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Abstract 

Background: Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has 
become a widely used technique for the rapid and accurate identification of bacteria, mycobacteria and certain 
fungal pathogens in the clinical microbiology laboratory. Thus far, only few attempts have been made to apply the 
technique in clinical parasitology, particularly regarding helminth identification.

Methods: We systematically reviewed the scientific literature on studies pertaining to MALDI-TOF MS as a diagnos-
tic technique for helminths (cestodes, nematodes and trematodes) of medical and veterinary importance. Readily 
available electronic databases (i.e. PubMed/MEDLINE, ScienceDirect, Cochrane Library, Web of Science and Google 
Scholar) were searched from inception to 10 October 2018, without restriction on year of publication or language. The 
titles and abstracts of studies were screened for eligibility by two independent reviewers. Relevant articles were read 
in full and included in the systematic review.

Results: A total of 84 peer-reviewed articles were considered for the final analysis. Most papers reported on the appli-
cation of MALDI-TOF for the study of Caenorhabditis elegans, and the technique was primarily used for identification of 
specific proteins rather than entire pathogens. Since 2015, a small number of studies documented the successful use 
of MALDI-TOF MS for species-specific identification of nematodes of human and veterinary importance, such as Trich-
inella spp. and Dirofilaria spp. However, the quality of available data and the number of examined helminth samples 
was low.

Conclusions: Data on the use of MALDI-TOF MS for the diagnosis of helminths are scarce, but recent evidence 
suggests a potential role for a reliable identification of nematodes. Future research should explore the diagnostic 
accuracy of MALDI-TOF MS for identification of (i) adult helminths, larvae and eggs shed in faecal samples; and (ii) 
helminth-related proteins that are detectable in serum or body fluids of infected individuals.
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Background
In clinical and laboratory diagnostic settings, mass spec-
trometry (MS) has been utilized for several decades as an 
approach for protein-centred analysis of samples in med-
ical chemistry [1, 2] and haematology laboratories [3]. In 

1975, Anhalt & Fenselau [4] proposed, for the first time, 
the modification of matrix-assisted laser desorption/ioni-
zation time-of-flight (MALDI-TOF) MS as a method to 
characterize bacteria. Indeed, it was demonstrated that 
different bacterial species show specific protein mass 
spectra, which can be used for rapid identification.

During the past decade, MALDI-TOF MS has been 
widely introduced as a diagnostic technique in microbiol-
ogy laboratories, where it has replaced most other tools 
(e.g. phenotypic tests, biochemical identification and 
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agglutination kits) as the first-line pathogen identification 
method due to its high diagnostic accuracy, robustness, 
reliability and rapid turn-around time [5]. MALDI-TOF 
MS is now routinely employed for identification of bac-
teria [5–8], mycobacteria [5, 9] and some fungi [8]. More 
recently, MALDI-TOF MS has been applied in research 
settings for the detection and identification of viruses 
[10], protozoans and arthropods [11, 12]. In clinical 
practice, a specific quantity is brought on a target plate 
(e.g. culture-grown pathogen). Next, the target plate is 
pre-treated with a chemical reagent (so-called matrix, 
e.g. α-cyano-4-hydroxycinnamic acid) and subjected to 
a mass spectrometer for further analysis. The MALDI-
TOF apparatus, which is commercially available through 
different manufacturers [13, 14], uses laser to disperse 
and ionize the analyte into different molecules, which 
move through a vacuum driven by an electric field before 
reaching a detector membrane. The time-of-flight of the 
various molecules depends on their mass and their elec-
tric charge. The specific time-of-flight data are assem-
bled, resulting in specific spectra that are compared to a 
commercial database, which allows for a rapid identifica-
tion of the infectious agent and diagnostic accuracy, the 
latter of which is usually expressed as a score.

MALDI-TOF MS has several strengths if compared to 
other diagnostic tools, such as polymerase chain reaction 
(PCR) assays. Once the mass spectrometer and the corre-
sponding databases are available in a laboratory, individ-
ual pathogen identification is inexpensive, and the sample 
preparation procedure does neither require highly skilled 
technicians nor complex additional laboratory infra-
structure. Of note, MALDI-TOF MS is considerably less 
prone to contamination and results are available within 
a few minutes. However, constant power supply is a pre-
requisite, which limits the suitability of the technique in 
resource-constrained settings. Yet, it should be noted 
that MALDI-TOF MS is no longer restricted to high-
income countries as it is increasingly available in refer-
ence laboratories in sub-Saharan Africa and elsewhere 
[15–19].

MALDI-TOF does not always require culture-grown 
colonies of a given pathogen. Instead, it can also be 
employed to identify microorganisms directly from 
positive blood culture broths [6] with high diagnostic 
accuracy [7]. Recently, Yang et  al. [20] proposed a new 
framework to analyse MALDI-TOF spectra of bacte-
rial mixtures (instead of only a single pathogen) and to 
directly characterize each component without purifica-
tion procedures. Hence, this procedure might become 
available to be employed directly on other body fluids 
(e.g. urine, respiratory specimens and faecal samples), 
which would further increase its relevance in clinical 
practice [21, 22].

In contrast to clinical bacteriology, little research has 
been carried out pertaining to the application of MALDI-
TOF MS for identification of parasites of human or vet-
erinary importance [23]. Several studies utilized the 
technique on protozoan parasites such as Leishmania 
spp. [24–26], Giardia spp. [27], Cryptosporidium spp. 
[28], Trypanosoma spp. [29], Plasmodium spp. [30–32] 
and Dientamoeba spp. [33]. These studies used pre-treat-
ment with ethanol and acetonitrile before subjecting the 
whole pathogens to MALDI-TOF analysis. Additionally, 
the technique has been used for identification of ectopar-
asites and vectors, such as ticks [34–37], fleas [38–41] 
and mosquitoes [42–49]. In contrast to the experiments 
on protozoans, only selected parts of the ectoparasites 
and vectors (e.g. legs, thoraxes or wings) were used and 
subjected to the same extraction method. A further novel 
approach to apply MALDI-TOF MS in clinical parasitol-
ogy is the identification of specific serum peptides that 
are detectable in parasite-infected individuals [50].

Helminth infections caused by nematodes (e.g. Ascaris 
lumbricoides, hookworm, Strongyloides stercoralis and 
Trichuris trichiura), cestodes (e.g. Taenia spp.) and 
trematodes (e.g. Fasciola spp. and Schistosoma spp.) 
account for a considerable global burden of disease and 
are among the most common infections in marginalized 
populations in the tropics and subtropics [51]. Indeed, 
according to estimates put forth by the Global Burden of 
Disease (GBD) Study, 3.35 million disability-adjusted life 
years (DALYs) were attributable to intestinal nematode 
infections and schistosomiasis in 2017 [52].

Diagnosis is pivotal for effective treatment but requires 
at least a basic laboratory infrastructure, light micro-
scopes and well-trained laboratory technicians who 
might not be available in remote areas of tropical and 
subtropical countries. In high-resource settings, in con-
trast, knowledge on microscopic identification of hel-
minths is waning in many laboratories. It is surprising 
that the potential applicability of MALDI-TOF MS as a 
diagnostic tool for helminths of human and veterinary 
importance has not yet been systematically assessed, in 
particular because the technique has been successfully 
employed for identification of nematode plant patho-
gens [53–58]. Hence, the goal of this systematic review 
was to summarize the available data on MALDI-TOF MS 
application for diagnosis of helminths of medical and vet-
erinary importance, and to provide recommendations for 
future research needs.

Methods
Search strategy
A systematic literature review was performed to identify 
all relevant scientific studies pertaining to MALDI-TOF 
MS as a diagnostic identification technique in medical 
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and/or veterinary helminthology. The research was 
performed according to the guidance expressed in the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) Statement [59].

The following electronic databases were systematically 
searched: MEDLINE/PubMed, ScienceDirect-Embase, 
Cochrane Library, Web of Science and Google Scholar. 
All studies published from inception to 10 October 2018 
were eligible for inclusion without language restric-
tions. The bibliographies of all eligible documents were 
hand-searched for additional references. Conference 
abstracts or book chapters detected through these data-
bases and additional library searches were also consid-
ered. The search strategy comprised keywords related 
to the MALDI-TOF MS technique (e.g. “MALDI-TOF” 
and “matrix-assisted laser desorption/ionization time-of-
flight”) and helminthology (e.g. “helminth”, “nematode”, 
“cestode” and “trematode”). The full search strategies for 
every database are provided in Additional file 1 and the 
PRISMA checklist in Additional file 2.

Eligibility screening
After the systematic literature search, all duplicates were 
removed. Titles and abstracts of potentially eligible stud-
ies were screened to identify manuscripts relevant to the 
research question. Scientific reports on helminths of either 
plants or insects as well as studies on symbiotic bacteria of 
helminths were excluded for this review. However, we kept 
all publications related to the soil nematode Caenorhabdi-
tis elegans, as it is used as a model organism for biomedical 
research. Additionally, studies pertaining to MALDI-TOF/
TOF tandem MS were excluded, as this is a different modi-
fication of the MALDI-TOF MS technique, which is not 
routinely employed in clinical microbiology laboratories, 
but rather in research laboratory use for accurate charac-
terization or sequencing of components like amino acids, 
metabolites, saccharides, etc. [60–62].

Data extraction and analysis
The literature search was performed by the first author 
of this manuscript (MF). All titles and abstracts were 
then independently reviewed by the first and the last 
author (MF and SLB) for inclusion and any disagreement 
was discussed until consensus was reached. All extracted 
manuscripts were analysed using a reference manager 
software (Mendeley; http://www.mende ley.com).

Results
Search results, number and year of publication of eligible 
studies
The search procedure and results obtained are shown 
in Fig.  1. In brief, the initial literature search yielded 

329 published studies, with an additional two abstracts 
identified through further search. Following removal of 
142 duplicates, a total of 189 articles were assessed in 
more detail, of which 66 studies were excluded based 
on the analysis of the respective titles and abstracts. 
A full-text analysis was carried out on the remaining 
123 studies; 39 articles were finally excluded because 
their scope was outside the current research question. 
Hence, 84 articles were included, and these were pub-
lished between 1997 and 2018. Figure 2 shows the num-
ber of publications, stratified by year of publication. The 
heterogeneity of data reported in the articles precluded 
any meaningful meta-analysis (Additional file 3).

Specific applications of MALDI‑TOF MS
The first two manuscripts published in 1997 described 
structural analyses of glycosphingolipids found in 
Ascaris suum and C. elegans [63, 64]. Indeed, 95% of 
all eligible studies used MALDI-TOF MS for identifi-
cation of specific components rather than for the iden-
tification of entire pathogens (Fig.  2). It was only in 
2015 when a report on MALDI-TOF MS as diagnostic 
tool for direct identification of Dirofilaria spp. became 
available [65]. Soon thereafter followed a proof-of-con-
cept study utilizing MALDI-TOF MS for identification 
and differentiation of Trichinella spp. and some narra-
tive reviews mentioning the lack of data on MALDI-
TOF in helminthology [32, 66, 67]. Yet, most studies 
focused on distinct analyses of specific components, 
such as peptides [66–86], proteins [69, 87–114], lipids 
[61, 62, 115–124], carbohydrates [125–143] and nucleic 
acids [144] in a research context. Hence, MALDI-TOF 
was mainly applied to study and compare the proteome 
or the peptidome of different helminth species, and 
most reports focused on C. elegans. For example, Hus-
son et al. [74] employed a new approach combining liq-
uid chromatography with MALDI-TOF MS to map and 
differentiate the neuropeptide profiles of C. elegans and 
the closely related species C. briggsae.

The two studies aiming at an identification of entire 
pathogens provided evidence that MALDI-TOF MS could 
reliably differentiate between species within the genus 
Trichinella [67] and Dirofilaria [65], respectively. In the 
study by Mayer-Scholl et  al. [67], nine species and three 
genotypes of Trichinella isolated from mice, domestic 
pigs, wild boars and guinea pigs were utilized to create 
an in-house database with 27 raw spectra generated per 
specimen. All tested isolates could be distinguished with 
high diagnostic accuracy. The study by Pshenichnaya 
et  al. [65], which had only been published as a confer-
ence abstract, investigated five Dirofilaria repens and five 
D. immitis specimens, the causative agents of human and 

http://www.mendeley.com


Page 4 of 13Feucherolles et al. Parasites Vectors          (2019) 12:245 

veterinary dirofilariasis, and reported that these could 
be well differentiated by MALDI-TOF MS. However, 
data were limited regarding the origin of the study sam-
ples, the quality of the spectra obtained by MALDI-TOF 
and the repeatability of the results. Yet, during the revi-
sion of this systematic review, Pshenichnaya et  al. [145] 
published their work on dirofilariasis in a peer-reviewed 
journal and provided also data for two different species 
of Ascaris (i.e. A. suum and A. lumbricoides). These hel-
minths could be differentiated by MALDI-TOF based on 
specific peaks and protein spectra patterns after a cell lysis 
using the Sepsityper Kit 50 (Bruker Daltonics; Bremen, 

Germany) and a protein extraction with 70% formic acid 
and acetonitrile. However, this study has several limita-
tions, and it remains unclear whether calibration steps or 
assessments of the repeatability and reproducibility of the 
analyses were performed. An additional paper, published 
in 2017, reported on MALDI-TOF MS application for 
cyathostomin helminths, a very diverse group of intesti-
nal parasites infecting horses [66]. These so-called “small 
strongyles” show a high degree of resistance against ben-
zimidazole anthelminthics and may lead to severe equine 
enteropathy, colic and death [146]. The study examined 
several species belonging to the cyathostomin helminths 

Fig. 1 PRISMA diagram for a systematic review examining the application of MALDI-TOF mass spectrometry as potential tool in diagnostic human 
and veterinary helminthology
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(e.g. Coronocyclus coronatus, C. labiatus and C. labratus) 
and found distinct protein spectra among adult helminths 
of different species [66]. These findings were recently con-
firmed and substantiated by another study on the applica-
tion of MALDI-TOF for differentiation of cyathostomins, 
which was published in April 2019 [147].

Discussion
We systematically reviewed the available literature per-
taining to the application of MALDI-TOF MS for identi-
fication of helminthic pathogens of human and veterinary 
importance. While the technique has been successfully 
employed for many major classes of pathogens (e.g. bac-
teria, mycobacteria and fungi), data on its use in diagnos-
tic helminthology are scarce. Several studies reported on 
the differential analysis of specific components, such as 
proteins, peptides or lipids with MALDI-TOF MS tech-
niques, but only two recent manuscripts and one con-
ference abstract provided ‘proof-of-concept’ evidence of 
its potential utility in diagnosing and differentiating hel-
minth species of medical or veterinary relevance.

The majority of articles identified in this systematic 
review focused on protein-centred analyses of helminth 
samples. It is important to mention that some of the 
MALDI-TOF MS devices employed in these studies had 
been subjected to modifications that are not usually avail-
able in routine clinical laboratories. Additionally, these 
experiments frequently employed a complex sample pre-
treatment comprising a protein separation by high pres-
sure liquid chromatography (HPLC) or electrophoresis. 
Yet, some recent proof-of-concept studies have shown 

that MALDI-TOF MS is also capable of diagnosing entire 
helminthic pathogens and differentiating similar species 
within the same genus based on an analysis of their indi-
vidual protein spectra [66, 67]. Because no helminths are 
currently included in commercially available MALDI-
TOF MS identification databases, individual in-house 
databases need to be created through generation of main 
spectra libraries, ideally following established guidelines 
and protocols that are similar to those employed by the 
manufacturers of commercially available mass spectrom-
eters [148]. Indeed, previous studies have described the 
sensitive, reliable and highly reproducible identification 
of helminths that cause plant infections and have con-
cluded that MALDI-TOF MS should be more widely 
employed as a ‘rapid detection tool’ [54–58]. Ahmad et al. 
[56], for example, reported on the suitability of MALDI-
TOF MS to differentiate harmless and juvenile infective 
stages of single plant nematodes, as these showed unique, 
characteristic protein peak patterns. These studies 
should be considered as relevant because plant-parasitic 
nematodes can sometimes also be found in human stool 
samples [149, 150]. In Brazil, for example, eggs of the 
root-knot nematode Meloidogyne spp. were detected in 
human faeces using a microscopic sedimentation method 
[151]. Future studies should also employ MALDI-TOF on 
serum, as a recent study reported the detection of spe-
cific proteins in serum of mice infected with Schistosoma 
japonicum [50].

While helminth infections pose a considerable burden 
on human and animal health [152], an accurate diagno-
sis of these conditions is frequently challenging. Indeed, 

Fig. 2 Publications in the peer-reviewed literature pertaining to the application of MALDI-TOF mass spectrometry for identification of helminths or 
specific pathogen-related components, as revealed by a systematic review, stratified by year of publication
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simple diagnostic tools such as stool microscopy for soil-
transmitted helminth infections are of limited value if the 
infection intensity is low and highly sensitive diagnostic 
techniques such as PCR-based assays are only available 
in selected reference laboratories outside endemic areas 
[153]. In high-income countries, in contrast, knowledge 
regarding standard diagnostic parasitology is waning and 
differentiation of closely related helminth species based 
on their microscopic morphology requires skilled labora-
tory technicians [154]. Moreover, some infections can-
not be reliably distinguished with standard diagnostic 
techniques. A prominent example are infections caused 
by cestodes of the genus Taenia [155], which may cause 
a relatively harmless intestinal infection if cysts of Taenia 
saginata or T. solium are orally ingested with meat of cat-
tle or pig. While eggs of T. saginata are not infectious to 
humans, T. solium eggs can lead to the potentially fatal 
disease (neuro-)cysticercosis. While the correct diagnosis 
has important implications for treatment, patient man-
agement and potential contact screening (intestinal car-
riage of adult T. solium worms poses an increased risk of 
cysticercosis for close contacts, such as family members), 
it is impossible to distinguish both species based on the 
identical morphology of their eggs under a microscope. 
Molecular tools can achieve an accurate differentiation 
of the two species, but are only available in research set-
tings [155–157]. Sometimes, proglottids of adult worms 
are also passed in the faeces. While a distinct differen-
tiation is possible based on the uterine branches within 
a proglottid, misidentification using this approach has 
been reported in clinical practice [158]. Hence, achiev-
ing a species-specific differentiation based on MALDI-
TOF MS would contribute to an enhanced, more reliable 
identification, and future studies should thus address 
this issue. Similar considerations hold also true for other 
infective agents that can hardly be differentiated by other 
methods (e.g. different Echinococcus species), novel spe-
cies (e.g. hybrid species of Schistosoma spp., which have 
recently been reported from Corsica, France [159]) and 
notoriously difficult-to-detect infections (e.g. strongy-
loidiasis). An overview of pathogens for which develop-
ment of MALDI-TOF MS identification protocols would 
appear particularly promising is summarized in Table 1.

It is important to consider the fixative in which a para-
sitological sample is stored. Both formaldehyde and etha-
nol are commonly used to enable a long-term storage 
of biological specimens, but this may lead to profound 
changes of the protein structure [160], which is likely to 
influence on the results of MALDI-TOF examinations 
carried out on such samples. The virtual impossibility 
to amplify nucleic acids from formaldehyde-containing 
solutions [161] due to fragmentation of the single com-
ponents [162] renders most PCR tests useless on these 

sample types, but MALDI-TOF analyses of protein spec-
tra might still be possible, albeit with different spectra if 
compared to native samples. Hence, future studies should 
evaluate this technique on different kinds of fixatives and 
on samples that have been stored for prolonged periods.

The present review identified only a few success-
ful studies that employed MALDI-TOF MS to diagnose 
helminths. Limitations include the complicated pre-
treatment procedures employed in some studies and the 
rather incomplete data presentation in one of the more 
clinically oriented research projects [65]. New research 
is needed to determine whether this technique might 
become a clinically meaningful addendum to the current 
set of diagnostic options. However, experiences made in 
clinical bacteriology, mycobacteriology, mycology as well 
as with ectoparasites (e.g. ticks) and vectors (e.g. mosqui-
toes) [12, 37, 163] are promising. Whereas MALDI-TOF 
MS is mainly used on culture-grown colonies for iden-
tification of bacteria and mycobacteria, the goal in hel-
minthology will be to provide a species-specific diagnosis 
based on either macroscopic elements or eggs and larvae 
that are present in stool samples (or other body fluids and 
tissue samples). Hence, specific protocols will need to be 
elaborated to this end, which may include sample prepa-
ration, purification and concentration steps, including 
guidance on the most appropriate sample preservation. 
However, such protocols have been successfully devel-
oped in the past (e.g. for identification of mycobacteria 
or moulds) [164, 165]. More recently, specific pre-treat-
ment modifications have even allowed to apply MALDI-
TOF MS on blood culture broths [166] and fresh urine 
samples for direct identification of bacteria [167]. Addi-
tionally, detection of parasites in complex samples (e.g. 
blood), should be considered (e.g. as an antigen test for 
Wuchereria bancrofti [168] or for the detection of spe-
cific serum peptides [169]).

Yet, much research and rigorous validation is still 
needed before MALDI-TOF MS might be employed 
directly on stool samples, and priority should thus be 
given to (i) the establishment of in-house main spectra 
library databases to allow for species-specific identifica-
tion of selected helminths; (ii) the subsequent develop-
ment of sample treatment protocols; (iii) the validation of 
this technique on different clinical sample types; and (iv) 
the elaboration of MALDI-TOF MS to be employed on 
fixed samples.

Conclusions
The present systematic review elucidated that MALDI-
TOF MS, which is now routinely used in many clini-
cal microbiology laboratories for identification of 
bacteria, fungi and mycobacteria, could potentially 
also be employed in the context of helminth diagnosis. 
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Preliminary data suggest that MALDI-TOF MS might 
hold promise as a future diagnostic tool for direct and 
rapid identification of pathogenic helminths in clinical 
samples with sufficient diagnostic accuracy. Further stud-
ies are needed to evaluate these concepts and to develop 
specific databases for helminth identification, followed 
by rigorous validation on well characterised clinical 
specimens.
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