomized runs had a maximum CCR of 0.53. There was no increase in performance by 

balancing datasets during the learning process (maximum CCR 0.88).  

 

Figure 5: Decision tree model for hepatotoxic (‘DILI’) and non-hepatotoxic (‘NoDILI’) 
compounds.  
The more intense the shading, the more of one class is present at each node. 

The descriptors selected in this model were mostly topological and include autocorrelation 

descriptors (AATS2e, AATS2m, AATS4p, AATS5m, AATSC1c, ATS2e, ATSC0e, ATSC3e, 

ATSC3v, ATSC4e, ATSC4s, ATSC4v, ATSC6v, MATS1e, MATS3c), atom type 

electrotopological state descriptors (hmin, maxaasC, maxsNH2, SHBa) (Gramatica et al. 2000; 
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Hall & Kier 1995), structural information content (an index of neighbourhood symmetry of the 

third order, SIC3) (Basak et al.), the topological distance matrix (SpMin1_Bhs, SpMax1_Bhi), 

Barysz matrix (VE1_D, VE1_Dzs) (Barysz et al. 1983) and molecular polarizability (Mp). All 

of these descriptors serve to characterize different molecular shapes, branching, and 

distributions of charge. 

The most readily interpretable attributes were an estimator of logP (ALogP) with a cut-off of -

0.72, where higher values are more likely to be predicted as hepatotoxic, and the number of 

hydrogens (nH). The latter appears very late (i.e. the decision influences few compounds), with 

> 20 hydrogens being associated with hepatotoxicity. 

2.4.1.2 k-nearest Neighbours 

We screened several values of k (5 to 20) and found the best performance for k=11. The CCR 

was 0.73, although little difference was seen between different k values (minimal CCR=0.71). 

The descriptor set used here (n=27) was the one selected in the decision tree induction model. 

Other feature subset selection methods (RFE, CFSS) were markedly less successful (maximum 

CCR=0.65). 

We were able to increase the predictive performance on the original dataset to a CCR of 0.83 

(maximum CCR in y-randomized runs was 0.56) by using SMOTE balanced internal training 

sets during cross-validation. Again, k=11 produced the best model. 

2.4.1.3 Support Vector Machines 

The CCR of the best performing SVM model was 0.74 (CCR = 0.54 in y-randomization) for 

the decision tree feature subset, while RFE and CFSS subsets were less successful (maximum 

CCR = 0.66). Using balanced datasets markedly increased the CCR to 0.98, with specificity 
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and sensitivity at equally high values (0.98). The CCR in the y-randomized runs was 0.89, 

however, which is why we chose to discard the models learned using balanced training data. 

2.4.1.4 Artificial Neural Networks 

We trained feed-forward neural networks with a single hidden layer with all feature sets. Best 

performance was seen with the decision tree feature set (CCR=0.86, CCR in y-randomization 

= 0.49), while RFE and CFSS both achieved CCRs of 0.74. Balancing the training data did not 

improve predictivity. 

2.4.2 Interactions with bio-entities 

Our survey of DrugBank listed interactions with carriers, transporters, and metabolizing 

enzymes showed (Figure 6) that the largest share of interactions was with CYP3A4, CYP2C9, 

MRP1, CYP2D6, and CYP2C19. Of statistical significance were CYP2C9, CYP2C8, 

CYP3A5/7, SLC22A6, ABCC2, serum albumin, and prostaglandin G/H synthase 1. It is of 

particular interest, that there is not only a statistical difference between individual bio-entities 

but that the network of interactions (see supplementary material S4) is more complex for 

hepatotoxic compounds compared to non-toxic compounds. 
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Figure 6: Fraction of drugs interacting with the 15 most common enzymes, carriers, 
transporters, and targets, grouped by hepatotoxicity.  
Significance brackets (*) at p-value < 0.05 (Fisher's exact test). 

2.4.3 Defined daily doses (DDD)  

Based on previous analysis (Chalhoub et al. 2014; Chen et al. 2013; Yu et al. 2014b), the 

distribution of compounds’ DDDs with regard to the threshold of 50 mg between hepatotoxic 

and non-hepatotoxic groups showed (Figure 7) that for compounds with DDD < 50 mg the 

same number of compounds have been observed to be hepatotoxic and non-hepatotoxic (n=48 

each). For compounds with DDD ≥ 50 mg, more than twice as many compounds were 

hepatotoxic (n=167) than non-hepatotoxic (n=68; p < 0.001). A ROC analysis showed that the 

criterion of DDD ≥ 50 mg alone was, however, only a moderate predictor of hepatotoxicity 
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with a sensitivity of 77.2% and specificity of 22.4%. The same sensitivity was observed for 

micromolar DDD (threshold 144 µmoles) with a specificity of 40.5% and a significant (P = 

0.001) distribution of DDD between the treatment groups. 

 

Figure 7: Distribution of defined daily doses (DDD) is different for hepatotoxic and non-
hepatotoxic compounds (P < 0.001) 

2.5 Discussion 

2.5.1 Predictive models 

Our survey of machine learning paradigms for the prediction of clinically relevant 

hepatotoxicity points to decision trees as the most useful method. Its precision is matched by 

artificial neural networks and, if combined with the more involved cross-validation process of 

balancing the training data, also by the k-nearest neighbour method. Decision tree induction 
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also provided the most informative feature selection for paradigms that require dimensionality 

reduction (such as SVM, aNN, or kNN). Because hepatotoxicity can occur for a variety of 

reasons, the capability of DTI to separate a problem space (DILI) into several subspaces 

(different pathomechanisms) could be grounds for its effectiveness in this setting. 

To put our results into context, we evaluated comparable machine learning approaches to 

modelling drug-induce liver injury in literature published from 2011 to 2017 (full reference list 

and overview given as supplementary material S5). Out of the 15 studies, some were performed 

solely on animal data. Of those based on human data, only five used clinically validated 

outcomes (such as the FDA’s Liver Toxicity Knowledge Base (LTKB)) that can be held to a 

similarly rigorous standard. Our DTI models are highly predictive, and are on par with – if not 

superior to – the other published efforts.  

Not only can hepatotoxicity arise through a multitude of mechanisms but it can also be 

precipitated by risk factors. For example, age and gender can greatly affect liver function and 

toxicity of compounds by changes in cytochrome activity, reduction in hepatic blood flow, 

decreased drug binding, and malnutrition. (Hunt et al. 1992) Valproate and erythromycin, for 

instance, show greater hepatotoxicity in children compared to adults. Ethanol consumption 

increases toxicity of acetaminophen through induction of CYP2E1 (chronic intake) and 

formation of N-acetyl-p-benzoquinone imine (NAPQI) as well as reduction of glutathione 

stores necessary for NAPQI elimination (Stine & Chalasani 2017). Isoniazid toxicity through 

slow acetylation is genetically predetermined and racial predisposition has been extensively 

researched (Walker et al. 2009). Risk also increases with concomitant diseases (e.g. pre-

existing liver disease, diabetes mellitus, renal failure, HIV/AIDS, obesity) or drug-drug 

interactions. These individual host factors are not represented in structure-activity relationship 

models. This is of course complicated by the fact that the same drug can induce multiple forms 
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of injury, in certain cases at different time points in therapy (early hepatocellular damage 

progressing to mixed patterns). Therefore, it is possible that even better predictivity could be 

achieved by integrating individual patient characteristics into future models, e.g. disease state, 

genotype, or concomitant medications. 

2.5.2 Interactions with bio-entities 

From our analysis of DrugBank, we found that the network of interactions for hepatotoxic 

compounds appears more interconnected for hepatotoxic compounds. There were also several 

statistically significant interaction differences for both classes. It is important to note that 

DrugBank’s data is the result of extensive literature searches and not systematic in vitro testing 

of the interactions given. As such, there are bound to be biases. For instance, routine regulatory 

and industry endpoints such as CYP3A4 interactions will be more consistently determined than 

other endpoints that may stem from academic research.  

2.5.2.1 CYP3A subfamily 

Members of the CYP3A subfamily are involved in the phase I metabolism of an estimated 50% 

of small molecule drugs on the market. They catalyse a variety of reactions such as 

dealkylations, hydroxylations, aromatic oxidations, dehydrogenations, and epoxidations 

(Rendic 2002). The last process specifically produces exquisitely toxic compounds: the highly 

reactive electrophilic epoxides (Niederer et al. 2004). Like members of the CYP2C family, 

CYP3A4 has epoxygenase activity. This has been shown for arachidonic acid and its 

epoxygeneration to carcinogenous compounds (Bishop-Bailey et al. 2014). There are also 

specific examples of how CYP3A4 metabolism confers toxicity. The N-demethylation of 

cocaine is greater with CYP3A4 induction and so is cocaine’s hepatotoxicity (Pellinen et al. 

1994). While there seems to be a trend towards CYP3A4 interactions for hepatotoxic 
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compounds, there were only statistical significances for CYP3A5 and CYP3A7. All of these 

enzymes have interindividual variability in activity and, in the case of CYP3A4 and CYP3A7, 

they show developmental patterns, with CYP3A4 increasing in activity through infancy and 

CYP3A7 losing activity with age (de Wildt et al. 1999). Possibly, this variability explains why 

CYP3A4 did not reach significance. Another explanation could be the substrate overlap for 

CYP2C8 and CYP3A4.  

2.5.2.2 CYP2C subfamily 

The isoforms 2C8, 2C9, 2C18, and 2C19 share > 80% amino acid identity, although there is 

only little overlap in substrates. The subfamily accounts for roughly 20% of cytochrome 

activity in hepatic microsomes. Whereas CYP2C8 metabolizes weakly acidic large molecules, 

CYP2C9 recognizes weak acids with a hydrogen acceptor, and CYP2C19 basic molecules or 

amides with two hydrogen acceptors (Zanger et al. 2008). Many have narrow therapeutic 

indices (coumarines, phenytoin). The CYPs 2C8, 2C9, 2C18, and 2C19 have epoxygenase 

activity and can generate superoxide (O2
-), cytotoxic reactive oxygen species (Fleming 2014; 

Miners & Birkett 1998). 

2.5.2.3 CYP2D6 

The CYP2D6 enzyme is polymorphic, i.e. there are several interindividual and ethnic 

differences in activity, and individuals can be grouped into different phenotypes (ultra-rapid, 

extensive, intermediate, and poor metabolizers). There are inhibitors, for example fluoxetine 

and quinidine, but no known inducers of CYP2D6 (Teh & Bertilsson 2012). This variation has 

drug safety consequences, as many antipsychotics and antidepressants, but also oncologicals 

like tamoxifen, are metabolized at least partly by CYP2D6. As a consequence, there may be 

symptoms of overdose where the dosage is not matched with individual metabolic capacity, or 
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where there are toxic metabolites. This has been documented in vitro and in vivo for psychiatric 

drugs (e.g. quetiapine, venlafaxine, and trazodone) (Jornil et al. 2013; Li & Cameron 2012; 

Najibi et al. 2016). Other examples include primaquine (Ganesan et al. 2009) and 

acetaminophen (Dong et al. 2000). It is therefore not surprising that CYP2D6 interactions are 

a risk factor for drug toxicity. 

2.5.2.4 Serum albumin 

Binding to albumin, alpha-1 acid glycoprotein, and lipoproteins can play an important part in 

drug distribution. Hypoproteinaemia will lead to higher free (= unbound) concentrations for 

these drugs, and, by consequence, stronger effects and possibly toxicity. Clinically, this is well 

recognized for antiepileptics such as valproic acid (Ahmed & Siddiqi 2006), anti-inflammatory 

drugs such as salicylates (Gitlin 1980), or anti-infectives (Makhlouf et al. 2008). Many disease 

states can influence protein binding, ranging from malnutrition and malignancies to 

hepatotoxicity itself, as hepatic insufficiency involves altered protein synthesis. 

2.5.2.5 Cellular Transporters 

The basolaterally expressed MRP1 (ABCC1) and the apically expressed MRP2 (ABCC2) are 

members of the ATP-binding cassette family, found throughout the body (also hepatically), 

and involved in the transport of a wide range of compounds, both charged and uncharged. Their 

clinical importance can be seen in the response to and toxicity of methotrexate depending on 

MRP1 activity (Lima et al. 2015), or statin disposition in relation to MRP1 and MRP2 activity 

(Rodrigues 2010). 
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2.5.3 Defined daily doses (DDD) 

We confirmed previous observations (Chalhoub et al. 2014; Chen et al. 2013; Yu et al. 2014b) 

that DDD is a predictor of hepatotoxicity. The trend towards better specificity of high DDDs 

in micromolar units compared to mg is indication that the sheer number of circulating 

molecules is more important than the dose amount in the system. However, DDDs alone were 

both only moderate predictors of hepatotoxicity with sensitivity 72.2% and low specificity. 

2.6 Conclusions 

We present a study of the structural and metabolic features associated with hepatotoxicity. 

There are only few instances where drug induced liver injury is not considered idiosyncratic. 

Our study indicates that this is not the case, and that the vast majority of hepatotoxicity seems 

to be predictable from a drug’s structure – a potentially very useful tool in clinical 

pharmacological practice as well for avoiding costly attritions in drug development. 

Despite the predictive power of our models, they could be markedly improved by incorporating 

these susceptibility factors into more comprehensive systems. These could help in individual 

therapy (personalized medicine) and in regulatory questions, e.g. for judging the toxic potential 

in special populations such as children, the elderly, or pregnant / lactating women. Similarly, 

given a sufficiently large dataset, subgroup analyses by injury pattern (hepatocellular vs. 

cholestatic vs. mixed) would be informative. 

We also show that different metabolic pathways are active in hepatotoxicity, and these may be 

influenced by predisposing factors (age, gender, or ethnicity), concomitant medication, or 

disease states. The major limitation here is that the drug interactions evaluated are likely 

heavily biased by regulatory requirements. Furthermore, we were able to confirm that higher 
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DDDs, esp. in micromolar units, are a risk factor for the development of acute hepatotoxic 

effects.
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3.1 Abstract 

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families and form a 

powerful defence mechanism against herbivores. More than 600 different PAs are known. PAs 

are ester alkaloids composed of a necine base and a necic acid, which can be used to divide 

PAs in different structural subcategories. The main target organs for PA metabolism and 
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toxicity are liver and lungs. Additionally, PAs are potentially genotoxic, carcinogenic and 

exhibit developmental toxicity. Only for very few PAs, in vitro and in vivo investigations have 

characterised their toxic potential. However, these investigations suggest that structural 

differences have an influence on the toxicity of single PAs. To investigate this structural 

relationship for a large number of PAs, a quantitative structural-activity relationship (QSAR) 

analysis for hepatotoxicity of over 600 different PAs was performed, using Random Forest- 

and artificial Neural Networks-algorithms. These models were trained with a recently 

established dataset specific for acute hepatotoxicity in humans. Using this dataset, a set of 

molecular predictors was identified to predict the hepatotoxic potential of each compound in 

validated QSAR models. Based on these models, the hepatotoxic potential of the 602 PAs was 

predicted and the following hepatotoxic rank order in three main categories defined: (i) for 

necine base: otonecine > retronecine > platynecine; (ii) for necine base modification: 

dehydropyrrolizidine >> tertiary PA = N-oxide and (iii) for necic acid: macrocyclic 

diester ≥ open-ring diester > monoester. A further analysis with combined structural features 

revealed that necic acid has a higher influence on the acute hepatotoxicity than the necine base. 

3.2 Introduction 

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families, with more 

than 95% of the PA-containing species belonging to the following four families: Asteraceae, 

Boraginaceae, Fabaceae and Orchidaceae (Hartmann & Witte 1995; Langel et al. 2011). More 

than 600 natural occurring PAs have been identified from approximately 6000 angiosperm 

species (Chen et al. 2010). They form a powerful defence mechanism against herbivores 

(insects, mammalians).  
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PAs are heterocyclic ester alkaloids composed of a necine base (two fused five-membered rings 

joined by a single nitrogen atom) and a necic acid (one or two carboxylic ester arms), occurring 

principally in two forms, tertiary base PAs and PA N-oxides.  

The necine base may have different structures, which divide PAs into several types, e.g. 

otonecine, platynecine, and retronecine. Furthermore, a classification based on the necic acid 

is possible (Langel et al. 2011). A coarse classification of the necic acid would be macrocyclic 

diester, open-ring diester and monoester (see Figure 8). 

 

Figure 8: Common structural features of PAs. 
 

Plants synthesise and translocate PAs as hydrophilic N-oxides, but may be store as either 

lipophilic tertiary base or hydrophilic N-oxide (Hartmann et al. 1989). Upon ingestion of plants 

by herbivores, the N-oxides are reduced in the gut to its tertiary alkaloids-form and then 

passively absorbed (Lindigkeit et al. 1997). PA metabolism occurs mainly in the liver, which 

is also the main target organ of toxicity (Bull & Dick 1959; Bull et al. 1958; Butler et al. 1970; 

DeLeve et al. 1996; Jago 1971; Li et al. 2011; Neumann et al. 2015). There are three principal 

metabolic pathways for 1,2-unsaturated PAs (Chen et al. 2010): (i) Detoxification by 
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hydrolysis of the ester bond on positions C7 and C9 by non-specific esterases to release necine 

base and necic acid, which are then subjected to further phase II-conjugation and excretion. (ii) 

Detoxification by N-oxidation of the necine base (only possible for retronecine-type PAs) to 

form PA N-oxides, which can be conjugated by phase II enzymes e.g. glutathione and then 

excreted. PA N-oxides may be converted back into the corresponding parent PA (Wang et al. 

2005). (iii) Metabolic activation or toxification of PAs by oxidation (for retronecine-type PAs) 

or oxidative N-demethylation (for otonecine-type PAs (Lin 1998)). This pathway, which is 

mainly catalysed by cytochrome P450 isoforms CYP2B and 3A (Ruan et al. 2014b), results in 

the formation of dehydropyrrolizidine (DHP, also known as pyrrolic ester or reactive pyrroles). 

DHPs cause damage in the cells where they are formed, usually hepatocytes, but can pass from 

the hepatocytes into the adjacent sinusoids and damage the endothelial lining cells (Gao et al. 

2015) predominantly by reaction with protein, lipids and DNA. There is even evidence, that 

conjugation of DHP to glutathione, which would generally be considered a detoxification step, 

could result in reactive metabolites, which might also lead to DNA adduct formation (Xia et 

al. 2015). Due to the ability to form DNA adducts, DNA crosslinks and DNA breaks 1,2-

unsaturated PAs are generally considered genotoxic and carcinogenic (Chen et al. 2010; EFSA 

2011; Fu et al. 2004; Li et al. 2011; Takanashi et al. 1980; Yan et al. 2008; Zhao et al. 2012). 

However, there is no evidence yet that PAs are carcinogenic in humans (ANZFA 2001; EMA 

2016). After acute intoxication of humans, the most common lesions in the liver are 

haemorrhagic necrosis, lesions in the central and sublobular veins of the liver, and acute 

venoocclusive disease (DeLeve et al. 2003; EFSA 2011).  

There is evidence that the oral bioavailability (Hessel et al. 2014) and the specific toxicity of 

single PAs depends on structural features of the necic acid and the necine base. Considering 

the necine base, only 1,2-unsaturated PAs (retronecine- and otonecine-type PAs) can be 
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metabolically activated in the liver to DHPs. Saturated PAs (platynecine-type PAs) are also 

metabolised by cytochromes, but the metabolites are water-soluble and readily excreted (Ruan 

et al. 2014a; Ruan et al. 2014b). No formation of DNA-adducts could be shown for saturated 

PAs (Xia et al. 2013). Therefore, saturated PAs may be regarded as less/non-toxic. Also, 

differences in the toxicity of 1,2-unsaturated PAs were observed, with otonecine-type PAs 

being more toxic than retronecine-type PAs (Li et al. 2013). Furthermore, from experimental 

experience, PAs with macrocyclic diesters are considered more toxic than those with an open-

ring diester or monoester (EFSA 2011; Fu et al. 2004; Ruan et al. 2014b). 

However, a drawback of these in vitro and in vivo studies is – due to limited availability of pure 

substances - the limited number of PAs investigated with regards to their structure-specific 

toxicity. To overcome this bottleneck, the structure-specific hepatotoxic potential of over 600 

different PAs was predicted using two QSAR models, implementing either Random Forest 

(RF) or an artificial Neural Network (aNN), and which were trained specifically for acute 

human drug-induced liver injuries (DILI). 

3.3 Materials and methods 

3.3.1 Compilation of the PA dataset 

The PA dataset was created from five independent, necine base substructure searches in 

PubChem (Supplementary material S1). The resulting standard data files (sdf-files) were 

scanned with Bioclipse (v2.6) (Spjuth et al. 2009; Spjuth et al. 2007). The downloaded 

structures were compared to the PAs listed in the EFSA publication (EFSA 2011) and the book 

by Mattocks (Mattocks 1986), using the CAS-number and the synonyms, to ensure, that all 

major PAs were included. PAs mentioned in these publications which were not found in the 

downloaded substances were searched individually in PubChem and, if available, downloaded 
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separately. Non-PA substances, duplicates, and isomers were removed from the files by hand. 

Artificial PAs, even if unlikely to occur in nature, were included in the analysis. As result, the 

final PA dataset comprised a total of 602 different PAs. For each PA molecular 1D and 2D 

descriptors were calculated using PaDEL-Descriptors (version 2.21) (Yap 2011; 2014). The 

process of standardization involved removing any salts from SMILES structures, for instance 

chlorides or lysinate residues. Additionally, we removed explicit hydrogens. 

The PAs in the dataset were classified according to structural features. A total of 9 different 

structural features were assigned to the necine base, modifications of the necine base and to the 

necic acid (see Figure 8).  

For the necine base, the following structural features were chosen: 

- Retronecine-type (1,2-unstaturated necine base) 

- Otonecine-type (1,2-unstaturated necine base) 

- Platynecine-type (1,2-saturated necine base) 

For the modifications of the necine base, the following structural features were chosen: 

- N-oxide-type 

- Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type) 

- DHP-type (pyrrolic ester) 

For the necic acid, the following structural features were chosen: 

- Monoester-type 

- Open-ring diester-type 
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- Macrocyclic diester-type 

Then, to assess the combined influence of the necine base and the necic acid on hepatotoxicity, 

the above-mentioned features were combined. This resulted in the following 15 groups: 

- Retronecine with a monoester (80 compounds), open-ring diester (80 compounds), or 

macrocyclic diester (139 compounds) 

- Retronecine N-oxide with a monoester (25 compounds), open-ring diester (24 

compounds), or macrocyclic diester (21 compounds) 

- Otonecine with a monoester (1 compounds), open-ring diester (1 compounds), or 

macrocyclic diester (41 compounds) 

- Platynecine with a monoester (45 compounds), open-ring diester (43 compounds), or 

macrocyclic diester (38 compounds) 

- Platynecine N-oxide with a monoester (3 compounds), open-ring diester (6 

compounds), or macrocyclic diester (2 compounds) 

Otonecine N-oxides do not exist, since the carboxyl-group at the nitrogen prevents N-oxidation.  

3.3.2 Data pre-processing and feature selection 

A flowchart of the development of the prediction models, including validations, is provided in 

Figure 9. 

The DILI dataset, which was used to train the QSAR-models, was established by Chen et al. 

(2016) and was built up from different sources: marketed drugs approved by the FDA, which 

are a) withdrawn or labelled in boxed warning or warnings and precautions with severe DILI 
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indication (most-DILI-concern), b) DILI labelling in warnings and precautions with mild DILI 

indication or adverse reactions (less-DILI-concern), and c) no DILI indicated in the labelling 

(no-DILI-concern). Verification of DILI-concerns was made with reference to public resources 

(i.e. the NIH LiverTox database), and cases from major DILI registries (Spanish DILI Registry, 

Swedish Adverse Drug Reactions Advisory Committee Database, and the Drug-Induced Liver 

Injury Network (DILIN) in the USA). 

Substances which were validated classified as being of less-DILI-concern and of most-DILI-

concern were regarded as hepatotoxic, whereas substances classified as no-DILI-concern were 

regarded as non-hepatotoxic. Substances with ambiguous-DILI-concern and antibodies were 

removed from the dataset. The final dataset consisted of 721 substances, containing 453 

hepatotoxic and 268 non-hepatotoxic substances. For each substance 1444 molecular 

descriptors were calculated using PaDEL-descriptors (version 2.21) (Yap 2011; 2014), 

analogously to the PA dataset. 
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Figure 9:  Flowchart of the creation and validation of the Random Forest and the artificial 
Neural Network (aNN) models. 
 

In the course of data cleaning for import, two substance had to be removed from the dataset, as 

many descriptors could not be computed. Furthermore, values in the dataset, which were 

smaller than 1×10-10 were set to zero. Then the dataset was imported into R (R Project for 

Statistical Computing, https://www.r-project.org/; version 3.3.1) and all further steps were 

performed using additional R packages (packages are identified for each step in the description 

below).  

https://www.r-project.org/
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The second step after data cleaning was variable selection to identify the descriptors, which are 

actually related to the outcome. First of all, descriptor variables with a near zero variance were 

identified and removed using the ‘NearZeroVar’-function (package ‘caret’). A descriptor was 

classified as near zero variance if the percentage of unique values was less than 10% or when 

the ratio of the frequency of the most common value to the frequency of the second most 

common value was greater than 95:5 (e.g. 95 instances of the most common value and only 5 

or less instances of the second most common value). A total of 1062 descriptors were left after 

this step. The DILI dataset contained 2.38% of missing values. These missing values were 

imputed using the ‘rfimpute’-function (package ‘randomForest’). The use of imputation was 

driven by the need for complete cases in learning RF models. As the training dataset is by its 

very nature homogeneous (mostly small molecule drugs), imputation of missing values is 

justifiable. Furthermore, it was not necessary to impute any descriptors for the prediction of 

PA dataset. 

Then, highly correlated descriptors were removed using the ‘findCorrelation’-function 

(package ‘caret’) with a cut-off of 0.9 yielding 548 descriptors. A Recursive Feature 

Elimination (RFE) method with Random Forest (Zhu et al. 2015) was then used to identify the 

most important descriptors (the final predictors) to describe the outcome. For this model it was 

aimed to use approximately 100 predictors to avoid overfitting. Therefore, different numbers 

of predictors (1, 10, 50, 75, 100, 200, 548) were tested and the accuracy of the predicted 

outcome was compared. As optimal accuracy was achieved with 100 descriptors, these 

descriptors were chosen as predictor for modelling. 

Unbalanced datasets can adversely affect the training of the QSAR model. A dataset is 

considered unbalanced if certain classes are overrepresented. Different approaches are 

possible, e.g. artificially balancing the dataset, assigning penalties to the model for 
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misprediction of the minority class, or giving the minority class a higher weight. In this study, 

it was decided to use the ‘Synthetic Minority Oversampling Technique’ (Chawla et al. 2002), 

function ‘ubSMOTE’ (package ‘unbalanced’) to balance the dataset. To verify the suitability 

of the SMOTE-function, a total of 50 balanced dataset were created and the performance 

compared in a cross-validation approach. The mean accuracy of the 50 forests was 89% (range: 

83-94%), indicating that the creation of artificial instances with the SMOTE algorithm does 

not introduce systematic bias. The final balanced DILI dataset consisted of 458 hepatotoxic 

and 455 non-hepatotoxic observations. 

3.3.3 Random Forest model (RF) 

Based on the 100 most important predictors and the balanced DILI dataset, a RF model 

(Breimann 2001) was trained using the ‘randomForest’-function (package ‘randomForest’). A 

forest with 1000 decision trees was grown, where 75 variables were randomly sampled as 

candidates at each split. 

3.3.4 Artificial Neural Network model (aNN) 

For the aNN model, an additional pre-processing step was necessary. The DILI dataset was 

normalised by calculating the standard deviation for each predictor and then divide each value 

by that standard deviation (‘preProcess’-function, package ‘caret’). The same scaling used for 

the DILI dataset was applied to the PA dataset. 

The aNN model consisted of a multilayer perceptron which was created by using the ‘mlp’-

function (package ‘RSNNS’) (Bergmeir & Benítez 2012). It consisted of three layers, an input 

layer with 100 units, a hidden layer 75 units, and an output layer with one unit. A logistic 

activation function was used. 
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3.3.5 Prediction model and assessment of outcome 

The RF and the aNN models were used to predict the probability of hepatotoxicity of the PA 

dataset. Therefore, the models indicated the probability for each substance to be a hepatotoxin. 

A higher percentage probability value does not mean that the substance is more toxic then a 

substance with a low value, but rather indicates that the chances are higher for these substances 

to be actually hepatotoxic (Breimann 2003). 

The probability results were binned into probability classes in increments of10% (e.g. 70-80% 

probability for hepatotoxicity) and these probability classes were compared to the structural 

features assigned to the PAs. Statistical significance was tested using an unpaired student’s t-

test (‘t.test’-function, package ‘stats’).  

3.3.6 Validation of prediction model 

The following methods were used for the validation of the prediction model in this study 

(Mitchell 2014; Nantasenamat et al. 2009):  

Confirmation of applicability domain 

The suitability of a prediction model for a specific dataset depends on the applicability domain 

of the training and the test dataset. This means that the range of the predictor values of the 

training dataset have to match with the test dataset. A test compound is unlikely to be correctly 

predicted if there is no similar compound in the training set. To confirm the applicability 

domain of the DILI and the PA dataset, a principal component analysis (PCA) was performed, 

using the identified, relevant 100 predictors and the first four principal components. 

Furthermore, the distance between the DILI dataset and the PA dataset was calculated using 

the Jaccard distance measure. 
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Cross-validation 

Due to the relatively small number of observations in the DILI dataset, no external cross-

validation was performed. It was assumed, that a 10-15% reduction of the training dataset 

might adversely affect the applicability domain of the total model. Instead, a 10-fold, internal 

cross-validation was conducted.  

The accuracy of predictions is given as the ratio of hits to total number of compounds. This 

measure may grossly overestimate the actual quality in skewed datasets, i.e. where the 

members of one class greatly outnumber those of other ones. Here, we report the predictive 

power of each model as correct classification rate (CCR): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
1
2
�
𝑇𝑇𝑁𝑁
𝑁𝑁0

+ 
𝑇𝑇𝑃𝑃
𝑁𝑁1
� 

where TN and TP represent the number of true negative and positive predictions, respectively, 

and N0 and N1 the total number of negative and positive compounds in the model. Also, the 

sensitivity and specificity of the models were calculated. 

Y-randomisation 

To exclude chance correlation of the descriptors and the outcome a y-randomisation (Rücker 

et al. 2007) was performed. The real model is compared with an alternative model, where the 

outcome (y-variable) is randomly permuted and the model, including feature selection, is built 

on basis of these randomised outcomes.  

This validation was only performed using a RF model. As the permuted outcome variables 

were already balanced, the bootstrapping step of the data pre-processing was omitted. Also, no 

10-fold cross-validation was performed. The quality of the permuted model was only evaluated 
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based on the ROC (Receiver Operating Characteristics)-curve, the corresponding AUC (Area 

Under the Curve) and the confusion matrix. 

3.4 Results 

3.4.1 Validation 

The compliance of the applicability domains of the DILI and the PA dataset was tested using 

a PCA. The PCA, considering the first four principal components (PC1 to PC4), showed that 

in principal, the PA dataset was within the range of the DILI dataset (see Annex 1). The former 

result was also confirmed by the calculation of the Jaccard distance, which showed an average 

distance below 0.2 for all PAs relative to the training dataset. Therefore, it can be assumed that 

the DILI dataset is suitable to build predictive models for the PA dataset. 

A 10-fold internal cross-validation was conducted to test the performance of the models. The 

RF model had a CCR of 89.0%, a sensitivity of 88.8%, a specificity of 89.3%, and a ROC-

AUC of 0.96. The performance of the aNN model was slightly inferior, with a CCR of 76.2%, 

a sensitivity of 77.5%, a specificity of 74.9%, and a ROC-AUC of 0.84.  

After y-randomisation of the outcome, the RF model had only a CCR of 52.2%, a sensitivity 

of 46.0%, a specificity of 58.5%, and a ROC-AUC of 0.53. These results indicate that the 

predictions were by chance, and no correlation between predictors and outcome can be 

established. Therefore, the predictors of the DILI dataset were actually related to the outcome 

and a by chance correlation can be excluded. 

The results of the four validation approaches show that prediction models based on the DILI 

dataset are valid and suitable to predict the acute hepatotoxic potential of the PA dataset.  
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3.4.2 Prediction of the PA dataset  

From the 602 PA analysed, a total of 105 and 496 PAs were predicted as hepatotoxic 

(probability of at least 50%) by the RF and the aNN model, respectively.  

The prediction of single PAs was highly correlated between both models (R=0.977, p<0.0001, 

see Figure 10). RF generally predicted a lower probability of hepatotoxicity than aNN 

However, this analysis showed that the aNN prediction were on average higher than the 

predictions with the RF model (intercept -12.7%, slope 0.80).  

 
Figure 10: Correlation of the hepatotoxic potential of single PAs as predicted by the RF and 

the aNN model.  
Intercept = -0.1271 (p < 0.0001), slope = 0.8009 (p = 0.0001), R = 0.977 

For selected single PAs the prediction of our models was compared to the reported in vivo 

hepatotoxic potential in literature. Monocrotaline (DeLeve et al. 1996; Yang et al. 2017; Zhang 

et al. 2017; Zheng et al. 2016), riddelliine (NTP 2003; Schoental & Head 1957) and 

lasiocarpine (NTP 1978) are known hepatotoxic PAs, whereas retronecine and lycopsamine 

did not show hepatotoxic potential in vivo (Xia et al. 2013). Accordingly, in both models, the 
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former three, hepatotoxic PAs had much higher probabilities of being hepatotoxic (RF model: 

47%, 47%, and 48%; aNN model: 76%, 72%, and 67%, respectively) than the latter two, non-

hepatotoxic PAs (RF model: 16% and 16%; aNN model: 40% and 48%, respectively). 

To closer investigate the distribution of the probabilities within the single groups the 

cumulative percentage of PAs was plotted against the probability of hepatotoxicity (see Figure 

11). In general, a curve that is more on the left side of the plotting area, indicates that the group 

has a lower overall probability to be hepatotoxic than a curve that is shifted more to the right. 
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Figure 11: Cumulative number of PA (in percent) in structural feature groups versus the 
probability of hepatotoxicity.  
DHP: dehydropyrrolizidine, RF: Random Forest, aNN: artificial Neural Network. A shift of the 
curve to the right indicates a higher probability of hepatotoxicity, a shift to the left a lower 
probability.  
A:  All groups are significantly different from each other (p<0.001) 
B:  DHP are significantly different from the other two groups (p<0.001) 
C:  Monoester are significantly different from the other two groups (p<0.001) 
D:  All groups are significantly different from each other (p<0.05) 
E:  DHP are significantly different from the other two groups (p<0.001) 
F:  All groups are significantly different from each other (p<0.001) 
 

Considering the group of the necine base, otonecine-type PAs had in the both models 

significantly (p<0.001) higher potential for hepatotoxic potential compared to the retronecine-

type PAs. Platynecine had a significantly (p<0.001 in the RF model and p<0.05 in the aNN 
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model) lower hepatotoxic potential then retronecine. Therefore, the rank order for the necine 

base for their hepatotoxic potential can be assumed as: otonecine > retronecine > platynecine. 

Modifications of the necine base seem to have a significant influence on the prediction of 

hepatotoxicity. Not only is the majority of PAs from the DHP-type predicted as hepatotoxic, 

but also is the difference to the other two groups highly significant (p<0.001) for both models. 

The cumulative plots show, that very few DHPs have a lower hepatotoxic potential and the 

curve is far more right than those from the other two groups. The difference between N-oxides 

and tertiary PAs is not significant in either model. Therefore, the rank order for the necine base 

modification is: DHP >> tertiary PA = N-oxide. 

The structural features of the necic acid also determine the prediction of hepatotoxicity by the 

QSAR models. PAs from the macrocyclic diester-type had a significantly (p<0.001) higher 

probability in the aNN model to be hepatotoxic compared to PAs from the other two groups. 

In the RF model, the difference is only significant between macrocyclic diester and monoester-

type PAs. The difference between open-ring diester- and monoester-type PAs is significant 

(p<0.001) in both models. PAs with a monoester as necic acid have the lowest probability to 

be predicted as hepatotoxic. The rank order for the necic acid is therefore: macrocyclic 

diester ≥ open-ring diester > monoester. 

To better characterise the influence of the necine base and the necic acid on the hepatotoxic 

potential, the combination of structural features was investigated. The boxplots of the results 

are presented in Figure 12. Unfortunately, the number of substances in some groups was very 

low (indicated by a dollar sign); therefore, the otonecine- and the platynecine-N-oxide group 

could only partly or not at all be included in the evaluation. However, a clear trend is observable 

in both models. The hepatotoxic probabilities of PAs with the same necine base (retronecine, 

retronecine-N-oxide, and platynecine) but different necic acids are almost always significantly 
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(p<0.05) different (except for platynecine open-ring diester and platynecine macrocyclic 

diester in the aNN model), with the same rank order as in the evaluation of the single PA 

features. In contrast, despite different necine bases, PAs with the same necic acids seemed to 

have comparable hepatotoxic probabilities.  

 

Figure 12: Boxplots of the combined PA-structures, the necine base is indicated above the 
boxplot, the necic acid below.  
RF: Random Forest, aNN: artificial Neural Network, $ denotes groups comprising of less than 10 
PAs. In the boxplot, the median is indicated by a horizontal line, the bottom and top of the box are 
the 25th (P25%) and 75th (P75%) percentile, the whiskers are the P75% or P25% plus or minus 
1.5*IQR, respectively. Outliers are indicated as open circles. 

The investigation on combined structural features clearly suggests, that the necic acid has a 

higher influence on the hepatotoxicity probability of PAs than the necine base.  
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3.5 Discussion 

Relatively early during the investigation of the toxicity of PAs, a relationship between 

hepatotoxicity and structure was assumed (Mattocks 1986). This relationship was repeatedly 

confirmed in different in vitro studies with different toxicological endpoints (Fu et al. 2004; 

Kim et al. 1993; Li et al. 2013; Ruan et al. 2014a; Ruan et al. 2014b; Xia et al. 2013). Factors 

contributing to the structure-toxicity relationship of PAs are e.g. different modes of action 

(direct cytotoxicity vs. genotoxicity), different pathways and rates of metabolic activation, 

leading to different amounts of DHP, and different pathways and rates of detoxification.  

A drawback of in vitro and in vivo studies is that the number of different PAs tested is usually 

limited and dependent on the about 35 different, commercially available PAs. Therefore, more 

or less the same PAs are tested and compared over and over again. 

Other in silico studies, which were already performed with PAs, can be considered as further 

evidence that the structure of pyrrolizidine alkaloids has an influence on the bioactivation and 

toxicity. Srinivas et al. (2014) modelled different structural alterations of monocrotaline and 

tested them for toxicity reduction in different in silico models. Some structural alterations 

showed a significant reduction in toxicity and bio-availability accompanied by drug-likeness 

properties. Fashe et al. (2015) used three different in silico analyses (ligand-based Fukui 

electrophilic Fukui function, hydrogen bond dissociation energies, and structure-based 

molecular docking) to identify the site of oxidation by CYP 3A4 in the toxification pathway 

leading to the DHPs for two PAs from the retronecine-type and one from the otonecine-type. 

Interestingly, the sites of oxidation were different for the two different necine base-types 

studied. However, the in silico studies also focused on very few PAs. 
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The present study analysed a comprehensive number of 602 different PAs with human DILI 

outcome data with two different machine learning techniques. Even though PAs are structurally 

a quite homogenous substance class, both models were able to assign different hepatotoxic 

potential to structural features and thereby, were able to confirm a structure-toxicity 

relationship.  

Even though, the RF model had a better performance in the validation (correct classification 

89% vs 76%), the separation of the structural features in both models is comparable. 

The predicted hepatotoxic probability of single PAs (monocrotaline, riddelliine, retronecine, 

lasiocarpine, lycopsamine) by the two models was qualitatively comparable to the hepatotoxic 

potential reported in literature. 

However, there are also noteworthy differences between the RF model and published literature 

data. Even though monocrotaline, riddelliine and lasiocarpine are considered as hepatotoxic in 

in vitro (Field et al. 2015; Ruan et al. 2014b) and in vivo experiments (Xia et al. 2013), the 

probability in RF model were only 47%, 47%, and 48%, respectively. In terms of binary 

classification (cut off 50%), these PAs would have been classified as not hepatotoxic by the 

RF model. However, considering the percentage value, other conclusion should be drawn. In 

general, values around 50% indicate a low confidence of the prediction and are therefore 

difficult to interpret (Breimann 2003). Therefore, the values for these PAs do not mean, that 

these substances can be considered as not hepatotoxic, but that the prediction lacks confidence. 

Furthermore, it has to be taken into consideration, that the DILI dataset is based on experience 

with drugs in humans. However, the data for these three PAs are derived from in vitro (in cells 

of different origin) and animal experiments with different experimental designs. As the main 

purpose of the present study is to perform a qualitative analysis of PAs, relating structural 

features to the probability of toxicity, low confidence predictions (with a probability of around 
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50%) do not principally limit the overall conclusion, but may indicate that these should be 

interpreted with caution. 

The rank orders of the different structural features of both models are generally comparable to 

each other. Furthermore, the identified ranking fits to the toxification and detoxification 

pathways of PAs. The most indicative structural feature for hepatotoxicity is DHP. DHP is the 

reactive pyrrolic ester of the toxification pathway and the actual toxic principle of PAs. Both 

models identified this feature as most reliable predictor for hepatotoxicity. This is also in 

compliance with the observations by Kim et al. (1993), who compared the cytotoxicity of DHP 

with their parent compound. 

In contrast, PAs with an N-oxide structural motive or tertiary PAs were less likely to be 

predicted as hepatotoxic. However, the difference between these two groups was not significant 

in both models. PA N-oxides are generally regarded as detoxification products as the 

metabolites can be conjugated for excretion (Chen et al. 2010). Accordingly, N-oxides are more 

easily eliminated from the body (Chen et al. 2010). As N-oxides can be easily transformed back 

to the corresponding tertiary PA (Wang et al. 2005) it may be questioned, whether N-oxides 

themselves are generally less toxic than the corresponding tertiary PAs or rather whether 

reduced toxicity may results only from the reduced pool of retained N-oxides only. 

Within the necine base group, otonecine-type PAs have the highest probability to be 

hepatotoxic in both models. This might be due to the methylated nitrogen in the necine base, 

which disables it for direct N-oxidation. This would be in concordance with observations by Li 

et al. (2013), but not with the study from Ruan et al. (2014b), who found retronecine-type PA 

to be more toxic than otonecine-type PAs. The saturated platynecine-type PAs had the lowest 

hepatotoxic probability in both models. This is in agreement with the general view of the 
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platynecine-type PAs, which are considered as less/non-toxic than 1,2-unsaturated PAs (Fu et 

al. 2004; Ruan et al. 2014a). 

In addition, the analysis of combined structural features revealed, that the necic acid was more 

strongly correlated with the toxic potential of a PA than the necine base.  

Especially as the necic acids are sometimes quite large structures, steric hindrance might be 

involved with enzymes along the toxification and detoxification pathway. Several experimental 

observations led various authors to the conclusion that macrocyclic diesters are more toxic then 

open-ring diesters and monoesters (EFSA 2011; Fu et al. 2010; Ruan et al. 2014b). 

Furthermore, open-ring diesters were shown to be more toxic than monoesters (Ruan et al. 

2014b; Tamta et al. 2012). These observations are in agreement with the results of the aNN 

model. However, in the RF model, the difference between open-ring diester and macrocyclic 

diester is not significant. 

The fact, that open-ring diesters are more likely to be hepatotoxic than monoester might be 

explained by the hydrolysis detoxification pathway. In this pathway, the necine base and the 

necic acid are separated. For open-ring diesters, this would include two steps (one for each 

ester arm), for monoesters only one.  

In contrast to earlier experiments and the present study, the experiments by Ruan et al. (2014b) 

indicated, that open-ring diesters had a higher metabolic activation rate than macrocyclic 

diesters, resulting in a higher efficiency of adduct formation. Interestingly, the PAs used in this 

study all had the same necine base.  

In the last few years, PAs, especially in herbal medicinal products, became a widely discussed 

issue, with the European Medicinal Agency striving for a reduction of PAs in herbal medicinal 

products (EMA 2014; 2016). The limits are set for all PAs on the basis of toxicological animal 
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studies with only one PA (lasiocarpine). Considering the evident structural-toxicity 

relationship it is recommended to establish rather a rank order of known PAs, calculated in 

lasiocarpine-equivalents.  

In a next step, additional outcomes (e.g. chronic toxicity) should be modelled in silico 

(genotoxic/ carcinogenic potential of PAs). Also, further in silico investigations addressing the 

influence of the various structural moieties of PAs on the activity of the enzymes involved in 

PA metabolism (cytochrome P450, carboxyl esterase, UDP-glucuronosyltransferase) could 

shed further light not only on the structure-toxicity relationship, but also on the pronounced 

differences in sensitivity between species for hepatotoxicity effects of PAs (partly due to 

different expression levels of metabolic enzymes) (EFSA 2011). 
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4.1 Abstract 

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites of some plant families, which 

protect against predators and generally considered as genotoxic and mutagenic. This 

mutagenicity is also the point of concern in regulatory risk assessment of this substance group 

(EFSA 2011; EMA 2014; 2016). Several investigations already showed that the mutagenic 

potential of PAs is different, and largely depends on the structure.  

Since only very few of over 600 known PAs are available for in vitro or in vivo experiments, 

the mutagenicity of PAs in this study was estimated using four different machine learning 

techniques LAZAR and Deep Learning, Random Forest and Support Vector Machines. 

However, all models were not optimal for predicting the genotoxic potential of PAs either due 

to problems with the applicability domain or due to low performance. Therefore, no estimation 

regarding the genotoxic potential of single PAs could be made. An analysis of the genotoxic 
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potential of different structural groups, showed promising results. For necine base and necic 

acid, the results fitted well with literature for three models. However, the prediction of the toxic 

principle of PAs, dehydropyrrolizidine was only within expectation in one model (TensorFlow-

generated Deep Learning model), but not in the other four models. This study shows 

convincingly the need to critically review and assess the predictions obtained from machine 

learning approaches by internal cross-validation, but also by external validation through 

comparison with literature.  

4.2 Introduction 

Pyrrolizidine alkaloids (PAs) are secondary plant ingredients found in many plant species as 

protection against predators (Hartmann & Witte 1995; Langel et al. 2011). PAs are ester 

alkaloids, which are composed of a necine base (two fused five-membered rings joined by a 

nitrogen atom) and one or two necic acid (carboxylic ester arms). The necine base can have 

different structures and thereby divides PAs into several structural groups, e.g. otonecine, 

platynecine, and retronecine. The structural groups of the necic acid are macrocyclic diester, 

open-ring diester and monoester (Langel et al. 2011).  

PA are mainly metabolised in the liver, which is at the same time the main target organ of 

toxicity (Bull & Dick 1959; Bull et al. 1958; Butler et al. 1970; DeLeve et al. 1996; Jago 1971; 

Li et al. 2011; Neumann et al. 2015). There are three principal metabolic pathways for 1,2-

unsaturated PAs (Chen et al. 2010): (i) Detoxification by hydrolysis: the ester bond on positions 

C7 and C9 are hydrolysed by non-specific esterases to release necine base and necic acid, which 

are then subjected to further phase II-conjugation and excretion. (ii) Detoxification by N-

oxidation of the necine base (only possible for retronecine-type PAs): the nitrogen is oxidised 

to form a PA N-oxides, which can be conjugated by phase II enzymes e.g. glutathione and then 
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excreted. PA N-oxides can be converted back into the corresponding parent PA (Wang et al. 

2005). (iii) Metabolic activation or toxification: PAs are metabolic activated/ toxified by 

oxidation (for retronecine-type PAs) or oxidative N-demethylation (for otonecine-type PAs 

(Lin 1998)). This pathway is mainly catalysed by cytochrome P450 isoforms CYP2B and 3A 

(Ruan et al. 2014b), and results in the formation of dehydropyrrolizidines (DHP, also known 

as pyrrolic ester or reactive pyrroles). DHPs are highly reactive and cause damage in the cells 

where they are formed, usually hepatocytes. However, they can also pass from the hepatocytes 

into the adjacent sinusoids and damage the endothelial lining cells (Gao et al. 2015) 

predominantly by reaction with protein, lipids and DNA. There is even evidence, that 

conjugation of DHP to glutathione, which would generally be considered a detoxification step, 

could result in reactive metabolites, which might also lead to DNA adduct formation (Xia et 

al. 2015). Due to the ability to form DNA adducts, DNA crosslinks and DNA breaks 1,2-

unsaturated PAs are generally considered genotoxic and carcinogenic (Chen et al. 2010; EFSA 

2011; Fu et al. 2004; Li et al. 2011; Takanashi et al. 1980; Yan et al. 2008; Zhao et al. 2012). 

Still, there is no evidence yet that PAs are carcinogenic in humans (ANZFA 2001; EMA 2016). 

One general limitation of studies with PAs is the number of different PAs investigated. Around 

30 PAs are currently commercially available, therefore all studies focus on these PAs. This is 

also true for in vitro and in vivo tests on mutagenicity and genotoxicity. To gain a wider 

perspective, in this study over 600 different PAs were assessed on their mutagenic potential 

using four different machine learning techniques. 
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4.3 Materials and Methods 

4.3.1 Training dataset 

For all methods, the same validated training dataset was used. The training dataset was 

compiled from the following sources: 

• Kazius/Bursi Dataset (4337 compounds, (Kazius et al. 2005)): 

http://cheminformatics.org/datasets/bursi/cas_4337.zip 

• Hansen Dataset (6513 compounds, (Hansen et al. 2009)): 

http://doc.ml.tu-berlin.de/toxbenchmark/Mutagenicity_N6512.csv 

• EFSA Dataset (695 compounds, (EFSA 2011)): 

https://data.europa.eu/euodp/data/storage/f/2017-

0719T142131/GENOTOX%20data%20and%20dictionary.xls 

 

Mutagenicity classifications from Kazius and Hansen datasets were used without further 

processing. To achieve consistency between these datasets, EFSA compounds were classified 

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella strains. 

Dataset merges were based on unique SMILES (Simplified Molecular Input Line Entry 

Specification) strings of the compound structures. Duplicated experimental data with the same 

outcome was merged into a single value, because it is likely that it originated from the same 

experiment. Contradictory results were kept as multiple measurements in the database. The 

combined training dataset contains 8281 unique structures. 

http://cheminformatics.org/datasets/bursi/cas_4337.zip
http://doc.ml.tu-berlin.de/toxbenchmark/Mutagenicity_N6512.csv
https://data.europa.eu/euodp/data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls
https://data.europa.eu/euodp/data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls
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Source code for all data download, extraction and merge operations is publicly available from 

the git repository https://git.in-silico.ch/pyrrolizidine under a GPL3 License. 

4.3.2 Testing dataset 

The testing dataset consisted of 602 different PAs. The compilation of the PA dataset is 

described in detail in Schöning et al. (2017). The PAs were assigned to groups according to 

structural features of the necine base and necic acid. 

For the necine base, following groups were assigned: 

- Retronecine-type (1,2-unstaturated necine base) 

- Otonecine-type (1,2-unstaturated necine base) 

- Platynecine-type (1,2-saturated necine base) 

 

For the modification of necine base, following groups were assigned: 

- N-oxide-type 

- Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type) 

- DHP-type (dehydropyrrolizidine, pyrrolic ester) 

 

For the necic acid, following groups were assigned: 

- Monoester-type 

- Open-ring diester-type 

- Macrocyclic diester-type 

https://git.in-silico.ch/pyrrolizidine
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For the Random Forest (RF), Support Vector Machines (SVM), and Deep Learning (DL) 

models, molecular descriptors of the PAs were calculated using the program PaDEL-

Descriptors (version 2.21) (Yap 2011; 2014). From these descriptors were chosen, which were 

actually used for the generation of the DL model. 

4.3.3 LAZAR 

LAZAR (lazy structure activity relationships) is a modular framework for read-across model 

development and validation. It follows the following basic workflow: For a given chemical 

structure LAZAR:  

- searches in a database for similar structures (neighbours) with experimental data, 

- builds a local QSAR model with these neighbours and  

- uses this model to predict the unknown activity of the query compound. 

This procedure resembles an automated version of read across predictions in toxicology, in 

machine learning terms it would be classified as a k-nearest-neighbour algorithm. 

Apart from this basic workflow, LAZAR is completely modular and allows the researcher to 

use any algorithm for similarity searches and local QSAR (Quantitative structure–activity 

relationship) modelling. Algorithms used within this study are described in the following 

sections. 

4.3.3.1 Neighbour identification 

Similarity calculations were based on MolPrint2D fingerprints (Bender et al. 2004) from the 

OpenBabel cheminformatics library (O'Boyle et al. 2011). The MolPrint2D fingerprint uses 

atom environments as molecular representation, which resembles basically the chemical 
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concept of functional groups. For each atom in a molecule, it represents the chemical 

environment using the atom types of connected atoms.  

MolPrint2D fingerprints are generated dynamically from chemical structures and do not rely 

on predefined lists of fragments (such as OpenBabel FP3, FP4 or MACCs fingerprints or lists 

of toxicophores/toxicophobes). This has the advantage that they may capture substructures of 

toxicological relevance that are not included in other fingerprints.  

From MolPrint2D fingerprints a feature vector with all atom environments of a compound can 

be constructed that can be used to calculate chemical similarities. 

The chemical similarity between two compounds a and b is expressed as the proportion 

between atom environments common in both structures A ∩ B and the total number of atom 

environments A U B (Jaccard/Tanimoto index). 

𝑠𝑠𝑠𝑠𝑠𝑠 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵| 

Threshold selection is a trade-off between prediction accuracy (high threshold) and the number 

of predictable compounds (low threshold). As it is in many practical cases desirable to make 

predictions even in the absence of closely related neighbours, we follow a tiered approach:  

- First a similarity threshold of 0.5 is used to collect neighbours, to create a local QSAR 

model and to make a prediction for the query compound. 

- If any of these steps fails, the procedure is repeated with a similarity threshold of 0.2 

and the prediction is flagged with a warning that it might be out of the applicability 

domain of the training data. 

- Similarity thresholds of 0.5 and 0.2 are the default values chosen by the software 

developers and remained unchanged during the course of these experiments. 
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Compounds with the same structure as the query structure are automatically eliminated from 

neighbours to obtain unbiased predictions in the presence of duplicates. 

4.3.3.2 Local QSAR models and predictions 

Only similar compounds (neighbours) above the threshold are used for local QSAR models. In 

this investigation, we are using a weighted majority vote from the neighbour’s experimental 

data for mutagenicity classifications. Probabilities for both classes (mutagenic/non-mutagenic) 

are calculated according to the following formula and the class with the higher probability is 

used as prediction outcome. 

𝑝𝑝𝑐𝑐 =  
∑𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛,𝑐𝑐

∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛
 

𝑝𝑝𝑐𝑐   Probability of class c (e.g. mutagenic or non-mutagenic) 
∑𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛,𝑐𝑐  Sum of similarities of neighbours with class c 
∑𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛   Sum of all neighbours 
 

4.3.3.3 Applicability domain 

The applicability domain (AD) of LAZAR models is determined by the structural diversity of 

the training data. If no similar compounds are found in the training data no predictions will be 

generated. Warnings are issued if the similarity threshold had to be lowered from 0.5 to 0.2 in 

order to enable predictions. Predictions without warnings can be considered as close to the 

applicability domain and predictions with warnings as more distant from the applicability 

domain. Quantitative applicability domain information can be obtained from the similarities of 

individual neighbours. 



 
 
 
 

Mutagenicity of pyrrolizidine alkaloids 

85/156 
 

 

4.3.3.4 Availability 

- LAZAR experiments for this manuscript: https://git.in-silico.ch/pyrrolizidine (source 

code, GPL3) 

- LAZAR framework: https://git.in-silico.ch/lazar (source code, GPL3) 

- LAZAR GUI: https://git.in-silico.ch/lazar-gui (source code, GPL3) 

- Public web interface: https://lazar.in-silico.ch 

4.3.4 Random Forest, Support Vector Machines, and Deep Learning 
in R-project 

In comparison to LAZAR, three other models (Random Forest (RF), Support Vector Machines 

(SVM), and Deep Learning (DL)) were evaluated. 

For the generation of these models, molecular 1D and 2D descriptors of the training dataset 

were calculated using PaDEL-Descriptors (version 2.21) (Yap 2011; 2014). 

As the training dataset contained over 8280 instances, it was decided to delete instances with 

missing values during data pre-processing. Furthermore, substances with equivocal outcome 

were removed. The final training dataset contained 8080 instances with known mutagenic 

potential. The RF, SVM, and DL models were generated using the R software (R-project for 

Statistical Computing, https://www.r-project.org/; version 3.3.1), specific R packages used are 

identified for each step in the description below. During feature selection, descriptor with near 

zero variance were removed using ‘NearZeroVar’-function (package ‘caret’). If the percentage 

of the most common value was more than 90% or when the frequency ratio of the most common 

value to the second most common value was greater than 95:5 (e.g. 95 instances of the most 

common value and only 5 or less instances of the second most common value), a descriptor 

https://deref-gmx.net/mail/client/Yn0laI8dUvs/dereferrer/?redirectUrl=https%3A%2F%2Fgit.in-silico.ch%2Fpyrrolizidine
https://deref-gmx.net/mail/client/v26UgZbKEpE/dereferrer/?redirectUrl=https%3A%2F%2Fgit.in-silico.ch%2Flazar
https://deref-gmx.net/mail/client/QstEPrpbcqQ/dereferrer/?redirectUrl=https%3A%2F%2Fgit.in-silico.ch%2Flazar-gui
https://deref-gmx.net/mail/client/Gln3hLem0DY/dereferrer/?redirectUrl=https%3A%2F%2Flazar.in-silico.ch
https://www.r-project.org/


 
 
 
 

Mutagenicity of pyrrolizidine alkaloids 

86/156 
 

 

was classified as having a near zero variance. After that, highly correlated descriptors were 

removed using the ‘findCorrelation’-function (package ‘caret’) with a cut-off of 0.9. This 

resulted in a training dataset with 516 descriptors. These descriptors were scaled to be in the 

range between 0 and 1 using the ‘preProcess’-function (package ‘caret’). The scaling routine 

was saved in order to apply the same scaling on the testing dataset. As these three steps did not 

consider the outcome, it was decided that they do not need to be included in the cross-validation 

of the model. To further reduce the number of features, a LASSO (least absolute shrinkage 

and selection operator) regression was performed using the ‘glmnet’-function (package 

‘glmnet’). The reduced dataset was used for the generation of the pre-trained models. 

For the RF model, the ‘randomForest’-function (package ‘randomForest’) was used. A forest 

with 1000 trees with maximal terminal nodes of 200 was grown for the prediction. 

The ‘svm’-function (package ‘e1071’) with a radial basis function kernel was used for the SVM 

model.  

The DL model was generated using the ‘h2o.deeplearning’-function (package ‘h2o’). The DL 

contained four hidden layer with 70, 50, 50, and 10 neurons, respectively. Other 

hyperparameter were set as follows: l1=1.0E-7, l2=1.0E-11, epsilon = 1.0E-10, rho = 0.8, and 

quantile_alpha = 0.5. For all other hyperparameter, the default values were used. Weights and 

biases were in a first step determined with an unsupervised DL model. These values were then 

used for the actual, supervised DL model.  

To validate these models, an internal cross-validation approach was chosen (see Figure 10). 

The training dataset was randomly split in training data, which contained 95% of the data, and 

validation data, which contain 5% of the data. A feature selection with LASSO on the training 

data was performed, reducing the number of descriptors to approximately 100. This step was 
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repeated five times. Based on each of the five different training data, the predictive models 

were trained and the performance tested with the validation data. This step was repeated 10 

times. Furthermore, a y-randomisation using the RF model was performed. During y-

randomisation, the outcome (y-variable) is randomly permuted. The theory is that after 

randomisation of the outcome, the model should not be able to correlate the outcome to the 

properties (descriptor values) of the substances. The performance of the model should therefore 

indicate a by change prediction with an accuracy of about 50%. If this is true, it can be 

concluded that correlation between actual outcome and properties of the substances is real and 

not by chance (Rücker et al. 2007). 
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Figure 13: Flowchart of the generation and validation of the models generated in R-project 

4.3.5 Deep Learning in TensorFlow 

Alternatively, a DL model was established with Python-based TensorFlow program 

(https://www.tensorflow.org/) using the high-level API Keras 

(https://www.tensorflow.org/guide/keras) to build the models.  

Data pre-processing was done by rank transformation using the ‘QuantileTransformer’ 

procedure. A sequential model has been used. Four layers have been used: input layer, two 

hidden layers (with 12, 8 and 8 nodes, respectively) and one output layer. For the output layer, 

a sigmoidal activation function and for all other layers the ReLU (‘Rectified Linear Unit’) 

https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras
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activation function was used. Additionally, a L2-penalty of 0.001 was used for the input layer. 

For training of the model, the ADAM algorithm was used to minimise the cross-entropy loss 

using the default parameters of Keras. Training was performed for 100 epochs with a batch 

size of 64.  The model was implemented with Python 3.6 and Keras. For training of the model, 

a 6-fold cross-validation was used. Accuracy was estimated by ROC-AUC and confusion 

matrix. 

4.4 Results 

4.4.1 LAZAR 

For 46 PAs, no prediction could be made. 26 PAs had no neighbours and 20 PAs had only one 

neighbour. For additional 396 PAs, the similarity threshold had to be reduced from 0.5 to 0.2 

to obtain enough neighbours for a prediction. This means that these substances might not be 

within the applicability domain (AD). Therefore, only 160 of 602 PAs were well within the 

stricter AD with the similarity threshold of 0.5 and 556 PAs in the AD with the similarity 

threshold of 0.2. 
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Figure 14: Genotoxic potential of the different PA groups as predicted by LAZAR, using the 
similarity threshold of 0.5.  
Genotoxic: percentage number of compounds per group, which were predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which were predicted to be not 
genotoxic  
Outside AD: percentage number of compounds per group, which were outside the applicability 
domain (AD).  
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Figure 15: Genotoxic potential of the different PA groups as predicted by LAZAR, using the 
similarity threshold of 0.2  
Genotoxic: percentage number of compounds per group, which were predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which were predicted to be not 
genotoxic  
Outside AD: percentage number of compounds per group, which were outside the applicability 
domain (AD). 

Interestingly, using both similarity thresholds (e.g. 0.2 and 0.5), the majority of PAs in all 

groups except otonecine, were predicted to be not genotoxic.  

The following rank order for genotoxicity probability can be deduced from the results of both 

similarity thresholds: 

- Necine base:     platynecine ≤ retronecine << otonecine 

- Necic acid:     monoester < diester < macrocyclic diester 

- Modification of necine base:  N-oxide < DHP < tertiary PA 
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4.4.2 Random Forest, Support Vector Machines, and Deep Learning 

Applicability domain 

The AD of the training dataset and the PA dataset was evaluated using the Jaccard distance. A 

Jaccard distance of ‘0’ indicates that the substances are similar, whereas a value of ‘1’ shows 

that the substances are different. The Jaccard distance was below 0.2 for all PAs relative to the 

training dataset. Therefore, PA dataset is within the AD of the training dataset and the models 

can be used to predict the genotoxic potential of the PA dataset.  

y-randomisation 

After y-randomisation of the outcome, the accuracy and CCR are around 50%, indicating a 

chance in the distribution of the results. This shows, that the outcome is actually related to the 

predictors and not by chance.  

Random Forest 

The validation showed that the RF model has an accuracy of 64%, a sensitivity of 66% and a 

specificity of 63%. The confusion matrix of the model, calculated for 8080 instances, is 

provided in Table 3. 

Table 3: Confusion matrix of the RF model 
 Predicted genotoxicity  

M
ea

su
re

d 
ge

no
to

xi
ci

ty
 

 PP PN Total 

TP 2274 1163 3437 

TN 1736 2907 4643 

 Total 4010 4070 8080 
PP: Predicted positive; PN: Predicted negative, TP: True positive, TN: True negative 

In general, the majority of PAs were considered to be not genotoxic by the RF model (Figure 

16). 
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Figure 16: Genotoxic potential of the different PA groups as predicted by RF model 
Genotoxic: percentage number of compounds per group, which was predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which was predicted to be not 
genotoxic. 

From the results, the following rank orders of genotoxic potential could be deduced: 

- Necine base:    platynecine < retronecine < otonecine 

- Necic acid:    monoester (= 0%) < diester < macrocyclic diester 

- Modification of necine base: N-oxide = dehydropyrrolizidine (0%) < tertiary PA 

Support Vector Machines 

The validation showed that the SVM model has an accuracy of 62%, a sensitivity of 65% and 

a specificity of 60%. The confusion matrix of SVM model, calculated for 8080 instances, is 

provided in Table 4. 
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Table 4: Confusion matrix of the SVM model 
 Predicted genotoxicity  

M
ea

su
re

d 
ge

no
to

xi
ci

ty
 

 PP PN Total 

TP 2057 1107 3164 

TN 1953 2963 4916 

 Total 4010 4070 8080 
PP: Predicted positive; PN: Predicted negative, TP: True positive, TN: True negative 

In the SVM model, also the majority of PAs were considered to be not genotoxic (Figure 17). 

 

Figure 17: Genotoxic potential of the different PA groups as predicted by SVM model 
Genotoxic: percentage number of compounds per group, which was predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which was predicted to be not 
genotoxic  

From the results, the following rank orders of genotoxic potential could be deduced: 

- Necine base:    otonecine < platynecine = retronecine 

- Necic acid:    macrocyclic diester < monoester = diester 

- Modification of necine base: dehydropyrrolizidine < tertiary PA < N-oxide  
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Deep Learning (R-project) 

The validation showed that the DL model generated in R has an accuracy of 59%, a sensitivity 

of 89% and a specificity of 30%. The confusion matrix of the model, normalised to 8080 

instances, is provided in Table 5. 

Table 5: Confusion matrix of the DL model (R-project) 
 Predicted genotoxicity  

M
ea

su
re

d 
ge

no
to

xi
ci

ty
 

 PP PN Total 

TP 3575 435 4010 

TN 2853 1217 4070 

 Total 6428 1652 8080 
PP: Predicted positive; PN: Predicted negative, TP: True positive, TN: True negative 

In contrast, the majority of PAs were considered to be genotoxic by the DL model in R (Figure 

18). 
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Figure 18: Genotoxic potential of the different PA groups as predicted by DL model (R-
project) 
Genotoxic: percentage number of compounds per group, which was predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which was predicted to be not 
genotoxic   
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From the results, the following rank orders of genotoxic potential could be proposed: 

- Necine base:     platynecine < retronecine < otonecine 

- Necic acid:     monoester < diester < macrocyclic diester 

- Modification of necine base:  tertiary PA = dehydropyrrolizidine < N-oxide. 

DL model (TensorFlow) 

The validation showed that the DL model generated in TensorFlow has an accuracy of 68%, a 

sensitivity of 70% and a specificity of 46%. The confusion matrix of the model, normalised to 

8080 instances, is provided in Table 6. 

Table 6: Confusion matrix of the DL model (TensorFlow) 
 Predicted genotoxicity  

M
ea

su
re

d 
ge

no
to

xi
ci

ty
 

 PP PN Total 

TP 2851 1227 4078 

TN 1825 2177 4002 

 Total 4676 3404 8080 
PP: Predicted positive; PN: Predicted negative, TP: True positive, TN: True negative 

The ROC curves from the 6-fold validation are shown in Figure 19. 
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Figure 19: Six-fold cross-validation of TensorFlow DL model show an average area under 
the ROC-curve (ROC-AUC; measure of accuracy) of 68%.  

 

In contrast to the DL generated in R, the DL model generated in TensorFlow predicted the 

majority of PAs as not genotoxic. 
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Figure 20: Genotoxic potential of the different PA groups as predicted by DL model 
(TensorFlow) 
Genotoxic: percentage number of compounds per group, which was predicted to be genotoxic.  
Not genotoxic: percentage number of compounds per group, which was predicted to be not 
genotoxic  

The following rank orders of genotoxic potential could be proposed based on the results: 

- Necine base:     platynecine < otonecine < retronecine  

- Necic acid:     monoester < diester < macrocyclic diester 

- Modification of necine base:  tertiary PA < N-oxide << dehydropyrrolizidine. 

 

In summary, the validation results of the four methods are presented in the following table. 
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Table 7 Results of the cross-validation of the four models and after y-randomisation 

 Accuracy CCR Sensitivity Specificity 
RF model 64.1% 64.4% 66.2% 62.6% 

SVM model 62.1% 62.6% 65.0% 60.3% 
DL model  

(R-project) 
59.3% 59.5% 89.2% 29.9% 

DL model 
(TensorFlow) 

68% 62.2% 69.9% 45.6% 

y-randomisation 50.5% 50.4% 50.3% 50.6% 
CCR (correct classification rate) 

4.5 Discussion 

General model performance 

Based on the results of the cross-validation for all models, LAZAR, RF, SVM, DL (R-project) 

and DL (TensorFlow) it can be state that the prediction results are not optimal due to different 

reasons. The accuracy as measured during cross-validation of the four models (RF, SVM, DL 

(R-project and TensorFlow)) was partly low with CCR values between 59.3 and 68%, with the 

R-generated DL model and the TensorFlow-generated DL model showing the worst and the 

best performance, respectively. The validation of the R-generated DL model revealed a high 

sensitivity (89.2%) but an unacceptably low specificity of 29.9% indicating a high number of 

false positive estimates. The TensorFlow-generated DL model, however, showed an acceptable 

but not optimal accuracy of 68%, a sensitivity of 69.9% and a specificity of 45.6%. The low 

specificity indicates that both DL models tends to predict too many instances as positive 

(genotoxic), and therefore have a high false positive rate. This allows at least with the 

TensorFlow generated DL model to make group statements, but the confidence for estimations 

of single PAs appears to be insufficiently low.  

Several factors have likely contributed to the low to moderate performance of the used methods 

as shown during the cross-validation: 
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1. The outcome in the training dataset was based on the results of AMES tests for 

genotoxicity (ICH 2011), an in vitro test in different strains of the bacteria Salmonella 

typhimurium. In this test, mutagenicity is evaluated with and without prior metabolic 

activation of the test substance. Metabolic activation could result in the formation of 

genotoxic metabolites from non-genotoxic parent compounds. However, no distinction 

was made in the training dataset between substances that needed metabolic activation 

before being mutagenic and those that were mutagenic without metabolic activation. 

LAZAR is able to handle this ‘inaccuracy’ in the training dataset well due to the way 

the algorithm works: LAZAR predicts the genotoxic potential based on the neighbours 

of substances with comparable structural features, considering mutagenic and not 

mutagenic neighbours. Based on the structural similarity, a probability for mutagenicity 

and no mutagenicity is calculated independently from each other (meaning that the sum 

of probabilities does not necessarily adds up to 100%). The class with the higher 

outcome is then the overall outcome for the substance.  

In contrast, the other models need to be trained first to recognise the structural features 

that are responsible for genotoxicity. Therefore, the mixture of substances being 

mutagenic with and without metabolic activation in the training dataset may have 

adversely affected the ability to separate the dataset in two distinct classes and thus 

explains the relatively low performance of these models. 

2. Machine learning algorithms try to find an optimized solution in a high-dimensional 

(one dimension per each predictor) space. Sometimes these methods do not find the 

global optimum of estimates but only local (not optimal) solutions. Strategies to find 

the global solutions are systematic variation (grid search) of the hyperparameters of the 

methods, which may be very time consuming in particular in large datasets. 



 
 
 
 

Mutagenicity of pyrrolizidine alkaloids 

102/156 
 

 

Mutagenicity of PAs 

Due to the low to moderate predictivity of all models, quantitative statement on the 

genotoxicity of single PAs cannot be made with sufficient confidence.  

The predictions of the SVM model did not fit with the other models or literature, and are 

therefore not further considered in the discussion. 

Necic acid 

The rank order of the necic acid is comparable in the four models considered (LAZAR, RF and 

DL (R-project and TensorFlow). PAs from the monoester type had the lowest genotoxic 

potential, followed by PAs from the open-ring diester type. PAs with macrocyclic diesters had 

the highest genotoxic potential. The result fit well with current state of knowledge: in general, 

PAs, which have a macrocyclic diesters as necic acid, are considered more toxic than those 

with an open-ring diester or monoester (EFSA 2011; Fu et al. 2004; Ruan et al. 2014b). 

Necine base 

The rank order of necine base is comparable in LAZAR, RF, and DL (R-project) models: with 

platynecine being less or as genotoxic as retronecine, and otonecine being the most genotoxic. 

In the TensorFlow-generate DL model, platynecine also has the lowest genotoxic probability, 

but are then followed by the otonecines and last by retronecine. These results partly correspond 

to earlier published studies. Saturated PAs of the platynecine-type are generally accepted to be 

less or non-toxic and have been shown in in vitro experiments to form no DNA-adducts (Xia 

et al. 2013). Therefore, it is striking, that 1,2-unsaturated PAs of the retronecine-type should 

have an almost comparable genotoxic potential in the LAZAR and DL (R-project) model. In 

literature, otonecine-type PAs were shown to be more toxic than those of the retronecine-type 

(Li et al. 2013).  
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Modifications of necine base 

The group-specific results of the TensorFlow-generated DL model appear to reflect the 

expected relationship between the groups: the low genotoxic potential of N-oxides and the 

highest potential of dehydropyrrolizidines (Chen et al. 2010).  

In the LAZAR model, the genotoxic potential of dehydropyrrolizidines (DHP) (using the 

extended AD) is comparable to that of tertiary PAs. Since, DHP is regarded as the toxic 

principle in the metabolism of PAs, and known to produce protein- and DNA-adducts (Chen 

et al. 2010), the LAZAR model did not meet this expectation it predicted the majority of DHP 

as being not genotoxic. However, the following issues need to be considered. On the one hand, 

all DHP were outside of the stricter AD of 0.5. This indicates that in general, there might be a 

problem with the AD. In addition, DHP has two unsaturated double bounds in its necine base, 

making it highly reactive. DHP and other comparable molecules have a very short lifespan, 

and usually cannot be used in in vitro experiments. This might explain the absence of suitable 

neighbours in LAZAR. 

Furthermore, the probabilities for this substance groups needs to be considered, and not only 

the consolidated prediction. In the LAZAR model, all DHPs had probabilities for both 

outcomes (genotoxic and not genotoxic) mainly below 30%. Additionally, the probabilities for 

both outcomes were close together, often within 10% of each other. The fact that for both 

outcomes, the probabilities were low and close together, indicates a lower confidence in the 

prediction of the model for DHPs.  

In the DL (R-project) and RF model, N-oxides have a by far more genotoxic potential that 

tertiary PAs or dehydropyrrolizidines. As PA N-oxides are easily conjugated for extraction, 

they are generally considered as detoxification products, which are in vivo quickly renally 
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eliminated (Chen et al. 2010). On the other hand, N-oxides can be also back-transformed to the 

corresponding tertiary PA (Wang et al. 2005). Therefore, it may be questioned, whether N-

oxides themselves are generally less genotoxic than the corresponding tertiary PAs. However, 

in the groups of modification of the necine base, dehydropyrrolizidine, the toxic principle of 

PAs, should have had the highest genotoxic potential. Taken together, the predictions of the 

modifications of the necine base from the LAZAR, RF and R-generated DL model cannot – in 

contrast to the TensorFlow DL model - be considered as reliable. 

Overall, when comparing the prediction results of the PAs to current published knowledge, it 

can be concluded that the performance of most models was low to moderate. This might be 

contributed to the following issues: 

1. In the LAZAR model, only 26.6% PAs were within the stricter AD. With the extended 

AD, 92.3% of the PAs could be included in the prediction. Even though the Jaccard 

distance between the training dataset and the PA dataset for the RF, SVM, and DL (R-

project and TensorFlow) models was small, suggesting a high similarity, the LAZAR 

indicated that PAs have only few local neighbours, which might adversely affect the 

prediction of the mutagenic potential of PAs. 

2. All above-mentioned models were used to predict the mutagenicity of PAs. PAs are 

generally considered to be genotoxic, and the mode of action is also known. Therefore, 

the fact that some models predict the majority of PAs as not genotoxic seems 

contradictory. To understand this result, the basis, the training dataset, has to be 

considered. The mutagenicity of in the training dataset are based on data of 

mutagenicity in bacteria. There are some studies, which show mutagenicity of PAs in 

the AMES test (Chen et al. 2010). Also, Rubiolo et al. (1992) examined several 

different PAs and several different extracts of PA-containing plants in the AMES test. 
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They found that the AMES test was indeed able to detect mutagenicity of PAs, but in 

general, appeared to have a low sensitivity. The pre-incubation phase for metabolic 

activation of PAs by microsomal enzymes was the sensitivity-limiting step. This could 

very well mean that this is also reflected in the QSAR models. 

4.6 Conclusions 

In this study, an attempt was made to predict the genotoxic potential of PAs using five different 

machine learning techniques (LAZAR, RF, SVM, DL (R-project and TensorFlow). The results 

of all models fitted only partly to the findings in literature, with best results obtained with the 

TensorFlow DL model. Therefore, modelling allows statements on the relative risks of 

genotoxicity of the different PA groups. Individual predictions for selective PAs appear, 

however, not reliable on the current basis of the used training dataset.  

This study emphasises the importance of critical assessment of predictions by QSAR models. 

This includes not only extensive literature research to assess the plausibility of the predictions, 

but also a good knowledge of the metabolism of the test substances and understanding for 

possible mechanisms of toxicity. 

In further studies, additional machine learning techniques or a modified (extended) training 

dataset should be used for an additional attempt to predict the genotoxic potential of PAs.
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5.1 Abstract 

Protein kinases (PKs) play a role in many pivotal aspects of cellular function. Dysregulation 

and mutations of protein kinases are involved in the development of different diseases, which 

might be treated by inhibition of the corresponding kinase. Protein kinase inhibitors (PKIs) are 

generally well tolerated, but unexpected and serious adverse events on the heart, lung, kidney 

and liver were observed clinically. In this study, the structure-activity relationship of PKIs in 

relation to hepatotoxicity was investigated. A dataset of 165 PKIs was compiled and the 

probability of human hepatotoxicity with two different machine learning algorithms (Random 

                                            
5 This is a pre-copyedited, author-produced version of an article accepted for publication in Toxicology Letters 
following peer review. The version of record ‘Schöning V, Krähenbühl S, Drewe J. 2018. The hepatotoxic 
potential of protein kinase inhibitors predicted with Random Forest and Artificial Neural Networks. Tox Let 299, 
145–148’ is available online at: https://doi.org/10.1016/j.toxlet.2018.10.009. In course of harmonisations for this 
manuscript, the numbering and sometimes also the allocations of figures, annexes, and supplementary material 
was amended. Furthermore, terms were harmonised. No other changes were made.  
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Forest and Artificial Neural Networks) was analysed. The estimated probability of 

hepatotoxicity was generally high for single PKIs. However, depending on the target kinase of 

the PKI, a difference in hepatotoxic potential could be observed. The similarity of the PKIs to 

each other is caused by the conserved site of action of the protein kinases. Hepatotoxicity may 

therefore always be an issue in PKIs. 

5.2 Introduction 

Protein kinases (PKs) play a role in many pivotal aspects of cellular function. PKs catalyse the 

transfer of phosphate groups from ATP (adenosine triphosphate) to specific proteins. Protein 

phosphorylation can modify the conformation and function of a protein and thus serves as an 

important regulator in signalling pathways, which impacts gene transcription and protein 

synthesis, cell metabolism, division and movement as well as programmed cell death. 

Therefore, dysregulation of protein kinases is associated with the development of different 

diseases, making this family of enzymes one of the most important drug targets over the past 

two decades (Roskoski 2015). Protein kinase inhibitors (PKIs) can be classified based on their 

molecular targets on kinases. Type I and type II inhibitors bind reversibly to the ATP-binding 

pocket of the protein kinases and exhibit competitive inhibition with respect to ATP. The 

difference is that the former binds to the active enzyme conformation, whereas the latter binds 

to the inactive conformation. Type III inhibitors bind to an allosteric pocket adjacent to the 

ATP binding site but without direct interaction with the ATP-binding pocket (Dar & Shokat 

2011). Most of the FDA (Food and Drug Administration, the US health authority)-approved 

PKIs act as competitive inhibitors at the ATP binding site (type I and II) (Jeon et al. 2017; 

Roskoski 2015; Yu et al. 2014a), leading to a structurally homogenous group of substances. 
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Even though PKIs are generally well tolerated, unexpected and serious adverse events on the 

heart, lung, kidney and liver were observed clinically (Shah et al. 2013). The mechanisms of 

PKI-mediated hepatotoxicity are only partially elucidated. For some PKIs, an extensive 

metabolism and bioactivation by cytochrome P450 enzymes is known, resulting in the 

production of reactive metabolites (Teo et al. 2013). In vitro investigations proved that some, 

but not all, PKIs exhibit a strong mitochondrial toxicity and inhibit glycolysis at clinically 

relevant concentrations (Mingard et al. 2018; Paech et al. 2017). 

Since PKIs have different hepatotoxic potencies despite structural similarities and since the 

mechanisms of hepatotoxicity are varying, the hepatotoxic potential of individual PKIs is 

difficult to predict. The aim of the current study was to identify a relationship between the 

structure of individual PKIs and their hepatotoxic potential using machine learning algorithms. 

For this reason, a dataset of 165 PKIs (independent from their regulatory status) was compiled 

and the probability of human hepatotoxicity was analysed with two different machine learning 

algorithms. The probability of hepatotoxicity was compared with clinical findings for 

individual PKIs and also matched with the PKI target. In addition, the similarity of the PKIs to 

each other was investigated. 

5.3 Materials and methods 

5.3.1 PKI dataset 

A dataset of 165 protein kinase inhibitors (PKIs), mainly tyrosine kinase inhibitors (TKIs) and 

few structurally related compounds (such as proteasome inhibitors), was compiled (see 

supplementary material S2). A total of 21 specific targets were assigned to the PKIs from 

DrugBank (www.drugbank.ca, last accessed in February 2018) and Selleckchem 

(http://www.selleckchem.com/pharmacological_receptor-tyrosine-kinase.html, last accessed 

http://www.drugbank.ca/
http://www.selleckchem.com/pharmacological_receptor-tyrosine-kinase.html
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in February 2018). Chemical structures were coded by ‘simplified molecular-input line-entry 

system’ (SMILES) that were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/, last 

accessed in February 2018). For each PKI, molecular 1D and 2D descriptors were calculated 

using PaDEL-Descriptors (version 2.21) (Yap 2011; 2014). The process of standardization 

involved removing any salts from SMILES structures, for instance chlorides or lysinate 

residues. Additionally, explicit hydrogens were removed. This PKI dataset was used as a test 

set in the study and the probability of hepatotoxicity for each substance in this dataset was 

predicted using the RF and aNN model described in section 5.3.2.  

The probability of the whole dataset was evaluated, as well as the probability with relation to 

the target of the PKIs. Furthermore, the similarity of the PKIs with each other was calculated 

using the Jaccard distance. 

5.3.2 DILI dataset and model training 

All computation steps were performed in R (R Project for Statistical Computing, 

https://www.r-project.org/; version 3.3.1; last accessed September 9, 2017) using additional R 

packages (packages are identified in Schöning et al. (2017) or in the description below). 

Two different QSAR models were used for the calculation of the hepatotoxic probability, 

Random Forest and Artificial Neural Network (aNN). With minor variations, both models were 

mainly generated as described in Schöning et al. (2017). In short, based on the human DILI-

dataset from Chen et al. (2016), a training dataset was established, containing 453 hepatotoxic 

and 268 non-hepatotoxic substances. In contrast to Schöning et al. (2017), nine hepatotoxic-

classified substances (bortezomib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, pazopanib, 

sorafenib, and sunitinib) were excluded from the training dataset, as these substances were also 

part of the PKI test dataset. This step was done to avoid any bias for these nine and further 

https://pubchem.ncbi.nlm.nih.gov/
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structurally related substances in the QSAR models. Therefore, the DILI training dataset 

consisted of 444 hepatotoxic and 268 non-hepatotoxic substances. PaDEL-Descriptors (version 

2.21) (Yap 2011; 2014) was used to calculate 1444 molecular descriptors for each substance. 

Removal of zero variance descriptors, missing values and highly correlated descriptors were 

performed analogous to Schöning et al. (2017). Using a Recursive Feature Elimination (Zhu 

et al. 2015), the 100 most important descriptors, the final predictors for the models, were 

identified. After that, the training dataset was balanced by artificial over-sampling of the non-

hepatotoxic class to obtain an almost equal number of substances in the two classes 

(hepatotoxic and non-hepatotoxic) (Chawla et al. 2002). After this procedure, the final training 

dataset consisted of 458 hepatotoxic and 455 non-hepatotoxic substances. The RF model, 

which based on this dataset, used the 100 most important predictors as identified by the 

Recursive Feature Elimination. The forest contained 1000 trees and 75 variables that were 

randomly sampled at each split. For the aNN model, the training dataset was normalized by 

calculating the standard deviation for each predictor and then each value was divided by that 

standard deviation. The aNN model consisted of 3 layers, the input layer with 100 units, the 

hidden layer with 75 units and a single-unit output layer. 

5.3.3 Model validation 

Compared to the original model in Schöning et al. (2017), the training dataset was reduced by 

deleting the nine substances present in the test dataset (see section 2.2). This is equal to a 

reduction of the training dataset by 1.2%. To confirm the validity of the altered models, it was 

decided to repeat the 10-fold internal cross-validation of both QSAR-models (Mitchell 2014; 

Nantasenamat et al. 2009). Based on that, the correct classification rate (CCR) for both models 

was calculated to measure the predictive power: 
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𝐶𝐶𝐶𝐶𝐶𝐶 =  
1
2

(
𝑇𝑇𝑁𝑁
𝑁𝑁0

+ 
𝑇𝑇𝑃𝑃
𝑁𝑁1

) 

TN and TP represent the number of true negative and positive predictions, respectively, and N0 

and N1 the total number of negative and positive compounds in the model, respectively. In 

addition, the sensitivity, specificity, and area under the receiver characteristic curve (ROC-

AUC) were determined.  

Additionally, it was confirmed, that the compounds of the training dataset are within the 

applicability domain, which is defined by the compound of the test dataset. For this purpose, 

on the one hand, a principal component analysis (PCA) was performed (R package ‘stats’, 

function ‘prcomp’), using the identified, most relevant 100 predictors and the first 4 principal 

components (PC). On the other hand, the distance, using the Jaccard distance measure, between 

the DILI dataset and the PKI dataset was calculated. 

5.4 Results and discussion 

5.4.1 Model validation and predictor importance 

For the RF model, the CCR was 90.3%, the sensitivity 90.3%, the specificity 90.2%, and the 

ROC-AUC 0.96. For the aNN model, the CCR was 79.7%, the sensitivity 78.4%, the specificity 

80.9%, and the ROC-AUC 0.87. Even though the training dataset was slightly reduced in 

comparison to Schöning et al. (2017), the main parameters of the models (CCR, sensitivity, 

specificity and ROC-AUC) are comparable to the original models. 

The applicability domain between the DILI and the PKI dataset was confirmed using a PCA, 

considering the first 4 PC (PC1-PC4). This analysis shows that the PKI dataset falls within the 

range of the DILI dataset (Annex 2). Additionally, the average distance for all PKIs to the DILI 

dataset was calculated as the Jaccard distance. The Jaccard distance is a statistic value used for 
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comparing the dissimilarity of sample sets, which can vary between 0 (similar) and 1 (not 

similar). As the Jaccard distance between the PKI and DILI dataset was < 0.13, both datasets 

can be regarded as ‘close’. Therefore, the PKI dataset falls within the applicability domain of 

the DILI dataset. 

Overall, it can be concluded that both machine learning models, based on the DILI dataset, are 

valid and may be used for the prediction of the PKI dataset. 

Additionally, the 30 most important predictors, as determined by the RF model, were evaluated 

(see Annex 3). Except for the autocorrelation predictors, which lack intuitive understanding, 

the probability for hepatotoxicity was mainly determined by the reactivity of the molecule (e.g. 

number of atoms in the largest pi system) and its lipophilicity (e.g. ALogP). 

5.4.2 Overall acute hepatotoxic probability of PKIs 

The vast majority of PKIs (93% and 95% in the RF and aNN model, respectively) had a 

probability of 50% or above to be acutely hepatotoxic. A probability of more than 75% was 

seen in more than half of the PKIs analysed (57% and 63% in the RF and aNN model, 

respectively). Values well over 50% indicate a high confidence of the prediction (Breimann 

2003). Therefore, the hepatotoxic potential of PKIs in general can be considered as high.  

The prediction of hepatotoxic probability of single PKIs was highly correlated between both 

models (R2 = 0.64, P<.001, slope = 0.996, see Figure 21). In addition to the above mentioned 

validation of the two models (internal cross-validation) and the confirmation of the 

applicability domain, this correlation provided further evidence for the validity of the analysis. 
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Figure 21: Correlation of the hepatotoxic potential of single PKIs as predicted by the RF and 

the aNN model 
R2 = 0.64, P<.001, slope = 0.996. 

Literature research corroborated the high hepatotoxic potential of PKIs. 25-35% of the patients 

in pre-approval clinical trials of TKIs experienced low-grade increases in ALT (alanine 

transaminase) and/or AST (aspartate transaminase) (≤ 5x upper limit of the normal range 

(National Cancer Institute 2006)), whereas high-grade increase in serum transaminase level 

were observed in 2% of the patients (Shah et al. 2013). Most PKIs currently approved by the 

FDA are metabolised by cytochrome P450 enzymes and undergo hepatic excretion. 

Ruxolitinib, a JAK (Janus kinase) inhibitor, is an exception, undergoing mainly renal excretion 

(Jeong et al. 2013). Even though ruxolitinib is considered as hepatotoxic by both models, the 

probability is notably lower than for other PKIs (0.53 and 0.56 in the RF and aNN model, 

respectively). It is known that being a cytochrome P450 substrate increases the hepatotoxic 

potential of a substance (Yu et al. 2014a). For some PKIs (e.g. dasatinib (RF: 0.87, aNN: 0.73), 

erlotinib (RF: 0.65, aNN: 0.57), gefitinib (0.83, aNN: 0.69), imatinib (RF: 0.75, aNN: 0.83), 
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lapatinib (RF/aNN: 0.85), nilotinib (RF: 0.84, aNN: 0.93), pazopanib (RF: 0.81, aNN: 0.91) 

and sunitinib (RF: 0.59, aNN: 0.78)) bioactivation through CYP P450 enzymes and formation 

of reactive metabolites was shown (Teo et al. 2015). 

The authors believe that the calculated probabilities can be used to assess the hepatotoxic 

potential of a given substance in the real world and are therefore meaningful. At least, the 

probabilities can be used to rank the substances regarding the hepatotoxic potential, which is 

clinically useful. 

We compared the probability calculated and the clinical hepatotoxicity of some PKI drugs, for 

which extensive clinical data are available: 

For instance, the prevalence of hepatotoxicity for sunitinb is <1% (Medscape, 

https://search.medscape.com). Pazopanib shows a high prevalence of hepatotoxic adverse 

effects (ALT level raised (all grades, 53%; grade 3, 10%; grade 4, 2%), Medscape). The 

corresponding probabilities in our models were estimated to be 0.59/0.78 and 0.80/0.91 for 

sunitinib and pazopanib, respectively. 

The prevalence of gefitinib-related hepatotoxicity of grade ≥3 was significantly higher than 

erlotinib-related hepatotoxicity in a pooled safety analysis of EGFR mutation-positive non-

small cell lung cancer trials (Takeda et al. 2015). The probabilities for hepatotoxicity in our 

models were estimated to be 0.83/0.69 and 0.55/0.59, respectively, showing the same rank 

order. 

5.4.3 Target-specific hepatotoxic probability of PKIs 

Even though the overall probability of hepatotoxicity was very high in both models, some 

differences could be observed with relation to the targets of the PKIs (Figure 22). The median 
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probability for PKIs for Janus kinases JAK1, JAK2, JAK3, and Tyk2 were in both models 

between 0.60-0.67, whereas the probability of PKIs inhibiting other targets was over 0.7. The 

protein kinase families with the highest median probability were EGFR (ErbB1/2; 0.79-0.82), 

BCR/ABL (0.81-0.85) and VEGFR (VEGFR1/2/3; 0.78-0.84, see Figure 22) inhibitors. This 

is an interesting observation, which may be related to the physico-chemical properties of a drug 

necessary to interact with these targets. Whereas the current study is able to predict the 

hepatotoxic potential of a drug or of a group of drugs, it cannot answer the question why such 

associations exist. 

5.4.4 Similarity of PKIs 

The average distance between the PKIs investigated (calculated as Jaccard distance) was below 

0.08, except for two compounds. The two PKIs with a higher distance were FLLL32 and 

daphnetin (Jaccard distance of 0.13 and 0.11, respectively). Considering these results, PKIs can 

be considered as a quite homogenous group of substances, which can be explained by the 

similarity of the targets. In general, protein kinases have a small amino-terminal lobe (N-lobe) 

and a large carboxy-terminal lobe (C-lobe). Between the two lobes, a cleft is formed that serves 

as docking site for ATP (Meharena et al. 2013). As almost all PKIs interact with the ATP-

binding site with either the active (type I inhibitors) or inactive (type II inhibitors) form of the 

protein kinases (Wu et al. 2015), possible chemical structures of PKIs are restricted. This 

explains the observed high similarity of PKIs. 
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Figure 22: Hepatotoxic probability of PKIs in relation to their target.  
A. Prediction results of RF model.  
B. Prediction results of aNN model.  
ErbB1: Epidermal Growth Factor Receptor 1, ErbB2: Epidermal Growth Factor Receptor 1, 
JAK1: Janus Kinase 1, JAK2: Janus Kinase 2, JAK3: Janus Kinase 3, Tyk2: Tyrosine Kinase 2, 
BCR/ABL: Bcr-Abl tyrosine-kinase, ALK: Anaplastic lymphoma kinase, VEGFR 1: Vascular 
Endothelial Growth Factor Receptor 1, VEGFR 2: Vascular Endothelial Growth Factor Receptor 
2, VEGFR 3: Vascular Endothelial Growth Factor Receptor 3, RET: RET proto-oncogene, Lyn: 
Tyrosine-protein kinase Lyn, Scr: Tyrosine-protein kinase Scr, c-RAF: RAF proto-oncogene 
serine/threonine-protein kinase, FGFR 1: Fibroblast Growth Factor Receptor 1, FGFR 2: 
Fibroblast Growth Factor Receptor 2, FGFR 3: Fibroblast Growth Factor Receptor 3, FGFR 4: 
Fibroblast Growth Factor Receptor 4, PDGFR α: Platelet-Derived Growth Factor Receptor α, 
PDGFR β: Platelet-Derived Growth Factor Receptor β, Other: other targets, not belonging to any 
of the afore mentioned. In the boxplot, the median is indicated by a horizontal line, the bottom and 
top of the box are the 25th (P25%) and 75th (P75%) percentile, the whiskers are the P75% or 
P25% plus or minus 1.5*Interquartile Range (IQR) respectively. Outliers are indicated as open 
circles. 
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5.4.5 Limitation of the study 

PKIs are usually used in patients that have high co-morbidity, e.g. patients with non-small cell 

lung cancer, renal cell carcinoma, and chronic myeloid leukaemia (Jeon et al. 2017), which 

also includes liver disease. Therefore, a correlation of the predicted hepatotoxicity with 

clinically observed hepatotoxic events in patients is difficult. The hepatotoxic mode of action 

for PKIs is still under investigation. For some PKIs, mitochondrial toxicity and inhibition of 

glycolysis are discussed as possible pathways (Mingard et al. 2018; Paech et al. 2017). The 

current study is not able to provide a mechanism of hepatotoxicity for these compounds. 

5.5 Conclusion 

Almost all of the known PKIs today have a high hepatotoxic probability in both prediction 

models. The clinicians should be aware of potential hepatotoxic effects of PKIs. Hepatotoxic 

events observed in patients treated with PKIs should be critically evaluated with regard to a 

causal relationship with drug therapy using validated tools like the RUCAM score (Danan & 

Benichou 1993; Regev et al. 2014). 
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6.1 Abstract 

Ethnopharmacological relevance 

Pyrrolizidine alkaloids (PAs) are secondary plant ingredients formed in many plant species to 

protect against predators. PAs are generally considered acutely hepatotoxic, genotoxic and 
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carcinogenic. Up to now, only few in vitro and in vivo investigations were performed to 

evaluate their relative toxic potential.  

Aim of the study 

The aim was to develop an in vitro screening method of their cytotoxicity.  

Materials and Methods 

Human and rodent hepatocyte cell lines (HepG2 and H-4-II-E) were used to assess cytotoxicity 

of the PA lasiocarpine. At concentrations of 25 µM up to even 2400 µM, no toxic effects in 

neither cell line was observed with standard cell culture media. Therefore, different approaches 

were investigated to enhance the susceptibility of cells to PA toxicity (using high-glucose or 

galactose-based media, induction of toxifying cytochromes, inhibition of metabolic 

carboxylesterase, and inhibition of glutathione-mediated detoxification).  

Results 

Galactose-based culture medium (11.1 mM) increased cell susceptibility in both cell-lines. 

Cytochrome P450-induction by rifampicin showed no effect. Inhibition of carboxylesterase-

mediated PA detoxification by specific carboxylesterase 2 inhibitor loperamide (2.5 µM) 

enhanced lasiocarpine toxicity, whereas the unspecific carboxylesterase inhibitor bis(4-

nitrophenyl)phosphate (BNPP, 100 µM)) had a weaker effect. Finally, the inhibition of 

glutathione-mediated detoxification by buthionine sulphoximine (BSO, 100 µM) strongly 

enhanced lasiocarpine toxicity in H-4-II-E cells in low and medium, but not in high 

concentrations.  
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Conclusions 

If no toxicity is observed under standard conditions, susceptibility enhancement by using 

galactose-based media, loperamide, and BSO may be useful to assess relative acute 

cytotoxicity of PAs in different cell lines.  

6.2 Introduction 

Pyrrolizidine alkaloids (PAs) are secondary plant ingredients formed in many plant species to 

protect against predators (Hartmann & Witte 1995; Langel et al. 2011). PAs, ester alkaloids 

composed of a necine base (two fused five-membered rings joined by a single nitrogen atom) 

and a necic acid (one or two carboxylic ester arms) are generally considered acutely 

hepatotoxic, genotoxic and carcinogenic. 

The main organ of PA metabolism and target of toxicological effects is the liver (Bull & Dick 

1959; Bull et al. 1958; Butler et al. 1970; DeLeve et al. 1996; Jago 1971; Li et al. 2011; 

Neumann et al. 2015). Three principal metabolic pathways for 1,2-unsaturated PAs of the 

retronecine-type are known (Chen et al. 2010): (i) Detoxification: Hydrolysis of the C7/ C9 

ester bond by non-specific esterases to release necine base and necic acid. These intermediates 

are then subjected to further phase II-conjugation and excretion. (ii) Detoxification: N-

oxidation of the necine base to form PA N-oxides. (iii) Metabolic activation/ toxification: 

Oxidation and/or oxidative N-demethylation, resulting after cleaving the ester bond(s) by 

esterases in the formation of reactive pyrroles (also known as dehydropyrrolizidine or pyrrolic 

ester) (Figure 23). This pathway is mainly catalyzed by hepatic cytochrome P450 (CYP) 

isoforms CYP2B and 3A (Ruan et al. 2014b). Reactive pyrroles cause damage in the cells in 

which they are formed, usually hepatocytes, but can pass from the hepatocytes into the adjacent 

sinusoids and damage the endothelial lining (Gao et al. 2015) mainly by reaction with DNA, 
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protein, and lipids. Due to the ability of 1,2-unsaturated PAs to form DNA adducts, DNA 

crosslinks and DNA breaks, they are generally considered genotoxic and carcinogenic (Chen 

et al. 2010; EFSA 2011; Fu et al. 2004; Li et al. 2011; Takanashi et al. 1980; Yan et al. 2008; 

Zhao et al. 2012).  

  

Figure 23: Metabolic pathways of retronecine-type PAs 
 CES: carboxylesterase, GSH: glutathione; Nu =nucleophilic targets, adapted according to (Chen 
et al. 2010) 
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After acute intoxication of humans, the most common lesions in the liver are hemorrhagic 

necrosis, lesions in the central and sublobular veins of the liver, and acute venoocclusive 

disease (DeLeve et al. 2003; EFSA 2011).  

However, up until to now, only few in vitro and in vivo investigations were performed to 

evaluate the relative toxic potential of PAs (Field et al. 2015; Li et al. 2011; Tamta et al. 2012). 

Especially in in vitro studies, the susceptibility of different cells lines to acute toxic effects of 

PAs was low (Field et al. 2015), which further complicates those kind of studies. This could be 

due to the fact that some cell lines switch their metabolism according to the so-called Crabtree 

effect (Crabtree 1928). This effect describes that in presence of low-glucose concentrations 

cells in culture derive all their energy from anaerobic glycolysis rather than via mitochondrial 

oxidative phosphorylation (OXPHOS) despite of aerobic conditions. This leads to a high 

resistance against mitochondrial toxins (Marroquin et al. 2007). Mitochondrial toxicity, which 

may be related to the acute toxicity of PAs, was shown among others by for the PAs clivorine 

and senecionine (Ji et al. 2008), retrorsine (Gordon et al. 2000), lasiocarpine (Armstrong et al. 

1972) and dehydromonocrotaline (Mingatto et al. 2007).  

On this account the aim of this study was to develop a suitable screening system by reducing 

the threshold of susceptibility to toxic effects. The acute toxic effects of PAs were then studied 

in those sensitized cells. This included a general approach of modification of the cell culture 

medium, and specific alterations to the activity of enzymes, which are involved in the 

metabolism of PAs. 
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6.3 Materials and Methods 

6.3.1 Chemical and reagents 

Lasiocarpine, was obtained from Phytolab (Vestenbergsgreuth, Germany). 

The specific carboxylesterase (CES) 2 inhibitor loperamide hydrochloride, the unspecific CES 

inhibitor bis(4-nitrophenyl)phosphate (BNPP), DL-buthionine sulphoximine (BSO) and 

rifampicin were purchased from Sigma Aldrich (St. Louis, Missouri, USA) in the highest grade 

available. Media MEM-Glutamax media, DMEM-Glutamax media, sodium pyruvate, MEM 

non-essential amino acids, penicillin/streptomycin, L-glutamine, 2-(4-(2-hydroxyethyl)-1-

piperazinyl)-ethansulphoic acid (HEPES) and fetal bovine serum (FBS) were obtained from 

Gibco (Carlsbad, Californian, USA). The positive control digitonin was purchased from Sigma 

Aldrich (St. Louis, Missouri, USA). WST-1 kit was purchased from BioVision (Milpitas, 

California, USA). 

6.3.2 Cells 

The human hepatocellular carcinoma (HepG2) and the rat hepatocellular carcinoma (H-4-II-E) 

cell lines, purchased from ATCC (LGC Standards, Middlesex TW11 0LY, UK) were 

maintained in 75 cm2 culture flask (Semadeni, Ostermundigen, CH) as adherent cell lines in 

low-glucose MEM-Glutamax (5.5 mM D-glucose) media with 10% (V/V) FBS, 0.5 mM 

sodium pyruvate, MEM non-essential amino acids and 1% (V/V) penicillin/ streptomycin. The 

high-glucose DMEM-Glutamax media (25 mM D-glucose) consisted of 10% (V/V) FBS, 

0.5 mM sodium pyruvate, and MEM non-essential amino acids. The galactose-based DMEM-

Glutamax media (without D-glucose) consisted of 10% (V/V) FBS, 0.5 mM sodium pyruvate, 

MEM non-essential amino acids, 11.1 mM galactose, 1% (V/V) L-glutamine and 0.5% (V/V) 
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HEPES. The values of glucose or galactose were defined as the glucose or galactose 

concentration in the media, not in the cells. 

Galactose-based DMEM-Glutamax media were used to prevent the energy production via 

glycolysis in the cultivated cells (Crabtree effect (Crabtree 1928)).  

6.3.3 Treatment conditions 

6.3.3.1 PA toxicity without pre-treatment 

H-4-II-E and HepG2 cells were differentiated for 72 h and then the cells were incubated in low-

glucose (5.5 mM) media with lasiocarpine up to 2400 µM every 24 h for further three days. 

This experiment was entirely performed in low-glucose (5.5 mM) media. 

6.3.3.2 Induction of cytochromes 

H-4-II-E and HepG2 cells were differentiated for 72 h. Then the cells were induced every 24 h 

for three days with rifampicin (25 µM) to increase cytochrome expression and activity. 

Afterwards, the cells were additionally incubated with lasiocarpine up to 900 µM and 

rifampicin every 24 h for further three days. This experiment was entirely performed in low-

glucose (5.5 mM) media. 

6.3.3.3 Change in media 

To increase susceptibility, H-4-II-E cells were cultured in two different media: (1) Cells were 

cultivated and differentiated for 24 h and treated with lasiocarpine every 24 h for three days in 

high-glucose-based media (25 mM D-glucose). (2) Cells were cultivated and differentiated 

over 24 h in high-glucose (25 mM D-glucose) based media and then switched to galactose-
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based medium (11.1 mM) 24 h prior to and during the lasiocarpine treatment. Cells were 

treated with lasiocarpine every 24 h for three days.  

6.3.3.4 Inhibition of detoxification pathways 

6.3.3.4.1 Inhibition of carboxylesterases 

To increase susceptibility in H-4-II-E and HepG2 cells, carboxylesterases (CES), which are 

involved in the detoxification of PAs, were inhibited. Cells were cultivated and differentiated 

for 24 h in high-glucose-based media (25 mM D-glucose), and then switched to galactose-

based medium (11.1 mM) 24 h prior to treatment. Cells were treated every 24 h for three days 

with (1) lasiocarpine up to 900 µM and the unspecific CES inhibitor BNPP (100 µM) or (2) 

lasiocarpine up to 900 µM and the the specific CES-2 inhibitor loperamide (2.5 µM). 

6.3.3.4.2 Inhibition of GSH formation 

The detoxification of lasiocarpine was inhibited by reducing the glutathione synthesis with 

BSO), an inhibitor of γ-glutamylcysteine synthetase (γ-GCS). BSO lowers tissue glutathione 

(GSH) concentrations. Cells were cultivated and differentiated for 24 h in high-glucose-based 

media (25 mM D-glucose), and then switched to galactose-based medium (11.1 mM) 24 h prior 

to treatment. Cells were treated every 24 h for three days with lasiocarpine up to 900 µM and 

BSO (100 µM). 

6.3.4 WST-1 assay 

The WST-1 test was used to measure the metabolic activity in the two cell lines (H-4-II-E and 

HepG2) as a marker for cellular toxicity. The toxicity was defined as decrease of metabolic 

activity of ≥ 20%. At the end of the experiment, 10 µL WST-1 reagent was added to each well. 

Plates were then incubated for 4 h to allow for the reduction of WST-1 reagent. Absorbance 
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was measured by the microplate absorbance reader (Infinite M 200, Tecan Trading Ltd., 

Männedorf, CH) at 450 nm, reference wavelength of 620 nm (n = 3).  

The validity of the WST-1 assay was verified using digitonin (100 µM) as positive control and 

the metabolic activity was reduced to 0.9 - 12.5%. 

6.4 Results 

6.4.1 Susceptibility of cells to PAs without pre-treatment  

The susceptibility of immortalized cell lines to toxic effect of lasiocarpine was examined in H-

4-II-E and HepG2 cells after 72 h incubation without any pre-treatment in low-glucose media. 

Lasiocarpine was applied in doses of 25 µM to up to excessive concentrations of 2400 µM. 

The toxic effect of lasiocarpine was measured as decrease in metabolic activity evaluated by 

WST-1 assay. At the highest concentration, the metabolic activity decreased in both cell lines. 

The effect was more pronounced in H-4-II-E than in HepG2 cells (Figure 24). 
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Figure 24: Results of WST-I assay in H-4-II-E und HepG2 cells  
Only at the highest concentration of 2400 µM a toxic decrease in metabolic activity (≥ 20%) was 
observed (mean ± SEM; n=3). 

6.4.2 Enhancement of susceptibility by induction of metabolic 
activation (rifampicin) 

The induction of cytochromes did not increase the susceptibility of H-4-II-E und HepG2 cells 

to lasiocarpine toxicity (Figure 25). 

100 1000
0

20

40

60

80

100

120

140

 Lasiocarpine (H-4-II-E)
 Lasiocarpine (HepG2)
 F14

M
et

ab
ol

ic
 a

ct
iv

ity
 [%

]

Concentration [µM]



 
 
 
 

In vitro cytotoxicity of pyrrolizidine alkaloids 

128/156 
 

 

 

Figure 25: Results of WST-I assay in H-4-II-E und HepG2 cells  
No toxic effects of lasiocarpine after pre-incubation with rifampicin (25 µM) over 72 h. No 
decrease in metabolic activity after 72 h incubation with lasiocarpine was observed in both cell 
lines (means ± SEM; n=3). 

6.4.3 Enhancement of susceptibility by changes in the medium (high-
glucose versus galactose) 

As H-4-II-E cells were more susceptible to lasiocarpine toxicity, the influence of the media 

was investigated in this cell line. A toxic effect as decrease in metabolic activity is observed in 

galactose and the high-glucose approach at lasiocarpine concentrations of 600 µM. The effect 

was more pronounced in cells treated in galactose media than in high-glucose media (Figure 

26). However, high-glucose media did also increase the susceptibility to lasiocarpine toxicity 

of H-4-II-E cells compared to the first experiment in low-glucose media (5.5 mM D-glucose). 
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Figure 26: Results of WST-1 assay in H-4-II-E cells 
Treatment with lasiocarpine (25 to 900 µM) in high-glucose (25 mM) compared to galactose 
(11.1 mM) medium (means ± SEM; n = 3).  

6.4.4 Enhancement of susceptibility by inhibition of detoxification 
(carboxylesterases and glutathione formation) 

6.4.4.1 Inhibition of carboxylesterases (CES) 

A further approach to increase susceptibility of immortalized cells to toxic effects of PAs is to 

increase the number of reactive pyrroles by inhibition of their detoxification pathways. 

Treatment with both CES-inhibitors led to a decrease in the metabolic activity. At the two 

highest concentrations of lasiocarpine (600 µM and 900 µM) with loperamide, a reduction in 

metabolic activity down to 59 and 38% in H-4-II-E cells, and 66 and 49% in HepG2 cells, 

respectively, was observed (Figure 27 and Figure 28).  

Furthermore, treatment with lasiocarpine in combination with the unspecific CES inhibitor 

BNPP also reduced, but less effective, metabolic activity. At the highest concentration of 
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900 µM, lasiocarpine reduced metabolic activity down to 56 and 73% in H-4-II-E and HepG2 

cells, respectively. 

Loperamide alone had no effect on the metabolic activity (H-4-II-E: 120.4% and HepG2: 

91.0%) of both cell lines. 

 

Figure 27: Results of WST-I assay in H-4-II-E cells 
Treatment with lasiocarpine (25 to 900 µM) only and in combination with two carboxylesterase 
inhibitors loperamide (2.5 µM) and BNPP (100 µM).  
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Figure 28: Results of WST-I assay in HepG2 cells 
Treatment with lasiocarpine (25 to 900 µM) only and in combination with two carboxylesterase 
inhibitors loperamide (2.5 µM) and BNPP (100 µM). 

6.4.4.2 Inhibition of glutathione formation 

Inhibition of glutathione synthesis with BSO (100 µM) revealed a strong decrease in the 

metabolic activity of H-4-II-E at the low and medium concentrations of lasiocarpine (50-

300 µM). However, at higher concentrations (600 µM and 900 µM), the metabolic activity 

increased to 126% (Figure 29). The visual control of the cells (data not shown) also confirmed 

this result: at low and medium concentrations, the cell density was lower and gaps in the 

monolayer were visible; at the highest concentration, the cell density was comparable with 

solvent control and the monolayer was confluent. 
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Figure 29: Results of WST-I assay in H-4-II-E cells 
Treatment with lasiocarpine only and in combination with glutathione synthesis inhibitor BSO 
(means ± SEM; n=4-6). 

In contrast, the inhibition of glutathione in HepG2 cells did not show any effect on the 

metabolic activity (Figure 30). 
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Figure 30: Results of WST-I assay in HepG2 cells 
Treatment with lasiocarpine only and in combination with glutathione synthesis inhibitor BSO 
(means ± SEM; n=4-6). 

6.5 Discussion 

The use of primary human hepatocytes is to date the standard in vitro model to investigate 

cytotoxicity. But these cells are very cost-intensive and difficult to handle. Human and rodent 

hepatic immortalized cell lines are alternative systems, which are easier in handling and cost-

effective. The human hepatic cell line HepG2 was used for many investigations of cytotoxic 

compounds including PA toxicity (Li et al. 2013; Tamta et al. 2012). These studies revealed 

that for a suitable and well-established in vitro screening system for PA toxicity, the 

susceptibility of the cells needs to be increased.  

Different alterations, e.g. by induction or inhibition of metabolic pathways in immortalized 

human HepG2 and rodent H-4-II-E cells, were evaluated with regard to their influence on the 

cytotoxicity of the PA lasiocarpine using WST-1 assay. The general assumption implies that 
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cytotoxicity of PAs primary depends on their metabolic activation by CYP enzymes to form 

reactive pyrroles, which leads to covalent adduct formation with cellular nucleophiles (Li et al. 

2013). In the first experiment, we examined the susceptibility of cells to lasiocarpine toxicity 

up to excessively high concentrations of 2400 µM without any pre-treatment. The results 

revealed a decrease in metabolic activity compared to the solvent in both cell lines at the highest 

concentration only. This effect was more pronounced in H-4-II-E cells than in HepG2 cells. 

This result suggests that H-4-II-E cells may have a higher metabolic activity than HepG2 cells, 

which leads to a higher metabolic toxification of toxic pyrroles and thus increased 

susceptibility. However, both cell lines can be considered as resistant to lasiocarpine toxicity.  

Induction of CYP enzyme activity with rifampicin prior to treatment did not increase 

susceptibility for lasiocarpine toxicity in both cell lines. This could be due to two different 

reasons: (1) rifampicin: this substance is known to also induce phase-II enzymes (Doostdar et 

al. 1993; Westerink & Schoonen 2007), which would increase the detoxification of the reactive 

pyrroles. (2) the Crabtree effect (Aguer et al. 2011; Marroquin et al. 2007): in this case, 

although cultured under aerobic conditions, cell lines with low supply of glucose metabolically 

rely on anaerobic glycolysis rather than mitochondrial OXPHOS to generate the required 

energy. This phenomenon increases the resistance to toxic effects of many mitochondrial 

function impairing drugs. 

Therefore, in the third experiment, we successfully tried to circumvent the Crabtree effect with 

two different approaches in H-4-II-E cells: (1) Switching the cells from a high-glucose media 

(cultivation) to a glucose-free, galactose-based media during treatment (Iyer et al. 2010). (2) 

Cultivation and treatment in high-glucose media, as high concentrations of glucose inhibit the 

hexokinase (which is an important enzyme in the glycolytic pathway) (Marin-Hernandez et al. 

2006). Toxic effects were already seen at moderate lasiocarpine concentrations of 600 µM in 
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both approaches, but the galactose-based media resulted in a higher increase in the 

susceptibility to PAs. 

A further approach of our study was the inhibition of the detoxification pathways including 

hydrolysis by carboxylesterases and glutathione conjugation of reactive pyrroles. Our present 

findings demonstrated that the inhibition of carboxylesterases by loperamide and BNPP leads 

to a significant decrease in metabolic activity in H-4-II-E cells and HepG2 cells, with the 

specific inhibitor loperamide being more effective. Therefore, carboxylesterase activity has a 

strong impact on the detoxification of PAs and consequently on the susceptibility of the cells. 

The inhibition of glutathione synthesis by BSO in H-4-II-E cells resulted in a strong decrease 

in metabolic activity at low and medium concentrations and an increase at the two highest 

concentrations. Cytotoxicity is a complex interplay of several physiological mechanisms. One 

possible explanation for this observed hormetic effect may be the induction of phase-II 

enzymes, e.g. UDP-glucuronosyltransferase, by oxidative stress at high concentrations 

(Kalthoff et al. 2010), which would then increase the detoxification of the reactive pyrroles. 

For the PA senecionine it was shown, that UDP-glucuronosyltransferase 1A4 is involved in its 

detoxification (Galeotti et al. 2010). However, the investigation of the exact reason for this 

phenomenon is out of scope of this study and will be investigated separately. 

In HepG2 cells, inhibition of glutathione synthesis did not lead to a change in metabolic 

activity. This is due to the lower CYP enzyme activity in this cell line, and therefore a lower 

toxification of lasiocarpine to reactive pyrroles, and lower toxic effects (Kalthoff et al. 2010; 

Westerink & Schoonen 2007). 
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6.6 Conclusions 

In the present in vitro study, the susceptibility to lasiocarpine in HepG2 and H-4-II-E cells 

under different conditions was investigated. Inhibition of glycolysis by treating the cells in 

galactose-based media and inhibition of carboxylesterases increased the susceptibility of both 

cell lines, whereas the inhibition of GSH was only suitable in H-4-II-E cells. Especially, the 

former two approaches provide a useful method to perform in vitro screening of PA toxicity in 

immortalized cell lines. 

Furthermore, this study emphasizes the necessity to proof the suitability and susceptibility of 

the in vitro test system before assessing compound toxicity.  
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7 Overall discussion 

Predictive models based on machine learning methods are a very useful tool for toxicological 

investigations. They provide a fast, cost-efficient way to predict specific pharmacological and 

toxicological endpoints compared to in vitro and in vivo approaches. Especially in the field of 

drug development, they can be utilised for large scaled screening of potential candidates 

(virtual screening (VS)). Furthermore, the predictions can provide evidence to guide further 

mechanistic investigations. It is also useful in providing insights in toxicological properties and 

relationships of large substance groups. As an example, we investigated the substance group 

of pyrrolizidine alkaloids (PAs). Currently, over 600 different PA structures are known. They 

are secondary metabolites of some plant families, common contaminants of different food 

products (e.g. honey and herbal teas) and therefore part of the human food chain. More 

importantly, PAs are also present in herbal medicinal products, either as contaminant or as 

natural constituent.  

As humans are exposed to PAs on a regular basis, different risk assessment were done by 

various authorities (EFSA 2011; EMA 2014; 2016). However, all of these risk assessments 

applied the most conservative approach and identified the most toxic PA (lasiocarpine) from 

in vivo investigations in the most sensitive animal species (rat) (NTP 1978) and used that as 

starting point for all PAs. However, especially for PAs, this might massively overestimate the 

potential risk in humans. Different PAs exhibit very different toxicological potencies based on 

their structure. Furthermore, the sensitivity to PA toxicity is highly species-specific. Setting 

very low limits for PAs exposure, as proposed by the EMA (EMA 2014; 2016) for herbal 

medicinal products, would drastically reduce the number of herbal medicinal products on the 

market and thus unnecessarily reduce treatment options for patients. Therefore, it is important 
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to assess the toxicity of PAs more differentiated and establish a toxicological rank order of 

single PAs and PA groups (based on their structure). Unfortunately, it is not feasible nor 

practically achievable to investigate every single PA on their toxicological potential in vitro or 

in vivo. From the over 600 known PAs, currently, only about 30 different PAs are commercially 

available, limiting in vitro and in vivo testing to those substances. This gap can be overcome 

by applying machine learning methods. In this work, two different machine learning methods 

were successfully applied to predict the hepatotoxic potential of over 600 PAs. The prediction 

of the hepatotoxic potential fitted very well with the known metabolism of PAs and already 

published literature. This means also that the conclusion drawn of the structural dependent 

toxicity from testing of the commercially available PAs can be transferred to the whole 

substance group. Furthermore, due to the high number of investigated PAs, the toxicological 

share of necine base and necic acid could be assessed, which was not possible before due to 

the limited PAs tested. The confirmatory in vitro study, performed with the PA lasiocarpine, 

clearly showed that PA toxicity depends in large parts on the animal origin of cell system and 

the overall experimental conditions. Taking the in silico and the in vitro study together, it can 

be concluded that it is not possible to assign one toxicological threshold to all PAs, as the 

toxicity of PAs depends on different experimental conditions, animal species and structural 

features. Considering this, the establishment of a Relative Potency Factor (RFP), as proposed 

by Merz and Schrenk (2016) for PAs seems to be justified. 

A further successful application of machine learning techniques provided the study on acute 

hepatotoxic potential of protein kinase inhibitors (PIKs). The predicted probabilities of PKIs 

when compared with published data showed a positive correlation. Therefore, the obtained 

predicted probabilities can be used to rank the substances regarding their hepatotoxic potential. 
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The in silico study, which focussed on the mutagenicity of PAs, however, highlighted 

constrains of machine learning. Even though a significant modelling, compared to a by chance 

prediction, could be obtained, interpretation of the data was difficult due to the low 

performance of the used models. Training of predictive models is not always straightforward 

and the performance of the models might be low. Using the same machine learning algorithm 

in different applications (e.g. R-project and TensorFlow), allowing different ways to training 

the model, can make a significant difference in the model performance. This emphasis even 

more the importance of model validation and performance assessment, not only accuracy, but 

also sensitivity and specificity. Without this knowledge, the results could be interpreted overly 

confidently. Another issue, which has to be address before interpretation of the results, is the 

applicability domain. The testing dataset has to be within the applicability domain defined by 

the training dataset. This also needs to be tested and confirmed. Even when these points are 

considered, the results need to be subjected to critical assessment and review of plausibility. 

Machine learning cannot be used for confirmatory studies, but are useful in hypothesis 

generation and risk assessment. When confirmation with literature is not possible, own in vitro 

and in vivo studies need to be performed.  

8 Overall conclusion 

Machine learning is a useful tool in the evaluation of drug-induced toxicity. It is cost- and time- 

efficient way to study pharmacological and toxicological endpoints compared to in vitro and 

in vivo testing. It is especially suitable for large-scaled screening of substance groups and 

identification of potential candidates for further testing. If is also able to reveal relationships 

between structural features and pharmacological properties. This helps to deduce relative 

potency of substances within a substance group to each other. However, while in silico 
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modelling complements other experiments and provides additional information, it is not able 

to replace in vitro and in vivo testing completely. 

The greatest challenge is the performance of the models. This has to be validated e.g. by cross-

validation before the model can be used on the substances of interest. Also group statement 

could be easily obtained, due caution has to be taken while interpreting the results of predictive 

models for singly compounds and if possible, comparison to alright published data is advisable, 

as a form of external validation.   
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9 Software 

- Gnu R 3.3.3 (http://www.R-project.org) 

- Gephi 0.82 (https://gephi.org) 

- PaDEL-Descriptor 2.21 (http://www.yapcwsoft.com/dd/padeldescriptor) 

- IBM SPSS Statistics version 25 

- LAZAR version 1.3.1 (https://lazar.in-silico.ch/predict) 

- OpenBabel version 2.3.1 (https://openbabel.org) 

- TensorFlow program (https://www.tensorflow.org/)  

- Keras (https://www.tensorflow.org/guide/keras)  

- Python (https://www.python.org) 

http://www.r-project.org/
https://gephi.org/
http://www.yapcwsoft.com/dd/padeldescriptor
https://lazar.in-silico.ch/predict
https://openbabel.org/
https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras
https://www.python.org/
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10 Annex 

 

Annex 1: Applicability domain of the DILI and the PA dataset, showing the four first 
principal components (PC1 – PC4). 
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Annex 2: Comparison of the applicability domain of the DILI and the PKI dataset, showing 
the four first principal components (PC1 – PC4).  
Black circles denote model-defining DILI compounds, red circles denote tested PKIs. The plots 
indicate that the PKI dataset is completely included in the applicability domain of the DILI 
dataset. 
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Annex 3: Predictor importance: list of the 30 most important predictors and the mean 
decrease in accuracy, which would result by removal of this descriptor from the 
model. 
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Annex 4: Visualization of the drug-bioentity networks for hepatotoxic drugs (‘DILI active’) 
and non-hepatotoxic drugs (‘DILI inactive’) 
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11 Supplementary material 

Supplementary material S1: Information on the substructure search performed in PubChem 

to obtain the PA dataset. 

Supplementary material S2: PKI dataset. Spreadsheet 1: Overview of substances, SMILES 

and CID (compound identifier from PubChem). Spreadsheet 2: Protein kinase targets of the 

substances, ‘1’: is target of protein kinase mentioned in column title, ‘0’: is no target of protein 

kinase mentioned in column title. Spreadsheet 3: Probability of hepatotoxicity with RF and 

aNN model. 

Supplementary material S3: Database of substances used for model training, with DILI-

outcome indicated 

Supplementary material S4: Complete architecture of drug - bioentity networks for 

hepatotoxic drugs (‘DILI active’) and non-hepatotoxic drugs (‘DILI inactive’) 

Supplementary material S5: Full list of descriptor sets used in model building. 

Supplementary material S6: Literature review of recent machine learning efforts for drug-

induced liver injury 
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