Expression of gamma-aminobutyric acid B receptor subunits in hypothalamus of male and female developing rats

Bianchi, María S. and Lux-Lantos, Victoria A. and Bettler, Bernhard and Libertun, Carlos. (2005) Expression of gamma-aminobutyric acid B receptor subunits in hypothalamus of male and female developing rats. Developmental brain research, Vol. 160, no. 2. pp. 124-129.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262236

Downloads: Statistics Overview


GABA and its receptors show particular ontogenic distributions in different rat brain areas. Recently, GABAB receptors (GBR) have been described to assemble as heterodimers formed by a GBR1a/b and a GBR2 subunit. Here, the ontogeny of rat GBRs and the pattern of subunit expression in both sexes were determined in the hypothalamus, a critical area for homeostatic regulation. Male and female rats were sacrificed at 1, 4, 12, 20, 28, 38 days of life and at adulthood and hypothalami were removed and frozen. Western blots analysis for GBR1 and GBR2 subunits showed that both were expressed in male and female hypothalamic membranes from day 1 to adulthood. In females, both GBR1a and GBR1b were maximally expressed in newborns and decreased towards adulthood. At birth, expression of GBR1a was significantly higher than GBR1b, while at 38 days, GBR1b was more abundant. In males, GBR1a and GBR1b expression was higher in young animals and decreased gradually showing adult levels between the second and third weeks of age without differences between isoforms. Comparing GBR1 variants levels in hypothalamus between sexes, GBR1a was significantly more abundant in females at birth while at 38 days its expression was higher in males; GBR1b showed no sex differences along development. GBR2 was detected in hypothalami of females and males at all ages; maximum levels were observed at 12 days and adult levels were attained at 38 days, without sex differences. This is the first report on the ontogeny of hypothalamic GABAB receptors in male and female rats, with a particular developmental pattern of subunit and isoform expression and presenting some sex differences.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler)
UniBasel Contributors:Bettler, Bernhard
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:24
Deposited On:22 Mar 2012 13:37

Repository Staff Only: item control page