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Summary 

Soil erosion by water on grassland does not attract the same attention like erosion on arable 

land as it is usually assumed that the closed vegetation cover prevents soil loss. However, the 

complex terrain and intensive pasture use of mountain grasslands can potentially induce high 

soil loss. With a share of 72% of the total agricultural area, grassland is one of the most 

dominant land use in Switzerland and therefore should not be neglected in topics concerning 

soil protection. 

Previous soil erosion studies revealed that soil erosion rates in Switzerland are not constant 

over time but rather are highly dynamic within a year. Such seasonal variability is mainly 

caused by rainfall patterns and plant growth cycles. Hence, modeling of soil loss based on a 

seasonal resolution enables improved insights in the erosion dynamics within a year.  

The present work aims to model soil erosion with a sub-annual resolution for Swiss 

grasslands. Thereby we will focus on the most dynamic soil erosion risk factors namely rainfall 

erosivity and land cover and management.  

The soil erosion model itself relies on the Revised Universal Soil Loss Equation (RUSLE). 

Each of the erosion factors of the RUSLE (rainfall erosivity R, soil erodibility K, cover and 

management C, slope length L, slope steepness S, and support practices P) is modified 

according to the specific environmental conditions of Swiss grasslands. The factors R and C are 

the most variable factors within a year as they are directly related to the parameters rainfall 

intensity and plant growth cycle. Therefore, both factors are modeled on a monthly scale to 

capture the temporal variations of soil loss within the year. For flexibility and transparency 

reasons, we derived each factor separately with the most state-of-the-art data and methodology 

as each of the factor transmit information about its effect on the overall model. Support 

practices (P-factor) are not considered in the model as the parametrization of grassland 

management practices and their effect for erosion control is difficult due to a lack of data and 

studies. 

Monthly estimates of the rainfall erosivity (R-factor) are based on 10-minutes rainfall data 

of 87 gauging stations distributed all over Switzerland. Subsequently, the monthly rainfall 

erosivity is interpolated with spatial covariates representing snow cover, precipitation, and 

topography. For the C-factor, the fraction of green vegetation cover (FGVC) was derived from 

the 0.25 m spatial resolution Swissimage orthophotos by a linear spectral unmixing technique. 

A temporal normalization of the spatial distribution of the FGVC combined with R-factor 

weighting results in spatial and temporal patterns of the C-factor. Soil erodibility (expressed as 

the K-factor of the RUSLE equation) was modeled with cubist regression and multilevel B-

splines on a national scale based on a total of 199 Swiss and 1639 European Land Use/Cover 

Area frame statistical Survey (LUCAS) topsoil samples. The LS-factor was adopted to the steep 

alpine environment by limiting the slope length to 100 m and using a fitted S-factor of empirical 

slope steepness factors.  

The mean monthly modeled R-factor for Switzerland is 96.5 MJ mm ha-1 h-1 month-1. On 

average, rainfall erosivity is 25 times higher in August (263.5 MJ mm ha-1 h-1 month-1) then in 

January (10.5 MJ mm ha-1 h-1 month-1). In general, the winter has relatively low R-factor values 

(average of 14.7 MJ mm ha-1 h-1 month-1). The mean monthly C-factor on Swiss grasslands is 
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0.012 with a maximum from May until September. The national average K-factor of 

Switzerland is 0.0327 t ha h ha-1 MJ-1 mm-1. The LS-factor for Switzerland is relatively high 

(14.8) compared to other countries but is mainly driven by the complex topography of the Alps 

with its steep slopes.  

The soil erosion modeling reveals distinct seasonal variations. July and August are 

identified to be the months with the highest soil loss rates (1.25 t ha-1 month-1) by water on 

Swiss grasslands. Spatially, hotspots of soil erosion are in the Central Swiss Alps (parts of the 

cantons Fribourg, Bern, Obwalden, Nidwalden, St. Gallen, Appenzell Innerrhoden, and 

Appenzell Ausserrhoden) in summer. Winter is the season with the lowest risk of soil loss due 

to low rainfall erosivity on snow-covered ground. The average annual soil loss for Switzerland, 

expressed as the sum of all monthly erosion rates, is 4.55 t ha-1 yr-1. 

The spatial rainfall erosivity patterns are heterogeneous in all months, but spatial differences 

are less pronounced in winter due to the low rainfall erosivity. The small-scale variability of 

rainfall erosivity is less distinct in all months as homogenous rainfall patterns usually cover 

larger regions controlled mainly by topography. However, the Swiss Alps are not equally 

affected by rainfall erosivity with a very low variability within a year in the western and eastern 

Alps. In contrast, the small-scale variability of the cover and management factor is higher in 

most of the months due to the impact of grassland land use. The average C-factor for Swiss 

grassland of 0.012 matches the commonly applied C-factor for grasslands (0.01) proposed in the 

literature. The Swiss K-factor is low to medium with a clear reduction under consideration of 

the surface stone cover. We expected a high LS-factor for Switzerland as steep slopes are 

frequently in the Swiss Alps.  

The dominance of soil erosion risk on grasslands in summer is surprising as it is commonly 

assumed that the closed vegetation cover protects soils. Though, the individual consideration of 

all factors, especially of the R- and C-factor, reveal their strong effect and interaction within the 

erosion model. The average annual soil loss prediction for Swiss grassland exceeds the 

maximum tolerable soil loss of Switzerland (2 t ha-1 yr-1; Schaub and Prasuhn, 1998) by a factor 

of 2. That modeling result highlights that soil erosion on grasslands is of high concern for the 

Swiss agricultural productivity and environmental protection of a large proportion of the Swiss 

territory.      

Based on the increased temporal resolution of soil erosion predictions, spatial and temporal 

patterns of soil loss by water on Swiss grasslands can be captured. The simultaneous 

identification of spatial and temporal patterns of soil loss on Swiss grasslands makes a targeted 

soil erosion control feasible. The knowledge about where and when soil erosion occurs enables 

the implementation of selective erosion control measures specifically for time periods and 

regions with high susceptibility. 

Developing a comprehensive soil erosion assessment on Swiss grassland that is comparable 

and connectable with available risk assessments such as the erosion risk map 2 for Swiss arable 

lands (Prasuhn et al., 2013) and the European Union’s assessment RUSLE2015 (Panagos et al., 

2015e) provides a national and even continental valuation of soil erosion risk. The soil erosion 

risk map can be seen as a prototype for other erosion modeling on grassland in the Alpine 

region.  
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CHAPTER 1 

 

Introduction 

1.1 Soil erosion as an environmental threat – from a global 

to local scale 

Soil erosion is one of the main causes of soil degradation worldwide (WBGU, 1994; 

Pimentel, 2000). Numerous global environmental threats (e.g. overexploitation, land 

abandonment, agricultural intensification) are linked to soil erosion as a triggering process. 

Erosion is the „process involved when the soil or rock formation is loosened and carried 

away by the agents of wind, water, freeze and thaw or biological activities” (Chesworth, 2008). 

Soil erosion can be seen as a natural process that shaped the landscapes and produces fertile 

soils. However, the natural process transformed to human-induced erosion with the accelerated 

removal of vegetation and intensification in land cultivation (Lal, 2001) and a historical peak in 

Europe in the first half of the fourteenth century caused by frequently extreme precipitation 

events and intense land use (Dotterweich, 2013).  

Currently, a global land surface of 6.1% is affected by severe soil erosion that exceeds a 

global tolerable soil loss threshold of 10 t ha-1 yr-1 (Borrelli et al., 2017). The annual amount of 

global soil loss by water was estimated to be 35.9 billion tons for the year 2012 (Borrelli et al., 

2017). Such high soil loss rates are not only of major concern for the health of the environment 

but provoke high monetary loss for the agriculture sector. In the European Union, the cost of 

agricultural productivity loss induced by water erosion is about 1.25 billion Euros per year 

(Panagos et al., 2018). In Switzerland, the estimated costs of direct and indirect consequences of 

soil erosion on arable land are 49.3 million Euro per year (Ledermann, 2012). A study by 

Mosimann et al. (1991) reported exposure of 20% of all arable land to soil erosion in 

Switzerland. However, soil erosion in Switzerland is not exclusively a threat on arable land. 

Grassland measurements of soil loss identified severe soil loss rates at disturbed hotspots up to 

30 t ha-1 yr-1 (Meusburger et al., 2012; Alewell et al., 2015a).  

Different scales and levels of soil erosion regulation demonstrate that soil erosion is not only 

of local concern. In the European Union, the controlling of soil erosion is regulated by the Cross 

Compliance regulation (Council of the European Union, 2009) by advising to protect soil 

through appropriate soil erosion measures. Since 1998, soil erosion is also regulated by different 

laws in Switzerland (Verordnung über Belastungen des Bodens VBBo; Verordnung über die 

Direktzahlungen an die Landwirtschaft DZV; Gewässerschutzverordnung GSchV; Verordnung 
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über Sömmerungsbeiträge SöBV; Swiss Federal Council, 1998a; 1998b; 1998c; 1998d). For a 

transnational erosion control in the Alps, legal guidelines to combat soil erosion are compiled in 

the soil conservation protocol of the Alpine Convention (Badura et al., 2018). 

1.2 Status quo of soil erosion in Switzerland 

In Switzerland, since the 1950s, soil erosion by water has increased under arable land due to 

an intensification of agriculture (Weisshaidinger and Leser, 2006). Many measurements and 

experiments were conducted in the Swiss midlands to quantify the soil loss and assess the 

erosion risk (Mosimann et al., 1990; Mosimann et al., 1991; Prasuhn, 2010). Furthermore, one 

of the longest (20 years) European long-term measurement sequences on the loss of sediments 

from fields exists in Switzerland (Prasuhn, 2011; Prasuhn, 2012; Prasuhn, 2017). Since many 

years, the Swiss public authorities provide guidelines to the landowners to prevent soil erosion 

(Mosimann and Rüttimann, 2000; AGRIDEA, 2007). In addition to these guidelines, a potential 

erosion risk map with a 2 m spatial resolution (ERK2) was introduced in 2011 to serve as a tool 

for localizing, quantifying, and awareness raising of soil erosion (Fig. 1.1; Gisler et al., 2011; 

Prasuhn et al., 2013). However, the map is restricted to agricultural zones which are dominated 

by arable farming. These agricultural zones are defined as valley zone, hilly zone, mountain 

zone I, and mountain zone II (Fig. 1.2).  

 

 
Fig. 1.1: Potential water erosion risk map (ERK2) of arable land in Switzerland, classified 

according to Prasuhn et al. (2013) (data: Federal Office for Agriculture, 2010) 
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Fig. 1.2: Agricultural zoning in Switzerland (data: Federal Office for Agriculture, 1997) 

 

Often, soils covered by grassland are assumed to be protected against soil loss by dense 

vegetation cover. However, many experiments and measurements on grasslands confirm that 

soil erosion is not only a concern on arable land (Martin et al., 2010; Konz et al., 2012; 

Schindler Wildhaber et al., 2012; Alewell et al., 2014) especially if the protecting vegetation 

cover of grasslands is disturbed. In 2007 and 2012, two national workshops on “Soil Erosion in 

the Alps” were held in Switzerland (Meusburger and Alewell, 2014) raising the awareness of 

soil erosion as a potential threat in grasslands. 

1.3 Soil erosion on Swiss grasslands 

Grasslands are the predominant land use type of Swiss agricultural areas (72%) with an 

extent of 28% of the national area (Bötsch, 2004; Jeangros and Thomet, 2004). They exist 

likewise in the valley/hilly zone and the mountain zone. About 46% of all grasslands are 

designated as alpine grassland and are the common land use type at elevations above 1500 m 

a.s.l. (Hotz and Weibel, 2005). Therefore, a large area of grassland is covered by snow in the 

winter. The typical melt-out day at elevations between 1560 and 2545 m a.s.l. is around May 

27th (Jonas et al., 2008; Fontana et al., 2008). Humans have been managing the alpine soils for 

about 5000 years (Bätzing, 2015). Grasslands in Switzerland have been mainly used as 

meadows for fodder production and as pastures for livestock farming. Today, grasslands in the 

valleys are generally used for hay production and mountain grasslands are used for livestock 

grazing (Meusburger and Alewell, 2014).  

Soil mobilization processes on grasslands are notably different in winter than in summer due 

to the winter snow cover. In winter, the effect of snow (e.g. snow gliding, avalanches) causes 

the loosening of soil material that is displaced by the melting snow in spring (Ceaglio et al., 
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2012; Meusburger et al., 2014; Stanchi et al., 2014; ). The erosional impacts of wind and 

biological activities on Swiss grasslands are yet not studied in detail. However, considerably 

soil erosion by water is observable and measurable on Swiss grasslands (Fig. 1.3). The most 

present forms of water erosion on grasslands is sheet erosion. Rill erosion is occasionally visible 

on steep or sparsely vegetated slopes. Gully erosion is so far seldom observed (Strunk, 2003). 

Next to water erosion, landslides are a dominant gravity process that causes relocation of soil 

material on grasslands (Wilde et al., 2018).  In this study, we will focus on soil erosion by water 

because intrinsically different models are needed to study mass movements and soil 

displacement by sheet erosion. 

As a natural effect, grasslands are prone to water erosion triggered by natural conditions like 

rainfall intensity, soil (in)stability, and topography. The triggering processes of soil erosion on 

grassland, with particular emphasis on alpine grasslands, are usually different from those on 

arable lands as grassland soils are often less developed, and more exposed to extremes (snow, 

intense rainfall). Additionally, soil mobilization on grassland is accelerated by the specific 

influence of grassland cultivation and management such as selective grazing, overgrazing, or 

cattle trails. Like for arable soils, an intensification of the land use of grasslands on lower slopes 

can be observed in the last 50 years (Jeangros and Thomet, 2004; Alewell et al., 2008). For 

reasons of workload reduction, a transition from remote pastures to more accessible pastures is 

perceptible (Hotz and Weibel, 2005). The latter land use change caused a partial abandonment 

of remote grasslands with an overall reduction of grazing area (from 14.8% in 1954 to 11.2% in 

2005 of the total Swiss territory) but simultaneously increased stocking rates and animal weight 

(Troxler et al., 2004). The total number of livestock units increased by 3.2% from 1962 to 2004 

with a particular focus on heavy grazing cattle (Troxler et al., 2004). Since 1955, the number of 

sheep and cattle in the Urseren Valley experienced a sixfold respectively twofold increase 

accompanying by a reduction of grazing area (Meusburger and Alewell, 2008). Degraded soil 

structure by the trampling of livestock, disturbed vegetation composition due to selective eating, 

and prolonged grazing periods are favoring the susceptibility of soils to be eroded. A 

comprehensive overview of the soil erosion problems in the Swiss Alps is provided by 

Meusburger and Alewell (2014).  
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Fig. 1.3: Sheet erosion by water on Swiss grasslands (Val Piora, Ticino, Switzerland) as a 

combined effect of natural triggering factors and land use 

1.4 The objective of a nationwide soil erosion risk map for 

Switzerland 

The soil loss by water on arable lands in Switzerland is already predicted by various 

modeling and mapping studies (e.g. Friedli, 2006; Chisholm, 2008; Ledermann et al., 2010). As 

a lumped outcome of the lessons learned by these works, the first comprehensive and spatially 

high resolution potential erosion risk map (ERK2) for arable lands on plot scale was financed by 

the Federal Office for Agriculture (FOAG; see chapter 1.2; Gisler et al., 2010). Initially, the 

map is based on the Modified Universal Soil Loss Equation 1987 (MUSLE87; Hensel and Bork, 

1988) and implemented in ESRI ArcView 3.x (extension AVErosion 1.0; Schäuble, 1999). In 

the meanwhile, most of the input datasets of the ERK2 are substituted by newer versions and the 

software is outdated. Therefore, the FOAG financed an upgrade of the existing ERK2 to 

implement the latest data and transfer the model to a more modern software. The primary 

interest of the project is to quantify the potential soil erosion risk for arable land on a plot scale. 

In a second project, information about crops and crop rotation are implemented in a user tool to 

calculate the actual soil erosion risk for fields with available data. 

Later, in 2015, a soil erosion risk map for the European Union was published by the Joint 

Research Centre (JRC) of the European Union (Fig. 1.4; Panagos et al., 2015e). That map 

provides an overview of the spatial patterns of water erosion for 28 countries of Europe. 

However, as Switzerland is no member of the EU, Switzerland appears as a blank spot within 

the modeled neighboring countries. A qualitative map of the soil erosion risk in the Alps was 
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published in 2009 (Bosco et al., 2009) but this map is relatively coarse and is not suitable as a 

management instrument in Switzerland due to missing effective soil loss rates. 

 

 
Fig. 1.4: Erosion risk map of the European Union with Switzerland appearing as a blank 

spot (Panagos et al., 2015e) 

 

Since many years, the working group “environmental geoscience” of the University of Basel 

is measuring, modeling, and observing soil erosion on grassland in different study areas of the 

Swiss Alps (e.g. Bänninger et al., 2006; Alewell and Imhof, 2008; Alewell et al., 2008; Konz et 
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al., 2010; Meusburger et al., 2010a; Meusburger et al., 2010b; Konz et al., 2012; Meusburger et 

al., 2012; Schindler Wildhaber et al., 2012; Alewell et al., 2014; Arata et al., 2016). As the 

terrain in the grasslands of the Swiss Alps is complex, comprehensive field surveys are often 

impeded. Meusburger (2010) stated that “in high relief regions, with rugged topography, a more 

detailed scale is needed.” To assess also remote and difficultly accessible grasslands in 

Switzerland, the sound geodatabase of Switzerland can serve as an appropriate solution. With 

the recent development of geoinformation tools and the improvement of resolution of geodata, a 

national assessment of the soil erosion risk on grassland on a detailed scale (100 m to 500 m, 

monthly) is now feasible. Switzerland is among the countries with the best geoinformation data 

availability, mainly provided by the Federal Office of Topography (Swisstopo) (e.g. SwissAlti 

3D, Swissimage FCIR/RGB/RS, swissTLM 3D). Furthermore, the advancements in remote 

sensing over the last decades expand the versatile database. Recently, Swiss authorities also 

participated in the pan-European data sampling campaign as part of the Land Use/Cover Area 

frame statistical Survey (LUCAS) with more than 22000 grassland and forest samples all over 

Europe (Orgiazzi et al., 2018).  

 

To consider soil erosion in the rest of the Swiss agriculture area, namely the grasslands, and 

to fill the blank spot within the European assessment, another research project was financed by 

the Federal Office for the Environment (FOEN) in Switzerland to result in the first erosion risk 

map of grasslands (ERKGrünland) in Switzerland. This dissertation presents the research outcomes 

of that research project.  

It was agreed in several meetings of the responsible persons of FOAG and FOEN that both 

erosion risk maps (the updated ERK2 and the ERKGrünland) should be combinable to a national 

soil erosion risk map of the total agricultural area (including arable land and grassland) of 

Switzerland. Therefore, the used methodologies, approaches and dataset were regularly 

exchanged between the projects. A dissertation about the project of the FOAG is in preparation 

by P. Bircher.  

1.5 Modeling with RUSLE 

The present soil erosion risk map for Swiss grasslands is modeled with the Universal Soil 

Loss Equation (USLE) and its revised version (RUSLE) (Wischmeier and Smith, 1965; 1978; 

Renard et al., 1997; Foster et al., 2008). A variety of models were tested and examined earlier 

for Switzerland like WEPP, LISEM, PESERA, USPED, Erosion3D, and RUSLE (Alewell et al., 

2008; Konz Hohwieler, 2010; Meusburger et al., 2010b; Meusburger and Alewell, 2014). The 

evaluation of the models showed that RUSLE is the most robust model for large-scale modeling 

of Swiss grasslands because most of the other models have a much larger data demand and were 

less sensitive to the fraction of vegetation cover, which is one of the main risk factors for soil 

erosion on grassland. The RUSLE factors are broken down into sub-factors to permit more 

flexibility and an improved capturing of the small-scale processes in erosion dynamics. As such, 

RUSLE uses basic process-based erosion science to complement the empirical basis. In addition 

to that, the choice of the appropriate soil erosion model always depends on the available 

datasets for the study area, the spatial and temporal scale of the model application, and the 
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necessary type of information to be obtained (Meusburger and Alewell, 2014; Borrelli et al., 

2017).  

In the estimation of soil loss with USLE/RUSLE, the soil erosion related factors of rainfall 

erosivity (R) and soil erodibility (K) are corrected by information about the vegetation cover 

(cover and management C), topography (slope length L and slope steepness S) and erosion-

protection measures (P). The combination of all factors result in the following equation of 

USLE/RUSLE: 

 

A = R ∗ K ∗ C ∗ L ∗ S ∗ P              (1.1) 

 

Where A is the total soil loss in t ha-1 yr-1. 

The individual calculation of each erosion factor is of significant advantage compared to 

black-box-models, as the single factors transmit information itself, enable transparency and 

verifiability. Each erosion factor can be adjusted and evaluated on its own. That adjustment of 

each factor is of relevance for modifying the erosion model to the specific conditions of (alpine) 

grasslands.  

Initially, the USLE was developed based on more than 10000 plot-years at 49 locations in 

the US with a plot length ≤ 122m and a slope gradient between 3% and 18% (Wischmeier and 

Smith, 1978). These data were related to a standardized unit plot of 22.1 m length and 9% slope 

steepness with specific management (regularly tilled fallow, slope vertical tillage) (Renard et 

al., 1997). 

Already in 1993, Risse et al. (1993) pointed out that “USLE is the most widely used of all 

soil erosion models.” A keyword search for the term “Universal Soil Loss Equation”, “USLE”, 

“Revised Universal Soil Loss Equation”, and “RUSLE” by Borrelli et al. (2017) resulted in 

1118 publications for the period of 2003 to 2016 with rapid growth during the end of that 

period. Publications with other soil erosion model keywords are by far less popular (243 results 

for SWAT, AGNPS, Watem/Sedem, EPIC and 254 results for WEPP, LISEM, EUROSEM, and 

PESERA). The vast request for soil erosion models was also demonstrated at the “1st Erosion 

Modelling Workshop” in 2017 at the JRC in Ispra with more than 80 presentations about soil 

erosion models and participants from 25 countries 

(https://esdac.jrc.ec.europa.eu/themes/erosion-modelling-workshop). Still, USLE/RUSLE was 

the most presented model during that workshop. Two follow-up erosion modeling workshops 

were held in 2017 in Seoul and 2018 in Rio de Janeiro.  

1.6 Spatio-temporal dynamics of soil erosion 

Initially, USLE/RUSLE was developed to predict long-term average annual soil loss 

(Wischmeier and Smith, 1978) usually expressed in t ha-1 yr-1. However, investigations on soil 

erosion over the last decades indicate that soil erosion rates are not distributed equally over a 

year. Instead, soil erosion is process driven by a few extreme events within a year. The soil loss 

of such triggering extreme events is averaged to a whole year. Therefore, the early criticism by 

Hawkins (1985) of not considering the time and spatial variations in site properties is 

comprehensible. Nowadays, the annual approaches can be complemented by sub-annual erosion 

assessments with higher temporal resolutions owing to the advances in data and measuring 

https://esdac.jrc.ec.europa.eu/themes/erosion-modelling-workshop
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quality. Quantifying soil loss on a seasonal, monthly, weekly or even daily time-scale helps to 

better understand the underlying erosion processes. 

Furthermore, a finer temporal resolution reduces errors in soil loss predictions (Alexandridis 

et al., 2015). Wischmeier and Smith (1965) propose a monthly temporal resolution to be 

appropriate for soil erosion modeling. This recommendation was affirmed four decades later by 

Panagos et al. (2012a), Panagos et al. (2016a), Karydas and Panagos (2016), and Karydas and 

Panagos (2017). 

The factors C and R of the USLE/RUSLE are highly dynamic with a clear annual cycle 

(Wischmeier and Smith, 1978; Renard and Freimund, 1994; Vrieling, 2006; Vrieling et al., 

2014; Möller et al., 2017) in contrast to the rather constant RUSLE-factors K, L, and S (Panagos 

et al., 2012a; Alexandridis et al., 2015) which are only variable on a long-term scale (e.g. 

change in soil permeability due to freeze-thaw/weathering processes, landscape change due to 

erosion or landslides, introduction of protection measures) and therefore not recognized on a 

sub-annual scale (Wang et al., 2001). Especially for grassland, a clear natural growth cycle, 

periodical hay cutting, or periodical grazing within a year is evident and influence the C-factor. 

Likewise, the weather is changing over time, the rainfall erosivity R is not constant. Meusburger 

et al. (2012) already proved the presence of a strong seasonality of rainfall erosivity in 

Switzerland.  

The original USLE/RUSLE equation of Eq. 1.1 can be modified to a sub-annual soil erosion 

equation by considering the dynamics of the factors R and C in the respective temporal 

resolution. We followed the recommendation of a monthly resolution. The USLE/RUSLE 

equation is thus transformed to: 

 

Amonth = Rmonth ∗ K ∗ Cmonth ∗ L ∗ S ∗ P                                 (1.2) 

 

Where Amonth is the quantification of soil loss in t ha-1 month-1. Rmonth and Cmonth are the R- 

and C-factors with a monthly resolution. 

Such multi-temporal and spatial approaches to assess the riskiest periods and areas for soil 

erosion by water are realized on a continental/national level, e.g. for Africa, Brazil (Vrieling et 

al., 2008; 2014), and Albania (Grazhdani and Shumka, 2007). Time-dependent assessments of 

soil loss are relevant to support policymakers and farmers to implement soil protection measures 

more organized. These spatio-temporal assessments are decisive for an accurate soil erosion risk 

assessment and relevant for gaining knowledge about where and when soil erosion is 

endangering soils simultaneously (Panagos et al., 2014c; Ballabio et al., 2017; Möller et al., 

2017).  

1.7 Objectives and outline of the thesis 

So far, neither a dynamic soil erosion risk assessment in Switzerland nor a mapping of the 

soil erosion risk by water exists for Swiss grassland. To fill that soil erosion gap for Switzerland 

and to fill the blank spot in European assessments, we adopted the USLE/RUSLE to the specific 

environmental conditions of Swiss grasslands and used state-of-the-art high resolution data to 

quantify the soil erosion risk on a monthly scale. Different geoinformation and statistical 
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approaches, remote sensing techniques, and sampling methods were used for deriving maps of 

the soil erosion risk by water on grasslands.  

The overall aim of the thesis is to model the soil loss for Swiss grassland at a monthly 

temporal resolution. For that purpose, (i) the national grassland extend of Switzerland has to be 

defined, (ii) the rainfall erosivity and (iii) the cover and management factor are modeled on a 

monthly scale, (iv) the soil erodibility database is extended to the Swiss Alps, and (v) the 

suitability of different slope length and slope steepness factors for alpine environments is 

verified.  

 

The thesis is subdivided into four sections (Fig. 1.5). The first section (chapter 2) presents a 

Swiss grassland map of the year 2015, which serves as the mask layer for defining the extent of 

grasslands in Switzerland. Chapters 3 and 4 are assessing the dynamic erosion factors rainfall 

erosivity (R) and cover and management factor (C) of the USLE/RUSLE which are based on 

regression-kriging and linear spectral unmixing, respectively. The assessments of the rather 

static factors soil erodibility (K), slope length (L) and slope steepness (S) are the content of 

chapters 5 and 6. The spatial patterns of soil erodibility are assessed with a total of 1837 subsoil 

samples in Switzerland and neighboring countries. L- and S-factors rest on a modification of 12 

empirical S-factors and rainfall simulations on Swiss grasslands. The P-factor (support 

practices) is not investigated for Swiss grasslands due to a lack of spatial information on grazing 

management and their effect on soil loss. The dynamic factors, as well as the static factors, are 

multiplied according to Eq. 1.2 to twelve monthly erosion risk maps by water on Swiss 

grasslands which are presented in the synthesis chapter 7. This chapter also provides an 

overview of used datasets and methods for each of the factors. 

 
Fig. 1.5: Sections and chapters of the dissertation 
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The factor maps of R, K, L, and S are elaborated on a Swiss national scale. The extent of the 

C-factor map is limited to grassland as the underlying processes of the cover and management 

factor are principally different from those on arable land.  

For readability reasons, the authors decided to truncate the term “soil erosion by water” to 

“soil erosion”, as the main subject of that dissertation is water erosion otherwise it will be 

referred accordingly. 

The final erosion maps as presented in this dissertation are the output of the research project 

originally entitled “Soil Erosion Risk Modeling in the Alps – ERKBerg as a Prototype of ERK2 

for mountain zones III, IV and summering grazing zones”, financed by the FOEN (chapter 1.4). 

The project title was later modified to only cover grasslands (see the title of the dissertation). 

The corresponding erosion risk map for grasslands is abbreviated to ERKGrünland. The 

aggregation of the erosion risk map of grasslands with the erosion risk map of arable land is not 

part of this thesis.  
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Abstract 

So far, neither a grassland map, temporal analysis of the conversion of permanent grassland 

(PG) to other land uses nor the differentiation of permanent and temporal grassland exists for 

Switzerland. For the first time in Switzerland, we present a Swiss national grassland map for the 

year 2015 capturing the extent of both, permanent and temporal grasslands (here called 

grasslands) by intersecting the information of three datasets. We blended the high temporal 

resolution Climate Change Initiate (CCI) Land Cover of 2015 (processed by the European 

Space Agency (ESA)), with the high spatial resolution Swiss topographical landscape model 

“SwissTLM3D” and the landscape model “vector25” both provided by Swisstopo. The final 

data presents the spatial patterns and the national extent of Swiss grasslands. Furthermore, the 

recently published (April 2017) CCI Land Cover dataset allow extracting the extent of 

grasslands for 24 years (1992-2015) with a coarse spatial resolution of 300 m. We used the time 

series data of the grassland extent to produce annual PG maps from 1996 to 2015. That data 

enables the identification of the development of grassland extent over two decades. The Swiss 

national grassland map is used for investigating the spatio-temporal patterns of the soil erosion 

risk of Swiss grasslands (see Mapping spatio-temporal dynamics of the cover and management 

factor (C-factor) for grasslands in Switzerland, DOI 10.1016/j.rse.2018.04.008; Schmidt et al., 

2018b). 

 

Keywords: land use change, land cover classification, time series, change detection, soil 

erosion, alpine environment, C-factor, CCI Land Cover 

 

Value of the data: 

 The data provide a first national map of the extent of Swiss grasslands which might not 

only be an important baseline data for ecological studies but also for multiple 

disciplines, e.g., alpine research, soil sciences, geosciences, agronomy, hydrology.   

 Modelers and GIS-users are provided with a grassland map (2015) to distinct grasslands 

from other land use classes (e.g., arable land, forest). 

 The separation of temporal and permanent grassland is feasible and of high relevance 

for ecological, geobotanical, biodiversity and soil research to interpret specific species 

composition and indicator for soil properties. 

 The capturing of the conversion of permanent grassland from 1996 to 2015 is a valuable 

resource for future policy decision making. 
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Specifications Table 

Subject area Ecology 

More specific subject 

area 

Grassland mapping and land use change 

Type of data Figures (maps) 

How data was acquired Data were derived from Climate Change Initiative (CCI) Land 

Cover (Arino and Ramoino, 2017; Bontemps et al., 2015) and 

Swisstopo (Swisstopo, 2017a; Swisstopo, 2007). Data were 

processed for 2015 and an annual resolution for Switzerland for 

the years 1992/1996 to 2015 

Data format processed and analyzed data is available as Raster format 

(GeoTIFF) and Polygons (Shapefile) 

Experimental factors Details provided by the European Space Agency (ESA) 

Experimental features Grassland maps were extracted from the global CCI Land Cover 

(Arino and Ramoino, 2017; Bontemps et al., 2015) and clipped for 

Switzerland. Two Swiss landscape models (Swisstopo, 2017a; 

Swisstopo, 2007) were used for the refinement of the grassland 

extent by clipping with additional topographical and land use 

information. Permanent grasslands and their change were derived 

by sets of five successive grassland maps. 

Data source location Switzerland 

Data accessibility The data are available with this article. 

Related research Schmidt, S., Alewell, C., & Meusburger, K. (2018). Mapping 

spatio-temporal dynamics of the cover and management factor (C-

factor) for grasslands in Switzerland. Remote Sensing of 

Environment, 211, 89–104. doi:10.1016/j.rse.2018.04.008. 
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2.1 Experimental design, materials and methods 

In 2017, the European Space Agency published annual globally available CCI Land Cover 

Maps (v2.0.7) including grassland for 24 consecutive years (1992-2015) with a spatial 

resolution of 300 m. We extracted the grasslands for all 24 years and clipped them to the Swiss 

national border (Swisstopo, 2017a). The spatial resolution of 300 m represents a single class 

value of an area of 300 m x 300 m of the ground. Based on this data source we derived two 

grassland products: (i) the Swiss national grassland map for the year 2015 and (ii) the temporal 

change of permanent grassland areas in Switzerland from 1996 to 2015. 

 

(i) We refined the extracted grassland class for the Swiss national grassland map of the year 

2015 as they entail some generalization which affects primarily small landscape elements (e.g., 

streets, buildings) and other land use classes. For instance, small elements are not recorded as an 

individual class but assigned as grassland. The high resolution landscape models (geometric 

accuracy of 0.2 m to 8 m; SwissTLM3D; Swisstopo, 2017a, vector25; Swisstopo, 2007) of 

Switzerland increase the accuracy of the CCI Land Cover grassland map of 2015 by a clipping 

procedure due to its fine distinction of these landscape elements and land use classes. A flow 

chart of the processing is presented in Fig. 2.1. The landscape models contain a class 

(“Z_Uebrig”) which represents remaining primary areas such as grassland, arable land and so 

on which are not part of any other class and presented on a combined class level. That class is 

used for clipping to improve the accuracy of the CCI Land Cover maps of grassland. A grid cell 

remains grassland if a CCI Land Cover grassland grid cell matches with the Z_Uebrig polygon 

otherwise it is masked and a bad classification assumed due to the cell size. Furthermore, the 

buildings and streets (after buffering according to the mean street body width) were masked 

from the grassland map. Thereby, the accuracy of the map is increased, and misclassified 

landscape elements and land use classes are extracted.  
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Fig. 2.1: Flow chart for the processing of the refined Swiss national grassland map (2015) 

 

High spatial resolution digital orthophotos (0.25 m, SwissImage RGB, Swisstopo, 2010) 

were used for validating the grassland map of Switzerland. A total of 1000 random points were 

set for a pseudo ground control within the here generated grassland map. These points are visual 

and statistical evaluated according to their real land use type. 

 

(ii) The availability of grassland time series enables the extraction of PG from 1996 to 2015. 

Following the definition Smit et al. (2008), we defined all grid cells as PG which represented 

grasslands in a succession of five years. PG maps could not be improved by clipping with the 

topographic landscape models (compare Fig. 2.2) owing to the lack of historical data of 

SwissTLM3D and vector25 (Swisstopo, 2017a; Swisstopo, 2007). However, the investigation of 
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the proportional change in PG is also feasable with the moderate-resolution of the CCI Land 

Cover grassland maps.   

2.2 Data 

The presented map (Fig. 2.2) represents the extent of total grassland (no separation between 

temporal (TG) and permanent grasslands (PG)) for Switzerland for the year 2015. The 

comparison between the presented grassland map with digital orthophotos for 1000 random 

points reveals a mapping accuracy of grassland by 82.1%. The remaining of non-matching 

points (7.6%) is bedrock which is usually socialized with grassland. The remaining 

misclassified points correspond to 3.9% of forest areas, 2% of asphalted areas (e.g. streets), and 

4.4% undefined land use types. The main cause for the mismatch is the coarse resolution of the 

grassland map pixels. 
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Fig. 2.2: Refined Swiss national grassland map (spat. res. 300 m) of the year 2015. 

Temporal and permanent grassland is not distinguished here.  
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According to the Food and Agricultural Organization (FAO) definition, grassland is defined 

as “ground covered by vegetation dominated by grasses, with little or no tree cover” (Suttie and 

Reynolds, 2005). In contrast to TG, PG is not part of the crop rotation for a minimum of five 

successive years (Smit et al., 2008). An overall gain (2.1%) of PG in 2015 compared to 1996 

can be assessed (Fig. 2.3). About 0.4% of PG was converted to other land use units in the same 

comparative period. The PG time series over 20 years (1996-2015) shows a slight but 

continuously increasing trend from 1998 onwards (Fig. 2.4). The PG maps of the two decades 

are provided as enclosed data with this article. Soil properties vary with grassland type due to 

plowing and cultivation of TG. Therefore, the data, particularly when linked to agrarian 

development, planning, or soil degradation threats, are also a valuable resource for soil 

scientists. The Swiss national grassland map of 2015 (Fig. 2.2) was originally developed for 

investigating the spatio-temporal patterns of soil erosion risk on Swiss grasslands (Schmidt et 

al., 2018b). 
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Fig. 2.3: Land use change of permanent grassland in Switzerland for 2015 related to 1996 

(spat. res. 300 m) 
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Fig. 2.4: Fraction of permanent grassland from total area in Switzerland from 1996 to 2015 

in percentages 
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Abstract 

One major controlling factor of water erosion is rainfall erosivity, which is quantified as the 

product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often 

expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) 

and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount 

and intensity, the rainfall erosivity of Switzerland can be expected to have a regional 

characteristic and seasonal dynamic throughout the year. This intra-annual variability was 

mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns 

of rainfall erosivity. So far only national seasonal means and regional annual means exist for 

Switzerland. We used a network of 87 precipitation gauging stations with a 10-minute temporal 

resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear 

regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial 

covariates which explain the spatial and temporal patterns of the R-factor for each month across 

Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the 

regression equation and the corresponding residues of the regression, which are interpolated by 

ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator 

data has been included such as snow depths, a combination product of hourly precipitation 

measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-

APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) 

were also significant explanatory variables for single months. The comparison of the 12 

monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity 

in summer (June, July, and August) influenced by intense rainfall events. Winter months have 

the lowest rainfall erosivity. A proportion of 62% of the total annual rainfall erosivity is 

identified within four months only (June to September). The highest erosion risk can be 

expected in July where not only rainfall erosivity but also erosivity density is high. In addition 

to the intra-annual temporal regime, a spatial variability of this seasonality was detectable 

between different regions of Switzerland. The assessment of the dynamic behavior of the R-

factor is valuable for the identification of susceptible seasons and regions. 
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3.1 Introduction 

Rainfall has direct impacts on soil mobilization by processes like rapid wetting or splash and 

runoff effects and is, therefore, one of the main driving forces of water erosion. The R-factor, as 

one of the five soil erosion risk factors (rainfall erosivity, soil erodibility, slope steepness and 

length, cover management, and support practices) of the Revised Universal Soil Loss Equation 

(RUSLE) (Renard et al., 1997; Foster et al., 2008) expresses the impact of rainfall on soils in the 

form of rainfall erosivity. The RUSLE is widely used for calculating soil loss, but each of the 

five factors also has an essential message on its own. For instance, besides being an important 

driving factor of soil erosion, the R-factor can also be used to draw conclusion about soil 

vulnerability, flood hazard, natural hazards, or probability of droughts (Panagos et al., 2015a).  

Soil erosion by water is a major environmental issue in Switzerland, which has been 

measured (Konz et al., 2012; Alewell et al., 2014), mapped (Mosimann et al., 1990; Prasuhn, 

2011; Prasuhn, 2012), and modeled (Gisler et al., 2011; Prasuhn et al., 2013) extensively. In 

Switzerland, since the 1950s, soil erosion by water has increased under arable land 

(Weisshaidinger and Leser, 2006) as well as in mountain grasslands (Meusburger and Alewell, 

2008). Mosimann et al. (1991) assessed a quantity of up to 20% of all cultivated land in 

Switzerland to be affected by soil erosion. The costs of soil erosion for Switzerland’s arable 

land were estimated to be about 53 million CHF yr-1 (US $55.2 million yr-1; Ledermann, 2012). 

Increasing trends of water erosion are predicted for Switzerland under future climate change due 

to more frequent and heavy rainfall during winter (Fuhrer et al., 2006). Trends towards 

increasing rainfall erosivity are already observable in the months of May to October 

(Meusburger et al., 2012).  

Previously published studies on rainfall erosivity in Switzerland focused on national 

seasonal means (Panagos et al., 2015a) or regional annual means (Friedli, 2006; Gisler et al., 

2011; Meusburger et al., 2012; Prasuhn et al., 2013). Since Switzerland has a high spatial 

climate variability (humid continental to oceanic climate; Köppen, 1936), seasonal and temporal 

variations of the weather are consequential. As such, these spatiotemporal climate variations can 

be expected to influence patterns in the rainfall erosivity. Spatial and temporal patterns of R-

factors have not yet been established and mapped for Switzerland although Meusburger et al. 

(2012) already showed the presence of a strong seasonality of the rainfall erosivity for stations 

clustered at different elevation classes in Switzerland. So far the lack of significant spatial 

covariates impeded the mapping of intra-annual rainfall erosivity patterns. The availability of 

hourly radar rainfall observations for Switzerland (CombiPrecip data; Sideris et al., 2014) might 

offer a new possibility for the modeling of rainfall erosivity maps for individual months. These 

spatiotemporal patterns are decisive in combination with spatiotemporal patterns of vegetation 

cover in order to allow for an accurate soil erosion risk assessment and relevant for a monthly 

and seasonal management of agriculture practices and hazard controls. A rather static approach, 

which aggregates either regional or temporal R-factors such as those presented by Meusburger 

et al. (2012), is not suitable to model the dynamic soil erosion risk on a seasonal scale. 

Furthermore, the impact of precipitation on rainfall erosivity can be assessed by determining the 

monthly erosivity density. 

Here, we aim to assess the spatiotemporal variability of rainfall erosivity in Switzerland by 

(i) extending the network of gauging stations from Meusburger et al. (2012); 

(ii) producing monthly R-factor maps based on high-resolution spatial covariates using a 

regression-kriging approach; 
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(iii) evaluating the spatiotemporal patterns of the seasonal R-factor dynamics; 

(iv) determining the spatiotemporal erosivity density. 

3.2 Material and Methods 

3.2.1 Rainfall erosivity (R-factor) calculation 

The rainfall erosivity expressed as R-factor in RUSLE is the summation of the total storm 

energy (E) of an erosive rainfall event times its corresponding maximum intensity over a time 

span of 30-minutes (I30) within a certain time period (Brown and Foster, 1987). We used the 

erosive rainfall event thresholds defined by Renard et al. (1997), which were modified by 

Meusburger et al. (2012). The unit rainfall energy (er) (MJ ha-1 mm-1) for each time interval is 

expressed as the intensity of rainfall (ir) (mm h-1) during that time interval. It is calculated by 

Brown and Foster (1987) as 

 

er = 0.29[1 − 0.72 exp(−0.05ir)]                         (3.1)  

 

The erosive rainfall event erosivity (EI30) (MJ mm ha-1 h-1) is a product of the unit rainfall 

energy (er) (Eq. 3.1) and its maximum rainfall amount within a 30-minutes interval (according 

to Wischmeier and Smith, 1978): 

 

EI30 = (∑ ervr
k
r=1 )I30              (3.2) 

 

 where vr is the rainfall volume (mm) during a time unit r and I30 is the maximum rainfall 

intensity within 30-minutes of the event (mm h-1).  

The monthly rainfall erosivity (Rmo) (MJ mm ha-1 h-1 month-1) is the mean of the 

accumulated event erosivity (EI30) (Eq. 3.2) within a month: 

 

Rmo =  
1

n
∑ ∑ (EI30)k

mj

k=1
n
j=1              (3.3) 

 

where n is the recorded number of years with the number of erosive events (mj) within a 

certain month j. k is the index of a single event with its corresponding event erosivity.  

The event rainfall erosivity was calculated for each station by applying the algorithm of 

Meusburger et al. (2012) (http://esdac.jrc.ec.europa.eu/themes/r-factor-switzerland-version-

2012). The event rainfall erosivity was averaged by months to a long-term monthly mean R-

factor (Rmo). Originally, the 30-minute maximum rainfall rate (I30) is obtained by breakpoint 

precipitation data, which is recorded in intervals of fixed rainfall rates instead of fixed time 

intervals (Wischmeier and Smith, 1978; Hollinger et al., 2002). As stations recording 

breakpoints are rare in Switzerland, we used records with a fixed time interval of 10-minutes. 

Using small time intervals better represents breakpoint data and records the intensity more 

realistic. Longer intervals might underestimate rainfall intensity (Porto, 2016; Panagos et al., 

2016a). For time intervals shorter than 15 minutes Porto (2016) reported an overestimation 

compared to the commonly used (EI30)15 (15-minutes interval) and proposed a mean conversion 

factor of 0.97 for all investigated stations in southern Italy. This rather small deviation can 

http://esdac.jrc.ec.europa.eu/themes/r-factor-switzerland-version-2012
http://esdac.jrc.ec.europa.eu/themes/r-factor-switzerland-version-2012
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mainly be explained by the fact that the maximum intensity of the 10-minute record is upscaled 

to the whole 30-minutes increment. To avoid this bias our algorithm uses a 30-minute moving 

average to identify the maximum I30 and as such resembles the original approach of Wischmeier 

and Smith (1978) to obtain the I30 from “successive increments of essentially uniform intensity” 

(Wischmeier and Smith, 1978). As we are working with the same 10-minute measuring interval 

at all 87 stations, no conversion factor was applied to homogenize the data (cf. Agnese et al., 

2006; Porto, 2016; Panagos et al., 2016a). Usually, snow, snowmelt, and rainfall on frozen soil 

are not assessed in the R-factor (Renard et al., 1997). Thus, a temperature threshold of 0°C was 

set to obtain only rainfall and exclude snow water equivalents, which are subject to uncertainty 

in rainfall erosivity assessments (Leek and Olsen, 2000). Temperature data were measured 

simultaneous to precipitation (for 71 stations) or were directly derived (for 16 stations) from the 

closest stations (within a distance of less than 20 km) at similar elevation with an hourly 

resolution. We assumed only minor variation in temperature within that distance at a similar 

elevation level.  

Besides neglecting snow, we did not consider rainfall as hail, which mainly occurs during 

summer in Switzerland (Nisi et al., 2016; Punge and Kunz, 2016). Although, Hurni (1978) 

investigated the impact of hail on rainfall erosivity for single plots in Switzerland and concluded 

that a water equivalent amount of hail exceeds the one of rainfall, hail erosivity has not yet been 

considered for this study.  

3.2.2 Stations 

We extended the gauging station network of Meusburger et al. (2012) (10-minutes 

measuring intervals) by 23% from 71 to an updated dataset of 87 stations (Fig. 3.1) and 

upgraded stations by a longer time series if available.  

 

 
Fig. 3.1: Biogeographic units and used gauging stations in Switzerland. 
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The stations are well distributed and were subject to a quality control (Begert et al., 2005; 

Nogler, 2012). The additional 16 stations were previously investigated for rainfall erosivity by 

Nogler (2012). The mean density of one gauging station is 474.5 km². The average distance of 

one station to all others is 113.6 km by a minimum distance to the closest station of 13.2 km and 

a maximum distance of two stations by 324.6 km. A majority of 72% of all stations (63) have 

recorded data of at least 22 yr. The mean length of observations is 19.5 yr and thus meet the 

proposed minimum timescale requirements for rainfall erosivity calculations of a 15-year 

measuring period (Foster et al., 2008). 

 

3.2.3 Data and Covariates 

The high intra-annual variability of rainfall erosivity was already discussed in Meusburger 

et al. (2012), but not spatiotemporally mapped. The monthly erosivity mapping in a country 

with a high proportion of remote Alpine areas requests a variety of erosivity influencing 

covariates. High temporal information on snow cover and snow water equivalents, high 

spatiotemporal information on rainfall and high spatial information on topography are acquired 

as covariates (Table 3.1) for the monthly erosivity maps since rainfall erosivity is mainly 

controlled by precipitation and relief parameters (Meusburger et al., 2012; Panagos et al., 

2015a; Panagos et al., 2016b). All spatial covariates have a much higher resolution (spatial and 

temporal) than datasets used in previous R-factor studies for Europe (Panagos et al., 2015a; 

2016a) and Switzerland (Meusburger et al., 2012), and therefore the R-factor mapping is 

feasible at a higher spatial and temporal precision. 

 

Table 3.1: Datasets used as covariates for the spatiotemporal mapping of rainfall erosivity. 

dataset derived information 
temporal 

resolution 

spatial 

resolution 

measuring 

period 
source information 

Total snow depth long-term monthly snow 

depth 

hourly 58 stations 1988 – 2010 MeteoSwiss - 

CombiPrecip long-term monthly mean 

rainfall amount from 

measured and radar data 

hourly 1 km 2005 – 2015 MeteoSwiss Sideris et al., 

2014 

EURO4M-APGD long-term mean daily 

precipitation per month 

monthly 5 km 1971 – 2008 MeteoSwiss Isotta et al., 

2014 

RhiresM long-term mean monthly 

precipitation sums 

monthly 1 km 1961 – 2015 MeteoSwiss MeteoSwiss, 

2013 

SwissAlti3D elevation, slope, aspect - 2 m - SwissTopo - 

 

 

The long-term snow depth (derived from mean monthly snow depth by MeteoSwiss) on a 

monthly resolution was used as an approximation for snow. The monthly point data of snow 

depth were regionalized by inverse distance weighting. Hourly Swiss CombiPrecip data 

(geostatistical combination of rain gauge measurements at 150 automatic stations and three C 

band radar observations; Sideris et al., 2014) were aggregated and averaged to a long-term 

monthly mean. Long-term mean daily precipitation per month was calculated based on the daily 
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values of Alpine precipitation in EURO4M-APGD (Isotta et al., 2014). Averaging the monthly 

spatial precipitation of RhiresM (MeteoSwiss, 2013) over the years leads to long-term monthly 

mean precipitation sums. The variables elevation, slope, and aspect are retrieved from a 2 m 

digital terrain model (SwissAlti3D) for Switzerland.  

3.2.4 Mapping the seasonal variability of rainfall erosivity in Switzerland 

Hanel et al. (2016) and Angulo-Martínez and Beguería (2009) tested different interpolation 

methods for Czech Republic (Hanel et al., 2016) and the Ebro Basin in Spain (Angulo-Martínez 

and Beguería, 2009). Both studies could confirm that a combination of regression and residual 

kriging (regression-kriging) is among the most suitable methods to interpolate rainfall erosivity. 

We also used regression-kriging (Hengl et al., 2004; Hengl, 2007; Hengl et al., 2007) to map the 

monthly variability of rainfall erosivity in Switzerland. The regression-kriging approach 

employed on the monthly mean rainfall erosivity for each of the 87 stations (Rmo). In a first step 

a generalized linear regression (GLM) (Gotway and Stroup, 1997) is used to establish a 

regression between Rmo and the high-resolution covariates. The GLM relates the rainfall 

erosivity (target variables) to the covariates (Table 3.1) and predicts rainfall erosivity at the 

same scale as covariates are available (Odeh et al., 1995; McBratney et al., 2000). In a second 

step the residuals of the GLM are interpolated by an ordinary global kriging (McBratney et al., 

2000; Hengl et al., 2004). Finally, the predicted rainfall erosivity by the GLM is summarized 

with the residuals map (established by the kriging procedure). The combination of interpolated 

Rmo with the spatial variation of its residuals enables the quantification of the standard error 

related to the erosivity mapping.  

Besides the standard error maps, leave-one-out cross-validation (LOOCV) was used as a 

second quality check of the mapping procedure (Efron and Tibshirani, 1997). However, data 

splitting reduces the training observations and doesn’t show the same results by repetition due 

to bias and randomness (Steyerberg, 2009; Harrell, Jr., 2015). In contrast, LOOCV avoids a 

resampling bias since it omits only one observation from the dataset per run and estimates the 

model from the remaining n-1 observations. It yields the same regression coefficients by 

repetition due its reproducibility (James and Witten, 2015). In contrast, data split reduces the 

training observations and doesn’t show the same coefficients due to randomness (Steyerberg, 

2009; Harrell, Jr., 2015). To compensate for the low validation subset, the process was repeated 

100 times.  

A log transformation of Rmo resulted in a normal distribution of the data. The suitability of 

each covariate for the GLM was determined by an automated stepwise feature selection process 

according to the Akaike information criterion (AIC). The α-to-enter significance level for 

covariate selection was set to 0.1 (Kutner et al., 2005; Gupta and Guttman, 2013). We also 

tested least absolute shrinkage and selection operator (LASSO) as an alternative feature 

selection method to the stepwise GLM, but it was less transparent for evaluation and showed 

inappropriate residual diagnostics (systematic error). Both, the LOOCV stepwise regression, as 

well as LASSO, were performed in the R-package “caret” (v6.0-68). Outliers (Bonferroni-

adjusted outlier test) and influential observations (Cook’s distance) were omitted in the stepwise 

GLM.  

The goodness-of-fit of the model was described by the coefficient of determination (R²), the 

root mean square error (ERMS), and the deviance. Regression diagnostics to evaluate the model 
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included normality, non-constant error variance (homoscedasticity), multicollinearity (variance 

inflation factor, vif), and autocorrelation.  

In all, 12 monthly maps of the long-term mean Rmo were derived by applying the regression 

equation with the covariates and their corresponding coefficients according to the individual 

monthly regression equation. The residuals of each months’ stepwise GLM were interpolated by 

an ordinary global kriging with a stable variogram model and added to the Rmo maps in ESRI 

ArcGIS (v10.2.2.) afterwards.  

Each monthly map is subject to an individual GLM. Therefore, a subset of individual 

covariates explains rainfall erosivity for each month separately. An averaging of 3-monthly 

maps leads to long-term seasonal mean R-factor (Rseas) maps for Switzerland with high spatial 

resolution. In addition, the sum of all 12 maps results in an updated (compared to Meusburger et 

al., 2012) long-term annual mean R-factor (Ryear) map. 

3.2.5 Cumulative daily R-factors 

The averaged cumulative percentage of R-factor within a year is obtained and grouped by 

Swiss biogeographic regions (Gonseth et al., 2001). The biogeographic regions were selected 

because they show distinct differences in climate, soils, elevation, steepness, and geographic 

location. The cumulative curve of rainfall erosivity enables the extraction of the annual share of 

rainfall erosivity on a daily scale and is required for the calculation of RUSLE C-factors. C-

factors are based on the product of the soil loss ratio (for a specific time of the year and a 

specific crop) and the cumulative percentage of rainfall erosivity of distinct days of the year 

(Wischmeier and Smith, 1978; Schwertmann et al., 1987; Renard et al., 1997). Therefore, all 

recorded rainfall events of a certain station within an individual biogeographic unit and at a 

specified day in the year are averaged over the measuring period and with the other stations of 

the region on a long-term mean daily level. That calculation of C-factors requires the percentage 

of the total annual rainfall erosivity of distinct days of the year, which can be derived by that 

procedure. 

3.2.6 Monthly erosivity density 

Monthly erosivity density (EDmo) (MJ ha-1 h-1) is calculated by the ratio of the long-term Rmo 

(MJ mm ha-1 h-1 month-1) (neglecting snow) to mean monthly precipitation amount (Pmo) (mm 

month-1) (including snow) according to the equation proposed by Foster et al. (2008):  

 

EDmo =  
Rmo

Pmo
               (3.4) 

 

Small values (<1) of EDmo indicate that the influence of monthly precipitation on the 

monthly rainfall erosivity is mainly driven by its amount. On the other hand, high values of 

EDmo show that relative to the absolute rainfall amount a high kinetic energy of rainfall was 

observed (e.g., strong storm events; Panagos et al., 2016b). The highest soil erosion risk is 

expected for areas where rainfall erosivity is high but related to a few intense rainfall events 

(high values of EDmo). As such, EDmo can reflect the temporal variability of rainfall intensity 

(Dabney et al., 2011) and can indicate how precipitation (short duration events with high 

intensities or high amounts of rainfall) controls the seasonality of rainfall. EDmo was calculated 

using i) the erosivity (Rmo87) and monthly precipitation sums (Pmo87) of each station (EDmo87) and 

ii) the 12 interpolated monthly rainfall erosivity maps Rmo and RhiresM as the monthly 



Regionalization of monthly rainfall erosivity patterns in Switzerland 

42 

precipitation dataset (EDmo). RhiresM is an already available precipitation dataset of 

MeteoSwiss that includes most of the 87 gauging stations. For the spatial mapping of monthly 

erosivity density, the interpolated monthly datasets Rmo and RhiresM were chosen since an 

interpolation of EDmo87 would require additional interpolation methods and spatial covariates, 

which are explanatory for the monthly erosivity density. Additionally, a performed interpolation 

might still modify the EDmo87 in accordance to the values at neighboring stations. According to 

Dabney et al. (2012), erosivity density is relatively independent of elevation up to a height of 

3000 m a.s.l.. In Switzerland, only the station Piz Corvatsch (COV) exceeds that threshold of 

height. 

3.3 Results and Discussion 

3.3.1 Monthly rainfall erosivity at the 87 Swiss gauging stations 

Rmo data averaged for all investigated stations show a bell-shaped curve over the 12 months 

(Fig. 3.2) with an increasing trend starting from February (17.3 MJ mm ha-1 h-1 month-1) to a 

maximum in July (289 MJ mm ha-1 h-1 month-1). The mean Rmo is 112 MJ mm ha-1 h-1 month-1. 

The meteorological season winter (Dec-Jan-Feb) has the lowest mean Rmo (33 MJ mm ha-1 h-1 

month-1), followed by spring (Mar-Apr-May; 68 MJ mm ha-1 h-1 month-1), fall (Sep-Oct-Nov; 92 

MJ mm ha-1 h-1 month-1), and summer (Jun-Jul-Aug; 257 MJ mm ha-1 h-1 month-1). Most of the 

monthly R-factors (96%) of the lowest 10% of all monthly values are part of the period between 

November and April, whereas 97% of the highest 10% are monthly rainfall erosivity in the 

period from May to October.  

 

 
Fig. 3.2: Mean monthly rainfall erosivity for all 87 Swiss stations. 

 



Regionalization of monthly rainfall erosivity patterns in Switzerland 

43 

The “Monthly Rainfall Erosivity” for Europe by Panagos et al. (2016a) and the national 

observations of Mosimann et al. (1990) for a single station in Switzerland (Bern, Swiss 

midland) comply with the present calculations with the highest rainfall erosivity for the season 

from June/July to August. The Swiss monthly rainfall erosivity in the European assessment 

(Panagos et al., 2016a) are on average by 3 MJ mm ha-1 h-1 month-1 smaller (after rescaling with 

the calibration factors from 30 to 10 minutes). That discrepancy by 5% mainly arises due to the 

different numbers and time series of gauging stations (87 vs. 71).  

Seasonality of Rmo on a continental scale is observed for Europe (Panagos et al., 2016a) and 

Africa (Vrieling et al., 2014), on a national scale for Brazil (da Silva, 2004), Cabo Verde 

(Mannaerts and Gabriels, 2000), Chile (Bonilla and Vidal, 2011), Denmark (Leek and Olsen, 

2000), El Salvador (da Silva et al., 2011), Greece (Panagos et al., 2016b), Iran (Sadeghi et al., 

2011; Sadeghi and Hazbavi, 2015; Sadeghi and Tavangar, 2015), Italy (Diodato, 2005; Borrelli 

et al., 2016), New Zealand (Klik et al., 2015), South Korea (Lee and Won, 2013), and inter alia 

for the regions of Australia (Yang et al., 2015; Yang and Yu, 2015), Belgium (Verstraeten et al., 

2006), Brazil (da Silva et al., 2013), Cabo Verde (Sanchez-Moreno et al., 2014), China (Jing et 

al., 2009; Zhu et al., 2011; Wang et al., 2013b; Zhao et al., 2015; Lai et al., 2016), England and 

Wales (Davison et al., 2005), Ethiopia (Meshesha et al., 2015), Japan (Laceby et al., 2015), the 

Himalayas (Ma et al., 2014), Italy (Terranova and Gariano, 2015), South Korea (Arnhold et al., 

2014), Malaysia (Shamshad et al., 2008), Poland (Banasik and Górski, 1993; Banasik et al., 

2001), Slovenia (Petkovšek and Mikoš, 2004; Mikoš et al., 2006), Spain (Renschler et al., 1999; 

Angulo-Martínez and Beguería, 2009), Turkey (Özşahin, 2014), and the USA (Wilkes and 

Sawada, 2005). However, the timing of the maximum and minimum erosivity varies 

considerably. Some of the above-mentioned studies show highest values in fall and winter (e.g., 

Greece), the highest values in March and the lowest values in July (e.g., Iran), or the highest 

values in January and the lowest values in July (e.g., Australia). The seasonal Rmo in Italy and 

Greece have lower ranges (209 and 121 MJ mm ha-1 h-1 month-1 compared to 272 MJ mm ha-1 

h-1 month-1 in Switzerland), and the peak of the R-factor is shifted from July to September for 

Italy and to November for Greece. 

3.3.2 Mapping of monthly rainfall erosivity and related uncertainties 

All covariates – aspect excluded – were significant (p-value < 0.1) within the stepwise 

regressions for at least one month to explain Rmo (Table 3.2). For each month, an individual 

selection of covariates was achieved by the stepwise GLM. The higher the ratio of the null 

deviance to the residual deviance, the better the model fits by including the covariates. The 

residual deviance is lower than the null deviance in all 12 investigated months. Monthly model 

efficiency and omitted influential outliers to increase the model's goodness of fit are 

summarized in Table 3.3. The monthly observations of Rmo at the 87 locations (exclusive 

outliers) as well as the residuals are normally distributed after the log-transformation. A non-

constant error (homoscedasticity), multicollinearity and non-autocorrelation were determined 

for all observations of the 12 months. H0, which tests that all error variances are equally, was 

accepted by the Breusch-Pagan-test in all cases and confirms homoscedasticity. Regression 

diagnostics further show a vif<4 for each month. Therefore, we could not identify collinear data. 

According to a Durbin-Watson-test, the Swiss Rmo-dataset is not autocorrelated.  

Model efficiency, averaged over all 12 months has a mean R² of 0.51 and a mean ERMS of 

93.27 MJ mm ha-1 h-1 month-1. Among that period, R² varies between 0.10 (Nov) and 0.66 
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(July). ERMS ranges from 6.98 to 330.16 MJ mm ha-1 h-1 month-1 within a year. Regression 

functions for November and December are most uncertain with lowest R² and highest ERMS. 

The low R² are arising due to the generally low rainfall erosivity in winter that is mainly caused 

by lower rainfall amounts and higher amounts of snow (neglected in this study), which make it 

more challenging to predict R. The same constrain was observed in a study for Greece where 

the lowest R² was observed for the month with lowest rainfall erosivity (Panagos et al., 2016b). 

Even though, the spatial erosivity prediction for the winter month related to high uncertainties, 

the latter will will have little effects on soil erosion assessment since rainfall erosivity has the 

lowest impact on soils in winter.  

 

Table 3.2: Regression equations and selected covariates for estimating mean monthly 

rainfall erosivity in Switzerland. 

Month Regression equation 

January RJan = 2.101 - 4.150·CombiPrecipJan - 0.006·Snow depthJan +  0.017·RhiresJan - 0.001·Elevation 

February RFeb = 2.702 - 13.812·CombiPrecipFeb - 0.007·Snow depthFeb + 0.019·RhiresFeb + 0.211·Alpine 

PrecipFeb - 0.001·Elevation  

March RMar = 2.534 - 7.735·CombiPrecipMar - 0.006·Snow depthMar + 0.018·RhiresMar + 0.170·Alpine 

PrecipMar - 0.001· Elevation 

April RApr = 2.330 - 3.319·CombiPrecipApr - 0.008·Snow depthApr + 0.023·RhiresApr - 0.001·Elevation - 

0.019·Slope  

May RMay = 2.965 + 2.072·CombiPrecipMay - 0.002·Snow depthMay + 0.015·RhiresMay - 0.001·Elevation 

June RJun = 3.890 + 0.014·RhiresJun - 0.001·Elevation 

July RJul = 3.926 + 5.710·CombiPrecipJul + 0.251·Alpine PrecipJul - 0.001·Elevation 

August RAug = 3.627 + 0.010·RhiresAug + 0.194·Alpine PrecipAug - 0.001·Elevation 

September RSep = 2.760 + 2.243·CombiPrecipSep + 0.539·Alpine PrecipSepb - 0.001·Elevation 

October ROct = 2.753 + 0.0161·RhiresOct - 0.001·Elevation 

November RNov = 2.665 + 3.787·CombiPrecipNov - 0.034·Snow depthNov + 0.166·Alpine PrecipNov 

December RDec = 2.437 + 0.013·RhiresDec - 0.001·Elevation 

 

Table 3.3: Model efficiency by R2 and ERMS as well as omitted outliers and influential 

observations per month. 

Month Excl. outlier stations R² 

ERMS (MJ 

mm  ha-1 h-1 

month-1) 

Null 

Deviance 

Res. 

deviance 

January Mathod  0.52 6.98 70.36 20.65 

February Monte Generoso, Napf, Saetis 0.53 12.96 79.28 31.82 

March Col du Grand St-Bernard, Saetis 0.49 13.10 61.45 21.84 

April Col du Grand St-Bernard, Saetis, Weissfluhjoch 0.65 21.01 63.69 15.90 

May Davos, Col du Grand St-Bernard 0.60 73.39 56.28 16.83 

June Col du Grand St-Bernard 0.58 126.03 51.61 19.31 

July Monte Generoso, Col du Grand St-Bernard, Stabio 0.66 138.77 38.58 11.57 

August Col du Grand St-Bernard, Stabio 0.47 330.16 50.47 21.75 

September Col du Grand St-Bernard, Stabio 0.64 81.91 61.23 16.27 

October Piz Corvatsch, Col du Grand St-Bernard, Stabio 0.62 81.60 37.86 12.07 

November Piz Corvatsch, Col du Grand St-Bernard, Saetis 0.10 55.72 58.85 47.22 

December Col du Grand St-Bernard 0.26 177.65 73.90 50.66 

 

After adding the kriging interpolation of the residuals to the regionalization of monthly R-

factors (based on the stepwise GLM), R² are increased in all months. As such, the regression-

kriging improves the prediction of R-factors especially for months with low R² as in the case for 

November and December. The ranges of the stable variograms exceed the minimum distance 
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(approx. 13.2 km) of neighboring stations in all months. The average prediction error of all 12 

months is -0.0055. The used stable semivariogram models are represented by 12 lag classes. 

Common patterns of increasing standard deviations with distances from gauging stations are 

recognizable in the standard deviation maps.  

3.3.3 Monthly rainfall erosivity maps for Switzerland 

Regionalized temporal patterns of modeled Rmo show a distinct seasonality with national 

means being the lowest in January (10.5 MJ mm ha-1 h-1 month-1) and the highest in August 

(263.5 MJ mm ha-1 h-1 month-1) (Table 3.4 and Fig. 3.3). Fig. 3.3 represents Rmo on a stretch 

between 0 and 200 MJ mm ha-1 h-1 month-1 for a better spatial comparison of the color schemes 

although the R-factors are higher than 200 MJ mm ha-1 h-1 month-1 in summer (cf. Table 3.4). 

Winter is the season (Fig. 3.4) with the lowest rainfall erosivity. The highest Rmo peak in 

summer is consistent with the map of extreme point rainfall of 1h duration (100-year return 

period; Spreafico and Weingartner, 2005), where the strong influence of extreme rainfall events 

on rainfall erosivity is indicated. Meusburger et al. (2012) already pointed to the relationship of 

thunderstorm activity to annual rainfall erosivity. The thunderstorm season in Switzerland lasts 

from late spring (May) to early fall (September). Thunderstorms are at least partly responsible 

for the high values of rainfall erosivity in summer. Starting from early fall (September), a 

decreasing trend of Rmo is noticeable all over Switzerland. 

 

 
Fig. 3.3: Monthly rainfall erosivity maps for Switzerland (equal stretch from 0 to 200 MJ 

mm ha-1 h-1 month-1) derived by regression-kriging. 

 

Averaged months are aggregated to representative seasons (Rseas) to identify spatial 

differences (Fig. 3.4). Spatially, mean winter rainfall erosivity show the highest values in the 
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Jura Mountains, western and eastern parts of the northern Alps and the southern Alps (canton 

Ticino). High winter rainfall erosivity can be explained by rainfall resulting from low-pressure 

areas in northern Europe and weather fronts moved by northwesterly winds. These fronts are 

uplifted at the Jura Mountains which results in orographic rainfall. In spring, the northern and 

the southern Alps become more affected by high rainfall erosivity. The spatial variability of 

rainfall erosivity in spring in the southern Alps (canton Ticino) corresponds to the airflow from 

the south and the onset of the thunderstorm season in that region, which causes intense rainfall. 

High rainfall erosivity is persistent from spring to fall in the southern Alps. The generally high 

summer R-factors in the southern Alps, the Jura Mountains, and the northern Alpine foothill are 

driven by thunderstorms (van Delden, 2001; Perroud and Bader, 2013; Nisi et al., 2016; Punge 

and Kunz, 2016) and particularly in the southern Alps by high intense rainfall originating from 

orographic uplifts (Schwarb et al., 2001; Perroud and Bader, 2013). The cantons of Valais and 

Grisons remain with relatively low rainfall erosivity among all seasons due to lower convection 

and thereby lower rainfall erosivity in summer. 

 

Table 3.4: Monthly national rainfall erosivity in MJ mm ha-1 h-1 month-1. 

Month Minima Maxima Mean 

January 0.2 71.3 10.5 

February 0.0 247.3 13.5 

March 0.0 179.0 20.1 

April 0.2 1014.4 28.8 

May 8.3 1717.8 120.2 

June 3.6 1262.1 174.8 

July 12.6 1481.1 255.4 

August 8.3 1994.9 263.5 

September 6.8 6107.9 147.7 

October 5.7 977.0 57.0 

November 4.9 357.1 41.6 

December 1.3 234.4 24.9 

 

The degree of maximal variation at a certain location in a year (expressed as the difference 

between minimum and maximum monthly rainfall erosivity of all 12 months; Fig. 3.5) indicates 

the highest intra-annual range (up to 6086 MJ mm ha-1 h-1 month-1) in the canton Ticino in the 

southern Alps. Furthermore the northern Alps, Swiss midland and Jura Mountains show a high 

erosivity variation within a year. The eastern and western Alps have lowest ranges in 

accordance with their relatively low rainfall erosivity among in a year. While the range map 

displays the absolute values of variation, the coefficient of variation map (ratio of standard 

deviation to the mean of all 12 months; Fig. S3.1) indicates the relative degree of erosivity 

variation (in percent) at a certain location in a year. According to this map, the highest variation 

of up to 207% can be observed in the eastern Alps (canton Grisons) were monthly rainfall 

erosivity is low and standard deviation is high. In the Muamba catchment in Brazil, high 

seasonal variations are also observed in regions with relatively low rainfall erosivity (da Silva et 

al., 2013).  
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Fig. 3.4: Seasonal rainfall erosivity maps for Switzerland derived by regression-kriging. The 

following months were averaged to derive seasonal maps: winter (December–February), spring 

(March–May), summer (June–August), fall (September–November). 

 

Compared to the rainfall erosivity evaluation by Meusburger et al. (2012) on an annual 

scale, the observed mean Ryear and spatial patterns only changed slightly due to the extended 

station network and higher resolution spatial covariates (aggregated by all 12 monthly R-factor 

maps). Improvements of the new map are the extended network of gauging stations, the cross-

validation of the regression-kriging approach, and the inclusion of new high spatiotemporal 

covariates in order to increase the spatial resolution of the maps. 
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Fig. 3.5: Range map (maximum Rmo minus minimum Rmo) for Switzerland showing the 

variability of rainfall erosivity in a year. 

 

3.3.4 Cumulative daily rainfall erosivity 

Generally, the steepest slopes of the cumulative rainfall erosivity curve for Switzerland can 

be noticed from June to September with a share of 62% of the total annual rainfall erosivity 

within these 4 months (Fig. 3.6). That proportion complies with the cumulative sum of 

southwest Slovenia (63,2%; Petkovšek and Mikoš, 2004) and exceeds the average share for 

Europe of 53% (Panagos et al., 2016a) during the same period. A much larger proportion (90%) 

of cumulative percentage of daily rainfall erosivity was observed for Bavaria (Schwertmann et 

al., 1987) and eastern Poland (78%; Banasik and Górski, 1993). Mosimann et al. (1990) showed 

in a single-station approach (Bern, Swiss midland) that a proportion of 80% of the total annual 

erosivity occurs in the period from April to September, which complies with the national share 

(resulting from the multi-station (87) calculation ) of 77% during the same period of a year.  
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Fig. 3.6: Cumulative daily rainfall erosivity proportion for Swiss biogeographic units, 

Switzerland and monthly rainfall erosivity for Europe (linear smoothed, European data from 

Panagos et al., 2016a). 

 

All biogeographic units in Switzerland have similar trends of the cumulative daily rainfall 

erosivity. However, a Wilcoxon signed rank showed that all pairs of the sum curves of 

biogeographic regions have significant differences (significance level 0.05). The highest 

proportions (from Jun to Sep) and, therefore, steepest slopes can be identified for the southern 

Alps with a share of 70% of the total sum. This high percentage of rainfall erosivity within a 

short period of time (4 months) is likely to have a large impact on the soil erosion susceptibility 

since it may coincide with the lowest (after harvesting of crops, carrots, etc.) and most unstable 

vegetation cover (after late sowing) (Hartwig and Ammon, 2002; Wellinger et al., 2006; 

Torriani et al., 2007; Prasuhn, 2011). Furthermore, fully grown pre-harvest field crops (e.g. 

cereals, maize) might suffer by bend over of corn stalks due to high intensity storms. In 

addition, water saturated conditions which are usual in May and September/October, make soils 

even more erodible. Highly susceptible soils in summer may also be expected in areas where 

forest fires occurred in spring and soils are uncovered by vegetation (which is the case 

especially for Ticino) (Marxer, 2003). The combination of the monthly rainfall erosivity maps 

with dynamic monthly C-factors might enable a monthly soil erosion risk assessment for 

Switzerland.  

3.3.5 Monthly erosivity density 

Erosivity density (expressed as ratios of R to P) can be used to distinguish between high 

rainfall erosivity that is mainly influenced by high rainfall amounts and those that are influenced 

by relatively low rainfall amounts but highly intense rainfalls. That distinction helps to evaluate 

the potential consequences of rainfall erosivity for each month. The EDmo maps (Fig. 3.7) show 
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that the influence of rainfall intensity on rainfall erosivity also underlies seasonal and spatial 

variations.  

 

 
Fig. 3.7: Monthly erosivity density (EDmo) for Switzerland as ratio of monthly rainfall 

erosivity (Rmo) to monthly precipitation amount (Pmo based on RhiresM). 

 

Interpolated and spatially averaged EDmo in winter is lower than 1 MJ ha-1 h-1 (Fig. 3.7) for 

Switzerland. Therefore, rainfall intensity is not the driving factor for rainfall erosivity in these 

months, where low rainfall erosivity meets high rainfall amounts. The relatively high Rmo in the 

Jura Mountains is therefore mainly driven by large amounts of rainfall instead of high intensity 

rains. Interpolated and spatially averaged EDmo has a maximum for Switzerland in July (1.8 MJ 

ha-1 h-1), which results from a relatively low rainfall amount indicating that rainfall erosivity is 

mainly controlled by high intensified events. Intense summer rainfall has its maximum in the 

regions of Jura, Swiss midland, northern Alpine foothill, and southern Alps. In these regions, 

Rmo is high accompanied by relatively low precipitation amounts. As such, the erosivity risk is 

at its highest in the year, especially when soils are dry during periods of rare but high rainfall 

intensities, and therefore, infiltration is reduced due to crusts. 

The distribution of the Swiss mean EDmo (Fig. 3.8) is bell-shaped as is also the case for 

investigated stations in the USA, Italy and Austria (Foster et al., 2008; Dabney et al., 2012; 

Borrelli et al., 2016; Panagos et al., 2016a). The monthly erosivity density of the neighboring 

country, Austria, complies with the Swiss values with minor variability. Greece, Italy, and the 

stations of the USA are characterized by higher EDmo values than in Switzerland. Nonetheless, 

the conclusion Panagos et al. (2016b) drew for Greece is also generally valid for Switzerland; 

i.e., “rainfall erosivity is not solely dependent on the amount of precipitation” is also generally 

valid for Switzerland.  
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Fig. 3.8: Mean monthly erosivity density (EDmo) as ratios of Rmo (interpolated erosivity 

maps based on regression–kriging) to Pmo (precipitation sums from RhiresM) for Switzerland. 

 

In addition to the EDmo maps, EDmo87 at the 87 stations (Table S3.1) were calculated. EDmo87 

show generally higher values than EDmo calculated from the interpolated raster maps, since the 

interpolated R-factors are smoothed and adapted according to the surrounding values. This fact 

is also visible in Fig. S3.2, where the relationship of absolute R-factors at the 87 stations (Rmo87) 

and the interpolated R-factors at the 87 stations (extracted after the interpolation with 

regression-kriging; Rregression-kriging) is presented.  

3.4 Conclusion and Outlook 

The main aim of the current study was to investigate the seasonal and regional variability of 

rainfall erosivity in Switzerland. A crucial advancement of the present research was to identify 

spatial and temporal windows of high erosivity. Through spatial-temporal mapping, it was 

possible to determine regions that are hardly affected by rainfall erosivity, such as Grisons and 

Valais, and it was also possible to determine those that are only affected in a certain months, 

such as the Jura Mountains. The spatiotemporal variability of rainfall erosivity of Switzerland 

enables the controlled and time-dependent management of agriculture (like crop selection, time-

dependent sowing) and droughts, ecosystem services evaluation, as well as for seasonal and 

regional hazard prediction (e.g., flood risk control, landslide susceptibility mapping). Rainfall 

erosivity based on high erosivity density has more severe impacts on soils, agriculture, 

droughts, and hazards in summer than in winter due the high impact of intense rainfalls. 

In contrast to previous studies for Switzerland, which were either limited spatially (to a few 

stations) or temporally (to annual), we were able to produce 12 monthly spatiotemporal R-factor 

maps. The maps are based on high-resolution covariates in combination with an extended 

database of 87 automated gauging stations recording in 10 min intervals, showing 
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simultaneously spatial and temporal variations of R-factors. Regression-kriging based on high-

resolution covariates was a successful method for most of the months (mean R²=0.51, 

ERMS=93.27 MJ mm ha-1 h-1 month-1). It was used to map the long-term monthly mean R-factors 

based on an extended database of rain-gauging stations. The spatiotemporal mapping of rainfall 

erosivity and erosivity density revealed that intense rainfall events in August trigger the highest 

national monthly mean rainfall erosivity value (263.5 MJ mm ha-1 h-1 month-1). In particular the 

regions of Jura, Swiss midland, northern Alpine foothill, and Ticino in the southern Alps show 

pronounced rainfall erosivity during that month. The months June to September have a total 

share of 62% of the total annual rainfall erosivity in Switzerland. 

The current data highlight that rainfall erosivity has a very high variability within a year. 

These trends of seasonality vary between regions and consequently support that a dynamic soil 

erosion and natural hazard risk assessment is crucial. The combination of the temporally 

varying RUSLE factors (R- and C-factor) will lead to a more realistic and time-dependent 

estimation of soil erosion within a year, which is valuable for the identification of more 

susceptible seasons and regions. A mapping of the seasonality of the C-factor for a subsequent 

synthesis to a dynamic soil erosion risk assessment for Switzerland is envisaged in a later study. 

The findings of this study have a number of important implications for soil conservation 

planning. Based on the knowledge of the variability of rainfall erosivity, agronomists can 

introduce selective erosion control measures, a change in crop or crop rotation to weaken of the 

rainfalls impact on soils and vegetation by increasing soil cover or stabilizing topsoil during 

these susceptible months. As such, a targeted erosion control for Switzerland not only reduces 

the direct costs of erosion by mitigation but also shrinks the costs for the implementation of 

control measures to a requested minimum.  
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Abstract 

The decrease in vegetation cover is one of the main triggering factors for soil erosion of 

grasslands. Within the Revised Universal Soil Loss Equation (RUSLE), a model commonly 

used to describe soil erosion, the vegetation cover for grassland is expressed in the cover and 

management factor (C-factor). The site-specific C-factor is a combination of the relative erosion 

susceptibility of a particular plant development stage (here expressed as soil loss ratio SLR) and 

the corresponding rainfall pattern (here expressed as R-factor ratio). Thus, for grasslands the 

fraction of green vegetation cover (FGVC) determines the SLRs. Although Switzerland is a 

country dominated by grassland with high percentages of mountainous regions and evidence for 

high erosion rates of grassland exists, soil erosion risk modeling of grasslands and especially of 

mountainous grasslands in Switzerland is restricted to a few studies. Here, we present a spatio-

temporal approach to assess the dynamics of the C-factor for Swiss grasslands and to identify 

erosion prone regions and seasons simultaneously. We combine different satellite data, aerial 

data, and derivative products like Climate Change Initiative (CCI) Land Cover, Swissimage 

false-color infrared (Swissimage FCIR), PROBA-V Fraction of green Vegetation Cover 

(FCover300m), and MODIS Vegetation Indices 16-Day L3 Global (MOD13Q1) for the FGVC 

mapping of grasslands. In the spatial mapping, the FGVC is extracted from Swissimage FCIR 

(spat. res. 2 m) by linear spectral unmixing (LSU). The spatially derived results are then fused 

with the 10-day deviations of temporal FGVC derived by FCover300m. Following the original 

RUSLE approach, the combined FGVC are transformed to SLRs and weighted with high spatio-

temporal resolved ratios of R-factors to result in spatio-temporal C-factors for Swiss grasslands. 

The annual average C-factor of all Swiss grasslands is 0.012. Seasonal and regional patterns 

(low C in winter, high C in summer, dependency on elevation) are recognizable in the spatio-

temporal mapping approach. They are mainly explicable by the R-factor distribution within a 

year. Knowledge about the spatio-temporal dynamic of erosion triggering factors is of high 

interest for agronomists who can introduce areal and time specific selective erosion control 

measures and thereby reduce the direct costs of mitigation as well as erosion measures.  

 

Keywords: Monthly soil erosion modeling, Soil loss ratio SLR, R-factor, RUSLE, Vegetation 

dynamics, Swissimage, MODIS MOD13Q1, FCover, CCI land cover  

 

Highlights: 

- C-factor as a product of soil loss ratio SLR weighted by rainfall erosivity ratio. 

- Annual C-factor (2014–2016) for Swiss grasslands: 0.012 (monthly range 0.003–0.025) 

- Grassland C-factors show high seasonality and dependency on the elevation level. 

Highest C-factors within a year from May until September. 
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4.1 Introduction 

Among all soil erosion risk factors in USLE-type (Universal Soil Loss Equation) and USLE 

based soil erosion models (e.g., RUSLE Revised Universal Soil Loss Equation), the cover and 

management factor namely C-factor is the one most sensitive as it follows plant growth and 

rainfall dynamics (Wischmeier and Smith, 1978; Nearing et al., 2005). The C-factor represents 

the effect of cropping and management practices on soil erosion rates by water (Renard et al., 

1997). The factor can be expressed as a combination of crop and plant systems, management, 

and rainfall pattern (Wischmeier and Smith, 1978). Following the USLE-original approach 

(Wischmeier and Smith, 1978; Schwertmann et al., 1987), a site-and time-specific C-factor is 

derived by the ratio of soil losses (soil loss ratio SLR) of a particular crop stage period (for 

arable land) or plant development stage (for grassland) weighted by its corresponding fraction 

of rainfall erosivity (R-factor ratio; Renard et al., 1997). Thus, the rainfall erosivity is 

considered twice in the RUSLE: as R-factor and as a weighting factor of the C-factor 

(Schwertmann et al., 1987). Alternatively, SLRs are a multiplication of sub-factors (previous 

land use, canopy cover, surface cover, surface roughness, soil moisture; Renard et al., 1997). C-

factor values are equaling 1 for bare soil of the reference plot and reach a minimum in forests 

(C-factor = 0.0001; Wischmeier and Smith, 1978). The C-factor is the most adjustable factor by 

land use management (Durán Zuazo and Rodríguez Pleguezuelo, 2008; Maetens et al., 2012; 

Biddoccu et al., 2014; Eshel et al., 2015; Biddoccu et al., 2016) with the highest amplitude of 

spatial and temporal variation among all the RUSLE factors (Zhang et al., 2011; Estrada-

Carmona et al., 2016). Thus, the factor can easily alter by a change of policy and farming 

strategies (McCool et al., 1995; Panagos et al., 2015e). An alteration of the support practice 

factor (P) (e.g., introducing of stone walls, grass margins, contour farming, terracing) often 

requires higher financial investments and soil conservation subsidies (Panagos et al., 2015c; 

2015d). Other important soil erosion risk factors such as rainfall erosivity (R), soil erodibility 

(K) and topography (LS) are mainly determined by natural conditions and are relatively more 

independent from anthropogenic interventions.  

SLRs of grassland are preferably determined by vegetation cover fraction in contrast to 

arable land where plant type and/or rotation is the influencing factor (Schindler Wildhaber et al., 

2012). The fractional vegetation cover is one of the most critical factors in soil erosion 

modeling as it describes a negatively exponential or negatively linear relationship (according to 

the different types of vegetation) to soil erosion (McCool et al., 1995; Puigdefábregas, 2005; 

Vrieling et al., 2008). A dense vegetation cover protects the soil against the raindrop splash 

effect (Schwertmann et al., 1987), causes a stabilization of the soil structure by plant roots (Jury 

and Horton, 2004; Pohl et al., 2009), enriches soils by soil organic carbon, leads to soil 

aggregation (Lugato et al., 2014), reduces runoff flow velocity (Bochet et al., 2006), and thus 

mitigates the susceptibility to soil loss (Durán Zuazo and Rodríguez Pleguezuelo, 2008; Zhou et 

al., 2008; Wang et al., 2009; Butt et al., 2010; Sun et al., 2013). As such, grassland cover has a 

high protective function for soils (Martin et al., 2010; Schindler Wildhaber et al., 2012). 

However, due to disturbance (García-Ruiz et al., 2015; Merz et al., 2009; Meusburger and 

Alewell, 2014; Sutter, 2007; Sutter and Keller, 2009; Panagos et al., 2014b), harsh climate and 

snow processes (Ceaglio et al., 2012; Meusburger et al., 2014), the vegetation cover can be 

disturbed and the consequent soil losses might be substantial. If vegetation cover is partially 

(66% fractional vegetation cover, Felix and Johannes, 1995) or nearly completely reduced 

(Frankenberg et al., 1995), erosion rates are considerably higher (4.4. t ha-1 yr-1 and 20 t ha-1 yr1, 



Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in 

Switzerland 

57 

respectively). Switzerland is a country dominated by grassland (Jeangros and Thomet, 2004). 

Nonetheless, up to now, soil erosion risk modeling is mainly restricted to arable land although 

evidence for high erosion rates of grasslands exists (Alewell et al., 2009; Martin et al., 2010; 

Meusburger et al., 2010a; 2010b; 2014; Konz et al., 2012; Meusburger and Alewell, 2014; 

Alewell et al., 2014). 

Commonly, remote sensing approaches to determine the C-factors (Vrieling, 2006; Zhang et 

al., 2011; Panagos et al., 2014b) are not calculating SLRs but frequently assess the C-factor 

directly without weighting SLRs with the intra-annual distribution of rainfall erosivity to assess 

C-factors in the original sense of (R)USLE. Remote sensing methods for C-factor determination 

are often based on vegetation indices like the Normalized Difference Vegetation Index (NDVI). 

NDVIs are directly transformed to C-factors by a linear (de Jong et al., 1998) or exponential 

regression (van der Knijff et al., 2000) or related to field observations (Karaburun, 2010; 

Vatandaşlar and Yavuz, 2017). NDVI based C-factor modeling also exists for determining the 

C-factor for mountainous grasslands (regions of Korea, Lee and Won, 2012; China, Zhang and 

Li, 2015; Kyrgyzstan, Kulikov et al., 2016; Turkey, Vatandaşlar and Yavuz, 2017). However, 

drawbacks of that technique are its uncertainty due to the poor correlation with vegetation 

attributions, the soil reflectance, and the changing vitality of plants (de Jong, 1994; Vrieling, 

2006; Asis and Omasa, 2007; Montandon and Small, 2008; Meusburger et al., 2010a; Grauso et 

al., 2015; Panagos et al., 2015c). As an alternative to NDVI-based approaches, spectral 

unmixing can estimate the fractional abundance of green vegetation (here called the fraction of 

green vegetation cover FGVC) and bare soils/ bedrock simultaneously (Paringit and Nadaoka, 

2003; Guerschman et al., 2009) which are related to C-factors after including rainfall erosivity 

(Yang, 2014). Spectral unmixing techniques (e.g., linear spectral unmixing LSU) are used in 

many erosion studies to determine C-factors over the last years (Hill et al., 1995; Ma et al., 

2003; Lu et al., 2004; Asis and Omasa, 2007; Asis et al., 2008; de Jong and Epema, 2010; 

Meusburger et al., 2010a; 2010b). An advantage of spectral unmixing compared to traditional 

hard classification methods is the decomposition of mixed pixels in its corresponding 

component fractions rather than assigning them to a unique single class (Foody, 2006). Under 

consideration of the NDVI-related disadvantages, Asis and Omasa (2007), Asis et al. (2008) and 

Yang (2014) perform a comparative analysis of C-factors, derived from NDVI- and LSU-

approaches, which result in better results for LSU. A relationship between C-factor and canopy 

cover fraction can be observed in various studies. Zhang et al. (2003) and Gao et al. (2012) 

determine an exponential decrease of the C-factor with an increase in canopy cover of 

grasslands. Wischmeier and Smith (1978) also observed a negatively exponential relationship of 

decreasing C-factors with increasing coverage in their empirical experiments on the USLE 

plots.  

The (R)USLE factors C and R are highly dynamic with a clear annual cycle (Wischmeier 

and Smith, 1978; Renard and Freimund, 1994; Vrieling, 2006; Vrieling et al., 2014; Möller et 

al., 2017) in contrast to the rather constant RUSLE-factors K and LS (Panagos et al., 2012a; 

Alexandridis et al., 2015). The status of grasslands is diversified within a year owing to the 

natural growth cycle, periodical cutting of hay, or pasture farming (Wiegand et al., 2008). 

Despite, this spatio-temporal variability of the C-factor for grasslands, it is often parameterized 

without accounting for the spatial variability within a land cover unit (Ozcan et al., 2008; Bosco 

et al., 2009; Efthimiou, 2016; Mancino et al., 2016) nor for the temporal variations (Wang et al., 

2002). Hawkins (1985) stated already that “the complications of time and spatial variations in 

site properties are usually not considered” by applying the USLE. Alexandridis et al. (2015) 
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conclude that a dynamic approach focusing on C-factors for the four seasons or 12 months of a 

year might help to reduce errors in the annual soil loss compared to a single annual C-factor. 

Vrieling et al. (2008, 2014) follow a multi-temporal and spatial approach to assess the riskiest 

erosion periods of the year for Brazil and Africa. López-Vicente et al. (2008) capture erosive 

periods among a year for a study area in the mountains of the Central Spanish Pyrenees by a 

dynamic approach on a monthly scale. Such time-dependent assessments of soil loss are 

relevant to support policy makers and farmers to protect the soil more targeted like it was done 

by López-Vicente et al. (2008). Panagos et al. (2012, 2016) and Karydas and Panagos (2016, 

2017) propose a monthly time-step to be appropriate for soil erosion modeling. The same 

resolution was already proposed by Wischmeier and Smith (1965). Grazhdani and Shumka 

(2007) modeled the soil erosion rate for Albania on a monthly scale. A combination of both 

spatially and temporally varying R- and C-factors lead to a more dynamic soil erosion risk 

assessment and simultaneously allows the identification of susceptible seasons and regions 

(Panagos et al., 2014b; Ballabio et al., 2017; Möller et al., 2017). As it is shown in Meusburger 

et al. (2012), Schmidt et al. (2016), and Ballabio et al. (2017), the R-factor of Switzerland also 

has a high intra-annual variability with clear regional patterns.  

So far, most of the existing national C-Factor maps either do not include grassland areas 

(Friedli, 2006; Alexandridis et al., 2015), do not consider the temporal variations of vegetation 

cover and management (Friedli, 2006; Bosco et al., 2009; Panagos et al., 2015c), nor taking 

rainfall erosivity for C-factor calculation into account. An assessment following the original 

approach by Wischmeier and Smith (1978) to derive C-factor maps with a high spatio-temporal 

resolution based on SLRs and spatio-temporal R-factor ratios does not yet exist on a national 

scale. We aim to (i) determine the fractional vegetation cover with a linear spectral unmixing of 

orthophotos (2 m spatial resolution), and (ii) quantify the temporal change of vegetation fraction 

(10 days temporal resolution) to (iii) assess the spatial and temporal patterns of the C-factor 

based on SLRs and high-spatio-temporal R-factor ratios. 

4.2 Material and methods 

4.2.1 Swiss grassland areas 

Switzerland is a country with a high heterogeneity of climatic, topographic and edaphic 

conditions. Hills and mountains cover more than one-third of the state. The Swiss elevation 

ranges can be clustered in elevation zones (in m a.s.l. modified after Ellenberg et al., 2010: 

Colline zone <800; Montane >800-1800; Subalpine >1800–2300; Alpine >2300–2700; Subnival 

>2700–3100; Nival >3100), which are typical for the plant development in the Swiss Alps. 

Owed to these natural conditions, permanent grassland is the predominant land use in about 

28% of the territory of Switzerland with a share of 72% of the total agricultural area (Bötsch, 

2004; Jeangros and Thomet, 2004; Schmidt et al., 2018a). Grassland is the prevailing land use 

type at elevations above 1500 m a.s.l. (Hotz and Weibel, 2005). Almost half (46%) of the 

grassland area is therefore designated as alpine grassland (Hotz and Weibel, 2005). Alpine soils 

have been managed by humans for about 500 years already, but an intensification of the usage 

and management of grasslands can be observed since the last 50 years (Jeangros and Thomet, 

2004; Bätzing, 2015; Alewell et al., 2008). Changes in grassland cover are expected due to land 

use and climate change.  
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4.2.2 Datasets for C-factor mapping 

We subdivided the datasets of the C-factor mapping approach into data for the spatial and 

for the temporal assessment. In the spatial modeling approach, we used a high spatial resolution 

false-color infrared orthophoto (0.25 to 0.50 m; G R NIR) mosaicked of a set of 3432 tiles. This 

orthophoto mosaic called Swissimage FCIR (Swisstopo, 2010) is recorded with a Leica ADS80 

airborne digital sensor, containing the channels green (533–587 nm), red (604–664 nm) and 

near-infrared (833–920 nm). The production process of Swissimage FCIR is based on an along-

track scanning from east to west that generates stripes of aerial photos during each flight. The 

scheduling of the flights of the used version of Swissimage FCIR was in the years 2012, 2013, 

2014 and 2015 between the months March and September. In the preprocessing step, the aerial 

photos have undergone a georeferencing, orthorectification, mosaicking, and clipping to tiles of 

4375 m × 3000 m by Swisstopo. We reduced the file size (original file size 1.17 Gigabytes per 

tile) and the spatial resolution by resampling to 2 m for a more straightforward data handling. 

The temporal variations of grassland cover in Switzerland are derived from time series of 

10-day fractions of the green vegetation cover (FCover300m, spatial resolution 300 m; Smets et 

al., 2017) as a product from PROBA-V. The FGVC is expressed in percentages from 0% (no 

vegetation cover) to 100% (full vegetation cover). PROBA-V is a satellite with an assembled 

vegetation (V) instrument to image the global land surface vegetation regularly (Blair, 2013).  

A long-term recording sequence (2005–2015) of 16-day vegetation indices (MOD13Q1, 

spatial resolution 250 m; Didan et al., 2015) of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) is used as supplementary data. Based on MOD13Q1, we determine 

the day of the year (DOY) with the highest NDVI values to be used as an indicator date for a 

maximum in plant growth (Leilei et al., 2014). This information is relevant for normalizing 

different recording periods of the Swissimage to the date of the peak growing period. A data 

accuracy modification was applied for MOD13Q1. Not processed or filled data, marginal data, 

and cloudy grid cells were substituted either by the preceding or succeeding good data or 

snow/ice data. With this routine, unreliable pixels were adjusted by the temporally closest 

reliable values.  

 

Table 4.1: Datasets used for C-factor modeling of Swiss grasslands. 

dataset derived information resolution source 

Swissimage FCIR spatial distribution of FGVCa 0.25 m spatial resolution, 

spectral bands NIR, R, G 

Swisstopo, 2010 

FCover300m temporal variation of FGVCa 10-day temporal resolution 

(2014 to 2016) 

Smets et al., 2017 

MOD13Q1 DOYb with maximum NDVI 16-day temporal resolution 

(2005 to 2015) 

Didan et al., 2015 

Swiss National 

Grassland Map 

extent of Swiss grasslands of 

2015 

300 m spatial resolution, 

improved with 

swissTLM3D and vector25 

Schmidt et al., 2018a 

CCI Land Cover dynamic long-term snow 

occurrence 

500 m spatial resolution, 

annual resolution (1992 to 

2015) 

Arino and Ramoino, 

2017 

SwissAlti3D digital elevation model 2 m spatial resolution Swisstopo, 2018a 
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Rainfall erosivity Rainfall erosivity of Swiss 

grasslands 

100 m spatial resolution, 

based on 87 rainfall 

stations 

Schmidt et al., 2016 

aFGVC Fraction of Green Vegetation Cover 
bDOY Day of the Year. 

 

We used the Swiss National Grassland Map of the year 2015 (Schmidt et al., 2018a) for 

clipping the previously mentioned datasets to the grassland extent. Further, the dynamics of the 

long-term snow occurrence in Switzerland (Fig. S5.1) are derived from the Climate Change 

Initiate (CCI) Land Cover provided by the European Space Agency (ESA) (Arino and Ramoino, 

2017). Elevation zones are extracted from the Swiss digital elevation model (SwissAlti3D, 

Swisstopo, 2018a). An overview of all used datasets is provided in Table 4.1. Data processing 

was done in ENVI 5.3., ESRI ArcGIS 10.3.1., and GDAL 2.1.3. 

4.2.3 Concept of C-factor mapping for Swiss grasslands 

Firstly, we derived the spatial pattern of Fraction of Green Vegetation Cover (FGVCspatial) 

by LSU from the high spatial resolution Swissimage FCIR (chapter 4.2.3.1). Secondly, we used 

FCover300m to estimate the temporal changes in the FGVC (FGVCtemporal; chapter 4.2.3.2). 

Both approaches, the high spatial and the high temporal one are combined (Chen et al., 2015; 

Zhang and Li, 2015) via a normalizing procedure to result in a set of monthly FGVC maps for 

Switzerland (chapter 4.2.3.3). This procedure involves the normalization of the orthophoto 

mosaic Swissimage FCIR with the temporal variations in vegetation cover of FCover300m to a 

given base date. The normalized high spatial and temporal FGVCspatio-temp maps of Swiss 

grasslands were then converted to SLR maps. The relationship of SLR and the fraction of 

vegetation cover (FVC) is based on measured data in alpine grasslands by Martin et al. (2010) 

and Schindler Wildhaber et al. (2012). SLRs were derived from the measured sediment yield for 

the given FVC classes proportional to an uncovered soil surface (SLR 100%; Schwertmann et 

al., 1987). SLR and FVC describe an exponential relationship (Eq. 4.1, Fig. 4.1). The SLRs are 

multiplied by the corresponding proportion of rainfall erosivity (Rratio) to result in the C-factor 

according to the original approach by Wischmeier and Smith (1978) and Schwertmann et al. 

(1987). Monthly Rratio for Swiss grasslands with a spatial resolution of 100 m can be obtained 

from Schmidt et al. (2016). The processing workflow and manipulation of data is visualized in 

Fig. 4.2.  

 

SLR = e−0.048∗FVC    and  FVC ≈ FGVC           (4.1) 
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Fig. 4.1: Negative exponential relationship of the fraction of vegetation cover (FVC) and the 

soil loss ratio (SLR). The relationship of FVC and SLR results from rainfall simulations by 

Martin et al. (2010) (brown dots) and Schindler Wildhaber et al. (2012) (green dots). 
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Fig. 4.2: Processing workflow (rectangles) of the used and derived datasets (parallelograms; 

detailed description of the datasets see Table 4.1) to result in spatio-temporal C-factors of Swiss 

grasslands. 

4.2.3.1 Spatial modeling of fraction of green vegetation cover (FGVCspatial) by linear 

spectral unmixing 

Spectral unmixing assumes that the spectrum measured by a sensor and represented as a 

mixed pixel is a combination of the spectra of components within the instantaneous field of 

view. As such, the reflectance of a mixed pixel is a mixture of distinct spectra (Roberts et al., 

1993; Gilabert, 2000; Heidari Mozaffar et al., 2008). In spectral unmixing techniques, the mixed 

pixel is decomposed into a collection of endmembers and a set of fractional abundances 

according to the endmembers (Keshava and Mustard, 2002). The image endmembers, also 

called pure pixels, are at the vertices of the image simplex in an n-dimensional space (Smith et 

al., 1985). Pixels defined as endmembers are relatively unmixed with other endmember signals 
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(Rogge et al., 2007). Among the spectral mixture methods, the LSU is by far the most common 

type (Asis and Omasa, 2007). LSU assumes that the incoming radiation only interacts with a 

single component of surface and is represented in a mixed pixel without multiple scattering 

between different components (van der Meer and Jong, 2010). Although this is a crucial 

assumption, the effects of intimate association between the components have been found to be 

relatively minor (Kerdiles and Grondona, 1995). LSU is expressed as the spectral reflectance 

(Ri) of the mixed pixel in band i as followed (Smith et al., 1990; Hill et al., 1995; Asis et al., 

2008):  

 

𝐑𝐢 = ∑ 𝐟𝐢𝐫𝐢𝐣 + 𝛆𝐢
𝐧
𝐣=𝐢       and   ∑ 𝐟𝐢 = 𝟏𝐧

𝐣=𝐢                                  (4.2) 

 

where j is the number of endmembers, fj the fraction of the pixel area covered by the 

endmember j, rij itself is the reflectance of the endmember j in band i and εi the residual error in 

band i. In the present case, the sum of all fractions (fj) is constrained to a value of 1 (100%; 

Heinz and Chein-I-Chang, 2001). A root-mean-square-error (RMSE) of the residuals for each 

pixel indicates the error between the measured and the modeled spectra whereas M is the total 

number of bands (Roberts et al., 1999; Dennison and Roberts, 2003; Bachmann, 2007): 

 

RMSE = √
∑ (εi)²M

j=i

M
=  √

∑ (bi−bi
∗)²M

j=i

M
                           (4.3) 

 

bi is the measured and bi
* is the modeled signal of all the bands M. A small RMSE indicates 

that endmembers are appropriately selected, and its number is sufficient (Mather and Koch, 

2011). LSU of QuickBird data was already applied with reasonable results for deriving 

vegetation parameters for an alpine grassland catchment in Switzerland (R² = 0.85 in relation to 

ground truth measurements; Meusburger et al., 2010a). However, QuickBird data is too cost 

intensive and heterogeneous for a national assessment and therefore rather applicable for 

catchment studies like it was done by Meusburger et al. (2010a, 2010b). Guerschman et al. 

(2009) use the hyperspectral EO-1 Hyperion in combination with MODIS data to result in a 

higher variety of endmembers with a spatial resolution of 1000 m. However, that spatial 

resolution of fractional cover is relatively coarse to explain the spatial patterns of the FGVC, 

SLRs and C-factors.  

In the present study, orthophotos (Swissimage FCIR) with a national coverage and 

resampled resolution of 2 m (resampled from 0.25 m to 0.5 m) were used. The spatial 

assessment for deriving FGVCspatial (see Fig. 4.2) is based on all three bands of the Swissimage 

FCIR. ENVI 5.2 provides a Pixel Purity Index tool (PPI) to automatically identify the most 

spectrally pure pixels of the image, designated to be the mixing endmembers (Pal et al., 2011; 

RSI Research Systems, 2004). PPI works with an iterative process by counting the number of 

times a pixel is registered as extreme pixel for each run. Pixels that appear to be extreme most 

often are then endmembers (González et al., 2010). We performed 10.000 iterations with a 

threshold value of 2.5 and identified a maximum of 100.000 pure pixels. The application of 

LSU can result in n + 1 endmembers where n is the number of bands (Phillips et al., 2005). PPI 

based on the three bands (G, R, and NIR) of Swissimage FCIR and determined the following 

endmembers namely i) vegetation, ii) bedrock, bare soil, asphalt, and iii) shade. These 

endmembers are the typical groups of endmembers which are distributed all over the grassland 
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areas in the country (Roberts et al., 1993; Adams et al., 1995; Theseira et al., 2003; Meusburger 

et al., 2010a). Although the spectrum of water is relatively pure, water was not selected as an 

endmember since it is occurring only locally (Adams et al., 1995). 

Swissimage FCIR has undergone a Minimum Noise Fraction (MNF) rotation before the 

selection of purest pixel and unmixing (Green et al., 1988). The MNF rotation is a two-step 

principle component analysis and used to determine the inherent dimensionality of the image 

data, to improve the signal-to-noise ratio and reduce the processing time (Boardman and Kruse, 

1994; Nascimento and Dias, 2005). MNF can improve the quality of the resulting abundance 

maps by a decorrelation of the bands (van der Meer and de Jong, 2000). Furthermore, since the 

spectra are neither purposed to be linked to laboratory and field reflectance spectra nor to be 

meant for temporal approaches, a transformation of encoded-radiances in digital numbers (DN) 

was not required in this study (Adams et al., 1995; van der Meer, 2002).  

A well-known problem of FGVC mapping is its underestimation due to the presence of dry 

vegetation (Meusburger et al., 2010a; 2010b). This problem can either be addressed by long-

wave spectral bands in hyperspectral sensors at the expense of spatial resolution (Guerschman et 

al. 2009) or by a calibration of the approach. As we aim to explain the spatio-temporal 

dynamics in soil erosion for Switzerland, we decided to preserve the high spatial resolution of 

our dataset (Swissimage FCIR) and followed the second option by using 1000 calibration points 

(FGVCcal) to calibrate the FGVCspatial (based on the LSU) and to identify potential biases in the 

automated assignment of vegetation abundances. These points are randomly set for grassland 

areas. The FGVCcal is estimated user-driven for each point based on the 0.25 m resolved 

Swissimage FCIR and RGB. Besides that, the types of vegetation (photosynthetic and non-

photosynthetic grassland, clipped grass, forest) or non-vegetation (shade, asphalt), slope degree 

and exposition are recorded. Although the calibration procedure assesses dry vegetation, it is not 

to be differentiated from bare soil in the LSU approach. Thus, the endmember of bare soil 

includes e.g. non-photosynthetic grassland. Thereby, the unmixed vegetation cover can be 

calibrated by the biases of dry vegetation. The density of optimization points is 37 km², 

corresponding to one optimization point for each 6 to 6 km on average. An acquisition of 

ground truth data with a representative distribution in the field is hardly feasible on a national 

scale.  

4.2.3.2 Temporal mapping of fraction of green vegetation cover (FGVCtemporal and 

FGVCdeviation) 

Temporal variations of the fraction of green vegetation cover (FGVCtemporal) are provided 

within the FCover300m dataset. We averaged three files of the same date by the years 2014 to 

2016 to a short-term mean fraction of green vegetation (FGVCtemporal; see Fig. 4.2; Smets et al., 

2017). Each of the three years of FCover300m is represented by a set of 36 files (108 files in 

total) in a 10-day resolution from 10th of January to 31st of December. The deviation of 

FGVCtemporal to a base date is determined on a per pixel scale (FGVCdeviation) to be used for 

normalizing the FGVCspatial in the following chapter 4.2.3.3. The processing of the FCover300m 

data is done within the Copernicus program where FCover is derived from the leaf area index 

and further canopy structural variables (Smets et al., 2017). Concerning its computation, 

FCover300m is more robust than classical vegetation indexes like NDVI which has stronger 

dependencies on geometry and illumination of surface cover (Weiss et al., 2000; Fontana et al., 

2008). 
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A series of 253 NDVI datasets from 2005 to 2015 of the MOD13Q1 (Didan et al., 2015) 

were used for determining this respective base date as mean peak growing season indicated by 

the maximum NDVI within a year (Leilei et al., 2014). Fontana et al. (2008) demonstrate that 

the relationship between plant growth records in alpine grasslands and NDVI is quite 

remarkable. Busetto et al. (2010) use a time series from 2005 to 2007 of MOD13Q1 to 

determine the start and the end of the growing season of larches in the alpine region. For more 

robust results we averaged all ten years by each specific recording date to derive a mean NDVI 

per recording date for Switzerland. A correction of snow cover like it was done by Busetto et al. 

(2010) was neglected in the study as we are only focusing on the assessment of the peak 

growing season and not on minimum NDVI. The maximum NDVI of all the averaged datasets 

was selected for each cell and the corresponding DOY assigned to the associated cell. If a cell 

contained a no data value, it was skipped and the averaging done over the cells of the remaining 

year(s).  

4.2.3.3. Merging of spatial and temporal fraction of green vegetation cover (FGVCspatio-temp) 

As Swissimage is a mosaic of tiles recorded at heterogeneous dates, the vegetation cover 

can be assumed to be different between tiles according to its recording date. We used a 

normalizing process to make all tiles comparable. Therefore, the FGVCspatial are normalized to a 

base date. The spatial results, as well as the temporal results, are meant for being combined to 

spatio-temporal FGVCspatio-temp of grasslands (see Fig. 4.2). First of all, we extracted the 

recording dates of each along-track scanning stripe, and spatial joined the dates with the 3432 

image tiles. In cases of multiple recording dates, we used the mode to extract the most common 

date. Tiles with same recording dates were aggregated to a multiple tile mask (Fig. S4.2) and 

later used to clip the FGVCspatial according to their recording dates.  

Each FGVCspatial tileset of a specific DOY i can be normalized to that base date by weighting 

it with the the relative change of the FGVCdeviation to the same base date as expressed in Eq. 4.4:  

 

FGVCnorm i = (FGVCspatial i ∗ FGVCdeviation i) +  FGVCspatial i                                        (4.4) 

 

Thus, tiles recorded early in the season where the plant growth can be assumed to be low are 

weighed by a greater FGVCdeviation factor compared to an image tile recorded close to the base 

date.  

All FGVCnorm are merged to a new raster which represents a national map of FGVC at the 

defined base date. The normalized composite raster of the base date can then be recalculated to 

other dates. 

4.2.4 Spatio-temporal mapping of grassland C-factors by considering soil loss 

ratios (SLRs) and rainfall erosivity (R-factor) 

Originating from the FGVCspatio-temp, the SLR can be calculated with the relationship 

proposed in Eq. 5.1. SLRs express the ratio of soil loss of an area with a certain plant 

development relative to an uncovered surface (Renard et al., 1997). The SLRs are weighted with 

the ratio of the total annual rainfall erosivity (Rratio) of the same period to result in the C-factor. 

The Rratio can be derived from monthly R-factor maps which exist with a high spatial resolution 

(100 m) for Switzerland (Schmidt et al., 2016). Monthly rainfall erosivity maps (100 m spatial 

resolution) for Switzerland are generated by regression-kriging of 10-min rainfall records at 87 
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automated gauging stations (19.5 yrs. measuring sequences) and with the use of up to five 

spatial covariates. The 12 maps have a mean R² of 0.51 and a mean RMSE of 93.27 MJ mm ha-1 

h-1 month-1 with highest uncertainties in winter due to generally low rainfall erosivity. The 

authors have discussed the variability of monthly R-factors for Switzerland in detail. Rratio can 

be assessed by calculating the monthly fraction of R-factor of the sum of all 12 maps. For the 

present purpose of Swiss grasslands, the monthly national maps of the R-factor are clipped to 

the extent of the improved Swiss National Grassland Map (Schmidt et al., 2018a). The Rratio 

maps are multiplied with the SLR maps for grassland to result in monthly C-factor maps with a 

high spatial resolution. For each month we averaged the three corresponding FGVCspatio-temp 

maps to monthly FGVC maps to comply with the temporal resolution of the R-factor maps.  

4.3 Results and discussion 

4.3.1. Spatial pattern of the fraction of green vegetation cover of Swiss grasslands 

The optimized LSU of the Swissimage FCIR enables the differentiation of the FGVCspatial as 

well as the fractions for bare soil and bedrock. Spatial patterns of FGVCspatial are visualized on a 

national scale as well on a local level (Fig. 4.3). Such an analysis of the degree of fractional 

vegetation cover is of high relevance when categorizing land use for potential hot spots of 

erosion since it is more likely that an erosion process starts from the uncovered or bare soil.  

The dimensionality of the Swissimage FCIR stays unchanged after noise segregation by 

MNF. The estimated ranges of FGVCspatial had 0.56% outliers outside the LSU constrained 

range of 0 to 1 (100%), which indicates that one or more of the endmembers chosen for the 

analysis is probably not well-characterized or that additional endmembers might be missing 

(RSI Research Systems, 2004). These outliers were omitted. They predominantly consisted of 

constructed environments (buildings, streets) that could not be masked in the grassland areas 

(Schmidt et al., 2018a). The RMSE of the LSU for Switzerland is 22.6%. Higher uncertainties 

generally occur in the valleys of the Alpine foothill (Fig. 4.4). One reason for the high RMSE is 

the incorrect separation of grassland from arable land due to the coarse resolution (300 m) of the 

grassland map based on CCI Land Cover. 
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Fig. 4.3: Spatial patterns of the fraction of green vegetation cover (FGVCspatial) and the 

orthophoto Swissimage RGB (bottom right) on different scales. The FGVCspatial is presented on 
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a national and a local scale (spat. resolution 2 m). The Swissimage RGB (spat. resolution 0.25 

m) represents the landscape on the local level. 

 

 
Fig. 4.4: RMSE of the calculated abundances based on LSU for Switzerland. 

 

The mean FGVC of the 1000 calibration points (FGVCcal; 61%) identifies a systematic 

underestimation of the mean FGVCspatial (39%) by 22% which is close to the mean RMSE. The 

highest discrepancy between FGVCcal and FGVCspatial mainly arises by an erroneous 

classification of non-photosynthetic vegetation (33% deviation), shades and artifacts (42% 

deviation), and forested areas (46% deviation). The segregation of non-photosynthetic 

vegetation and bare soil is impeded due to the very similar spectral characteristics. Shaded areas 

and artifacts disrupt the spectral signal of vegetation cover which is visually detectable but 

automatically assigned with a very low degree of coverage. The pattern of discrepancy between 

FGVCcal and FGVCspatial show a strong dependency to slope exposition. Highest deviations up to 

34% are present at northern exposed slopes. All FGVCspatial were calibrated by adding the 

amount of mean underestimation to each grid cell. Subsequently, we used the calibrated 

FGVCspatial for all further calculations. The accuracy of the LSU approach could be increased 

with a more accurate grassland map and a higher number of spectral bands as it was already 

discussed in Meusburger et al. (2010a). A new orthophoto of Switzerland (Swissimage RS; 

Swisstopo, 2017b) with four spectral bands (NIR, R, G, B) is about to be released in 2020. Such 

an increase in bands could result in an additional endmember and might improve the LSU.  
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4.3.2. Temporal variation in the green vegetation cover of Swiss grasslands 

The annual distribution of the mean FGVCtemporal for Swiss grasslands visualizes the 

seasonal dynamic of grasslands with periods of dormancy and growing (Fig. 4.5). Higher 

FGVCtemporal lasts until the end of October (approx. DOY 304) in lower elevations (Colline and 

Montane zone) of northern Switzerland. According to FCover300m, an FGVCtemporal below 40% 

is present for most of the Swiss grasslands from December to February. The annual distribution 

of the FGVCtemporal is comprehensive and complies with the typical expectable grassland plant 

growth cycle (Fontana et al., 2008; Filippa et al., 2015; Inoue et al., 2015). The lack of 

FCover300m data mainly covers the northern latitudes of Switzerland. According to the high 

solar altitude in summer, missing values are relatively rare during that season. Winter records 

are comprised of a higher number of no data values due to snow cover (especially in the Nival 

zone), sun path and cloudiness (Camacho, 2016). Thus, erosion in winter continues to be a 

blank spot, because we can neither observe changes in FGVC below the snow cover (which will 

affect the SLR and C-factor) nor assess the erosivity induced by snow movement and snowmelt 

(which will affect the R-factor) (Ceaglio et al., 2012; Meusburger et al., 2014; Stanchi et al., 

2014). We excluded no data pixels (indicating snow) from the dataset if they are presented in all 

the three averaged years. The FCover300m still is in demonstration mode and has only 

undergone a validation over Europe yet (Camacho, 2016). Therefore, uncertainty could be 

introduced in the absolute fraction of green vegetation cover. Nevertheless, as all the 10-day 

data are assessed identically, the relative deviation of the values can be deemed correctly.  

 
Fig. 4.5: Mean (2014 to 2016) FGVCtemporal for Swiss grasslands. Mean FGVCtemporal are 

derived and averaged from FCover300m from 2014 to 2016 (DOY = day of the year). 
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Table 4.2: Mean national deviation of FGVC (FGVCdeviation) to the base date of DOY 181 

(30th of June) by FCover300m 

DOYa Date 

FGVCdeviation 

relative to DOYa 181 

in % 

DOYa Date 

FGVCdeviation 

relative to DOYa 181 

in % 

10 Jan 10 -57 191 Jul 10 2 

20 Jan 20 -58 201 Jul 20 3 

31 Jan 31 -55 212 Jul 31 3 

41 Feb 10 -53 222 Aug 10 3 

51 Feb 20 -51 232 Aug 20 1 

59 Feb 28 -50 243 Aug 31 -2 

69 Mar 10 -49 253 Sep 10 -6 

79 Mar 20 -44 263 Sep 20 -9 

90 Mar 31 -39 273 Sep 30 -14 

100 Apr 10 -31 283 Oct 10 -20 

110 Apr 20 -25 293 Oct 20 -45 

120 Apr 30 -24 304 Oct 31 -34 

130 May 10  -22 314 Nov 10 -40 

140 May 20 -20 324 Nov 20 -45 

151 May 31 -17 334 Nov 30 -48 

161 Jun 10 -10 344 Dec 10 -53 

171 Jun 20 -5 354 Dec 20 -56 

181 Jun 30 0 365 Dec 31 -56 
aDOY Day of the Year. 

 

Based on the MOD13Q1 data, the long-term (2005 to 2015) maximum NDVI of the most 

considerable proportion of pixels is DOY 177 (26th of June, Fig. S4.3). We used the 30th of June 

(DOY 181) as the base date as this date has a high temporal proximity to the maximum NDVI 

of our analysis. This is in agreement with Jonas et al. (2008) who proposed the 6th of July as the 

mean date of the maximum height of grassland cover for elevations between 1560 and 2545 m 

a.s.l.. According to model results by Garonna et al. (2014), the growing season in the alpine 

zone starts at DOY 118 and lasts until DOY 266. The FGVCdeviation in relation to DOY 181 

marks a positive trend from DOY 181 to DOY 232 which determines the peak growing season 

for the national grassland area (Table 4.2). The minimal FGVC in relation to DOY 181 is met 

on DOY 20 with a reduction of 58% in green vegetation cover. 

 

4.3.3. Spatio-temporal patterns of the fraction of green vegetation cover of Swiss 

grasslands 

The mean FGVCspatio-temp of Swiss grasslands on DOY 181 (30th of June; Fig. 4.6) is 60%. 

Grasslands next to the border of Austria (Cantons Appenzell and St. Gallen) have the lowest 

FGVCspatio-temp. These Cantons (see a map of Swiss cantons in Fig. S4.4) are fully dominated by 

meadows and alpine pastures (Table 4.3; Federal Statistical Office Switzerland, 2017, 2017). As 

the management of these grasslands is very intense (grazing, fodder), the FGVCspatio-temp is 

comparatively low. Intense grazing causes a significant limitation in grass growth (Bilotta et al., 

2007, 2007; Mayer et al., 2009) which results in a degradation of vegetation cover (Yong-Zhong 

et al., 2005). These regions have one of the highest mean livestock unit (1.7 per ha; Table 4.3) 

and mean share of grazing livestock farming (78.8%). Hence, most of the areas in the region are 

already mowed at the 30th of June (typical mowing period for St. Gallen is DOY 166 to DOY 

196; Zwingli, 2017). The whole Switzerland experienced a land use intensification of grassland 
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over the last decades. It is apparent by an increase in stocking rates (~50% increase of sheep 

numbers during 40 years) and an alteration in grazing systems (permanent shepherding replaced 

by uncontrolled grazing, Troxler et al., 2004).  

 
Fig. 4.6: Spatial pattern of the C-factor for grasslands in Switzerland for the base date DOY 

181 (30th of June; spatial res. 2 m). 

 

Table 4.3: Averaged seasonal FGVCspatio-temp and agricultural intensity (Federal 

Statistical Office Switzerland, 2017) of the year 2016 per Swiss Canton 

Canton 
short 

name 

FGVCspatio-temp (%) livestock unit 

(per hectare) 

grain 

farminga (%) 

grazing 

livestock 

farmingb (%) annual winter spring summer fall 

Aargau AG 44.5 30.6 50.2 55.0 40.6 1.2 24.1 37.2 

Appenzell 

Ausserrhoden 
AR 28.7 16.8 29.6 37.5 28.3 1.5 0.1 85.8 

Appenzell 

Innerrhoden 
AI 46.6 29.7 45.5 61.7 45.3 1.9 0 78.5 

Basel-

Landschaft 
BL 40.6 27.0 45.1 51.7 36.7 1 15.7 46.0 

Bern BE 50.0 27.7 46.1 70.4 46.8 1.3 12.9 64.4 

Fribourg FR 51.7 32.0 54.2 68.4 50.8 1.4 16.9 55.7 

Glarus GL 48.4 20.5 34.0 72.4 40.7 1.3 0.1 95.4 

Graubünden GR 43.0 21.2 28.1 60.6 36.3 0.9 1.7 77.0 

Jura JU 58.3 35.1 61.3 77.7 56.2 1 15.1 65.0 

Lucerne LU 52.2 36.1 56.6 65.7 49.7 2.1 9.7 56.3 

Neuchâtel NE 58.2 29.3 56.5 79.9 58.7 0.9 8.3 63.4 

Nidwalden NW 47.9 26.9 44.8 69.5 43.2 1.7 0 88.3 

Obwalden OW 48.2 26.0 39.1 69.6 42.8 1.8 0 88.9 
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Schaffhausen SH 50.1 32.3 55.5 65.2 42.6 0.8 33.9 14.5 

Schwyz SZ 49.4 27.6 46.0 68.5 45.8 1.4 0.4 86.5 

Solothurn SO 50.7 30.4 54.5 67.2 47.5 1.1 18 53.1 

St. Gallen SG 43.7 25.5 40.9 58.4 40.6 1.7 1.9 72.4 

Thurgau TG 30.7 21.5 33.4 37.5 29.1 1.7 17.5 38.4 

Ticino TI 46.5 24.5 29.1 63.7 40.6 0.8 4.6 40.2 

Uri UR 48.7 21.1 31.1 68.3 40.8 1.2 0 92.0 

Valais VS 45.3 22.0 30.9 61.6 38.6 0.7 2.7 40.3 

Vaud VD 49.5 25.0 45.4 71.8 47.1 0.8 28.3 24.5 

Zug ZG 55.7 32.6 60.0 73.4 54.2 1.7 5.7 70.6 

Zürich ZH 50.6 30.7 55.1 65.4 48.8 1 19.2 40.3 
aof the total agricultural land.  

bof total farming. 

4.3.4. Spatial and temporal hot-spots of C-factors on Swiss grasslands 

The monthly maps (Fig. S4.5) are averaged to seasonal maps of C-factors for grasslands 

(Fig. 3.7). They represent the high temporal and spatial variability of the C-factors for 

grasslands throughout a year. According to the modeling results, relative high C-factors in 

winter can only be observed in the Jura mountain at the border to France and the western Alps. 

These patterns are mainly controlled by the ratio of the annual rainfall erosivity (Rratio; Fig. 4.8). 

The whole alpine range experiences increased values in spring. The distribution of C-factors in 

summer for Swiss grasslands is relative diffuse with a spatial cluster in the north-eastern region 

of Switzerland (Cantons Appenzell and St. Gallen) which is a result by the low FGVC due to 

intense grassland land use (see chapter 4.3.3.3) and the high rainfall erosivity. Absolute C-

factors are decreasing in fall but with regional pattern of high C-factors at the southern and 

eastern Alps. The minimum C-factors within a year are covering the lowland areas of 

Switzerland in winter. Maximum C-factors are observable in the previously mentioned region of 

the Cantons Appenzell and St. Gallen (close to the border of Austria) in summer.  
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Fig. 4.7: Spatio-temporal variation of C-factors of Swiss grasslands per season (spar. res. 

100 m). C-factors are a product of soil loss ratios and weighted rainfall erosivity ratios. The 

seasonal C-factors are an average of three monthly C-factor maps.  

 

The mean annual C-factor for Switzerland is 0.012 (Table 4.4). Lowest mean C-factors of 

Swiss grasslands can be observed in January (0.003), highest in the summer months July (0.024) 

and August (0.025) (Fig. 4.9). The maximum C-factor in August is about 8 times higher than 

the minimum C-factor in January. The trend marks an abrupt increase of C-factors from April to 

August with a decrease in its low winter values. The natural plant growth cycle determines the 

annual trend of FGVC. As the C-factor is not solely related to FGVC but further a product of 

SLR and weighted R-factor ratios, the trend of the C-factor is influenced by the regional and 

temporal rainfall erosivity pattern.  
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Fig. 4.8: Monthly ratio maps of the annual rainfall erosivity (R-factor) of Swiss grasslands. 

Monthly R-factor ratios are the fraction of R-factor related to the total annual R-factor sum. 

Rainfall erosivity maps of Switzerland are based on Schmidt et al. (2016). 

 

 

Table 4.4: Mean C-factors of Swiss grasslands per month. 

month 
mean C-factor of 

Swiss grasslands 

January 0.003 

February 0.004 

March 0.005 

April 0.005 

May 0.018 

June 0.016 

July 0.024 

August 0.025 

September 0.015 

October 0.012 

November 0.013 

December 0.008 

Ø 0.012 

 



Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in 

Switzerland 

75 

 

Fig. 4.9: Seasonal distribution of national monthly R-factors (MJ mm ha-1 h-1 month-1), soil 

loss ratios (SLR; %), and C-factors of Swiss grasslands. C-factors are a product of soil loss 

ratios and weighted rainfall erosivity ratios. 

 

The rainfall erosivity, as well as the FGVC, is controlled by elevation level (Fig. 4.10). The 

C-factors per month and elevation zone follow typical patterns. Highest C-factors can be 

observed in the Alpine zone. The Subalpine, Alpine and Subnival zone show more than one 

peak with highest C-factors. The Colline and Montane zone have only one maximum in August. 

The C-factors in all elevation zones are lowest in the winter months January and February. 

FGVC in winter is low due to the reduced plant growth. The here excluded presence of snow 

cover in winter results in a delay of increasing FGVC with elevation after melt-out. The typical 

melt-out at elevations between 1560 and 2545 m a.s.l. is recorded by Jonas et al. (2008) and 

Fontana et al. (2008) at DOY 147. Large areas of Switzerland show a snow occurrence in winter 

(Fig. S4.1). Protection of grassland soils by plant cover is relatively low in winter but 

simultaneously affected by only very low rainfall erosivity. However, the tremendous impact of 

snow gliding on exposed soil surfaces during winter might be a crucial impact (Meusburger et 

al., 2014). Although the fraction of vegetation cover is increasing in summer for all the 

grasslands, the weighting with the Rratio causes a high C-factor. As discussed in Schmidt et al. 

(2016), a significant fraction of the annual rainfall erosivity is within the time window between 

June and September. The predominantly glaciated Nival zone (>3100 m a.s.l.) could not be 

considered due to a small proportion of grassland areas (0.6% of the zone).  
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Cantons in the east of Switzerland (Fig. S4.6) have slightly higher C-factors in the month 

May to December which is also related to the differences elevation level (mean elevation of 

eastern cantons 1122 m a.s.l., western cantons 865 m a.s.l.) and different ratios of R-factors. The 

elevation patterns become also visible by comparing the northern and southern cantons (mean 

elevation 928 m a.s.l. and 1795 m a.s.l., respectively). The capturing of the relationship between 

C-factor and elevation zone meets our expectations and confirms the plausibility of the input 

parameters and modeling approach. Bosco et al. (2009) already observed a relationship of C-

factors and elevation level based on literature values. 

 
Fig. 4.10: Mean monthly C-factors of grasslands for different elevation zones in 

Switzerland. 

 

Kulikov et al. (2016) studied the temporal variations of C-factors of Kyrgyz mountain 

grasslands. They observed decreasing C-factors from April (immediately after snowmelt) to 

June in both of their study areas. They assess the months April and May with the highest 

potential soil loss owing to high C-factors with simultaneous high rainfall erosivity. A soil 

erosion assessment for a watershed in Brazil (de Carvalho et al., 2014) reveals highest soil loss 

in the rainy season where rainfall erosivity is high and the C-factor low. Another combination of 

dynamic R- and C-factors, done by Panagos et al. (2014a) for Crete in Greece, assesses March 

as a month with high rainfall erosivity and low fractional vegetation cover. Thus, it is important 

for C-factor assessment to consider the relative timing of peak C- and peak R-Factor. 

Panagos et al. (2015c) derived C-factors for grasslands for the 28 European Union member 

states from FCover300m and ranges of literature values. Their results present a mean European 

grassland C-factor of 0.0435 which is about 3.5 times higher than the one for Switzerland. 

However, C-factors in Mediterranean regions, which are included in the mean European C-

factor, are substantially higher than ones in Central Europe. The surrounding countries of 

Switzerland have mean national values between 0.0345 (Austria) to 0.0421 (Germany). 

Switzerland’s nationwide C-factor for grasslands (0.012) is 70% lower than the mean of the four 

neighboring countries (0.0396). A different seasonal trend and lower values compared to 

Panagos et al. (2015c) and Kulikov et al. (2016) can be explained by the different methods to 

compute C-factors and the neglecting of the rainfall erosivity. 
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Extensive pasture systems might have a positive effect on a dense vegetation cover. 

Furthermore, rotation grazing systems or reduced stocking rates supports the development of a 

better-closed vegetation cover (Troxler et al., 2004). The exclusion (e.g., by fencing) of 

susceptible soils or spots with a reduced growth period due to a late melt-out could effectively 

prevent soils from being mobilized. The regeneration time of a degraded sward will take many 

years, and as long as then the soil surface remains uncovered, it will be fragile and highly prone 

to an expansion of soil degradation in the form of erosion.  

The study of the dynamic soil erosion is of high importance as growing seasons in the 

European Alps are about to be extended under futures changing climates and shortened snow-

cover periods (Defila and Clot, 2001; Studer et al., 2005; Bänninger et al., 2006; Fontana et al., 

2008; Frei et al., 2017). A long-term effect of the prolonged growing season for alpine plants 

would be the favoring of higher and faster-growing plants with enhanced biomass production. 

More biomass production increases the vegetation cover and lowers the C-factor in summer 

(Rammig et al., 2010). Simultaneously, the warmer climate and heavy precipitation events 

during fall and winter will result in higher R-factors (after snowmelt; Fuhrer et al., 2006; 

Rajczak et al., 2013; Rajczak and Schär, 2017). Sparsely covered soils in late fall (before snow 

cover) and early spring are then more susceptible to erosion by water. A significant increase and 

intensification in the cold-season precipitation is already observable for Switzerland (Widmann 

and Schär, 1997; Schmidli et al., 2002; Schmidli and Frei, 2005). 

4.4 Conclusion and outlook 

We derived Swiss C-factor maps of grasslands from soil loss ratios weighted with R-factor 

ratios in using the most state-of-the-art remote sensing products for Switzerland (e.g., national 

orthophoto with an original spatial resolution of 0.25m (Swissimage FCIR) and a 10-day time 

series of fractional green vegetation cover (FGVC, FCover300m)). The assessment enables the 

nationwide quantification of the C-factor of grasslands in its dynamic throughout a year. C-

factors are much higher in winter than in summer due to the relation to rainfall erosivity ratio 

and show the expected dependency on elevation gradient. The mean annual C-factor of Swiss 

grasslands is 0.012 which complies with the C-factor of October. An improved spectral 

resolution will be available with the future Swissimage RS product which might increase the 

accuracy and quality of the linear spectral unmixing results. However, the present results can 

help to implement soil conservation strategies of an adopted land use management. The 

identification of regions in Switzerland and periods of the year with high C-factors in 

combination with the dynamic R-factors might help agronomists to introduce selective 

mitigation strategies for erosion control of Swiss grasslands. The mitigation potential of soil 

erosion particularly relies on the C-factor since the R-factor is climate driven and not directly to 

be altered by human interventions. The utilized grassland areas of Switzerland are of particular 

interest since grazing might degrade soil functions and stability and has an impact on soil cover. 

Grazing in alpine environments usually takes place during the most susceptible season. As 

sediment yield is reduced to a minimum under closed vegetation cover, priority should be on 

keeping the vegetation coverage of grassland high. The FGVC can be increased, and thus the C-

factor lowered by avoiding grazing on highly susceptible grassland or at least by paying more 

attention to the choice of the grazing animal species and stocking numbers/ diversity. To capture 
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the spread of degraded surfaces, the automated identification and classification of bare soil spots 

with a higher spectral resolution is envisaged for future studies. Beyond the current state of C-

factors, the models can be linked to land use and climate scenarios to get an idea of future 

impacts of soil erosion. As we demonstrated the usefulness and applicability of the C-factor and 

its relation to the R-factor, this study also highlights the advantages of USLE-type modeling. 

Individual computation and assessment of every single factor result in a high transparency and 

verifiability of USLE-based erosion models. Each individual factor does not only have the 

advantage to be adjusted and evaluated on its own but also deliver valuable conclusions for 

other environmental issues. 
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Abstract 

Soil erodibility, commonly expressed as the K-factor in USLE-type erosion models, is a crucial 

parameter for determining soil loss rates. However, a national soil erodibility map based on 

measured soil properties did so far not exist for Switzerland. As an EU non-member state, 

Switzerland was not included in previous soil mapping programs such as the Land Use/Cover 

Area frame Survey (LUCAS). However, in 2015 Switzerland joined the LUCAS soil sampling 

program and extended the topsoil sampling to mountainous regions higher 1500 m a.s.l. for the 

first time in Europe. Based on this soil property dataset we developed a K-factor map for 

Switzerland to close the gap in soil erodibility mapping in Central Europe. The K-factor 

calculation is based on a nomograph that relates soil erodibility to data of soil texture, organic 

matter content, soil structure and permeability. We used 160 Swiss LUCAS topsoil samples 

below 1500 m a.s.l. and added in an additional campaign 39 samples above 1500 m a.s.l. In 

order to allow for a smooth interpolation in context of the neighboring regions, additional 1638 

LUCAS samples of adjacent countries were considered. Point calculations of K-factors were 

spatially interpolated by Cubist Regression and Multilevel B-Splines. Environmental features 

(vegetation index, reflectance data, terrain and location features) that explain the spatial 

distribution of soil erodibility were included as covariates. The Cubist Regression approach 

performed well with an RMSE of 0.0048 t ha h ha-1 MJ-1 mm-1. Mean soil erodibility for 

Switzerland was calculated as 0.0327 t ha h ha-1 MJ-1 mm-1 with a standard deviation of 0.0044 t 

ha h ha-1 MJ-1 mm-1. The incorporation of stone cover reduces soil erodibility by 8.2%. The 

proposed Swiss erodibility map based on measured soil data including mountain soils was 

compared to an extrapolated map without measured soil data, the latter overestimating 

erodibility in mountain regions (by 6.3%) and underestimating in valleys (by 2.5%). The K-

factor map is of high relevance not only for the soil erosion risk of Switzerland with a particular 

emphasis on the mountainous regions but also has an intrinsic value of its own for specific land 

use decisions, soil and land suitability and soil protection. 

 

Keywords: RUSLE, soil erosion, LUCAS, erodibility, cubist regression, soil properties, digital 

soil mapping 
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5.1 Introduction 

The productive capacity of the soil is the most important resource for human food supply 

(Morgan, 2006; Borrelli et al., 2017). However, depletion in productive capacity and an increase 

of soil erosion rates are progressing with the growth of population and agricultural 

intensification (Brown, 1981; Pimentel et al., 1995; Lal, 2001; Yang et al., 2003; Dotterweich, 

2013). On global arable lands, soils are not in equilibrium as soil loss rates exceed the tolerable 

soil loss (FAO, 2015). Among the physical parameters influencing soil erosion (soil physical, 

chemical, and biological properties, climate conditions, landscape characteristics; Verheijen et 

al., 2009) the susceptibility of soil is controlled by soil properties that restrain the detachment of 

soil particles, and affect infiltration, permeability, and water capacity (Wischmeier and Smith, 

1965). The susceptibility of a soil to erode is commonly called soil erodibility. It is assessed as 

the K-factor in the Universal Soil Loss Equation (USLE; Wischmeier and Smith, 1965) and its 

revised versions (RUSLE; Renard et al., 1997) which compute soil erosion by a multiplication 

of the rainfall erosivity R, cover and management C, slope length and steepness LS, and support 

practices P (Wischmeier and Smith, 1978). Experimentally, the K-factor is the average annual 

soil loss (A) per rainfall erosivity unit (R) measured for the standard conditions of the unit plot 

(Wischmeier and Smith, 1978): 

 

K =
A

R
                (5.1) 

 

In a rather practical context, it can be seen as a value to describe the annual average of the 

total soil and soil profile reactions in relation to substantial water erosion processes like 

detachment and transport (Renard et al., 2010). Information about soil erodibility is preferable 

to be assessed by long-term measurements on natural plots (Renard et al., 2010). A relationship 

of soil erodibility and particle size distribution was assessed by Wischmeier (1971) for soils in 

the USA and expressed in a nomograph. That nomograph was developed to estimate soil 

erodibility from readily available soil property data and standard profile descriptions as field 

measurements of K are time-consuming and demand at least 3 (up to 10) years of measurement 

to determine values (Foster et al., 2008). Later, Wischmeier and Smith (1978) developed an 

equation that rests on the nomograph based on rainfall simulations data from 55 soils in the US 

(see equation 5.2; (Renard and Ferreira, 1993). This equation is the most used and cited function 

to calculate soil erodibility from ready-to-use soil data (Borrelli et al., 2017). Alternative 

equations for particular soil types (e.g., high clayey, volcanic, mollisol) were developed but 

these are not of necessity for Swiss conditions (Wang et al., 2013a). Auerswald et al. (2014) 

developed a K-factor equation based on German soil survey data. Their equation fully emulated 

the nomograph of Wischmeier and Smith (1978) beyond the limitations of 70% silt, soil 

erodibility less than 0.02 t ha h ha-1 MJ-1 mm-1, 4% soil organic matter, and exclusion of rock 

fragments. However, the equation is not yet widely tested (applied in 5 publications) and 

considered as “far from perfect in many cases” (Auerswald et al., 2014). To ensure a continental 

comparability of Swiss soil erodibility, we decided to use the equation of Wischmeier and Smith 

(1978) which was earlier applied for European countries (see below; Panagos et al., 2014c). 

Determining the soil properties of the equation of Wischmeier and Smith (1978) includes 

topsoil texture (sand, very fine sand, silt, and clay content), soil organic matter, soil structure 

and soil permeability (Wischmeier et al., 1971). However, as the latter parameters are also 
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difficult to measure and regarding the demand on large-scale models and assessments, 

alternative methods to cover the spatial distribution of soil information are needed (Diek et al., 

2016; 2017; Wang et al., 2016a). Still the majority of these alternatives follow the nomograph 

or equation of Wischmeier et al. (1971) and Wischmeier and Smith (1978) to model soil 

erodibility with soil properties derived by remote sensing (Wang et al., 2016b; Ostovari et al., 

2017) or digital soil mapping (DSM) techniques (Bahrawi et al., 2016; Ganasri and Ramesh, 

2016; Iaaich et al., 2016).  

For Switzerland, previous studies have used a variety of polygon-based soil property and 

soil suitability maps of different scales to estimate the soil erodibility based on the parameter 

classes of texture, stone, and organic matter content (Prasuhn et al., 2010; 2013). Unfortunately, 

high- and medium-resolution soil maps (up to 1:50000) are heterogeneous and do only cover 

25% of the Swiss national area. With the recent demand of national spatial soil data, DSM 

evolved as an appropriate method to complement the conventional soil survey methods 

(McBratney et al., 2003) that are often biased especially for Switzerland with its high 

percentage of remote mountain areas with low accessibility (Nussbaum et al., 2014; 2017; 

2018). The principle of DSM considers that similar environmental conditions cause the 

formation of similar soil and soil properties (Hudson, 1992).  

Often, soil survey input data sources of the DSM maps originate from non-uniform soil 

databases, which make the results often incomparable, although underlying equations and 

methodologies are identical. Topsoil surveys (0-20 cm) in the framework of the Land 

Use/Cover Area frame Survey (LUCAS; Tóth et al., 2013) allowed the establishment of a 

homogenous soil database across 23 EU member states. Panagos et al. (2012b) presented a K-

factor map as a first homogenized product of the database. Later, the underlying spatial 

prediction methodology was improved (Cubist Regression and Multilevel B-Splines), the 

number of soil samples increased and the number of countries enlarged (25 EU member states; 

Panagos et al., 2014c). The past two sampling campaigns of LUCAS (2009-2012 and 2015) 

cover a total of more than 22000 soil samples (Orgiazzi et al., 2018). As Switzerland was not 

part of the first LUCAS sampling (2009), an extrapolation of soil erodibility for Switzerland 

without Swiss soil samples was realized based on topsoil data of other EU countries (map 

uploaded at the European Soil Data Centre ESDAC; Panagos et al., 2012c). However, this 

extrapolated soil erodibility is associated with high uncertainties and was therefore not 

published in a peer-review journal. In 2015, Switzerland joined the LUCAS program and 199 

samples were collected. For the first time also soil samples from mountain areas above 1500 m 

a.s.l. were included (n = 39).  

Although the presence of seasonal effects on the K-Factor (mainly triggered by freeze-thaw 

processes) is discussed in the literature (Renard et al., 1991; Renard and Ferreira, 1993; Renard 

et al., 1997; Bryan, 2000), we decided not to model soil erodibility on a seasonal scale. Kinnell 

(2010) reviewed different approaches to assess the seasonality of the K-factor. However, none 

of these approaches include the hardly measurable influencing interactions and effects (e.g., 

climate influences and seasonality of freeze-thaw, compaction by life stock trampling, human 

management activities) simultaneously for a proper process-oriented modeling (Leitinger et al., 

2010; Piñeiro et al., 2010; Vannoppen et al., 2015). Furthermore, the divergence of seasonal K-

factors to an annual K-factor is poorly discussed in the literature (e.g., Wall et al., 1988). In the 

RUSLE2 User’s Reference Guide (Foster et al., 2008) it is even stated that no statistical 

evidence exists for an inconsistency of soil erodibility over time. Rather, the rainfall erosivity 
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(Schmidt et al., 2016) and the cover and management factor (Schmidt et al., 2018b) can be seen 

as highly dynamic erosion factors with an intra-annual variation.  

The aim of the present study is to assess the spatial and temporal patterns of soil erodibility 

of Switzerland by (i) mapping K-factors based on Swiss LUCAS data. Additionally, (ii) 

differences between the interpolation and extrapolation to produce a national soil erodibility 

map are evaluated. With the mapping of soil erodibility based on soil samples, we aim to 

improve the prediction of the existing extrapolated soil erodibility map. 

5.2 Material and methods 

5.2.1 LUCAS topsoil sampling 

A dataset of 199 soil samples from the LUCAS topsoil sampling was used to obtain a soil 

erodibility map of Switzerland. The LUCAS topsoil sampling is a standardized procedure with 

one aliquot out of five mixed subsamples for each sampled location. A recent review about 

LUCAS is provided by Orgiazzi et al. (2018). All samples were air-dried and analyzed for 

particle size distribution (according to the USDA classification) and soil organic carbon content 

in a single ISO-certified laboratory. The laboratory analysis are explained in detail by Orgiazzi 

et al. (2018). 160 soil samples of Switzerland cover grasslands and forests at elevations less than 

1500 m a.s.l. (sample distribution of 12.7 km x 12.7 km), 39 samples were taken at the same 

land use units in the Alpine region above 1500 m a.s.l. (20.6 km x 20.6 km) (named as Alpine 

samples throughout the study). The total Swiss sample set spans over elevations from 287 m 

a.s.l. to 2337 m a.s.l.. It covers all biogeographic regions (Jura, Alpine Midland, and 

Northern/Southern/Western/Eastern Alps) of Switzerland and has a mean point density of one 

per 207 km² what equals an average distribution of one sample within a grid of 14.4 km x 14.4 

km (Fig. 5.3). That sample spread of Switzerland corresponds to the mean spread across the 25 

EU Member States of the 2009-2012 sampling (14 km x 14 km; Panagos et al., 2013). The 

Alpine samples were selected following a stratified random sampling to make sampling in 

remote areas possible. As a logistical stratum we selected sampling points at grassland locations 

above 1500 m a.s.l. by the criteria of accessibility (max. distance of 200 m to the next street 

accessible with 4-wheel drive). We tried to manually cover the natural strata exposition (south, 

north) and geological units (consolidated and unconsolidated sediment, igneous rock, 

metamorphic rock) which are related to the soil formation but are not homogenously assessed 

by a random sampling approach. We assume that differently exposed soils experienced another 

degree of solar radiation (Yimer et al., 2006) and soil texture varies with geological units 

(Jenny, 1941). After assigning the strata, the 39 samples were randomly distributed (in ESRI 

ArcGIS) proportional to the strata units to cover each combination of exposition and geology. 

Additionally, 1638 samples of the surrounding countries Germany, Austria, Slovenia, Italy, and 

France were used to delineate a better prediction for the spatial interpolation (see below). These 

data were already part of the European soil erodibility mapping (Panagos et al., 2014c). 

Additionally, the European Soil Database (King et al., 1994) provides information for the soil 

structure of the LUCAS samples. 
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5.2.2 Calculation of soil erodibility for the LUCAS topsoil samples 

The soil erodibility (K) equation by Wischmeier and Smith (1978) includes the following 

soil properties: particle size distribution in percent (very fine sand mvfs [0.05-0.1 mm], silt msilt 

[0.002-0.05 mm], and clay mclay [<0.002 mm] content), the organic matter content OM in 

percent, the soil structure class s and the permeability class p. According to their empirical 

experiments, Wischmeier and Smith (1978) propose to calculate the soil erodibility as the 

following function whereby K is expressed in t ha h ha-1 MJ-1 mm-1 according to the 

International System of units (Foster et al., 1981): 

 

K = [(2.1 ∗ 10−4 ∗ M1.14 ∗ (12 − OM) + 3.25 ∗ (s − 2) + 2.5 ∗ (p − 3))/100] ∗ 0.1317 

                          (5.2) 

 

Where M is the textural factor composed of (msilt + mvfs) ∗ (100 − mclay).  

The particle size distribution is analytically determined. Textural classes are set according to 

USDA (1951). Soil structure is defined as the overall architecture of soils and the assembling of 

individual texture components like sand, silt, and clay and its combination to aggregates 

(Chesworth, 2008). It can be derived by a pedotransfer function including the land use class und 

soil name proposed by van Rast et al. (1995). Soil structure is classified into four classes 

(humic, poor, normal or good). Soil permeability is the soils capacity to transmit water and can 

be assessed by the soil texture classes (permeability classes 0 to 4) (USDA, 1983; Chesworth, 

2008). The used tables to extract soil structure s and soil permeability p can be found in Panagos 

et al. (2014c). The soil erodibility equation underlies three restrictions: silt content >70% is set 

to 70%, organic matter content > 4% is set to 4%, and the very fine sand fraction is estimated as 

20% of the total sand fraction (Panagos et al., 2014c). Only 1 out of 199 of all Swiss samples 

(0.5%) has a silt fraction greater 70% and was adjusted to that threshold. Assets and drawbacks 

of the organic content limitation are already discussed (Panagos et al., 2014c). The fine sand 

fraction was approximated to 20% of the total sand fraction (Panagos et al., 2014c). A particle 

size analysis of a subset of the Swiss samples (n=38) including very fine sand (26% of total 

sand) confirmed that an estimated ratio of 20% is appropriate for European soils.  

Additionally, we calculated the K-factor for all 199 Swiss LUCAS topsoil samples based on 

another K-factor equation proposed by Römkens et al. (1997) which takes only the soil texture 

into consideration and neglects the soil organic matter content, the soil structure, and the soil 

permeability. The information on soil texture is transformed by the geometric mean particle 

diameter equation by Shirazi and Boersma (1984).  

As discussed in the literature (Poesen et al., 1994; Figueiredo and Poesen, 1998; Panagos et 

al., 2014c; Bosco et al., 2015), the positive effects of the stone cover on reducing soil erosion 

are not negligible. That impact can be incorporated into the soil erodibility calculation by using 

a correction factor St for the relative decrease in sediment yield. That correction factor is 

multiplied with the K-factor and calculated as following (Poesen et al., 1994): 

 

St = e−0.04∗(Rc−10)               (5.3) 

 

Where Rc is the percentage of stone cover (stoniness). It was estimated (classes: 0-10%, 

≥10-25%, ≥25-50%, ≥50%; Eurostat, 2009) during the LUCAS topsoil sampling for each 

location (Panagos et al., 2014c).  
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The soil erodibility K and soil erodibility incorporating the stoniness correction factor Kst 

were calculated for a total of 1837 LUCAS topsoil samples (including data from bordering 

countries in addition to the 199 Swiss samples) following the equations 5.2 and 5.3.  

5.2.3 Mapping the K-factor for Switzerland 

In the present study we used vegetation indices (Normalized Difference Vegetation Index 

NDVI, Enhanced Vegetation Index EVI) of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data MOD13Q1 (Didan et al., 2015), reflectance data from 

MODIS, terrain features (elevation, slope, base level of streams, altitude above channel base 

level, and multi-resolution index of valley bottom flatness) derived from the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (Farr et al., 2007), and latitude and 

longitude as covariates. A list of covariates can be found in Table 5.1 and in Panagos et al. 

(2014c). These covariates are already identified as the most important for predicting soil 

erodibility in the European Union. In order to be reproducible, consistent, and comparable we 

used the same predictive variables and resolutions for Switzerland as were used for the 

European Union. 

 

Table 5.1: List of covariates used in the cubist regression model for modeling the soil 

erodibility of Switzerland 

covariate group covariate 
spatial 

resolution 
data source 

vegetation index Normalized Difference 

Vegetation Index NDVI, 

Enhanced Vegetation Index EVI 

250 m Moderate Resolution Imaging 

Spectroradiometer (MODIS) 

MOD13Q1 (Didan et al., 2015) 

MODIS raw band data Band 1,2,3,7 250 m MODIS (Didan et al., 2015) 

terrain features elevation, slope, base level of 

streams, altitude above channel 

base level, multi-resolution 

index of valley bottom flatness 

25 m Shuttle Radar Topography 

Mission (SRTM) (Farr et al., 

2007) 

location parameter latitude, longitude  - 

 

We used Cubist Regression (CR) (Quinlan, 1992; 1993) to spatially predict the K-factors for 

Switzerland including the above-mentioned covariates. CR is a tree model that uses recursive 

partitioning to subset the dataset into finer rule-based sub-datasets. These rules cluster data with 

relatively homogeneous characteristics. As long as a condition is identified to be false, the 

model proceeds with the next rule until it meets a true condition. As soon as a situation matches 

a condition, an individual linear regression model is fit for the data partition. A specific set of 

covariates that predict best is automatically chosen for each subset of an individual regression 

equation (Ballabio et al., 2017). It can be seen as a model tree with linear regression models at 

its terminal leaves. As such, CR allocates a series of local linear regression models and results 

in an overall combined non-linear function. Furthermore, it makes use of the previous linear 

regression to smooth and adjust the prediction (prevent underprediction, reduce overfitting). The 

selection of covariates and combination of regressions increase the estimation accuracy. After 

the CR, the residuals are interpolated with Multilevel B-Splines (MBS) (Lee and Won, 2013). 

MBS interpolate scattered points to generate a smooth surface as well as the best fit of these 
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points. The method used a hierarchy of control lattices to generate a series of functions, whose 

sum approaches the desired approximation function. A bootstrapped cross-validation (Efron and 

Gong, 1983) (100 repetitions) with randomly selected samples and a one out of ten replacement 

of the main dataset was used to fit the model. The Kst-factor, incorporating the effect of 

stoniness, was also modeled by CR and MBS. The modeling was performed in R (v 3.4.2) with 

the packages ‘cubist’ and ‘MBA’. Terrain features were extracted in SAGA GIS (v 6.0.0) 

(Conrad et al., 2015) and visualization was realized in ESRI ArcGIS (v 10.3.1). 

The K-and Kst-factor values are the base for the DSM. We extended the database across the 

Swiss border to increase population size for the statistical regressions, to better predict 

particularly the border areas of Switzerland and the special features of the high Alpine soils 

erodibility where the sample number is limited. 

The performance of the interpolation is evaluated with the standardized measure of certainty 

f based on the standard deviation s of the estimated variable V (McBratney et al., 2003) and 

calculated as follows: 

f = 1 − 𝑚𝑖𝑛 (
2𝑠

𝑉
, 1)              (5.4) 

A low certainty is expressed by 0 (0%) and high certainty by 1 (100%). 

5.2.4 Extrapolation of soil erodibility for Switzerland by using data from EU 

countries 

Extrapolated K-factor maps for European countries (from the EU28 assessment; Panagos et 

al., 2013) not being part of the previous LUCAS campaigns are already provided via the 

European Soil Data Centre (ESDAC, 2018; Panagos et al., 2012c) due to a number of requests 

from non-EU users. The extrapolated map of Switzerland used the same covariates and 

methodology but is not supported by measured data. A comparison of the extrapolated map with 

the herein processed interpolated K-factor map of Switzerland evaluates the necessity for soil 

input data into the DSM process. 

5.3 Results and discussion 

5.3.1 Soil properties and erodibility of the LUCAS topsoil samples 

The calculations of the K factor from the analysis of the 199 Swiss LUCAS topsoil samples 

in the laboratory show an average soil erodibility of 0.0334 t ha h ha-1 MJ-1 mm-1 (Table 5.2) 

with a range from 0.0180 t ha h ha-1 MJ-1 mm-1 (lowest susceptibility of Swiss soils to be 

eroded) to 0.0611 t ha h ha-1 MJ-1 mm-1 (highest susceptibility of Swiss soils to be eroded). 83% 

(166) of all samples have K-factor values between 0.0250 t ha h ha-1 MJ-1 mm-1 and 0.0400 t ha 

h ha-1 MJ-1 mm-1. The K-factor increases as the samples are getting siltier (Spearman correlation 

coefficient rs=0.397). Silt content varies between 16% and 73%. The mean fraction of very fine 

sand is 6.4% (range from 1.2% to 16.4%). A higher content of the sand fraction is very weakly 

correlated with a reduction of the K-value (rs=-0.078). The mean clay content of all 199 samples 

is 17.7% (range from 2.0% to 40.0%). All samples are rich in organic matter content with a 

mean proportion of 3.3%. Erodibility is slightly reduced by a higher content of organic matter 

(rs=-0.265). However, in general, Wischmeier and Mannering (1969) could not identify a clear 
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correlation between organic matter and soil erodibility as particle size distribution is overruling 

a possible influence. 

Soil structure class has a relatively low variability in Switzerland. Only 1% of soil structure 

is classified outside class 1 or 2. The permeability class with the highest frequency is 3 

(moderate). Soils with higher permeability have a higher infiltration capacity and reduce runoff. 

In a first approach, we considered a pedotransfer function to predict the soil permeability 

instead of deriving soil permeability from soil texture classes. As such, a subset of undisturbed 

topsoil samples of 11 Alpine locations with three replicates were measured in the laboratory 

according to the corresponding saturated hydraulic conductivity. Results indicated that the 

permeability was driven by secondary pores and not at all related to the primary porosity. That 

fact impedes the prediction and led us back to the original approach of Panagos et al. (2014c).  

The 39 Alpine samples are rich in sand content and can be classified as loamy soils. The 

mean soil texture of the remaining 160 Swiss samples is silty loam. Most of the Swiss samples 

are either classified to the texture class loam or silty loam (Fig. 5.1). The mean soil erodibility 

of samples above 1500 m a.s.l. is smaller than the mean of locations below 1500 m a.s.l. 

(0.0320 versus 0.0338 t ha h ha-1 MJ-1 mm-1, respectively), although a decreasing trend of clay 

content (rs=-0.172) with height and a slightly increasing trend of very fine sand and organic 

matter (rs=0.151, resp. rs=0.159) with height (from 287 m a.s.l. to 2337 m a.s.l. of 199 samples) 

is observed. Spatial trends by latitude exist for clay and sand. Clay content increases (rs=0.545) 

and sand content decreases (rs=-0.476) from South to North. This relation of latitude and soil 

properties is mainly influenced by the terrain contrasts between southern and northern 

Switzerland. No correlation exists between soil properties and longitude. We expected no 

relationship between soil properties and longitude as the terrain contrasts are heterogeneous and 

do not follow any obvious gradient. However, due to the correlation of soil properties and 

latitude we decided to use spatial coordinates as a predictor for the K-factor modeling in the 

following chapter.  

 

Table 5.2: Mean values for soil properties 

measured soil properties samples Switzerland 

 <1500 m a.s.l. >1500 m a.s.l.  

number of samples n 160 39 199 

sand (%) 29.2 42.6 31.8 

very fine sand mvfs (%) 5.8 8.5 6.4 

silt msilt (%) 51.3 47.1 50.5 

clay mclay (%) 19.5 10.4 17.7 

textural factor M 4588.3 4965.4 4662.2 

organic matter OM (%) 5.3 5.9 5.4 

soil structure class s * 1 1 1 

permeability class p * 3 3 3 

soil erodibility K 

(t ha h ha-1 MJ-1 mm-1) 
0.0338 0.0320 0.0334 

*mode value 
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Fig. 5.1: Particle size distribution diagram of all 199 LUCAS topsoil samples according to 

the USDA soil texture classification proportional to the K-factor (quantile classification) 

 

The soil erodibility calculation based on Römkens et al. (1997) revealed a slightly different 

K-factor of 0.0371 t ha h ha-1 MJ-1 mm-1. However, we decided to use the nomograph based 

equation as it is recommended by Renard et al. (1997) as long as measured soil parameters are 

not limited and measured in the USDA soil texture classification.  

5.3.2 Soil erodibility mapping 

5.3.2.1 National soil erodibility map based on LUCAS topsoil samples 

The mean spatially predicted soil erodibility for Switzerland is 0.0327±0.0044 t ha h ha-1 

MJ-1 mm-1. The histogram represents a bell-shaped curve with varying K-factors from 0.0143 to 

0.0517 t ha h ha-1 MJ-1 mm-1. Lowest values are in the Alpine valleys and highest in the top 

elevated regions of the Swiss Alps. The map has a spatial resolution of 500 m (Fig. 5.2, note 

that urban areas and lakes have been removed from the resulting Swiss K-factor map). The 

RMSE at all the 199 locations of predicted and measured samples is 0.0048 t ha h ha-1 MJ-1 mm-

1. The standardized measure of certainty f is 87% for the predicted K values (Fig. 5.3). The 

distribution of certainties of predicted and observed K-factors is heterogeneous without any 

apparent distribution. The RMSE of all 1836 samples used for the spatial prediction 

(Switzerland incl. adjacent countries) is 0.0064 t ha h ha-1 MJ-1 mm-1 with a mean predicted K of 

0.0328 t ha h ha-1 MJ-1 mm-1 and a f of 82%.  
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Fig. 5.2: (a) K-factor and (b) Kst-factor (including the effect of stone cover) maps of 

Switzerland. 
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Fig. 5.3: Certainty map of observed and predicted K-factor values of Switzerland in 

percentage (0% low certainty; 100% very high certainty) and distribution of LUCAS samples. 

Certainty is calculated according to equation 5.4. Black dots in the surrounding of Switzerland 

represent a subset (n=261) of the additional used 1638 LUCAS samples.  

 

Advantages of CR are its capacity to work for non-linear relationships and its 

interpretability. It diminishes overfitting due to its partitioning and rule-based routines (Malone 

et al., 2017). Cubist is among the best performing prediction methods compared to 17 others 

(e.g., random forest, neural net, linear regression) (Kuhn and Johnson, 2013). MBS has a high 

performance in terms of computing speed and automatic optimization of the parameters. It was 

preferred over kriging, as kriging is heavily dependent on the variogram estimation, which can 

be problematic especially in computing the empirical variogram. The choice of binning 

distance, maximum range, and other parameters can drastically change the final outcome. 

Moreover, kriging makes several assumptions about data distribution that are often not met in 

practice.  

Vegetation indices, reflectance data, terrain features and spatial coordinates were used as 

covariates. The relative importance of the used covariates is already discussed (Panagos et al., 

2014c). A direct relationship between the K-factor and hillslope features could be proved for 

mountainous areas of Southern Italy (Colombo et al., 2010). Kulikov et al. (2017) used terrain 

features (e.g., slope degree and curvature, elevation) next to Landsat band ratios as covariates to 

spatially model K-factors in Kyrgyzstan. According to a review by McBratney et al. (2003), the 

key sources of environmental covariates for predicting soil properties were either relief (80%) 

and/ or auxiliary soil property (35%) data. Additionally, spatial coordinates appear to be serving 

as a meaningful predicting factor in DSM. They include spatial relationships which are not 

expressed in any other environmental variable (McBratney et al., 2003). Usually, parent 
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material can be seen as a suitable covariate for soil erodibility as a relationship of the geological 

parent material and soil texture is often assumed (André and Anderson, 1961). However, our 

analysis on Alpine soils showed no significant correlation of geological bedrock and soil texture 

due to the homogeneous glacial till coverage (Blume et al., 2016) and the sampling only of 

topsoils.  

Comparison of modeled K-factors for Switzerland and the surrounding countries reveal a 

mean of soil erodibility close to the averages of Austria (0.0321 t ha h ha-1 MJ-1 mm-1), 

Germany (0.0334 t ha h ha-1 MJ-1 mm-1), and Italy (0.0322 t ha h ha-1 MJ-1 mm-1). The K-factor 

of Slovenia is slightly lower (0.0313 t ha h ha-1 MJ-1 mm-1) with highest values in the karst zone 

(Prus et al., 2015). One exception is met by the comparison to France where the K-factor is 

higher (0.0356 t ha h ha-1 MJ-1 mm-1). The higher values in France might arise out of the high 

proportion of erodible loess plateaus in Northern France.  

The average K-factors have a slightly positive altitudinal gradient (with the exception of the 

colline zone <800 m a.s.l.). K-factors are increasing from 0.0308 t ha h ha-1 MJ-1 mm-1 in the 

montane zone (800-1800 m a.s.l.) to a maximum of 0.0404 t ha h ha-1 MJ-1 mm-1 in the nival 

zone (>3100 m a.s.l.). Willen (1965) could identify a doubling of erodibility at elevation ranges 

of 2160 m a.s.l. compared to 600 m a.s.l in California.  

The incorporation of the stoniness cover reduces the spatially predicted mean K-factor of 

Switzerland by 8.2% (to 0.0297 t ha h ha-1 MJ-1 mm-1 with a standard deviation of 0.0054 t ha h 

ha-1 MJ-1 mm-1) (Fig. 5.2). This reduction is similar to the influence of stoniness in reducing K-

factors in neighboring central European countries (Austria, Germany, and Slovenia). The RMSE 

(0.0054 t ha h ha-1 MJ-1 mm-1) is slightly higher, f is lower (83%) than those of the soil 

erodibility neglecting the stoniness effect. The strongest effect of stoniness to the soil erodibility 

is visible in the region close to the French border (Jura mountain range) and the northern Alpine 

foothill (Fig. 5.2). The reduction due to stone cover is smaller than the average reduction of the 

K-Factor at the European scale (15%; Panagos et al., 2014c). The latter might be explained by 

the relatively lower effect of stoniness in the high alpine regions of Switzerland compared to 

lowlands: The average K-factor in the Swiss lower regions (<1500 m a.s.l.) is reduced by 

12.2%, in the Swiss Alpine region (>1500 m a.s.l.) only by 1.8%.  

As auxiliary soil data, we considered datasets from Swiss federal agencies (e.g., 

NABODAT, Rehbein et al., 2017) and cantonal soil data. In these particular cases, we had to 

deal with inconsistencies owing to different soil sampling methods, sampling periods, 

laboratory analysis, clustered data, incomplete spatial coverage, and missing parameters. Thus, 

the tested local data could not be used to improve the model result. 

5.3.2.2 Comparison with extrapolated mapping of soil erodibility at the European scale 

The comparison of the extrapolated (EU map; no measured data for Switzerland available; 

Panagos et al., 2014c) and the interpolated map (including measured data from Switzerland, this 

study) with identical methods (CR, MBS) and covariates results in similar average K-factor 

values for Switzerland (0.0327 t ha h ha-1 MJ-1 mm-1 vs. 0.0333 t ha h ha-1 MJ-1 mm-1). The mean 

deviation of extrapolated and interpolated average values is -1.2%. The mean is relatively 

balanced by considering under- and overestimation simultaneously. However, the spatial 

patterns, mainly caused by the addition of the measured Alpine samples that had not been 

integrated into the LUCAS before, expose some systematic deviations (Fig. 5.4).  
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Fig. 5.4: Difference of extrapolated K-factors (with no measured data from Switzerland) to 

the interpolated K-factors (based on 199 additional LUCAS topsoil samples in Switzerland) in 

percentages. Map classes are classified according to quantiles. 

 

The difference map shows an overestimation of K-factors in the top Alpine region and an 

underestimation in the valleys and Northern/Southern Alpine foothills by the extrapolated EU 

map compared to the interpolated map of this study. The highest overestimation can be found in 

the eastern Alps (Canton Grisons). The differences between extrapolation and interpolation of 

soil erodibility are relatively small in the lower relief Swiss midland in the north of the Alps, 

because these areas seem to be well represented by the non-Swiss LUCAS dataset. Regions with 

a small deviation (-6% to 8%) from the interpolated K-factor map have an average elevation of 

272 m a.s.l.. The extrapolation is based on LUCAS topsoil samples of the surrounding EU 

countries and the sampling campaign was limited up to heights of 1500 m a.s.l.. This means that 

alpine samples were not considered in the extrapolation at all. Thus, neglecting of mountainous 

soils might provoke high uncertainties with a general trend of overestimating K-factors in the 

mountains. In contrast, even though lower regions like the Alpine valleys are included in the 

sampling of other countries were obviously nevertheless difficult to predict, most likely owing 

to the complex relief situations in Europe. 

We calculated the local mean soil losses on a polygon scale over 100 random municipalities 

to evaluate the influence of an under-/or overestimate on the overall soil erosion risk 

assessment. The municipalities were derived from a total of 2382 Swiss municipalities of the 

dataset SwissBOUNDARIES3D (Swisstopo, 2018b). They are randomly distributed in 

Switzerland and are differently-sized (from 1.2 km² to 149.2 km²). We used the annual R-, 

annual C-, and the LS-factor to multiply them once with the interpolated and once with the 

extrapolated annual K-factor of Switzerland. Results of the 100 municipalities showed a 
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tendency of the extrapolated K-factors to overestimate soil loss by 6.3% and underestimate soil 

loss by 2.5% in the Alpine region (>1500 m a.s.l.) and lower regions (<1500 m a.s.l.), 

respectively.  

5.4 Conclusions 

The soil data of the Swiss soil erodibility mapping originates from the first LUCAS 

sampling campaign including samples above 1500 m a.s.l.. For the first time, the K-factor based 

on measured topsoil samples is presented on a national scale in Switzerland. We modeled the 

spatial distribution of soil erodibility for Switzerland with Cubist Regression and Multilevel B-

Splines under consideration of environmental covariates. An incorporation of the stoniness into 

the K-factor cover causes a mean reduction of 12.2% in the lower regions (<1500 m a.s.l.) and 

1.8% in the Alpine regions (>1500 m a.s.l.). A comparison of the K-factors interpolated with 

199 measured LUCAS topsoil samples in Switzerland (including n=39 >1500m a.s.l.) and 

extrapolated values based only on soil samples of the neighboring countries <1500m a.s.l. of 

previous LUCAS campaigns not considering Switzerland, resulted in surprisingly consistent 

average values, but indicated considerable spatial deviations mostly at high elevations and in 

Alpine valleys. The analysis demonstrates that regions with high elevation contrasts but no 

measured soil data tend to be over- or underestimated. A well-distributed sampling network, 

extended even to high elevation regions, increased the mapping accuracy compared to an 

extrapolated approach without measured soil samples within the predicted area. Our results 

suggest that the soil erodibility in other Alpine countries might also be under-/ overestimated 

due to a lack of topsoil samples on mountainous regions. A sampling of mountainous regions as 

was done in this study in Switzerland should be envisaged in future campaigns of Alpine 

countries to reduce that uncertainty in soil erodibility and in soil loss assessments.  

By modeling the K-factor of Switzerland we were able to fill the Swiss blank spot in the 

European soil erodibility map and make the Swiss values comparable to other European 

countries. However, caused by the number of samples and spatial resolution, the map should be 

used as an overview, indicating trends and regional differences within Switzerland or to 

neighboring countries and not as a detailed map for local studies. The mapping approach could 

be further improved by additional topsoil data and spatial high resolution covariates (e.g. 

NABODAT, Rehbein et al., 2017; SwissAlti3D, Swisstopo, 2018a). Unfortunately, most of the 

existing Swiss topsoil datasets do not have a national coverage and a harmonization of several 

datasets is impeded by various data owners, different sampling campaigns and applied sampling 

and analytical methodologies. It would be conceivable to use these clustered data (e.g., 

NABODAT data, Rehbein et al., 2017) in addition to high resolution predictors to model soil 

erodibility for specific regions of Switzerland with a high sampling density (e.g., for Swiss 

midland). The calculation of the soil erodibility for the blank spot of Switzerland on the map has 

not only an added value for European soil erosion risk assessments but deliver further valuable 

information on a continental scale for other environmental and soil related issues like site-

specific land use decisions, soil and land suitability, and soil protection including agro-

economic considerations.  
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Abstract 

The slope length and slope steepness factor (LS-factor) is one of five factors of the Universal 

Soil Loss Equation (USLE) and its revised version (RUSLE) describing the influence of 

topography on soil erosion risk. The LS-factor was originally developed for slopes less than 

50% inclination and has not been tested for steeper slopes. To overcome this limitation, we 

adapted both factors slope length L and slope steepness S for conditions experimentally 

observed at Swiss alpine grasslands. For the new L-factor (Lalpine), a maximal flow path 

threshold, corresponding to 100 m, was implemented to take into account short runoff flow 

paths and rapid infiltration that has been observed in our experiments. For the S-factor, a fitted 

quadratic polynomial function (Salpine) has been established, compiling the most extensive 

empirical studies. As a model evaluation, uncertainty intervals are presented for this modified S-

factor. We observed that uncertainty increases with slope gradient. In summary, the proposed 

modification of the LS-factor to alpine environments enables an improved prediction of soil 

erosion risk including steep slopes. 

 

Keywords: Revised Universal Soil Loss Equation, Erosion modeling, Switzerland, Terrain 

features, Maximal, Flow length 

 

Highlights: 

- Empirical experiments (rainfall simulation, sediment measurements) were conducted on 

Swiss alpine grasslands to assess the maximal flow length and slope steepness factor (S-

factor). 

- Flow accumulation is limited to a maximal flow threshold (100 m) at which overland 

runoff is realistic in alpine grassland. 

- Slope steepness factor is modified by a fitted S-factor equation from existing 

empirical S-factor functions. 
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Graphical Abstract 

 

Specifications Table 

Subject area Environmental Science  

More specific subject 

area 

Soil erosion modeling 

Method name - Lalpine 

- Salpine 

- LSalpine 

Name and reference of 

original method 

USLE LS-factor: Wischmeier, W.H., & Smith, D.D. (1978). Predicting 

rainfall erosion losses. Washington. 

S-factor: McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., & 

Meyer, L.D. (1987). Revised Slope Steepness Factor for the Universal 

Soil Loss Equation. Transactions of the ASAE, 30, 1387–1396. 

doi:10.13031/2013.30576. 

S-factor: Smith, D.D., & Whitt, D. (1948). Estimating soil losses from 

field areas. Agricultural Engeneering, 29, 394–396. 

Resource availability  - SAGA GIS (http://www.saga-gis.org; Conrad et al., 2015) 

- RSAGA (https://cran.r-

project.org/web/packages/RSAGA/index.html;Brenning et al., 

2018) 

 

 

 

  

http://www.saga-gis.org/
https://cran.r-project.org/web/packages/RSAGA/index.html
https://cran.r-project.org/web/packages/RSAGA/index.html
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6.1 Introduction 

The slope length factor L and slope steepness factor S, often lumped together as the 

topographic factor LS. The LS-factor is one of the factors (R rainfall erosivity, C cover and 

management factor, K soil erodibility, P support practices) of the Universal Soil Loss Equation 

(USLE) and its revised version (RUSLE) (Renard et al., 1991; Wischmeier and Smith, 1978). 

LS is a factor that describes the influence of the topography to the soil erosion risk by 

considering the length of a slope and the influence of surface runoff which can be active on 

eroding soil material before it infiltrates or continuous as interflow. Furthermore, it includes the 

steepness of a slope as runoff on steeper slopes has a higher gravity and therefore is more 

relevant for erosion.  

With the availability of Digital Elevation Models the calculation of LS-factors in GIS 

environments was made possible even for large-scale erosion modeling approaches. Winchell et 

al. (2008) revealed a reasonable agreement of GIS-based LS-factor and field measured LS-

factors of the US Natural Resource Inventory database for the Mississippi Catchment.  

Originally, the LS-factor was assessed on a 9% steep slope with a length of 22.13 m (72.6 

feet) (Wischmeier and Smith, 1978). Owing to its empirical character, LS-factors are usually 

limited to a maximum slope angle of 50% (26.6°) (McCool et al., 1987; Liu et al., 2000). As 

Switzerland is a country with a high elevation gradient from 192 m a.s.l. to 4633 m a.s.l. (mean 

elevation 1288 m a.s.l.) and a mean slope gradient of up to 36% (20°), a not negligible fraction 

of slopes (4.7%) exceeds the limitation of 50%. Yet, no uniform equation to assess the LS-

factor for steep slopes like in the alpine environment of Switzerland was presented to the 

scientific community. Only a few studies are dealing with LS-factors on steep slopes (e.g., Liu 

et al., 2000). For example, slopes >50% were disregarded in the most recent European Union’s 

LS-factor map by Panagos et al. (2015b).  

To overcome that limitation in LS-factor modeling on steep slopes, we (i) limited the 

potential flow path length to a maximal flow and (ii) choose the most representative equation 

for Swiss steep slopes. 

6.2 Method details 

6.2.1 Existing approaches for S- and L-factor parametrization 

The LS-factor is a product of the slope length (L-) and the slope steepness (S-factor). The 

most widely used slope length factor represents the ratio of observed soil loss related to the soil 

loss of a standardized plot (22.13 m). Originally, Wischmeier and Smith (1978) defined the L-

factor as Eq. 6.1: 

 

L = (
λ

22.13
)

m
                (6.1) 

 

where λ represents the length of the slope in meters and m the different slope steepness. 

Later, Eq. 6.2 was adapted for the RUSLE-approach to better describe soil loss with increasing 

slope steepness. Desmet and Govers (1996) transformed the original L-factor (Eq. 6.1) into a 
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GIS-approach (Eq. 6.2) considering the flow accumulation and adding a ratio of rill to interrill 

erosion (Eq. 6.3): 

 

Li,j =
(Ai,j−in +D2)

m+1
−Ai,j−in

m+1

Dm+2 ∗ Xi,j 
m ∗ 22.13m               (6.2) 

 

where Ai,j-in is the flow accumulation in m² at the inlet of a grid cell (i,j). D is the grid cell 

size in m and 𝑋𝑖,𝑗 equals to 𝑠𝑖𝑛𝑎𝑖,𝑗 + 𝑐𝑜𝑠𝑎𝑖,𝑗 where ai,j is the aspect of the grid cell (i,j). The 

coefficient m (Eq. 6.3) represents the ratio of rill and interrill erosion and is calculated by the β-

value (Eq. 6.4):  

m =
β

β+1
                       (6.3) 

 

With a range between 0 (ratio of rill to interrill erosion close to 0) and 1.  

 

β =
sinθ

0.0896

[0.56+3∗(sinθ)0.8]
                       (6.4)  

 

Where θ is the slope angle in degrees. 

For the S-factor, most often the empiric function proposed by McCool et al. (1987) is used 

to determine the slope steepness factor in the Revised Universal Soil Loss Equation (RUSLE). 

McCool et al. (1987) differentiate the relation between soil loss and slope steepness in radians 

(s) with two functions. One for slopes with an inclination less than 9% and the other greater or 

equal 9%. The functions are as follows: 

 

S = 10.8s + 0.03           for slope steepness in percent < 9%         (6.5) 

S = 16.8s − 0.50           for slope steepness in percent ≥ 9%         (6.6) 

 

The S-factor after McCool et al. (1987) is particular recommended for areas with low 

summer rainfall amounts (Auerswald, 1986). Many other empirical S-factors were developed 

since the 1940s (Table 6.1) but all S-factors have in common that empirical evidence and thus 

validity is limited to slope gradients less than 50%.  

 

Table 6.1: Review of selected S-factors (S) 

Source function Description 

Zingg (1940) 𝑆 = (
𝑠

9
)

1.4

 s = slope steepness in percent 

Musgrave (1947) 𝑆 = (
𝑠

9
)

1.35

 s = slope steepness in percent 

Smith and Whitt (1948) 𝑆 = 0.025 + 0.052𝑠
4
3 s = slope steepness in percent 

Smith (1958) 𝑆 = 0.00650𝑠2 + 0.0453𝑠 + 0.065 s = slope steepness in percent 

Smith (1958) 𝑆 = 0.044 + 0.10𝑠 − 0.00073𝑠2 s = slope steepness in percent 
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Wischmeier and Smith (1978) 𝑆 = 65.4𝑠𝑖𝑛𝜃2 + 4.56𝑠𝑖𝑛𝜃 + 0.0654 θ = slope steepness in radians 

McCool et al. (1987) 𝑆 = (
𝑠𝑖𝑛𝜃

0.00896
)

0.6

 θ = slope steepness in radians 

Foster (1982) 𝑆 = 3(𝑠𝑖𝑛𝜃)0.8 + 0.56 θ = slope steepness in radians 

McCool et al. (1987) 𝑆 = 16.8𝑠𝑖𝑛𝜃 − 0.5 θ = slope steepness in radians 

McCool et al. (1987) 𝑆 = 10.8𝑠𝑖𝑛𝜃 + 0.03 θ = slope steepness in radians 

Nearing (1997) 𝑆 =  −1.5 +  
17

1 +  𝑒2.3−6.1𝑠𝑖𝑛𝜃
 θ = slope steepness in radians 

Liu et al. (2000) 𝑆 = 21.91𝑠𝑖𝑛𝜃 − 0.96 θ = slope steepness in radians 

Salpine present study  𝑆 = 0.0005𝑠2 + 0.1795𝑠 − 0.4418 s = slope steepness in percent 

 

 

6.2.2 Proposed adaption of the L-factor 

Often, GIS modeled potential flow path length on slopes, expressed as flow accumulation in 

a GIS-environment, is driven by gravity and generally not limited (Orlandini et al., 2012). In 

particular cases, these potential flow path lengths can reach many kilometers and enormous 

runoff volumes. The flow accumulation can be constrained by streets or houses as ending points 

of the potential flow paths as discussed by Winchell et al. (2008). 

 

In 2016, we conducted 19 different rainfall simulation experiments on south facing slopes in 

an alpine environment (Val Piora, Switzerland) with different conditions regarding soil moisture 

(dry, moist), steepness (36° to 82°), and vegetation (low, medium, full vegetation cover) to 

observe the flow path lengths. The rainfall simulations were realized with an Eijkelkamp mini 

rainfall simulator (type M1.09.06.E, Eijkelkamp, NL; Figure 6.1) for erosion tests with a rainfall 

intensity of 640 mm/h and an energy of 4 J mm-1 m-2. This rainfall energy is comparable with 

the average rainfall energy of Val Piora (station Piotta; 5.6 J mm-1 m-2; MeteoSwiss, 2018a). 

Regardless of the conditions, our observations revealed short surface flow path lengths at the 

scale of meters with a rapid infiltration into shallow alpine soils. Our measurements and 

observations show, that potential flow paths without considering infiltration is not realistic for 

alpine environments and thus, requesting a maximal flow threshold for the estimation of the 

slope length factor L. McCool et al. (1997) and Winchell et al. (2008) limited the slope length to 

a maximal threshold of 333m (1000 feet) as longer slope length appear only occasionally. 

According to McCool et al. (1997), the usual threshold in many cases is 121 m (400 feet). As a 

compromise of their suggestion and our observed short flow path lengths in the Swiss Alps, we 

decided to limit the maximal flow length to 100 m.  
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Fig. 6.1: Different setups and preconditions of the rainfall simulation experiment on steep 

slopes in Val Piora, Ticino, Switzerland 

 

The threshold is implemented as a condition either directly in SAGA GIS or in RSAGA 

after creating the flow accumulation grid:  

 

Aalpine i,j−in = ifelse(Ai,j−in > thresh, thresh, Ai,j−in )          (6.7) 

 

where Aalpine i,j-in is the constraint flow accumulation in m² at the inlet of a grid cell (i,j) 

considering a threshold value thresh. That constraint flow accumulation value is inserted into 

the L-factor equation for the alpine environment (Eq. 6.8): 

 

Lalpine i,j =
(Aalpine i,j−in +D2)

m+1
−Aalpine i,j−in

m+1

Dm+2 ∗ Xi,j 
m ∗ 22.13m                (6.8) 

 

Likewise to Eq. 6.2, D is the grid cell size in m and 𝑋𝑖,𝑗 equals to 𝑠𝑖𝑛𝑎𝑖,𝑗 + 𝑐𝑜𝑠𝑎𝑖,𝑗 where ai,j 

is the aspect of the grid cell (i,j). The coefficient m is the ratio of rill (β-value) to interrill 

erosion according to the above mentioned Eq. 6.3 and 6.4.  

For our calculation of L-factor using a 2 m resolution Digital Elevation Model, the maximal 

flow length of 100 m, corresponds to a threshold of 50 cells multiplied by the cell size of 2 m 

(Fig. 6.2).  

Additionally, maximal flow path length was constrained by a field block cadaster. The 

cadaster defines hydrological units of continuous agricultural land, that are separated by 

landscape elements acting as flow boundaries (e.g., forests, streets, urban areas, water bodies, or 

ditches) following the approach of Winchell et al. (2008). 
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Fig. 6.2: Constraint flow accumulation grid with a maximal flow threshold of 100 m 

 

6.2.3 Proposed adaption of the S-factor 

In 2014, we conducted a total of 16 rainfall simulations on alpine slopes to assess the soil 

loss rates related to different slope inclinations (Table 6.2; Tresch, 2014). The experiments were 

conducted at a north and south facing slope both with grassland cover in the mountains of the 

Urseren Valley, Switzerland. At each slope two transects were selected with slope gradient 

ranging from 20-90%. We used a field hybrid rainfall simulator modified after Schindler 

Wildhaber et al. (2012) with an intensity of 60 mm h-1, which is comparable to a high rainfall 

event in this area.  

 

Table 6.2: Rainfall simulation measurements at the two study sites on steep alpine slopes in 

Switzerland under consideration of different inclinations and vegetation cover 

No inclination (°) 
vegetation 

cover (%) 

measured sediment 

rate (t ha-1 yr-1) 

normalizeda sediment 

rate (t ha-1 yr-1) 

normalizeda sediment 

rate without outliers    

(t ha-1 yr-1) 

1 17 23 13.8 8.5 8.5 

2 22 33 0.6 0.7 0.7 

3 11 27 0.0 0.0 0.0 

4 27 41 1.2 1.6 1.6 

5 31 35 0.2 0.2 0.2 

6 35 34 6.8 5.6 5.6 

7 42 53 9.4 19.0 19.0 

8 39 26 31.0 17.4 17.4 
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9 11 33 0.6 0.7 0.7 

10 17 36 1.4 1.8 1.8 

11 22 47 1.3 2.0 2.0 

12 27 33 34.3 40.6  

13 31 63 26.1 111.3  

14 35 38 11.1 13.1 13.1 

15 39 34 40.2 26.0 26.0 

16 42 40 75.4 69.8  
aby C-factor with 35% vegetation cover, L-factor of 1.2, and K-factor of 0.031 

 

The experimental sites showed small variation in vegetation cover, soil erodibility, and 

slope length (due to the effect of slope angle), therefore all experimental plots were normalized 

to average values of the respective factors. S-factors were fitted to observed soil loss versus sine 

of the slope angle using an exponential, power, and polynomial equation to the original dataset 

with all observation and a dataset excluding one outlier (N° 13), and three outliers (N° 12, 13, 

16). The nine regression lines yield R² estimates between 0.18 and 0.70, but differ largely with 

increasing slope steepness. This range of S-factors with increasing steepness is comparable to 

previous developed empirical S-factor equations (Table 6.1, Fig. 6.1). Therefore, we decided 

that a fitted function (Salpine in Table 6.1, Fig. 6.1) complying the most important S-factors from 

the literature would be most suitable to describe the soil loss behavior at steep slopes. The 

aggregated S function and is a quadratic polynomic function with progressive growth (Eq. 6.9):  

 

Salpine = 0.0005s2 + 0.7956s − 0.4418                   (6.9) 

 

Where s is the slope steepness in percent. 

 

Salpine is very close to the empirical normalized function proposed by Musgrave (1947) for a 

slope steepness of 9%. 
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Fig. 6.3: Review and behavior of different empirical S-factor functions and the fitted 

function for steep alpine environments (Salpine) 

6.3 The Swiss LS-factor map including the Alps 

The resulting modeled mean LSalpine-factor of Switzerland is 14.8. The LS-factor increases 

with elevation gradient from a mean of 7.0 in the zone <1500 m a.s.l. to 30.4 in the zone >1500 

m a.s.l.. A cluster of highest mean LS-factors can be found across the Alps (Fig. 6.4). The 

lowest mean LS-factors are in the Swiss lowlands. South-western facing slopes have higher LS-

factors (17.6) compared to plain surfaces (0.04) and north facing slopes (12.5).  
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Fig. 6.4: LSalpine-factor map (spatial resolution 2 m) for Switzerland derived by the digital 

elevation model SwissAlti3D 

6.4 Quality assessment and method uncertainties 

The original LS-factor has its origin in empirical field experiments and is developed for a 

maximum slope steepness of 50%. Validation of existing equations for slopes that are steeper 

than 50% is a challenge.  However, while previous studies at inclinations >25% with 

approximately 20 plot measurements (Kilinc and Richardson, 1973, 24 plots; Liu et al., 1994, 

19 plots; Liu et al., 2000, 9 plots; Merz et al., 2009, 22 plots; Schindler Wildhaber et al., 2012, 6 

plots) were successful in delineating and S-factor equation, in our case the variability of the data 

impeded a unique solution of the S-factor equation. To account for this high variability and still 

existing uncertainty, the way forward is to include the variability in the LS-factor calculation. 

We investigated the deviation in percentage of our proposed Salpine to a conservative function 

and a rather progressive function. The conservative function (Scons) is based on the translated 

and scaled sine functions of Eq. 6.5 and 6.6 by McCool et al. (1987) with a proportional and 

slightly digressive growth. The progressive function (Sprog) is a quadratic polynomic function 

according to Smith and Whitt (1948) with a progressive growth, but a higher coefficient than 

the here presented fitted function Salpine (Eq. 6.10) for Salpine. 

 

Sprog = 0.00650s2 + 0.0453s + 0.065                  (6.10) 

 

Where s is the slope steepness in percent. 
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Low uncertainty has a deviation close to 0%. Higher percentages equals to a higher 

deviation of Scons/prog to Salpine. 

 

The deviation of Salpine to Scons shows higher deviations in areas with less slope gradiants 

(parts of Swiss midland) (Fig. 6.5). The steep slope areas in the Alps have deviations of 25% to 

50%. Both functions, Salpine and Scons predict the steep alpine environment in a comparable way. 

The deviation of the progressive S-factor (Sprog) and Salpine diverge much more in the Alps 

whereas the equations are rather fitting in flatter regions (Fig. 6.6). A sharp edge of low 

divergence to high divergence is marked by the northern Alpine foothill with increasing slope 

gradients. 

 

 
Fig. 6.5: Deviation in percentage of Salpine to Scons as an indicator of quality for the proposed 

Salpine-factor. Salpine is a lumped S-factor of a total of 12 empiric S-factor equations of the 

literature (Eq. 6.9). It can be seen as an approximation to the high slope gradients in alpine 

environments. Scons complies with the proposed S-factor of McCool et al. (1987) (Eq. 6.5, 6.6). 

The deviation is presented in percentage.  
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Fig. 6.6: Deviation in percentage of Salpine to Sprog as an indicator of quality for the proposed 

Salpine-factor. Salpine is a lumped S-factor of a total of 12 empiric S-factor equations of the 

literature (Eq. 6.9). It can be seen as an approximation to the high slope gradients in alpine 

environments. Sprog complies with the proposed S-factor of Smith and Whitt (1948) (Eq. 6.10). 

The deviation is presented in percentage.  

 

This relationship of deviation and slope gradient is not surprising as the uncertainty of many 

equations rises with slope steepness (cf. Fig. 6.1). García-Ruiz et al. (2015) identified an 

increasing trend of uncertainty for 624 measured erosion rates and slope gradients across the 

world for slope steepness >11°.  

The LS-Factor map of the Swiss agricultural land use unit is visually compatible with the 

LS-factor maps of the European Union provided by Panagos et al. (2015b) (Fig. 6.7). In contrast 

to the modeling of the total country area by Panagos et al. (2015b) we constrained the LS-factor 

to agricultural soils incl. grasslands using a field cadaster. The main differences are found on 

steeper slopes >50%, which have been excluded in the European approach. Furthermore, the 

European map relies on the conservative equations 5 and 6 by McCool et al. (1987). 

Additionally, different spatial resolutions of Digital Elevation Models (2 m versus 25 m) are 

influencing the slope and aspect mapping and thus the LS-factor (Chang and Tsai, 1991; Ramli 

et al., 2006; Zhu et al., 2016).  
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Fig. 6.7: LS-factor for the Swiss agricultural area embedded in the European Union’s LS-

factor map (for total country area) by Panagos et al. (2015b) 

 

It should be considered that the number of rainfall experiments for the L-factor (n=19) and 

the S-factor (n=16) is short and limited only to grasslands which are the predominant land use at 

Swiss alpine slopes (Schmidt et al., 2018a). Rainfall simulations in alpine environments are 

difficult to conduct due to the harsh terrain and climate conditions. Often, the temporal period 

for measurements is limited by the late melt out of snow cover and the short vegetation period 

(Schmidt et al., 2018b). To better model the S-factor for steep alpine slopes further 

measurements (e.g., rainfall simulation experiments) are needed to constrain S-factor 

assessment for steep slopes.  
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Abstract 

This study presents the first mapping of soil erosion risk modelling based on the Revised 

Universal Soil Loss Equation (RUSLE) at a sub-annual (monthly) temporal resolution and 

national scale (100 m spatial resolution). The monthly maps show highest water erosion rates on 

Swiss grasslands in August (1.25 t ha–1 month–1). In summer, the mean monthly soil loss by 

water erosion is 48 times higher than the mean soil loss in winter. Considering the annual 

average fraction of green vegetation cover of 54%, the predicted soil erosion rate for the Swiss 

national grassland area would add up to a total eroded soil mass of 5.26 Mt yr–1. The RUSLE 

application with an intact 100% vegetation cover would largely reduce the soil loss to an 

average annual rate of 0.14 t ha–1 year–1. These findings clearly highlight the importance to 

consider and maintain the current status of the vegetation cover for soil erosion prediction and 

soil conservation, respectively. 

 

Keywords: Soil loss, modelling, revised universal soil loss equation, Switzerland  



Monthly RUSLE soil erosion risk of Swiss grasslands  

111 

7.1 Introduction 

Soil erosion is a serious threat to soils worldwide. Currently, 6.1% of the global land surface 

is affected by severe soil erosion that exceeds a global tolerable soil loss threshold of 10 t ha-1 

yr-1 (Borrelli et al., 2017). The annual global soil loss by water is estimated to be 35.9 billion 

tons for the year 2012 (Borrelli et al., 2017). The cost induced by soil erosion for the European 

Union is about 1.25 billion Euros per year (Panagos et al., 2018). Soil erosion control could not 

only reduce these costs for agriculture but could also protect the valuable soil resource 

(Kuhlman et al., 2010; Panagos et al., 2016c). Some protection measures (e.g. fencing of risk 

zones) could be even more efficient if they were implemented by spatial and temporal targeting 

of specific areas during the riskiest seasons of a year (Troxler et al., 2004). So far, soil erosion 

by water in Switzerland is modelled on an annual basis despite known temporal variations of 

soil loss (Prasuhn et al., 2013) and rainfall erosivity (Meusburger et al., 2012; Schmidt et al., 

2016). Simultaneous identification of both, risky areas and risky seasons is urgently needed. 

Recently, Borrelli et al. (2018) stated that the lateral carbon transfer from erosion in 

noncroplands on a global scale “may play a more important role than previously assumed” 

because too little is known about erosion on grasslands and their impact on erosion rates is thus 

usually underestimated. The same knowledge gap also exists for Switzerland. However, soil 

loss has been observed and measured in many small scale studies by different techniques (e.g. 

by rainfall simulation experiments, plot experiments, tracing techniques, modelling; Martin et 

al., 2010;  Meusburger et al., 2010b; Konz et al., 2012; Schindler Wildhaber et al., 2012; 

Alewell et al., 2014) and was identified to be severe at disturbed hotspots (> 3 t ha-1 yr-1, 

Meusburger et al., 2010b; Alewell et al., 2015a). Since grassland areas are the dominant 

agricultural land use unit in Switzerland (Hotz and Weibel, 2005) they should be included in 

Swiss soil erosion risk maps.  The common assumption of nearly zero soil loss on grasslands by 

the protective characteristics of the closed vegetation cover should be reconsidered, as about 

6.5% of the land surface is covered by grassland (based on global CCI Land Cover 2015 data; 

Arino and Ramoino, 2017) with a high percentage of the grassland having low and/or damaged 

vegetation cover (Meusburger et al., 2010a; Gallo et al., 2001). 

With the recent development of geoinformation tools and the improved quality and 

availability of geodata, a national assessment of the soil erosion risk for Swiss grassland is now 

feasible.  

One of the most commonly used erosion models for modelling soil loss is the Universal Soil 

Loss Equation (USLE; Wischmeier and Smith, 1978) and its revised version (RUSLE; Renard 

et al., 1991). These empirical models are based on a multiplication of single erosion risk factors 

(rainfall erosivity R, soil erodibility K, cover and management C, slope length and steepness 

LS, support practices P).  

A high intra-annual variability can generally be expected for R and C, as these factors are 

related mainly to the natural temporal variability of precipitation and plant growth (Renard et 

al., 1997). the temporal variation of the K-factor is discussed by Kinnell (2010). However, 

temporal changes of the K-factor are rather expected for a multi-annual scale (Wang et al., 

2001). The factors LS and P are relatively static as long as no natural (e.g. landslides) or human-

induced changes (e.g. implementation of new protection measures) occur (Panagos et al., 

2012a). Thus, modelling of the variable R and C factors at a sub-annual scale is essential to 

increase the explanatory power of soil erosion prediction. Wischmeier and Smith (1965) 

propose a monthly temporal resolution to be appropriate for soil erosion modelling. This 
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recommendation was affirmed four decades later by Panagos et al. (2016c) and Karydas and 

Panagos (2016). Quantifying soil loss on a seasonal, monthly, weekly or even daily time-scale 

helps to improve our mechanistic understanding and allows for targeted protection measures. 

The recent availability of high temporal resolution spatial datasets (Alexandridis et al., 2015) 

enables a high temporal resolution of rainfall erosivity and of the cover and management factor. 

Several studies across the world use at least daily rainfall records to calculate the R-factor (e.g. 

Angulo-Martínez and Beguería, 2009; Ma et al., 2014) and model the R-factor on a seasonal 

(Nunes et al., 2016) or monthly scale (Ballabio et al., 2017). The modelling of monthly C-

factors is presented by Yang (2014) for New South Wales, Australia with a spatial resolution of 

500 m and Alexandridis et al. (2015) for Northern Greece aggregated on a catchment scale. Soil 

loss by water was modelled with monthly resolution by Evrard et al. (2007) and Inoubli et al. 

(2017) for selected catchments in Belgium and Tunisia. However, so far spatiotemporal large-

scale soil erosion maps are relatively rare. National monthly soil erosion maps can only be 

found for Albania (Grazhdani and Shumka, 2007) and Mauritius (Nigel and Rughooputh, 2010).  

The objective of the present study is to (i) quantify the monthly rates of soil loss of Swiss 

grasslands and (ii) delineate the spatial and temporal patterns of soil erosion risk.  

7.2 Material and Methods 

7.2.1 Study area 

Switzerland has high climatic contrasts owing to variations in topography (from 192 m a.s.l. 

to 4633 m a.s.l.) (Fig. 7.1). The long-term (1981-2010) mean precipitation in Switzerland 

(measured at 418 stations; MeteoSwiss, 2018c) is 1299 mm following the humid continental to 

oceanic climate zone with highest rainfall in summer and lowest in winter. The typical melt-out 

date for alpine elevation ranges is in the late spring (DOY 147, 27th of May) (Jonas et al., 

2008). This late melt-out in the Alps shortens the plant growth period in higher elevations. Soils 

of Switzerland are dominated by Cambisols (King et al., 1994). Switzerland can be subdivided 

into five main geological units: the Alps mainly dominated by granite, the Jurassic, a young fold 

mountains of limestone, the partly flat, partly hilly Swiss Midland (between Jura and Alps) and 

of minor spatial extend are the Po Valley at the southernmost tip of Ticino (Southern Alps), and 

the Upper Rhine Plain around Basel. 
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Fig. 7.1: Topography of Switzerland including the Swiss Alps (data source: SwissAlti3D, 2 

m spatial resolution) 

 

Mapping of the seasonality of soil erosion by water was undertaken for the national 

grassland area of Switzerland, which covers to about 28% (11.559.800 ha) of the Swiss national 

territory and accounts for 72% of the total agricultural area (Bötsch, 2004; Jeangros and 

Thomet, 2004). Grassland areas are distributed widely with a major extent in the Alps (Hotz and 

Weibel, 2005). They are usually used as pastures or hayfields for fodder production. Alpine 

grasslands are commonly covered by snow in winter. Permanent grassland areas, which are not 

being part of the crop rotation for a minimum of five successive years, have slowly but steadily 

increased over the last two decades in Switzerland (Schmidt et al., 2018a). 

7.2.2 Datasets 

To depict the grassland extent of Switzerland, the grassland class in the global Climate 

Change Imitative (CCI) Land Cover dataset was used and refined with topographic models of 

Switzerland (Schmidt et al., 2018a). That grassland map serves as the mask for modelling soil 

erosion by water on Swiss grasslands.  

Each of the RUSLE-factors (excluding the P factor) was calculated separately and adapted 

to the specific environmental conditions of Swiss grasslands. The generation of the RUSLE 

factor maps (rainfall erosivity, Schmidt et al., 2016; soil erodibility, Schmidt et al., 2018c; cover 

and management, Schmidt et al., 2018b; slope length and steepness, Schmidt et al., 2019) is 

explained in detail in the individual sections and in Table 7.1.  
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Table 7.1: Overview of RUSLE factor maps used for the soil erosion risk mapping of Swiss 

grasslands 

Erosion factor Dataset Derived variable Data source 

Rainfall erosivity R Rainfall station data Long-term rainfall measurements at 87 

stations 

MeteoSwiss, 2018b 

Snow depth Monthly snow depth MeteoSwiss, 2018b 

CombiPrecip Rainfall amount (measured and radar) Sideris et al., 2014 

EURO4M-APGD Daily precipitation per month Isotta et al., 2014 

RhiresM Monthly precipitation sums MeteoSwiss, 2013 

SwissAlti3D Elevation, slope, aspect Swisstopo, 2018a 

Soil erodibility K LUCAS topsoil  199 Swiss and 1638 European topsoil 

samples 

Orgiazzi et al., 2018 

MODIS13Q1 NDVI, Enhanced Vegetation Index EVI, 

Raw bands 

Didan et al., 2015 

EU-DEM  Elevation, slope, base level of streams, 

altitude above channel base level, multi-

resolution index of valley bottom flatness 

Farr et al., 2007 

Location parameter Latitude, longitude - 

Cover and management 

C 

Swissimage FCIR Spatial distribution of the fraction of green 

vegetation cover  

Swisstopo, 2010 

FCover300m Temporal distribution of the fraction of 

green vegetation cover 

Smets et al., 2017 

MOD13Q1 NDVI Didan et al., 2015 

CCI land cover Dynamic long-term snow occurrence Arino and Ramoino, 2017 

Slope length L SwissAlti3D Upslope contributing area Swisstopo, 2018a 

Slope steepness S SwissAlti3D Slope Swisstopo, 2018a 

 

The high-resolution spatial datasets of the Swiss Federal Offices (e.g. SwissAlti3D Digital 

Elevation Model 2 m spatial resolution, SwissImage Orthophoto 0.25 m spatial resolution) are 

among the most detailed in Europe. They allow modelling of the spatiotemporal patterns of soil 

erosion for Swiss grassland in combination with temporal datasets (e.g. Rainfall measurement 

10 minutes temporal resolution, Copernicus FCover 10 day temporal resolution). 

7.2.3 Mapping 

All (R)USLE-factors are multiplied according to the following equation by Wischmeier and 

Smith (1965) and Renard et al. (1997): 

 

A = R ∗ K ∗ C ∗ L ∗ S ∗ P                          (7.1) 

 

where A is usually the soil loss in t ha-1 yr-1. The equation can be modified to a monthly soil 

erosion equation by including a monthly temporal resolution of the dynamic factors R and C 

(Schmidt et al., 2016; 2018b): 

 

Amonth = Rmonth ∗ K ∗ Cmonth ∗ L ∗ S ∗ P                        (7.2) 

 

where Amonth is the quantification of soil loss in t ha-1 month-1.  
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The R-factor was regionalized on a monthly scale by regression-kriging with 87 automated 

gauging stations, serving as dependent variable and high resolution spatial and temporal 

covariates, serving as independent variables (Table 7.1). Dynamics in the cover and 

management factor for Swiss grasslands were assessed by a linear spectral unmixing of high 

spatial resolution orthophotos and normalized by temporal variations of the fraction of green 

vegetation cover. The potential soil loss of a specific plant development stage expressed as soil 

loss ratio (SLR), was then weighted by the rainfall erosivity ratio to generate in monthly C-

factor maps (Table 7.2).  

 

Table 7.2: Erosion factors for the monthly soil erosion modelling of Swiss grassland 

Erosion factor Method description 
Spatial 

resolution 

Temporal 

resolution 
Factor source 

Rainfall erosivity R Regression-kriging 100 m Monthly Schmidt et al., 2016 

Soil erodibility K Cubist regression 500 m - Schmidt et al., 2018c 

Cover and management C Linear spectral unmixing 100 m Monthly Schmidt et al., 2018b 

Slope length L Upslope contributing area 

with maximal flow threshold 

2 m - Schmidt et al., 2019 

Slope steepness S Modification of S-factor for 

alpine environments (Salpine) 

2 m - Schmidt et al., 2019 

 

Soil erodibility on a national scale is a result of a cubist regression and multilevel B-splines of a 

total of 1837 Land Use/Cover Area Survey (LUCAS) topsoil samples (Orgiazzi et al., 2018) and 

independent variables (Table 7.1). Finally, the L and S factors were adapted to the complex 

alpine topography (Table 7.2). Slope length were originally constrained to a maximal flow 

threshold of 100 m to account for the whole agricultural area in Switzerland (Schmidt et al., 

2019). However, flow measurements in the Swiss alpine grasslands revealed short flow length 

less than 2 m due to high surface roughness and infiltration capacity. These observations lead to 

the assumption that the influence of the L-factor is minimal. In future, more empirical data is 

needed to support this assumption. Therefore, an L-factor of 1 is used for predicting the soil loss 

of Swiss grasslands to comply with field observations. Slope steepness was predicted by a mean 

equation (Salpine) of a total of 12 empirical S-factor equations. The regionalization of the support 

practice factor was difficult to obtain for Swiss grasslands because of a lack of spatial 

information on grazing management and its effect on soil loss. Thus, the P-factor was set to 1 

(not influential) for this study, even though the authors are aware of the substantial variation of 

management and its effect on soil loss (e.g. stocking numbers and rotation frequency of 

lifestock as well as watering places, fencing, and herding).  

The multiplication of all RUSLE factors (according to Eq. 7.2) provides monthly soil erosion 

risk maps for Swiss grasslands (Fig. 7.2). Note that while the K-factor (Schmidt et al., 2018c), 

R-factor (Schmidt et al., 2016), and LS-factor (Schmidt et al., 2019) are available for the whole 

of Switzerland, the C-factor (Schmidt et al., 2018b) is limited to the grassland areas of 

Switzerland (Schmidt et al., 2018a) and thus presets the extent of the erosion modelling. 
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Fig. 7.2: Flowchart of the seasonal erosion map of Swiss grassland using the erosion factors  

 

The maps were visually interpreted regarding their spatial and temporal patterns of soil 

erosion risk. In addition, descriptive statistics for all twelve monthly erosion maps were 

calculated.  

The maps were evaluated by a sensitivity analysis of the dynamic and annual soil loss rates. 

Such a sensitivity analysis contrasts the differences between dynamic and static erosion factors. 

For the non-dynamic assessment, the mean monthly R- and C-factor maps over a year were 

multiplied with the annual factors K, LS and P.  

7.3 Results and Discussion 

7.3.1. Monthly soil erosion rates for Swiss grasslands 

Spatially, the grasslands in the Alps are more prone to soil erosion in most of the months 

than those in the Swiss lowlands, owing to the influence of topography on the RUSLE model 

(please note that due to regional snow cover, the predicted area is considerably reduced in 

winter). Given an intact 100% vegetation cover the annual sum of soil loss as cumulative sum of 

monthly soil losses is 0.14 t ha-1 yr-1. However, considering the actual fraction of green 

vegetation cover (average annual FGVC = 54% mapped for the period 2014 to 2016 based on 

FCover300m, Smets et al., 2017) the annual sum of soil loss as cumulative sum of the monthly 

soil losses rises up to 4.55 t ha-1 yr-1. The latter is significant, as the mean annual value for 

Europe including arable lands was calculated as 2.5 t ha-1 yr-1 (Panagos et al., 2015e), and 



Monthly RUSLE soil erosion risk of Swiss grasslands  

117 

exemplifies the potential vulnerability of Swiss grassland soils to soil erosion if the vegetation 

cover is disturbed or removed. Moreover, this clearly highlights the sensitivity of RUSLE based 

models to the status of vegetation cover that should be more carefully observed in future 

studies.  

The calculation of soil loss risk by water erosion at monthly temporal resolution allows the 

identification of summer as the main erosive season of Swiss grasslands. The combined effect 

of R- and C-factor (Meusburger et al., 2012; Schmidt et al., 2016; 2018b) is amplifying the 

erosion risk in summer. For Swiss grassland, July and August have the highest monthly risk of 

soil erosion by water (1.25 t ha-1 month-1, Table 7.3, Fig. 7.3). In contrast, for all winter months, 

a relatively low soil erosion by water risk (winter average 0.02 t ha-1 month-1) was predicted 

(Table 3, Fig. 3) because of low rainfall erosivity (due to snow fall/ snow cover). However, 

processes like snow gliding and avalanches or even snow melt are not included in the present 

model and need to be considered separately (Ceaglio et al., 2012; Meusburger et al., 2014 ; 

Stanchi et al., 2014). The mean monthly soil loss due to water erosion for summer is 48 times 

higher than the mean soil loss in winter, 6 times higher than in spring and 3 times higher than in 

autumn (see Schmidt et al., 2018b). 

 

Table 7.3: Monthly (t ha-1 month-1) and annual (t ha-1 yr-1) soil erosion risk averaged for the 

Swiss grassland area with a constraint of the maximal flow length to <1 m according to 

observations (L-factor equals 1). Minimum soil erosion rate is 0 t ha-1 month-1 (no soil erosion) 

in all month. 

Month 
Mean soil erosion risk 

(t ha-1 month-1) 

Maximum soil erosion 

risk (t ha-1 month-1) 

Standard deviation 

(t ha-1 month-1) 

January 0.01 0.43 0.02 

February 0.01 2.40 0.05 

March 0.02 4.19 0.06 

April 0.02 6.23 0.10 

May 0.47 35.17 1.24 

June 0.56 103.03 2.11 

July 1.25 128.85 3.73 

August 1.25 218.75 3.84 

September 0.61 662.91 5.86 

October 0.15 170.84 1.14 

November 0.17 17.84 0.47 

December 0.04 5.00 0.11 

Ø 0.38 112.97 1.56 

Σ (t ha-1 yr-1) 4.55 1355.62 18.71 
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Fig. 7.3: Spatiotemporal patterns of monthly soil erosion risk at Swiss grassland. Due to 

data gaps caused by snow fall in winter, the predicted area is reduced in winter. The individual 

maps are displayed as a multiple mapset in the following pages
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7.3.2. Comparison of dynamic and annual soil erosion rates 

The benefits of a higher temporal resolution are obvious when estimated soil loss rates on a 

monthly temporal resolution are compared with soil loss rates on an annual resolution. The 

mean annual soil loss rate (4.55 t ha-1 yr-1) would indicate hypothetical average monthly soil 

loss rates of 0.38 t ha-1 yr-1 (Fig. 7.4) which would be an overestimation of mean monthly soil 

loss in winter (by 0.18 t ha-1 month-1) and an underestimation in summer (by 0.64 t ha-1 month-

1). Thus a higher temporal resolution results in better knowledge of risky time periods of soil 

erosion by water, with a significant peak of soil loss rates on Swiss grasslands in summer and 

nearly zero risk of soil erosion by water in winter. 

 

 

 
Fig. 7.4: Comparison of the distribution of monthly soil loss rates for Swiss grasslands 

(dynamic) and a mean annual soil loss rate (annual), divided by twelve to result in a pseudo-

monthly resolution.  

 

Overall, focusing on the monthly distribution of soil loss rates and rainfall erosivity (Fig. 

7.5), the latter seems to be the most influential factor regarding the intra-annual dynamics of soil 

loss due to water erosion (Schmidt et al., 2016). However, the rainfall erosivity is considered in 

the model twice, as an individual factor (Schmidt et al., 2016) and as a weighting factor for the 

C-factor (Schmidt et al., 2018b). Furthermore, our simulation does not consider soil loss 

induced by snow related erosional processes. As measurements with sediment traps or 

radionuclides have demonstrated, overall sediment loss is most likely highest in late winter and 

spring (Ceaglio et al., 2012; Meusburger et al., 2014), when avalanches, snow melt and snow 

ablation are triggering soil erosion on damaged and vulnerable soil surfaces. 
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Fig. 7.5: Influence of the temporal pattern of the monthly rainfall erosivity for the temporal 

pattern of the soil loss rates on Swiss grasslands. 

 

7.4.3. Soil loss rates and soil formation rates 

The average annual soil loss of 4.55 t ha-1 yr-1 clearly exceeds the maximum tolerable soil 

loss of Switzerland (2 t ha-1 yr-1; Schaub and Prasuhn, 1998) by a factor of 2. The average 

annual soil erosion rate of 4.55 t ha-1 yr-1 would hypothetically equal a total eroded soil mass of 

5.26 Mt per year, related to the national grassland area of 1.155.980 ha.  

Soil formation rates for alpine grasslands soils with siliceous lithology were estimated by 

Alewell et al. (2015a) as 0.54-1.13 t ha-1 yr-1 for old soils (>10-18 kyr) and 1.19-2.48 t ha-1 yr-1 

for young soils (>1-10 kyr). In both cases the predicted average soil loss exceeds these rates. 

Only soil formation rates of very young soils (≤1 kyr; 4.15-8.81 t ha-1 yr-1) can compensate the 

annual soil loss. In conclusion, the predicted soil loss rates for Swiss grasslands imply a non-

reversible loss of the valuable soil resource. 

7.4 Conclusions 

The monthly soil erosion maps presented here form the first dynamic soil erosion approach 

on a national scale with a monthly temporal resolution. They enable the quantification of soil 

erosion risk, and provide information about the spatiotemporal patterns of soil loss due to water 

erosion on Swiss grasslands. These patterns show that summer is the season with highest soil 

erosion by water risk, which is 3/6/48 times higher than in autumn/spring/winter, respectively, 

leaving the soil surface damaged and vulnerable for potential snow and frost induced processes 

(snow gliding, ablation, melt, avalanches). In contrast, to a monthly temporal resolution, annual 

assessments tend to overestimate the soil erosion by water risk in winter and underestimate it in 

summer. The analysis and integration of each erosion factor reveals that the cover and 

management factors is highly sensitive and that the actual state of vegetation cover is crucial. 

Nonetheless, regarding the intra-annual pattern the higher fraction of green vegetation cover in 

summer is incapable to compensate the impact of high rainfall erosivity in summer. However, 
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the strong impact of rainfall erosivity within RUSLE, especially as a weighting factor for soil 

loss ratios, needs to be discussed in future studies.  

The maps are suitable to quantify the actual soil erosion risk considering natural 

preconditions and land use. The mapping could be further developed to monitor the soil erosion 

risk by the use of real-time data (e.g. satellite and radar data, land use information, and 

topography data) as well as by mapping support and management practices via the P-factor.  

Such monthly erosion risk maps are of high importance for policy, soil scientist, 

environmentalists, and agronomists because they serve as a knowledge base to answer the 

question about where and when soil damage might occur on Swiss grassland. RUSLE does not 

include snow induced processes, so the overall soil loss might not necessarily be greatest in the 

summer, but our modelling confirms that highest damage due to grazing (low C factor) and high 

rainfall erosivity leaves the soils damaged and vulnerable after the summer, leading to a high 

risk of snow induced processes. As each factor is developed individually, it uses key 

information from different disciplines and can be merged with other sources of information to 

enable more targeted interventions e.g. for soil and environmental protection, hazard mitigation, 

land use change, and agricultural management. 

Based on the monthly maps, a controlled spatial and temporal soil erosion protection 

strategy, such as a change in stocking rates for specific hotspots and periods or the fencing of 

hotspots, is now feasible. The approach for grasslands with a particular focus on the Alpine 

conditions could serve as a prototype for erosion mapping on grassland in other grassland 

dominated regions and countries like Austria, Germany, Italia, Slovenia, or France and would 

help to protect the unique nature of these grasslands. 

7.5 Software 

The monthly maps of soil erosion by water for Swiss grasslands are a product of statistical, 

remote sensing, geoinformation and cartographic approaches which are described in detail in the 

corresponding literature of each erosion factor (Table 7.2).  

The combination of the five factors of monthly soil erosion maps was realized in ESRI 

ArcGIS (v 10.3.1) likewise the layout of the map was designed in the same commercial 

software. R (v 3.4.3) and RStudio (v 1.1.423) were used for statistical analysis and 

interpretation of the erosion maps and underlying data.  

7.6 Geolocation information 

Country: Switzerland; scale: national scale; coordinates: Top-Left N 47.808463° E 

5.955889° and Bottom-Right N 45.817967° E 10.492063° 
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CHAPTER 8 

Final remarks and outlook 

A finer temporal resolution in soil erosion modeling enables not only a better process 

understanding of soil erosion risk but even more the possibility of an adopted land use 

management. Especially for remote areas, like most of the alpine grasslands, a modeling 

approach based on digital data is desirable. In this study, we developed a set of soil erosion risk 

maps based on geodata to predict the soil loss of Swiss grasslands on a monthly scale. These 

maps communicate information about when and where soils are endangered by erosion. We 

elaborated each of the USLE/RUSLE factor individually (except P) to understand the efficacies 

of each erosion risk factor.  

In the following sub-chapter, I briefly address the innovations of the individual erosion factors 

and the dynamic soil erosion assessment of Swiss grasslands. The relevance of the here 

discussed results for soil protection, agriculture, and policy is presented with proposed 

mitigation strategies for a targeted, time-dependent erosion control. Subsequently, the 

advantages and limitations of the approach are presented with a recommendation for further 

improvements and follow-ups of the grassland mapping.  

8.1 Innovations in the dynamic soil erosion risk mapping of 

Swiss grasslands  

The modeling of the soil loss rates of grassland and the identification of spatio-temporal 

patterns of erosion risk is a major improvement for Swiss erosion studies. So far neither 

grassland areas nor temporal patterns have been considered in previous research. Following a 

dynamic approach with a monthly temporal resolution enables new insights into the processes 

and risk of sheet erosion in Switzerland’s grassland areas.  

The months with the highest predicted soil loss are July and August (average 1.25 t ha-1 

month-1). However, high soil loss is not equally distributed in Switzerland. Spatial patterns 

reveal hotspots in the Alps (Appenzell Innerrhoden, Appenzell Ausserrhoden, and parts of the 

cantons St. Gallen, Nidwalden, Obwalden, Bern, and Fribourg). Winter is the season with the 

lowest risk of soil loss mainly due to the low rainfall erosivity. However, processes like snow 

gliding cannot be included in the present model and need to be considered separately (Ceaglio et 

al., 2012; Meusburger et al., 2014; Stanchi et al., 2014). The annual sum of soil loss on Swiss 

grasslands of all the predicted monthly soil losses is 4.55 t ha-1 yr-1. That soil erosion rate would 

hypothetically equal to a total eroded soil mass of 5.26 Mt per year, related to the national 
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grassland area of 1155980 ha. Compared to the European assessment (2.46 t ha-1 yr-1; Panagos 

et al., 2015e), the soil loss of Swiss grasslands is more than twofold higher than the average of 

the EU countries (including arable, forest and semi-natural areas). However, it needs to be 

considered that no specific methodological adaptions (e.g. of the C- and LS-factor) for grassland 

nor the Alps have been applied for Europe. Instead, slopes with inclinations exceeding 50% 

were not part of that assessment. It is evident that the high proportion of grasslands located in 

steep alpine areas result in higher erosion rates as for the European average.  

The predicted average soil loss of 4.55 t ha-1 yr-1 exceeds the soil formation rates of old soils 

(>10-18 kyr; 0.54-1.13 t ha-1 yr-1) and young soils (>1-10 kyr; 1.19-2.48 t ha-1 yr-1) by far. Only 

soil formation rates of very young soils (≤1 kyr; 4.15-8.81 t ha-1 yr-1) can compensate the soil 

loss within a year (Alewell et al., 2015a). In conclusion, the predicted soil loss rates for Swiss 

grasslands, in general, imply a non-reversible loss of the valuable resource soil.  

According to the results for Switzerland, soil loss is significant on grassland and the 

anthropogenic contribution due to the intensified land use has a meaningful impact to soil loss 

rates as the trends in cultivation area and animal numbers demonstrate (Troxler et al., 2004;  

Meusburger and Alewell, 2008). Following the steady increase of forest areas (Federal 

Statistical Office Switzerland, 2018b) and the observations over the last 50 years in Switzerland 

(see chapter 1.3), it is to expect that pressure on pastures will be further intensified. By the 

aspect of high demand of Swiss food products and a continuous increase in population (Federal 

Statistical Office Switzerland, 2018a), soil erosion on grassland could drastically become an 

environment and political issue of high concern as soon as the cultivation of suitable grassland 

is limited. Borrelli et al. (2018) also emphasize the consideration of soil erosion in semi-natural 

habitats as grasslands and forests which contribute to a large share of global soil loss. 

 

By capturing the soil loss rates of Swiss grassland we developed a more realistic soil loss 

assessment for Switzerland. However, each erosion factor needed to be modified according to 

the specific conditions of Swiss grasslands. 

Rainfall erosivity is by far the most crucial factor as it is considered twice in the 

USLE/RUSLE (as individual factor and in the C-factor). However, it should be considered, that 

there is no direct relationship of rainfall and soil loss as rainfall erosivity does only take into 

account extreme events exceeding specific thresholds of duration, energy, and rainfall volume. 

In Switzerland, the complex topography is one of the main driving forces for the spatial patterns 

of rainfall erosivity as a clear tendency among different regions is apparent (see Appendix 

A.3.2.). A combination of a spatial resolution of 100 m with a monthly temporal resolution like 

presented in this thesis is so far unique in Switzerland. In particular, the R-factor communicates 

relevant information not only of interest for soil erosion. The spatio-temporal knowledge of 

increased rainfall erosivity is also of high value for hazard control in the Alps as other processes 

are likewise depending on the energy and intensity of rainfall (e.g. landslides, flash floods, 

mudflows). A combination of the spatio-temporal R-factor patterns with maps like the Pan-

European landslide susceptibility mapping (ELSUS; Wilde et al., 2018) enable more targeted 

interventions. Furthermore, agricultural management and landscape planning can be supported 

by considering the spatio-temporal dynamics of R-factors. 

Likewise relevant for other disciplines are the results of the monthly cover and management 

factor on Swiss grasslands. The weighting of soil loss ratios with the R-factor overrules the 

protective character of soil cover by plants in summer, although results present the natural 

growth cycle of plants within a year with an apparent maximum in summer and a temporal shift 
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according to elevation gradient. The later procedure follows the original approach to estimate C-

factors. However, often, the C-factor is determined based on a direct relationship of soil cover 

and cover and management factor without considering the influence of rainfall characteristics. 

Such a simplified approach ignoring the weighting of soil loss ratios with rainfall erosivity 

would in our case result in very low C-factors and low soil loss rates in summer due to the high 

fraction of vegetation cover. Ultimately, there is an essential need to address the suitability of 

our presented C-factor approach with more empirical studies. 

Next to the information about rainfall erosivity and soil cover, the condition of the soil itself 

is an essential component of soil erosion assessment. The presented national soil erodibility map 

is based on a comprehensive dataset that is now available with the LUCAS topsoil samples. 

This map might replace the previous K-factor map which was based on a variety of different 

soil data polygons with high uncertainties in the Alpine zone. Now, the regionalized K-factors 

are directly comparable (same data, covariates, methods) with the K-factors of other European 

countries. Highest K-factors are modeled for the top mountain ranges and the Swiss midland 

(especially the mires of the Seeland). However, the average soil erodibility (0.0327 t ha h ha-1 

MJ-1 mm-1) of Switzerland is low to medium.  

More easily to obtain are informations about the topography (slope length and slope 

steepness) with digital elevation models and geoinformation techniques (e.g. slope 

determination, flow accumulation, raster calculator). A continuous LS-factor mapping is 

enabled with the high resolution (2 m) digital elevation model of Switzerland. As the behavior 

of the S-factor was unknown for slope gradients > 50% (which represent 4.7% of the Swiss 

area), a new approach had to be developed. The new S-factor fitted by a total of 12 empirical 

equations. Simultaneously, the maximal flow threshold of the L-factor was limited to 100 m. 

Different rainfall experiments in the Alps support that new LS-factor approach for Switzerland.  

So far, the extent of the Swiss grassland areas was only estimated. With new spatial data, 

especially satellite data, and classification techniques, the detection of grassland is now 

possible. Even segregation of temporal and permanent grassland can be made based on the CCI 

Land Cover dataset. This information is of high interest as baseline data for many fields of 

research (e.g. nature conservation, biodiversity, ecology, geobotany, agronomy, alpine research, 

soil sciences). The new Swiss grassland map of 2015 forms the base for soil erosion modeling 

on Swiss grassland. 

8.2 Mitigating soil erosion – Value of the Swiss erosion risk 

map for grasslands 

The presented monthly maps and the quantification of soil erosion on Swiss grasslands are 

primarily intended to serve as a tool for stakeholders and policymakers. They form the base for 

decision making of political contents regarding soil protection, agricultural management, and 

environment. The subject of the present project is the provision of the information about the 

spatial location, temporal timing, and quantification of soil erosion by water on grasslands. A 

discussion about suitable mitigation strategies and their practicability might now be continued 

on a political level. 
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In principle, most of the mitigation strategies will be targeting the factors C and P as they 

are most adjustable by land use management (Durán Zuazo and Rodríguez Pleguezuelo, 2008; 

Maetens et al., 2012; Biddoccu et al., 2014; Eshel et al., 2015; Biddoccu et al., 2016). These 

factors can easily be altered by a change of farming strategies (McCool et al., 1995; Panagos et 

al., 2015e), especially changing the composition of vegetation, the land pressure, the livestock 

rates and composition, and the management.  

 

Vegetation: A relatively closed vegetation cover is one of the best methods to control soil 

erosion as sediment yield and soil stability is directly related to vegetation cover (Francis and 

Thornes, 1990; Casermeiro et al., 2004; Schindler Wildhaber et al., 2012). Usually, the 

vegetation cover on grazed grassland is reduced by the grazing of animals, uprooting plants, and 

trampling (Schauer, 2000). Also, selective grazing of animals (e.g. cattle) leads to a decrease in 

plant biodiversity. High plant biodiversity protects the soil of grasslands against erosion (Merz 

et al., 2009; Martin et al., 2010). Thus, a reduction of grazing animals and mixed-species 

grazing (with different grazing preferences) would keep the vegetation cover and biodiversity 

high. The application of fertilizer is recommendable for the development of a stable, balanced, 

and site-appropriate vegetation cover with a dense sward and an increased soil structure and soil 

activity (Troxler, 2014). However, the application of fertilizer should be made with care and 

according to the conditions of the soil.  

 

Pressure: The trampling of animals affects soils and plants likewise. Trampling causes soil 

compaction, reduced infiltration with less plant available water and as a consequence, increased 

surface runoff. Additionally, the high pressure on the soil reduces plant growth, humus 

availability and soil fertility. According to Scott and Robertson (2009), animal claws effectuate 

a pressure of 200-500 kPa on soils. The effects of trampling can be reduced by a change in 

grazing animal species and a reduction of livestock weight and stocking densities. Trampling is 

even intensified during wet weather conditions as soils are more prone to compaction. An 

extensification of pastures and reduction of stocking rate is a recommended mitigation action. 

The weight of harvest machines for hay farming has similar effects on the soil as livestock 

trampling. Reduced tire pressure and an adjusted tire type could be more soil conserving.  

 

Livestock: Grazing animals differ by weight, grazing radius, and grazing preferences. 

Though, it is recommended to select the type of animal for specific pastures carefully. Cattle 

and sheep are different in weight, but sheep prefer to graze on highest elevation ranges with 

young grass what might expose these remote soils to overgrazing (Troxler, 2014). According to 

slope gradients, the livestock composition should be changed. In general, it is recommended to 

utilize grasslands on slopes with less than 40% inclination for heavy cows. Younger cows are 

preferable for gradients between 40% and 60%. All areas steeper than 40% should be used 

solely for sheep and goats (Troxler, 2014). A change in livestock species, stocking rates, and 

grazing area is a valuable measure for soil erosion control.  

 

Management: Different pasture systems have various effects on soil erosion. Continuous 

grazing is the grazing system with the highest risk for soil erosion as livestock is kept in only 

one paddock all year long. As such, the overgrazing causes extreme pressure on soils and 

vegetation. Other systems are rotation grazing, with a systematical change of pastures, or strip 

grazing with a daily change of pastures. It is evident that such systems reduce the trampling and 
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let the pasture recover to be productive again. A control of success of a managing shift from 

continuous grazing to rotation grazing significantly reduces soil erosion rates (Bauer, 2013; 

Bauer et al., 2013). Mobile milking parlors and cattle watering tanks prevent long periodical 

walking distances of cows to central milking parlors and supply stations. That management 

change reduces trampling and the development of cattle trails (Troxler et al., 1992). 

 

Information about the fraction of vegetation cover is already included in C-factor. However, 

to include land management practices in further erosion risk assessments, a parametrization of 

the management of meadows, different pasture systems, stocking density, grazing livestock 

weights and type need to be established. Reliable and area-wide data to develop such P-factors 

for the management of grasslands are currently not available in Switzerland. Measurements of 

grassland management practices on a unit plot scale would be the most promising empirical 

approach to assess the P-factor for Swiss grasslands. Other potential approaches could be the 

establishment of a geometry factor based on geodata and aerial photographs, to capture the 

shapes of pastures, the trampling paths of cattle, or the location of the milking parlor and cattle 

watering tanks in combination with extensive literature research. A project at the University of 

Basel already aims to automatically extract cattle trails from aerial photographs (see chapter 

8.3). Contour farming, stone walls, and grass margins were used to parametrize the P-factor for 

the European Union’s agricultural area (Panagos et al., 2015d). These information origins from 

the European Union’s LUCAS observations.   

 

Soil erodibility (K) and the slope length factor (L) can also be managed by human 

interventions. For example, farmers could improve the soil stability by an increased stone cover, 

better root penetration or shortened slope lengths by the creation of natural or artificial barriers. 

The positive effect of the surface stone cover is already included in the soil erosion risk 

assessment for Swiss grassland. However, such measures are poorly practicable and less 

effective as an alteration of the soil organic carbon content in interaction with an increased 

vegetation cover. Reversely, some of these soil protecting agricultural practices would result in 

a loss of profit and farmers take on the role of landscape conservationists. A change in subsidies 

from quantity to quality could compensate that agricultural transition. It is also possible to alter 

the rainfall erosivity (R). However that might be only possible on a larger temporal scale by 

climate change mitigation. As positive trends in rainfall erosivity are to be expected for 

Switzerland (Meusburger et al., 2012), a mitigation of the causes for climate change would have 

a positive future effect for soil erosion protection likewise. The investigation of long-term 

rainfall erosivity trends may play a key role in understanding the climate change related 

dynamics of the R-factor. Such a statistical trend analysis can be conducted with daily rainfall 

observations for selected stations in Switzerland that are dating back for more than a century 

(MeteoSwiss, 2018b).  

8.3 Evaluation of the approach and future proceedings 

It was shown that the existing datasets for Switzerland are suitable for erosions modeling 

and their resolution is sufficient for modeling soil erosion rates on a monthly scale as they can 

serve as the base data for the R-, K-, C-, and LS-factor and meet the recommended temporal 
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resolution (see chapter 1.6). However, as models are only approximations to the real conditions 

and processes, limitations and drawbacks are expectable.  

Drawbacks of the model are the unconsidered erosion effects of snow processes. A potential 

solution might be the inclusion of a winter factor for RUSLE as already proposed by Stanchi et 

al. (2014). Furthermore, the approach does only capture sheet erosion. Features of rill erosion, 

gully erosion, and landslides in the landscape might be obtained by the underlying data (e.g. 

Swissimage, SwissAlti3D) but cannot be quantified. It should be considered that the proposed 

model predicts only the semi-actual erosion risk, like real-time land use and support practices 

data (P-factor), are missing. However, a rapid improvement of soil erosion models is to be 

expected for the future that will even allow real-time modeling and validation of soil loss. 

Regardless, the ultimate base for the underlying empirical relationships will be an extended 

network of field observations, measurements, and data with special emphasize on grassland 

management.  

Subsequently, the utilized model can further be improved if the following changes, 

modifications, and adoption are made in the future: 

 

(1) Upgraded datasets: 

The necessary upgrade of the ERK2 for arable land demonstrates the rapid advances in 

geoinformation. The erosion risk map for grasslands also needs to be upgraded as soon as the 

used datasets are outdated. We used the most state-of-the-art data and technology for modeling 

to make the map valid for the next years. However, during the lifespan of the project, datasets 

were already upgraded, refined or replaced. For example, the Swiss orthophotos Swissimage 

FCIR and RGB are now replaced by a single product with four spectral bands (NIR, R, G, B; 

Swisstopo, 2017b) which would increase the mapping accuracy of the C-factor. Newly extended 

databases of Swiss soil samples (soil samples of 1600 sites within the framework of the 

Biodiversity Monitoring in Switzerland; Meuli et al., 2017) should be published soon. 

Additional sampling campaigns for LUCAS are currently undergoing and scheduled for 2021 

(Orgiazzi et al., 2018). Based on that, time series, changes in soil properties and thus in the K-

factor are expected to be observed. Further, the grassland map could be improved with land use 

data from detailed agriculture information systems (e.g. GELAN, LAWIS, ACORDA, 

AGRICOLA, WALLIS; Bundesamt für Landwirtschaft BLW, 2018) which will be published 

nationwide in the next years. New satellite products with a high repeating rate as Sentinel-2 (5 

days) are a valuable source for identifying temporal patterns in the future. These data need to be 

included in a second version of the map.  

 

(2) Ground truth data:  

Ground truth data are of relevance for supporting and proofing the results. Therefore, future 

measurements of soil loss rates and mapping of signs of erosion are a key for evaluating the 

projections. In a pilot region of Switzerland, a program called “Air-osion” introduced a digital 

alert that informs the erosion researcher about upcoming high intensified rainfall events and 

potential erosion (Noll, 2017). Based on that information, in-situ observation of soil erosion 

with direct measurements and recordings is possible. This project is combined with the 

acquirement of aerial photographs by unmanned aerial vehicles (UAVs) of the affected site. A 

project like this passes over from an erosion risk mapping to erosion risk monitoring. Such 

monitoring would be a significant validation database for the erosion maps.  
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Furthermore, the building of an extended ground database, especially with rainfall experiments 

at different locations, would be beneficial for improving, refining, and better validating the LS-

factor for steep alpine environments. 

 

(3) Linkage to other erosion projects: 

The conception of the most recent research project of the environmental geoscience working 

group at the University Basel (“weObserve: Integrating Citizen Observers and High Throughput 

Sensing Devices for Big Data Collection, Integration, and Analysis”) is a crowdsourced data 

collection system of alpine soil erosion (Swiss National Science Foundation, 2017). That 

system, called COSA (“Citizens’ Observatory Smartphone App”), should help to build a 

detailed erosion database by volunteers (e.g. hikers, bikers) for a better understanding of the 

spatial patterns and temporal dynamics of soil erosion (Alewell et al., 2015b). That approach 

selectively monitors soil erosion but is yet not able to assess the grassland soil erosion risk on a 

national scale. Both projects would profit from each other as the erosion risk map could serve as 

a base map for orientation, and the COSA-project could contribute the ground truth data. 

Furthermore, part of the weObserve-project is an object-based image analysis that should later 

be replaced by convolutional neural networks to identify and quantify soil erosion and signs of 

erosion automatically (e.g. cattle trails, degraded bare soil) in aerial photographs (Zweifel et al., 

2018). Another approach to automatically detect soil erosion in the Alps from aerial photos is 

under development in the canton Uri (Batkitar, 2014; Geilhausen et al., 2017). Such routines 

help to analyze trends in soil erosion by time-series of aerial photos or better identify degraded 

bare soil.  

Further research projects of the group in Basel are dealing with fallout radionuclides 

inventories, compound-specific stable isotopes, and biomarker that were used for quantifying 

erosion and deposition or tracing of eroded sediments. These projects may serve to calibrate the 

soil loss rates of the erosion risk map for grassland and to widen the knowledge about sediment 

dislocation after erosion.  

 

Meusburger et al. (2010a) and Meusburger et al. (2010b) already discussed the difficulty of 

differentiating dry vegetation and (degraded) bare soil in aerial photographs and satellite 

images. We were facing a similar problem in chapter 4 with the spatial high resolution 

Swissimage orthophotos. There is an urgent need for solving that limitation in image 

classification for future improvements in erosion risk assessments on Swiss grasslands. 

Frequently, alpine erosion starts at edges of degraded bare soil surfaces. As soon as such 

surfaces are appropriately identified, initial spots of potential soil erosion can better be 

localized. The project mentioned above “weObserve” with its object-based image classification 

could be a first step in establishing a technique for segregation bare soil from dry vegetation 

cover. Hyperspectral remote sensing images such as recorded by the Hyperspectral Imager 

(Hyperion) on board of the Earth Observing-1 satellite (EO-1; Goetz, 2009) or the future 

Sentinel-10 mission run by the European Space Agency and PRISMA operated by the Italian 

Space Agency in combination with extended field spectroscopy in the Alps might be another 

feasible methodology to narrow the hotspots of soil erosion on Swiss grasslands.  

 

The approach for grasslands with a particular focus on the Alpine conditions could serve as a 

prototype for erosion mapping on grassland in other mountainous countries like Austria, 
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Germany, Italia, Slovenia, or France. The establishment of a comprehensible Alpine-wide 

grassland erosion risk map is of crucial importance for the recommendation of action within the 

Alpine Convention. Such a proposal would help to protect the unique nature of the Alps, the 

soils, the economy, the agriculture, the traditions, and the humans.   
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Abstract 

One major controlling factor of water erosion is rainfall erosivity, which is quantified as the 

product of total storm energy of an erosive rainfall event and a maximum 30 min intensity. Rainfall 

erosivity is expressed as the R-factor in erosion models like the Universal Soil Loss Equation (USLE) 

and its revised version (RUSLE). R-factors were modelled on a monthly scale to catch simultaneously 

the highly spatial as well as temporal variability. The observations of a network with 87 precipitation 

gauging stations with a 10 min temporal resolution and a mean observation length of 19.5 years were 

used to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) 

and leave-one-out cross-validation (LOOCV) select high resolution covariates which explain the 

spatial and the temporal patterns of R-factors within a month. The predicted R-factors of the 

regression equation and the corresponding residues are combined to 12 R-factor maps. The residues 

itself are interpolated by ordinary-kriging (regression-kriging). As spatial covariates, a variety of 

precipitation indicator data has been used such as snow depths, radar and ground observations of 

precipitation (CombiPrecip), daily alpine precipitation (EURO4M-APGD), and monthly precipitation 

sums (RhiresM). Elevation and slope are derived from a digital elevation model (SwissAlti3D) as 

explanatory variables. The comparison of the 12 monthly rainfall erosivity maps showed highest 

rainfall erosivity in summer (June, July, and August). In particular, the southern Alps (Canton Ticino), 

the alpine area of the northern Alps and parts of the Valley region are affected by high R-factors 

during that period. The 4 months from June to September have a share of 62% of the total annual R-

Factor of Switzerland. The identification of regions and time slots with increased erosivity enables the 

introduction of selective erosion control and a better knowledge about dynamics of erosion processes 

within a year.  
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Zusammenfassung 

Eine der treibenden Kräfte der Wassererosion ist die Niederschlagserosivität, die als Produkt der 

Energie eines erosiven Niederschlagsereignisses und der maximalen Niederschlagsintensität innerhalb 

30 Minuten quantifiziert wird. In Erosionsmodellen wie der Universal Soil Loss Equation (USLE) und 

der revidierten Version (RUSLE) geht die Erosivität als R-Faktor ein. Um zeitgleich die stark 

ausgeprägte räumliche aber auch saisonale Variabilität zu erfassen, wurde der R-Faktor auf 

monatlicher Skala modelliert. Langjährige monatliche R-Faktoren basieren auf Messdaten von 87 

Schweizer Niederschlagsmessstationen mit einer Auflösung von 10 Minuten über einen mittleren 

Messzeitraum von 19.5 Jahre. Ein stufenweises lineares Regressionsmodell (stepwise GLM) und eine 

leave-one-out cross-validation (LOOCV) selektieren hochaufgelöste Kovariaten, die die raum-

zeitlichen Muster der R-Faktoren erklären. Die über die entsprechenden Regressionsgleichungen 

vorhergesagten monatlichen R-Faktoren sind mit den dazugehörigen Residuen zu 12 R-Faktor-Karten 

kombiniert. Die Residuen selbst sind über ordinary kriging interpoliert (Regression-Kriging). Als 

räumliche Kovariaten gehen verschiedene Niederschlagsgrössen wie Schneehöhen, Radar- und 

Bodenbeobachtungen des Niederschlags (CombiPrecip), tägliche alpine Niederschläge (EURO4M-

APGD) und monatliche Niederschlagssummen (RhiresM) ein. Aus einem digitalen Höhenmodell 

(SwissAlti3D) sind Geländehöhe und Hangneigung als erklärende Variablen abgeleitet. Die 

Gegenüberstellung der 12 monatlichen R-Faktor-Karten zeigt, dass die Sommermonate (Juni, Juli, und 

August) von höchster Erosivität geprägt sind. Insbesondere die Südalpen (Kanton Tessin), die 

Bergzonen der Nordalpen und Teile der Talzone weisen in diesem Zeitraum hohe R-Faktoren auf. 

Zwischen Juni und September wird ein Anteil von 62% an der Jahresniederschlagserosivität der 

Schweiz registriert. Die Identifikation von Regionen und Zeiträumen erhöhter Erosivität ermöglicht 

einen zielgerichteten Erosionsschutz und ein besseres Verständnis der Dynamiken von 

Erosionsprozessen innerhalb eines Jahres.   

 

Keywords: rainfall erosivity, R-factor, Erosivität, dynamic erosion modelling, C-factor 
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A.1. Einleitung 

In der Schweiz wird seit vielen Jahren Bodenerosionsforschung betrieben. Zahlreiche 

Forschungsarbeiten haben den Bodenabtrag durch Wasser auf Schweizer Böden gemessen (Konz et 

al., 2012; Alewell et al., 2014), kartiert (Mosimann et al., 1990; Prasuhn, 2011; 2012) und modelliert 

(Gisler et al., 2011; Prasuhn et al., 2013). Seit den 50er Jahren kann eine Zunahme der 

Erosionsgefährdung sowohl für die landwirtschaftliche Nutzfläche (Weisshaidinger and Leser, 2006) 

als auch für die alpinen Grünlandflächen (Meusburger and Alewell, 2008) nachgewiesen werden. 

Nach Mosimann et al. (1991) sind circa 20% des Schweizer Kulturlands durch Wassererosion 

gefährdet. Die damit verbundenen jährlichen finanziellen Aufwendungen belaufen sich auf 

schätzungsweise 53 Millionen Schweizer Franken (Ledermann, 2012). Unter dem Aspekt zukünftiger 

Klimaszenarien mit einer zu erwartenden Zunahme der Niederschlagshäufigkeit und -intensität werden 

die Gefährdung der Böden durch Wassererosion und die damit verbunden Kosten weiter ansteigen 

(Fuhrer et al., 2006). Ein Trend erhöhter Niederschlagserosivität ist bereits heute in den Monaten 

zwischen Mai und Oktober ersichtlich (Meusburger et al., 2012). Niederschlag kann generell als die 

treibende Kraft im Erosionsprozess gesehen werden da er über die Prozesse der raschen Befeuchtung 

sowie der Planschwirkung der Tropfen direkten Einfluss auf die Mobilisierung von Bodenmaterial hat, 

aber gleichzeitig auch Transportmedium des Materials ist. In den empirischen Erosionsmodellen 

Universal Soil Loss Equation (USLE) und Revised Universal Soil Loss Equation (RUSLE) (Renard et 

al., 1997; Foster et al., 2008; Foster et al., 2008) fliesst die Wirkung des Niederschlags auf Böden in 

Form der Niederschlagserosivität als R-Faktor ein. Die weiteren Erosionsfaktoren der USLE und 

RUSLE sind Bodenbedeckung C, Bodenerodierbarkeit K, Hanglänge und Hangneigung LS, und 

Schutzmassnahmen P. Der langjährige Bodenabtrag durch Wasser kann über die Multiplikation dieser 

5 Faktoren errechnet werden (Schwertmann et al., 1987). Neben der unmittelbaren Quantifizierung des 

Bodenabtrags können aus den individuellen Faktoren wichtige Aussagen abgeleitet werden.  

Aufgrund der hohen klimatischen Kontraste in der Schweiz, die im Wesentlichen durch die 

Topographie bedingt sind, resultiert eine räumliche und zeitliche Variabilität des Wetters. Diese 

Variabilität hat zur Folge, dass bestimmte räumliche aber auch zeitliche Muster in der Verteilung der 

Niederschlagserosivität entstehen. Meusburger et al. (2012)wies auf die starke Saisonalität und 

räumliche Variation hin, allerdings wurden diese Muster der R-Faktoren für die Schweiz nicht 

kartographisch erfasst. Der R-Faktor für die Schweiz wurde bisher entweder als langjähriger Faktor 

(Friedli, 2006; Gisler et al., 2011; Meusburger et al., 2012; Prasuhn et al., 2013) oder als saisonale 

Mittelwerte auf Landesebene (Panagos et al., 2015a) berechnet. Hochaufgelöste Datensätze von 

MeteoSchweiz (z.B. CombiPrecip) und Swisstopo (z.B. SwissAlti3D) ermöglichen inzwischen die 

Berechnung der Niederschlagserosivität auf monatlicher Ebene. Durch die Kartierung monatlicher R-

Faktoren kann eine Identifikation von zeitlichen Fenstern und Regionen hoher R-Faktoren zusammen 

mit raum-zeitlicher Vegetationsdynamiken (niedrige oder instabile Vegetationsbedeckungen) als 

Entscheidungshilfe im Boden- und Naturschutz dienen, um Bodenerosion, Hochwasser und 

Naturkatastrophen zielgerichtet vermeiden und bekämpfen zu können.  

Um ein verbreitertes Verständnis über die Dynamiken des R-Faktors zu erlangen, werden in dieser 

Arbeit die raum-zeitlichen Muster der Niederschlagserosivität in der Schweiz untersucht, indem (i) 

monatliche R-Faktor-Karten auf Basis eines Regression-Kriging-Ansatzes mit hochaufgelösten 

Kovariaten erstellt und (ii) die raum-zeitlichen Variationen der Niederschlagserosivität in der Schweiz 

analysiert werden.  

Die vorliegende Studie ist als Erweiterung der Berechnung langjähriger R-Faktoren der Schweiz 

durch Meusburger et al. (2012) zu sehen. Eine ausführlichere Beschreibung der vorliegenden 

Forschung ist in Schmidt et al. (2016) veröffentlicht.  
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A.2. Material und Methoden 

A.2.1. Berechnung der Niederschlagserosivität (R-Faktor) 

Die Niederschlagserosivität wird im Erosionsmodell RUSLE als R-Faktor ausgedrückt und durch 

das Produkt der gesamten Energie eines erosiven Niederschlagsereignisses und seiner maximalen 

Intensität innerhalb 30 Minuten quantifiziert (Brown and Foster, 1987; Wischmeier and Smith, 1978) 

Die Festlegung des Grenzwertes eines erosiven Niederschlagsereignisses folgt der Definition von 

Renard et al. (1997) unter Modifikation durch Meusburger et al. (2012).  

Die Niederschlagsenergie (er, MJ ha-1 mm-1) eines jeden Zeitintervalls wird durch die 

Niederschlagsintensität (ir, mm h-1) während dieser Zeitspanne ausgedrückt und wie folgt berechnet: 

 

er = 0.29[1 − 0.72 exp(−0.05ir)]                                                           (A.1) 

 

Die Ereignisniederschlagserosivität (EI30) ergibt sich aus dem Produkt der Niederschlagsenergie 

(er) eines erosiven Ereignisses und seiner maximalen Niederschlagsmenge (vr, mm) während einer 

Zeiteinheit r unter Berücksichtigung der maximalen Niederschlagsintensität innerhalb 30 Minuten (I30, 

mm h-1). 

 

EI30 = (∑ ervr
k
r=1 )I30                                                      (A.2) 

 

Die monatliche Niederschlagserosivität (Rmo, MJ mm ha-1 h-1 month-1) ist der Mittelwert der 

aufsummierten Ereignisniederschlagserosivität (EI30) über den Zeitraum eines Monats: 

 

Rmo =
1

n
∑ ∑ (EI30)k

mj

k=1
n
j=1                                                     (A.3) 

 

Wobei n der Anzahl an Jahren mit der Anzahl der erosiven Ereignisse (mj) innerhalb eines 

bestimmten Monats j entspricht. k ist der Index eines Einzelereignisses mit seiner entsprechenden 

Ereignisniederschlagserosivität. 

Schnee, Schneeschmelze und Niederschlag auf gefrorenem Boden (Temperaturgrenzwert von 0°C) 

werden nicht im R-Faktor berücksichtigt (Renard et al., 1997).  

A.2.2. Niederschlagsmessnetz 

Die monatlichen R-Faktoren wurden aus Niederschlagsmessungen von 87 automatischen 

Messstationen mit Messintervallen von 10 Minuten abgeleitet. Mit einer mittleren Messperiode von 

19.5 Jahren pro Station wird das vorgeschlagene Minimum der Beobachtungszeit (15 Jahre) zur 

Berechnung des R-Faktors erfüllt (Foster et al., 2008). Die Stationen decken alle landwirtschaftliche 

Zonen der Schweiz ab (Fig. A.1). Um den Einfluss des Schnees auszuschliessen sind ausserdem 

Temperaturen in stündlicher Auflösung für 71 Stationen erfasst oder von der nächstgelegenen 

Stationen abgeleitet (16 Stationen, Distanz <20 km). 
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Fig. A.1: Landwirtschaftliche Zonen (Bundesamt für Landwirtschaft BLW, 2017) und Standorte 

der 87 Messstationen. 

A.2.3. Datensätze und Kovariaten 

In einem Land mit abgelegenen Hochgebirgsregionen wie der Schweiz ist für die Regionalisierung 

der punktuell an den Messstationen erfassten R-Faktoren eine Vielzahl an erosionsbeeinflussenden 

Kovariaten notwendig. Hauptsächlich wird die Niederschlagserosivität durch Niederschlagsparamater 

und Relief gesteuert (Meusburger et al., 2012; Panagos et al., 2015a; 2016a).  

Daher gehen in die Berechnung als Annäherung an den Schnee als steuernde Grösse stündliche 

Schneehöhen (an 58 Stationen, stündliche zeitl. Auflösung, Zeitraum 1988-2010, MeteoSwiss) ein. 

Diese wurden als langjährige mittlere monatliche Schneehöhen zusammengefasst und interpoliert 

(IDW). Niederschlagsparameter werden durch stündliche CombiPrecip-Daten (geostatistische 

Kombination von Punktmessungen an 150 Stationen und drei C-Band Radar-Beobachtungen, 1 km 

räuml. Auflösung, Zeitraum 2005-2015, Sideris et al., 2014) ausgedrückt, die zu vieljährigen 

monatlichen Mittelwerten aggregiert sind. Darüber hinaus stammen langjährige mittlere 

Tagesniederschlagssummen auf Monatsebene vom Datensatz EURO4M-APGD (5 km räuml. 

Auflösung, Zeitraum 1971-2008, Isotta et al., 2014). Langjährige mittlere monatliche 

Niederschlagssummen sind aus RhiresM (1 km räuml. Auflösung, Zeitraum 1961-2015, MeteoSwiss, 

2013) gemittelt. Reliefgrössen wie Geländehöhe und Hangneigung sind aus dem digitalen 

Höhenmodell SwissAlti3D (Swisstopo) mit einer Auflösung von 2 m extrahiert. Mit den 

hochaufgelösten Datensätzen liegt eine Informationsgrundlage vor, die in dieser Detaildichte bisher 

nicht in Europäische (Panagos et al., 2015a; 2016a) oder Schweizer (Meusburger et al., 2012) R-

Faktor-Modellierungen Eingang gefunden hat. 

A.2.4. Regionalisierung der monatlichen R-Faktoren für die Schweiz 

Modellierungen zeigen, dass eine Kombination aus einem Regressionsmodell und einer Kriging-

Interpolation der Residuen (Regression-Kriging) gut geeignet ist, um Niederschlagserosivität zu 

modellieren (Hanel et al., 2016; Meusburger et al., 2012; Angulo-Martínez and Beguería, 2009). Für 
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die Regionalisierung der monatlichen R-Faktoren an den 87 Stationen der Schweiz wird daher ein 

Regression-Kriging-Ansatz verfolgt (Hengl et al., 2004; 2007). Über ein allgemeines lineares Modell 

(generalized linear model, GLM; Gotway and Stroup, 1997) wird eine Regression zwischen den an 

den 87 Standorten berechneten monatlichen R-Faktoren (Rmo) und den hochaufgelösten Kovariaten 

durchgeführt. Das GLM stellt eine Beziehung zwischen R-Faktoren (Zielvariable) und Kovariaten her 

um die Niederschlagserosivität mit der bestmöglichen Auflösung der Kovariaten abzuschätzen (Odeh 

et al., 1995; McBratney et al., 2000). Im zweiten Schritt des Regression-Kriging werden die Residuen 

des GLM über ordinary kriging interpoliert (McBratney et al., 2000; Hengl et al., 2004) und die 

vorausberechneten R-Faktoren des GLM mit den entsprechenden Residuenkarten aufsummiert. Durch 

diese Kombination kann der Standardfehler der R-Faktor-Karte berücksichtigt werden. Für jeden 

Monat wird das Regression-Kriging wiederholt um 12 individuell errechnete R-Faktor-Karten zu 

erhalten. 

Zusätzlich wird eine leave-one-out cross-validation (LOOCV) zur weiteren Qualitätskontrolle 

hinzugefügt (Efron and Tibshirani, 1997). Für jedes der 12 GLM werden über eine automatisierte 

stufenweise Auswahl (stepwise feature selection) signifikante Kovariaten (α-to-enter 0.1; Kutner et al., 

2005) gewählt. In der Berechnung bleiben Ausreisser (Bonferroni-adjusted outlier test) und 

Beobachtungen mit hohem Einfluss (Cook’s distance) unberücksichtigt. Die Anpassungsgüte des 

Modells (goodness-of-fit) wird über das Bestimmtheitsmass (R²), den mittleren quadratischen Fehler 

(RMSE), und die Devianz beschrieben. In der Fehlerdiagnose des Regressionsmodells wird die 

Normalverteilung, die Homoskedastizität, der variance inflation factor (vif), und die Autokorrelation 

bewertet. Die Regionalisierung der Rmo sind mit dem R-package „caret“ (v6.0-68) und in ESRI 

ArcGIS (v10.2.2.) umgesetzt.  

A.2.5. Summenkurven der täglichen R-Faktoren 

Die R-Faktoren eines jeden Tages im Jahr sind über den Messzeitraum (durchschnittlich 19.5 

Jahre) je Station gemittelt und zu jährlichen R-Faktor-Summenkurven kumuliert. Tagessummen von 

Stationen innerhalb einer landwirtschaftlichen Zone werden zu mittleren Werten zusammengefasst. 

Die landwirtschaftlichen Zonen repräsentieren vor allem Einheiten ähnlicher Landnutzung, Relief, und 

Hangneigungsklasse. Als Ergänzung können Schmidt et al. (2016) Summenkurven für die 

biogeographischen Regionen der Schweiz entnommen werden. 

 

A.3. Ergebnisse und Diskussion 

A.3.1. Monatliche R-Faktor-Karten der Schweiz  

Alle Kovariaten sind mindestens für einen Monat im stepwise GLM signifikant (p<0.1) und 

können die Rmo erklären. Die Berechnungen eines jeden Monats basieren auf einer automatisierten 

Auswahl an Kovariaten entsprechend des Akaike information criterion (AIC). Table 1 zeigt die 

Auswahl der Kovariaten in den entsprechenden Regressionsgleichungen sowie R² und RMSE nach 

Monat. Pro Monat wurden ein bis drei Ausreiser ausgeschlossen.  

Zur Vergleichbarkeit der raum-zeitlichen Muster sind die Farbskalen der monatlichen R-Faktor-

Karten (Fig. A.2) einheitlich zwischen 0 und 200 MJ mm ha-1 h-1 month-1 gestreckt, obgleich die 

absoluten Werte im Sommer weitaus höher liegen (Table 2).  
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Table A.1: Regressionsgleichungen der 12 Monate und entsprechende Bestimmtheitsmasse R², 

mittlere quadratische Fehler RMSE und ausgeschlossene Ausreisserstationen 

Monat Regressionsgleichung R² 

RMSE (MJ 

mm ha-1 h-1 

month-1) 

ausgeschlossene 

Ausreisser 

Januar RJan = 2.101 - 4.150·CombiPrecipJan - 

0.006·SchneehöheJan +  0.017·RhiresJan - 

0.001·Geländehöhe 

0.52 6.98 Mathod 

Februar RFeb = 2.702 - 13.812·CombiPrecipFeb - 

0.007·SchneehöheFeb + 0.019·RhiresFeb + 

0.211·EURO4M-APGDFeb - 0.001· Geländehöhe 

0.53 12.96 Monte Generoso, Napf, 

Säntis 

März RMar = 2.534 - 7.735·CombiPrecipMär - 

0.006·SchneehöheMär + 0.018·RhiresMär + 

0.170·EURO4M-APGDMär - 0.001· Geländehöhe 

0.49 13.10 C. du G. St-Bernard, 

Säntis 

April RApr = 2.330 - 3.319·CombiPrecipApr - 

0.008·SchneehöheApr + 0.023·RhiresApr - 0.001· 

Geländehöhe - 0.019·Hangneigung  

0.65 21.01 C.du G. St-Bernard, 

Säntis, Weissfluhjoch 

Mai RMay = 2.965 + 2.072·CombiPrecipMai - 

0.002·SchneehöheMai + 0.015·RhiresMai - 0.001· 

Geländehöhe 

0.60 73.39 Davos, C. du G. St-

Bernard,  

Juni RJun = 3.890 + 0.014·RhiresJun - 0.001· 

Geländehöhe 

0.58 126.03 C. du G. St-Bernard 

Juli RJul = 3.926 + 5.710·CombiPrecipJul + 

0.251·EURO4M-APGDJul - 0.001· Geländehöhe 

0.66 138.77 Monte Generoso, C. du 

G. St-Bernard, Stabio 

August RAug = 3.627 + 0.010·RhiresAug + 

0.194·EURO4M-APGDAug - 0.001· Geländehöhe 

0.47 330.16 C. du G. St-Bernard, 

Stabio 

September RSep = 2.760 + 2.243·CombiPrecipSep + 

0.539·EURO4M-APGDSepb - 0.001· Geländehöhe 

0.64 81.91 C. du G. St-Bernard, 

Stabio 

Oktober ROct = 2.753 + 0.0161·RhiresOkt - 0.001· 

Geländehöhe 

0.62 81.60 Piz Corvatsch, C. du G. 

St-Bernard, Stabio 

November RNov = 2.665 + 3.787·CombiPrecipNov - 

0.034·SchneehöheNov + 0.166·EURO4M-APGDNov 

0.10 55.72 Piz Corvatsch, C. du G. 

St-Bernard, Saetis 

Dezember RDec = 2.437 + 0.013·RhiresDez - 0.001· 

Geländehöhe 

0.26 177.65 C. du G. St-Bernard 

CombiPrecip = Kombination von Bodenstations- und Radarmessungen des Niederschlags 

Rhires = monatliche Niederschlagssummen 

EURO4M-APGD = alpine Tagesniederschlagssummen 
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Fig. A.2: Monatliche R-Faktor-Karten der Schweiz (einheitliche Farbstreckung von 0 bis 200 MJ 

mm ha-1 h-1 month-1) berechnet über Regression-Kriging 

 

Table A.2: Monatliche nationale R-Faktoren (Rmo) in MJ mm ha-1 h-1 month-1 

Monat Minimum Maximum Mittelwert 

Januar 0.2 71.3 10.5 

Februar 0.0 247.3 13.5 

März 0.0 179.0 20.1 

April 0.2 1014.4 28.8 

Mai 8.3 1717.8 120.2 

Juni 3.6 1262.1 174.8 

Juli 12.6 1481.1 255.4 

August 8.3 1994.9 263.5 

September 6.8 6107.9 147.7 

Oktober 5.7 977.0 57.0 

November 4.9 357.1 41.6 

Dezember 1.3 234.4 24.9 

 

Die zeitlichen Muster der Regionalisierung der modellierten Rmo zeigen eine hohe jahreszeitliche 

Dynamik mit niedrigsten nationalen Mittelwerten im Januar (10.5 MJ mm ha-1 h-1 month-1) und 

höchsten Werten im August (263.5 MJ mm ha-1 h-1 month-1). Wie die Übereinstimmung der R-Faktor-

Karten im Sommer mit der Karte der extremen 100jährlichen Punktniederschläge (Spreafico and 

Weingartner, 2005) zeigt, sind hohe sommerliche Rmo mit Extremniederschlägen der Schweiz 

kongruent. Diese R-Faktoren resultieren auch aus den Gewitterzyklen in der Schweiz, die am Ende des 

Frühlings (Mai) einsetzen und bis zum Herbstbeginn (September) anhalten (van Delden, 2001; 

Perroud and Bader, 2013; Nisi et al., 2016; Punge and Kunz, 2016). Ab September zeigt sich national 

eine Abnahme der Erosivität.  

Räumliche Muster erhöhter Erosivität im Frühling sind in den Bergzonen I und II sowie der 

Sömmerungsgebiete im Bereich des Jura, in den Bergzonen der westlichen und östlichen Teilen der 

Nordalpen sowie in den südlichen landwirtschaftlichen Zonen des Kantons Tessins zu beobachten. 
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Hohe winterliche Rmo kommen durch orographische Niederschläge zustande, die aus 

Tiefdruckgebieten Nordeuropas und nordwestlicher Fronten entstehen. In den Frühlingsmonaten ist 

eine Zunahme der Erosivität im Tessin beobachtbar. Das leicht verfrühte Einsetzen der 

Gewitterperiode an der Südflanke der Alpen bewirkt hier intensivere Regenfälle und damit höhere 

Rmo. Im Sommer sind insbesondere die Südalpen, Bergzonen der Nordalpen und Teile der Talzone von 

hoher Erosivität geprägt. Sommergewitter haben vor allem im alpinen Bereich hohen Einfluss auf 

erosive Ereignisse. An der Südflanke der Alpen kommt hinzu, dass orographische Regenfälle, 

verursacht durch das Aufsteigen warmer feuchter Luftmassen aus dem Mittelmeerraum zu intensivem 

Abregnen führen (Schwarb et al., 2001 Perroud and Bader, 2013). Im Herbst deutet sich besonders in 

der Nordschweiz ein schneller Rückgang der Erosivität an. Ganzjährig weisen die Tal-, Bergzonen, 

und Sömmerungsgebiete der Kantone Wallis und Graubünden die niedrigsten R-Faktoren auf, was 

durch die geringere Konvektion und damit schwächere Niederschlagserosivität begründet ist. 

A.3.2. Summenkurven der täglichen Erosivität 

Fig. A.3 präsentiert die kumulierten Summenkurven der täglichen R-Faktoren gemittelt nach 

landwirtschaftlichen Zonen und auf Landesebene. Die grösste Steigung der Kurve für die Schweiz 

liegt innerhalb des Zeitfensters von Anfang Juni bis Ende September mit einem Anteil von 62% an der 

Jahressumme der Niederschlagserosivität.  

 

 
Fig. A.3: Summenkurve der täglichen R-Faktoren für die landwirtschaftlichen Zonen der Schweiz 

 

Generell beschreiben die Kurven aller Zonen einen ähnlichen Trend mit höchsten Anteilen 

(Steigungen) im Jahresabschnitt Juni-September. Die Zonen Bergzone I (72.8%) und Talzone (71.7%) 

haben in dieser Periode jeweils über zwei Drittel Anteil an der Jahressumme der Erosivität. Dieser 

hohe Anteil der Niederschlagserosivität innerhalb relativ kurzer Zeit (4 Monate) kann grossen Einfluss 

auf die Gefährdung des Bodens durch Wassererosion haben, da er vor allem in diesen 

landwirtschaftlich geprägten Zonen auf niedrige (nach Ernte von Getreide, Karotten, etc.) und 

instabile Vegetationsbedeckung (nach Spätsaat) trifft (Hartwig and Ammon, 2002; Wellinger et al., 

2006; Torriani et al., 2007; Prasuhn, 2011). Zudem können die hohen Erosivitätsraten auch bei 
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Vorerntefeldfrüchten (z.B. Getreide, Mais) zu einer Beschädigung durch Umknicken der Halme 

führen. Böden sind an den Rändern des Zeitfensters (Mai und September) oftmals bereits 

wassergesättigt und damit stärker erodierbar. 

Die Summenkurven einzelner Stationen (Basel, Bern, Glarus, Lugano, Visp) verschiedener 

Schweizer Landesteile sind in Fig. A.4 gegenübergestellt.  

 

 
Fig. A.4: Summenkurve der täglichen R-Faktoren für ausgewählte Stationen der Schweiz 

 

Die Stationen Basel und Lugano haben zwischen Juni und September die höchste Steigung mit 

74.0 resp. 76.1 Prozentanteilen. In Visp im Wallis zeigt sich entsprechend der ganzjährig 

gleichmässigen Erosivität (vgl. Fig. A.2), dass die Niederschlagserosivität relativ gleichförmig über 

das Jahr verteilt ist. Mosimann et al. (1990)berechnet für die Messstation Bern einen Anteil von 80% 

für die 6-Monats-Periode von April bis September. Dieser Anteil an der Jahressumme kann mit der 

aktuellen Messreihe (1988-2010) von Bern bestätigt werden (82.9%, Fig. A.4).   

Zur Berechnung des relativen Bodenabtrags als Komponente des RUSLE C-Faktors (Wischmeier 

and Smith, 1978; Renard et al., 1997) sind kumulierte R-Faktoren für bestimmte Jahresabschnitte der 

Entwicklungszustände von Kulturen erforderlich. Die Summenkurven ermöglichen, Anteile des R-

Faktors am Jahres-R-Faktor mit täglicher Auflösung zu bestimmen. Über die Berechnung des C-

Faktors hinaus können mittels der anteiligen R-Faktoren jahreszeitliche Zeitfenster identifiziert 

werden, in welchen die Kurve eine verhältnismässig hohe Steigung und damit der R-Faktor in dieser 

Periode einen hohen Einfluss besitzt. Die Kombination der Erosivitätsanteile und monatlichen R-

Faktor-Karten mit zeitlich variablen C-Faktoren ermöglicht eine hochaufgelöste Abschätzung 

zeitlicher aber auch räumlicher Erosionsmuster für die Schweiz, in denen eine hohe Erosivität auf 

geringe oder instabile Vegetationsbedeckung trifft. 
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A.4. Schlussfolgerungen 

Die präsentierte Modellierung visualisiert zeitgleich die räumliche und zeitliche Variation der 

Niederschlagserosivität in der Schweiz. Die raum-zeitliche Kartierung der monatlichen R-Faktoren 

ermöglicht die Identifikation von Regionen, in denen ganzjährig eine nur geringe Erosivität zu 

erwarten ist (Wallis, Graubünden), aber auch jener Regionen wie etwa der Talzone, die nur in 

bestimmten Monaten durch erhöhte R-Faktoren gefährdet ist.  

Intensive Regenfälle sind im August für die höchste Erosivität (mittlerer monatlicher R-Faktor für 

die Schweiz 263.5 MJ mm ha-1 h-1 month-1) verantwortlich. Räumliche Muster der Erosivität im 

Sommer weiten sich vornehmlich auf die Südalpen (Kanton Tessin), die Bergzonen der Nordalpen und 

Teile der Talzone aus. Ein Grossteil der jährlichen R-Faktor-Summe (62%) beschränkt sich in der 

Schweiz auf die Zeitspanne zwischen Juni und September.  

Das Verständnis der Dynamiken des R-Faktors in der Schweiz ermöglicht das zielgerichtete und 

zeitlich dynamische Management von Landwirtschaft, Trockenperioden und die Kontrolle von 

Naturkatastrophen (z.B. Hochwasserschutz, Hangrutschgefährdung). Massgeblich sind die Ergebnisse 

jedoch für den Bodenschutz von grosser Relevanz. Landwirte können zielgerichtet 

Erosionsschutzmassnahmen einführen oder Fruchtfolgen verändern. Durch dieses Eingreifen wird der 

Einfluss des Regens auf die Böden und Vegetation minimiert und gleichzeitig die Bodenstabilität 

und -bedeckung in gefährdeten Zeiträumen erhöht. Selektiver Erosionsschutz kann damit nicht nur 

Bodenschutz optimieren, sondern auch die direkten Kosten der Erosion vermindern, da die 

finanziellen Aufwendungen der Einführung von Schutzmassnahmen auf ein notwendiges Minimum 

reduziert werden.   
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Supporting Information to Chapter 3 

Table S3.1. Monthly erosivity density (EDmo87; MJ ha-1 h-1) at the 87 stations calculated by Rmo87/Pmo87.  
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1 ABO Adelboden 609400 148975 0.31 0.32 1.38 2.00 1.00 0.24 0.29 1.99 1.99 0.10 0.65 0.30 

2 AIG Aigle 560400 130713 0.90 0.72 0.64 2.56 1.57 0.34 0.96 4.08 4.08 0.27 1.01 0.79 

3 ALT Altdorf 690174 193558 0.56 0.51 0.52 2.83 0.28 0.18 1.44 3.07 3.07 0.55 0.52 0.26 

4 BAS Basel/Binningen 610911 265600 0.47 4.07 0.74 1.66 0.29 0.18 7.06 4.18 4.18 0.71 0.54 0.53 

5 BER Bern/Zollikofen 601929 204409 2.23 3.57 0.98 0.82 2.18 0.36 5.93 1.23 1.23 0.91 0.45 0.46 

6 BEZ Beznau 659808 267693 2.99 2.81 1.03 0.51 0.30 0.47 12.87 0.80 0.80 1.09 0.21 0.33 

7 BUF Buffalora 816494 170225 9.77 * 4.33 0.66 0.31 1.79 8.96 0.29 0.29 0.76 0.35 0.74 

8 BUS Buchs/Aarau 648389 248365 4.27 2.53 3.21 0.40 0.23 1.75 8.00 0.42 0.42 0.53 0.38 0.61 

9 CDF La Chaux-de-Fonds 550923 214893 0.73 0.88 2.65 0.46 0.37 2.85 1.86 0.16 0.16 0.44 0.24 0.35 

10 CGI Nyon/Changins 506880 139573 0.45 0.80 7.69 0.75 1.66 3.45 1.91 0.27 0.27 0.22 0.34 1.76 

11 CHA Chasseral 570842 220154 0.31 0.28 3.41 0.77 1.99 0.86 0.51 0.31 0.31 0.47 0.34 2.58 

12 CHU Chur 759471 193157 0.86 0.70 1.57 1.70 3.40 0.97 0.07 0.34 0.34 1.79 3.47 8.04 

13 CHZ Cham 677825 226880 0.95 1.26 2.71 3.57 1.75 0.30 0.20 0.76 0.76 0.82 4.43 12.63 
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14 CIM Cimetta 704433 117452 0.67 2.07 0.74 3.25 0.50 0.19 0.18 1.14 1.14 0.59 1.93 2.88 

15 COM 
Acquarossa/ 

Comprovasco 
714998 146440 0.45 0.99 0.56 2.57 0.36 0.10 0.45 1.35 1.35 1.61 1.93 1.02 

16 COV Piz Corvatsch 783146 143519 * * * * 0.34 0.23 1.51 2.69 2.69 3.74 * * 

17 DAV Davos 783514 187457 0.55 0.70 0.59 1.81 0.38 0.21 2.88 0.98 0.98 6.56 1.13 0.97 

18 DIS Disentis/Sedrun 708188 173789 1.23 2.82 1.15 1.17 0.23 0.43 4.69 0.50 0.50 5.22 0.61 0.78 

19 DOL La Dôle 497061 142362 0.81 1.38 0.50 0.37 0.18 0.91 2.68 0.22 0.22 1.73 0.22 0.17 

20 ENG Engelberg 674156 186097 3.73 3.77 0.15 0.38 0.20 1.14 0.73 0.18 0.18 1.84 0.30 0.21 

21 EVO Evolène / Villa 605415 106740 4.02 10.41 0.58 1.49 0.50 4.59 0.56 0.62 0.62 4.87 0.34 0.69 

22 FAH Fahy 562458 252676 1.69 2.27 0.13 0.06 0.39 2.76 0.38 0.39 0.39 0.73 1.57 0.51 

23 FRE Bullet / La Fraz 534221 188081 0.42 0.64 0.62 1.39 1.41 0.39 0.29 1.14 1.14 0.33 0.27 1.05 

24 GEN Monte Generoso 722250 87300 0.65 1.64 0.29 1.05 1.38 4.07 0.30 1.65 1.65 0.57 0.33 4.07 

25 GLA Glarus 723752 210567 0.41 0.69 0.11 5.60 1.26 0.19 0.29 2.24 2.24 1.31 1.64 3.76 

26 GOE Goesgen 640417 245937 0.28 0.46 0.74 5.11 1.72 0.20 0.95 7.68 7.68 3.09 3.76 5.79 

27 GRH Grimsel Hospiz 668583 158215 0.13 0.16 0.89 5.18 0.52 0.09 1.93 7.45 7.45 4.90 2.27 1.09 

28 GSB 
Col du Grand St-

Bernard 
579200 79720 0.21 0.14 0.65 3.54 0.22 0.10 5.17 9.04 9.04 3.80 1.80 0.21 

29 GUE 
Guetsch ob 

Andermatt 
690140 167590 0.24 0.26 1.77 9.57 0.27 0.19 6.42 9.65 9.65 10.00 1.35 0.36 

30 GUT Guettingen 738419 273960 1.76 1.18 1.12 4.68 0.22 0.31 7.52 5.04 5.04 10.80 0.81 0.48 

31 GVE Genève-Cointrin 498903 122624 1.76 3.31 0.63 4.77 0.23 1.95 14.23 3.21 3.21 12.09 0.40 1.24 

32 HIR Hinterrhein 733900 153980 14.95 5.78 0.54 0.22 0.40 2.04 6.38 0.32 0.32 1.89 0.13 0.70 

33 HOD Hochtorf 663850 225520 3.29 2.57 0.32 0.22 0.98 2.17 2.80 0.16 0.16 3.02 0.34 2.83 

34 HOE H?rnli 713515 247755 2.09 1.25 0.14 0.35 1.51 2.27 2.38 0.08 0.08 0.82 0.16 2.43 

35 INT Interlaken 633019 169093 0.82 1.23 0.27 0.53 1.85 0.83 0.55 0.35 0.35 0.11 0.43 2.46 
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36 JON Jona 706760 231280 0.86 0.72 0.34 0.28 2.16 0.36 24.96 0.22 0.22 0.23 0.57 0.75 

37 KAP Kappelen 588926 213323 0.58 0.53 0.48 1.08 5.18 0.24 1.25 0.51 0.51 1.43 3.96 0.40 

38 KLO Zuerich/Kloten 682706 259337 0.39 0.51 1.62 3.04 3.31 0.17 0.47 1.78 1.78 0.17 5.34 0.22 

39 KRD 
Krauchtal 

Dietersweg 
611299 206530 0.18 1.80 1.07 5.52 1.59 0.23 1.31 1.61 1.61 0.20 3.96 0.44 

40 KRL 
Krauchtal 

Lindenfeld 
609041 205426 0.74 0.76 1.47 3.09 2.06 0.18 0.95 1.65 1.65 0.74 2.93 0.27 

41 LAT Langenthal 626820 231515 0.97 1.04 1.64 1.67 0.57 0.35 1.53 0.74 0.74 1.69 0.92 0.65 

42 LAU Langnau 640360 231200 2.43 2.52 1.25 0.69 0.20 0.57 2.55 0.43 0.43 1.00 0.84 0.49 

43 LEI Leibstadt 656378 272111 2.14 1.12 0.80 0.71 0.15 1.95 3.33 0.33 0.33 0.63 0.33 1.10 

44 LUG Lugano 717873 95884 3.92 3.01 1.33 0.40 0.20 1.26 0.35 0.17 0.17 0.46 0.11 3.72 

45 LUZ Luzern 665540 209848 3.22 4.60 0.40 0.27 0.33 2.38 0.57 0.08 0.08 0.79 0.58 2.69 

46 MAG 
Magadino/ 

Cadenazzo 
715475 113162 2.13 1.85 0.62 0.13 0.96 2.06 1.39 0.13 0.13 0.14 0.17 3.42 

47 MAH Mathod 534870 178070 0.17 0.82 1.38 0.85 5.63 2.16 40.98 0.99 0.99 0.10 0.52 0.68 

48 MTO Moechaltorf 696925 240800 0.37 0.83 0.70 0.58 2.24 0.46 0.18 0.77 0.77 0.11 0.52 0.90 

49 MUB Mueleberg 587788 202478 0.33 0.72 0.83 1.14 2.00 0.35 0.17 1.87 1.87 0.22 2.88 0.46 

50 MVE Montana 601706 127482 0.23 0.15 3.22 2.72 1.04 0.23 0.51 3.86 3.86 0.71 3.22 0.34 

51 NAP Napf 638132 206078 0.21 0.29 1.78 1.84 0.22 0.20 0.31 2.05 2.05 1.59 2.92 0.20 

52 NEU Neuchâtel 563150 205600 0.47 0.38 4.67 2.57 0.41 0.19 1.40 0.73 0.73 3.73 5.57 0.13 

53 OTL Locarno/Monti 704160 114350 1.03 0.46 3.65 0.40 0.08 0.17 1.09 0.14 0.14 1.98 0.62 0.36 

54 PAY Payerne 562127 184612 3.40 0.85 4.35 0.67 0.94 0.47 2.27 0.16 0.16 2.28 1.15 0.52 

55 PIL Pilatus 661910 203410 1.24 * 0.78 0.12 0.25 0.50 1.38 0.36 0.36 1.03 0.23 0.80 

56 PIO Piotta 695888 152261 3.48 1.59 1.18 0.28 0.38 1.46 1.28 0.31 0.31 0.21 0.28 3.06 

57 PLF Plaffeien 586808 177400 5.09 2.76 1.23 0.12 0.88 1.44 0.44 0.27 0.27 0.20 0.56 6.57 
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58 PSI PSI Wuerenlingen 659540 265600 2.41 1.73 0.18 1.31 1.26 2.87 0.31 0.64 0.64 0.16 0.54 2.02 

59 PUY Pully 540811 151514 0.96 1.98 0.43 0.38 2.51 0.89 0.27 0.86 0.86 0.23 0.72 0.72 

60 REH Zuerich/Affoltern 681428 253545 0.96 0.58 0.41 0.29 3.79 0.80 0.18 1.67 1.67 0.30 0.96 0.79 

61 ROB Poschiavo/Robbia 801850 136180 0.48 1.87 0.76 1.34 3.79 0.18 0.14 2.30 2.30 0.28 0.75 0.29 

62 ROE Robiì 682587 144091 0.17 * 0.85 0.28 1.16 0.09 0.15 2.32 2.32 0.13 0.26 0.11 

63 ROO Root 672060 218910 0.83 0.40 2.60 0.92 0.37 0.30 0.24 1.26 1.26 1.09 1.61 0.51 

64 RUE Ruenenberg 633246 253845 0.84 3.22 6.02 1.50 0.21 0.19 0.72 3.65 3.65 3.44 5.43 0.47 

65 SAE Saentis 744200 234920 * * 0.85 0.35 0.21 0.17 0.77 0.39 0.39 1.12 0.45 0.13 

66 SAM Samedan 787210 155700 1.25 0.49 4.79 1.84 0.37 0.47 2.58 1.77 1.77 1.94 0.77 1.05 

67 SBE S. Bernardino 734112 147296 0.76 0.31 0.58 0.21 0.18 0.81 0.97 0.19 0.19 0.38 0.53 1.15 

68 SBO Stabio 716034 77964 2.53 0.52 0.63 0.28 0.18 1.54 0.87 0.20 0.20 0.28 0.42 2.43 

69 SCU Scuol 817135 186393 6.18 3.08 1.00 0.18 0.59 5.00 0.62 0.28 0.28 0.41 0.14 6.14 

70 SEM Sempach 656880 219360 1.79 5.53 0.11 0.75 1.08 2.51 0.21 0.22 0.22 0.31 0.26 6.83 

71 SHA Schaffhausen 688698 282796 1.01 4.01 0.32 1.13 2.54 0.62 0.41 0.51 0.51 0.35 0.19 2.28 

72 SHE Schoefheim 644500 200940 0.56 2.67 0.14 1.31 1.93 0.45 0.14 1.17 1.17 0.23 0.19 1.00 

73 SIO Sion 591630 118575 0.96 3.58 0.46 2.67 4.33 0.47 0.68 5.33 5.33 1.73 0.72 0.50 

74 SMA Zuerich/Fluntern 685117 248061 0.64 0.64 0.60 1.70 0.97 0.25 0.27 2.77 2.77 0.60 2.22 0.46 

75 STG St. Gallen 747861 254586 0.18 2.91 0.54 2.97 0.33 0.25 0.14 2.61 2.61 2.24 2.87 0.06 

76 SUR Sursee 649930 225040 0.18 0.24 1.17 2.27 0.35 0.34 0.36 1.22 1.22 4.36 2.95 3.71 

77 TAE Aadorf/Toenikon 710514 259821 0.27 0.11 0.60 1.52 0.39 0.28 0.48 0.75 0.75 8.88 1.35 0.22 

78 ULR Ulrichen 666740 150760 0.69 0.06 1.84 1.40 0.12 0.33 0.80 0.38 0.38 4.17 0.23 0.75 

79 VAD Vaduz 757718 221696 1.16 1.88 0.51 2.38 0.13 0.74 0.47 0.30 0.30 1.67 0.39 1.19 
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80 VIS Visp 631149 128020 2.21 3.39 1.01 3.26 0.66 1.61 1.14 0.75 0.75 0.85 0.27 0.74 

81 WAE Waedenswil 693849 230708 1.15 8.03 0.20 0.05 0.33 1.35 0.17 0.15 0.15 0.55 0.21 0.43 

82 WEE Weesen 724969 221377 0.98 13.71 0.18 0.69 1.11 0.67 0.15 0.21 0.21 0.36 0.18 0.52 

83 WFJ Weissfluhjoch 780615 189635 * * * 0.58 3.81 0.46 0.25 0.18 0.18 0.22 0.26 * 

84 WIL Will 722100 256700 0.85 9.50 0.19 0.30 3.69 0.44 0.16 0.67 0.67 0.63 0.60 0.41 

85 WSA Wilisau 642650 220780 1.17 15.09 0.25 0.89 3.16 0.35 0.75 1.14 1.14 0.41 0.79 0.51 

86 WYN Wynau 626400 233850 0.32 9.33 0.56 1.19 1.98 0.42 0.31 1.67 1.67 0.19 0.31 0.77 

87 ZER Zermatt 624350 97566 0.84 9.64 4.80 3.14 0.80 0.37 1.02 1.52 1.52 1.11 1.78 0.85 
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Fig. S3.1. Coefficient of Variation map for Switzerland showing the variability of monthly 

rainfall erosivity among a year. 
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Fig. S3.2. Relationships of the R-factors (MJ mm ha-1 h-1 month-1) at the 87 stations 

(extracted from the 10-minutes data; R87) and the interpolated R-factors at the 87 stations 

(extracted after the interpolation with Regression-Kriging; RRegression-Kriging). The black line 

represents the 1:1 line, the red dashed line represents the linear regression line.  
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Fig. S4.1: Dynamic long-term snow occurrence for Switzerland (2000 to 2012) derived from 

the CCI Land Cover (ESA) (spat. res. 500 m) 
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Fig. S4.2: Different recording dates for tiles of the Swissimage FCIR orthophoto product 

(DOY= day of the year). 
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Fig. S4.3: Day of the year (DOY) with the maximum long-term NDVI (2005-2015) derived 

from MOD13Q1 data 
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Fig. S4.4: Map of Swiss Cantons without Geneva and Basel-Stadt due to marginal grassland 

fraction (SwissTopo 2017d) 
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Fig. S4.5: Spatio-temporal variation of C-factors for Swiss grasslands per month (spat. res. 

100 m) 
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Fig. S4.6: Mean monthly C-factors for Cantons of western/ eastern and northern/ southern 

Switzerland (Note: cantons Basel-Stadt and Genève are not included due to marginal grassland 

extent) 
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