Histone Dynamics in DNA Damage and Repair

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel
von
Michael Hermann Hauer
aus Deutschland

Basel, 2019

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung-Nicht kommerziell 4.0 International Lizenz
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. Susan M. Gasser
Prof. Dr. Tom Owen-Hughes

Basel, den 23 Mai 2017

Prof. Dr. Martin Spiess
Dekan
CONTENTS

THESIS SUMMARY

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION TO HISTONE DYNAMICS IN DNA DAMAGE AND REPAIR

Chromatin structure

- Nucleosomes: The building blocks of chromatin
- Histone variants
- Histone post-translational modifications
- Histone chaperones and nucleosome remodelers: The architects of chromatin
- Higher-order chromatin folding and subnuclear organization

Chromatin dynamics during DSB repair

- DNA damage checkpoint activation and homology directed DSB repair
- DSB repair within the nuclear space — a matter of position
- Repair in heterochromatic domains: Where DSB relocation integrates with chromatin structure
- Chromatin unfolds in response to DNA damage
- Chromatin mobility: On the move with native and broken DNA
- Histone loss and the cytoskeleton affect chromatin mobility
- Histones have to go: The fate of nucleosomes during DNA damage and repair

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

CHAPTER 2: NUCLEOSOME REMODELERS IN DOUBLE-STRAND BREAK REPAIR

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
</tr>
</tbody>
</table>

CHAPTER 3: PERINUCLEAR ANCHORING OF H3K9-METHYLATED CHROMATIN IN C. ELEGANS EMBRYOS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
</tr>
</tbody>
</table>

CHAPTER 4: HISTONE DEGRADATION IN RESPONSE TO DNA DAMAGE ENHANCES CHROMATIN DYNAMICS AND RECOMBINATION RATES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
</tr>
</tbody>
</table>

CHAPTER 5: PROBING GLOBAL CHROMATIN COMPOSITION WITH MASS SPECTROMETRY

Summary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
</tr>
</tbody>
</table>

Rationale

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
</tr>
</tbody>
</table>

Material and Methods

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
</tr>
</tbody>
</table>

CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVES

Discussion

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
</tr>
</tbody>
</table>

- Nucleosome degradation and chromatin expansion at the basis of global chromatin mobility
- Chromatome proteomics – a method to measure chromatin-wide protein abundances in yeast

Future directions

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
</tr>
</tbody>
</table>

APPENDICES

List of abbreviations

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
</tr>
</tbody>
</table>

Non-thesis related contributions

- Peer-reviewed Publications
- Patent

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
</tr>
</tbody>
</table>
The overall perspective of my PhD project was to uncover the mechanisms that generate DNA damage-dependent chromatin mobility and to identify the players implicated in this process. To tackle this problem, I investigated the physical characteristics and composition of chromatin under DNA damaging conditions. I see my PhD project divided into two mayor themes:

(I) Identifying physical chromatin changes under DNA damaging conditions (mainly using microscopic assays)

(II) Addressing changes in chromatin protein composition upon DNA damage and DNA damage checkpoint activation (using Western blot analysis, genome-wide nucleosome mapping, microscopy and quantitative mass spectrometry)

This thesis consists of six chapters. Chapter 1 introduces the structure and function of chromatin and shows how it changes in response to DNA damage. Chapter 2 gives an in-depth overview about the function of chromatin remodeling enzymes during DNA double-strand break repair. Chapters 3-5 summarize my main scientific contributions. In Chapter 6, I discuss the findings of my work, draw conclusions and present future perspectives.

My main project led to the finding that remodeling enzymes trigger chromatin mobility in response to DNA damage by a mechanism that involves the proteasomal degradation of nucleosomes. Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating recruitment of repair factors. Whether such chromatin changes are localized or genome-wide has been a question of debate. Using a range of quantitative methods, we show that histone levels drop by 20-40% in response to DNA damage, due to eviction from chromatin by the INO80 remodeler and degradation by the proteasome. Chromatin decompaction and increased fiber flexibility accompany histone degradation, but also occur in the absence of damage when histone levels are reduced by other means. As a result, recombination rates and DNA repair focus turnover are enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response, providing mechanisms for enhanced chromatin mobility and homology search.
This thesis includes the following publications:

Peer-reviewed publications

Review articles and editorials

*equal contribution
Chapter 1: Introduction to Histone Dynamics in DNA Damage and Repair

Chromatin structure

Nucleosomes: The building blocks of chromatin

The organization of genomic DNA into chromatin is common amongst all eukaryotes, with its principles of architecture being conserved from yeast to man. The most basic and repeating unit of chromatin is the nucleosome which is formed by 146 base pairs (bp) of DNA that wrap around an octameric core of histone proteins (Fig. 1a). A canonical nucleosome is composed of the four core histones H2A, H2B, H3 and H4. Histones are small, positively charged proteins containing both an N-terminal histone tail and a central histone fold domain (HFD). The hydrophobic HFD serves as dimerization module prompting the formation of H2A-H2B and H3-H4 dimers, whereas a positively charged histone surface stabilizes histone-DNA interactions (for review, see (Malik and Henikoff 2003); (Khorasanizadeh 2004) and (Talbert, Ahmad et al. 2012)). Canonical nucleosome core particles contain two H3-H4 and two H2A-H2B dimers, forming an inner (H3-H4)₂ tetrameric core flanked by two separate 2x(H2A-H2B) dimers (Luger, Mader et al. 1997). In contrast to this compact core, the flexible and lysine-rich histone tails extend away from the nucleosome core particle.

These core histones are among the most highly conserved proteins in all eukaryotes (Malik and Henikoff 2003) and their evolutionary origin can be tracked back to archaea (Sandman, Krzycki et al. 1990) where, in the case of *M. fervidus*, tetrameric, nucleosome-like histone structures were found to bind and compact DNA (Pereira, Grayling et al. 1997). Within each histone type the primary amino acid sequence is highly conserved across species, yet the level of conservation among all histone variants is most apparent with respect to the secondary and tertiary protein structure of the HFD (Arents and Moudrianakis 1995) which defines the common nominator for all histones.

Next to histones, high mobility group proteins are the second most abundant proteins found on chromatin (for review see (Travers 2003) and (Bianchi and Agresti 2005)). Small, highly charged proteins, they have a variety of different functions ranging from the establishment of proper chromatin architecture to the control of transcriptionally active and inactive chromatin regions. There are three major families of HMG proteins: HMGA, HMGN, HMGB. HMGA proteins contain an AT hook and bind to AT rich DNA sequences. HMGN proteins bind inside nucleosomes. HMGB proteins contain
Figure 1 Chromatin structure and function. (a) Overview of nucleosomes as the building blocks of chromatin. Nucleosomes come in many different “flavors” owing to a multitude of histone variants and histone tail modifications. (b) Illustrates the role of histone chaperones in protecting newly synthesized histones and assembling them into nucleosomes. (c) Chromatin remodeling complexes and their role in organizing nucleosomes along DNA. (d) Chromatin adopts a scaffold structure. Chromatin has roles during (e) DSB repair, forms (f) different states of compaction and fold into (g) higher-order structures. (h) Chromatin organization and subcompartmentalization of the yeast nucleus. (i) Different degrees of chromatin compaction and its local environment impact a variety of cellular processes.
HMG boxes, 80 amino acid domains that bind to the minor groove of DNA (Bianchi and Agresti 2005, Malarkey and Churchill 2012). HMGB1 has well studied roles in enhancing transcription (Celona, Weiner et al. 2011). Yeast has two HMGB homologues called Nhp6 A and B (non-histone protein) (Stillman 2010).

Histone variants

Despite the high level of conservation among core histones, nucleosomes can come in many different flavors owing to the existence of additional, non-canonical histone variants and the vast combinatorial variety of post-translational modifications (PTMs) (Fig. 1a, reviewed in (Campos and Reinberg 2009)). Lower eukaryotes like the budding yeast *Saccharomyces cerevisiae*, express a single version of each inner-core (H3, H4) and outer-core (H2A, H2B) histone alongside with two non-canonical histone variants Htz1 and Hho1. Their counterparts in higher eukaryotes, H2A.Z and H1, are highly conserved. H1 is a special histone as it lacks the HDF domain and serves as a unique structural linker histone. While the exact role of Hho1 in yeast remains somewhat enigmatic, H1 is an abundant component of higher eukaryotic chromatin, where it associates with the linker DNA between nucleosomes (Fig. 1). This impacts chromatin structure, compaction and folding (Panday and Grove 2017). In contrast to H1, all other histone variants retain the typical HFD, but differ in other aspects of amino acid sequence. Few H2B and H4 variants exist, while there are multiple H2A and H3 variants: H2A.Z is an abundant H2A variant found throughout chromatin where it accumulates at +1 nucleosome in promoter regions (Guillemette, Bataille et al. 2005, Li, Eirin-Lopez et al. 2005, Raisner, Hartley et al. 2005, Albert, Mavrich et al. 2007), and, to a lesser extent, throughout gene bodies. The pattern of H2A.Z positioning over coding regions and near gene promoters clearly highlights its role in transcriptional regulation, which is well documented in both yeast and mammalian cells (Rando and Winston 2012). In addition to the role in transcription, various reports implicate H2A.Z or Htz1 in DNA repair pathways (Kalocsay, Hiller et al. 2009, Morillo-Huesca, Clemente-Ruiz et al. 2010). Notably, yeast *htz1* deletion alleles are hypersensitive to DNA damaging agents (Kalocsay, Hiller et al. 2009). This hypersensitivity probably reflects indirect effects on transcriptional as well as direct effects on repair. Besides H2A.Z, mammals, flies and worms express H2A.X, another H2A variant. H2A.X does not significantly differ from the canonical H2A except for an additional C-terminal motif. H2A.X is found uniformly along chromatin, and its most prominent feature is that it can be phosphorylated on a C-terminal serine residue in response to DNA damage. In humans, H2A.X phosphorylation occurs at serine S139 generating γH2A.X, while in yeast the canonical H2A contains a serine at S129 that serves the same role, generating γH2A (Rogakou, Pilch et al. 1998, Downs, Lowndes et al. 2000). Two additional H2A variants, macroH2A and H2A.Bbd (Barr body deficient), are found exclusively in mammals. H2A.Bbd
expression is restricted to brain tissue and testes where its function remains largely unknown (Campos and Reinberg 2009). Both macroH2A and H2A.Bbd fail to fully accommodate within the nucleosome particle. Therefore, they are believed to confer a more open nucleosomal state (Zhou, Fan et al. 2007) (Luger, Dechassa et al. 2012). Interestingly, macroH2A was found to bind chromatin in a Poly(ADP-ribose) (PAR)-dependent manner (Timinszky, Till et al. 2009, Khurana, Kruhlak et al. 2014) and accumulate at DNA double-strand breaks (DSBs) as well as UV damaged sites (Xu, Xu et al. 2012).

With respect to histone H3, three different variants (H3.1, H3.2 and H3.3) are found in all higher eukaryotes, where H3.1 and H3.2 are synthetized and loaded during DNA replication. In contrast, the histone variant H3.3 is expressed and deposited into chromatin throughout the cell cycle in a transcription-independent manner (Gurard-Levin, Quivy et al. 2014). Yeast only use one histone H3.3-like variant for both pathways. Finally, centromere-specific H3 variants (CenpA in humans and Cse4 in budding yeast) define centromeric regions for proper chromosome function and segregation.

Histone post-translational modifications

Histone variants play an important role in diversifying nucleosome structure, providing a means to modulate nucleosome composition and compaction along the genome (Fig. 1a). They respond to the genomic context, while generating a nucleosomal context. An additional layer of nucleosome modifications is achieved by post-translationally modifying histone tails, in particular the N-terminal tails of histones H3 and H4 (Campos and Reinberg 2009) and (Zentner and Henikoff 2013). Based on their mode of action, the impact of histone PTMs on chromatin structure can be divided into three categories: intrinsic, extrinsic or effector-mediated. Intrinsic effects directly influence physical nucleosome stability by altering histone-histone or histone-DNA interactions. This depends on the localization of the modified residue within the nucleosome core particle. Histone PTMs that act extrinsically on chromatin change inter-nucleosomal contacts and thereby affect higher order chromatin structure and organization. The effector-mediated impact describes chromatin changes which arise though the recruitment and action of chromatin-modifying proteins to histone PTMs. In all cases, histone modifying enzymes like acetyltransferases (HATs) and methyltransferases (HMTs) catalyze the covalent attachment of acetyl and methyl moieties to lysine residues. This neutralizes positive charges and regulates the association of chromatin binding proteins.

Many experiments, ranging from early chromatin fractionation (Hebbes, Clayton et al. 1994) to genome-wide ChIP-sequencing (Wang, Zang et al. 2008), have identified highly repetitive and transcriptionally silent heterochromatin as a hypoacetylated domain. Depending on different subtypes of
heterochromatin, the histones can be further enriched for either H3 lysine 9 di- or tri-methylation (H3K9me2/3), which recruits heterochromatin protein 1 (HP1), or for H3K27me3, which recruits the Polycomb repressive complex 1 (PRC1) (Nielsen, Oulad-Abdelghani et al. 2001, Jacobs and Khorasanizadeh 2002, Fischle, Wang et al. 2003). Transcriptionally silent heterochromatin generally also assumes a specific spatial distribution within the nuclear space. Repressive, H3K9me3-enriched chromatin is associated with the nuclear envelope, forming lamin associated domains (LADs). In humans, lamina association may be achieved through direct interactions of HP1 with integral lamin B-type receptors or through binding of barrier-to-autointegration factor (BAF) to LEM-domain proteins (Towbin, Gonzalez-Sandoval et al. 2013)). In embryos of the nematode C. elegans, a nuclear envelope protein and direct H3K9mc3 reader called CEC-4, bridges between heterochromatin and the inner nuclear membrane (Gonzalez-Sandoval, Towbin et al. 2015).

Taken together, these hallmarks of heterochromatin confer a closed chromatin state which protects vulnerable parts of the genome from rearrangements by preventing illegitimate transcription or deleterious recombination events (reviewed in Zeller and Gasser, in prep.). In contrast, euchromatin generally excludes H3K9 methylation. Indeed, transcriptionally active regions are found in a hyperacetylated state which promotes chromatin unfolding and favors binding of the transcription machinery. Transcribed genes show an enrichment of H4K16ac and H3K4mc3 within their 5’ region whereas H3K36me3 accumulates towards the 3’ end of the gene (Hebbes, Clayton et al. 1994). Such active modifications keep gene bodies open for transcription factor binding and the successful assembly of the transcription machinery.

Histone modifications also have important functions at sites of DNA lesions after genotoxic events. The most prominent modification is the phosphorylation of histone variant H2A.X on its C-terminal serine by the checkpoint kinases ATR and ATM (Mec1 and Tel1 in yeast) (Rogakou, Pilch et al. 1998, Downs, Lowndes et al. 2000). After initial phosphorylation, γH2A.X spreads from the site of damage creating a positive feedback loop which recruits various repair factors and amplifies DNA damage checkpoint (DDC) signaling. H2A.X is not the only histone modified by PTMs in response to DNA damage. Specific H4 acetylation and methylation events occur (H4K16ac, H4K20me), together with histone H1 and H2B ubiquitylation. Both are known to function during the DNA damage response (DDR). Acetylation of H4K16 in response to DNA damage is carried out by the HATs TIP60 and MOF (Murr, Loizou et al. 2006, Sharma, So et al. 2010). Whereas MOF regulates global levels of H4K16Ac with important roles in replication, TIP60 localizes to DSBs and modifies H4K16 in a site specific manner (Akhtar and Becker 2000). Interestingly, depletion of either MOF or TIP60 shows defects in DSB repair. E3 ubiquitin ligases bear similar functions at sites of DNA damage. At the site of a DSB, the heterodimeric
RNF20-40 complex monoubiquitinates H2BK120. This coincides with RNF8 E3 ligase-mediated ubiquitination of Histone H1. RNF168, another ubiquitin ligase, subsequently binds to ubiquitinated H1 and targets H2AK13 and K15. Ubiquitination events carried out by the combined function of RNF8/RNF168 favor the recruitment of 53BP1, a protein channeling DSB repair through non-homologous end joining (NHEJ), by protecting from resection. In contrast, H4K16ac together with monoubiquitinated H2BK120 was shown to promote chromatin relaxation and facilitates the recruitment of factors that promote resection and repair by homologous recombination (HR) (Schwertman, Bekker-Jensen et al. 2016))

Taken together, histone PTMs work alongside histone variants to define nucleosome structure and orchestrate repair within chromatin. Histone modifications can partition the genome into domains of different epigenetic states, with nucleosomes at the base of genome organization, as the building block of chromatin (Fig. 1a). Following this hierarchy of genomic organization from DNA into chromatin fibers, it is clear that a highly regulated enzymatic machinery must exist to orchestrate the assembly and disassembly of histones into nucleosomes, their deposition and proper placement along the DNA fiber. Two large protein families of histone chaperones and nucleosome remodeling complexes carry out the majority of these “architectural” tasks. These are discussed in the next paragraph.

Histone chaperones and nucleosome remodelers: The architects of chromatin

Once histones are synthesized in the cytoplasm, they are immediately bound by dedicated histone chaperones (Fig. 1b). As a consequence, free histones are basically non-existent in a cellular context. If not incorporated into chromatin, histones reside in a chaperone-associated form that either shields their hydrophobic histone-histone (Natsume, Eitoku et al. 2007) or buffers their charged surface (Andrews, Chen et al. 2010) preventing improper nucleosome assembly, unspecific binding to DNA and unscheduled histone degradation. Chaperones have overlapping as well as unique roles in histone binding, buffering and transfer (De Koning, Corpet et al. 2007) and (Gurard-Levin, Quivy et al. 2014)). In brief, mammalian NASP (nuclear autoantigenic sperm protein) binds to canonical H3-H4 dimers protecting them from degradation and regulating their transfer into the nucleus. Nap 1 (Nucleosome-assembly protein 1) carries out similar functions as NASP, but acts on H2A-H2B dimers. While NASP and Asf1 (anti-silencing function 1) have overlapping roles in buffering soluble pools of canonical H3-H4 within the nucleus, the FACT (facilitates chromatin transcription) complex associates with H2A-H2B dimers and plays a major role in safeguarding histones before and after the passage of transcription polymerases. The CAF-1 (chromatin assembly factor 1) complex has a unique function in regulating H3.1-H4 assembly into nucleosomes during replication. In contrast, DAXX (death domain–associated protein) and HIRA
(histone regulator A) coordinate H3.3-H4 dimer assembly independent of new DNA synthesis, often in a transcription coupled manner.

Following the assembly of histones into chromatin-bound nucleosomes, the level of nucleosome packaging and the access of DNA binding proteins to specific sequence motifs can be altered by chromatin remodeling complexes (remodelers) (Fig. 1c). Remodelers do not assemble new nucleosomes from histone dimers, yet they often work in concert with or subsequent to chaperones. Remodelers contain subunits that bind histones, such as the actin related proteins Arp4, Arp5, Arp7, Arp8 and Arp9 in S. cerevisiae, which bridge between chaperone function and remodeler action (Fig. 1bc). Remodelers also contain a catalytic subunit that harbors a large Swi2/Snf2 (switch/sucrose non-fermenting) ATPase. This subunit uses the energy of ATP hydrolysis to exchange histone variants as well as evict, slide and space nucleosomes along DNA. Such actions regulate gene transcription, DNA replication, repair and chromatin structure genomewide (Clapier and Cairns 2009) and (Seeber, Hauer et al. 2013)). Except for human Alc1 (amplified in liver cancer 1) and Fun30 (yeast function unknown protein 30, SMARCAD1 in humans), the majority of Snf2 ATPases act as part of large macromolecular assemblies. Each catalytically active ATPase is surrounded by different auxiliary subunits, including DNA helicases, histone modifying enzymes, histone mark readers, actin related proteins and actin itself. Some of these subunits are shared among remodeling complexes, others are unique. An in-depth overview on chromatin remodeler composition and function with a focus on DNA damage and repair is given in Chapter 2 as well as in (Clapier and Cairns 2009).

Higher-order chromatin folding and subnuclear organization

While the role of the nucleosome as the basic repeating unit of chromatin is clear (Fig. 1d), there is a continuing debate whether or not interphase chromatin is organized into a solenoid helix, that was called the 30nm fiber (Fig. 1g). In the 30 nm fiber folding model, regularly spaced nucleosomal arrays of the 10nm fiber level (primary structure) are folded into a 30nm fiber (secondary structure), which itself can be subjected to larger-scale configurations (tertiary structure) through long range chromatin interactions. This higher-order structure defines the way chromatin occupies the nuclear space (Zhou, Fan et al. 2007). The formation of a 30nm fiber requires the selective binding of nucleosomes that are in close proximity to each other on the DNA strand, and generally histone modifications, linker lengths and linker histones themselves (e.g. H1) determine whether a “one start” solenoid or a “two start” zigzag helix is formed (Dorigo, Schalch et al. 2004, Schalch, Duda et al. 2005, Robinson, Fairall et al. 2006, Li and Reinberg 2011). In contrast to the 30nm fiber model which is largely based on the folding of the nucleosomal fiber in vitro, other studies argue based on in vivo measurements, that interphase chromatin is a mesh of 10nm fibers (beads on a string) (Eden Fussner 2010). Thus, an alternative model proposes that interphase nucleosomes
exist in a highly disordered, interdigitated state that prevents the formation of 30nm fibers (Zhou, Fan et al. 2007, Maeshima and Eltsov 2008, Luger, Dechassa et al. 2012). Similar to the 30nm fiber model, the state of interdigitation is thought to be regulated by nucleosome spacing, nucleosome composition and other chromatin associated proteins (Luger, Dechassa et al. 2012). Thus, the existence of secondary and tertiary structural elements in vivo remains controversial. Nonetheless, it is clear that modifying the plasticity and the dynamics of chromatin can have dramatic effects on DNA metabolism.

Beyond the higher order folding of the chromatin fiber, chromatin domains and chromosomes themselves are ordered within the nuclear space. In yeast, chromosomes assume a Rabl conformation (Fig. 1h), through which all centromeres cluster at one point, near the membrane-embedded spindle pole body (SPB), while telomeres are anchored at other sites around the nuclear rim (Gotta, Laroche et al. 1996, Bystricky, Laroche et al. 2005, Duan, Andronescu et al. 2010). Furthermore, the highly repetitive and transcribed rDNA is found in a single, crescent shaped nucleolus in yeast, which defines yet another subnuclear compartment. Apart from spatially organizing chromosomes, nuclear position can also have far reaching effects on transcription (Taddei, Van Houwe et al. 2006) and DNA repair (Nagai, Dubrana et al. 2008, Oza, Jaspersen et al. 2009).

Chromatin dynamics during DSB repair

All cells, post-mitotic or proliferating, are challenged by thousands of DNA damaging events every day. Damage is induced by exogenous (radiation, radiomimetic cancer drugs or toxins) as well as endogenous (free radicals from cell internal metabolism) agents (Lindahl and Barnes 2000, Jackson and Bartek 2009). One of the most common sources of exogenous damage to which we are exposed every day is solar ultraviolet (UV) light. When the high energy from short wavelength UV rays is released on the DNA backbone, thymidine base dimers are formed. Such bulky DNA adducts can be bypassed by translesion synthesis (TLS) or efficiently repaired through a process called nucleotide excision repair (NER). If left unresolved, such adducts pose a barrier to replicative or transcription polymerases and can cause the formation of single-stranded (SSBs) as well as double-stranded (DSBs) DNA breaks. The same threat applies to endogenous replication stress which is caused through excessive DNA base damage or by a lack of free nucleotides for de-novo DNA synthesis. When replication forks collapse, both SSB and DSB formation has been observed. In contrast to breaks which are formed through cellular processes, ionizing radiation (IR) or radiomimetic drugs like Zeocin (also known as Bleomycin) can more directly induce SSBs and DSBs (Povirk, Wubter et al. 1977).
DNA damage checkpoint activation and homology directed DSB repair

Given the diversity of DNA lesions possible, a large array of specialized repair pathways has evolved, employing a multitude of repair proteins, some dedicated to unique types of repair, and others serving multiple pathways. Common to most genomic insults is the activation of the DNA damage response pathway (DDR). It is initiated by a highly conserved kinase signaling cascade called the DNA damage checkpoint (DDC) (Fig. 2a). Following damage sensing and activation of a central DDC checkpoint kinase, downstream transducer proteins, some of which are also kinases, initiate and fine-tune repair pathway choice and recovery. A DSB can trigger one of two major repair pathways. Non-homologous end joining (NHEJ), which ligates the free DNA ends back together, or homologous recombination (HR) which copies information from a DNA template (the sister chromatid or an ectopic donor) to repair the break (Heyer, Ehmsen et al. 2010) and (Symington and Gautier 2011). Post-mitotic mammalian cells prevalently use NHEJ, whereas replicative cells show a substantial, albeit low level of HR. Yeast spend much of their lifetime in S- or G2-phase which makes HR the preferred pathway for DSB repair. While NHEJ can be error prone and introduce small insertions or deletions (INDELs), HR faithfully restores the original sequence information. If HR is not mediated by an intact sister chromatid, but by the homologous chromosome, it is possible that a diploid cell might lose its heterozygous state (LOH).

A DSB repaired by HR is first bound by the damage sensing MRX/MRN complex which activates the key checkpoint kinases Mec1/ATR and Tel1/ATM (Fig. 2c). Transducer proteins (Rad9/53BP1, MDC1) help to transmits the damage signal to downstream effector kinases (Rad53/CHK2, CHK1) and trigger full DDC activation. This response spreads within the entire nucleus and stimulates the recruitment of repair proteins to the sites of DNA damage. Early repair factors like helicases (Sgs1/BLM) disentangle DNA to facilitate resection by the exonucleases Sae2/CtIP, EXO1 and DNA2. Helicase action highlights the fact that DNA structure needs to change during repair. This becomes especially important during HR directed DSB repair as it requires both the access to the lesion as well as to the homologous templates for later D-loop formation, strand invasion and successful repair.

Nucleosomes can obstruct repair factor access (Fig. 2c). To overcome this barrier, several chromatin remodeling complexes like INO80-C, SWR1-C/SRCAP-C and RSC are recruited to DSB sites (Morrison, Highland et al. 2004, van Attikum, Fritsch et al. 2004, Chai, Huang et al. 2005). Remodelers shift nucleosomes, exchange histone variants or evict whole nucleosomes. This is thought to increase chromatin accessibility for repair. For instance, INO80-C binds to H2A.Z containing nucleosomes where it exchanges H2A.Z-H2B dimers for canonical H2A-H2B (Papamichos-Chronakis, Watanabe et al. 2011). The reverse action is catalyzed by SWR1-C which incorporates H2A.Z–H2B dimers into nucleosomes in
a stepwise and unidirectional fashion (Luk, Ranjan et al. 2010). While INO80 and RSC have well studies roles in DSB repair, many other remodelers function on similar pathways. Another remodeler that has recently been implicated in DSB repair is Fun30 and its human homologue SMARCAD1. Both proteins were shown to promote Exo1 and Dna2-mediated long-range resection through chromatin (Chen, Cui et al. 2012, Costelloe, Louge et al. 2012, Eapen, Sugawara et al. 2012). In vivo, Fun30 acts as a bone fide remodeler, being able to catalyze histone dimer exchanges and nucleosome re-positioning (Awad, Ryan et al. 2010). In yeast, Fun30 binding to DSBs has recently been shown to depend on an interaction network including the damage scaffold protein Dpb11/TopBP1 and the 9-1-1 complex (Bantele, Ferreira et al. 2017). Furthermore, Fun30 has important roles in deactivating the DNA damage checkpoint after repair (Chen, Cui et al. 2012, Eapen, Sugawara et al. 2012). An extensive overview on remodeler action during DSB repair is given in Chapter 2.

Extensive resection creates long 3’ single stranded (ss) DNA overhangs flanking the break. Overhangs are subsequently bound and protected by the ssDNA binding complex RPA. Widespread RPA binding feeds back into the DDC through accumulation of additional Mec1/ATR. In both yeast and mammals this is accompanied by γH2A (γH2AX in mammals) phosphorylation; a mark which helps Mec1/ATR spreading. This further highlights the fact that chromatin serves as a signaling platform during DSB repair (Fig. 2c).
Figure 2 Checkpoint activation and DSB repair in the context of chromatin. (a) Proteins involved in DNA damage checkpoint activation in response to a DSB. Mammalian proteins are capitalized. (b) DSB repair pathways. Blue protein names refer to yeast proteins corresponding mammalian names are in brackets and brown. Proteins without a yeast homologue are brown with no bracket. Dashed lines indicate DNA synthesis. DSBs can be repaired by at least three pathways: non-homologous end joining (NHEJ), single-strand annealing (SSA) and homologous recombination (HR). Adapted from (Heyer, Ehmsen et al. 2010). (c) Both the DNA damage checkpoint and DSB repair need to integrate into chromatin. The key steps and the main players during HR directed DSB repair are listed. The first panel highlights early steps after DSB occurrence. The second panel illustrates DSB processing and spreading of the DDC signal. The last panel shows the Rad51 nucleofilament before homology search and later strand invasion and repair.
Rad51 nucleofilament formation follows RPA binding and is initiated through Rad52-dependent displacement of RPA. The nucleofilament then engages in a physical search for its homologous template which can be the sister chromatid if replication has already occurred, or an ectopic, non-sister donor sequence. This process of homology search has long been considered as one of the central mechanisms which would require chromatin movement. Physically moving DNA within the nucleus requires structural changes within chromatin. Thus, both damage signaling and repair needs to be integrated within chromatin. Chromosomes undergo spatial organization and compartmentalization within the nucleus. Thus, an inherently difficult task is presented to homology directed repair if the donor template is spatially distant or even in another subcompartment of the nucleus. Cells solve this dilemma through controlled relocalization events and by increasing the physical mobility of damaged DNA within the nucleus - both processes are thought to promote homology search and repair and will be discussed in detail.

DSB repair within the nuclear space – a matter of position

The 16 yeast chromosomes assume a Rabl conformation within the interphase nucleus. Both their terminal ends and their central regions undergo clustering and subcompartmentation. Telomeres come together in 4-5 foci at the nuclear periphery. Centromeres also cluster spatially at the inner nuclear membrane through microtubules that link the centromere to the yeast centrosome equivalent, called the spindle pole body (SPB) (Fig. 1h) (Bystricky, Laroche et al. 2005, Duan, Andronescu et al. 2010). Whereas in species with an open mitosis the centrosome-kinetochore link is set up only in mitosis, in budding yeast, which has a closed mitosis, short MTs link chromosomes to the SPB throughout the cell cycle. The SUN (Sad1-Unc-84-related) domain protein Mps3 and the acidic Esc1 protein are integral parts of the inner nuclear membrane and independently anchor telomeres to suppress subtelomeric recombination (Schober, Ferreira et al. 2009). However, telomere positon is dynamic and when they become critically short, they are released from their peripheral anchor for telomerase-dependent elongation (Ferreira, Luke et al. 2011). This observation, together with the notion that Rad52 foci, are preferentially found internally (Bystricky, Van Attikum et al. 2009) led to the general hypothesis that canonical homologous recombination is favored within the interior of the nucleus while the periphery suppresses recombination and favors alternative repair pathways (Horigome, Bustard et al. 2016). Nuclear compartmentalization is conserved among species and different chromosomes occupy distinct regions within the nucleus. Furthermore, in all species known, heterochromatin domains cluster together (Taddei and Gasser 2012)).

The main gate that controls traffic in and out of the nucleus is the nuclear pore complex (NPC). It consists of more than 30 different protein species which form subcomplexes that are arranged in an eight-fold symmetry and penetrate the outer and inner nuclear membrane (Bukata, Parker et al. 2013).
Nup84 subcomplex has been identified to serve as a binding site for persistent DSBs (Nagai, Dubrana et al. 2008, Kalocsay, Hiller et al. 2009, Oza, Jaspersen et al. 2009) which occur at collapsed replication forks (Nagai, Dubrana et al. 2008, Su XA 2015), in subtelomeric regions (Therizols, Fairhead et al. 2006) or can be artificially induced by endonuclease expression (Fig. 3) (Nagai, Dubrana et al. 2008, Oza, Jaspersen et al. 2009). It was further noted that DSBs localize to another type of inner nuclear membrane protein - the SUN domain protein Mps3 in budding yeast. This is equally true in the fission yeast Schizosaccharomyces pombe where DSBs associate with Sad1, a member of the LINC (linker of nucleoskeleton and cytoskeleton) complex. Studies by the Gasser and King laboratories have investigated the requirements for DSB binding to Nup84 and/or Mps3 and identified the factors which distinguish them (Horigome, Oma et al. 2014, Swartz, Rodriguez et al. 2014). The association of DSBs with Nup84 was further shown to occur independent of the cell cycle phase and required neither the chromatin remodeler INO80C nor the recombinase activity of Rad51. Hence, extensive resection of the break was dispensable (Horigome, Oma et al. 2014). In contrast, Mps3 or Sad1 binding happened uniquely in S/G2 phase and was dependent on resection. Here, binding to Mps3 further required both INO80 remodeling function and Rad51 activity. Importantly, direct targeting of SWR1 via LexA fusions shifted chromatin to the nuclear periphery even in the absence of DNA damage (Yoshida, Shimada et al. 2010, Horigome, Oma et al. 2014). SWR1 mediated Htz1 (H2A.Z) incorporation was necessary for both binding to pores and Mps3. Horigome et al., moreover, used a functional assay that scored for sister chromatid exchange and showed that mutations in the two binding sites have additive repair defects. This suggested that sequestration at Mps3 and the nuclear pore regulate different DSB repair outcomes.

Previous work indicated that the Slx5/Slx8 SUMO-targeted ubiquitin ligase (STUbL) interacts with nuclear pores both in yeast (Nagai, Dubrana et al. 2008) and the fly Drosophila melanogaster (Ryu, Spatola et al. 2015). In addition, several studies identified Slx5/Slx8 as a suppressor for gross chromosomal rearrangement (GCR) events (Zhang, Roberts et al. 2006, Nagai, Dubrana et al. 2008). Combined with the notion that STUbLs contain SUMO-interacting motifs (SIMs) (Sarangi and Zhao 2015) and the fact that repair proteins of many different pathways are SUMOylated (Cremona, Sarangi et al. 2012, Psakhye and Jentsch 2012) it became obvious to test whether SUMO ligases contribute to the relocation of damage to the nuclear envelope. The question arose whether Slx5/Slx8 has an active role in relocating DSBs or instead processes them at the periphery? Four recent studies (Ryu, Spatola et al. 2015, Su XA 2015, Churikov, Charifi et al. 2016, Horigome, Bustard et al. 2016) have addressed this question
at induced DSBs, eroded telomeres, and collapsed replication forks in budding yeast and Drosophila (Seeber and Gasser 2016)). In yeast, polySUMOylation mediated by the E3 ligases Siz2 and Mms21 targeted Slx5/Slx8 to persistent breaks in G1 phase with both Slx5 and Slx8 being indispensable for damage relocation to nuclear pores. In contrast, monoSUMOylation during S phase was sufficient to shift resected breaks to Mps3. Here, relocation occurred independently of Slx5/Slx8. Functionally, Slx5/Slx8-dependent DSB binding to pores appears to favor repair by ectopic break-induced replication (BIR) and/or imprecise end-joining. In a parallel study by the Chiolo laboratory using Drosophila cells, it was
shown that DSBs in heterochromatin, which are known to accumulate at the outer rim of heterochromatic domains (Chiolo, Minoda et al. 2011) (Fig. 3), shifted further towards the nuclear periphery (Ryu, Spatola et al. 2015). While relocation events followed the same SUMOylation and STUbL dependencies as in yeast, binding differed since it occurred both at nuclear pores and the fly Mps3 homologues Koi and Spag4 (Chiolo, Minoda et al. 2011).

Whereas these two studies focused on induced DSBs, similar work was pursued by the Gelli and Lisby laboratories which focused on the molecular requirements for the relocation of eroded telomeres to the nuclear periphery. Shortened telomeres arise from replicative ageing-related telomerase loss (Churikov, Charifi et al. 2016) (Fig. 3). Once critically short, they become unprotected and elicit Mec1-dependent checkpoint activation and growth arrest (Hector, Ray et al. 2012). Most of the cells die or remain arrested, but some survivors can escape by rearranging their telomeres through rare recombination events (Zakian 1999). Churikov et al. found that critically shortened telomeres are relocated to the NPC in a SUMO-dependent pathway very similar to that observed at DSBs in yeast and Drosophila. The shift of eroded telomeres to the NPC involved Slx5-Slx8-dependent targeting of poly-SUMOylated proteins and is proposed to facilitate telomere repair events either through de-SUMOylation or proteasomal degradation events (Churikov, Charifi et al. 2016).

Collectively, these studies defined a conserved and SUMOylation-dependent pathway which shifts damage from a subnuclear context to a peripheral anchor – either being the NPCs or the inner nuclear membrane protein Mps3/SUN1. In this context, relocation is thought to favor alternative repair pathways whereas failure to move appears to be detrimental for the recovery from the insult.

Repair in heterochromatic domains: Where DSB relocation integrates with chromatin structure

Apart from shifting damage to the nuclear periphery, DSB relocation events have been observed in the context of heterochromatin. Heterochromatic regions consist of highly repetitive sequences which are prone to non-allelic, ectopic recombination. Illegitimate recombination events can cause translocations, duplications and deletions often found in human diseases such as cancer and infertility (Pearson, Nichol Edamura et al. 2005). To preserve genome integrity, repair within these regions needs to be tightly regulated. Compared to HR, NHEJ in repetitive DNA is potentially less problematic as small insertions or deletions would not affect the overall function of tandem repeats as severely as genes. Thus, the question remained whether heterochromatic DSBs are repaired either by NHEJ, HR or both. Furthermore, it was not known whether the highly compacted and rigid heterochromatin domains would need to be expanded in response to DNA damage to allow repair protein access. Studies on the spatial dynamics of DSB repair
in the context of heterochromatin greatly benefited from the organization of heterochromatic regions in a distinct domain within the nucleus, a phenomenon conserved from yeast to man.

In yeast and humans, the highly transcribed and repetitive rDNA elements cluster together in a prominent subnuclear domain – the nucleolus. This site of ribosome biosynthesis separates from the rest of the genetic material and displays heterochromatic properties. An early study in yeast found that induced DSBs in the rDNA context need to shift their position and move towards the outside of the nucleolar volume in order to be processed for homologous recombination (Torres-Rosell, Sunjevaric et al. 2007). Nucleolar exclusion depended on Rad52 SUMOylation by the Smc5/6-Mms21 SUMO ligase complex and is thought to prevent illegitimate recombination events within the clustered rDNA repeats. Consequently, mutations which abrogated this shift caused rDNA hyperrecombination and genome instability (Torres-Rosell, Sunjevaric et al. 2007). Recently, two reports showed remarkable conservation of this pathway in human cells (Harding, Boiarsky et al. 2015, van Sluis and McStay 2015). In both studies, persistent DSB in the rDNA reorganized within the nucleolus shifted away from this repetitive compartment, exactly as had been described in yeast (Torres-Rosell, Sunjevaric et al. 2007, Harding, Boiarsky et al. 2015, van Sluis and McStay 2015). This coincided with ATM-dependent inhibition of RNA polymerase I, an important step to prevent collision between the repair and transcription machineries. Harding et al. additionally found that NHEJ was the prevalent pathway allowing transcriptional restart if repair could occur quickly (Harding, Boiarsky et al. 2015).

Pericentric and centromeric repeats in humans and flies are also organized in a heterochromatic subcompartment within the nucleus, and the Karpen laboratory made the interesting observation that pericentric DSB repair happened with striking similarities to the rDNA situation in flies. Namely, irradiation-induces DSBs in heterochromatin were relocated before they could be repaired by HR (Chiolo, Minoda et al. 2011). Whereas proteins involved in early resection events were rapidly recruited to the breaks, recombination steps that involved Rad51 mediated strand invasion only occurred after the shift (Chiolo, Minoda et al. 2011). Break relocation itself depended on checkpoint and resection proteins whereas the Smc5/6 SUMO E3 ligase complex was required to exclude Rad51 from heterochromatic domains and prevent abnormal recombination (Chiolo, Minoda et al. 2011). As described above, the Chiolo lab now extended this Drosophila study, showing that pericentromeric DSBs further undergo SUMOylation dependent anchoring to the NPC or at inner nuclear membrane proteins after having relocated to the edge of the heterochromatic domains (INMPs) (Ryu, Spatola et al. 2015). This appears to be an essential step before Rad51 recruitment could occur to promote HR repair.
Most of the studies discussed so far uniquely addressed HR repair of heterochromatic DSB and found that it happened only after breaks had relocated away from the repressive compartment (Torres-Rosell, Sunjevaric et al. 2007, Ayoub, Jeyasekharan et al. 2008, Chiolo, Minoda et al. 2011, Jakob, Splinter et al. 2011, Harding, Boiarsky et al. 2015, Ryu, Spatola et al. 2015, van Sluis and McStay 2015). Moreover, a subset of these studies reported repair kinetics in the context of heterochromatin to be significantly slower as in euchromatin (Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). When Harding et al. compared the kinetics of HR and NHEJ specifically in heterochromatin, these two major repair pathways showed further temporal variation (Harding, Boiarsky et al. 2015). On the one hand, the general impact of NHEJ in heterochromatin repair is questioned and on the other hand it raises questions concerning the exact timeframe of both HR or NHEJ in repetitive genomic regions. Two recent studies refine previous findings and provide answers to both questions (Janssen, Breuer et al. 2016, Tsouroula, Furst et al. 2016). Jannsen and colleagues used an in vivo system to induce heterochromatic or euchromatic single DSBs in Drosophila and followed their repair kinetics in space and time. Their results recapitulated the spatio-temporal dynamics of irradiation induced breaks (Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). Yet, live cell imaging together with sequence analysis of repair products revised earlier findings by showing that DSBs in euchromatin and heterochromatin follow strikingly similar repair kinetics and employ both NHEJ and HR (Janssen, Breuer et al. 2016). The spatial uncoupling of DSB repair pathways (NHEJ vs. HR) in mammalian heterochromatin was addressed by the Soutoglou laboratory and provided answers to how repair varies in different heterochromatic compartments (Tsouroula, Furst et al. 2016). Sophisticated microscopy techniques were used to track the repair of CRISPR-Cas9-induced, pericentric or centromeric DSBs during different stages of cell cycle. While pericentric breaks in G1 phase were repaired by NHEJ and remained positionally stable, HR during S/G2 could only occur after breaks had relocated to the edge of the pericentric domain. Centromeric breaks behaved differently and all repair events underwent heterochromatic exclusion. DSB relocation was further found to depend on DNA resection followed by Rad51/BRCA2 binding and DSB stabilization to prevent repair by another, deleterious recombination pathway called single-strand annealing (SSA) (Tsouroula, Furst et al. 2016).

In conclusion, these results emphasize the general importance of spatially separating HR mediated repair events from highly repetitive sequences. In heterochromatic regions, a SUMOylation and StUBL dependent pathway shifts damage away from the repeats such that DSBs are physically isolated from other ectopic sequences, a mechanism most likely preventing aberrant recombination. While the functional importance and the key players of this process have been fairly well described, the question remains whether highly compacted and inaccessible heterochromatin domains undergo additional structural changes in response to DNA damage. This hypothesis becomes tempting as changing chromatin structure
after DNA insults would both provide a basis for the observed long-range shifts of broken DNA as well as increase the access of repair proteins to the lesions.

Chromatin unfolds in response to DNA damage

Heterochromatin is highly compacted and inaccessible. This restrictive chromatin nature mainly relies on densely packaged nucleosomes, repressive histone marks (H3K9me3, H3K27me3) and other heterochromatin binding proteins such as HP1 and KAP-1 (Goodarzi, Noon et al. 2008, Polo, Kaidi et al. 2010). Since both NHEJ and HR reactions still need to occur close to or within heterochromatin, it was proposed that the accessibility of such domains must increase in response to DNA damage. Several studies have proven this hypothesis just and show that DNA damage indeed causes heterochromatin to unfold. In human fibroblasts or mouse NIH3T3 cells, chromatin relaxation in response to IR happened as a result of ATM-dependent KAP-1 phosphorylation and its subsequent loss from heterochromatin (Ziv, Bielopolski et al. 2006, Goodarzi, Noon et al. 2008, Beucher, Birraux et al. 2009, Goodarzi, Kurka et al. 2011, Woodbine, Brunton et al. 2011, Lee, Goodarzi et al. 2012). Interestingly, CHD3 (Goodarzi, Kurka et al.), a remodeler involved in chromatin compaction and gene repression (Denslow and Wade 2007) also dissociated upon KAP-1 phosphorylation. Comparable events were seen after treatment with tert-butyl hydroperoxide (TBH), an agent which confers oxidative damage (Woodbine, Brunton et al. 2011). Moreover, the yeast remodeler enzyme SWI/SNF facilitated Rad51 and Rad54 dependent strand invasion by alleviating heterochromatic constraints during recombinational repair in vitro (Sinha, Watanabe et al. 2009). In *Drosophila*, both checkpoint kinases ATM and ATR are required for global heterochromatin expansion which triggers DSB relocation together with an increase in the access of HR factors like Rad51 (Chiolo, Minoda et al. 2011, Ryu, Spatola et al. 2015). While heterochromatin relaxation equally occurs at site-specific, CRISPR-Cas9-induced DSBs in mice NIH3T3 cells, it was found that the the compacted state at pericentric or centromeric regions was neither refractory to RAD51 nor to KU80 (Tsouroula, Furst et al. 2016). Furthermore, RAD51 recruitment patterns were not altered after forced heterochromatin relaxation either through treatment with the deacetylase inhibitor Trichostatin A (TSA) or by tethering of the transcriptional activator VP64 (Tsouroula, Furst et al. 2016). The question whether heterochromatin expansion is functionally linked to relocation and whether it needs to occur before a DSB can be moved towards the edge of repressive domains is therefore currently under dispute. Tsouroula *et al.* further observed that heterochromatin expansion did neither cause KAP-1 alleviation nor a reduction in the heterochromatin-associated repressive mark H3K9me3 (Tsouroula, Furst et al. 2016). Surprisingly, H3K9 methylation even increased around DSBs. This is to some extent in line with observations previously made by the Misteli laboratory (Burgess, Burman et al. 2014). Here, laser-irradiation caused rapid chromatin
expansion but was followed by a localized compaction. The re-compaction was found to be important for checkpoint signaling but not for repair which suggests that specific chromatin configurations regulate different aspects of the DDR (Burgess, Burman et al. 2014). Furthermore, unfolding and compaction might happen at different time-scales after DNA damage indicating a blockage to certain factors while allowing the access of others. The exact mechanism that causes heterochromatin to unfold in response to DNA damage, and the extent to which re-compaction is integral to the DDR in human and mouse cells remains subject to further investigation.

Chromatin compaction in telomeres is also investigated in mammalian systems. Telomeres are structures with long TTAGG repeats that extend over many kilobases and end in a 3’ ssDNA overhang which, if left unprotected, appears like a resected DSB ready for recombination. The shelterin complex (comprised of TRF1, TRF2 and other proteins) binds to telomeric ends and bends them into a protective form called “t-loop”. T-loop formation blocks ATM binding which prevents DDR activation and illegitimate recombination events (Marcomini and Gasser 2015)). It has further been proposed that shelterin might mediate chromatin compaction at telomere ends as another means to prevent aberrant DNA damage signaling (Bandaria, Qin et al. 2016). Since DDR signaling is not strictly inhibited by chromatin compaction (Ziv, Bielopolski et al. 2006, Goodarzi, Noon et al. 2008) and chromatin re-compaction can, in some cases, even amplify DDC signaling (Burgess, Burman et al. 2014), it was difficult to predict a priori whether chromatin compaction could protect telomeres from DDR signaling. Bandaria et al. used super-resolution microscopy in HeLa cells and showed that the shelterin complex together with telomeric DNA organizes human telomeres into compact globular structures. Interestingly, knockdown of individual shelterin subunits or mutations that interfered with its assembly caused a 10-fold increase in telomere volume which was indicative for chromatin unfolding and directly linked to the accumulation of DDR signals at telomeres. This suggests that DNA compaction reduces the access of DDR factors at telomeres, hence termed the “telomere compaction model” (Bandaria, Qin et al. 2016).

Two recent studies now challenge this idea (Timashev, Babcock et al. 2017, Vancevska, Douglass et al. 2017). Super-resolution STROM microscopy in HeLa cells depleted for TRF1, TRF2 or both (Vancevska, Douglass et al. 2017) or in mouse cells (Timashev, Babcock et al. 2017) showed that accumulation of DDR markers like yH2A.X or 53BP1 at telomeres can occur without widespread chromatin decompaction (Timashev, Babcock et al. 2017, Vancevska, Douglass et al. 2017). In both cases, the knockdown of shelterin factors only affected the size of a small DDR-positive telomere subset, consistent with an increase in TTAGG fish signal. This is indicative of a previously known 53BP1-dependent clustering of dysfunctional telomeres. Whereas these studies neither exclude nor definitely
prove the possibility that a compacted chromatin state protects telomeres from aberrant DDR signaling (Parks and Stone 2017), they do contribute to our understanding of telomere protection and the function of chromatin compaction in DDR signaling.

DNA damage is not restricted to heterochromatin or telomeres but occurs everywhere in the genome. As a consequence, the barrier of nucleosomes which confer global chromatin compaction needs to be overcome to allow repair factor binding. Accordingly, chromatin decondensation was found to be a universal prerequisite to promote repair of different DNA lesions including base damage, SSBs and DSBs. UV light causes base damage which is repaired by a process called nucleotide excision repair (NER). In this pathway, the detection of DNA lesions is stimulated by the damaged DNA-binding protein 2 (DDB2), a member of the cullin-RING ubiquitin ligase (CRL4) complex (Marteijn, Lans et al. 2014). ZRF1, another NER protein, stabilizes the CRL4 complex at damaged sites (Gracheva, Chitale et al. 2016) and DICER processed non-coding RNAs were also found to assist in repair (Francia, Michelini et al. 2012, Wei, Ba et al. 2012). Fluorescence microscopy experiments in hamster AO3 cells showed that DDB2 elicits the unfolding of large chromatin structures at UV-induced damage sites in an ATP-dependent manner (Luijsterburg, Lindh et al. 2012). Interestingly, this agreed with a DDB2- and PARP1-dependent reduction in core histone density around the lesion (Luijsterburg, Lindh et al. 2012). Furthermore, the direct targeting of DDB2, ZRF1 or DICER to chromatin by a LacI fusion protein allowed the unfolding of chromatin even in the absence of DNA damage (Adam, Dabin et al. 2016, Chitale and Richly 2017). Under these conditions, DICER and ZRF1 function were shown to depend on PARP1 while the catalytic activity of DICER was dispensable (Chitale and Richly 2017).

Chromatin decompaction is also observed at DSBs which repair via NHEJ or HR. In human U2OS cells, PARP1 was shown to recruit the CHD2 remodeler to multiphoton micro-irradiation induced DSBs through a poly(ADP-ribose)[PAR]-binding domain. CHD2 triggered rapid chromatin expansion and the deposition of histone variant H3.3 (Luijsterburg, de Krijger et al. 2016). This was further required to assemble the NHEJ complex at broken chromosomes and promote efficient DSB repair (Luijsterburg, de Krijger et al. 2016). Another microscopy-based study used a molecular flow assay to measure chromatin compaction around irradiation induced DSBs (Hinde, Kong et al. 2014). By analyzing the flow of EGFP molecules into chromatin before and after DSB induction, Hinde et al. found that DNA damage induces a transient decrease in chromatin compaction which in turn facilitated NHEJ repair factor (Ku70) recruitment to the lesions (Hinde, Kong et al. 2014).
Similar effects were recently shown to occur during homology directed DSB repair in yeast. A study by the Gasser and Holcman laboratories used improved time-lapse imaging regimes and super-resolution microscopy to follow the spatial occupancy of chromatin in response to DNA at site-specific DSB (Amitai, Seeber et al. 2017). Amitai and colleagues found that INO80-dependent chromatin expansion also occurred at site specific DSBs and further used mathematical polymer models which predicted that chromatin unfolding would favor DSB extrusion from compacted domains (Amitai, Seeber et al. 2017). These predictions held true during in vivo experiments and could explain how DSBs are excluded from the nucleolar volume for HR repair (Amitai, Seeber et al. 2017).

In summary, both mammalian and yeast chromatin unfolds and, in some cases, re-compacts in response to DNA damage. This is true for heterochromatic and euchromatic domains and potentially regulates different repair reactions and safeguards genome stability by modulating repair factor access. To some extent, telomere protection follows the same principles. Interestingly, all of these findings indicate large-scale changes in chromatin structure. However, the mechanism by which DNA relocates cannot be simply explained by chromatin expansion and other pathways must be at play to physically move broken DNA from one compartment to the next. This tempting hypothesis has found prove in a number of different studies which show how broken DNA increases its mobility within the nucleus with implications in HR repair both in yeast and mammalian cells (Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Lottersberger, Karssemeijer et al. 2015, Amitai, Seeber et al. 2017, Hauer, Seeber et al. 2017).

Chromatin mobility: On the move with native and broken DNA

nuclear envelope such as pores (Verdaasdonk, Vasquez et al. 2013, Horigome, Oma et al. 2014), the inner nuclear membrane protein Esc1 (Gasser, Hediger et al. 2004) or the spindle pole body (SPB) (Verdaasdonk, Vasquez et al. 2013, Strecker, Gupta et al. 2016, Lawrimore, Barry et al. 2017). Exemplary studies forced Silent Information Regulator (SIR) complex assembly on ectopic plasmids which shifted them to the nuclear envelope and abolished movement (Gasser, Hediger et al. 2004, Bupp, Martin et al. 2007). In contrast, circularizing the endogenous LYS2 locus into a 16 kb ring which caused the constraint movement of LYS2 to become freely diffusive after pop-out (Gasser, Hediger et al. 2004) argued for an additional source of drag that is posed on chromatin by the continuity and inherent flexibility of the chromatin fiber itself. Experiments which compared chromatin flexibility and the degree of movement at different loci along the genome enforced this notion (Verdaasdonk, Vasquez et al. 2013, Dickerson, Gierlinski et al. 2016). Furthermore, changing the local chromatin context directly impacted movement as seen in mobility changes after chromatin remodeler targeting (Neumann, Dion et al. 2012), the ablation of sister chromatid cohesion (Dion, Kalck et al. 2013), or forced nucleosome reduction from DNA (Bouck

Figure 4 The concepts of local DSB mobility. The formation of a DSB activates the DNA damage checkpoint. The key checkpoint kinase Mecl phosphorylates downstream effector proteins (Rad9 and Rad53) as well as chromatin remodeling complexes (INO80-C). If the DSB is repaired by HR, local repair proteins process the lesion and lead to the formation of the Rad51 nucleofilament which will enter homology search and engage in recombinational repair. Chromatin locally unfolds at the break site. This likely promotes extrusion from heterochromatic domains and increases the access of repair factors. Furthermore, DSBs become more mobile. This is thought to facilitate the homology search through nuclear space and promote relocation events to the nuclear periphery. Both the DNA damage checkpoint and chromatin remodelers have been implicated in DSB mobility.
Chapter 1: Introduction to Histone Dynamics in DNA Damage and Repair

and Bloom 2007, Verdaasdonk, Vasquez et al. 2013, Hauer, Seeber et al. 2017). Finally, INO80-dependent eviction of nucleosomes at the PHO5 locus in the absence of phosphate increases the movement of an appropriately tagged locus (Neumann, Dion et al. 2012). The notion that damaged chromatin underwent large structural changes and that DSBs were physically shifted either away from heterochromatic compartments (see previous paragraphs) or towards the nuclear periphery, made it tempting to test whether chromatin mobility would also change in response to DNA damage.

Investigations into this hypothesis have indeed shown that chromatin movement increases in response to DNA damage both at the site of an induced DSB (Fig. 4) (Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012) and genome-wide at undamaged sites when multiple DSBs were present in the genome (Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Hauer, Seeber et al. 2017). In both cases, the INO80 remodeler and proteins of the DDC were required for the increased mobility (Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Amitai, Seeber et al. 2017). Similar dependencies have recently been shown for mammalian cells where IR triggered an 53BP1 and ATM kinase dependent increase in locus movement (Lottersberger, Karssemeijer et al. 2015). Earlier work from the de Lange laboratory had shown that uncapped telomeres (which lack components of the protective shelterin complex) undergo increased movement and correlated with elevated rates of telomere end-to-end fusions. Both telomere movement and end-to-end fusion depended on 53BP1 (Dimitrova, Chen et al. 2008). In a more recent work, enhanced mobility of dysfunctional telomeres was further linked to SUN-domain-containing proteins which stay in contact with the LINC complex that bridges the nucleoskeleton to the cytoskeleton (Lottersberger, Karssemeijer et al. 2015). Following this intriguing observation, the authors also identified a role for cytoskeleton-bound kinesins in telomere fusions and the repair of internal breaks, suggesting that an active, kinesin-driven movement of the nucleus or elements in the nuclear envelope affects DSB repair (Lottersberger, Karssemeijer et al. 2015). In budding yeast, DSB mobility was correlated with efficient HR (Dion, Kalck et al. 2012, Hauer, Seeber et al. 2017), whereas DSBs that exhibited increased movement in human cells were more likely to result in genomic translocations events (Roukos, Voss et al. 2013). This argues that enhanced mobility is a tightly controlled and programmed event rather than a side effect of the DDR.

DSB mobility is thought to enhance the search for a homologous donor sequence required for DSB repair by HR (Rudin and Haber 1988, Weiner, Zauberman et al. 2009, Neumann, Dion et al. 2012). This seem to be especially important if the sister chromatid is equally broken or absent and an ectopic template becomes essential for successful repair. Furthermore, DSBs need to be mobile for relocation away from the bulk of heterochromatic repeats (Torres-Rosell, Sunjevaric et al. 2007, Chiolo, Minoda et al. 2011,
Harding, Boiarsky et al. 2015, Ryu, Spatola et al. 2015, van Sluis and McStay 2015, Tsouroula, Furst et al. 2016). Another benefit of increasing the mobility of DSBs or telomeres locally and the genome globally is to disassociate illegitimate pairing events during HR or re-attach a lost end for NHEJ (Lottersberger, Karssemeijer et al. 2015). However, the mechanisms that generate enhanced chromatin mobility have remained elusive.

Histone loss and the cytoskeleton affect chromatin mobility

Until recently, little was known about the mechanisms which drive chromatin mobility at site specific DSBs, genome-wide when multiple DSBs were present or at uncapped human telomeres (Torres-Rosell, Sunjevaric et al. 2007, Dion, Kalck et al. 2012, Mine-Hattab and Rothstein 2012, Seeber, Dion et al. 2013, Harding, Boiarsky et al. 2015, van Sluis and McStay 2015, Tsouroula, Furst et al. 2016). Recently, accumulating evidence shows that the movement observed at dysfunctional telomeres after the depletion of shelterin complex components can be linked to the cytoskeleton. Besides the implications of DDC checkpoint protein 53BP1 (Dimitrova, Chen et al. 2008, Lottersberger, Karssemeijer et al. 2015), increased mobility of uncapped telomeres could be reversibly inhibited by treating cells with the microtubule poison Taxol or Nocodazole (Lottersberger, Karssemeijer et al. 2015). Importantly, the same effect was seen upon knockout of the two LINC complex components SUN1 and SUN2 which indirectly link chromosomes to microtubules via nuclear-membrane-spanning KASH-domain Nesprin proteins. Interestingly, Taxol also reduced the movement of IR-induced damage foci (Lottersberger, Karssemeijer et al. 2015).

Another very recent study in mammalian cells used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of induced DSBs, yet another pathway that demands for chromatin mobility (Aymard, Aguirrebengoa et al. 2017). The results demonstrated that DSBs clustering occurred in actively transcribed regions and depended on both DDR proteins and cytoskeleton organizers; namely MRN, Formin 2 (FMN2, a nuclear actin organizer) and the LINC complex (Aymard, Aguirrebengoa et al. 2017). In summary, these studies imply that the forces applied by microtubules can be transduced to internal chromatin domains. In yeast, however, early experiments indicated a reverse effect and Nocodazole treatment was shown to increase the mobility of chromatin in the absence of damage (Marshall, Straight et al. 1997). This probably reflects the different roles of cytoskeletal filaments in yeast and man, as in budding yeast, subcellular organelles are more commonly positioned by actin filaments rather than by microtubules.

Intriguingly in yeast, the depletion of the KASH-like protein Csm4, a putative LINC complex component, similarly increased telomere movement, although most likely this was due to telomere
detachment (Spichal, Brion et al. 2016). Work from this laboratory further implicates the actin cytoskeleton in chromatin movement and showed that both cytoplasmic and nuclear actin contribute to locus motion, through a mechanism that appears to be independent of Csm4 (Spichal, Brion et al. 2016). A recent study by the Gasser laboratory showed that the effect of the actin cytoskeleton on chromatin mobility is likely caused by actin-driven nuclear oscillations rather than through a direct effect on chromatin (Amitai, Seeber et al. 2017). Consequently, actin depolarization with the cytotoxic Latrunculin A reduced nuclear rotation but did not prevent DSB-induced movement (Amitai, Seeber et al. 2017). Within the eukaryotic nucleus, actin has been detected in its monomeric, globular “G” form. Intriguingly, actin directly interacts with Actin Related Protein (Arp) containing chromatin remodelers like INO80-C. Since INO80 is necessary for damage-associated mobility (Dion, Kalek et al. 2012, Seeber, Dion et al. 2013, Hauer, Seeber et al. 2017), Latrunculin A could interfere with mobility by abrogating INO80-C-mediated changes in the nucleosome packing.

Previous experiments showed that histone level homeostasis impacts cellular aging, DNA repair and genome stability. Aging yeast cells and human fibroblasts exhibit a substantial loss of Histone H3 and Histone H4 (Feser, Truong et al. 2010, O'Sullivan, Kubicek et al. 2010) (Oberdoerffer 2010). Notably, this reduction in human fibroblasts seems to correlate with prolonged DDR signaling arising from eroded telomeres (O'Sullivan, Kubicek et al. 2010). While histone overexpression is sufficient to extend the replicative lifespan in yeast (Feser, Truong et al. 2010) it also coincides with a hypersensitivity to DNA damaging agents (Liang, Burkhart et al. 2012). Furthermore, overexpressed histone proteins accumulate as a free pool in the nucleus and the DDC protein Rad53 was shown to mediate their proteasome dependent degradation (Gunjan and Verreault 2003, Singh, Gonzalez et al. 2012). Taken together with the important function of chromatin remodeling enzymes in DSB mobility, it is likely that endogenous histone levels could also play a major role in damage-induced chromatin mobility. Here, controlled histone reductions would both provide a mechanism for local and global chromatin mobility in response to DNA damage. This hypothesis is supported by polymer modeling which predicts both the expansion of chromatin and the loss of constraining forces that limit chromatin movement. Amatai et al. could recently validate these predictions in vivo and showed that local DSB mobility is concurrent with remodeler-dependent unfolding. (Fig. 4) (Amitai, Seeber et al. 2017). However, the mechanisms that underlie enhanced chromatin mobility have remained elusive. In this thesis, I show that nucleosome degradation triggered by remodelers and checkpoint proteins enhances chromatin movement and accessibility, and promotes efficient repair (Chapter 4).
Histones have to go: The fate of nucleosomes during DNA damage and repair

Several pioneering studies from the Verreault and Gunjan laboratories, have shown that changing histone level homeostasis can impact DNA damage sensitivity. Early work in yeast identified a Rad53-dependent surveillance mechanism that regulates histone protein levels with implications in DNA repair (Gunjan and Verreault 2003). In this study, histone H3 was overexpressed from the galactose promoter. Consequently, excess histones accumulated in cells depleted for Rad53 (rad53Δ) resulted in slow growth, DNA damage sensitivity, and chromosome loss phenotypes (Gunjan and Verreault 2003, Liang, Burkhart et al. 2012). Interestingly, rad53Δ sensitivity to genotoxic agents was significantly suppressed by disruption of the HHT2-HHF2 gene cluster (hht2Δ-hhf2Δ) which reduced histone H3/H4 gene dosage. Equal benefits of reduced histone dosage have been reported at site-specific DSBs where HHT2-HHF2 deletion conferred survival after cut induction, apparently through HR repair (Liang, Burkhart et al. 2012). Interestingly, hht2Δ-hhf2Δ seemed to reduce the free pool of histones rather than the chromatin bound histone fraction (Gunjan and Verreault 2003, Liang, Burkhart et al. 2012). This was consistent with the observation that that Rad53 only targeted nonchromatin-bound histones for phosphorylation. Both free histones and proteins of the DDR have highly charged interfaces to interact with DNA. Furthermore, Rad53 has been shown to directly interact with histones (Gunjan and Verreault 2003). This led to the hypothesis that damage sensitivity caused by histone overexpression in rad53Δ cells could derive from excess histones binding to repair proteins and thus sequestering them away from the damage (Gunjan and Verreault 2003). Likewise, histone reduction would then promote survival after damage by increasing the amount of free repair proteins. Proteasomal degradation of histones in the Rad53 pathway was mediated by the E3 ligase Tom1 (Singh, Kabbaj et al. 2009, Singh, Gonzalez et al. 2012). The two ubiquitin conjugating enzymes (E2) Ubc4 and Ubc5 interacted with Rad53 in vivo and could ubiquitinate histones in vitro. Interestingly Rad53-mediated histone H3 phosphorylation at tyrosine 99 was critical for the degradation of this histone (Singh, Kabbaj et al. 2009). Thereafter, a screen based on sensitivities to histone overexpression identified additional histone E3 ligases in this process (Singh, Gonzalez et al. 2012).

Reduced histone levels have equally been observed after replicative ageing in human fibroblasts (O'Sullivan, Kubicek et al. 2010) (Oberdoerffer 2010) and (Pal and Tyler 2016)). Replicative aged cells show decreased levels in both histone transcription and protein levels. Interestingly this effect seems to derive from a chronic checkpoint response triggered by telomere shortening in the course of aging (O'Sullivan, Kubicek et al. 2010). Similar degrees of age-related histone level reductions were seen in yeast (Feser, Truong et al. 2010). Notably, cell longevity could be increased by bringing histone amounts back to their native level (Feser, Truong et al. 2010). This shows interesting parallels to a recently identified
process in which transient histone gene repression coincided with the recovery of mammalian cells from apoptosis (Tang, Talbot et al. 2017). This process has been termed “anastasis” and raises the interesting hypothesis that transient histone level reductions could be beneficial for growth recovery through mechanisms yet to be identified (Tang, Talbot et al. 2017). In contrast, forcing nucleosome loss from DNA in vivo can be detrimental in certain situations. The Neefjes laboratory showed that the chemotherapeutic agent doxorubicin (a topoisomerase II [TopoII] inhibitor) caused histone eviction from open chromatin and contributed to chemotherapeutic effects (Pang, Qiao et al. 2013). Doxorubicin was found to bind to the minor groove of DNA via its amino sugar (Frederick, Williams et al. 1990) and probably compete for histone or HMG protein binding (Pang, Qiao et al. 2013). On one hand, this is beneficial as doxorubicin evicted yH2A.X from the lesions caused by TopoII inhibition, and thereby attenuated the DDC, driving cancer cells into apoptotic cell death. On the other hand, the observed histone loss could explain the detrimental secondary effects of doxorubicin on slowly proliferating heart tissue, a rather unwanted effect (Pang, Qiao et al. 2013). Furthermore, the Henikoff group showed that doxorubicin-induced topoisomerase inhibition results in increased nucleosome turnover and salt solubility within gene bodies and suggest that mainly DNA torsional stress contributes to the destabilization of nucleosomes (Teves and Henikoff 2014). Of course a complete block of histone synthesis has more drastic effects: it blocks the cell cycle (Kim, Han et al. 1988), increases centromere separation and spindle length (Bouck and Bloom 2007), makes chromatin more susceptible to radiation damage (Celona, Weiner et al. 2011), impairs chromosome bi-orientation during mitosis (Murillo-Pineda, Cabello-Lobato et al. 2014) and leads to a global up-regulation of transcription (Kim, Han et al. 1988, Celona, Weiner et al. 2011, Hu, Chen et al. 2014).

Taken together these results show how reductions in nucleosome occupancy along DNA can cause detrimental effects in certain scenarios. Interestingly, this raises the possibility of using chromatin modifying drugs/methods to increase the success of cancer therapy in chemotherapeutic combination treatments.
Given that damage does not occur on naked DNA but in the context of chromatin, it is clear that repair must occur in accordance to the prime-repair-restore model (Fig. 5) (Soria, Polo et al. 2012). First, before a lesion can be repaired, it must firstly be made accessible to the repair machinery (“primed”). Secondly, repair needs to take place in the context of chromatin and finally, it is important to restore the chromatin/nucleosome context after repair. The repair and recovery from DNA damage has thus implications in both cell survival and epigenome maintenance (Soria, Polo et al. 2012, Adam, Dabin et al. 2015, Gerhold, Hauer et al. 2015). Histone degradation and mobilization after genomic insults and checkpoint activation is not restricted to DSBs and has been shown to occur both locally and globally in response to various DNA damaging agents. In that sense, the van Attikum laboratory has shown that chromatin remodeling alters nucleosome dynamics at IR induced DSBs as well as at sites of UV damage (Luijsterburg, Lindh et al. 2012, Luijsterburg, de Krijger et al. 2016). CHD2-dependent remodeling of chromatin around breaks in human U2OS cells relied on parylation which caused chromatin expansion and deposition of the histone variant H3.3 (Luijsterburg, de Krijger et al. 2016). Furthermore, fluorescence recovery after photobleaching (FRAP) microscopy revealed a DDB2 and PARP1 dependent loss of core histones from UV-damaged chromatin in hamster cells (Luijsterburg, Lindh et al. 2012). Apart from the importance of parylation in DDR signaling, ATM and NBS1 recruitment to I-Ppol induced DSBs was shown to cause localized disruption of nucleosomes in human MCF7 cells (Berkovich, Monnat et al. 2007). In this case, ChIP experiments were used to follow the levels of H2B at breaks (Berkovich, Monnat et al. 2007). A later study by the same laboratory followed the abundance of all core histones around I-Ppol sites (Goldstein, Derheimer et al. 2013). Break induction caused a selective loss of H2A and H2B, but not...
of H3 nor H4. Interestingly, down-regulation of nucleolin, a protein with histone chaperone activity, abrogates nucleosome disruption, repair factor recruitment and the repair of the DSBs (Goldstein, Derheimer et al. 2013). Similar results were obtained with FRAP experiments at localized UV damage sites in different human cell lines (Dinant, Ampatziadis-Michailidis et al. 2013). In this case, selective H2A/H2B loss at the damaged sites depended on the Spt16, one of the two subunits of the histone chaperone FACT. Moreover, Spt16 was essential to restart transcription after repair (Dinant, Ampatziadis-Michailidis et al. 2013). Finally, it was shown that disrupting nucleosomes to allow access for repair was important for DSBs induced at the yeast mating type locus MAT, if the donor is heterochromatic. In a strain created by Hicks et al., recombination-mediated repair of a DSB at MAT could only occur at the HML donor locus (Tsabar, Hicks et al. 2016). Notably, 60 minutes after cut induction, nucleosomes at the donor site were greatly reduced and coincided with homology-driven strand invasion (Rad51 accumulation) (Tsabar, Hicks et al. 2016). These observations indicate that chromatin accessibility needs to be increased both at the DSB site and the homologous template to allow for successful recombination.

In addition to these local effects, nucleosomes were found to be lost genome-wide in response to UV, IR or radiomimetic damage. Consistently, chromatin fractionation and salt extraction studies in human 293T cells showed that histones were destabilized and released from chromatin upon irradiation (Xu, Sun et al. 2010). This technique measured the degree of protein extractability from chromatin in response to damage. The authors found that the core histones H2B, H3 and H4, as well as the histone variant H2A.X became more extractable after damage. This IR-dependent destabilization was further found to be an active process requiring the ATPase activity of the p400 ATPase in the SWI/SNF complex and histone acetylation by the Tip60 acetyltransferase (Xu, Sun et al. 2010). Analysis of the human CUL4-DDB-ROC1 ubiquitin ligase showed substrate specificity to histones in vitro and further ubiquitinated H3 and H4 in response to global UV damage in vivo (Wang, Zhai et al. 2006). Ubiquitination weakened histone-histone interactions and caused nucleosome eviction. At this stage, it was not analyzed whether subsequent proteasomal degradation occurred (Wang, Zhai et al. 2006). In Chapter 4, I will discuss our finding which describes a global, proteasome-mediated degradation of all core histones in response to Zeocin damage (Hauer, Seeber et al. 2017).
References

Chapter 1: Introduction to Histone Dynamics in DNA Damage and Repair

Summary

This chapter highlights the importance of nucleosome remodelers in DNA repair and provides an in-depth overview on INO80 and SWR-1 remodeling complex function. It consists of two parts based on the review articles shown here.

Remodelers form a conserved class of proteins harboring a Swi2/Snf2 ATPase that uses the energy from ATP hydrolysis to change the local state of chromatin by exchanging histone variants, ejecting octamers and sliding/spacing nucleosomes. These actions regulate gene transcription, DNA replication, repair and chromatin structure genome-wide. The first part of this chapter discusses the roles of yeast and mammalian chromatin remodeling complexes in DSB repair pathways. We provide side by side comparisons of remodeler subunit conservation and their respective roles in DNA damage repair. In addition, we highlight the importance of chromatin remodeling in regulating damage-provoked local and global chromatin mobility. The second part of this chapter specifically discusses the roles of INO80-C and SWR1 as “Guardians of the Genome”. Both remodelers possess important functions in DSB relocation events, cell cycle regulation, damage repair and were implicated in cancer.
ATP-dependent nucleosome remodelers use ATP hydrolysis to shift, evict and exchange histone dimers or octamers and have well-established roles in transcription. Earlier work has suggested a role for nucleosome remodelers such as INO80 in double-strand break (DSB) repair. This review will begin with an update on recent studies that explore how remodelers are recruited to DSBs. We then examine their impact on various steps of repair, focusing on resection and the formation of the Rad51-hsDNA nucleofilament. Finally, we will explore new studies that implicate remodelers in the physical movement of chromatin in response to damage.

Addresses

1. Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
2. University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
3. University of Tuebingen, Interfaculty Institute for Cell Biology, Department of Molecular Biology, Auf der Morgenstelle 15, D-72076 Tuebingen, Germany

Corresponding author: Gasser, Susan M (susan.gasser@fmi.ch)

0959-437X/– see front matter, © 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.gde.2012.12.008

Introduction

In eukaryotic cells, the genomic DNA is wrapped around histone proteins to form a compact nucleosomal fiber. This form of chromatin is bound and protected by a variety of factors, yet is nonetheless susceptible to environmentally induced damage. Once damaged, repair and checkpoint signaling machineries recruit chromatin modifying enzymes to render damaged DNA accessible to repair. This is mediated both by enzymes that modify histones and by ATP-dependent nucleosome remodelers that can shift, evict and exchange histone dimers or octamers, facilitating the different steps of the repair process. Histone modifications coordinate repair with other DNA-based functions, such as transcription and replication. Recent work also suggests that nucleosome remodelers enhance micromovements [1] and possibly evict proteins that inhibit the repair process [2]. Finally, the re-establishment of the initial chromatin structure requires histone chaperones and various modifying enzymes that deposit or remove acetyl-groups, methyl-groups and ubiquitin from histone tails [3]. It is likely that active nucleosome remodeling is required as well for proper recovery after repair.

All remodelers of the SWI2/SNF2 family contain related, large catalytic ATPase subunits. A new phylogenetic analysis has replaced the classical grouping (SWI/SNF, ISWI, CHD and INO80) of the various remodelers, splitting them into six major families, namely the Snf2-like, Swr1-like, SMARCAL1, Rad54-like, Rad516-like and ERCC6/SSO1653-like [4] (Table 1). SWI/SNF members of the Snf2-like family contain a bromodomain which binds acetylated histone tails. ISWI remodelers have HAND, SANT and SLIDE domains involved in DNA binding in the context of nucleosomes. The Snf2-like family also includes CHD remodelers, which contain a tandem chromodomain that mediates binding to methylated histones. INO80 complexes fall into the Swr1-like class, which has a characteristic insert in the middle of the ATPase domain, and contain a RuvB-like DNA helicase. Rbv1/2 in yeast or Tip49a,b in mammals. Most remodeling complexes harbor a number of additional subunits, among them actin and actin related proteins (Arps), some of which are shared, others unique to specific remodelers (Table 1) [5].

Previous work had shown that mutation or down-regulation of some remodeler subunits renders cells hypersensitive to DNA damage [6]. This phenotype, however, can stem from effects either on transcription, replication, or the repair pathway itself. To study the direct involvement of chromatin remodelers in double strand break (DSB) repair, chromatin immunoprecipitation (ChIP) and fluorescent imaging studies have monitored whether or not a given ATP-dependent nucleosome remodeler was recruited to a unique DSB or to a zone of laser-induced damage. These approaches have implicated many remodelers directly in steps of repair, and most frequently in repair by homologous recombination (HR), but more recently, also by non-homologous end joining (Table 2). Given the broader effect of remodelers on chromatin composition, we will hereafter refer to them as chromatin remodelers, rather than nucleosome remodelers. In this review, we provide an overview about the various roles that remodeling complexes play during DSB repair. Crucial to understand is how remodelers are initially recruited to DSBs, how they impact the various steps of repair and how they affect the formation of the Rad51-hsDNA nucleofilament. Recent studies also implicate chromatin remodelers in changing the physical movement of DNA in response to damage.
Recruitment of chromatin remodelers to a DSB
The INO80 nucleosome remodeler is recruited to DSBs in both yeast and man. In yeast, the INO80 complex is made up of 15 subunits including Ino80, Rvb1/2, Arp5/8, Arp4, Act1, Nhp10 and Ies3. Its recruitment to DSBs in yeast requires an interaction with phosphorylated H2A (yH2A); mutation of the phosphoacceptor site on yeast H2A reduced INO80 binding at an induced DSB [7]. The subunits implicated in this interaction are Nhp10 and Ies3.

Table 1
Composition and classification of nucleosome remodelers in S. cerevisiae and Human.

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sth1-like</td>
<td>S. cerevisiae</td>
</tr>
<tr>
<td>Swr1-like</td>
<td></td>
</tr>
<tr>
<td>Ino80</td>
<td>INO80</td>
</tr>
<tr>
<td>ATPase</td>
<td>Ino80</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>Ino80, Rvb1*, Rvb2*, TIP49A*, TIP49B*</td>
</tr>
<tr>
<td>Swr1</td>
<td>SRCAP</td>
</tr>
<tr>
<td>ATPase</td>
<td>Swr1</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>Swc4/Eaf2, DMAP1*, Swc2/Vps72, YL-1*, Bdf1</td>
</tr>
<tr>
<td>Chd1</td>
<td>CHD1</td>
</tr>
<tr>
<td>ATPase</td>
<td>Chd1</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>Swc3,5,7</td>
</tr>
<tr>
<td>Alc1</td>
<td>ALC1</td>
</tr>
<tr>
<td>ATPase</td>
<td>ALC1</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td></td>
</tr>
<tr>
<td>Snf2-like</td>
<td>S. cerevisiae</td>
</tr>
<tr>
<td>Snf2</td>
<td>SWI/SNF</td>
</tr>
<tr>
<td>ATPase</td>
<td>SWI/SNF</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>SWI/SNF</td>
</tr>
<tr>
<td>Taf14, Snf6, Snf11</td>
<td>Swi3, Rd6, Swi5, Swi7</td>
</tr>
<tr>
<td>Unique</td>
<td>Swi3/Adr6, Swp82, Taf14, Snf6, Snf11</td>
</tr>
<tr>
<td>Rd4</td>
<td>Rad4</td>
</tr>
<tr>
<td>ATPase</td>
<td>Rad4</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td></td>
</tr>
<tr>
<td>Chad1</td>
<td>CHD1</td>
</tr>
<tr>
<td>ATPase</td>
<td>CHD1</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>Swi1/Adr6, Swp82, Taf14, Snf6, Snf11</td>
</tr>
<tr>
<td>Unique</td>
<td>Swi3/Adr6, Swp82, Taf14, Snf6, Snf11</td>
</tr>
<tr>
<td>Rad54</td>
<td>Rad54</td>
</tr>
<tr>
<td>ATPase</td>
<td>Rad54</td>
</tr>
<tr>
<td>Orthologous subunits</td>
<td>Rad54</td>
</tr>
<tr>
<td>Taf14, Snf6, Snf11</td>
<td>Taf14, Snf6, Snf11</td>
</tr>
</tbody>
</table>

*Subunits shared within different remodeling complexes of the same organism.
Table 2
A summary of chromatin remodelers, the relevant subunit and key findings reported in this review

<table>
<thead>
<tr>
<th>Family & Subunits</th>
<th>Remodeler complex function/Remarks</th>
<th>Remodeler subunit functions addressed in this review</th>
<th>Projected function of subunit during DNA damage repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swr1</td>
<td>16H19</td>
<td>Among other roles, the protein 16H19 remodeling complex functions in replication and transcription.</td>
<td>Promotes strand invasion and repair.</td>
</tr>
<tr>
<td>Sfr2</td>
<td>18</td>
<td>The Sfr2 complex plays a role in DNA damage repair.</td>
<td>Promotes strand invasion and repair.</td>
</tr>
<tr>
<td>Crt4</td>
<td>6/18</td>
<td>The Crt4 complex is involved in DNA damage repair.</td>
<td>Promotes strand invasion and repair.</td>
</tr>
</tbody>
</table>

Groupl | Name of complex | Description of complex function/Remarks | Remodeler subunit functions addressed in this review | Projected function of subunit during DNA damage repair |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Swr1</td>
<td>16H19</td>
<td>Among other roles, the protein 16H19 remodeling complex functions in replication and transcription.</td>
<td>Promotes strand invasion and repair.</td>
<td>Promotes strand invasion and repair.</td>
</tr>
</tbody>
</table>
Genome architecture and expression

(a subunit which is lost upon deletion of NHP10) [8], and Arp4, with Arp4 having been shown to physically associate with γH2A [9]. The story appears to be different in mammals, where INO80 is recruited to laser-induced sites of damage independently of γH2AX, but in a manner sensitive to loss of Arp8 [10]. shRNA against other INO80 subunits did not have an effect on recruitment, but it should be noted that the INO80 subunits studied were only reduced to levels ranging from 20% to 40% of wild-type levels. It remains possible that other INO80 subunits play a role in the recruitment to DSBs, but that the shRNA knock-down was not sufficient to impair binding at the break. Another mammalian study shows that Arp5 interacts with γH2AX and promotes its initial phosphorylation [11]. In the same vein, a new report using Arabidopsis shows that Arp5 is required to prevent sensitivity to DNA damaging agents, highlighting the importance of this subunit [12]. Collectively these findings argue that in higher eukaryotes the initial recruitment of INO80 is mediated by Arp8, while Arp5 subsequently interacts with and facilitates the spread of γH2AX.

Also recruited by interaction with γH2AX is the INO80-related yeast remodeler SWR1 (p400 or SRCAP in man). The SWR1 remodeler has been shown to deposit H2A.Z (Htz1 in yeast), a conserved variant of H2A, by catalyzing the replacement of H2A–H2B dimers with H2A.Z–H2B dimers in a stepwise and unidirectional manner [13]. H2A.Z is found enriched near the TSS of genes, as well as in some heterochromatic regions. A number of papers implicate H2A.Z or Htz1 in repair pathways [14] and, not surprisingly, mutants in Swr1 or Swr1 complex components are sensitive to DNA damaging agents [15,16]. In mammalian cells, H2A.Z can be exchanged onto nucleosomes at DSBs by Trrap/Tip60’s p400 ATPase domain, the recruitment of which depends on γH2AX, as in yeast [36]. At the DSB, H2A.Z exchange is required for the acetylation of histone H4 by Tip60, and for histone ubiquitination by RNF8. H2A.Z then ultimately leads to enhanced Ku recruitment, favoring repair by NHEJ, whereas its absence, leads to extensive resection and inaccurate repair [17].

The SWI/SNF remodeling complex has also been shown to be recruited to DSBs [18], although the mechanism of recruitment is unknown, particularly in yeast. In one report, a null mutant of the yeast SWI/SNF subunit Snf2 did not result in enhanced sensitivity to UV or ionizing radiation (IR) [19], while in other yeast backgrounds Snf2 or Snf5 deletions rendered cells susceptible to either HU or bleomycin treatment [18]. Indeed, in this paper, SWI/SNF2 subunits could be detected at DSBs by ChIP one hour after damage induction [18]. Whether SWI/SNF achieves at DSBs in yeast is unclear, as it appears to be dispensable for HR if the donor sequence is euchromatic. On the other hand, SWI/SNF was shown to be necessary for the eviction of heterochromatin factors (Sir3) from donor sequences in vitro [20]. This occurs during mating type switching, which requires invasion of the resected DNA strands from MAT into silent chromatin at HM loci.

In humans, the SWI/SNF complex contains one of two catalytic subunits, BRG1 or BRM, along with many BRG1/BRM associated factors (BAF’s) [5]. A recent study proposed a positive feedback loop, in which the histone acetyl transferase (HAT) Gcn5 binds to γH2AX upon damage, acetylating adjacent H3 molecules, which would be recognized by the bromodomain of BRG1. SWI/SNF is then thought to facilitate access to the damage extending phosphorylation of H2AX and thus more acetylation [21*]. However, other HATs, such as Tip60, p300 and CBP have been shown to work with SWI/SNF at DSBs in NHEJ [22].

In a more general way, DSBs undergo a series of dependent events which involve ubiquitination, acetylation of H3K14 and finally the acetylation-dependent recruitment and active remodeling by the SWI/SNF subunit BRG1.

In one study, SWI/SNF was shown to be recruited to neocarzinostatin induced DSBs in a manner promoted by BRIT1/MCPH1, an early DNA damage response protein. This entailed the ATR/ATM dependent phosphorylation of the SWI/SNF subunit, BAF170. Chromatin cannot relax as monitored by MNase sensitivity assays upon BRIT/MCPH1 depletion, which coincides with defects in both HR and NHEJ in mammalian cells [23].

In conclusion, human SWI/SNF has previously unappreciated roles in promoting the early spread of γH2AX and histone acetylation at DSBs. Whether NHEJ and HR pathways have a differential dependence on SWI/SNF is not yet clear.

Repressive Snf2-like remodeling complexes of the Mi-2 and CHD class (such as CHD1 and NuRD complexes) are unique in the sense that their catalytic subunits contain a characteristic N-terminal tandem chromodomains, which directs them to methylated histones. This domain, at least for Chd1, regulates its ATPase motor dynamics [24*]. CHD1 and NuRD have clear roles in transcriptional regulation, histone dynamics and gene silencing [5], whereas their impact on DSB repair is only starting to be revealed.

In mammalian cells, shRNA knockdowns of NuRD subunits, CHD4 or MTA2, resulted in increased levels of spontaneous damage and persistent p53 activation [25*]. CHD4 also promotes ubiquitination of histones, which correlates with recruitment of BRCA1 and RNF168 and maintenance of the G2/M checkpoint. Further studies...
showed that the NuRD components CHD4 and MTA1 are recruited to sites of IR-induced DNA damage. This recruitment takes place in a previously unappreciated, polyadenosine 5′-diphosphate (ADP)-ribose (PARylation)-dependent manner, but is independent of H2AX phosphorylation [26,27**]. It was also shown that components of the Polycomb Repressive Complex 1 (PRC1), such as MEL-18, are recruited to DSBs in a PARylation-dependent manner, and that PARylation is required to exclude nascent RNA as well as RNA polymerase II from regions of laser induced damage [27**]. Thus PARylation and NuRD recruitment appear to repress transcription at breaks. Speculation on the role of heterochromatin proteins in DSB repair is discussed elsewhere [3]. PARylation is also crucial for the recruitment of another human Snf2-like chromatin remodeler, ALC1, also known as CHD1L. ALC1 is targeted to sites of phyto- macin-induced damage through its interaction with poly- ADP ribose. ALC1 overexpression delays or impairs repair, based on the comet assay. It is thought that ALC1 may promote NHEJ through its physical interactions with Ku70, XRCC1, DNA-PKcs and the histone chaperone APLF. Its interaction with subunits of the RPA complex may also suggest a role in HR, or another pathway of repair requiring DNA resection [28–30].

Finally, the related NuRD complex ATPase, CHD3, was shown to be lost from lesions induced in KAP-1-enriched heterochromatic domains [26]. This effect is regulated by ATM dependent phosphorylation of KAP-1 at Ser824. Once KAP-1 is phosphorylated (pKAP-1), its direct interaction with CHD3 is disrupted, resulting in CHD3 loss from the domain. The ensuing chromatin relaxation is thought to promote DNA accessibility of heterochromatic regions, thereby facilitating repair [31**,32]. This is consistent with the role proposed for CHD3 and MI-2 in promoting chromatin compaction and gene repression [33].

The closest yeast equivalent to mammalian CHD3, CHD4 and ALC1 ATPases is the monomeric Chd1 remodeler (Table 1). Computational studies showed that yeast and other lower eukaryotes lack KAP-1-like proteins and PAR, and so far there have been no recent studies that link yeast Chd1 to DSB repair. In summary, these results identify ALC1 and CHD4 as active factors in genome maintenance that recruit DNA damage response factors, possibly favoring repair, while the related CHD3-containing NuRD remodeler complex needs to be lost from heterochromatic sites in order to aid repair. This suggests that the chromatin context of the DNA damage strongly influences which remodeler is important for subsequent repair events. Furthermore, depending on whether the situation calls for NHEJ-mediated or HR-mediated repair, resection may either need to be attenuated or promoted by remodeling complexes.

Role of chromatin remodelers in resection

The Swr1-like remodelerINO80 [7] and the Snf2-like remodeler RSC [34] were the first chromatin remodeling complexes to be associated with resection (for an in depth analysis see [6]). A recent study on mammalian INO80 and one of its subunits, Ape8, shows the importance of INO80 in RPA filament formation after damage [35**]. This is consistent with its previously demonstrated role in resection in yeast [36]. We note that, TIP49a,b which is part of the human INO80, SCRAP and TTRAP/Tip60 complexes [5] and yeast Rvb1/Rvb2 of INO80 and SWR1, have been shown to be ATP-dependent helicases that unwind DNA at 5′ ssDNA overhangs of at least 30 nucleotides in length, in a 3′ to 5′ direction [37]. These in vitro findings suggest that complexes containing TIP49a,b (or Rvb1/Rvb2) may be generally involved in processing resected DNA ends.

Fun30 is a poorly characterized chromatin remodeler of the Esc1 Snf2-like nucleosome remodeler family [4,38,39**]. The previous best described role of Fun30 was the protection of centromeres by maintaining the integrity of centromeric chromatin [40,41]. Three new studies highlight the role of Fun30 in Sgo1 and Exo1 dependent long-range resection at a DSB [2,40,42**]. Fun30 appears to be the most important chromatin remodeler for long-range resection in yeast, although this role is partially redundant with that of INO80 and RSC near the DSB [2]. This also appears to hold true in mammals for SMARCAD1, the closest human homologue of Fun30 [42**]. Intriguingly, Fun30 becomes partly dispensable when recruitment of the checkpoint mediator Rad9 is ablated. Rad9 inhibits resection at DSBs [43,44] thus favoring NHEJ over HR. Fun30 is proposed to remove Rad9 (Figure 1) and thus promote resection and HR [2,39**]. Consistently, when Fun30 is deleted, Rad9 spreads outwards from the DSB, presumably antagonizing resection [2]. This paper also offers evidence indicating that CHD1, SWR1, Rad54 and ISW1 remodeling factors do not play any significant role in resection, though Rad54 is epistatic with Fun30 with respect to its damage sensitivity [2].

Cells without intact INO80, SWR1 and RSC are still proficient in single-strand annealing (SSA), a repair mechanism that requires extensive resection to repair a DSB. However, fun30Δ strains are defective in repair by SSA, highlighting the importance of this protein’s involvement in long range resection [2,39**]. Importantly, Fun30 does not seem to be involved in strand invasion or in later steps of HR. However, like rds54Δ strains, fun30Δ strains are defective in adaptation to a single DSB, due to the hyperactivation of Mec1 (ATR kinase) through Mec1 [39**]. These papers have now added Fun30 to the list of DNA damage response factors, although little is known about the complex(es) it forms.
Rad51-ssDNA filament formation

After resection, one of the next steps in HR is the formation of a Rad51 filament along the ssDNA strand. This is facilitated by a number of remodelers. For example when Fun30 is deleted, Rad51 levels at distal sites from a DSB (5 kb) are greatly reduced and accumulate slowly over time. Even though basal protein levels are reduced, this defect in recruitment and accumulation is not seen within proximal sites to the DSB (1 kb) [2].

The same holds true for Tip49a-depleted or Tip49b-depleted human cells where Rad51 focus accumulation
is strongly reduced in response to IR, rendering cells sensitive to damaging agents. Indeed, the amount of soluble Rad51 accumulates, and the level of chromatin-bound Rad51 decreases, upon Tip49Δ/b depletion. The authors also show that relaxing chromatin before DSB induction, using sodium butyrate to provoke hyperacetylation, restores the number of Rad51 foci to wild-type levels, possibly achieving the same opening of chromatin as that effected by the Tip49/TipTRAP/Tip60 complex [45,46]. Alternatively, SRCAP may be involved. One model proposes that the role of Tip49 within the TipTRAP–Tip60 complex is to relax chromatin by acetylation, enabling the access of the repair machinery at the break site. Mammalian INO80 does not seem to be important for the recruitment of Rad51, but rather affects the recruitment of early repair proteins such as 53BP1, which may antagonize HR [35]. In contrast, in haploid yeast Rad51 recruitment to an irreparable DSB is diminished in arp8Δ cells [47]. We note that when a donor is present and the DSB was repairable by HR in yeast, as in the mammalian study, INO80 mutants did not show a defect in Rad51 recruitment [48]. Given that yeast Rad51 activity is enhanced in diploids, it may be that Arp8 becomes dispensable in diploid cells for Rad51-filament formation [49].

Rad54 also plays a role in stabilizing Rad51 ssDNA filaments [50,51]. Evidence from a new mammalian study indicates that Rad54 dependent accumulation of Rad51 does not require the ATPase domain of Rad54, although ATP hydrolysis is required for the dissociation of Rad54 from the filament. Following IR induced damage over five hours, the authors observed an increase in the number of Rad54-GFP foci at the nuclear periphery. After another five hours the number of foci at the periphery dropped to the same levels as at the beginning of the experiment. In a Rad54-GFP ATPase mutant, the number of foci at the periphery continued to accumulate over the course of the experiment. The authors interpret this effect as relocation of a DSB to the nuclear periphery. However, this result could also indicate that DSBs are repaired faster in internal regions (euchromatin) than at the periphery (heterochromatin), or that foci persist longer in less accessible peripheral heterochromatin [52]. Finally, displacement of yeast heterochromatin factors by the SWI/SNF remodeler complex was shown to promote Rad51 mediated joint-molecule formation and Rad54 dependent strand invasion, priming the DSB for repair by HR in vitro [20]. Taken together, these observations support the model that SWI/SNF ATPases facilitate Rad51 focus formation while Rad54 promotes filament assembly.

Dynamics of the DSB fiber
The least understood step in HR is homology search [53] (Figure 2). This process implies that a DSB scans the nucleus for its homologous template, in order to anneal and finally carry out repair by recombination. Undamaged chromatin moves within the nucleus, but it is constrained by the continuity of the chromatin fiber [54]. Both sides of a break remain linked by the MRN/MRX complex, yet changes in chromatin structure could change the persistence length of the chromatin fiber [1]. Recently it was tested whether the mobility of a DNA locus changes upon DSB induction and the impact of such movement on HR-mediated repair. Two studies in budding yeast have shown that DNA bearing a DSB in S-phase cells moves through a nuclear volume approximately 4-times larger than that of undamaged DNA [55**,56**]. Similarly, in mammalian cells the mobility of IR induced foci was found to increase over that of undamaged chromatin [57]. While yeast and man share this phenomenon, a small increase in radius of constraint in yeast can enhance access to more than 60% of the genome, while in mammalian cells the same radius of movement might only mean that damage shifts from a compacted domain of chromatin to an open space nearby, without accessing a large part of the genome.

In support of the idea that chromatin mobility enhances HR, it was shown that the decreased chromatin mobility scored in a rad9Δ strains, correlated with lower rates of heteroduplex formation, when the donor sequence sits on a nonhomologous chromosome [55**]. The ATR homologue Mec1 was also implicated in the increased mobility of the DSB [55**].

One way in which random chromatin movement can be increased is through the removal of nucleosomes, which might increase the flexibility of a compacted chromatin fiber. In support of this model, work from the Gasser laboratory showed that the targeting of INO80 increased chromatin mobility in a manner dependent on its ATPase activity. At the PHO5 promoter the increased movement could be correlated with nucleosome displacement by INO80 [1]. Consistently, the enhanced movement scored at an induced DSB was partially reduced in an arp8Δ strain [1], while the loss of Rad51 or of Rad54’s ATPase activity completely eliminated damage-induced chromatin mobility [55**]. Since Rad51 helps recruit Rad54, and Rad54 in turn stabilizes the Rad51-ssDNA fiber, it is unclear whether the Rad54 ATPase action or the creation of the Rad51-ssDNA filament, or both enhance movement [55**].

Rad54 remodels chromatin [58] in a manner that correlates both with its dsDNA translocation activity, and its ATPase activity [50,51]. Thus, Rad54 may actively slide nucleosomes away from the resected DSB [59], which could, based on the action of other chromatin remodelers, increase the radius of the random walk movement of the DSB, due to reduced constraint on the damaged chromatin fiber. Interestingly, Rad54 molecules in human do not need their ATPase domains to associate
A speculative role of chromatin remodelers in homology search. In order to repair a lesion by HR, the homologous template needs to be identified and bound. The homologous template can be the sister chromatid after replication, although in special cases, repair occurs with ectopic homologous sequences. Several studies suggest that the efficiency of homology search is rate-limiting for DSB repair by HR with ectopic donors \([53, 62]\). Upon damage, DSBs become more mobile, which may facilitate the homology search through nuclear space. This increase in mobility is dependent on the ATPase activities of INO80 and Rad54, both of which can remodel nucleosomes. Other chromatin remodeling complexes may also be involved in homology search dynamics.

with DSBs, and lack of ATPase activity inhibits its turnover at sites of damage, as shown by FRAP \([52^{**}\). Thus, it could also be the release of Rad54 that enhances movement of the resected break. In mammalian cells, but not in yeast, hINO80 binds to and promotes the expression of the \(RAD54\) gene, which suggests that INO80 may also have indirect effects in DSB repair. Indeed, enhanced expression of Rad54 can complement the DNA repair defect of human Ino80-deficient cells \([60]\).

The specific mechanism of how remodelers increase chromatin mobility is still an open question. Multiple effects, including release from anchoring molecules, reduced persistence length, or the effect of the ATPase itself, are all possibilities. Some insight may be gained by identifying and comparing the effects of different remodeler subtypes in regard to chromatin mobility.

Conclusions

Up to this point only a few studies of chromatin remodelers in damage have scored defects in repair that could be traced unambiguously to the remodeler’s activity at the site of damage. This may in part reflect redundancy in the function of chromatin remodelers, but may also simply arise from the fact that the appropriate read-outs were not yet monitored. Many unanswered questions remain. It is still unclear why so many chromatin remodeling factors are recruited to double-strand breaks. It is unclear how chromatin remodelers increase mobility of chromatin, why some damage shows movement while other do not, and what the impact of chromatin mobility is on repair. What role do remodelers play in the late stages of HR or in the restoration of chromatin after repair? The literature currently implicates histone chaperones in this step leaving the role for remodelers largely open \([3]\). The fate of nucleosomes during the DNA damage response is

\[\text{Current Opinion in Genetics \\ & Development 2013, 23:1–11} \]

www.sciencedirect.com

Nucleosome remodelers in double-strand break repair

Sebeer, Hauer and Gasser

18. Convincing evidence is put forth for a functional role of H2A.Z deposition by p400 and subsequent acetylation by Tip60 in mammals at DSBs in mammalian cells. Incorporation of H2A.Z along with acetylation of H4 facilitates relaxation of chromatin and allows for subsequent modifications such as ubiquitination and loading of Ku to mediate repair by NHEJ.

26. This study solved the crystal structure of yeast Chd1 and proposes a model where the chromodomains of Chd1 allow it to distinguish between nucleosomes and naked DNA by controlling access to its ATPase motor.

28. Knockdown of MTA2 or CHD4, which encode components of the NuRD complex, leads to accumulation of DNA damage as well as sensitivity to IR. CHD4 stimulates RNF18/RNF168-dependent ubiquitin conjugates, and promotes DSBr repair and checkpoint activation in response to IR.

www.sciencedirect.com

This study along with that of Mine-Hattab and Rothstein shows that a DSB is more mobile than its undamaged counterpart. A nick induced by collision of the replication fork with protein adduct does not increase in mobility. Dion et al. show that the chromatin remodeler Rad54, and specifically its ATPase activity, are required for increased chromatin mobility upon damage, as is Rad9 and Mecl. The rate of heteroduplex formation with an ectopic donor is reduced in a rad9 mutant.

This study shared many of the same findings as Dion et al., but performed the study in diploid yeast cells. Increased mobility depends in part on SacI. Importantly, Mine-Hattab and Rothstein show that not only a DSB but also a non-homologous, undamaged chromatidal focus increases in mobility when cells incur damage.

Here the authors show that DSB foci are more mobile than undamaged chromatin. They also show that drugs such as Curacin or azacitidine, which affect chromatin structure, can reduce mobility.

67. Park JH, Park EJ, Hur SK, Kim S, Kwon J: Mammalian SWI/SNF chromatin remodeling complexes are required to prevent apoptosis after DNA damage. DNA Repair (Amst) 2009, 8:29-38.
INO80-C and SWR-C: Guardians of the Genome

Christian-Benedikt Gerhold, Michael H. Hauer and Susan M. Gasser

1 - Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
2 - University of Basel Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland

Correspondence to Susan M. Gasser: susan.gasser@fmi.ch
http://dx.doi.org/10.1016/j.jmb.2014.10.015
Edited by E. Soutoglou

Abstract

The double membrane of the eukaryotic nucleus surrounds the genome, constraining it to a nuclear sphere. Proteins, RNA protein particles and artificial chromosome rings diffuse rapidly and freely throughout the nucleoplasm, while chromosomal loci show subdiffusive movement with varying degrees of constraint. In situ biochemical approaches and live imaging studies have revealed the existence of nuclear subcompartments that are enriched for specific chromatin states and/or enzymatic activities. This sequestration is thought to enhance the formation of heterochromatin, particularly when factors of limited abundance are involved. Implicit in the concept of compartmentation is the idea that chromatin is able to move from one compartment to another. Indeed, in budding yeast, gene activation, repression and the presence of persistent DNA double-strand breaks each has been shown to provoke subnuclear relocalization of chromatin. In some cases, movement has been linked to the action of ATP-dependent chromatin remodeling complexes, more specifically to the Snf2-related ATPase-containing complexes, SWR-C and INO80-C. Here we examine how these multi-subunit remodelers contribute to chromatin-based processes linked to the DNA damage response. We review recent evidence that supports a role for yeast SWR-C and INO80-C in determining the subnuclear position of damaged domains and finally, we recap the multiple ways in which these remodelers contribute to genomic integrity.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Despite its small size, the budding yeast nucleus is a well-organized cellular compartment, in which chromosome position is at least partially determined by the interaction of landmark chromosomal domains, such as telomeres and centromeres, with the nuclear envelope [1,2]. Telomeres cluster at the nuclear rim tethered by telomere-specific factors, while centromeres are linked by microtubules—even in interphase—to the membrane-embedded spindle pole body. Despite the flexibility of the chromatin fiber, various techniques have shown that intra-chromosomal contacts are more frequent than inter-chromosomal contacts [3–5], suggesting that yeast chromosomes also occupy "territories", much like those proposed for larger vertebrate nuclei by Cremer and Cremer [6]. Consistently, the smallest yeast chromosomes, such as chromosome III, fold back allowing contact between right and left telomeres in a loose, whole chromosome loop [7,8]. Other telomeres appear to cluster stochastically, with chromosome arm length playing a more important role in partner choice than sequence composition [9]. In addition to telomeres, heritably silenced loci colocalize with telomeres at the nuclear envelope [10], while active genes distribute more randomly. Silencing factors themselves (Sir3 and Sir4) play a role in both clustering [11] and perinuclear anchoring [12–14], as they interact with anchorage sites at the nuclear membrane, namely Mps3 [15,16] and Esc1 [14,17]. Nuclear pores provide further organization at the nuclear rim, contacting poised promoters or active genes through either SAGA (Spt/Ada/Gcn5 acetyltransferase) or the mRNA-binding complex THO-TREX [18].
The enrichment of heterochromatin along the inner face of the nuclear envelope is a conserved feature of all eukaryotic nuclei, except for a few differentiated mammalian cell types [19]. Whereas the association of remodelers with nuclear pores may also be conserved across species, the impact of this interaction is unclear. In contrast, the functional relevance of the association of DNA double-strand breaks (DSBs) and very short telomeres with the inner face of the nuclear pore is clear [20,21]. Pore protein mutations render yeast cells highly sensitive to DNA damaging agents, particularly in strains in which homologous recombination (HR) is impaired [20,22,23]. Given that nuclear pores are preferred sites of SUMO metabolism and that a large number of proteins are sumoylated in response to DNA damage [24,25], the functional impact of pore association may well reflect the sumoylation associated with specific repair pathways. For instance, the pore-associated SUMO-dependent ubiquitin ligase Siz5/Siz8 plays a role in recombination-mediated repair [26–28].

Despite the multiple anchorage points mentioned above, most yeast chromatin is in constant motion. Its movement, which can be monitored by fluorescence time-lapse microscopy, is best described as a constrained random walk [13,29,30], whose dynamics vary with intracellular ATP levels and the cell cycle [13,29,31,32]. An average yeast locus in open chromatin in G1 phase, distal from chromosome ends, has a radius of constraint of ~0.65 μm, which drops to ~0.35 μm in S phase, representing roughly 30% and 15% of the nuclear volume, respectively. The degree of movement is dependent on many parameters, including the status of the local chromatin, linkage of sister chromatids through cohesin and the distance of the tag from a landmark anchorage site [2,12,33,34].

Recent results implicate two nucleosome remodelers (INO80-C and SWR-C) in regulating this chromatin mobility and in the association of DNA damage with perinuclear sites [30,35–37]. It is thus relevant to review chromatin dynamics in terms of local nucleosome composition, chromatin compaction and the precise position of the locus within the nuclear sphere. Remarkably, INO80-C and SWR-C nucleosome remodelers are implicated in all three aspects of chromatin dynamics, particularly during the DNA damage response (DDR).

Chromatin Compaction and Spatial Constraint

Three overlapping mechanisms contribute to subnuclear chromatin localization. The first reflects an order imposed by enzymatic functions inherent to the nucleus and often arises from large protein complexes that interact, leading to a clustering of their DNA substrates (e.g., replication foci). The second is the result of sequence-specific anchorage, that is, interactions of chromatin with less mobile structures (e.g., pores, SPB, nucleoli). The third is the impact of the chromatin fiber itself, namely, its compaction and continuity, which means that one locus can impact both the position and the mobility of its neighbor. Not only at silenced regions but also in general, yeast chromatin is highly compacted, having a 40- to 80-fold higher compaction ratio than B-form DNA [38,39]. This ratio is, of course, even higher in mammalian cells. Nonetheless, chromatin must be accessible for DNA binding factors that regulate replication, transcription, recombination and repair. Thus, dynamic modulation of chromatin states is a key regulatory principle for nearly every DNA-based reaction.

Initial evidence that chromatin mobility and compaction are interdependent came from measurements of chromatin mobility monitored by fluorescence correlated spectroscopy or two-photon standing wave fluorescence photobleaching [40]. With this, the Bardeen group showed that short-range chromatin mobility in vivo was variable and reflected DNA–histone interaction. Notably, mobility increased when DNA–histone interactions were weakened in higher salt concentrations and decreased upon specific photocrosslinking of histones [40]. This link between nucleosomal stability and chromatin mobility is consistent with later studies described below, which showed that the nucleosome remodeler INO80-C increased the movement of chromatin to which it was bound [30].

By tracking fluorescently tagged chromosomal loci with time-lapse microscopy and plotting mean squared displacement, one can extract quantitative parameters of chromatin mobility, most commonly, the radius of constraint (Rc), which defines the area within which a particle is free to diffuse. While the Rc values for non-repetitive, open chromatin domains in fly, human or yeast cells are very comparable, their apparent diffusion coefficients (D) range from 1.25 × 10⁻⁶ μm²/s (5p14) in man to 1.8 × 10⁻⁶ μm²/s (LYS2) in yeast [29,31,41]. Different types of motion can also be distinguished: smaller, saltatory movements <0.2 μm that occur constantly, and larger, more rapid movements (i.e., >0.5 μm in a 10.5-s interval [31]). The smaller movements are observed for internal sequences and repressed domains at the nuclear periphery. Active, internal loci on the other hand also show larger steps. Even more irregular is the movement associated with DSBs, which can be tracked through the binding of the HR factor Rad52 [42,43]. In this case, both diffusion coefficients and Rc increase, purportedly as part of a homology search process. Specifically, a particular undamaged locus with Rc = 0.46 μm in S phase (12% of the nuclear volume), increased to 0.70 μm (47%) after induction of a DSB and initial processing of the end to bind Rad52 [42]. The increase may in part reflect the loss of cohesion between sister chromatids,
for the release of cohesion from replicated sisters was shown to augment the \(R_c \) value \([34]\). On the other hand, the loss or alteration of nucleosome modification or density that accompany DSB processing may also contribute to increased mobility.

Chromatin Dynamics during Cell Cycle

As mentioned above, the mobility of a chromosomal locus depends on two further criteria: cell cycle stage and its chromatin status. Studies in *Drosophila* spermatocytes revealed both random constrained movement over short-time windows and a long-range movement in S/G2 phase, which occurred over a much longer timescale. Moreover, a decrease in step size for rapid movements was recorded in late G2 spermatocytes just before entry into meiosis \([32]\). This drop in mobility correlated with a developmental change that is characterized by nuclear reorganization and a dramatic movement of bulk chromatin from a central region to three distinct perinuclear masses \([44]\). The decrease in chromatin movement scored for budding yeast origins of replication in S phase \([31]\) is due at least in part to the loading of the cohesin ring, which links replicated sisters together \([34]\). Not only linkages in trans but also the linear continuity of the DNA strand in cis restricts chromatin mobility; the tracking of a 17-kb fluorescently tagged locus excised from a yeast chromosome showed rapid movement throughout the nucleoplasm (\(R_c = 0.96 \) μm), rather than its normal constraint (\(R_c = 0.65 \) μm) \([13,30]\). This freedom of movement would enhance contact between sequences, which is needed for the homology search step of DSB repair by HR. Studies with plasmid-borne donors argue that this search is indeed rate limiting in yeast \([45]\); thus, altered movement would be one way to favor a homology search beyond the replicated sister chromatid (Fig. 1).

Chromatin Remodelers and Chromatin Mobility

The enhanced subnuclear movement observed for DSBs argues that chromatin movement is not simply caused by Brownian motion but is a regulated cellular process that responds to enzymatic control (reviewed in Ref. \([33]\)). For instance, the chromatin remodeler INO80-C is able to increase chromatin mobility when it is bound either at an artificial reporter or at the endogenous *PHO5* promoter \([30]\), although in the latter case, increased mobility correlated with induced transcription, whereas in the former, it did not. Intriguingly, the targeting of either SWI/SNF or SWR-C chromatin remodelers (through lexA-Snf2, lexA-Swr1 or lexA-Arp6 fusions) to the same locus did not increase \(R_c \) values \([30,37]\), while the tethering of the Rad54 ATPase domain did (M.H.H., unpublished results). Thus, it is not simply the presence of a large complex but the type of activity it exerts that impacts chromatin mobility. With 17 different Snf2-type ATPases in yeast and 53 in human \([46]\), it is likely that different chromatin remodelers will play various and only partially redundant roles that alter the composition, structure and mobility of chromatin. The INO80-C result argues that, at least in some cases, the modulation of nucleosome organization impacts chromatin dynamics.

The Mobility of DNA DSBs

Induction of a targeted and irreparable DSB increases the mobility of the targeted locus compared with that of the same site undamaged \([42,43]\). Prior to the increase, there may be a transient drop in mobility that correlates with the initial steps of resection, lasting approximately 10 min \([47]\). The subsequent increase was shown to correlate with the efficiency of DNA repair by HR with an ectopic donor sequence, and the activity of Rad54, a remodeler ATPase required for strand exchange, contributed to the increase. Enhanced DSB movement was also dependent on the DDR, notably on the ATR kinase Mec1 and its coactivator Rad9 (which serves an equivalent role as BRCA1 or 53BP1 in man) \([42]\). In this respect, it is important to note that multiple subunits of Snf2 chromatin remodeling complexes including ISW1, ISW2, INO80-C, SWR-C, RSC and SWI/SNF undergo DNA damage-induced phosphorylation by Mec1 and Tel1 \([48,49]\).

The DDR also modifies chromatin itself by phosphorylating H2A in yeast (H2A.X in mammals). This leads to an extensive modification of local chromatin composition, including acetylation, ubiquitination, potential H2A.Z deposition and eventually histone eviction, coincident with end resection (reviewed in Ref. \([50]\)). It is difficult to sort out which of these modifications ultimately contributes to enhanced chromatin mobility, as the interplay between remodelers and their chromatin substrates at sites of DNA damage contributes to many aspects of DNA repair. Interestingly, the concerted activity of the DDR and remodelers is not restricted to the site of DNA damage. Checkpoint activation, even in the absence of damage, leads to a more generalized increase in chromatin mobility that was dependent on Mec1 and its downstream target kinase Rad53 \([36,43]\) (Fig. 1).

The underlying phenomenon that allows for enhanced chromatin movement at breaks and non-damaged sites may reflect localized nucleosome remodeling, which can impact compaction and alter the long-range flexibility of the chromatin fiber. Indeed, *arp8* and *arp5* null mutants, which significantly hamper Ino80’s ATPase activity \([51,52]\), fully counteract the increase in mobility at genomic loci away from the DSB and partially reduce the mobility of the DSB itself \([30,36]\). The loss of the Swr1 ATPase, or of SWR-C cofactors, also compromised the enhanced mobility at
the damaged locus, yet it did not affect movement at distal sites \[36,37\]. In common is the fact that changes in chromatin mobility are dependent on the initial ATR/ Mec1 checkpoint kinase response, suggesting that chromatin alterations are part of a cell’s physiological response to DNA damage. Importantly, the Mec1-induced effects appear to be mediated at least in part by INO80-C \[36\].

Relocating Difficult-to-Repair DNA Damage to the Nuclear Periphery

A second phenomenon observed in yeast that links nuclear organization to DNA repair concerns the relocation of difficult-to-repair DNA DSBs and collapsed replication forks to the nuclear envelope \[20,53\]. Both the Nup84 subcomplex of the nuclear pore and the SUN domain protein Mps3 are implicated as perinuclear binding sites for break association (reviewed in Ref. \[54\]). The relocalization event from the nucleoplasm to the periphery required activation of the DNA damage checkpoint and was affected by loss of the histone variant Htz1 (H2A.Z) \[35\], which implies a role for SWR-C in the process of DSB relocation. Indeed, both SWR-C and INO80-C were recently shown to contribute to the positioning of DSBs at the nuclear envelope \[37\] (Fig. 2). Specifically, the loss of Swr1 or Htz1 was shown to compromise the association of DSBs with either nuclear pores or with the membrane protein Mps3, while INO80-C promotes binding to Mps3 without affecting DSB relocation to pores \[37\]. The two binding sites are further distinguished by the phase of the cell cycle in which they
Chapter 2: Nucleosome remodelers in double-strand break repair

59

are functional: the association of persistent DSBs with Mps3 requires Rad51 and end resection, which occurs only in S phase cells, while DSB-pore association occurs as well in G1 phase. The two binding sites appear to have different effects on the outcome of repair (Fig. 2). Sequestration of breaks or telomeres by Mps3 generally suppresses recombination events [16,53]. Hence, DSB relocation to Mps3 after unsuccessful homology search may prevent illegitimate recombination. Association with the pore, on the other hand, favors non-canonical recombination, that is, recombination with sequences other than those on the homologous sister chromosome. Associated with the nuclear pore is the Sslx5/Sslx8 SUMO-targeted ubiquitin ligase, which ubiquitylates components of the sumoylated repair machinery, such as Rad52, and targets them for degradation [55]. This function may be necessary to allow alternative repair events, such as break-induced replication or microhomology-mediated recombination. Consistently, type II survivors of telomerase ablation, which survive thanks to imprecise recombination events between telomeric repeats, require Sslx5/Sslx8 activity [56,57]. On the other hand, Sslx5/Sslx8 was reported to inhibit Rad51-mediated (canonical) recombination events [55]. Even if the relevant targets of sumoylation and eventually ubiquitination remain unclear, the role of the nuclear pore in harboring SUMO-modulating enzymes that help cells survive DNA damage is undisputed [23,58]. Intriguingly, a recent study in Caenorhabditis elegans suggests that aspects of pore regulation of repair pathways—in this case, for translesion synthesis—may also be conserved across species [59].

The discovery that INO80-C and SWR-C play important roles in DSB relocation, thereby affecting the long-range organization of chromatin in...
the nucleus, is consistent with other recent results that implicate these multi-subunit chromatin remodelers in chromatin-associated processes elicited by DNA damage. Thus, we can view INO80-C and SWR-C as important guardians of the genome, each contributing to genomic integrity in a unique way.

Even though the ATPase and scaffold proteins Ino80 and Swr1 have similar domain architectures and share some common subunits, their overall topology, mode of nucleosome interaction and range of enzymatic activities vary significantly [52,60,61] (Fig. 3). Whereas SWR-C has been shown to incorporate the H2A.Z (Htz1) variant into nucleosomes [62–64], INO80-C is reported to evict unacetylated Htz1 from the genome [65] but also remodels, spaces or evicts whole nucleosomes [66–68]. Both remodelers contain a DNA helicase, Rvb1/ Rvb2, apparently present as a double

Fig. 3. SWR-C and INO80-C remodeling in DSB repair and damage-related processes. INO80-C and SWR-C mediate a number of remodeling activities. Histone variant exchange: INO80-C counteracts SWR-C-dependent Htz1 incorporation. Htz1 is essential for enhanced DSB mobility and DSB relocation to the nuclear periphery. Nucleosome spacing: INO80-C equally spaces nucleosomes to form regular arrays. Nucleosome remodeling: INO80-C slides nucleosomes to expose DNA sequences and features. Nucleosome eviction: INO80-C evicts whole nucleosomes from DNA, making it accessible to a variety of factors. At least some of these activities appear to be important for DSB repair, relocation and mobility. As depicted at the bottom, nucleosome eviction by several remodeling enzymes around the DSB appears to facilitate the accessibility for subsequent repair factors and promotes efficient processing and repair. See the text for details.
heterohexamer in INO80-C, and as a single heterohexamer in SWR-C [52,60]. The function of the Rvbs within these complexes remains largely unexplored.

It is also unclear what link, if any, exists between enhanced DSB mobility and the sequestration of DSBs at the nuclear periphery. Interestingly, in budding yeast, LexA targeting of Swr1, Arp6 or Htz1 is sufficient to shift a given locus (ARS607) to the nuclear membrane [37,69], yet the targeting of these proteins did not affect locus mobility. In contrast, the targeting of INO80-C subunits increased the mobility of an undamaged locus but did not alter its radial position [30]. This suggests that random chromatin movement is not rate-limiting for DSB recruitment to pores or to Mps3. Indeed, arp8Δ or rad51Δ mutants have decreased DSB mobility, yet break relocation to the pore is intact [30,37,42]. It is important to note that the two events, enhanced mobility and pore sequestration, are kinetically distinct: movement seems to increase as soon as Mre11 and Rad52 bind, while DSBs accumulate at the nuclear periphery up to 2 hours after cleavage. Still it is likely that both events reflect chromatin changes at the level of the nucleosome.

It is not yet clear whether a general concept of damage-induced chromatin mobility is conserved in mammalian cells, as seemingly opposing results have been published (reviewed in Ref. [33]). In terms of DNA translocations, two models have been proposed: the ‘contact-first model’ requires two breaks that are in spatial proximity already prior to DNA damage [70,71], while DSBs in the ‘breakage-first model’ are able to scan the nuclear compartment to search for partners [72]. It is interesting to note that, in mouse fibroblasts, DSBs generally do not provoke enhanced movement, but the subpopulation of DNA DSBs that ultimately leads to translocations does indeed show enhanced mobility. This fulfills both the ‘contact- and breakage-first hypotheses’ [73]. Similar results were reported for DSBs induced by ionizing radiation and etoposide in human U2OS cells, which show a roughly 2-fold increase in Rc values, in a cell-cycle-dependent and an ATP-dependent manner [74,75]. Enhanced movement was also scored for uncapped telomeres in mammalian cells, yet mobility increase was 53BP1 dependent [76]. In the latter case, movement was proposed to enhance end joining, while in the former reports, it was suggested to facilitate HR. One testable hypothesis is that the movement, which promotes homology search, is actively suppressed in mammals. A failure to impair mammalian chromosomal break mobility might then lead to deleterious translocations or deletions. Intriguingly, the human SWI/SNF homologue BRM appears to favor precise NHEJ [77], possibly by impairing movement.

We note that human SWI/SNF complex (found in two related forms, called BAF and PBAF) has been identified to be the most frequently mutated chromatin regulatory complex in human cancer [78], suggesting that its mutation poses a serious threat to genomic stability. Moreover, PBAF, the human homologue of the yeast RSC remodeling complex, was shown to be important for both DSB-induced transcriptional silencing and the repair of a subset of DNA DSBs at early time points [79]. Therefore, it is possible that PBAF antagonizes mobility to favor rapid pathways of repair like NHEJ, and it may be opposed by the action of INO80-C.

INO80-C and SWR-C in DNA Repair and Replication

In budding yeast, both INO80-C and SWR-C were shown to be recruited to DSBs and to impact the repair process at different stages [80–82] (Fig. 3). While sharing many similarities in subunit composition, SWR-C and INO80-C have very different functions with regard to nucleosome remodeling. Both influence the genomic distribution of the histone variant Htz1: SWR-C deposits Htz1 in a stepwise manner, exchanging it for the canonical H2A, while INO80-C has been proposed to evict Htz1, particularly at non-promoter sites [65]. In addition and unlike SWR-C, INO80-C is able to slide, position and evict nucleosomes, regardless of their composition. This contributes to the regulation of a large number of genes (reviewed in Ref. [61]). Indeed, the catalytic Ino80 subunit and the Arp5 subunit map to many RNA pol II promoters that show changes in expression upon ino80 deletion. In parallel, INO80-C is enriched at origins of replication and rRNA genes [83–85]. SWR-C, on the other hand, controls the expression of a restricted set of genes, largely through the deposition of Htz1 [86]. Both SWR-C and Htz1 are highly enriched immediately downstream of the transcriptional start site in budding yeast [87–89].

The link to DNA repair was first suggested by the strong hypersensitivity to DNA damaging agents scored for yeast cells that lack either Ino80 or Swr1. Loss of functional INO80-C leads to a pronounced sensitivity to hydroxyurea (HU) and methane methyl-sulfonate (MMS), with weaker sensitivity to ultraviolet light (UV) and ionizing radiation [86,90]. Yeast strains lacking Swr1 are also sensitive to HU or MMS [62], although HU sensitivity is much lower in swr1Δ-deficient strains as compared to ino80-deficient strains. Intriguingly, htz1Δ single mutants are more sensitive to DNA damaging agents than h tz1Δswr1Δ double mutants [91], suggesting that SWR-C inflicts further damage or interferes with recovery from damage in the absence of Htz1.

Synthetic lethality screens have shown that the loss of INO80-C activity renders cells hypersensitive to the loss of genes involved in recombination, particularly in the presence of DNA damaging agents [82] (N. Hustedt and S.M.G., unpublished results). Coupled with the recruitment of INO80-C to an induced DSB [80,81], this argues for a direct role in DSB repair.
Similarly, SWR-C is rapidly recruited to DSBs, and swr1 and htz1 mutants also show synthetic sensitivity to DNA damaging agents in combination with factors involved in checkpoint activation and/or recombination [92] (N. Hustedt and S.M.G., unpublished results). Whereas INO80-C, along with RSC and Fun30, contributes to resection of the DSB, SWR-C appears not to be involved in resection under normal growth conditions [93,94]. Nonetheless, Swr1 recruitment to an induced DSB is both more rapid and more transient than that of Ino80, consistent with a role in early steps of DSB processing [93]. Its role may simply be to deposit Htz1. An important unresolved question concerns the events that trigger the recruitment of these remodelers to DNA damage.

The Recognition of DNA Damage by Remodelers

Although chromatin immunoprecipitation experiments showed that Mec1-dependent phosphorylation of histone H2A at serine 129 (H2A S129) (H2A.X S139 in mammals) was necessary for INO80-C and SWR-C recruitment to DNA breaks (reviewed in Ref. [50]), recent work argues that this effect is indirect. For unknown reasons, cells bearing an S129 mutation in histone H2A, eliminating the acceptor site for Mec1/Te1 phosphorylation, accumulate in G1 phase. Intriguingly, remodeler recruitment to DSBs was also shown to be cell cycle dependent (higher in S and lower in G1); thus, the effect of the H2A S129 mutant is most likely indirect [82]. In addition to INO80-C and SWR-C, SWI/SNF, RSC and NuA4 accumulate at breaks weakly in G1 phase and much more robustly in G2 phase cells. Interestingly, γ-H2A.X (phospho-H2A) accumulation near the DSB was inversely correlated with remodeling enzyme enrichment being robust in G1 and less pronounced in G2/M. This correlates with the fact that the INO80-C remodeler is implicated in nucleosome eviction and the promotion of end resection at DSBs [82]. Finally, resection deficient yeast strains, that is, strains lacking Sgs1 and Exo1, showed a significant decrease of remodeler recruitment adjacent to the break, suggesting that either cross-talk between these factors and the remodelers or end resection itself plays a role in remodeler recruitment [82].

It is unclear which subunits of the remodelers directly recognize damaged sites. Interestingly, both SWR-C and INO80-C have subunits that bind single-strand and double-strand DNAs with fairly high affinity, albeit with little sequence specificity (reviewed in Ref. [51]). SWR-C accumulation immediately downstream of transcriptional start sites may well reflect the remodeler’s affinity for non-nucleosomal DNA. On the other hand, Arp4, an integral subunit of INO80-C, SWR-C and NuA4, seems to bind to phosphorylated H2A (γ-H2A.X). For NuA4, this interaction activated its HAT activity and led to the acetylation of histones, contributing further to INO80-C and SWR-C recruitment to DSBs [95]. Another study implicated Nhp10, a non-essential subunit of INO80-C, in the interaction between INO80-C and γ-H2A.X [80]. Taf14 is another INO80-C subunit that is present in several complexes and may contribute to their recruitment to chromatin (M. Sopha, personal communication). Most likely, the combined affinities for DNA and modified histones contribute to the enhanced recruitment of remodeler complexes to DSBs.

Although γ-H2A.X may contribute to the recruitment of Arp4-containing chromatin modifiers, it also anti-correlates with their accumulation [82], suggesting that there may be a rapid eviction of γ-H2A.X-containing nucleosomes by the recruited remodelers. The same may be true for Htz1; we note that there are conflicting reports as to whether this variant increases or decreases at DSBs [35,93,96]. Most likely, Htz1-containing nucleosomes at the DSB are transiently deposited and rapidly lost, along with phosphorylated H2A, during the processing events that precede repair by HR.

Aiding or Avoiding Resection at DSBs

One of the first steps of DSB processing for HR involves resection of the DNA strands adjacent to the break (Fig. 3). This is achieved through either one of two resection pathways—that of Sgs1-Dna2 or of Exo1. The resection machinery dependent on Sgs1-Dna2 requires a nucleosome-free gap adjacent to the DSB. Resection by Exo1 is blocked by nucleosomes yet is stimulated by dynamic H2A.Z-H2B incorporation after DNA break induction, and consistently, SWR-C was found to facilitate Exo1 processing in HR [96]. Other laboratories failed to see effects of swr1 mutants on resection [93,94]. Given that INO80-C helps evict H2A.Z and γ-H2A.X near DSBs [93], its role may be to facilitate resection dependent on Sgs1-Dna2.

In this respect, we note that some studies suggest that histones are lost as a consequence of resection rather than as a prerequisite for resection [97,98]. This suggests that remodelers fulfill tasks other than nucleosome eviction at the DSB, which favor or disfavor resection, and influence the outcome or pathway of repair. For instance, chromatin immunoprecipitation experiments showed that INO80-C subunits Arp8 and Nhp10 are important to retain Mec1 and Mre11 at the break site (indicative of resection), as well as yKu80 (which promotes NHEJ), while SWR-C contributes only to yKu8 retention [93]. Whereas the deletion of swr1 and arp8 had no effect on the repair of the MAT locus by gene conversion with HM loci [93], the remodeler mutants did have differential effects on NHEJ pathways: SWR-C promoted error-free NHEJ while INO80-C was found to have a modest effect on
error-prone NHEJ, which requires resection [93]. Moreover, deletion of SWR-C subunit Arp6 leads to a significant increase of spontaneous HR events, suggesting that SWR-C actively represses HR-mediated repair in yeast [99].

The data implicating INO80-C in repair are more extensive. Studies in Arabidopsis thaliana implicate INO80-C in ectopic (transposon) recombination events [100], and arp8-depleted diploid yeast cells were modestly defective in interhomolog DSB repair by HR [101]. Indeed, in arp8Δ cells, Rad51 is recruited to the DSB but the transfer to the homologous donor showed a marked delay, which correlates with a failure to displace nucleosomes at the donor locus [101]. Thus, it was argued that INO80-C contributes both to very early and very late stages of HR. Finally, arp8Δ strains were defective for DNA damage-induced sister chromatid recombination and inter-chromosomal recombination between heteroalleles, suggesting that widespread DNA damage might enhance INO80-C’s contributions [99]. In this context, it is again relevant to mention that multiple INO80-C subunits are targets of Mec1 phosphorylation [48,49] and that a modification of its activity by phosphorylation may contribute to the defects revealed in various repair assays. Perhaps this explains the lack of effect seen by ino80Δ mutation on recombination-mediated repair at MAT: this locus does not activate the checkpoint kinase Mec1 when it repairs the HO-induced cut by gene conversion with HMR or HML.

It is also important to note that arp8Δ strains may not reveal the full impact of INO80-C on repair, since yeasts lacking Arp8 are much less sensitive to DNA damaging agents than ino80Δ strains. Indeed, the lack of the Arp8 module (Arp8, Arp4 and actin) strongly hampers but does not impair the INO80-C remodeling reaction [52]. Unfortunately, in many strains, a complete ino80 deletion is lethal. Further studies, preferably with a degron-inducible loss of function allele, will be needed to define the exact contribution of INO80 to repair.

Conserved and Divergent Functions across Species

The INO80 subfamily of remodelers has an impact on genome stability throughout the eukaryotic kingdom, yet this conservation may not necessarily apply to specific roles in DSB repair. In mammalian cells, the more common repair pathway for DSB repair is NHEJ [102]. However, in mouse embryonic fibroblasts, INO80-C and its subunit YY1 are essential in HR-based repair and their deletion leads to DNA damage sensitivity. Additionally, loss of YY1 causes polyplody and chromosomal aberrations [103]. In line with this finding, human and mouse INO80-C contribute to 5–3’ strand resection [104] and mouse INO80-C was found to be required for the generation of single-stranded DNA for homology-directed DNA repair at telomeres [105].

Immunofluorescence experiments showed that human INO80-C is directed to the site of DNA damage in an Arp8-dependent manner, suggesting a direct role of mammalian INO80-C in DNA repair [106]. However, assessing the direct effects of human INO80-C in DNA repair might be difficult, as this chromatin remodeler also indirectly affects DNA repair by controlling the transcription of the repair genes Rad54B and XRCC3 [107]. It is unclear whether INO80 evicts H2A.Z in mammalian cells, as a H2A.Z chaperone has been recently reported, called ANP32E, which removes the histone variant across the genome and links H2A.Z to the p400/TIP60 complex [108].

The human counterpart of SWR-C, SRCAP, also incorporates H2A.Z-H2B dimers into nucleosomes [109]. Mutations in the human SRCAP protein can cause Floating-Harbor Syndrome, which is characterized by delayed osseous maturation, distinctive facial appearance, expressive language deficits and short stature [110]. Recent results show that, in HeLa cells, SRCAP contributes to cellular resistance to DSB-inducing agents and, as in yeast, is directly recruited to DSBs [111]. Intriguingly, SRCAP is able to form a complex with CtIP (S. cerevisiae: Sae2) and promotes accumulation of CtIP at DSBs, which is thought to cooperate with the MRN (S. cerevisiae: Mrx) complex to stimulate the initiation of resection. Consistently, the same authors demonstrate that SRCAP facilitates DNA end resection, as well as the recruitment of replication protein A and the recombinase RAD51 [111]. In A. thaliana, mutations in SWR-C subunits also caused hypersensitivity to DNA damaging agents and correlated with impaired HR [112]. Whereas the damage hypersensitivity is conserved in budding yeast, swr1Δ and arp6Δ mutants lead instead to increased HR [91,99] and swt1 null cells supported wild-type levels of Mre11 binding, end resection and checkpoint activation, in stark contrast to the phenotypes reported for SRCAP-depleted HeLa cells. Again further work is required to determine whether these discrepancies reflect the assays used or divergent roles for the H2A.Z (Htz1) in different species.

Involvement of INO80-C in Replication

The hypersensitivity of S. cerevisiae ino80 deletion mutants to replication stress induced by HU depletion of nucleotides suggested a role of INO80-C in replication. Indeed, G1-arrested wild-type cells upregulate Ino80 expression upon release into HU-containing medium, and INO80-C is enriched at yeast origins of replication in an S-phase-specific manner, showing a genome-wide preference for early-firing over late-firing origins [83–85]. HU stalls replication forks due to a depletion of dNTPs and leads to a Mec1-dependent...
checkpoint activation. Stabilizing polymerases at the stalled forks is essential for successful replication and cell survival. In two-dimensional gel analyses of stalled replication forks, a mutant ino80Δ appeared to cause replication fork collapse [113], while ars5Δ and ars80Δ alleles did not but instead showed a dramatically impaired resumption of replication [83]. A genome-wide collapse of replication forks in the ino80Δ mutant seems unlikely, given that the phosphorylation of H2A, indicative of DSBs arising from collapsed forks, was not significantly different between ino80Δ and wild-type cells [85].

In contrast to HU, MMS induces S-phase-specific damage by base modification, provoking breaks or fork stalling that often require translesion synthesis for repair. Ubiquitination of the DNA replication processivity clamp proliferating nuclear antigen (PCNA) at K146 by Rad6-Rad18 is necessary to confer MMS damage tolerance during replication in the error-free damage avoidance pathway [114]. Within this pathway, Rad51 is recruited to the stalled replication fork in a Rad18-dependent and ub-PCNA-dependent manner [115]. A functional INO80 complex appears to be necessary for both Rad18 and Rad51 recruitments to MMS lesions and therefore also contributes to MMS resistance during replication [85]. The fact that ATPase activity of Ino80 is essential to recruit Rad18 and also Rad51 to stalled replication forks indicates that INO80-C also remodels nucleosomes and alters the chromatin landscape at damaged forks.

It will be interesting to explore how INO80-C and also SWR-C function in post-replicative repair or nucleosome assembly after replication, given that H3K56 acetylation both coincides with nucleosome reconstitution after passage of the replication fork (reviewed in Ref. [116]) and influences the enzymatic activity of SWR-C and INO80-C [117]. Not only the concerted action of INO80-C and SWR-C but also of other chromatin remodelers is likely to play a vital part in replication; notably, ISWI and INO80-C were also shown to function together to downregulate S phase checkpoint activity and ensure proper progression through S phase [118].

INO80-C and Nucleotide Excision Repair

Based on the findings that ino80Δ yeast strains are sensitive to replication blocking damage (induced by UV or MMS, for example), but not to ionizing radiation or camptothecin, it was suggested that INO80-C primarily functions during the replication of the genome [119]. However, the repair of methylated purines caused by MMS or UV-induced cyclobutyl pyrimidine dimers is not deficient in ino80Δ mutants [90,119]. Rather, INO80-C appears to function by facilitating the assembly of nucleotide excision repair (NER) factors and by restoring the chromatin state after NER of UV-induced damage. This may stem from the dama-

ge-induced interaction of INO80-C with Rad4-Rad23, a complex formed between the yeast XP-C homologue, Rad4, and Rad23, which bridges from the NER repair machinery to the proteasome [90,120]. Both Rad4 and Rad23 are necessary for NER due to the physical interaction of Rad23 with the 26S proteasome [121,122].

INO80-C and SWR-C in Checkpoint Pathways

INO80-C has been identified to be a Mec1 (ATR) and Tel1 (ATM) target in the DNA damage checkpoint response, with its subunit Ies4 being phosphorylated in the presence of DNA damage [48]. Ies4 phosphoacceptor site mutants do not significantly alter the repair of DNA damage but do modulate the checkpoint response [48]. An Ies4 phosphomimetic mutant shows mild sensitivity to HU or MMS but no defects in other steps in HR- or NHEJ-mediated DSB repair, confirming that phospho-Ies4 is not directly involved in the repair process of DNA DSBs.

The phosphomimetic form of Ies4 does show an elevated checkpoint response in response to MMS and leads to a more pronounced cell cycle arrest. Impairing Ies4 phosphorylation had no evident impact on the checkpoint compared to wild-type cells but showed a strong synergistic lethality effect with the replication checkpoint factor Top1 deletion mutant upon chronic exposure to HU. This suggest that INO80-C phosphorylation on subunit Ies4 is indeed critical during the DNA damage elicited by replication stress, even if it has no phenotype on its own [48]. There is no clear mechanism through which Ies4 phosphorylation could influence the remodeling activity of INO80-C although the protein is located close to the YEAITS domain protein Tof14 within the Arp8 module of INO80-C [52]. Intriguingly, deletion of Nhp10 completely alleviates the DNA damage sensitivity of the phosphomimetic Ies4 mutations [48].

It is plausible that the Ies4 phosphoacceptor sites are redundant with other modifications induced by Mec1/Tel1 within INO80-C, given that Ies4 is among the non-conserved subunits in INO80-C. Indeed, a proteomic screen also identified Ies1 and Ino80 to be Mec1 and Tel1 targets [49] (N. Hustvedt and S.M.G., personal communication). Since Ies1 does not associate with INO80-C in an nhp10Δ background [52], it would be possible that phosphorylation of at least Ies4 and Ies1 is jointly needed to modulate INO80-C function upon checkpoint activation. In other words, checkpoint activation could be transmitted to INO80-C through the coordinate phosphorylation of both components (Ies1 and Ies4). In the INO80-C that lacks Nhp10, Ies1 may fail to be modulated, allowing Nhp10 deletion to suppress the DNA damage sensitivity of Ies4 phosphomimetic mutations.

The role of SWR-C in checkpoint activation is less well understood. The same proteomic screen that
identified les1 and Ino80 as new Mec1/Tel1 targets also shows that SWR-C subunits Bdf1 and Swr1 are phosphorylated upon checkpoint activation [49]. Therefore, it seems likely that also SWR-C plays a role in checkpoint-triggered processes. One hint that this may be the case comes from the observation that both SWR-C and INO80-C play a role in checkpoint adaptation. Checkpoint adaptation is a process that allows cells to escape an extended checkpoint arrest to re-enter the cell cycle with an unrepaired DSB. The components in this pathway seem to be at least partially conserved [123]. Budding yeast cells lacking Ino80, or expressing an ATPase deficient form of Ino80, are not able to overcome the checkpoint arrest. This correlates with a drop of H2A phosphorylation and increase of Htz1 incorporation surrounding the DSB. Interestingly, this effect can be counteracted by the additional deletion of Swr1. Therefore, INO80-C and SWR-C appear to have antagonistic functions in regulating checkpoint adaptation [124]. It is unclear whether SWR-C and INO80-C are involved in a novel pathway, possibly involving Htz1, or whether they act downstream of Ku70 or Rad51, two proteins previously implicated in the process.

Remodelers and Cancer

The role of chromatin remodelers in cancer is far from understood, but recent sequencing studies have made it clear that chromatin regulators play a vital part in maintaining the integrity of the genome. Not only are remodeler subunits found overexpressed or modulated in numerous types of cancer, but their correct interplay is crucial to maintain genome stability and prevent oncogenic transformation [78]. Human SWI/SNF or BAF has been identified to be the most frequently mutated chromatin regulatory complex in human cancer, suggesting that it is a potent tumor suppressor. In contrast to other known tumor suppressors or oncogenes that drive particular types of cancer, human SWI/SNF subunit genes were mutated in a wide range of cancers. Therefore, it is likely that SWI/SNF suppresses tumors on a very fundamental cellular level [78]. In the same study, it was shown that genes of SRCAP or TIP60 subunits were affected to a much lesser extent in the cancer genomes assessed, while INO80-C subunits were mutated only in a very small subset of cancers [78]. It would be interesting to probe for an imbalanced epigenetic landscape as a consequence of SWI/SNF mutations in cancer and to verify the factors that play havoc with chromatin composition.

Tumor suppressors such as SWI/SNF are usually difficult targets for cancer therapy, and therefore, it will be important to elucidate whether there are situations in which different remodelers antagonize each other, allowing for remodeler upregulation by inhibition of an opposing activity. On the other hand, given that BRG1 and BRM function as mutually exclusive subunits of human SWI/SNF, BRM could be a suitable target for SWI/SNF mutant cancer therapy in cancers that show paralogue insufficiency and dependence on the remaining ATPase subunit [125]. Paralogue insufficiency was also demonstrated in cancers for ARID1a and ARID1b, another subunit of the BRM/BRG1 complexes, suggesting that this too might be a potential target for inducing synthetic lethality in cancer cells [126].

The fact that multiple types of cancer show increased H3K56 acetylation suggests that the proper distribution of this specific post-translational modification is important for genomic integrity. In particular, this histone modification shows foci formation upon DNA damage that colocalize with sites of DNA repair [127]. Given the major impact of H3K56ac on the enzymatic activity of remodelers in yeast [117], there may be a misregulation of INO80-C and SRCAP (human SWR-C), or of TIP60, that contributes to genomic instability.

Finally, we note that many chromatin remodelers harbor subunits with a YEATS domain and several YEATS proteins in humans, such as GAS41, ENL and AF9, are linked to human cancers (reviewed in Ref. [128]). These proteins may be involved in the recruitment of remodelers to sites of damage or may modulate the Snf2 enzymatic activity that is necessary for maintenance of the epigenetic landscape under DNA damaging conditions. It is noteworthy that leukemias that specifically upregulate BAF (assembled around the BRG1 ATPase) require the complex for maintenance of the leukemia and that loss of BRG1 leads to immediate apoptosis and cell cycle arrest [129]. Given that BRG1 is dispensable for the long-term maintenance of hematopoietic stem cells, inhibitors that specifically block its function might be a promising avenue for a novel therapy against leukemia [129]. Finally it is also noteworthy that chromatin remodelers can be modulated by second messengers such as IP6 [130,131]. These small effector molecules may represent yet another means to modulate remodeler function, restoring the balance needed for genome stability by chemical intervention.

Acknowledgements

We thank Dr. Kenji Shimada, Dr. Vincent Dion, Dr. Jérôme Poli, Andrew Seeber and Dr. Chihiro Horigome for critical reading of the manuscript. We apologize to all those colleagues whose important work is not cited due to space limitations. The authors have been supported by a Research grants from the Human Frontiers Science Program and the Swiss National Science Foundation. Christian
Gerhold holds a FP7 Marie Curie Intra European Fellowship. Michael Hauer is supported by the Boehringer Ingelheim Foundation. The Gasser laboratory gratefully acknowledges the continued support of the Novartis Research Foundation.

Received 13 August 2014; Received in revised form 13 October 2014; Accepted 17 October 2014

Available online 30 October 2014

Keywords:
- nuclear organization;
- chromatin remodeling;
- SWR-C;
- INO80-C;
- DNA repair

Abbreviations used:
- DSB, double-strand break; HR, homologous recombination; HU, hydroxyurea; MMS, methylene methanesulfonate; NER, nucleotide excision repair.

References

Received 13 August 2014; Received in revised form 13 October 2014; Accepted 17 October 2014

Available online 30 October 2014

Keywords:
- nuclear organization;
- chromatin remodeling;
- SWR-C;
- INO80-C;
- DNA repair

Abbreviations used:
- DSB, double-strand break; HR, homologous recombination; HU, hydroxyurea; MMS, methylene methanesulfonate; NER, nucleotide excision repair.

References

Chapter 2: Nucleosome remodelers in double-strand break repair

[40] Davis SK, Bardeen CJ. The connection between chromatin motion on the 100 nm length scale and core histone dynamics in live XTC-2 cells and isolated nuclei. Biophys J 2004;86:555–64.

Chapter 2: Nucleosome remodelers in double-strand break repair

CHAPTER 3: PERINUCLEAR ANCHORING OF H3K9-METHYLATED CHROMATIN IN C. ELEGANS EMBRYOS

Summary

This chapter discusses the mechanism of heterochromatin sequestration to the nuclear periphery in *C. elegans* embryos by the nuclear envelope protein CEC-4. The study by Gonzalez-Sandoval *et al.* further illustrates phenotypic effects on embryo development when dysregulation of the CEC-4 pathway occurs. Of special interest to this thesis is the semi-automated and pixel-classification driven image analysis workflow used to explore a subset of three-dimensional imaging data. We used it to unbiasedly measure the subnuclear position as well as spatial expansion of a fluorescently labeled, heterochromatic array in 3D space. After having successfully tested and published the principles of this technique, it was extensively used to address chromatin expansion in Chapter 4.
Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos

Adriana Gonzalez-Sandoval,1,5 Benjamin D. Towbin,1,5 Veronique Kalck,1 Daphne S. Cabiana,1 Dimos Gaidatzis,1,3 Michael H. Hauer,1,5 Liqing Geng,4 Li Wang,4 Teddy Yang,4 Xinghao Wang,4 Kehao Zhao,4 and Susan M. Gasser1,2,5
1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
2Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
3Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland
4China Novartis Institute of Biomedical Research Co, Ltd, Bldg 3, Lane 3728 Jinke Road, Pudong New Area, Shanghai 201203, China
5Present address: Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
*Correspondence: susan.gasser@fmi.ch http://dx.doi.org/10.1016/j.cell.2015.10.066

SUMMARY

Interphase chromatin is organized in distinct nuclear sub-compartment, reflecting its degree of compaction and transcriptional status. In Caenorhabditis elegans embryos, H3K9 methylation is necessary to silence and to anchor repeat-rich heterochromatin at the nuclear periphery. In a screen for perinuclear anchors of heterochromatin, we identified a previously uncharacterized C. elegans chromodomain protein, CEC-4. CEC-4 binds preferentially mono-, di-, or tri-methylated H3K9 and localizes at the nuclear envelope independently of H3K9 methylation and nuclear lamin. CEC-4 is necessary for endogenous heterochromatin anchoring, but not for transcriptional repression, in contrast to other known H3K9 methyl-binders in worms, which mediate gene repression but not perinuclear anchoring. When we ectopically induce a muscle differentiation program in embryos, cec-4 mutants fail to commit fully to muscle cell fate. This suggests that perinuclear sequestration of chromatin during development helps restrict cell differentiation programs by stabilizing commitment to a specific cell fate.

INTRODUCTION

Cues stemming from the spatial organization of chromatin are widely thought to influence the function of eukaryotic genomes. Indeed, chromatin assumes distinct patterns of distribution in the interphase nucleus in response to cell-type-specific gene expression (reviewed in Meister et al., 2011; Talamas and Capelson, 2015). Dense-staining heterochromatin and repressed tissue-specific genes are sequestered at the inner nuclear membrane (INM) in both plant and animal cells. In metazoans, an INM-associated network of the intermediate filament protein lamin and other associated proteins provides a scaffold that helps the interphase nucleus reform after mitosis (Nigg, 1993). The chromatin that associates with the nuclear lamina (lamin-associated domains or LADs) is generally gene poor, transcriptionally silent, and enriched for repressive histone marks (Gerstein et al., 2010; Guelen et al., 2008; Ikegami et al., 2010; Pickersgill et al., 2006). Importantly, in C. elegans embryos the integrity of two histone methyltransferases (HMTs) that target histone H3K9, MET-2, and SET-25 was shown to be essential for the peripheral localization of heterochromatin (Towbin et al., 2012). Perturbed H3K9 methylation also partially compromised proper heterochromatin organization in mammalian cells (Kind et al., 2013; Pinheiro et al., 2012). However, no nuclear envelope protein has yet been identified that anchors H3K9-methylated chromatin specifically.

Studies of nuclear organization during the development of multicellular organisms or of embryonic stem cell (ESC) differentiation in vitro showed that perinuclear chromatin sequestration is a dynamic process that changes with cell-type-specific gene expression (Fussner et al., 2010; Harr et al., 2015; Meister et al., 2010; Peric-Hupkes et al., 2010). Important genetic studies of Solovei et al. (2013) showed that heterochromatin tethering in differentiated mammalian cells depends on two partially redundant pathways that reflect the sequential induction through development of lamin B receptor (LBR) and lamin A/C. In some mouse tissues both LBR and lamin A/C are expressed; in others, expression of only one is sufficient to ensure the conventional sequestration of heterochromatin at the INM. In the absence of both perinuclear components, heterochromatin accumulated at the nuclear core (Solovei et al., 2013).

Despite these genetic implications, it was unclear what bridges chromatin to LBR or lamin A/C. LBR has been shown to bind the chromodomain (CD) of Heterochromatin proteins 1a and 1b (HP1a and HP1b; Ye and Worman, 1996), which are hallmarks of heterochromatin. But HP1α-containing chromocenters are not necessarily perinuclear, and HP1γ is bound to many euchromatic loci positioned away from INM (Minc et al., 1999). Moreover, complete ablation of HP1α or β in either pluripotent or differentiated ESCs does not change chromocenter positioning (Mattout et al., 2013). Mammalian LBR also binds histone H4K20me2 in vitro through its C-terminal Tudor domain (Hirano et al., 2012), yet H4K20me2 is...
Figure 1. cec-4 Is Required for Anchoring and Compaction of a Heterochromatic Array

(A) Heterochromatin transgene array gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] reporter.

(B) Zoning assay for array distribution. Radial position is determined relative to the INM, and values are binned into three concentric zones.

(legend continued on next page)

broadly distributed without enrichment on LADs (Barski et al., 2007).

Whereas mammalian lamins were reported to bind AT-rich DNA and histone H1 in vitro (reviewed in Wilson and Foisner, 2010), this affinity cannot account for selective heterochromatin binding. Nor is it explained by lamin A/C interaction with transcription factors or the barrier to autointegration factor (BAF), which may link specific promoters to lamins (Kubben et al., 2012; Meuleman et al., 2013). Similarly, the lamin associated Lap2p interacts with HDA3c and the transcription factor Krox, a ligand of GAGA motifs, leading to the repression and perinuclear anchoring of a subset of mammalian promoters (Zullo et al., 2012). Yet LAP2 is expressed far beyond promoters, coinciding instead with extensive domains of H3K9 methylation (Towbin et al., 2012).

Alternatively, nuclear lamins may act indirectly by providing a stable platform for the localization of other INM proteins (e.g., Lap2p, Emerin, and Man1 (Brachner and Foisner, 2011)). Indeed, depletion of the C. elegans lamin, LMN-1, mislocalizes Emerin (EMR-1) and Man1 (LEM-2), and the worm Emerin in turn helps stabilize repressed muscle and neuronal genes at the INM in differentiated worm tissues (Gonzalez-Aguilar et al., 2014). Yet neither Emerin nor Man1 bind heterochromatin directly. A similar indirect effect was ascribed to mammalian SAMP-1, an INM protein connected to LINC (linker of nucleo- and cytoskeleton) complex, whose loss compromises nuclear integrity and leads to Emerin, SUN-1, and Lamin A/C mislocalization (Gudise et al., 2020). Finally, loss of PBR14, a perinuclear HP1-binding protein, altered perinuclear attachment of H3K9-methylated domains in mammalian nuclei, yet led to general defects in nuclear structure, raising the question of indirect effect on DNA localization (Poleshko et al., 2013).

Here we exploit the power of RNAi screens in the nematode C. elegans to find a methyl-H3K9-specific perinuclear anchor for heterochromatin. We have individually downregulated proteins that harbor characteristic histone methylation binding motifs and monitored changes in the perinuclear anchoring of heterochromatin in early embryos. We identified a previously uncharacterized C. elegans CD protein, CEC-4, as our only positive hit. CEC-4 localizes at the INM where it directly binds endogenous H3K9-methylated chromatin through its CD2’s aromatic cage. CEC-4 is not necessary for the transcriptional silencing of either endogenous genes or a heterochromatin reporter, although the methylation of H3K9 and its ligands HPL-2 and LIN-61 are. Despite this, a reproducible fraction of cec-4 embryos were unable to maintain the muscle specification induced by a pulse of HLH-1 (MyoD) expression. We suggest that perinuclear sequestration of chromatin contributes to cell fate commitment under conditions of perturbed development.

RESULTS

CEC-4 Is a Chromodomain Factor that Anchors a Heterochromatic Array

To search for proteins involved in the anchoring of methylated H3K9 chromatin, we designed an RNAi screen with a fluorescent reporter for perinuclear heterochromatin positioning in C. elegans embryos. Our reporter is an integrated plasmid array, gwtd4, which expresses the GFP-LacI fusion protein under control of the ubiquitously active baf-1 promoter. GFP-LacI binds a lacO site that occurs once per 3.5 kb (~300x), generating a fluorescent focus that binds the INM in embryonic nuclei (Figure 1A). The histones on the array are trimethylated on H3K9 and H3K27, but lack H3K4 methylation, and have reduced gene expression, thereby recapitulating conserved features of heterochromatin (Meister et al., 2010; Towbin et al., 2013). Array position is determined with a zoning assay in which radial distances from the spot to the nuclear periphery, scored in the focal plane in which the spot is the brightest, are binned into 3 zones of equal surface (Figure 1B). Deviation from 33% indicates nonrandom localization.

The C. elegans genome encodes 65 proteins that contain methyl-lysine/arginine binding motifs, namely CD, MBT (malignant brain tumor), PHD (plant homeodomain) and Tudor domains (Table S1; reviewed in Taverna et al., 2007). This set of proteins includes HPL-1 and HPL-2, homologs of HP1, a highly conserved CD protein that binds methylated H3K9 to silence heterochromatin (Nesterov et al., 2013). HPL-1 co-localizes with the heterochromatic gwtd4 array in worm embryos and appears to repress transcription in a promoter-specific manner working together with the H1 variant HIS-24 in larva (Studencka et al., 2012a). HPL-2 binds H3K9me2/3 as well as H5K27me2/3 in vitro, and it is needed to repress large heterochromatic arrays in both embryos and germline cells, as well as to fine-tune other gene expression events (Couteau et al., 2002; Studencka et al., 2012a). A third H3K9me2/3 me3 ligand is the MBT-domain protein LIN-61, whose loss compromiss vulva development, silencing of heterochromatic arrays, and a neuron-specific reporter in somatic cells (Koester-Eiserfunke and Fischle, 2011; Zheng et al., 2013). Remarkably, elimination of these known H3K9me ligands,
singly or in combination, had little impact on the perinuclear sequestration of the gwis4-heterochromatic array, although the mutants did lose transcriptional repression (Figure 1C; Towbin et al., 2012).

Conscious that anchor redundancy might be a concern, we downregulated other methyl-binding candidates by RNAi in hpl-1;lin-61 double mutant embryos. Only one RNAi target, cec-4, which was shown to lack a conserved CD domain, affected the perinuclear anchoring of the heterochromatin reporter (Figures 1D and 1E). The percentage of heterochromatin foci in the outermost nuclear zone dropped from 92% to 20%, following cec-4 RNAi (Figures 1E and S1B). Although cec-3/rap-1p has been described as an H3K9me3 reader (reviewed in Greer et al., 2014; Zheng et al., 2013), cec-3 RNAi had no impact on heterochromatin anchoring in our screen (data not shown).

The effect of cec-4 RNAi on array position did not depend on the presence of LIN-61 or HPL-1, for the same RNAi in WT worms yielded identical array de-localization (Figures 1E and S1B). To rule out off-target effects of cec-4 RNAi, we scored array position in embryos carrying the null mutant cec-4(ok3124), which lacks the 5' UTR and first 2 exons (Figure S1A). The genetic ablation of cec-4 phenocopied cec-4 RNAi, yielding full array detachment from the INM, identical to that scored in embryos that lack H3K9 methylation; i.e., the met-2 set-25 double mutant (Towbin et al., 2012). Thus, the CD-encoding cec-4 gene is required, like H3K9-methylation, for the perinuclear anchoring of heterochromatic arrays in C. elegans early embryos.

We examined the effect of cec-4 ablation on gene expression by quantifying the fluorescent intensity of GFP-LacI, which is expressed from a housekeeping promoter on the gwis4 array. Although the expression levels are strongly upregulated in cec-4(ok3124), the gene is required, like H3K9-methylation, for the perinuclear anchoring of heterochromatic arrays in C. elegans early embryos. We reasoned that if CEC-4 localizes independently of lamin, it would also associate with the nuclear envelope of budding yeast, which lacks lamin entirely (reviewed in Taddei and Gasser, 2012). Indeed, when expressed as a GFP fusion protein under control of the GAL1 promoter, CEC-4-GFP formed a perinuclear ring at INM of yeast nuclei (Figure S2B). To map the domain that directs CEC-4 to the INM, we expressed complementary N- and C-terminal fragments of CEC-4, fused to GFP. Both yielded a diffuse nuclear distribution (Figure S2C), suggesting that the integrity of the holoprotein is necessary for INM enrichment (Figure S2C). Similar results were obtained with similar constructs expressed ectopically in C. elegans (data not shown). Finally, in yeast as in worms, ablation of known INM and pore basket proteins (Table S7) did not alter CEC-4-GFP localization. We therefore propose that either CEC-4 has an intrinsic affinity for the INM, or else it binds a conserved but uncharacterized membrane component.

CEC-4 Localizes Intrinsically to the Nuclear Periphery

We next examined an uncharacterized localization of CEC-4. A mCherry-tagged version of cec-4 was integrated as a site-specific, single-copy genomic insertion under control of its endogenous cec-4 promoter and 3' UTR (Figure S2A). Confocal fluorescence microscopy of CEC-4-mCherry (CEC-4-mCh) showed that the protein forms a ring at the nuclear periphery at all embryonic stages (Figure 2A). This distribution persisted in larval and adult differentiated tissues and in the germline of adult worms (Figure 2D; data not shown). CEC-4 localization was independent of H3K9 methylation; the same perinuclear CEC-4-mCh ring was found in the met-2 set-25 mutant, in which H3K9 is unmethylated and heterochromatin was de-localized and expressed (Figure 2C). Only in mitosis did CEC-4-mCh become dispersed (data not shown), much like laminins, which undergo phosphorylation by cyclinB/Cdk in mitosis (Nigg, 1992).

Quantification of fluorescence intensity of CEC-4-mCh in L1 larval stage showed protein level variation in a tissue-specific fashion. CEC-4 is weakly expressed in intestine, highly expressed in muscle, and is found at intermediate levels in almost every other tissue (Figure 2D). Uncharacterized CEC-4 expression was not observed for an EMR-1 fusion construct designed and integrated in a similar manner (EMR-1-mCherry; Figures 2D and S2A).

To characterize CEC-4’s nuclear rim pattern further, we imaged embryos at 100 nm resolution using super-resolution structured illumination microscopy (SR-SIM). The CEC-4-mCh ring resolved into a perinuclear, punctate pattern (Figure 2B), and counterlabeling of nuclear pores or LNM-1 (lamin) showed CEC-4 in the same concentric plane as lamin and is situated mostly between pores (Figure 2B). Lamin and CEC-4-mCh were in very close proximity, yet could be resolved as distinct foci (low yellow signal in red/green channel merge; Figure 2B), suggesting that CEC-4 might localize to the INM independently of lamin. Indeed, after treating these worms with Imr-1 RNAi, CEC-4 perinuclear ring persisted (data not shown). The same was true after RNAi against Emerin, LEM-2, SUN-1, UNC-84, BAF-1, and all other known C. elegans INM components (Table S6).

We reasoned that if CEC-4 localizes independently of lamin, it might also associate with the nuclear envelope of budding yeast, which lacks lamin entirely (reviewed in Taddei and Gasser, 2012). Indeed, when expressed as a GFP fusion protein under control of the GAL1 promoter, CEC-4-GFP formed a perinuclear ring at INM of yeast nuclei (Figure S2B). To map the domain that directs CEC-4 to the INM, we expressed complementary N- and C-terminal fragments of CEC-4, fused to GFP. Both yielded a diffuse nuclear distribution (Figure S2C), suggesting that the integrity of the holoprotein is necessary for INM enrichment (Figure S2C). Similar results were obtained with similar constructs expressed ectopically in C. elegans (data not shown). Finally, in yeast as in worms, ablation of known INM and pore basket proteins (Table S7) did not alter CEC-4-GFP localization. We therefore propose that either CEC-4 has an intrinsic affinity for the INM, or else it binds a conserved but uncharacterized membrane component.

CEC-4 Chromodomain Preferentially Binds Methylated H3K9

Based on sequence analysis, the CEC-4 CD (aa 82–141) shares 42% identity with mammalian H3K9 methyltransferases (G proteins and 33% with HPL-1/2 CDs, yet CEC-4 lacks the HP1-specific chromoshadow and RNA-binding hinge domains (Couteau et al., 2002). Protein comparison failed to reveal a strict homolog of CEC-4 in mammalian genomes, apart from the CD and a second conserved motif, here called PD (putative domain, aa 25–76), which is found in other CD-containing proteins (Figure S3A).

The CEC-4 CD has a canonical secondary structure like mammalian HP1 and Pc3 (Fischle et al., 2003b), with an aromatic cage containing two tyrosine residues that are predicted to recognize methylated lysine within the H3 ARK(S/T) motif. To characterize the specificity of CEC-4 CD binding, we expressed

and purified the WT CD-containing fragment of CEC-4 (CEC-4 CD; aa 25–141) and a mutated version of the same fragment (Y87A and Y111A; CEC-4 cd-2YA; Figures 3A and S3A), bearing point mutations that should disrupt the aromatic cage. Using magnetic beads coated with unmethylated (me0) or tri-methylated (me3) H3K9 peptide (aa 1–20+Cys), we found that the WT CEC-4 CD bound a H3K9me3 peptide specifically, while the CEC-4 cd-2YA mutant fragment did not (Figure 3B).

Figure 2. Perinuclear CEC-4 Localization Is Independent of H3K9 Methylation, and Varies from Tissue to Tissue
(A) Single plane images of indicated embryo stages expressing CEC-4-mCh.
(B) SR-SIM microscopy of CEC-4-mCh transgenic embryos, counterstained for nuclear pores, lamin or mCherry. Embryo sections and single nuclear planes shown.
(C) Z-projection of CEC-4-mCh in met-2 set-25 mutant background; images of mCherry alone and merged with gwIs4 GFP-LacI signal are shown. Insets: single plain nuclei. Quantification of array distribution, n = foci scored.
(D) Single plane confocal images of CEC-4- and EMR-1-mCh transgenic L1 larvae; scheme of L1 worm color-coded by tissue, M: muscle, I: intestine, H: hypoderm. Measured mCh signal intensity displayed as box plots in a.u. as in Figure 1. Black circles = outliers, n = number of nuclei per tissue; pair-wise comparisons for * and **p value < 0.001 in Wilcoxon test. Scale bar, 5 μm in whole/section embryos and larvae; 2 μm in single nuclei/insets.
See also Figure S2.
Figure 3. CEC-4 CD Binds Methylated H3K9 Peptides

(A) Schematic comparison of H. sapiens HP1α, C. elegans HPL-1/2 and CEC-4 CD (green), purple: chromoshadow (ChSh) domain, blue: conserved PD. Purified CEC-4 CD fragments in blue; red X = Y87A and Y111A mutations.

(B) Pull-down of recombinant His-tagged CEC-4 CD fragments (A) by unmodified or me3-H3K9 resin-immobilized peptides. Protein visualized by SYPRO Ruby staining.

(C) AlphaScreen scheme: donor and acceptor microbeads coated with 188 different biotinylated peptides and His-tagged CEC-4 CD, respectively. Interaction produces a fluorescent signal through singlet oxygen (‘O2) transfer from donor to Ni2+ ions on acceptor beads. Three peptide concentrations tested with equal amounts of CEC-4 CD (200 nM). Color-coded results reflect signal intensity (see Table S4 for rest of library).

(D) Dose-response binding curves for indicated H3K9 peptides with CEC-4 CD in AlphaScreen assay.

(E) Quantitation of binding affinities of H3K9 peptides to CEC-4 CD and cd-2YA mutant determined by ITC. In (D) and (E) solid lines represent a nonlinear least-square fit using one-sided fitting equation.

See also Figures S3 and S4.
We evaluated CEC-4 CD specificity by scoring interaction with a range of modified and unmodified histone tail peptides in a quantitative chemiluminescence assay (Alpha Screen; Taouji et al., 2009). We screened the ALTA Biosciences library, which contains 188 histone tail ligands each with a different epigenetic modification (Table S4; Figure 3C). Consistent with the pull-down assay, strong interaction signals were detected almost exclusively between CEC-4 CD and a peptide of histone H3 bearing me1-, me2-, or me3-K9. Intriguingly, CEC-4 affinity for H3K9me3-containing peptides was compromised by additionally phosphorylating S10 and/or T11 (Figure 3C and Table S4). Such modifications have been proposed to disrupt the anchoring of heterochromatin at the INM in embryos, but is Redundant in Differentiated Tissues

The single-copy CEC-4-mCh fully restores array anchoring in the cec-4 null mutant. It is enriched on the anchored heterochromatin reporter due to its affinity for H3K9me2 (Figures 4A and S2C). An identical integration construct bearing the aromatic cage mutations described above (CEC-4cd-2YA-mCh) did not complement for anchoring, nor did it bind to the array (Figure 4B). The disruption of the CEC-4 CD on the other hand, CD integrity is not involved in CEC-4 localization, and the binding of methylated H3K9 peptides in vitro. On the other hand, CD integrity is not involved in CEC-4 localization, as CEC-4 cd-2YA gave only background level interaction (Figure 4D). The same was observed in the met-2 set-25 double mutant (Towbin et al., 2012). It appears, therefore, that compensatory or redundant mechanisms for anchoring heterochromatin are induced in the differentiated tissues of the L1 larva. It is unclear whether these mechanisms are fully independent of CEC-4 or if CEC-4 contributes to tissue-specific aspects of heterochromatin anchoring in a redundant manner (Figure 2D). Both the redundancy and tissue-specificity aspects are reminiscent of lamin A/C and LBR effects in mice (Solovei et al., 2013).

Loss of CEC-4 Alters the Spatial Distribution of Endogenous Chromosome Arms

Thus far integrated transgenic arrays were used as a surrogate for heterochromatin. To see if CEC-4 affects the distribution of endogenous chromatin, we performed LEM-2 chromatin immunoprecipitation coupled to deep sequencing (ChIP-seq) in WT and mutant embryos. C. elegans chromosomes are holocentric and lack pericentric satellite heterochromatin but are enriched for H3K9 methylation and repetitive elements along the distal arms of all autosomes and the left arm of chromosome X (Gonzalez-Aguilera et al., 2014; Ikegami et al., 2010). Previous ChIP and lamin-Dam-ID studies had shown that chromosome arms are proximal to the INM in C. elegans embryos, larvae, and adults. Moreover, the loss of H3K9 methylation (met-2 set-25) was enough to compromise INM-anchoring of the repeat-rich autosomal arms (Gonzalez-Aguilera et al., 2014; Ikegami et al., 2010; Towbin et al., 2012). We used ChIP-seq to map LEM-2-binding along endogenous sequences in WT, cec-4, and met-2 set-25 embryos. Euclidian distances were measured showing high similarity between replicates. Hierarchical clustering resolved WT LEM-2 ChIP as different from either mutant, while the met-2 set-25 and cec-4 mutants clustered together (Figure S5A). All input samples were very similar. Plotting the LEM-2 signals along the chromosomal sequences showed that distal arms lost anchoring in cec-4 null embryos to the same degree as in the H3K9me-deficient met-2 set-25 mutant (Figures 5A and S5B).

As expected, LEM-2 binding along wild-type autosomes was polarized: chromosome arms were enriched at the INM in both PHA-1 and PHA-2. This polarization was reduced, but some similarly in both mutants. The integrated LEM-2 signal on each chromosomal extremity was plotted against the signal integrated over each center, to visualize the effects of the mutations (Figure S5B). We conclude that the INM binding of the endogenous repeat-rich domains on chromosome arms requires H3K9 methylation and its recognition by CEC-4. Nonetheless, other positioning pathways likely exist, since chromosome extremities were displaced to different degrees.

In many organisms heterochromatin is also clustered around the nucleolus, the site of rDNA transcription by RNA Pol I (Paeken and Heun, 2014). The C. elegans rDNA is found on the
distal arms of ChrI and ChrV in heterochromatic regions (Figure 5A). We therefore checked whether nucleoli change their radial position in the cec-4 mutant by staining for a conserved marker of the nucleolus, fibrillarin (Figure 5A). In embryos lacking CEC-4, nucleoli shifted quantitatively away from the perinuclear lamin (Figure 5C), confirming that CEC-4 contributes profoundly to the positioning of endogenous chromatin in embryos.

Monitoring Gene Expression in the Absence of CEC-4

It has long been debated whether nuclear localization is sufficient to influence gene expression. To test this we generated gene expression profiles (RNA-seq) of WT, met-2 set-25, and cec-4 mutant embryos. Pairwise comparison of two independent biological replicas of mutant and WT samples showed a reproducible upregulation (>4-fold) of a large number of genes in embryos lacking H3K9 methylation (met-2 set-25), whereas the loss of CEC-4 led to robust upregulation of a single gene, snr-85 (Figure 5D). The modest effect of cec-4 mutation on gene expression is consistent with our results from the array-borne GFP-LacI (Figure 1F). In the case of endogenous genes in early embryos, the lack of derepression might simply reflect the absence of transcription factors needed for tissue-specific gene expression. However, given that the loss of H3K9 methylation does upregulate many genes in embryos, it is more likely that H3K9me-ligands other than CEC-4 mediate gene repression. Analysis of datasets in 500 bp windows across the whole genome, for potential changes in non-genic regions, yielded similar results to the gene-centric analysis; only genomic
windows spanning the snr-85 locus were reproducibly upregulated in cec-4(ok3124) (Figure S5C).

The dramatic induction of snr-85 (>16-fold) upon displacement from the INM (Figures S5A and S5-F). Its derepression correlates strongly with subnuclear position, and not with H3K9 methylation state, as it was not derepressed in nrt-2 or set-25 single mutant embryos, which retain anchoring (Towbin et al., 2012). SRW-85 is a member of the C. elegans chemoreceptor family of seven transmembrane G protein-coupled receptors (7TM-GPCR). The gene sits on ChrV-right, along with 90% of the 145 protein-coupled receptors (7TM-GPCR). The gene sits on non-ASE type (gustatory) neurons (Etchberger et al., 2007). Given that surrounding genes are not equally upregulated (Figure S5D), we conclude that snr-85 is an exception rather than the rule. CEC-4, unlike other H3K9 methylation readers, serves primarily to position chromatin, although the H3K9me2/me3 modification it recognizes also mediates transcriptional silencing.

Perinuclear Anchoring Helps Stabilize an Ectopically Induced Cell Differentiation Program

We examined cec-4 mutant worms for developmental defects. Surprisingly, we found no drop in brood size nor embryonic lethality (either at 20°C or 26°C). We scored no reproducible differences in the developmental timing of embryonic stages, and except for a slight increase in the proportion of male progeny, proliferation appeared normal under standard laboratory conditions (data not shown). Given that alternative anchoring pathways are induced in L1 larvae, we sought to test the role of CEC-4-mediated chromatin tethering specifically in embryos.

To this end, we used an assay that induces muscle cell specification in embryos in response to a cell-type independent burst of HLH-1 (MyoD) expression, a master regulator for muscle differentiation (Fukushige and Krause, 2005). Induction of HLH-1 is driven by the hsp-16.2 heat-shock (HS) promoter on a transgene array (HS::hlh-1) and is achieved by placing embryos by 34°C for 10 min; about 24 hr after, efficiency of induction can be monitored by morphology and muscle-specific gene expression (Figure 6A). To test whether cec-4 mutant alters the efficiency of muscle induction, we introduced the HS::hlh-1 transgene and the gwi4 array into WT and cec-4 mutant, using the latter as a fluorescent reporter for muscle-specific gene expression (myo-3p::RFP). At 40 min after HS, hlh-1 mRNA was expressed at comparable levels in both genotypes, as was the downstream muscle specific myosin, myo-3, at 24 hr after HS (Figure 6B).

We induced HLH-1 expression at different time points during synchronized embryonic growth and monitored the outcome by microscopy. A striking difference between WT and mutant embryos was noted when we exposed the bean stage (~560 cells; 300 min growth at 22.5°C) to the HLH-1 pulse (Figure 6C–6F). Whereas 100% of the wild-type embryos turned into lumps of muscle-like cells with muscle-twitching behavior, among the heat-shocked cec-4 null embryos a reproducible 25% continued to develop, reaching the point of twitching from the eggshell despite their documented HLH-1 expression (Figure 6G and 6D). These hatched larva-like organisms were clearly abnormal, as they were disrupted by the slightest manipulation and failed to survive. Nonetheless, they had progressed well beyond embryonic stages and did not manifest the muscle morphology of their WT counterparts (Figure 6C and 6E). To delineate a general temperature sensitivity, we exposed the mutant embryos lacking the HS::hlh-1 to HS, yet observed no effect on development: all embryos yielded normal larvae (Figure 6C).

After HLH-1 induction, the fluorescent reporter myo-3p::RFP was detected in patches of cells in both genotypes, with an overall higher intensity in WT cells (Figures 6E and 6A). The subset of cec-4 mutant embryos that became muscle, like the WT embryos, showed twitching behavior. In contrast, the cec-4 null hatched larva-like worms had a dispersing muscle-specific gene expression pattern throughout the organism, which was distinct from the usual myo-3 expression pattern in L1 larvae body wall muscle (Figure 6E). We could complement the cec-4 deletion by introducing the tagged CEC-4-mCh; indeed, this restored the normal WT response to HLH-1 induction, and 100% of the embryos became muscle cells. In contrast, complementing with CEC-4cdZYA-mCh yielded results reminiscent of the cec-4 null, albeit less penetrant (Figure S6B).

The inefficiency of the cec-4 mutant for muscle tissue conversion in response to MyoD appears to reflect an inability to lock in the muscle specification program and repress other differentiation programs. In other words, despite high level expression of HLH-1, the cec-4 mutant appeared to remain more permissive to other differentiation signals and therefore continued to develop other tissues while expressing muscle-specific genes. We confirmed this by tracking an intestine cell marker that is not expressed in either genotype at the bean stage when we perform HS. The reporter (kind gift of G.-J. Hendriks and H. Grosshans, personal communication) expresses a GFP-tagged nuclear pore protein from an L1-stage gut-specific promoter (nhx-2). At 18 hr after HS, we find that the fluorescent gut marker (nhx-2p::rpp-9::GFP) was detected in 94.5% of cec-4 mutant embryos, but significantly less in WT (39.6%; Figure 6F).

Given the fragility of the hatched larva-like structures, neither immunostaining nor manual isolation for RNA-seq was possible. However, their morphology alone allows one to conclude that a significant fraction of the cec-4 mutant embryos failed to restrict gene expression to the muscle program. Thus, the perinuclear sequestration of silent genes by CEC-4 in embryonic stages appears to help stabilize the HLH-1-induced muscle cell fate.

DISCUSSION

Perinuclear Chromatin Sequestration through Histone H3K9 Methylation

Heterochromatin, or transcriptionally silenced chromatin, is often juxtaposed to the INM in eukaryotic organisms. Previous work has identified H3K9 methylation as essential for heterochromatin anchoring in worms (Towbin et al., 2012) and important in mammalian cells (Kind et al., 2013; Pinheiro et al., 2012). However, no INM anchor that selectively binds this epigenetic mark was known. Here we describe CEC-4 as a perinuclear C. elegans protein which is necessary for the tethering of endogenous chromatin bearing me2- or me3H3K9, histones. CD’s aromatic cage is necessary for H3K9me binding in vitro and...
Figure 5. CEC-4 Influences Anchoring of Endogenous Chromatin and Nucleoli, but Not Silencing
(A) LEM-2 ChIP-seq profiles over chromosomes are shown for two independent replicas of early embryos of WT (gray/dark gray), met-2 set-25 (blue/light blue), and cec-4 (red/light red) mutants. Dashed line shows srw-85 and C18D4.6 genes, and triangles show rDNA clusters.

(legend continued on next page)
in vivo. Ablation of CEC-4 delocalizes heterochromatin, but does not necessarily lead to its derepression, whereas loss of histone H3K9 methylation compromises both. Other H3K9me- binding CD proteins (HP1 homologs HPL-1 and HPL-2, or LIN-61) contribute to transcriptional repression by binding H3K9me2 or me3, but do not mediate perinuclear anchoring. This bifurcation in function of a single methylated lysine in a histone tail, through divergent sets of methyl-lysine readers, provides a paradigm for how epigenetic states can coordinate distinct activities. In this case, chromatin can be anchored without silencing and silenced without anchoring, even though the two functions are correlated through H3K9 methylation. H3K9me1/me2 is sufficient for tethering through CEC-4, while H3K9me3 is needed for gene repression mediated by other H3K9me-readers (Figure 7). It remains to be seen if CEC-4 and other H3K9me readers interact.

CEC-4 Contributes to the Robustness of Ectopically Induced Differentiation

This finding gave us the opportunity to examine what happens during development when heterochromatin anchorage is compromised, without loss of H3K9 methylation or the transcriptional repression it mediates. Although cec-4 mutant embryos yielded normal adult worms when development proceeded unperturbed, we were able to demonstrate a function for heterochromatin anchoring in early development by inducing muscle differentiation with ectopic expression of MyoD (HLH-1). Unlike the WT strain, a significant fraction of cec-4 deficient embryos (about 25%) did not maintain the muscle fate provoked by HLH-1 induction (Figure 6) and continued to develop. In contrast, the induction of muscle cell fate and repression of alternative programs of differentiation occurred in 100% of the WT bean-staged embryos. The failure of the mutant to sustain an HLH-1-induced muscle program could either mean that CEC-4 actively supports muscle-specific gene expression, or else that it helps repress other tissue-specific programs. Given that muscle markers were expressed in heat-shocked cec-4 mutant embryos and that muscles develop normally in the mutant without HS, we favor the latter hypothesis: upon loss of CEC-4-mediated heterochromatin sequestration, non-muscle programs may not be properly repressed during ectopic muscle induction. This is consistent with earlier studies that showed a clear spatial segregation of active and inactive tissue-specific genes in differentiated cells of C. elegans larva (Meister et al., 2010).

Because cec-4 ablation per se seems to have a very limited effect on normal transcription patterns, we propose that CEC-4-mediated tethering does not control gene repression directly, but instead influences events that prepare genes for tissue-restricted patterns. These events might be the remodeling of epigenetic states (e.g., through histone deacetylases that bind the nuclear envelope [Zullo et al., 2012], the sequestration of promoters away from their regulators, or the timing of replication of tissue-specific genes [Hiratani et al., 2008]). These changes may not directly repress transcription, but rather change the compaction state of chromatin as a prerequisite for stage-specific repression. Indeed, the INM-released arrays in cec-4 mutants are less compact (Figure 1), although we did not detect less histone H3K9 methylation by genome-wide ChiP (data not shown).

ESC differentiation studies have shown that the timing of replication of genes, and their reassembly into chromatin following replication, are compromised by spatial misorganization (reviewed in Hiratani et al., 2009). Moreover, it has been suggested that altered replication timing precedes commitment to differentiation-related expression patterns (Hiratani et al., 2008). Thus, we propose that CEC-4-mediated chromatin positioning and compaction may contribute to a replication timing program, which in turn reinforces appropriate gene repression. We expect that the compromised commitment of cec-4 mutant is not restricted to muscle differentiation, but rather is a general mechanism that becomes important when normal development is perturbed. Whereas the ectopic HLH-1 induction is definitely a strong perturbation, less dramatic perturbations during development may rely on spatial sequestration to ensure proper patterns of tissue-specific gene expression.

Extending Nuclear Anchoring Mechanisms to Other Organisms

Although CEC-4 is the first CD protein reported to form a ring at the nuclear perimeter autonomously, CEC-4’s anchoring function becomes either redundant or replaced by other mechanisms in L1 larvae, the stage at which most cells reached terminal differentiation. We note that heterochromatin can be anchored in differentiated tissues without H3K9 methylation, and without HPL-1, HPL-2, or LIN-61 (Studencka et al., 2012b; Towbin et al., 2012). Another CD protein, CEC-3, had no impact on embryonic array distribution in our screen, although it appears to restrain the expression of a neuronal specific transcription factor in larvae (Greer et al., 2014; Zheng et al., 2013). Thus, four H3K9me binders—HPL-1, HPL-2, LIN-61 and CEC-3—contribute to transcriptional silencing during development, while CEC-4 specifically sequesters H3K9me-containing chromatin in embryos. CEC-4 may also contribute to heterochromatin anchoring in some differentiated worm tissues, albeit in a redundant manner (data not shown).
Figure 6. Lack of CEC-4 Impairs the Commitment of Embryos to a Forced Muscle Differentiation

(A) Experimental flow for forced muscle differentiation by HS induction of the master regulator HLH-1. See main text and Supplemental Experimental Procedures.

(legend continued on next page)
We have not identified a direct homolog of CEC-4 in non-nematode species, and we suspect that this protein’s two functions, INM-association and specific H3K9me-recognition, may be embodied in two separate polypeptides in mammals. As mentioned, an example of such split function may be the mammalian nuclear membrane-spanning protein PPR14, which can bind HP1. The interpretation that PPR14 anchors heterochromatin through this ligand is complicated, however, by the pleiotropic effects its loss has on nuclear shape (Poleshko et al., 2013). Similarly, the mammalian LBR may bind HP1 and carries a Tudor domain with a preference for H4K20me2 in vitro (Holmer et al., 2013). Unfortunately, indirect effects again complicate the interpretation of LBR ablation, since this transmembrane protein has sterol reductase activity that anchors but does not silence Anchors but does not silence chromatin position, but does not induce gene expression. INM-anchoring and repression thanks to different ligands.

In other species, repressive epigenetic marks other than H3K9 methylation may contribute to the spatial sequestration of repressed chromatin. In mouse 3T3 embryonic fibroblasts (MEFs), the Polycomb mark H3K27me3 was reported to contribute to perinuclear positioning at the edges of LADs (Harr et al., 2013). In worms, the loss of Polycomb components MES-3 and MES-6 led to derepression of our heterochromatic reporter in embryos (Towbin et al., 2012), but did not trigger release from the nuclear periphery. Moreover, in most species, the H3K27me3-positive foci found in differentiating cells are not perinuclear. This, however, does not preclude the possibility that combinatorial epigenetic signatures target chromatin to the INM.

The relative simplicity of the C. elegans system and the conserved nature of its epigenetic and developmental programs has allowed us to dissect nuclear organization with a genetic approach. Given the conserved role H3K9me has in chromatin positioning, it is likely that factors with analogous functions as CEC-4 exist elsewhere. Functional screens in compromised backgrounds will be able to shed light on relevant anchors in differentiated cells. Disruption of specific anchors in differentiated tissues will extend our understanding of the function of heterochromatin sequestration.
Chapter 3: Perinuclear Anchoring of H3K9-Methylated Chromatin in C. elegans Embryos

EXPERIMENTAL PROCEDURES

RNAi Screen

RNAi was performed at 22.5°C by placing L1 worms on feeding plates as previously described (Timmons et al., 2001). For the list of genes used (Table S9) in the RNAi screen see Supplemental Experimental Procedures.

Microscopy

Microscopy was carried out on a spinning disc confocal microscope, using 2% agarose pads for live-microscopy or poly-lysine coated slides for fixed samples. Acquisition and analysis of array and nucleolus distribution, array spot volume, expression levels of GFP-LacI and CEC-4-mCh, and enrichment of CEC-4 over array are online, along with a description of super-resolution-structured illumination microscopy (SR-SIM; Elyra S.1 [Carl Zeiss]).

AlphaScreen Direct Binding and In Vitro Assays

Purified recombinant His-tagged CEC-4 CD (200 nM) was screened for its binding to modified histone peptides with the ALTA Biosciences peptide array system (Alta Biosciences, UK) and the AlphaScreen assay. Details for protein purification, peptide pull down and ITC are in Supplemental Experimental Procedures.

LEM-2 ChIP-seq and RNA-Seq

Early embryonic progeny was harvested after synchronization (80–65 hr depending on each strain) for WT, mec-2 arrest, and cec-4 mutant strains in two independent biological replicates. LEM-2 ChIP was performed as described (Ikegami et al., 2010). Total RNA was extracted by phenol/chloroform, further purified, and depleted for rRNA. Detailed information about library preparation and data analysis is described in Supplemental Experimental Procedures.

Heat-Shock Induced Muscle Differentiation

Two cell-stage embryos, of different genetic backgrounds containing the HS::hlh-1 transgene, were allowed to develop until bean stage (300 min at 22.5°C). HS at 34°C for 10 min was performed either on 2% agarose pads or on liquid with a thermal cycler with in situ slide block. After recovery for 24 hr, evaluation of hatching larva-like worms was determined by stereomicroscopy, and reporter marks by spinning disc confocal microscopy. Details for qPCR of HS samples is described in Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession numbers for the ChIP-seq and RNA-seq data reported in this paper is NCBI Gene Expression Omnibus GEO: GSE74134.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and seven tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2015.10.066.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

Some strains were provided by the Caenorhabditis Genetics Center (CGC) of the NIH Office of Research Infrastructure Programs (P40 OD010440). We thank G-J. Hendriks, H. Grosshans, R. Thierry, P. Zeller, A. Peters, P. Hein, Y. Gruenbaum, and P. Askjaer for reagents and materials. We thank J. Lieb and K. Ikegami for training A.G.-S. in LEM-2 ChIP. We thank the FIMI Worm Genomics, Protein Structure, Protein Analysis, and Microscopy facilities for valuable advice and support. A.G.-S. was supported by FP7 Marie Curie Network Nucleosome 4D and the SNSF NCCR “Frontiers in Genetics.” S.M.G. thanks the FMI and SNSF for support.

Received: July 1, 2015
Revised: October 7, 2015
Accepted: October 27, 2015
Published: November 19, 2015

REFERENCES

Hilton, B.H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008). Scaffold attachment region-like and K. Ikegami for training A.G.-S. in LEM-2 ChIP. We thank the FIMI Worm...

Figure S1. Genomic Context of cec-4 and Its Deletion Allele, Related to Figure 1

Heterochromatic array contains H3K9me3 and co-localizes with SET-25 even when it is away from nuclear periphery in cec-4 mutant.

(A) Schematic representation (not to scale) of genomic region where cec-4 gene is localized, and deletion allele coverage.

(B) Quantitation of array distribution in different experimental conditions as indicated, n: foci scored in presented order. Pair-wise comparisons of mock RNAi and WT conditions with the respective cec-4 RNAi and cec-4 mutant show statistically significant differences with p-value < 0.001 in all comparisons, \(\chi^2 \) test.

(C) Immunofluorescence (IF) of transgene gwIs4 array (anti-GFP) and repressive histone mark H3K9me3 in WT and cec-4 mutant strains. Z-projection of representative nuclei are shown, co-localization observed as yellow signal in merged panels. Scale bar, 2 \(\mu \)m.

(D) Live microscopy of N-terminally tagged SET-25 with mCherry (mCh-SET-25) together with array in indicated genotypes. Z-projection images of embryos in individual and merged colors. Insets: single nuclei. Scale bars, 5 and 2 \(\mu \)m for embryos and insets respectively.
Figure S2. CEC-4 and EMR-1 Constructs Used for This Study, Related to Figures 2 and 4
CEC-4 forms a nuclear ring in *S. cerevisiae*, which is compromised by loss of full-length protein.

(A) Schematic representation of CEC-4 and EMR-1 fusion constructs to mCherry. Both constructs were integrated as single copy on Chr II by MosSCI. *cec-4::mCherry* transgene contains the endogenous promoter (upstream -3kb from transcription start site) and 3′ UTR (542bp after stop codon) of *cec-4* gene. *emr-1::mCherry* was kindly provided by Askjer P. and contains the endogenous promoter (upstream -1.567kb from transcription start site) and 3′ UTR (300bp after stop codon) of *emr-1* gene.

(B) Expression of intron-less full-length CEC-4 fused C-terminally to GFP in *S. cerevisiae*. Bright field, CEC-4-GFP, NUP49-CFP (as perinuclear marker) and merged single plane images are shown.

(C) Full-length, N-term and C-term fragments of CEC-4 fused to GFP expressed in yeast. Schematic representation of each construct is presented, in which the GAL1-10 promoter (pGAL) drives CEC-4-mCherry and corresponding fragment fusions. Single plane images of representative patterns are shown. Scale bars on (B) and (C) panel, 2 μm.

(D) Quantitation of CEC-4-mCherry intensity level on array-bound region in contrast to a non-array perinuclear region, as described in Supplemental Experimental Procedures for WT and met-2 set-25 mutant embryos. Whiskers: 1st and 3rd quartiles, black circles: outliers, black lines: median, blue dots: mean, red dashed line: baseline set as no difference in enrichment, n: total number of arrays per nuclei measured of each genotype.
Figure S3. CEC-4 Chromodomain Is Conserved and Binds to All Methylated Forms of H3K9 and to H3K37me with Lower Affinity, Related to Figure 3

(A) ClustalW multiple sequence alignment of CEC-4’s CD (82-141 aa) with different H. sapiens CBX proteins as indicated. Blue color range represents percentage of identity, and consensus sequence is displayed. The two highlighted lysines (dashed red boxes) replaced by alanines in the CEC-4 cd 2YA construct.

(B) Histone H3 tail sequence for visualization of amino acid context of lysines 9 and 37, to which CEC-4 CD showed positive.

(C) IC₅₀ (half maximal inhibitory concentration) of H3K9 peptides binding to CEC-4 CD measured by AlphaScreen peptide displacement assay. Non-biotinylate H3K9 peptides were used to compete with the binding of CEC-4 CD and biotin-H3K9me2 peptide in AlphaScreen binding assay.

(D) Table showing parameters measured for association of CEC-4 CD and the different methylated states of indicated H3 peptides. N (stoichiometry), K (association constant), ΔH (enthalpic change) and ΔS (entropy change) in Isothermal Titration Calorimetry (ITC) assay.

(E) Quantitation of binding affinities of methylated H3K37 peptides to CEC-4 CD and mutant cd-2YA, determined by ITC. For all graphs solid lines represent a nonlinear least-square fit using one-site fitting equation.

Chapter 3: Perinuclear Anchoring of H3K9-Methylated Chromatin in C. elegans Embryos

A

B

(legend on next page)
Figure S4. Intact CEC-4 CD Binds Preferentially to All Methylated Forms of H3K9 and with Less Affinity for H3K37 (me1 > me2 > me3) as Monitored by ITC, Related to Figure 3

(A) Raw binding data of ITC injections of all methylated forms of H3K9 for both CEC-4 CD and CEC-4cd-2YA is shown. Dissociation constants (Kd) determined are shown in Fig 2E. Kd's with CEC-4cd-2YA were unable to be determined.

(B) Same as in (A) except that the peptides are related to methylation of H3K37. Kd's are shown in Fig S2E.
Figure S5. LEM-2 ChIP Enrichment Signals of met-2 set-25 and cec-4 Mutants Cluster and Are Different from WT, with a Less Polarized Pattern, Related to Figure 5

Genes srw-85 and C18D4.6 are depleted for H3K9me in cec-4 embryos, while only srw-85 is derepressed.

(A) Heat-map of hierarchical clustered Euclidean distances of LEM-2 ChIP and Input (total chromatin extracted) normalized reads of WT, met-2 set-25, and cec-4 mutants in duplicate.

(B) Average of duplicates of LEM-2 ChIP enrichment plotted over chromosomes. Tracks are shown only for autosomal chromosomes. Averaged signals (Z’ scores of IP – input) are shown in 200 kb windows.

(C) Relative expression profiles in windows of 500 bp (not strand assigned) for the whole genome of cec-4 mutants to WT levels in early embryos. Scatter plots compare replicates of indicated genotypes.

(D) qRT-PCR mRNA level quantitation for indicated genes in WT and cec-4 mutant background. Data shown normalized to pmp-3 gene and relative to the expression in WT. Error bars = SEM of five biological replicas of early embryo extracts.
Figure S6. Muscle-Specific myo3::RFP Expression Occurs in Both Genotypes after HS, Albeit at Higher Levels in WT, Related to Figure 6
Restoration by expression of CEC-4-mCherry, but not the CEC-4 CD-2YA mutant.

(A) Muscle specific myo-3p::RFP reporter (contained in gw64 array) for indicated genotypes 24 hr after HS. Z-projection images of bright field and myo-3p::RFP are shown. Scale bar, 5 μm. Quantitation of RFP intensity signal 24 hr after HS for indicated genotypes. Intensity levels are plotted in a.u., black line: median, n: number of embryos of respective genotype.

(B) Table showing number of hatched larva-like worms for different strains tested.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Hatched larva-like worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS::nlt-1</td>
<td></td>
</tr>
<tr>
<td>CEC-4-mCherry</td>
<td></td>
</tr>
<tr>
<td>cec-4</td>
<td></td>
</tr>
<tr>
<td>HS::nlt-1</td>
<td>33</td>
</tr>
<tr>
<td>CEC-4-mCherry</td>
<td></td>
</tr>
<tr>
<td>cec-4</td>
<td>0</td>
</tr>
<tr>
<td>HS::nlt-1</td>
<td>32</td>
</tr>
<tr>
<td>CEC-4CD2YA-mCherry</td>
<td></td>
</tr>
<tr>
<td>cec-4</td>
<td>3</td>
</tr>
<tr>
<td>HS::nlt-1</td>
<td>63</td>
</tr>
<tr>
<td>cec-4</td>
<td>15</td>
</tr>
<tr>
<td>HS::nlt-1</td>
<td>58</td>
</tr>
<tr>
<td>cec-4</td>
<td>0</td>
</tr>
</tbody>
</table>
Cell
Supplemental Information
Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos
Adriana Gonzalez-Sandoval, Benjamin D. Towbin, Veronique Kalck, Daphne S. Cabianca, Dimos Gaidatzis, Michael H. Hauer, Liqing Geng, Li Wang, Teddy Yang, Xinghao Wang, Kehao Zhao, and Susan M. Gasser
Supplemental Experimental Procedures:

Constructs and Strains

Gene synthesis of cec-4 for protein expression and yeast constructs were from GenScript USA Inc. For the CEC-4 tagged construct, the gene was amplified from N2 worm genomic DNA. All plasmid constructs were generated by MultiSite Gateway® cloning (Invitrogen). The Y87A and Y111A point mutations in the cec-4 gene, referred to as 2YA, were introduced by multi-site-directed mutagenesis (Agilent Technologies) for both in vivo and in vitro experiments. All worm and yeast strains used are listed in Table S1 and S2, respectively. The cec-4(ok3124) strain received from CGC was out-crossed six times to N2 wild-type strain. CEC-4 tagged wild-type and mutant cd2YA versions, were made using the MosSCI technique (Frokjaer-Jensen et al., 2008). The MosSCI strains were out-crossed twice to N2 wild-type strain. The EMR-1-mCherry strain was kindly provided by P. Askjer; the intestine specific marker strain (nhx-2p::npp-9::GFP) in Fig. 6F by Hendricks G.J. and H. Grosshans (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland, personal communication). Worms for microscopy experiments were grown at 22.5˚C; RNA and LEM-2 ChIP sequencing strains were grown at 20˚C; qPCR strains were grown at 20˚C except for Fig. 6B at 22.5˚C. For yeast experiments, CEC-4 full length (1-270 aa), CEC-4N (1-144 aa) and CEC-4C (142-270 aa) were cloned into Advanced Gateway Destination vector plasmid 14193 (pAG415GAL-ccdB-EGFP); plasmids were transformed using standard transformation protocol in GA-1981 or GA-3628 strains (see Table S2 for strain details). Yeast were grown at 30˚C.

RNAi

RNAi was performed by placing larval stage 1 (L1) worms on feeding plates as previously described (Timmons et al., 2001). Table S3 and S6 lists genes tested in RNAi screen and CEC-4-
mCherry localization experiments. All RNAi clones used were sequenced first to confirm target. As a mock RNAi control, the L4440 vector (Fire vector library) was modified by removing an EcoRV fragment containing 25bp identical to GFP-LacI.

Immunofluorescence (IF)

IF for Fig. S1C was done as described in (Meister et al., 2010), and for Fig. 2B and 5C IF as described in (Rohner et al., 2013). Antibodies used in pairs: for gwIs4: monoclonal anti-GFP (MBL-D153-3) and Alexa-488 anti-rat; for H3K9 methylation: monoclonal anti-H3K9me3 (Wako #303-34832) and Alexa-568 anti-mouse; for nuclear pores: monoclonal mAB414 (Abcam ab24609) and Alexa-555 anti-mouse; for lamin: anti-CeLMN-1 (a gift from Y. Gruenbaum, The Hebrew University of Jerusalem, Jerusalem, Israel) and Alexa-488, -555 or -647 anti-rabbit; for CEC-4-mCherry: monoclonal anti-mCherry (Life technologies M11217) and Alexa-488 anti-rat; for nucleolus: anti-Fibrillarin (kindly provided by P. Heun, Welcome Trust Center for Cell Biology, Edinburgh, UK) and Alexa-555 anti-human.

Microscopy

Except for Fig. 2B and 6C, microscopy was carried out on spinning disk multipoint confocal microscopes: (1) AxioImager M1 [Carl Zeiss] + Yokogawa CSU-22 scan head, Plan-Neofluar 100x/1.45 NA oil objective, EM-CCD camera [Cascade II; Photometrics], and MetaMorph 7.7.2 software or (2) Olympus IX81 + Yokogawa CSU-X1 scan head, PlanApo 100x/1.45 TIRFM or 60x/1.45 NA oil objectives, 2X Back-illuminated EM-CCD EvolveDelta (Photometrics), and VisiView 2.1.4 software. Live microscopy samples were prepared as previously described (Meister et al., 2010). Figs. 1E, 1F, 5C and S1C were de-convolved with Huygens Pro software. Single plane and 3D reconstruction (maximum intensity Z-projections) images and analysis were generated using Fiji/ImageJ software (Schindelin et al., 2012). Quantitation of array and
nucleolus distribution on focal stacks of images was done with plugin PointPicker (http://bigwww.epfl.ch/thevenaz/pointpicker/) as described (Meister et al., 2010); for proper quantitation in cec-4(ok3124) mutant, we used a strain with an additional copy of a lacO free baf-1p::GFP-LacI transgene (gwIs39), to enhance the GFP signal and be able to identify nuclear periphery.

Quantitation of GFP/RFP signal intensity on focal stack images was done selecting the plane at the embryo middle section and subtracting the average background of corresponding image. In Fig. 1F all strains were compared to average wild-type signal intensity. In Fig. S2D, quantitation of CEC-4-mCherry enrichment over array on focal stacks of images was done measuring, for each nucleus, the mCherry intensity in the nuclear volume occupied by the array and divided by the mCherry intensity in an equivalent region outside the array at the nuclear periphery. In Fig. 2D, quantitation of CEC-4-mCherry and EMR-1-mCherry fluorescent intensity in various tissues of L1 worms was performed on single nuclei, selecting a middle nuclear section plane; the obtained intensity values were normalized on the average background fluorescence of the corresponding image. Zoning assay graphs were done in Microsoft Excel and Intensity signal box-plots in R.

For Fig. 1F Fiji ImageJ was used to change de dynamic range of deconvolved images, giving more value to low intense pixels (same settings applied to all images). Pixel classification in Ilastik 1.1.5 image analysis and classification software (Sommer, 2011) was used to segment the greyscale images in 3D space. With all Ilastik features selected, three individual labels were trained for detecting (1) the background, (2) the nuclei and (3) the GFP foci. A Matlab based function was used analyze the Ilastik probability maps and calculate different nuclei and foci parameters. Spot volume describes the 3D foci dimensions in voxels and Spot distance is
calculated by measuring the minimal 3D distance from the Spot centroid to the nuclear periphery.

For Fig. 2B, high-resolution imaging was performed with a super resolution-structured illumination (SR-SIM) microscope (Elyra S.1 [Carl Zeiss], Plan-Apochromat 63x/1.4 NA objective lens, EM-CCD camera [iXon 885; Andor Technology], and ZEN Blue 2010D software [Carl Zeiss]). Processing was performed with Zen software [Carl Zeiss]. For Fig. 6C, microscopy was carried out on fluorescence stereomicroscope (Leica MZ FL III, PlanApo 2x/0.07 NA, Leica DFC350 FX camera 0.63x lens, and Imagic ims Client V14Q4_p3 software).

For yeast experiments (Fig. S2B and C), cells were cultured overnight at 30°C in a synthetic medium containing 2% raffinose, 0.1% glucose and lacking leucine to prevent the loss of the plasmid. The next day cultures were diluted in the same medium containing raffinose only, and were imaged when cells reached a concentration of 0.2-0.4 x10^7 cells/ml. Live yeast cells were mounted on pad of agarose (1.4%) containing raffinose or galactose for imaging.

Multiple sequence alignment

CEC-4 and H. sapiens CBX protein sequences were aligned with ClustalW (www.ebi.ac.uk), and visualized by Jalview (Waterhouse et al., 2009).

Recombinant protein purification

The CEC-4 CD (aa 25-141) and CEC-4 cd-2YA (aa 25-141, Y87A-Y111A) constructs were cloned into pOPINF vector using the In-Fusion system (Clontech) (Berrow et al., 2007), proteins were expressed in the E. coli strain BL21 Rosetta pLysS and affinity purified through the His tag binding to ProBond Ni-NTA resin (Invitrogen) according to manufacturer’s instructions. For ITC experiments His tag was removed by HRV 3C protease digestion (Novagen) and proteins were
further purified by gel filtration on a HiLoad 16/60 Superdex 75 column in 20 mM Tris pH 7.5, 200 mM NaCl, 0.02% NaN3 and 1 mM TCEP. Purity was confirmed by SDS–PAGE and Coomassie blue staining. Protein concentration was measured by UV absorbance (280 nm).

Binding Assay SulfoLink

H3K9me0 and H3K9me3 peptides (aa 1-20 + Cys) (gift from A. Peters, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) were reduced and coupled to SulfoLink beads (Thermo scientific) according to manufacturer’s instructions. 25µM of recombinant His tagged CEC-4 CD and CEC-4 cd-2YA were incubated with the peptide-beads slurry (7µM peptide concentration) for 2 h at 4ºC on a rotator. After washing three times with 20mM Tris-HCl pH 7.5, 0.2M NaCl and 0.05% Triton X-100 for 1min-5min-1min, respectively, bound proteins were released from the beads, run on an SDS-PAGE gel, and stained by SYPRO® Ruby.

Peptide array library and AlphaScreen direct binding

AlphaScreen direct binding assays were performed in 384-well plate (ProxiPlate™-384 Plus, Perkin Elmer) with AlphaScreen Histidine Detection kit (Nickel Chelate, PerkinElmer #6760619) in optimized assay buffer (25mM HEPES, 100mM NaCl, 0.1% BSA, 0.05% Tween20, pH=7.5). The binding of CEC-4 CD to histone peptides was performed by AlphaScreen assay with ALTA Biosciences peptide array system (Alta Biosciences, UK). Three different peptide concentrations (62.5, 125 and 250nM) were used to screen histone peptides binding to CEC-4 CD (200nM). Quantitation was based on the intensity readout. The peptides with an intensity of 50-fold more than the control (assay condition without protein) were considered as hits. Table S4 shows raw data generated from AlphaScreen.
AlphaScreen direct binding was further used for confirmation of methylated H3K9 binding to CEC-4 CD. 3μl of 2-fold serial dilutions of N-terminal biotinylated histone H3₁₋₂₁,K9 peptides, final concentration 0.5-500nM, were plated in a 384-well plate followed by adding 3μl of N-terminal His-tagged CEC-4 CD (final 200nM). After incubation at room temperature for 1 hour, 3μl of streptavidin-coated donor beads (20ug/ml) and 3μl of nickel chelate acceptor beads (20ug/ml) were then added under low light conditions. The plates were sealed and incubated at room temperature for 1 h, then read on an EnVision multilabel Plate Reader (Perkin Elmer).

Peptide displacement assay

IC50 (half maximal inhibitory concentration) for H3K9 peptides to CEC-4 CD were measured by AlphaScreen peptide displacement assay and done in duplicate. 2-fold series dilution of non-biotinylated H3K9 peptides starting from 100μM were used for competing with the binding of biotin-H3K9me2 (50nM) to CEC-4 CD (25nM). After incubation at room temperature for 1 hour, streptavidin-coated donor beads (20ug/ml) and nickel chelate acceptor beads (20ug/ml) were then added under low light conditions. The plate was then read on the EnVision using the AlphaScreen protocol after 1 hour incubation.

Isothermal Titration Calorimetry (ITC)

ITC was carried out on a MicroCal iTC200 calorimeter (GE Healthcare) at 25°C in 20 mM Tris-HCl pH7.5, 100 mM NaCl. 30 μM recombinant-cleaved CEC-4 CD and CEC-4 cd-2YA proteins were loaded into sample cell, 450μM histone H3₁₋₂₁,K9 or H3₂₈₋₄₈,K37 peptide solution was sequentially injected into sample cell; with exception of 800μM for H3₂₈₋₄₈,K37me3. Thermodynamic parameters N (stoichiometry), Ka (association constant), ΔH (enthalpic change) and ΔS (entropy change) were obtained by nonlinear least-square fitting using Origin software. ITC experiments were performed twice.
LEM-2 Chromatin Immuno-precipitation followed by deep sequencing (ChIP-seq)

Wild-type, met-2 set-25 and cec-4 mutant strains were grown in parallel and in two independent biological replicas. For each strain, 400,000 L1 worms were grown synchronously in 500 ml S-medium containing HB101 E. coli strain, as food source, under continuous agitation (180 rpm) at 20°C until gravid adults with early embryos were observed (between 60-65 hours depending on strain). Embryonic progeny was harvested using hypochlorite treatment. Embryos were cross-linked with 2.16% formaldehyde in M9 buffer for 30 minutes at room temperature, washed twice with M9 and once with FA buffer (50mM HEPES-KOH pH7.5, 1mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 150mM NaCl). LEM-2 ChIP was performed as described (Ikegami et al., 2010) with anti-LEM-2 (Novus Biologicals #48540002). Libraries were prepared from chromatin IP (1.7 -7.4 ng) and input (10 ng) samples using the NEBNext ultra DNA library prep kit for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina (NEB # E7335), according to the manufacturer’s recommendations. No size selection was performed during sample preparation and the libraries were indexed and amplified using 15 PCR cycles, using the recommended conditions. After a final cleanup with Agencourt AmPure XP beads (Beckman # A63881), the library size distribution and concentrations were determined using a BioAnalyzer 2100 (Agilent technologies) and Qubit (Invitrogen) instrument, respectively. The final pools were prepared by mixing equimolar amounts of all individually indexed libraries and then sequenced on a HiSeq 2500 (Illumina) in Rapid mode (Paired-End 50). Processing of the LEM-2 ChIP-seq data, all paired-end ChIP-seq data (2x50bp) were mapped to the C. elegans genome (ce6) with the R package QuasR (Gaidatzis et al., 2015) (http://www.bioconductor.org/packages/3.1/bioc/html/QuasR.html) using the included aligner bowtie (Langmead et al., 2009) allowing only for uniquely mapping read pairs. The command
used to do the alignments was "proj<- qAlign("samples.txt","BSgenome.Celegans.UCSC.ce6")" which instructs bowtie to align using the parameters "--fr -m 1 --best --strata --maxins 500 --phred33-quals". Read density along the genome was calculated by tiling the genome into 200kb windows (non-overlapping) and counting the number of sequence fragments within each window. The command used to create the window count table was qCount(proj.regions.useRead="first"). This instructs QuasR to position each read at the middle of its respective fragment (determined by the two reads) and to only consider the first read (on any strand) for quantitation in order to avoid double counting. To compensate for differences in the read depths of the various libraries, we divided each sample by the total number of mapped reads and multiplied by the average library size. Log2 expression levels were calculated after adding a pseudocount of 1 (y=log2(x+1)). Finally, ChIP-seq signals are displayed as z-scores of IP – input.

RNA followed by deep sequencing (RNA-seq)

Wild-type, *met-2 set-25, cec-4* mutant strains were grown in two independent biological replicas. For each strain, 100,000 - 200,000 L1 worms were grown synchronously in 250 ml S-medium containing HB101 *E. coli* strain under continuous agitation (180 rpm) at 20°C until gravid adults with early embryos were observed (between 60-65 hours depending on strain). Embryonic progeny was harvested using hypochlorite treatment, re-suspended in 500µl Trizol® and snap-freeze in liquid nitrogen. Extraction of RNA was performed according to the WormBook protocol (Stiernagle, 2006). Total RNA was purified using RNeasy kit (QIAGEN 74104) including DNase treatment. Depletion of ribosomal RNA was done for 5 µg of total RNA with Ribo-Zero™ Magnetic Gold Kit (Epicentre MRGZG12324) and further concentrated with RNA Clean & Concentrator™ kit (Zymo Research R1015) according to corresponding manufacturer’s
instructions. From the depleted RNA 50ng were used for library preparation with the ScriptSeq v2 RNA-seq Library preparation kit (Epicentre). Equimolar pools of 3 samples were created and loaded on an Illumina HiSeq v3 flowcell using a cBot. Sequencing was performed on a HiSeq 2500 sequencer for 51 cycles running RTA 1.17.21.3. Samples were demultiplexed and FastQ files were generated using blc2fastq-1.8.4. Processing of the RNA-seq data, gene expression levels from RNA-seq data were quantified as described previously (Hendriks et al., 2014) using WormBase (WS190) annotation for coding transcripts and in windows of 500bp (unstranded) for the whole genome, in order to track non-genic changes.

Real-Time Quantitative PCR (RT-qPCR)

For gene expression levels in Fig. 5F same initial RNA extracts were used as for RNA-seq with addition of parallel grown and extracted cultures of met-2 and set-25 single mutant strains. For Fig. 6B three independent replicas of mixed stage embryo extracts were collected as described below in the Heat-shock induced muscle differentiation section. For Fig. S5C five independent early embryo extracts were used: starting from 25,000 synchronized L1 worms of wild-type and cec-4 mutant grown on peptone-rich (PR) plates with OP50 E.coli for 60-65 hours until gravid adults with early embryos were observed; RNA extraction was performed by 4 rounds of freeze cracking, treat with chloroform and transfer aqueous phase to Direct-zol™ column and follow manufacturer’s instructions (30 minutes DNase I digestion included). For all RNA extracts cDNA synthesis was done with SuperScript® III First-Strand Synthesis System (Thermo Fisher Scientific 18080-051) according to manufacturer’s instructions, starting from 1-2 µg of total RNA and using (dT)$_{20}$ oligos; RNase H treatment was included.

LEM-2 ChIP qPCR samples of corresponding genotypes were produced as described above for LEM-2 Chromatin Immuno-precipitation followed by deep sequencing.
All RT-qPCR reactions were done in 10µl volume, using diluted cDNA to 500ng or total volume of ChIPed and Input (10% of total material used) samples, with SYBR® Green PCR Master Mix (Life technologies 4309155) for Fig. 6B and 5F mRNA or GoTaq® Green Master Mix (Promega M712) for Fig. 5E and S5C according to manufacturer’s instructions. Gene-specific primers (see Table S5) were used in 300nM concentration. StepOnePlus™ System (Life technologies 4376600) was used for qPCR run and data collection. Further analysis was done in Microsoft Excel.

All primer pairs were tested and selected for amplification efficiencies ranging from 90-100%, except for unc-98 with 83%, C18D6.4 with 73% and myo-3 with 68%. For gene expression analysis ΔΔC_T method was used, pmp-3 carried as housekeeping gene for sample normalization. For ChIP-qPCR ChIP sample data was normalized to corresponding input chromatin (reported as percentage input on figures).

Heat-shock induced muscle differentiation

Except for Fig. 6B, two cell stage embryos were isolated from transgenic gravid adults containing heat-shock (HS) expression construct gvIs/hsp-16.2::klh-1 rol6(su1006) and gwIs4 [baf-1p::GFP-lacI::let-858 3’UTR; myo-3p::RFP] or [nhx-2p::npp-9::BLRP::GFP:3xHA-unc-54 3’UTR] and different genetic backgrounds as stated in each figure; in Fig. 6C an extra cec-4 mutant alone was carried as control for HS induction. Isolated embryos were incubated for 300 min at 22.5°C, either directly on agarose slides or in liquid inside humid chamber. All working genotypes reach embryonic bean stage after this incubation period. Embryos were shifted to 34°C for 10 min in a thermal cycler with a In-Situ slide block. Recovery from HS induction was done at 22.5°C in humid chamber and assessment of hatched larva-like worms was done in between 18 to 24 h after HS. Images were taken on stereomicroscope and/or spinning disk.
confocal microscope, as appropriate. As controls for myogenic conversion we observed twitching and fluorescent reporter \textit{myo-3p::RFP} bared in \textit{gwls4} array. For Fig. 6B, synchronized L1 worms of corresponding genotypes were plated on PR-plates with OP50 bacteria, and incubated for 2 days at 22.5°C until gravid adulthood. Embryonic progeny was harvested using hypochlorite treatment. Mixed stage embryos were split into three 1.5ml tubes with equal volumes: one tube was re-suspended in 500µl Trizol® and snap-frozen in liquid nitrogen (before HS condition), the rest were heat-shocked in a thermal cycler for 10 min at 34°C. They recovered at room temperature, one tube for 40 min (40’ after HS) and second tube 24 h (24h after HS). Both tubes were re-suspended in Trizol® and snap-frozen like the “before HS” sample.
Supplemental Tables:

Table S2. List of yeast strains. Related to Experimental Procedures

<table>
<thead>
<tr>
<th>Strain</th>
<th>Background</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA-1340</td>
<td>W303</td>
<td>can1-100 mlp1::URA3 mlp2::HIS3 esc1::KanMx4</td>
<td>(Andrulis et al., 2002)</td>
</tr>
<tr>
<td>GA-1469</td>
<td>W303</td>
<td>mlp1::TRP1</td>
<td>(Hediger et al., 2002)</td>
</tr>
<tr>
<td>GA-1470</td>
<td>W303</td>
<td>mlp2::HIS3</td>
<td>(Hediger et al., 2002)</td>
</tr>
<tr>
<td>GA-1526</td>
<td>W303</td>
<td>mlp1::TRP1, mlp2::HIS3</td>
<td>(Hediger et al., 2002)</td>
</tr>
<tr>
<td>GA-1981</td>
<td>W303</td>
<td>MATa/MATa, leu2-3,112/leu2-3,112, his3-11,15/his3-11,15, trp1-1/trp1-1, can1-100/can1-100, ade2-1/ade2-1, ura3-1/ura3-1 = W303 diploid</td>
<td>(Thomas and Rothstein, 1989)</td>
</tr>
<tr>
<td>GA-2470</td>
<td>W303</td>
<td>nup133::HIS3</td>
<td>(Bucci and Wente, 1998)</td>
</tr>
<tr>
<td>GA-3628</td>
<td>W303</td>
<td>can1-100 NUP49::CFP-NUP49 URA3</td>
<td>(Taddei et al., 2009)</td>
</tr>
<tr>
<td>GA-4887</td>
<td>W303</td>
<td>mps3::mps3 delta75-150KanMx6 tel1::URA</td>
<td>(Schober et al., 2009)</td>
</tr>
<tr>
<td>GA-5306</td>
<td>W303</td>
<td>can1-100 nup84::His3</td>
<td>(Nagai et al., 2008)</td>
</tr>
<tr>
<td>GA-5307</td>
<td>W303</td>
<td>can1-100 nup120::His3</td>
<td>(Nagai et al., 2008)</td>
</tr>
<tr>
<td>GA-5545</td>
<td>W303</td>
<td>src1::hygro NUP49-GFP</td>
<td>(Ferreira et al., 2011)</td>
</tr>
<tr>
<td>GA-5670</td>
<td>W303</td>
<td>mlp1::URA3 mlp2::HIS3 sir2::cloNAT</td>
<td>(Ferreira et al., 2011)</td>
</tr>
</tbody>
</table>
Table S5. RT-qPCR primer pairs used in this study. Related to Figs. 5 and 6

<table>
<thead>
<tr>
<th>Target</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>srw-85 F</td>
<td>GCGTGTCGCCGAAATAAAGTC</td>
</tr>
<tr>
<td>srw-85 R</td>
<td>GATCTTCAAGTCTCGAATGCAG</td>
</tr>
<tr>
<td>C18D6.4 F</td>
<td>TACAGTGCTCATAACTGTGCA</td>
</tr>
<tr>
<td>C18D6.4 R</td>
<td>GCAATAAGAAGACCATCTTCAGG</td>
</tr>
<tr>
<td>pmp-3 F</td>
<td>GTTCCCTGTTCACTCATCATA</td>
</tr>
<tr>
<td>pmp-3 R</td>
<td>ACACGTCGAGAAGCTGTAGA</td>
</tr>
<tr>
<td>genomic srw-85 F</td>
<td>GTGAGATGTCGCTGAGGAGT</td>
</tr>
<tr>
<td>genomic srw-85 R</td>
<td>CCTACCGCTATCCATTCCAG</td>
</tr>
<tr>
<td>genomic C18D6.4 F</td>
<td>CGGCTCTGGAGGAGGATAAT</td>
</tr>
<tr>
<td>genomic C18D6.4 R</td>
<td>TGCTATGCGGCGGGAGGCTTA</td>
</tr>
<tr>
<td>hlt-1 F</td>
<td>CAAAGAACGCTGCCAACATCC</td>
</tr>
<tr>
<td>hlt-1 R</td>
<td>TGAGAGGAAAGTCACATAATCGT</td>
</tr>
<tr>
<td>myo-3 F</td>
<td>AGACAGTTGAGGGAGGCTG</td>
</tr>
<tr>
<td>myo-3 R</td>
<td>TCTGATAACGCGACCTGAGT</td>
</tr>
<tr>
<td>F21D9.4 F</td>
<td>CAGAGTATACTACAAAGGACTGGAG</td>
</tr>
<tr>
<td>F21D9.4 R</td>
<td>AGCCGATGGTGTGATGAC</td>
</tr>
<tr>
<td>C25F9.5 F</td>
<td>TTCATCACAAGATGAGAGATG</td>
</tr>
<tr>
<td>C25F9.5 R</td>
<td>GTATACGATGAGCATGACTCCTG</td>
</tr>
<tr>
<td>Y43F8A.5 F</td>
<td>TTAATGATCCTCATAACATGCGT</td>
</tr>
<tr>
<td>Y43F8A.5 R</td>
<td>GAGGTGCTATCCGTAAAGTGTG</td>
</tr>
<tr>
<td>unc-98 F</td>
<td>TCCAGATAAACAATGGATGAGCA</td>
</tr>
<tr>
<td>unc-98 R</td>
<td>TGAGCACATGAACTCCTGCCA</td>
</tr>
<tr>
<td>unc-43 F</td>
<td>GCTGATGAAATTATACATGAGAC</td>
</tr>
<tr>
<td>unc-43 R</td>
<td>GAGCCTCTTCTTGCTGTAG</td>
</tr>
<tr>
<td>pal-1 F</td>
<td>GGAAGTAGCATGAATGATAGTGA</td>
</tr>
<tr>
<td>pal-1 R</td>
<td>GAATCCCTGGAACATGAGATAATCC</td>
</tr>
</tbody>
</table>
Table S6. Depletion of nuclear envelope components to address CEC-4-mCherry perinuclear localization in worms. Referred in text section “CEC-4 is intrinsically localized at the nuclear periphery”

<table>
<thead>
<tr>
<th>RNAi of NE related gene</th>
<th>CEC-4-mCh localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>anc-1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>baf-1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>emr-1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>lem-2</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>lmn-1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>sun-1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>unc-83</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>unc-84</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>zyg-12</td>
<td>Perinuclear ring</td>
</tr>
</tbody>
</table>

Table S7. Yeast mutations in nuclear envelope components used to address CEC-4-mCherry perinuclear localization in yeast. Referred in text section “CEC-4 is intrinsically localized at the nuclear periphery”

<table>
<thead>
<tr>
<th>Mutation Tested</th>
<th>CEC-4-mCh localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlp1 mlp2 esc1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>mlp1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>mlp2</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>mlp1 mlp2</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>mlp1 mlp2 sic2</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>nup133</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>mps3::mps3 delta75-150 tel1</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>nup84</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>nup120</td>
<td>Perinuclear ring</td>
</tr>
<tr>
<td>src1</td>
<td>Perinuclear ring</td>
</tr>
</tbody>
</table>
Supplemental References

Summary

This chapter presents my main project as a PhD student in the Gasser laboratory. In the following study, we show that cellular levels of histones drop 20–40% in response to DNA damage. Histones were degraded by the proteasomes which was dependent on both both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin compaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. We propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.
Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates

Michael H Hauer1,2, Andrew Seeber1,2, Vijender Singh3, Raphael Thierry4, Ragna Sack1, Assaf Amitai1,5, Mariya Kryzanovska4, Jan Eginger1, David Holcman4, Tom Owen-Hughes3 & Susan M Gasser1,2

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20–40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.

The genomic DNA of eukaryotes is highly organized and packed into chromatin. The most basic unit of chromatin is the nucleosome, which is formed by 146 bp of DNA that wrap around an octameric core of histone proteins. Chromatin remodelers use the energy from ATP hydrolysis to change the local state of chromatin by sliding-spacing or ejecting nucleosomes. These actions regulate gene transcription, replication, chromatin structure and DNA repair genome-wide. Cellular genomes are constantly exposed to different sources of DNA damage, requiring the repair machinery to both disrupt and restore chromatin structure. Heterochromatin chromatin tends to obstruct protein access to repair sites. Moreover, DNA double-strand breaks (DSBs) found in heterochromatin relocate to the edge of such domains, a phenomenon that requires a certain degree of physical mobility.

In budding yeast and human cells exposed to DNA damage, an increase in chromatin mobility has been observed both at lesions and at undamaged sites where no DSBs could be detected. The chromatin remodeler INO80-C and activation of the DNA damage checkpoint (DDC) were implicated in both processes. Functionally, enhanced local DSB mobility was shown to result in genomic translocations in human cells. However, the mechanisms that underlie enhanced chromatin mobility have remained elusive. Here we show that nucleosome degradation triggered by remodelers and checkpoint proteins enhances chromatin movement and accessibility, and promotes efficient repair.

RESULTS
DNA damage triggers extensive histone loss from chromatin
To investigate whether DNA damage and DDC activation affect chromatin structure and/or composition genome-wide, we used quantitative SILAC mass spectrometry in Saccharomyces cerevisiae and measured histone abundance before and after acute treatment (1 h) with the radiomimetic drug Zeocin. Relative ratios of nonmodified histone peptides (damage versus control, unlabelled (‘light’ (L)) versus labeled (‘heavy’ (H)) peptides) indicated a substantial loss of 20% ± 6% of the core histones H2A. H2B, H3 and H4 (Fig. 1a and Supplementary Fig. 1). Interestingly, levels of the histone variant Htz1 (H2A.Z) remained rather stable. Quantitative immunoblot analysis confirmed our observations and showed robust DDC activation (pH2A signal, Rad53 upshift) along with a dose-dependent relationship between histone H3/H4 loss and Zeocin treatment (Fig. 1b). We observed the same effect when we used another source of DNA damage, ionizing radiation (γ-IR) (Supplementary Fig. 2a–d).

Despite being highly quantitative for protein abundance, mass spectrometry data do not distinguish between histone pools and nucleosomes, and they lack positional information. To investigate whether entire nucleosomes were lost globally after DNA damage or at specific genomic loci, we carried out genome-wide nucleosome mapping. We found that the positioning of nucleosomes around the promoters

1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. 2Faculty of Natural Sciences, University of Basel, Basel, Switzerland. 3Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK. 4Institut de Biologie de l’École Normale Supérieure, École Normale Supérieure, Paris, France. 5Present address: Institute for Medical Engineering & Science, The Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Correspondence should be addressed to S.M.G. (susan.gasser@fmi.ch).

Received 9 August 2016; accepted 1 December 2016; published online 9 January 2017; doi:10.1038/nsemb.3347
Rates

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination

...of yeast genes changed little after damage induction (Fig. 1c). To assess global changes in nucleosome abundance, we implemented internal standardization by mixing defined numbers of Candida glabrata cells with the experimental S. cerevisiae cells before chromatin preparations. Normalization of the S. cerevisiae reads with respect to the C. glabrata reads showed a decrease in nucleosome occupancy both within promoters and across coding regions after Zeocin treatment (Fig. 1c and Supplementary Table 1). This effect was just as strong on a subset of 750 low-expression genes (Fig. 1c) as it was on highly transcribed genes (Supplementary Fig. 2e), which suggests that transcription is unlikely to regulate or drive the reduction. Finally, we found no preferential depletion in specific structural...
Figure 2 Histones are degraded by the proteasome. (a) Left: scheme illustrating the experimental setup. (a,b) Immunoblot analyses and quantification showing H3 (a) and H4 (b) levels before and after Zeocin treatment in whole cell extracts from asynchronously growing (Ays.) wild-type cells (a) or erg6Δ cells (b) treated with the proteasome inhibitor MG132 (both experiments were done in triplicate). MG132 permeability is increased in erg6Δ cells, which rescues histone H3 from being degraded. Antibodies to ubiquitin (Ubi) indicated proper function of the MG132 inhibitor, validating the experimental protocol. (c) Immunoblot analysis and quantification showing H4 levels in response to Zeocin treatment in wild-type and 26S proteasome dysfunctional cells (pre1-1, pre2-2) (the experiment was done in four replicates). Mutations in PRE1 and PRE2 suppress histone H4 degradation. Rad53 and yH2A were probed to confirm checkpoint activation. Actin and control show loading; control represents bands on the original gel (UV-TGX-stained). Uncropped gel images are shown in Supplementary Fig. 2a,b,c. Bar graphs show mean ± s.e.m. Asterisks in b and c indicate a phosphorylation-dependent Rad53 mobility shift. Source data are available online.

Figure 3 High-speed live-cell imaging and super-resolution microscopy show chromatin expansion and enhanced flexibility after DNA damage. (a) Diagram with representative image showing the experimental setup for high-speed imaging. The graph on the right shows mean squared displacement (MSD) analysis (A = 300 ms) of the MET10 locus in response to Zeocin treatment, indicating dose-dependent increases in global chromatin mobility in response to DNA damage (n = 23, n = 22 different cells from three independent experiments). Scale bar, 2 μm. (b) Means (colored dots) and whiskers (s.d.) of biophysical parameters derived from imaging data predict chromatin expansion and flexibility increases after Zeocin treatment. (c) Experimental outline and flow cytometry analysis of cell-cycle stages. (d) The 3D super-resolution imaging regime. The box plots show TetR mCherry focus volume distributions after Zeocin treatment in S-phase cells relative to the control condition of multiple single cells (n values in graph) from two different cultures. MSD graph represents the mean ± s.e.m. (gray shaded region) of cells pooled from three independent experiments. Box plot represents median values and interquartile ranges and Tukey whiskers. The dashed rectangle highlights the trend of medians and is not a statistical value. *P < 0.05, **P < 0.01, ***P < 0.001, unequal-variance t test (d) or Kolmogorov-Smirnov test (b); NS, not significant. See Supplementary Data Set 2 for mobility parameters and numbers of cells analyzed.

Supplementary Video 1. We used microfluidic chambers to trap cells and pulse-treated the cells for 1 h with Zeocin, which generated roughly 4–7 DSbEs per genome14. Histone H2B degradation (20% ± 17% compared with undamaged cells) occurred within 30 min of Zeocin exposure. We did not observe differential loss of either Nup49-GFP (Supplementary Fig. 2f) or the Htr1-mEos control after

Figure 4 Outline and flow cytometry analysis of cell-cycle stages. (a) Means (colored dots) and whiskers (s.d.) of biophysical parameters derived from imaging data predict chromatin expansion and flexibility increases after Zeocin treatment. (b) Experimental outline and flow cytometry analysis of cell-cycle stages. (c) The 3D super-resolution imaging regime. The box plots show TetR mCherry focus volume distributions after Zeocin treatment in S-phase cells relative to the control condition of multiple single cells (n values in graph) from two different cultures. MSD graph represents the mean ± s.e.m. (gray shaded region) of cells pooled from three independent experiments. Box plot represents median values and interquartile ranges and Tukey whiskers. The dashed rectangle highlights the trend of medians and is not a statistical value. *P < 0.05, **P < 0.01, ***P < 0.001, unequal-variance t test (d) or Kolmogorov-Smirnov test (b); NS, not significant. See Supplementary Data Set 2 for mobility parameters and numbers of cells analyzed.

NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 24 NUMBER 2 FEBRUARY 2017 101

116 Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
DNA damage, which suggests that the induced histone degradation targets only core histones (Fig. 1d). Combined with our mass spectrometry and immunoblotting data, these results suggest the rapid degradation of histones, rather than simple eviction from chromatin. Previously, Gunjan and colleagues\(^{15,16}\) showed that an excess of nonchromatin-bound histones is phosphorylated by the Rad53 checkpoint kinase and subsequently ubiquitinated and subjected to proteasomal degradation. This prompted us to test whether the proteasome inhibitor MG132 or mutation of the 26S proteasome (pre2-1, pre2-2)\(^{17}\) would suppress the loss of histones from chromatin. Consistent with proteasome involvement, both the inhibitor and the mutations in PRE1 and PRE2 genes suppressed the DNA-damage-induced H3 or H4 degradation (Fig. 2). Moreover, by synchronizing cells in G1 phase before damage, we found that degradation occurred throughout the cell cycle (Supplementary Fig. 3).

We considered that the observed histone loss might be accentuated by impaired expression of histone genes, which are tightly regulated and show promoter-dependent upregulation in S phase. To eliminate this confounding factor, we placed the H3 and H4 genes under the control of the galactose promoter in a strain in which both endogenous H3 and H4 copies were deleted (histone-shutdown strain; Supplementary Fig. 4a). With constitutive H3/H4 expression (growth in media with low amounts of galactose), we found the same depletion effect after exposure to Zeocin as was noted in cells with endogenous histone genes, in agreement with the idea that DNA damage induces active degradation of histones, and not simply a loss of new histone synthesis (Supplementary Fig. 4). The loss of histones was rapid and so substantial that by 1 h after treatment, every third nucleosome could be removed from DNA. It is therefore likely that higher-order chromatin structure changes in response to DNA damage.

Damaged chromatin increases mobility, decompaction and flexibility

The increase in chromatin movement after DNA damage has been well documented, although the mechanisms leading to enhanced mobility remain elusive\(^{13,18,19}\). To see whether histone loss might be at the root of this phenomenon, we examined the physical characteristics of yeast chromatin under the same conditions that triggered histone loss. Using improved imaging protocols, we monitored the volume of chromatin domains in three-dimensional (3D) space, the inherent flexibility of the nucleosome polymer and the physical movement of fluorescently tagged sites.

Previous studies in which chromatin mobility was quantified used low sampling rates during live-cell imaging ($\Delta t = 1.5$ s) to determine the trajectory of a moving locus and the area explored (radius of constraint)\(^{8,15,16}\). However, such low time-resolved data yield little information on chromatin fiber compaction or flexibility. To resolve this, we used a novel high-speed imaging technique (300-ms or 80-ms imaging intervals) with which we confirmed that increased chromatin mobility can be
monitored at a nondamaged site (MET10) in cells responding to widespread DNA damage (Fig. 3a and Supplementary Fig. 5a). By applying an analysis based on polymer models to our high-speed imaging data (A.A., A.S., S.M.G. and D.H., unpublished), we estimated biophysical parameters that predict both the expansion of chromatin (reflected by an increase in the anomalous exponent α) and the loss of constraining forces that limit chromatin movement (as seen by a decrease in the spring constant K_0) (Fig. 3b and Supplementary Fig. 5b).

To examine whether the 3D volume of a defined chromatin domain was altered in the nucleus, we used super-resolution microscopy coupled with subsequent machine-learning and 3D pixel-classification analysis. Using this technique, we measured the change in volume of TetR-mCherry-tagged chromosomal loci (chromatin expansion) in cells fixed 30 min after exposure to different amounts of Zeocin (Fig. 3c). Indeed, we scored a dose-dependent decompaction of S-phase chromatin: 3D TetR-mCherry loci volumes expanded with increased amounts of damage (Fig. 3d).

The second prediction from the polymer modeling of locus dynamics was that the flexibility of the chromatin fiber would be enhanced after DNA damage. Thus, we monitored chromatin flexibility with confocal microscopy and measured the 3D distances between two differentially labeled genomic loci positioned on the same chromosome arm. We used two independent sets of loci spaced at genomic distances of either 320 kb on chromosome 14 or 50 kb on chromosome 3. For the first set, we synchronized cells, fixed them before or after Zeocin treatment and then calculated the average of all distances measured between the lacI-GFP and TetR-mRFP fluorescently tagged loci (Fig. 4a). We found that after DNA damage, the average interspot distance increased substantially in both G1-phase (0.97–1.2 μm) and S-phase (0.99–1.12 μm) cells. For the second set of data, we took a similar approach, but we measured the distance between CFP-lacI-tagged and TetR-mRFP-tagged loci on chromosome 3 in real time (Supplementary Video 2).

In all cases we included Rad52-GFP and ensured that there was no overlap of Rad52-GFP with either of the other two fluorescent signals, thus ensuring that the measured changes did not arise from effects linked to local DNA repair events. Analysis of changes in relative mean squared distance and of the average of all measured distances revealed a robust increase in interspot dynamics and distances after Zeocin treatment (Fig. 4b). These data are consistent with a model in which damage-triggered histone degradtion reduces the amount of nucleosome-mediated compaction within the chromatin fiber, causing chromatin to expand. The enhanced physical dynamics would thus be a reflection of increased flexibility.

Histone abundance dictates chromatin movement and decompaction

To confirm that increased chromatin mobility and decompaction arise as a consequence of histone loss, we made use of a histone-shutdown yeast strain that expresses H3 and H4 under the control of the GAL1- GAL10 (GAL1-10) promoter, which is susceptible to media-controlled repression as well as induction (Fig. 5a). After 1 h in galactose, we released α-factor-arrested cells bearing this shutdown construct into raffinose-containing medium. Depending on the concentration of raffinose, we observed reduced GAL1-10-driven expression, which reduced histone levels in a controlled manner by 39% within an hour (Supplementary Fig. 6a,b). This artificial reduction of histones did not cause DDC activation, even when levels were reduced extensively (Supplementary Fig. 6b). By using the appropriate galactose/raffinose mixture, however, we were able to reduce histone levels in a controlled manner, even in the absence of damage (Fig. 5b). This reduction
provoked both chromatin decompaction (Fig. 5c) and a striking increase in chromatin mobility, measured at the MGS1 locus after 1 h on the defined medium (Fig. 5d).

To further validate these findings, we made use of a mutant bearing deletions of two high-mobility group protein 1 (HMGB1) gene orthologs, NHP6A and NHP6B (nhp6Δαnhp6Δβ, for simplicity referred to here as nhp6Δ), that was previously described as having reduced levels of core histone proteins21 (Fig. 6a). We observed that nhp6Δ did not trigger endogenous damage checkpoints and showed neither an altered flow cytometry distribution (Fig. 6b) nor Rad53 activation (Supplementary Fig. 7a), yet by tracking chromatin mobility with the high-speed imaging regime we found that the mobility of two labeled foci, MET10 and PES4, was markedly enhanced in nhp6Δ cells (Fig. 6c,d and Supplementary Fig. 7b). High-resolution time-lapse imaging of the GFP-LacI-tagged PES4 or the TetR-mCherry-tagged MET10 locus further confirmed an increase in chromatin flexibility, reflected in a decrease in the spring constant k_c and a positive trend in the anomalous exponent a (Fig. 6e and Supplementary Fig. 7c,d).

Finally, using super-resolution microscopy we monitored an increase in the 3D volume of the TetR-mCherry-labeled MET10 locus in nhp6Δ cells, which was more pronounced in an asynchronous culture, for unknown reasons (Fig. 6f). Combined with the effects observed in the histone-shutdown strain, these manipulations argue for a direct link between histone levels and chromatin movement.

Histone loss depends on checkpoints and INO80-C and modulates recombination efficiency

DNA damage activates the central DDC kinase Mec1 (ATR), which initiates a widespread phosphorylation cascade leading to a global damage response and cell-cycle arrest. Additionally, repair proteins such as Mre11, Exo1, Rad51 and Rad52 act locally on DNA to mediate resection and preparation for either repair by homologous recombination or end-joining. Among Mec1 targets are the downstream effector kinase Rad53 (CHK2) and multiple subunits of the INO80-C remodeler.

Because both INO80-C and DDC proteins have been implicated in a general increase in chromatin mobility in response to DNA damage12, we hypothesized that these factors might also regulate histone loss, which we have shown can trigger enhanced chromatin mobility.

Using immunoblotting, we found that in strains lacking checkpoint kinase Mec1 or Rad53, histone degradation after Zeocin treatment was completely abolished (Fig. 7a,b). More strikingly, the same dependency was observed for three strains with deletion of Arp8, Ies4 or Arp5, respectively, INO80-C subunits that do not contribute to the DDC but are required for nucleosome remodeling (Fig. 7a,b). Importantly, histone loss occurred independently of Rad51 and Exo1, which shows that local repair events are not necessary for the DDC-triggered degradation of histones. We further confirmed this with two other assays: H2B-CFP fluorescence monitoring over time (Fig. 7c) and super-resolution microscopy of tagged locus 3D volumes (Fig. 7d).

In all cases we found that histone loss and chromatin expansion required the Mecl-mediated checkpoint and intact INO80-C: no histone loss or chromatin expansion was seen in meclΔδΔsml1Δ, rad53Δ or arp8Δ strains, whereas cells bearing sml1Δ (a control for the meclΔδΔsml1Δ) and rad51Δ behaved like their wild-type counterparts in response to damage (Fig. 7c,d).

The main role of the DDC kinase Mec1 is to trigger a cell-wide stress response that helps the cell cope with DNA damage. This seems to be, at least in part, mediated by the remodeler INO80-C23,24. The importance of chromatin remodeling in histone degradation is not entirely surprising, given that INO80 was recently shown to interact with CDC48, an AAA+ ATPase involved in proteasome-dependent protein degradation25. Moreover, both MEC1 and INO80-C are linked to RNA polymerase II eviction at sites of replication fork–transcription collision24. Thus, these genetic dependencies further validate our hypothesis that histone degradation and chromatin expansion are the key phenomena underlying damage-enhanced chromatin movement (Fig. 7e).
data further suggest that a failure to degrade histones might impair repair proteins’ access to chromatin, providing an additional explanation for previously observed repair deficiencies in these mutants.26-27

To examine the functional relevance of the observed DNA-damage-triggered reduction in nucleosome occupancy, and to test the hypothesis that nucleosome reduction facilitates homologous recombination and thus DNA repair, we made use of a recombination assay that monitors the integration rates of two different URA3 cassettes (800-bp homology or 82-bp homology) at two independent loci (MGS1 and URA3). In otherwise isogenic haploid strains, we impaired INO80-C activity by disrupting its nucleosome-binding subunit Arp8 (arp8Δ) or we deleted both NHPH6 genes, to reduce nucleosome levels genome-wide.21 Consistent with previously reported recombination defects in arp8Δ strains,26,27 we observed reduced recombination rates in this mutant, whereas rates were significantly increased in the nhp6Δ strain (Fig. 8a).

Interestingly, Liang et al.16 showed that deletion of the histone H3-H4 copy-2 genes (HHT2 and HHF2) can confer resistance to DNA-damaging agents and restore the viability of DDC mutants under stress conditions. Thus, we hypothesized that artificially lowering histone levels by removing NHPH6 might rescue arp8Δ sensitivity and even increase the fitness of wild-type cells under damaging conditions. Using a recovery assay that scores cell survival after a 1-h treatment with increasing amounts of Zeocin, we found that nhp6Δ cells recovered better from acute DNA damage than a wild-type strain did, and that reducing nucleosome occupancy by deleting NHPH6 partially rescued the Zeocin sensitivity of an arp8Δ strain (Fig. 8b).

The observation that increased recombination rates in nhp6Δ cells stemmed from changes in nucleosome occupancy prompted us to...
test whether gene-targeting rates could also be increased by other approaches that reduce histone levels. Hence, we used the same recombination assay in our histone-shutdown strain and followed the integration of two different hygromycin-resistance markers at either ATG2 (ATG2::hygro) or MGS1 (MGS1::hygro). This was done immediately after a 2 h incubation in raffinose-containing medium (raffinose only or a defined 1:20 galactose:raffinose mixture), which reduces histone H3 and H4 levels (Fig. 8c). Consistent with the nph6Δ experiment, we found that a reduction of histone levels by means of transcriptional repression significantly enhanced the integration rates of both ATG2::hygro and MGS1::hygro PCR products (Fig. 8d).

Finally, we used fluorescence microscopy to follow the kinetics of Rad52-GFP focus formation and dissolution during 16 h after a brief exposure to Zeocin. We found fewer Rad52 foci in nph6Δ cells than in wild-type cells (Supplementary Fig. 7e). Given that Rad52 accumulates at sites of damage and disappears once recombination-mediated repair is completed, this result suggests that a reduction in histone levels enhances the turnover of the recombination-mediated repair reaction.

DISCUSSION

In a robust combinatorial approach, we used quantitative mass spectrometry, fluorescent live-cell microscopy and genome-wide nucleosome mapping to show that core histone proteins—but not the histone variant Htz1—are degraded from yeast chromatin when the genome is challenged by DNA damage. This requires checkpoint activation and INO80-ΔC function and is mediated through the proteasome. Furthermore, reducing the levels of histones on DNA enhances chromatin mobility, decompaction and fiber flexibility. Proteins that function uniquely in recombination-mediated DNA repair (for example, Rad51 and Exo1) were not involved in histone loss, whereas the Mecl-target INO80-C, a chromatin remodeler implicated in efficient repair, is. Other studies have postulated a release of chromosomal tethers around the centromere as the source of altered chromatin mobility.20,21 This, however, cannot account for the observed expansion of noncentromeric chromatin or for the observed dependence on INO80-C for these events. Furthermore, there is no evidence to date that centromeres delocalize in response to damage.

Although we cannot rule out that other mechanisms also contribute to nuclear or chromosomal motion, our data irrefutably demonstrate that a reduction in histone levels, even in the absence of DNA damage, is sufficient to decompact chromatin and enhance chromatin mobility. We suggest that histone degradation facilitates the search for donor sequences, an event required for DSB repair by homologous recombination with a nonister template, and that chromatin decompaction might further enhance the access of DNA (both damage and template) to the repair machinery. However, mobility might also help disrupt improper pairing events during homologous recombination. Recombination assays indicate that a reduction in nucleosome occupancy brought about by NHP6 deletion or by means of transcriptional histone gene repression increases gene-targeting rates and enhances the turnover rate of repair processes. Although controlled histone loss might facilitate repair, its misregulation and the resulting effects on chromatin structure and dynamics are likely to promote oncogenic translocations that might drive tumorigenesis.

Taken together, our study identifies histone loss as a fairly immediate response to DDC activation and implicates remodeler-dependent histone degradation as a novel and integral part of the yeast DNA damage response. We demonstrate how changes in chromatin composition can affect the physical characteristics of chromatin, and we show that artificial histone-level reduction can be used to increase recombination efficiency. Understanding how the post-translational modification status of histones and the entire chromatin proteome changes after DNA damage will require further investigation. We speculate that gene-targeting rates in mammalian cells can also be improved through manipulation of histone occupancy.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

ACKNOWLEDGMENTS

M.H.H. thanks S. Koren-Hauer for critical reading and assistance in preparing the manuscript, and V. Dion and H. Ferreira for fruitful discussions and advice. We thank V. Dian (Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; strain GA-9816), J. Haber (Department of Biology and Rosenstiel Medical Center, Brandeis University, Waltham, Massachusetts, USA; strain JEM-179), B. Luke (Institute of Molecular Biology, Mainz, Germany; strain GA-3364), R. Bystričky (University of Toulouse, Toulouse, France; precursor strain for GA-9777; strain GA-9227), J.-M. Galan (Institut Jacques Monod, Paris, France;
strains GA-1364, GA-1365 and GA-1366) and F. Winston (Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; plasmids 3494 and 3495 for reagents and material. We are grateful for the technical assistance provided by L. Gellman (microscopy), S. Bourke (microscopy) and H. Kohler (FACS). M.H.H. thanks the Bioinformatics facility for help in getting started with R. We thank all members of the FMI Protein Analysis and Microscopy facilities for valuable advice and support. We thank all members of the Gasser laboratory for valuable discussions and technical support. M.H.H. was supported by a PhD fellowship of the Boehringer Ingelheim Fonds. S.M.G. thanks the HFSP, SNF and the Novartis Research Foundation for support.

AUTHOR CONTRIBUTIONS
M.H.H. and S.M.G. wrote the manuscript. M.H.H. designed experiments and analyzed the data. M.H.H. performed most of the experiments. A.S. contributed to experimental design, data analysis and writing of the manuscript, and performed high-speed live-cell tracking after Zeocin treatment. M.H.H. planned and M.H.H. and A.S. performed the ectopic integration assays and the Rad52-TPP recovery assay. M.K. assisted in ectopic recombination assays. V.S. and T.O.-H. performed high-speed live-cell tracking data analysis and microscopy. V.S. and T.O.-H. performed and analyzed genome-wide nucleosome mapping. A.A. and D.H. performed biophysical analysis of high-speed tracking data. X.T. performed and maintained the coding for 3D SIMS data analysis. R.S. performed all mass spectrometry measurements and the analysis of label-free experiments. J.E. performed and maintained the coding of tools for 3D interpoint distance measurements. All the authors discussed the data and participated in the preparation of the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

ONLINE METHODS

Yeast growth, cell cycle arrests and flow cytometry. The yeast strains and plasmids used in this study are listed in Supplementary Tables 2 and 3. Yeast strains were all haploid and, except for the SILAC strain and the Htz1-mEos imaging control strain, were derived from the W303 background (Supplementary Table 2). Unless otherwise stated, yeast cultures were grown at 30 °C until logarithmic growth phase (OD600 = 0.7 to 1.0 × 10^6 cells/ml) before being subjected to pulsatile heat-labile reductions. After reaching log phase, cells were washed once, and pulsed H3 and H4 heat-labile reductions were accomplished via growth in either prewarmed 30 °C YP Gal/Raf (YP Gal/Raf) or YP rafinose medium for 120 min before transformation with the respective gene-targeting selection cassettes. For further information about the gene-targeting assay, refer to the section “Ectopic recombination assays.”

For cell-cycle arrest and release experiments, 1.5 × 10^8 M alpha factor (Zymo Research) was added to exponentially growing cultures at a density of OD600 = 0.5. After 1 h, another half of the initial amount of Malpha factor was added for 30 min, and cells were either held in G1 phase or released into prewarmed medium for 15–25 min before Zeocin damage treatment in S phase. Cell fixation in the relevant experiments was done for 2 min at room temperature with 4% paraformaldehyde.

For all Zeocin or γ-IR experiments, saturated yeast overnight cultures were diluted to OD600 = 0.1 the next morning and grown to log phase. In all assays, Zeocin was added directly to G1-phase arrested, S-phase released or asynchronous growing log cultures. Cultures were incubated with the drug for 1 h before high-speed tracking microscopy, or for the time periods indicated in figures for other assays and experiments. For γ-IR exposure, 5 ml of cell culture was transferred into a 10-mm petri dish and irradiated in a Faxitron CellRad cell irradiator until the indicated dose (in grays) was reached. After γ-IR treatment, cells were directly harvested for further downstream western blotting or mass-spectrometry-based analysis. For undamaged conditions, either cells were imaged immediately for high-speed tracking microscopy, or growth was continued along with that of the treated samples for the time periods indicated in the figures. γ-IR undamaged control cells were also spread on petri dishes and harvested after irradiation of treated cells was complete. Further specific growth and treatment conditions for high-speed tracking live-cell microscopy were applied according to the procedure described in ref. 12.

The proteasome-inhibition assay with proteasome inhibitor MG132 (Bachem) was done according to the procedure described in ref. 31. In brief, wild-type GA-8386 (Fig. 2a) or em65Δ (ref. 32) GA-1364 (Fig. 2b) cells were grown to saturation overnight in SC proline (wild-type, synthetic complete medium without ammonium sulfate but with 0.1% L-proline) or YPAD medium (GA-1364). The next morning, cells were inoculated to OD600 = 0.1 in SC (wild-type) or YPAD (GA-1364) prewarmed medium supplemented with 0.003% SDS and grown to OD600 = 0.5 before the addition of 75 μM MG132, or of the same volume of DMSO for the control condition. After 30 min of incubation with the inhibitor, Zeocin treatment or no-damage control growth was carried out for 1 h at 30 °C before cell harvesting for western blotting.

For H2B-CFP (strain GA-3364 and derivatives) and two-foci (strain GA-9777) live-cell fluorescent microscopy, log-phase cells were trapped with three pulses of 50 μJ/pulse in CellASIC plates of the ONIX microfluidic perfusion system (Merck-Millipore). All perfusions were done at a continuous flow rate of 2 μl/s pressure. After a 20–30-min recovery phase, cells were treated for 30 min with Zeocin before high-speed CFP-BFP tracking microscopy. The recovery phase of H2B-CFP-tagged cells was 20 min, after which they were treated with a pulse of Zeocin for 1 h, and H2B-CFP fluorescence was followed for an additional 40 min after treatment.

For constitutive H3/H4 expression or reduction experiments, GA-8386 and the relevant control strain culture (GA-8385) were grown overnight to saturation in YP galactose/rafinose (YP Gal/Raf) 1:5 medium. The next morning, cultures were inoculated in the same respective medium and grown until log phase growth (OD600 = 0.7 to 1.0 × 10^6 cells/ml) before being subjected to pulsatile heat-labile reductions. After reaching log phase, cells were washed once, and pulsed H3 and H4 heat-labile reductions were accomplished via growth in either prewarmed 30 °C YP Gal/Raf 1:20 YP rafinose medium for 120 min before transformation with the respective gene-targeting selection cassettes. For further information about the gene-targeting assay, refer to the section “Ectopic recombination assays.”

Quantitative western blot analysis. The total protein content in the relevant samples was determined with the Quant-iT protein assay kit (Thermo Fisher Scientific), and 8.75 μg of total protein was loaded and run on Criterion TGX Stain-Free 8–16% (Bio-Rad) gels under SDS denaturing electrophoresis conditions. Rapid fluorescent detection of all proteins in the gel or on the membrane was done according to the manufacturer’s specifications, and protein transfer on PVDF membranes was done with the Trans-Blot Turbo system. All antibodies used for subsequent immunodetections are listed in Supplementary Table 4. Rad53 protein was detected with a custom-made mouse monoclonal antibody (GenScript) to the FHA2 domain of Rad53. Anti-pH2A was similarly a custom-made polyclonal antibody specific for phospho-S129 in yeast H2A. Titration curves of histone H3 and histone H4 antibodies were generated to work within the linear detection range before use (data not shown).

Chromatin fractionation and quantitative mass spectrometry. For SILAC-based mass spectometry, lysine and arginine double-labeling of the lys2Δ arg4Δ strain MG-06A was achieved by growth for at least ten generations in heavy medium as described previously. After growth to log phase or at G1 cell-cycle arrest, heavy-labeled cells (or ‘light’ labeled cells for label-swap controls) were treated for 1 h with Zeocin and mixed 1:1 based on the exact cell count with lightly-labeled (or heavy-labeled for label-swap controls), nontreated control cells. Prior to mixing, FACS and western blotting samples were taken to test for cell-cycle distribution and DDC activation.

Chromatin fractionation was carried out as previously described with the modification that chromatin obtained from SILAC-labeled yeast samples was resuspended in urea buffer (50 mM Tris-HCl, pH 7.5, 5 mM urea, 1% SDS, 5 mM EDTA) sonicated for optimal solubilization of proteins followed by a TCA protein precipitation step before downstream mass spectrometric analysis. To avoid carbamylation in urea buffer, samples were kept below 20 °C and quickly processed. Control samples from whole cell extract, supernatant and the chromatin fraction were analyzed with SDS-PAGE (Novex 8%–16% Tris-glycine gel, Invitrogen) gel electrophoresis followed by Coomassie staining.
Samples for label-free histone quantification came from log-phase or G1-phase arrested cells grown in YPD medium. After 4-IR treatment, 5 ml of culture was fixed with 10% TCA on ice. Whole cell lysates were obtained by bead-beating at 4°C in urea buffer (50 mM Tris, pH 8.6, 6 M GuHCl) by adding 4 ml of 100 mM TCEP (2-cysteine thiol reductant) for 30 min followed by 4 ml of 250 mM sodium acetate for another 30 min (in the dark), both at room temperature. Prior to the addition of 20 ml of 1 ml/mg LysC (Wako, Japan), the extracts were diluted two-fold to keep a final HEPES concentration of 20 mM. The first digestion was carried out overnight at 25°C. After two-fold dilution, 100 μl of 0.5 mg/ml trypsin was added, and the second digestion was carried out at 37°C overnight. Samples were desalted using SepPak C18 columns (Waters), and eluates were dried to completion in a SpeedVac (Thermo Fisher Scientific).

Both SILAC and label-free LC-MS/MS analyses were done on an Easy-nLC 1000 pump coupled to an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) using a Digital PicoView ion source (New Objective). Peptides were set to 2+ on a New Object 6 cm × 25 cm, ReproSil, 3 μm-Pur C18 column, a 150-μm 0.1% formic acid-acetonitrile gradient. The flow rate was 200 nL/min, and injection volumes were adapted accordingly for 1 μg of peptides on column. Data were acquired in a Top20 data-dependent acquisition mode. MS scans were acquired at a resolution of 60000 over a range of each 350-1200. We identified label-free peptides by searching Swiss-Prot using Mascot 2.4 (Matrix Science) and compiled them in Scaffold 3.0 (Proteome Software). SILAC peptides were identified with MaxQuant 1.4.1.2 via a search of the SGD database.

We carried out label-free relative quantitation of histones by generating the extracted ion chromatogram for the peptide precursor mass, integrating the peak areas (using QuantBrowser (Thermo Fisher Scientific)), which we then used to calculate the peptide ratios. The average of those ratios determined the ratio of the histones (reference untreated or wild-type sample). This method is more precise than the Top3/TIC method used in Scaffold. Untreated or wild-type references were set to 1. We used two peptides each from ALF, KPK1, IF4A and IFSA1 protein as internal references for the quantification of relative histone abundances in each run. Histone-level ratios in SILAC samples are shown as the average from all samples.

Core histones were always the most abundant proteins measured and resided within the first significant interval. We filtered the MaxQuant protein-groups list by removing all contaminants, all reverse hits, and proteins quantified with less than two peptides. The cutoff for variability was set to 30%. Normalization was done manually with the 25 most abundant proteins (histones excluded). The MaxQuant peptide list (excluding the G1 experiment) was filtered accordingly without a variability cutoff and with only peptides that had an H/L or L/H count greater than 3 taken into account. Normalization was done manually with the top 10% most abundant peptides (histone peptides excluded).

Live-cell microscopy and image analysis. Live microscopy was done on a temperature-controllable Olympus IX81 microscope with a Yokogawa CSU-X1 scanning head equipped with two EM-CCD EvolveDelta (Photometrics) cameras, an ASI MS-2000 Z-piezo stage and a PlanApo 100×/1.45-NA (numerical aperture) total internal reflection fluorescence microscope oil-immersion objective and Vivowiew software. For mRFP-GFP or mRFP-CPF high-speed tracking, fluorophores were excited with lasers at 561 nm (mCherry or mRFP) and 491 nm (GFP) or 440 nm (CPF), and emitted fluorescence was acquired simultaneously on separate cameras (Semrock FF01-677/73-25 filter for mCherry/mRFP and Semrock FF02-520/40 or 25 filter for GFP or Semrock FF02-42/25 foil filter). High-speed time-lapse series were conducted, taking eight optical slices per stack every 80 ms for 1 min or every 300 ms for 2 min, with 10-ms exposure times per slice. Time-lapse image stacks were analyzed as in ref. 9, using a custom-made ImageJ (Fiji) plugin to extract coordinates of local position from the movies. We tested phototoxicity by exposing wild-type cells to 440-nm light. The emitted fluorescence was acquired on an EM-CCD EvolveDelta (Photometrics) camera using a Semrock FF01-475/42-25 emission filter and a H2B-mCherry (GA-5816) control strain excited at 491 nm, and fluorescence was recorded through a Semrock FF02-520/40-25 filter. Time-lapse series (120 min total) of 100 optical slices per stack (200-nm intervals) were acquired for 12 time points at 10 min intervals, with each slice being exposed for 10 ms per pixel line. Bright-field images were acquired using a CoolLED diode. Images were deconvolved using the Huygens Remote software. For image analysis, deconvoluted maximum-intensity projections were analyzed as a merged stack in Fiji. Nuclei were detected and segmented using hierarchical k-means and active contours and followed through the time series. The integrated nuclear intensity was calculated for each cell nucleus, and the average intensity of all single cells per condition was plotted over time. In figures, the t point to 100% intensity (via averaging of the first two time points) and the Zacine treatment control of each strain are shown relative to the respective treatment control of the wild type.
condition was set to 1. In figures, Zesacin-treated spot or nuclei volume distributions are shown relative to the untreated control. The distributions were plotted with R as a box plot or as cumulative-density functions.

Microscopy and image analysis of fixed samples. Microscopy of fixed GA-9777 samples was done with the same Olympus IX81 microscope setup mentioned before. Cells were fixed with paraformaldehyde and attached to a thin SIM-grade Zeiss 1.5 glass coverslip using concanavalin A. We acquired 79 optical slices in 100-μm intervals with the 561-nm and 491-nm laser lines (130-ms exposure each). Bright-field images were acquired using a CoolLED diode. Images were deconvolved using Huygens Remote Manager and channel-aligned. Then, interspot distances (Δ) between the GFP and mRFP centroids were measured with the Imaris software. The distribution of all measured distances per condition was plotted with R as a box plot or as a cumulative-density function.

Ectopic recombination assays. For Figure 8a: as used in wild-type cells, arp6A cells and cells bearing NHP6A/NHP6B deletions. For specific conditions and deletions, please consult the “Yeast growth, cell-cycle arrests and flow cytometry section.”

After transformation, we split cells and plated them on SC-URA plates (100 μg/ml) to select for transformants resulting from integration of the template plasmid #1050) presenting 40-bp and 42-bp upstream and downstream homology, respectively, to the MGS1 locus. As a control, centromeric circular plasmid #2422 (ADE2, hphMX4, Cen/ARS), which is maintained in yeast cells ectopically, was transformed alongside with the URA3 integration cassettes. Primers were #7297 (GTTTTTTTACGCTTGAGGCGCATTGCA TGTCGAGGACGTTTGCGATCCTCGGGTTAATTAA) and #7298 (CTGATATGTTTTATATCATATCGAGGCGGGCAGATTCGCG TGGCGATGTCATT).

After transformation, we split cells and plated them on SC-URA plates (100 μg/ml) to select for transformants resulting from integration, and on and YPD by hygromycin B plates to select for cells containing the plasmid. We compared the numbers of and Leu+ transformants obtained from each reaction to calculate the integration rate for each strain relative to that of a wild-type strain arbitrarily set to 1 as a reference. Growth was scored in biological quadruplicates, and each transformation was done with four technical replicates; results were averaged.

For Figure 6c, control cells and Gal H3/H4 ‘histone shutdown’ cells. For specific growth conditions, please consult the “Yeast growth, cell-cycle arrests and flow cytometry” section. After pre-growth in YP Gal/Raf 1/5 medium, equal amounts of exponentially growing control (GA-6835) and Gal H3/H4 ‘histone shutdown’ (GA-8362) cells were pulse-reduced for histone H3 and H4 levels via 2 h of growth in either YP Gal/Raf 1/20 or YP raffinose medium. After the histone-reduction pulse, transformations were done with either an atg2::hphMX4 PCR fragment (PCR product ATG2-hpyro, template plasmid #1049) presenting 40-bp homology (both upstream and downstream) to the ATG2 locus or an mgs1::hphMX4 PCR fragment (PCR product MGSI-hpyro, template plasmid #1049) presenting 40-bp and 42-bp upstream and downstream homology, respectively, to the MGS1 locus. As a control, centromeric circular plasmid #252 (LEU2, Cen/ARS), which is maintained in yeast cells ectopically, was transformed alongside with the hphMX4 PCR integration cassettes.

Primers for PCR product ATG2-hpyro were #6502 (ATATGCCCGGAGAGT TTCCGTCACATTGAAATTGCGAAAGCCGCGAGCCGAGCAC) and #6503 (GGGATTTTGGCCCTACGGGATGTTGTCGCCGCTCTTCTACTAAGGOT AGCTGATACCGCGG). Primers for PCR product MGSI-hpyro were #2797 (GGTTTTTTACGCTTGAGGCGCATTGCA TGTCGAGGACGTTTGCGATCCTCGGGTTAATTAA) and #7298 (CTGATATGTTTTATATCATATCGAGGCGGGCAGATTCGCG TGGCGATGTCATT).

After transformation, cells were split and plated on YPD Gal + hygromycin B plates (100 μl plated) to select for transformants resulting from integration of ATG2-hpyro or MGSI-hpyro and on SC-Gal - Leu plates (100 μl plated) to select for cells containing the plasmid. The numbers of MGS1+ and Leu+ transformants obtained from each reaction were compared to calculate the integration rate for each strain relative to that of a wild-type strain arbitrarily set to 1 as a reference. Growth was scored in biological quadruplicates, and each transformation was done with four technical replicates; results were averaged.

Recovery assay. Equal amounts of exponentially growing (YPAD medium, cell density ~ 1 x 10⁹ cells/ml) wild-type (GA-6879), arp6A (GA-8132), and nhp6A (GA-9771) and arp6A/nhp6A cells (GA-9815) were treated in triplicates with increasing amounts of Zeocin (100, 250 and 500 μg/ml). After 1 h of treatment, cells were washed once with fresh, prewarmed (30°C) YPAD medium and grown for an additional hour in YPAD without Zeocin. After this step, the cell density was accurately determined in three technical replicates and used later as a correction factor for cell growth within the 1 h of Zeocin treatment and the 1 h of growth in YPAD of the control versus the Zeocin-treated cultures (Zeo100 – Zeo500). Aliquots were removed and plated in a dilution row. Growing colonies versus plated cells were quantified; the control situation served as reference point and was set to 100%.

Rad52-YFP recovery assay. Cells grown to saturation overnight in sterile, filtered, non-automated YPD medium were diluted the next morning, and the experiment was started when OD₅₆₂ reached 0.6. Wild-type (GA-9772) and nhp6A cells (GA-9771) were treated with 250 μg/ml Zeocin for 30 min. Zeocin was washed away and Rad52-YFP foci formation was followed over a total time course of 16 h, with microscopic images acquired at the following time points: 0 min, 20 min, 40 min, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h and 16 h. Rad52-YFP foci were imaged with the same microscopic setup as mentioned above, with 50 optical slices acquired in 200-μm intervals with a 30-ms exposure time using a 514-nm laser with appropriate emission filters. Images were deconvolved as described above and maximum-intensity projected, and the binary (+ or –) content of Rad52-YFP foci of all living cells at each time point in each strain was counted. The average amount of cells containing Rad52-YFP foci per time point was plotted and is shown in figures together with a logarithmic fit.

Estimating the anomalous diffusion exponent c and the diffusion coefficient. Please refer to Supplementary Note 1.

Estimating the effective spring coefficient k. Please refer to Supplementary Note 1.

Statistics and reproducibility. All chromatin mobility data (spot tracking) are pooled from three independent experiments (Figs. 3a, 5d and 6c,d, and Supplementary Fig. 5a). Statistical analyses testing the significance of the biophysical parameters derived from the imaging data were performed with MatLab using the Kolmogorov-Smirnov test (Figs. 3b, 5d and 6e, and Supplementary Figs. 3b and 7c,d). All SIM microscopy data from individual single cells were pooled and were derived from one experiment. The data were analyzed with RStudio using unequal-variance t tests (Figs. 3d, 5c, 6f and 7d). For H2B-CFP single-cell fluorescent microscopy analysis, the integrated nuclear intensity was calculated for each cell nucleus, and the average intensity of all single cells per condition was plotted over time. All data from single cells originated from three independent cultures on different days (Fig. 1d, H2B-GFP), two independent cultures on two different days (Fig. 1d, Hist1-mCherry), or two independent cultures on the same day (Fig. 7c, rad51ΔDelta1Δzeo). Recovery efficiency and cell recovery experiments were performed in triplicates (three independent cell cultures), and Excel was used to perform two-tailed Student’s t tests (Fig. 8a,b,d, Chromatin fractionations were repeated with three different single cultures (Supplementary Figure 13g) or two independent cultures (Fig. 1a and Supplementary Figures 1b and 3f). Nucleosome mapping data for the wild-type strain (GA-6879) was performed on four different cultures (Fig. 1c and Supplementary Figure 2e); for the H3/H4 transcription independent strain (GA-8586) the experiment was done once (Supplementary Figure 4b), but new data from four different independent cultures showed the same effect (data not shown). The kinetics of the Rad52-YFP recovery assay on wild-type and nhp6A cells (12 different time points) was performed once but done on the single-cell level.

Data availability. The EBI project ID for the nucleosome-seq data in this study is PRJEB41701. Source data for Figures 1b,d, 2a-c, 5b, 7c and 8a and for Supplementary Figure 2g, as well as mass spectrometry data (Supplementary Data Sets 4–9), are available online. Other data supporting the findings of this study are available from the corresponding author upon request.
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates

Supplementary Figure 1

SILAC mass spectrometry of pre-enriched chromatin depicts core histone loss.

(a) Experimental workflow for SILAC mass spectrometry after Zeocin treatment. (b) Labeling and mixing of samples from 4 individual experiments. Asterisks indicates label swap (c) Colloidal Comassie stained SDS-PAGE of SILAC experiment replicas showing total protein, supematant (SUP), and chromatin (CHR) fractions from a. His. mix is an equimolar mixture of recombinant Histone H2A, H2B, H3 and H4. (d) Control Immunoblot analysis using anti-H2A anti-Rad53 antibodies to show that checkpoint is activated after Zeocin treatment in the SILAC samples from bc. (e) FACS analysis showing that all samples from b-d have similar cell cycle profiles. Actin was used as loading control. Asterisks indicate the phosphorylation-dependent mobility shift of Rad53. (f) SILAC mass spectrometry on chromatin fractions from three independent cell pools. Boxplots show heavy/light histone peptide distribution indicating the degradation of core histones and, to a lesser extent, Htz1 (H2A.Z). (g) Distribution of measured protein ratios in the non-label swap experiment or (h) label swap experiment. Core histones are labelled red and reside within the µ-σ range. Htz1 is labelled yellow and resides closer to the mean ratio of all proteins. Boxplots in f represent median values, interquartile ranges and whiskers.
Supplementary Figure 2

Gamma irradiation triggers degradation of core histones, Zeocin reduces nucleosome occupancy, and H2B-CFP tagging does not interfere with cell viability.

(a) Immunoblot analysis from one experiment using H3 and H4 specific antibodies on whole cell extracts of asynchronous WT cells exposed to 30 Gy gamma irradiation (+IR). Rad53 and H2A were probed to confirm checkpoint activation. MCM2 was used to control for loading. Arrows indicate samples sent for label-free quantitative mass spectrometric analysis. (b) Label-free quantitative mass spectrometry results of samples depicted in a. Bar graphs show mean peptide ratios ± s.e.m for the indicated histone proteins upon γIR exposure relative to the control condition. (c) Combined label-free mass spectrometry results of sample γIR a), γIR b) and an additional experiment. Bar graphs represent the mean peptide ratios ± s.e.m. for core histones over all samples. (d) FACS analysis showing that all samples have similar cell cycle profiles. (e) Genome-wide nucleosome mapping graph shows the distribution of nucleosome reads over 750 highly expressed genes aligned to their TSS from four independent experiments (±s.d. is shaded). (f) Drop assay control showing that the H2B-CFP fusion complements the absence of H2B in response to genotoxic agents. (g) Live single-cell microscopy of Nup49-GFP. Graph shows the mean fluorescent signals of all individual cells (cell numbers indicated in graph) per treatment over time relative to the control (Ctrl.) condition. Dotted lines indicate the duration of Zeocin treatment. Graphs show mean ± s.e.m..
Supplementary Figure 3

Damage-induced histone loss occurs in G1 phase.

(a-b) Representative immunoblot analysis of whole cell extracts from G1-arrested cells treated with Zeocin a or after exposure to γIR b. Histone H3 and H4 levels were probed using histone specific antibodies. Rad53 and γH2A were probed to confirm checkpoint activation. MCM2 was used to control for loading and Ctr. represents bands on the ponceau stained membrane. Bar graphs in a show the mean ± s.e.m. over three independent replicates relative to the control condition. FACS results of Zeocin treated samples are shown above immunoblots in a. Arrows in b indicate samples sent for label-free quantitative mass spectrometric analysis. (c) Immunoblot quantifications of irradiated samples from one experiment marked with arrows. (d) Label-free quantitative mass spectrometry results of samples depicted with arrows. Bar graphs show mean peptide ratios ± s.e.m. for the indicated histone proteins upon γIR exposure relative to the control condition. (e) FACS analysis showing cell cycle profiles of all samples from b. (f) Experimental workflow for SILAC mass spectrometry of G1 arrested cells after Zeocin treatment. (g) Comassie stained SDS-PAGE of samples showing total protein, supernatant (SUP), and chromatin (CHR) fractions. (h) FACS analysis showing similar G1 arrest efficiency for all samples. (i) SILAC mass spectrometry on chromatin fractions from two independent cells pools. Boxplots show heavy/light histone peptide distribution indicating the degradation of core histones and, to a lesser extent, Htz1. (j) Distribution of measured proteins ratios. Core histones are labelled red and reside within the µ-σ range. Htz1 is labelled yellow and residues closer to the mean ratio of all proteins. Boxplots in i represent median values, interquartile ranges and whiskers. Asterisk indicates phosphorylation-dependent Rad53 mobility shift.

Nature Structural & Molecular Biology: doi:10.1038/nsmb.3347

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates

129
Supplementary Figure 4

Damage-induced histone loss is independent of histone transcription.

(a) Top panel shows the experimental procedure and strain used for constitutive histone H3 and H4 transcription in cells grown in YPGal+Raff medium (strain GA-836). A URA3 plasmid borne construct in which the GAL1-10 promoter drives the only pair of histone H3/H4 genes is used. Md panel shows representative immunoblot analysis using anti-H3 and anti-H4 antibodies on whole cell extracts from the strain depicted in a after Zeocin treatment and growth in YPGal+Raff medium. Rad53 and ?H2A were probed to confirm checkpoint activation. MCM2 was used to control for loading and Cit. represents bands on the original gel (UV-TGX stained). Bar graphs in bottom panel show the mean ± s.e.m. over three independent replicates relative to the control condition. Asterisk indicates phosphorylation-dependent Rad53 mobility shift. (b) Zeocin treatment causes a genome-wide decrease in nucleosome occupancies. Data represents nucleosome occupancies over the total peak of 5014 protein coding genes, 750 high expression genes and 750 low expression genes aligned to their transcriptional start site (TSS) from one experiment using the strain depicted in a.
Supplementary Figure 5

High-speed, live-cell imaging reveals increased chromatin movement and a loss of constraining forces after DNA damage.

(a) High-speed (Δt=80 ms) imaging of the undamaged MET10 locus (as in Fig. 3a-b) showing that chromatin mobility increases with Zocin concentration. Average MSD graphs indicate dose-dependent increases in global chromatin mobility in response to DNA damage (n=59, n=31, n=29 different cells from three independent experiments). (b) Graphs show the means and whiskers (s.s.d.) of biophysical parameters derived from imaging data and predict chromatin decompaction after Zoccin treatment. P-values, **P<0.001, NS=not significant, result from Kolmogorov-Smirnov-tests. All MSD graphs represent the mean ± s.e.m. of cells pooled from three independent experiments. Additionally, consult Supplementary Dataset 2 for mobility parameters and the number of cells analyzed.
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
GAL::H3/H4 strain as a tool for in vivo artificially controlled histone-level reductions.

(a) Schematic representation of wild-type, control and shutdown strains grown in the indicated media. Gal. = galactose, gluc. = glucose. Immunoblot analysis of whole cell extracts of the indicated conditions and strains were performed using an antibody directed against Histone H4. Rad53 and γH2A were probed to confirm checkpoint activation. MCM2 was used to control for loading. Bar graphs from quantified immunoblot derived from one experiment shows overexpression or reduction of H3/H4 in the shutdown strain grown in gal. or gluc. medium respectively. Growth of the shutdown strain in Gal:Raff 1:5 confers H3/H4 levels similar to WT. (b) Experimental workflow of the arrest-release experiment used to reduce histone levels in S phase (as in Fig. 5). Bar graphs from quantified immunoblot data derived from one experiment shows reductions of H3 and H4 upon release into raffinose medium. (c) A defined number of exponentially growing cells (fivefold dilutions) was spotted on different YP or YPD plates containing the indicated dose of hydroxyurea (HU). Cells exposed to 20 Gy γR were spotted onto YPD plates. Drop assays show functionality of shutdown and control strains. Control = control from a, control 1 and 2 = similar to control 1 but expressing HHT2-HHF2 from a URA3 plasmid (a).
Supplementary Figure 7
Biophysical parameters of mhp6Δ tracking data and results from Rad62-YFP recovery assay.

(a) Control Immunoblot from one experiment (loading 1x and 2x the volume) showing that mhp6Δ strains do not have constitutive checkpoint activation. Rad53 was probed to test for checkpoint activation and MCM2 was used as loading control. (b) Schematics of the strains used for imaging the PES4 and MET10 loci (Fig. 6c-e) with representative images. Scale bar is 2 μm. (c-d) Graphs show the means and whiskers (±s.d.) of biophysical parameters derived from imaging data of PES4 c and MET10 d (Fig. 6c,d). P-values, *P<0.05, **P<0.001. NS=not significant, result from Kolmogorov-Smirnov Tests. (e) Rad62-YFP foci recovery assay. Graph shows the overall percentage of Rad62-YFP foci containing cells for each of the 12 time-points from one experiment plotted against the time and shown together with a logarithmic fit.
Supplementary Tables

Nucleosome mapping sequencing reads

Supplementary Table 1: Information on sequencing reads obtained for each nucleosome mapping replicate. The strain column indicates the strains used. GA-6879 is the wild type and GA-8386 is the shutdown strain grown in galactose:raffinose medium. A-C in the strain column indicates the four independent experiments with or without Zeocin treatment for 1 hr prior to MNase digestion. Column A shows the S. Cerevisiae reads and column B the reads from the C. glabrata spike-in control.

<table>
<thead>
<tr>
<th>Strain</th>
<th>S. cerevisiae</th>
<th>C. glabrata</th>
<th>total</th>
<th>Read fraction S. cerevisiae</th>
<th>Read fraction C. glabrata</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA-6879_A</td>
<td>50692473.00</td>
<td>9866228.00</td>
<td>60558701.00</td>
<td>0.84</td>
<td>0.16</td>
</tr>
<tr>
<td>GA-6879_A_Zeocin</td>
<td>46090144.00</td>
<td>13483686.00</td>
<td>59573830.00</td>
<td>0.77</td>
<td>0.23</td>
</tr>
<tr>
<td>GA-6879_B</td>
<td>38787017.00</td>
<td>7282715.00</td>
<td>46069732.00</td>
<td>0.84</td>
<td>0.16</td>
</tr>
<tr>
<td>GA-6879_B_Zeocin</td>
<td>36619974.00</td>
<td>10714730.00</td>
<td>47334704.00</td>
<td>0.77</td>
<td>0.23</td>
</tr>
<tr>
<td>GA-6879_C</td>
<td>34427922.00</td>
<td>6626795.00</td>
<td>41054717.00</td>
<td>0.84</td>
<td>0.16</td>
</tr>
<tr>
<td>GA-6879_C_Zeocin</td>
<td>29746798.00</td>
<td>7722737.00</td>
<td>37469535.00</td>
<td>0.79</td>
<td>0.21</td>
</tr>
<tr>
<td>GA-6879_D</td>
<td>25931187.00</td>
<td>4679458.00</td>
<td>30610645.00</td>
<td>0.85</td>
<td>0.15</td>
</tr>
<tr>
<td>GA-6879_D_Zeocin</td>
<td>43185379.00</td>
<td>12185328.00</td>
<td>55370767.00</td>
<td>0.78</td>
<td>0.22</td>
</tr>
<tr>
<td>GA-8386_A</td>
<td>82089867.00</td>
<td>21788485.00</td>
<td>103878352.00</td>
<td>0.79</td>
<td>0.21</td>
</tr>
<tr>
<td>GA-8386_A_Zeocin</td>
<td>53677477.00</td>
<td>20342128.00</td>
<td>74019605.00</td>
<td>0.73</td>
<td>0.27</td>
</tr>
<tr>
<td>GA-8386_B</td>
<td>41546073.00</td>
<td>9859227.00</td>
<td>51405390.00</td>
<td>0.81</td>
<td>0.19</td>
</tr>
<tr>
<td>GA-8386_B_Zeocin</td>
<td>32786223.00</td>
<td>12332953.00</td>
<td>45119176.00</td>
<td>0.73</td>
<td>0.27</td>
</tr>
<tr>
<td>GA-8386_C</td>
<td>25328106.00</td>
<td>6741373.00</td>
<td>32069479.00</td>
<td>0.79</td>
<td>0.21</td>
</tr>
<tr>
<td>GA-8386_C_Zeocin</td>
<td>27560758.00</td>
<td>10640545.00</td>
<td>38201303.00</td>
<td>0.72</td>
<td>0.28</td>
</tr>
<tr>
<td>GA-8386_D</td>
<td>30336089.00</td>
<td>7284044.00</td>
<td>37620133.00</td>
<td>0.81</td>
<td>0.19</td>
</tr>
<tr>
<td>GA-8386_D_Zeocin</td>
<td>31958581.00</td>
<td>12219914.00</td>
<td>44178495.00</td>
<td>0.72</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Yeast strains used in this study

Supplementary Table 2: Yeast strains used in this study. All strains are haploid and all except the SILAC strain and the Htz1-mEFs imaging control are derived from the W303 background.

<table>
<thead>
<tr>
<th>Strain number</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY</td>
<td>MATa; his3Δ1290; leu2Δ100; met15Δ100; trp1Δ103; ura3Δ103; (BY4733)</td>
<td>exemplary genotype</td>
</tr>
<tr>
<td>W303</td>
<td>MATa; ade6Δ1; trp1Δ1; his3Δ11; his3Δ18; trp1Δ1; leu2Δ2; ura3Δ12; iαΔ (W303)</td>
<td>genotype</td>
</tr>
<tr>
<td>JKM179</td>
<td>MATa; his3Δ1; ade6Δ1; iαΔ; ade6Δ1; galIΔO; leu2Δ2; lys3 trp1::hisG; ura3Δ2 (JKM179)</td>
<td>exemplary genotype</td>
</tr>
<tr>
<td>yAO06A</td>
<td>TRY1::kanMX4; TRP1::kanMX4 (BY4733)</td>
<td></td>
</tr>
<tr>
<td>GA-6879</td>
<td>MATa; RAD53::FP; NUP49::FP; ADE2::TetR-mCherry; lys3:: LacI-CFP::TRP; leu2::LacI; ZWF1::cistrome::Lm; lys3::Ic1::LEU2:: LacO array::Lm; met10::Lm</td>
<td></td>
</tr>
<tr>
<td>GA-9773</td>
<td>MATa; PES14::leu2::Sac1::TRP1; his3Δ15::GFP-LacI-HIS3; NUP49::FP</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9774</td>
<td>nhp6Δ::kanMX4; nhp6Δ::kanMX4, same as GA-9773</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9771</td>
<td>nhp6Δ::kanMX4; nhp6Δ::kanMX4, same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9815</td>
<td>ura3::NAT; same as GA-9771</td>
<td></td>
</tr>
<tr>
<td>GA-9772</td>
<td>ura3::NAT; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-7553</td>
<td>smd1::HIS3; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8132</td>
<td>ura3::NAT; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8182</td>
<td>ura3::NAT; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8185</td>
<td>ura3::NAT; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9202</td>
<td>ura3::NAT; same as GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9755</td>
<td>rad51::NAT; in GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-7552</td>
<td>rad51::NAT; in GA-6879</td>
<td>This study</td>
</tr>
<tr>
<td>GA-7556</td>
<td>msc1::NAT; same as GA-7553</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8385</td>
<td>MATa; Nup49-GFP::FP; LacI::HIS3; bb22-50A; htl1-101 (no marker) = [H3495 pDM18 prS415; IH72::HIS3]; CEN/ARS, TRP1 (W303)</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8386</td>
<td>MATa; Nup49-GFP::FP; LacI::HIS3; bb22-50A; htl1-101 (no marker) = [H3494 pRM120 prU420; GAL1::HIS3::HIS3]; CEN/ARS, URA3 (W303)</td>
<td>This study</td>
</tr>
<tr>
<td>GA-8387</td>
<td>MATa; Nup49-GFP::FP; LacI::HIS3; bb22-50A; htl1-101 (no marker) = [H3494 pDM19 prS416; IH71::HIS3]; CEN/ARS, URA3 (W303)</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9778</td>
<td>LacO::LEU2::MGJ1; same as GA-3838</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9776</td>
<td>LacO::LEU2::MGJ1; same as GA-3838</td>
<td>This study</td>
</tr>
<tr>
<td>GA-3364</td>
<td>MfdΔ, HTB2::CFP; kanMX (W303)</td>
<td>Briana Luke</td>
</tr>
<tr>
<td>GA-9700</td>
<td>rad51::URA3; same as GA-3364</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9698</td>
<td>smd1::URA3; same as GA-3364</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9695</td>
<td>ura3::nmtMX; same as GA-3364</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9712</td>
<td>rad51::nmtMX; same as GA-3364</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9524</td>
<td>MATa; HCH1::EcoRI::URA3; same as JKM179</td>
<td>This study</td>
</tr>
<tr>
<td>GA-9580</td>
<td>MATa; Rad52::YFP; NUP49::FP; HIS3; LacI-LGFZ; W303</td>
<td>This study</td>
</tr>
<tr>
<td>YM208</td>
<td>MATa; ura3::LacI-GFP::URA3; 515b-XIV::LacO-TRP1; YG117::tetR-mRF::NATMX; J90b-XY::tetO-LEU2 (W303)</td>
<td>Kemarin Bromley</td>
</tr>
<tr>
<td>GA-9227</td>
<td>MATa; YG117::ARST14; TetR-mRF::NAT; ade6::His3::CFP::lacI::URA3::Lambdalo::YFP; ADE2; leu2::LacO-TRP1; 44k::Lambdalo::HIS3; 44k::LacO-TRP1; RAD52::EGFP::CurRA3</td>
<td>This study</td>
</tr>
<tr>
<td>GA-1365</td>
<td>MATa; pre-l-1, pre-2-2</td>
<td>This study</td>
</tr>
<tr>
<td>GA-1366</td>
<td>MATa; ura3::NAT; same as GA-1365 and GA-1366</td>
<td>This study</td>
</tr>
<tr>
<td>GA-1364</td>
<td>MATa; ura3::NAT; same as GA-1365 and GA-1366</td>
<td>This study</td>
</tr>
</tbody>
</table>
Plasmids used in this study

Supplementary Table 3: Plasmids used in this study

<table>
<thead>
<tr>
<th>Plasmid number</th>
<th>Description</th>
<th>Type</th>
<th>Yeast selection</th>
<th>Bacterial selection</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3484</td>
<td>pUK420-GAL10-HHT2 GAL1-4HF2</td>
<td>CEN/ARS</td>
<td>URA3</td>
<td>AMP</td>
<td>Addgene</td>
</tr>
<tr>
<td>#3494</td>
<td>pRS416-HHT1-HHF1</td>
<td>CEN/ARS</td>
<td>URA3</td>
<td>AMP</td>
<td>"</td>
</tr>
<tr>
<td>#3495</td>
<td>pRS414-HHT2-HHF2</td>
<td>CEN/ARS</td>
<td>TRP1</td>
<td>AMP</td>
<td>"</td>
</tr>
<tr>
<td>#279</td>
<td>pRS406</td>
<td>integrating</td>
<td>URA3</td>
<td>AMP</td>
<td>Addgene</td>
</tr>
<tr>
<td>#1050</td>
<td>pM6G60</td>
<td>see source</td>
<td>see source</td>
<td>see source</td>
<td>"</td>
</tr>
<tr>
<td>#2422</td>
<td>pWJ332-hphMX4-Gal1-10</td>
<td>2µ plasmid</td>
<td>ADE2/hphMX4</td>
<td>AMP</td>
<td>This study</td>
</tr>
</tbody>
</table>

Antibodies used in this study

Supplementary Table 4: Antibodies used in this study

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Supplier</th>
<th>Conditions used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse α Rad53</td>
<td>Custom made antibody (GenScript)</td>
<td>1:200 in milk</td>
</tr>
<tr>
<td>Rabbit α H4</td>
<td>Abcam AB 10358</td>
<td>1:5000 or 1:7500 in BSA</td>
</tr>
<tr>
<td>Mouse α actin</td>
<td>MAB1501</td>
<td>1:10,000 in milk</td>
</tr>
<tr>
<td>Goat α MCM2</td>
<td>Santa Cruz (SC 6680)</td>
<td>1:5000 in BSA</td>
</tr>
<tr>
<td>Rabbit α H2A</td>
<td>Custom made antibody</td>
<td>1:5000 in BSA</td>
</tr>
<tr>
<td>Rabbit α H3</td>
<td>Abcam AB1791</td>
<td>1:10,000 in BSA</td>
</tr>
<tr>
<td>Rabbit α Ubiquitin</td>
<td>Abcam (AB19247)</td>
<td>1:2000 in milk</td>
</tr>
</tbody>
</table>
Supplementary Table References

Supplementary Notes

Estimating the anomalous diffusion exponent α and the diffusion coefficient

We computed the cross-correlation (CC) function using 1:

$$C(t) = \frac{1}{N_p - 1} \sum_{k=1}^{N_p-1} (R_i(k\Delta t) - R_i((k+1)\Delta t))^2,$$ \hspace{1cm} (6)

for $t = 1, T - 1$, where N_p is the number of points in the trajectory. In many studies the CC is referred to as the MSD function 2 although these two functions are distinct1. The MSD is defined as the squared displacement with respect to the initial trajectory position, averaged over time:

$$\text{MSD}(t) = \left\langle (R_i(t) - R_i(0))^2 \right\rangle.$$

For short times, $C(t)$ increases as a power law

$$C(t) = C t^\alpha,$$ \hspace{1cm} (7)

where $C > 0$. To extract the coefficient α, we computed $C(t)$ from empirical trajectories and fitted the first seven points of the curve to a power law. A chromatin or DNA locus is characterized experimentally by $\alpha < 1$ 5, while for normal diffusion $\alpha = 1$. In the Rouse polymer model6, the anomalous exponent is $\alpha = 0.5$ computed for intermediate time regime (see 5).

To compute the diffusion coefficient of the tagged monomer, we use the following empirical estimator described in 1:

$$D_\alpha = \frac{1}{4\Delta t} \sum_{k=1}^{N_p-1} (R_i(k\Delta t) - R_i((k+1)\Delta t))^2,$$ \hspace{1cm} (8)

For short time interval $\Delta t = b^2/D$, the locus motion is Brownian and the diffusion coefficient is well approximated by eq.(8).
Estimating the effective spring coefficient \(k_e \)

Because the chromatin interacts locally with its environment, we estimated this interaction using a polymer model\(^1\), by a harmonic well of strength \(k \) acting on a single monomer \(R_i \). The potential energy of the interaction is

\[
U(R_i) = \frac{1}{2} k (R_i - \mu)^2,
\]

where \(\mu \) is the fix position of the interaction. The velocity of an observed monomer \(\xi \), averaged over many trajectories is driven by this interacting force, following the relation described in \(^7\):

\[
\lim_{\Delta t \to 0} E(t + \Delta t) \frac{\mathbf{R}_i(t) - \mathbf{R}_i(t)}{\Delta t} = -D k c \cdot (x - \mu),
\]

where \(\mathbf{R}_i(t) \) is the position of locus \(c \) at time \(t \) and \(D \) the diffusion coefficient and \(E(t) \mathbf{R}_i(t) - \mathbf{x} \) means averaging over trajectory realizations such that the condition \(\mathbf{R}_i(t) = \mathbf{x} \) is satisfied. Relation (18) links the average velocity of the observed monomer \(c \) to the force applied at a distance \(|c - n| \).

For a Rouse polymer, with a potential well of type (17), the effective spring coefficient is given by

\[
k_{\text{eff}} = \frac{k \kappa}{\kappa + |c - n| k},
\]

where \(\kappa \) is the monomer-monomer spring coefficient. We estimated \(k \) from the empirical locus trajectories \(R_i(t) \) by

\[
k = \frac{1}{2(N_r - 1)} \sum_{i} \sum_{j=2}^{N_r} \frac{k R((h+1)\Delta t) - k R(h\Delta t)}{D_j \Delta t (R(h\Delta t) - R(i))},
\]

where \(i \) is the spatial direction (in two dimensions, we sum over the x and y components) and \(N_r \) is the number of points in the trajectory. In practice, the quantity \(\langle R_i \rangle \) is computed by averaging over the trajectory. The diffusion coefficient \(D_i \) can be computed by using eq. 8.
Supplementary Notes References

Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
Fig. 1b

Ponceau stained membrane after transfer
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
Chapter 4: Histone Degradation in Response to DNA Damage Enhances Chromatin Dynamics and Recombination Rates
CHAPTER 5: PROBING GLOBAL CHROMATIN COMPOSITION WITH MASS SPECTROMETRY

Summary

Assessing all chromatin bound proteins at once is of special interest and can answer the question how global chromatin composition changes in response to genotoxic insults (Fig. 6a). This chapter describes our progress in developing a mass spectrometry (MS) based workflow to examine the global protein composition of chromatin (chromatome) in yeast. Previously described techniques were developed for mammalian systems (Paul Ginno & Dirk Schübeler, unpublished data) (Kustatscher, Hegarat et al. 2014) and provided a basis for our approach. However, they awaited refinement to allow for application to yeast. We used TMT (Tandem Mass Tag) (McAlister, Huttlin et al. 2012) labeling based MS to unambiguously compare different chromatin purification methods and devise a robust workflow for yeast. This work has been done in close collaboration with Mariya Kryzhanovska, (a Master student in the Gasser laboratory who worked under my guidance) and Paul Ginno (a postdoctoral researcher in the Schübeler laboratory).

Rationale

Several MS studies have used different cell fractionation approaches to quantify the proteome of the entire nucleus (Dundr and Misteli 2002, Mosley, Florens et al. 2009, Wuhr, Guttler et al. 2015) or its different subcompartments (Andersen, Lyon et al. 2002). Fractionation is necessary because highly abundant cytoplasmic proteins otherwise mask the signal of the relatively low abundance nuclear proteins. Currently, much effort has been put into developing proteomic techniques which address local or global chromatin composition following formaldehyde crosslinking of proteins to DNA, coupled with DNA, protein or peptide immunoprecipitation (IP) (Wierer and Mann 2016). A recent study has devised a novel method to quantitatively determine all chromatin-bound proteins (chromatome) in mammalian cells (Kustatscher, Hegarat et al. 2014, Kustatscher, Wills et al. 2014). This technique is based on formaldehyde crosslinking and subsequent chromatin fractionation. First, whole cells are crosslinked with formaldehyde followed by nuclear extraction, lysis and subsequent chromatin fractionation. As chromatin is a dense meshwork of DNA-protein crosslinks, it is largely insoluble and precipitates in aqueous solutions. Importantly, Kustatscher et al. implemented two key steps in this protocol which could both lower sample complexity and reduce unspecific binding. First, RNA was digested from crosslinked chromatin which reduced highly
abundant ribosomal protein signals. Secondly, high concentrations of the chaotrope urea were used to eliminate unspecifically-bound/non-crosslinked proteins from the precipitated chromatin sample.

Work in the Schübeler laboratory (Paul Ginno & Dirk Schübeler, unpublished results) devised another method that allows for MS based quantification of the chromatome. This technique exploits the unique property of cesium chloride (CsCl) gradients to separate DNA-protein crosslinks from free DNA and protein upon ultracentrifugation, a process called isopycnic focusing (Solomon, Larsen et al. 1988, Orlando, Strutt et al. 1997). Given the unique density of protein-DNA complexes, it can be used to separate mammalian chromatin from other cellular components. To this end, nuclei are extracted from mammalian cells, crosslinked and solubilized in a high concentration CsCl solution by sonication. Following ultracentrifugation, the CsCl creates a self-forming gradient, and the chromatin-containing fractions band with a buoyant density of $\rho = 1.39 \text{ g/cm}^3$. The fraction is recovered, dialyzed against physiological buffer and prepared for MS. Both of these techniques (by Kustatscher & by Ginno) were developed for mammalian cell systems in which histone-DNA complexes (nucleosomes) form a major component that is readily isolated from other cellular components.

In chapter 4, we used simple chromatin fractionation techniques coupled with SILAC-based MS analysis to assess chromatin composition in response to DNA damage in budding yeast. Using this, were were not able to make definitive statements about the presence of chromatin proteins other than histones. The measured intensity values of other proteins were often very low and we observed variability between replicates. Furthermore, the presence of cytoplasmic proteins in the chromatin sample made us doubt whether this approach achieves sufficient purity to determine an entire chromatome. We therefore set out to develop a robust workflow that would allow us to monitor changes in chromatin bound proteins in yeast, in response to DNA damage.

Results

We first tested whether the CsCl gradient-based, chromatin purification protocol developed in the Schübeler laboratory would be applicable in yeast (**Fig. 6b**). Due to the difficulty of lysing yeast cells without spheroplasting, the nuclear extraction step was omitted. In brief, we crosslinked cells with formaldehyde during exponential growth, lysed them with detergents and subjected the lysate to CsCl fractionation. Following the workflow illustrated in **Fig. 6bc**, we collected CsCl gradient fractions and visualized DNA with Hoechst. We found DNA enriched at a buoyant density of $\rho=1.39 \text{ g/cm}^3$ which is indicative for DNA-protein crosslinks, or chromatin (Solomon, Larsen et al. 1988, Orlando, Strutt et al.
Figure 6 Probing chromatin-wide protein composition with the CsCl approach. (a) General objective: developing a method which would allow to probe chromatin-wide protein composition in response to DNA damage. (b–c) Experimental workflow for CsCl based chromatin enrichment combined with TMT labeling and subsequent mass spectrometry. The control was done without formaldehyde crosslinking. Whole cells are subjected to formaldehyde crosslinking. After cell lysis, samples are treated with RNAsA and DNA is sheared and solubilized via sonication. Protein-DNA crosslinks are fractionated via isopycnic focusing during ultracentrifugation on a self-forming CsCl gradient. DNA content along the gradient fractions is measured via Hoechst staining and chromatin containing fractions are dialyzed against a physiological buffer. After crosslink reversal and DNA digestion with Benzonase, samples are sent for mass spectrometric measurements. (d) DNA concentration along CsCl gradient fractions derived from non crosslinked vs. crosslinked whole cell lysates. An enrichment of DNA-protein crosslinks is seen in the crosslinked sample only at the expected density of $\rho = 1.39$ g/cm3.
Free nucleic acids with a density of approximately $\rho = 1.7$ g/cm³ were found at the bottom and free proteins ($\rho = 1.28-1.35$ g/cm³) formed a proteinaceous band at the top of the gradient ($\rho = 1.7$ g/cm³) (Fig. 6d). This indicated that chromatin should have been well separated from other cellular components.

To estimate protein composition within gradient fractions, we dialyzed them against a physiological buffer and visualized proteins by silver staining on SDS-PAGE gels (Fig. 6e). Histone H4 distribution within the gradient was followed with immunoblotting (Fig. 6e). Immunoblots showed a clear peak of DNA-nucleosome crosslinks that were separated from the free histones at the top the gradient (Fig. 6e, C6 and C7). As expected, the control sample (no crosslinking) showed neither DNA (Fig. 6d, fractions 10-25) nor histone signals (Fig. 6e, C2 and C3) at the respective density of $\rho = 1.39$ g/cm³. Interestingly, histone H4 peak fractions showed high molecular protein bands on the SDS-PAGE, probably deriving from chromatin-bound non-histone proteins (Fig. 6e). We thus combined the respective gradient fractions from non-crosslinked and crosslinked cells (Fig. 6e, 3-8 and 4-9 respectively), prepared TMT labeled peptides and send those for MS analysis. Unfortunately, we could not detect a specific enrichment for any chromatin proteins other than histones upon crosslinking (Fig. 6f). This became even more apparent after a GO term analysis of all significantly enriched proteins in both the crosslinked and control samples (Fig. 6g). Apart from histones, only one other chromatin related protein group (replication fork protection complex) was found to be enriched after crosslinking.

Against our expectations, nucleolar proteins were found in the control fractions and cytoplasmic proteins were recovered in the crosslinked samples. This is in contrast to what Ginno & Schübler observed with the same method in mammalian cells. As we had omitted the nuclear fractionation step, which is a lengthy and error prone procedure in yeast, we hypothesized that the impurities in the gradient might arise from whole cell crosslinking. This hypothesis is further strengthened by a study which used crosslinking combined with CsCl gradients to isolate proteins bound to the yeast mitochondrial genome. Here, it was necessary to purify mitochondria before crosslinking and successful CsCl enrichments (Kaufman, Newman et al. 2000). In addition, two other studies in yeast successfully used insolubility-based chromatin purification methods (Kubota, Hiraga et al. 2011, Kubota, Nishimura et al. 2013). These latter
methods were similar to the chromatin fractionation procedure described in Chapter 4. We therefore developed four additional workflows with three of them including an additional spheroblasting and chromatin pre-fractionation step (Fig. 7a).

Pre-fractionated yeast chromatin was either crosslinked (Fig. 7b) or directly prepared for MS. The two crosslinked chromatin samples were further used for CsCl gradient fractionation or subjected to urea washes as described by Kustatscher et al. (Kustatscher, Hegarat et al. 2014). After repeating each workflow twice, we used TMT-based MS to compare them side by side for reproducibility and chromatin protein enrichment.

Clustering of all eight samples by log2 peptide intensities showed high correlation within replicates (R>0.8) (Fig. 7c). The reproducibility was further addressed with scatterplots, which showed correlation coefficients higher than 0.87 in all cases. This confirms that our workflow is robust (Fig. 7d). Interestingly, all pre-fractionated (PF) chromatin samples formed a supercluster that was clearly distinct from the two non-pre-fractionated, whole cell extract (WCE) samples (Fig. 7d). This indicated that the protein composition was largely similar in between pre-fractionated chromatin, but was clearly distinct from that of directly crosslinked cells.

After showing that all workflows were reproducible, our next goal was to see which of these allowed for the best enrichment of chromatin proteins. We thus first extracted the intensities of all histone and transcription factor (TF) derived peptides within each of the two replicates from the four workflows and visualized them as boxplots (Fig. 7e). Remarkably, pre-fractionated chromatin, which was washed by urea (Fig. 7e, PF_Urea_r1&r2), showed the highest histone intensity signal and the lowest TF signal. We next performed a GO term analysis to address the enrichment of chromosome, nucleus or cytosol related proteins (Fig. 7f). After summing up the signal intensities of all proteins which fall into one of these categories, we calculated their proportion with respect to the total protein signal. This gave us a measure for the percentage these categories occupy within in each sample. Strikingly, almost 20% of the total protein signal in pre-fractionated chromatin samples further purified with CsCl (PF_CsCl) or washed with urea (PF_Urea) was derived from chromosome-related proteins. The same was true for proteins annotated as “nuclear”: this yielded nearly 65% in both workflows, while “cytosolic proteins” made up only 5%. Taken together with the high histone signal intensity (Fig. 7e, PF_Urea_r1&r2), this clearly shows that pre-fractionating chromatin and subsequently subjecting it to urea washes was the best way to enrich for chromatin-bound proteins.
Figure 7 Four different approaches for chromatome enrichment. (a) Four different workflows were tested for efficient enrichment of chromatin-related proteins. Each workflow was done in duplicates and the total of 8 samples were multiplexed via TMT labeling and subsequent MS analysis. 1; WCE_CsCl describes crosslinking of whole cells followed by CsCl gradients of whole cell extracts. 2; PF_CsCl indicates chromatin prefractionation followed by crosslinking and coupled to CsCl gradients. 3; is a classic chromatin fractionation workflow without crosslinking. 4, is equal to 3 but chromatin was crosslinked subsequent to fractionation and washed with urea. (b) Western plots following the pre-fractionation and crosslinking procedure of chromatin as shown in workflow 2 (see in a). WCE = whole cell extract. Soluble = soluble fraction after precipitating chromatin. Wash = fraction used to wash precipitated chromatin. 0’ and 100’ X-linking = 0 min. and 100 min. time-points of precipitated chromatin in buffer with formaldehyde at 4°C. Red triangles show a crosslinking depended upshift of histone H4. Sonicated = chromatin after sonication. CsCl input = sample loaded on the CsCl gradient. (c) Heatmap of log2-intensities for all eight reporters shows good correlation (R>0.8) within replicates.
log2-intensities of all reporter (TMT) channels within replicates were plotted against each other. The correlation coefficient for each combination is shown. (e) Histone and translation factor signal distribution within different chromatin precipitation methods. Intensities of either histones or translation factor (TFs) peptides were extracted from the total intensity of every sample. Distributions of log2 transformed histone or TFs intensities are shown. (f) Proportion of specific GO term signal to total reporter signal per sample. Bar graphs “Chromosome”, “Nucleus” and “Cytosol” represent the proportion of each GO term category in relation to the total protein signal.

References

Material and Methods

Media and growing conditions for SILAC yeast strain

Unless otherwise stated, yeast cultures were grown at 30 °C until logarithmic (Horlbeck, #52) growth phase (OD600 = 0.7; \(1 \times 10^7\) cells/ml).

Materials

Physiological buffer:

<table>
<thead>
<tr>
<th>1 x PB</th>
<th>Stock solutions</th>
<th>For 40ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mM Tris pH 8</td>
<td>1M</td>
<td>400ul</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>0.5M</td>
<td>80ul</td>
</tr>
<tr>
<td>0.5 mM EGTA</td>
<td>0.5M</td>
<td>40ul</td>
</tr>
</tbody>
</table>

Dialysis Buffer:

<table>
<thead>
<tr>
<th>1 x DB</th>
<th>Stock solutions</th>
<th>5L</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM Tris pH 8</td>
<td>1M</td>
<td>50ml</td>
</tr>
<tr>
<td>5% Glycerol</td>
<td>100%</td>
<td>250ml</td>
</tr>
<tr>
<td>1 mM EDTA</td>
<td>0.5M</td>
<td>10ml</td>
</tr>
<tr>
<td>0.5 mM EGTA</td>
<td>0.5M</td>
<td>5ml</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td>4685ml</td>
</tr>
</tbody>
</table>

Buffer A (store at 4°C):

<table>
<thead>
<tr>
<th>10 x Buffer A</th>
<th>Stock solutions</th>
<th>For 100ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>200mM HEPES pH7.5</td>
<td>1M</td>
<td>20ml</td>
</tr>
<tr>
<td>800mM KCl</td>
<td>2M</td>
<td>40ml</td>
</tr>
<tr>
<td>80mM EDTA-KOH</td>
<td>0.5M</td>
<td>16ml</td>
</tr>
<tr>
<td>5mM Spermidine</td>
<td>0.5M</td>
<td>1ml</td>
</tr>
<tr>
<td>2mM Spermine</td>
<td>0.5M</td>
<td>0.4ml</td>
</tr>
<tr>
<td>H2O</td>
<td></td>
<td>to 100ml</td>
</tr>
</tbody>
</table>
Buffer B (prepare fresh):
1 x Buffer B
100mM PIPES-KOH pH 9.4
0.1M EDTA-KOH
0.1% Na-Azide
10mM DTT
H2O

Stock solutions
For 100ml
0.5M
20ml
0.5M
20ml
10%
1ml
1M
1ml
to 100ml

Buffer C:
1 x Buffer C
50mM K-Phosphate pH 7.0
1.1M Sorbitol
1mM β-Mercaptoethanol
0.5mM MgCl2
H2O

Stock solutions
For 100ml
1M
5ml
2M
55ml
14.3M
7ul
1M
50ul
to 100ml

Wash buffer (prepare fresh):
1 x WB
0.25x (10x Buffer A)
1M Sorbitol
0.5mM PMSF
Roche protease inhibitor 1x
H2O

Stock solutions
For 80ml
10 x Buffer A
20ml
2M
40ml
200mM
200ul
2 max tablets
to 80ml

E buffer (prepare fresh):
1 x EB
30mM KCl
50mM HEPES-KOH pH 7.5
2.5mM MgCl2
0.1mM ZnSO4
2mM NaF
0.5mM Spermidine
0.2mM PMSF
Roche protease inhibitor 1x
Phosphatases inhibitor 1x

Stock solutions
For 100 ml
1M
3 ml
1M
5ml
1M
250ul
10 mM
1ml
200mM
1ml
0.5M
100ul
200mM
100 ul
2 max tablets
(100x)
1 ml

with or without:
Chromatin stabilization by crosslinking of whole yeast cells and preparation of WCE for chromatin enrichment

Log-phase yeast cells were fixed for 1 hour at 25°C by addition of formaldehyde (37% formaldehyde solution, Sigma-Aldrich) to a final concentration of 3%. Quenching was carried out with glycine (final 0.125M) for 10 min at 25°C. Cells were harvested by short centrifugation (3500 x g) and washed once with 1 x PBS. Washed cell pellets were resuspended in physiological buffer (PB). The homogeneous cell suspension was flash frozen in droplets. Mechanical lysis was performed by cryo-grinding (Retsch grinder) applying 5 cycles of 30 Hz for 2 min. Frozen cell powder was transferred to falcon tubes and left to thaw on ice. The volume of WCE was adjusted to 5 ml by ice-cold PB. Sonication was performed on a Branson sonifier, applying 30% amplitude power for 6 cycles of 30 sec ON and 15 sec OFF. The sample was cooled in an ethanol/dry ice bath during the sonication process. Elimination of RNA from the WCE was achieved by 15 min RNAse (home-made) digestion (final 0.05 mg/ml) at 37°C. After this step, sample volumes were adjusted to 12 ml with ice-cold PB. Incubation with sarcosyl (sodium lauroyl sarcosinate, FLUKA) at final concentration of 0.5% was carried out at 4°C and continued for 30 min. Finally, samples were cleared by short centrifugation (2000 x g, 2 min, 4°C). Cleared lysate was stored on ice until further processing as described in the enrichment protocol.

Chromatin yielding by pre-fractionation and subsequent cross-linking

One liter of log-phase yeast culture (OD600 = 0.7) was harvested by centrifugation (2000 x g, 5 min, RT) and washed once with 1 x PBS. Cell pellets were resuspended in 45 ml Buffer B and incubated at RT on a rolling device. Buffer B was exchanged by brief centrifugation (2000 x g, 2 min, RT) and resuspension in 12 ml of Buffer C. Zymolase 100T (US Biologicals) digestion was carried out at 30°C and final concentration of 0.75 mg/ml. The digestion was stopped when the spheroplasting was efficiently achieved followed by microscopy testing. After a brief centrifugation step (1500 x g, 2 min, 4°C), spheroblast pellets were carefully washed twice with ice cold wash buffer. First, spheroblasts were carefully resuspended in 2 ml of E buffer without Triton X-100, before 2,25 ml E buffer + 0,25% Triton X-100 was added. For mixing, slow inversion on ice was performed until the lysis of spheroplasts was complete. The total lysis mixture was overlaid on 9 ml of 30% sucrose in E buffer + 0.25% TritonX-100 (with 1.5% formaldehyde) in a Ultra Clear Beckman Coulter 14 ml tube. After ultracentrifugation (18000 x g, 15 min, 4°C) supernatant
was removed and chromatin pellet was gently resuspended in 5 ml of E buffer + 0.25% Triton X-100 with 1% formaldehyde. Chromatin was cross-linked for 60 min on ice, inverting from time to time and further cross-linked at RT for 25 min on a rolling device. Addition of final 0.125 M glycine quenched free formaldehyde and stopped the crosslinking reaction. The final chromatin sample was centrifuged at 14 000 x g at 4°C for 15 min and carefully resuspended in 4 ml PB. Chromatin pellet was kept on ice till further chromatin enrichment protocol either by CsCl or Urea wash.

Chromatin enrichment by CsCl gradient purification

Cesium chloride (SIGMA) was added to cleared lysates or pre-fractionated chromatin to a final buoyant density of 1.4 g/cm³ and loaded in Beckman Coulter polyallomer ultracentrifuge tubes. Ultracentrifugation in an SW41 rotor was carried out for 90 h, 29 000 rpm, 20 °C. Gradients were harvested by picking a needle at the bottom of gradient and collecting drops in nearly equal fractions of 500 µl. DNA content in each of fraction was determined by Hoechst stain and DNA containing fractions were collected. Fractions were dialyzed overnight in against dialysis buffer (DB). Diaiyzed fractions were de-crosslinked at 95°C for 45 min and addition of 1 ul Benzonase® (250 units) was sufficient to digest DNA within 20 min incubation at 37°C. Proteins were precipitated over night by trichloracetic acid (TCA) at a final concentration of 20%. Protein pellets were washed once with 10 % TCA/ddH2O solution and additionally washed by 70% ethanol solution. Dried protein pellet were stored at -80°C until further trypsin digestion for mass spectrometric analysis.

DNA content determination by Hoechst stain

For each of the CsCl gradient fractions (10 µl) were mixed with 200 µl of freshly prepared assay solution in a black 96 well plate. Fluorescence was measured with a Spectra Max GEMINI EM microplate reader. All fractions were measured at least in duplicates.

1 mg/ml Hoechst 33258 (Eugene) in ddH2O
10 x TNE buffer (store at 4°C)
100 mM Tris-HCl, pH 7.5 (Hoechst stock 1M)
10 mM EDTA, pH 8 (stock 0.5M)
2M NaCl (stock 5M) pH 7.4
H 33258 stock solution (1000 x) 10 ul
TNE buffer (10 x) 10 ml
H2O 90 ml
Total 100 ml
Chromatin enrichment by urea-washes

RNA in pre-fractionated chromatin was digested with RNase for 20 min at 37°C. The chromatin pellet (after centrifugation 14000 x g, 15 min, 4°C) was resuspended carefully, but completely in PB + 2% SDS (sodium dodecyl sulfate). Urea buffer (1.5 ml) was added and mixed thoroughly by inverting the tube several times. Urea wash steps were repeated twice spinning for 15 min at 14 000 x g at RT. Finally, the resulting chromatin pellet was washed once in PB + 2% SDS and resuspended in 1 ml PB. Sonication was performed with a Bioruptor® at 4°C for 15 min, 15 sec ON, 15 sec OFF (max power). Sample volume was increased to 2 ml PB and sarcosyl was added to final 1%. After 30 min incubation at 4°C on a rotating device and centrifugation step (14 000 g, 15 min, RT), the soluble fraction was de-crosslinked at 95°C for 45 min. Chromatin samples were snap frozen and stored at -80°C until further processing such as DNA digestion by Benzonase® and standard TCA protein precipitation procedure.

Immunoblotting

The total protein content in the relevant samples was determined with the Quant-iT protein assay kit (Thermo Fisher Scientific), and 8.75 µg of total protein was loaded and run on Criterion TGX Stain-Free 8–16% (Bio-Rad) gels under SDS denaturing electrophoresis conditions. Rapid fluorescent detection of all proteins in the gel or on the membrane was done according to the manufacturer’s specifications, and protein transfer on PVDF membranes was done with the Trans-Blot Turbo system. Rad53 protein was detected with a custom-made mouse monoclonal antibody (GenScript) to the FHA2 domain of Rad53. Anti-γH2A was similarly a custom-made polyclonal antibody specific for phospho-S129 in yeast H2A. Titration curves of histone H3 and histone H4 antibodies were generated to work within the linear detection range before use (data not shown).

Trypsin digestion

Equal amounts (nearly total 100 µg) of each protein sample were resuspended in RCM buffer (0.5 M Tris pH 8.6/ 6 M GnHCl, 0.45 µm filtered) and incubated at RT for 30 min after addition of 20 ul 100 mM TCEP. Addition of 20 ul 250 mM iodoacetamide (prepare 46 mg/mL of iodoacetamide in ddH2O) and incubation at RT in darkness for 30 min were followed by sample dilution with 500 ul trypsin digestion buffer (50 mM Tris/HCl pH 8.6, 5 mM CaCl2). Protein digestion was carried out by the addition of trypsin (final 3 ng/ul) and 100% acetonitrile (HPLC grade, final 3.125%) to each sample and an overnight incubation at 37°C. The next day, half of the initial trypsin portion was added and digestion was continued for another 3-4 hours at 37°C.
Desalting

Peptides were desalted using 50 mg C18 solid phase extraction cartridges (Waters). Approx. 630 ul of eluate were obtained. 30 ul (max. 5 ug) aliquots were transferred into auto sampler glass vials for quality control MS analyses and dried together with the remaining 600 ul (max. 95 ug) aliquots in a speed vac.

TMT9plex labeling and desalting

Samples were labeled with channels 126 – 130C of TMT 10plex reagent (Label reagent set, Thermo Fischer, Lot# P1202555). According to the facility’s standard TMT labeling protocol, we mixed in equal volumes and then desalted. 40 ul of labeling buffer (2M Urea/0.2M HEPES, pH = 8.3) was added to dried peptide pellets followed by the addition of 6 ul of the respective TMT reagent solution (TMT reagents 126-130C in anhydrous DMSO). The reactions were stopped by adding 3 ul of stop solution (1.5 M hydroxylamine). Finally, samples were mixed and empty reaction vials were washed with 20 ul high pH buffer (1M potassium phosphate buffer, pH = 12). Mixed solutions were acidified with 230 ul of 2M HCl and 80 ul of 5% trifluoroacetic acid (final TFA conc. 0.5%). This mixture was desalted on 50 mg C18 SepPak Waters SPE cartridges. After elution, peptides were mixed with 50 ul 50% acetonitrile, 0.15% TFA. An approximate of 5 ug of the eluted TMT peptide mix was transferred to an autosampler glass vial and dried the remaining 900 ug were dried for subsequent peptide fractionation.

LC-MS acquisition

TMT-labeled peptide samples were analyzed using an LC-MS3 method by nano liquid chromatography tandem mass spectrometry with an EASY-nLC 1000 pump using a two column set up (Thermo Fisher Scientific). The peptides were loaded in buffer A onto a trap column (Acclaim PepMap 100, 75µm x 2cm, C18, 3µm, 100Å) and separated using a PepMap RSLC analytical column (50 µm x 15 cm, C18, 2 µm) column at 45C mounted on a modified DPV ion source (New Objective) connected to an Orbitrap Fusion mass spectrometer (Thermo Scientific) at a flow rate of 150 nl/m with a linear gradient of 3-8% buffer B in 3 minutes followed by a linear increase from 8-22% B in 40 minutes, 22-40% B in 5 min, 46-80% B in 5 min followed by 8 min wash at 80% B (buffer A: 0.1% formic acid in water, buffer B: 0.1% formic acid in acetonitrile). Data was acquired using an MS3 method as described by McAlister et al. (Mcalister et al. 2014). Briefly, MS1 full scans were acquired with a cycle time of 1 second in the Orbitrap analyzer at 120k resolution followed by CID fragmentation and detection in the ion trap of the top 10 MS1 peptide precursors, synchronous precursor selection of the top 6 MS2 fragment ions followed by HCD fragmentation and detection of the TMT10plex reporter ions at 60k resolution in the Orbitrap analyzer.
CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVES

This last chapter is divided into two parts. The first part summarizes my findings and discusses the relevant results. The second part highlights the future directions arising from these results.

Discussion

In this thesis I have explored global chromatin changes that arise in response to DNA damage. The majority of my work was focused on chromatin in the broad sense – specifically focused on histones. During my time in the Gasser laboratory, I have used multiple techniques such as quantitative mass spectrometry, fluorescence microscopy and image analysis workflows to examine chromatin changes in response to DNA damage. This led to the main contributions discussed in Chapters 2 – 5. We found that the DNA damage response causes widespread changes in the physical structure and protein composition of chromatin. Our work on this subject uncovered a previously unappreciated pathway which triggers proteasomal degradation of histone proteins in response to DNA damage (Chapter 4). During the course of this study, we further developed a semi-automated image analysis workflow that was successfully used to measure the expansion and nuclear position of fluorescently labeled chromatin domains both in yeast and C. elegans (Chapters 2 & 3). In addition, we have devised a mass spectrometry-based workflow for the quantitative analysis of global chromatin composition (Chapter 5). Finally, we found that forced changes in endogenous nucleosome occupancy can impact repair events in yeast. If transferred to mammalian cells, this effect might have interesting applications in the future.

Nucleosome degradation and chromatin expansion at the basis of global chromatin mobility

In Chapter 4, I have outlined and discussed my main PhD project which uncovered the mechanism by which remodeling enzymes are able to increase chromatin mobility in response to DNA damage.

We used quantitative mass spectrometry, fluorescent live-cell microscopy and genome-wide nucleosome mapping to show that core histone proteins are degraded in response to damage in a checkpoint, remodeler and proteasome-dependent manner. This caused chromatin to expand globally, become more flexible and enhance its mobility. These findings were further validated in a recent publication from the Gasser and Holcman laboratories which showed that INO80-C-dependent chromatin expansion and relaxation also occurred at site specific DSBs (Amitai, Seeber et al. 2017). Our results thus implicate histone degradation in both local and global damage-provoked chromatin mobility.
Furthermore, we suggest remodeler-dependent histone degradation as a novel and integral part of the DNA damage response in yeast (Fig. 8c). Forcing nucleosome loss from DNA led to enhanced chromatin mobility, unfolded chromatin and increased fiber flexibility (Fig. 8c). This directly linked chromatin composition to physical DNA movement and placed nucleosomes at the basis of damage-related mobility. Notably, this result contradicts an earlier report where transcriptional shutdown of histone H3 was found to decrease locus mobility (Verdaasdonk, Vasquez et al. 2013). The difference may reflect that enhanced chromatin flexibility requires the loss of both H3 and H4. Another explanation might be that the prolonged H3 repression workflow used by Verdaasdonk et al. caused an extended G2 cell cycle arrest and apoptosis even before data

Figure 8 Concepts of local and global chromatin mobility in response to DNA damage. (a) Recapitulation of DSB mobility. For detailed information see Fig. 4. (b) Model for global chromatin mobility. Zeocin is used to induce random DSBs and SSBs to the genome. This damage activates the key DDR kinase Mec1. Mec1 targets checkpoint proteins Rad9 and Rad53. Furthermore, it phosphorylates subunits of the chromatin remodeling complex INO80. Non-damaged loci in this scenario will be four times more mobile as compared to the undamaged condition. This global increase in chromatin movement requires Mec1, Rad53 and the INO80-C complex. Both the checkpoint and INO80-C trigger proteasome dependent degradation of core histones in response to DNA damage. This decompacts chromatin, enhances global mobility and facilitates repair. The impact of forced histone reductions is highlighted in blue. (c) Mechanisms which are thought to be at play in chromatin upon DNA damage.
acquisition. Furthermore, it was shown that H4 (but not H3) shutdown lead to a declustering of kinetochores (Bouck and Bloom 2007). Yet, another report by the Durocher group has recently postulated a release of chromosomal tethers around the centromere as the source of both altered local as well as global chromatin mobility (Strecker, Gupta et al. 2016). The authors identified Cep3, an inner kinetochore protein in yeast, as a target of the DDC kinase Rad53 and showed that damage-induced phosphorylation of Cep3 triggers a release of centromeres from their SPB tether. This was proposed to generally promote chromatin movement in response to damage, an effect that seem to be abrogated in a phospho-dead (S575A) Cep3 mutant. Strikingly, the cep3-S575A mutation had no effect on repair by homologous recombination which would suggest that chromatin mobility is dispensable for repair (Strecker, Gupta et al. 2016). These effects, however, cannot account for the expansion of non-centromeric chromatin or for the INO80-C dependencies observed in our study. Therefore, two independent hypotheses on how DNA damage increases chromatin movement exist: either through centromere declustering or through a change in chromatin fiber structure. Here I will discuss our current interpretation of the present data and how these hypotheses may potentially overlap.

As mentioned earlier, Bouck et al., 2007, showed that complete transcriptional shutdown of H4 leads to kinetochore declustering. Therefore, the observed mobility increase in our NHP6 deletion or the artificial transcriptional histone gene repression strains may arise not from a genome-wide loss of histones but rather a coincident loss of histone-H3 like centromere protein Cse4 at yeast centromeres. This raises the question whether damage-dependent histone loss is a cause or consequence to centromere declustering? An unpublished study from the Gasser laboratory currently addresses this question (Anais Cheblar & Andrew Seeber, personal communication). In this work, NHP6 deletions were used to lower nucleosome occupancy in yeast cells containing a fluorescently tagged version of the essential kinetochore protein Mtw1 in combination with a tagged nuclear pore protein (Nup49). Both the nuclear position of Mtw1 as well as Mtw1 declustering (as in Strecker et al., 2016) was scored in either G1 or G2/M cells. Similar experiments were done after Zeocin treatment. Importantly, the microtubule poison Nocodazole was used as a positive control for kinetochore detachment (Bystricky, Heun et al. 2004). Surprisingly, neither kinetochore declustering nor detachment was observed in nhp6Δ cells or upon Zeocin treatment in either cell cycle stage. As expected, Nocodazole treatment led to kinetochore detachment. This contradicts the data from Strecker et al. and unambiguously shows that kinetochore declustering is not induced by DNA damage or in nhp6Δ. Furthermore, Amitai et al. found that the actin cytoskeleton impacts chromatin mobility through actin-driven nuclear oscillations which can be removed by treating cells with the actin polymerization inhibitor Latrunculin A. These oscillations were not required for enhancing the
mobility of a DSB. Therefore, it appears that DNA damage induced chromatin mobility is a result of direct changes to the chromatin fiber involving the INO80 complex.

Chromatome proteomics – a method to measure chromatin-wide protein abundances in yeast

Chromatin is a “fuzzy organelle” and subject to constant changes. This makes it especially challenging to access dynamic changes in protein abundances and modifications. Two recent mass spectrometry techniques were used to crosslink, purify and quantitatively analyze chromatin from mammalian cells (Kustatscher, Hegarat et al. 2014, Paul Ginno & Dirk Schübeler - unpublished results). In Chapter 5, we have compared and modified these techniques and adapted them for chromatome analysis in yeast. During the course of this study, we found that CsCl gradient-based purification of chromatin from crosslinked cells is incompatible with yeast. It did not enrich chromatin-related proteins other than histones. We thus further tested four different workflows for successful chromatin enrichment. Out of these four, pre-fractionating chromatin from yeast cells before crosslinking and combined with subsequent washes urea washes performed best. It showed the highest amount of chromatin enrichment and the lowest amount of cytoplasmic protein contamination. We found that urea wash steps probably caused slightly higher variation within replicates, but was nevertheless essential to reduce non-specifically bound proteins. Purifying pre-fractionated chromatin over CsCl gradients showed comparable result. However, we do not recommend this technique because sample preparation times are substantially longer (up to five days as compared to two). We therefore recommend the “pre-fractionation, urea wash” workflow to address the chromatome in yeast. Coupled with TMT based labeling of peptides, up to nine different conditions can be quantified in parallel (multiplexed).

Future directions

In Chapter 4, I have shown that INO80-C plays a major role in damage-induced histone degradation. This is not surprising as the Ies3 and Ies4 subunits of INO80-C are targets of the Rad53 DDC checkpoint kinase and phosphorylated in response to DNA damage (Morrison, Kim et al. 2007). We further showed that histones were largely degraded by the proteasome. This suggests that histones need to be targeted for degradation by ubiquitination. Interestingly, INO80 was recently shown to interact with CDC48, an AAA+ ATPase involved in proteasome-dependent protein degradation (Lafon, Taranum et al. 2015). Moreover, both the DDC kinase Mec1 and INO80-C are linked to RNA polymerase II eviction at sites of replication fork–transcription collision, another process which most probably requires ubiquitin-mediated protein degradation (Poli, Gerhold et al. 2016). However, it remains to clarify what triggers histone degradation in yeast and how this process is related to the DDR. To answer this question, it would be interesting to
monitor histone PTMs before and after DNA and in damage in the absence and presence of proteasomal inhibition. This could be achieved by combining MS based chromatome measurements (described in Chapter 5) with histone PTM profiling. Given the involvement of the proteasome, we expect histones to acquire ubiquitination. In a simpler approach, histones could be first immunoprecipitated and subsequently investigated for ubiquitin-related upshifts on immunoblots. The Gunjan laboratory has recently identified multiple E2 and E3 ubiquitin-conjugating enzymes that regulate the degradation of excess histone levels in yeast (Singh, Kabbaj et al. 2009, Singh, Gonzalez et al. 2012). It is of interest to test the involvement of these enzymes in the damage-dependent histone degradation pathway.

Using genome-wide nucleosome mapping, we identified a global reduction in nucleosome occupancy in response to DNA damage induced with Zeocin (Chapter 4). Up to now, we could not link this depletion to any structural elements or genomic regions such as centromeres or telomeres. As nucleosome occupancy equally dropped in high and low-level transcribed genes, this effect was independent from gene transcription. It would be interesting to determine the role of INO80 in this process and further examine whether nucleosomes are preferentially lost at INO80-binding sites and/or at genes which are activated in response to DNA damage. To this end, ChIP-sequencing could be used to identify INO80-C binding sites before and after Zeocin treatment. These sites could then be correlated to genome-wide nucleosome positioning data in WT and INO80-C mutant cells in the absence or presence of DNA damage. Finally, there is no study which addressed global transcriptional changes in response to Zeocin treatment. Therefore, RNA sequencing experiments would have to be done to correlate histone loss with gene transcription.

Using mass spectrometry and nucleosome mapping, we showed that core histones are degraded and lost from chromatin generally, i.e. genome-wide. However, it is not clear whether local histone loss at Zeocin-induced SSBs and DSBs could have contributed to this effect. There is the possibility that the global effect could just reflect the accumulation of random local losses in the cell population. This raised the question whether the damage checkpoint triggers a truly global nucleosome loss. Notably, we found that depletion of the exonuclease Exo1 did not inhibit nucleosome loss. This excluded a role of local DSB resection. Furthermore, calculating the amount of resected DNA at 10 DSBs (approximate number of breaks caused by the Zeocin concentrations used) within one hour after damage at a resection speed of 5 kb/h (Saad, Gallardo et al. 2014) could only account for 0.8% of the genome (100 kb). As we observed core histone losses of 20-30%, this provided another reason to neglect the effect of resection during global histone loss. However, probing nucleosome occupancy in response to artificial DDC activation (Bonilla, Melo et al. 2008) in the absence of DNA damage could provide definitive proof. To this end, multiple
DSBs could be induced away from bulk chromatin by galactose-driven I-SceI cuts on a 2µ plasmid. Each cell harbors up to 150 copies of such plasmids and I-SceI induction should thus trigger a strong checkpoint response without introducing actual damage to chromatin. Genome-wide nucleosome mapping could then be used to specifically address nucleosome occupancy along chromosomes. Furthermore, it is tempting to couple such experiments with the proteomic approach discussed in Chapter 5.

In Chapter 4, we have shown that histone loss brought about by NHP6 deletion or by transcriptional repression of histone genes, is sufficient to increase the rate of gene targeting, presumably by making chromatin more accessible. Similar to our results, work from the Bianchi laboratory showed that depletion of HMGB1 (the human homologue to Nhp6) equally triggers histone loss, reduced nucleosome occupancy and increased chromatin accessibility (Celona, Weiner et al. 2011). HMGB1 and Nhp6 belong to the family of high mobility group proteins which are found abundantly on chromatin where they bind to the minor groove of DNA (Malarkey and Churchill 2012). Recent biochemical studies complement our work and show that nucleosomes constrain the activity of CRISPR-Cas9 (Horlbeck, Witkowsky et al. 2016, Isaac, Jiang et al. 2016) which requires access to naked DNA to make its guide-RNA-directed cut (Jinek, East et al. 2013). This suggests that chromatin accessibility is a rate-limiting step for CRISPR-Cas9 related gene editing technologies and that its efficiency might be enhanced in a manner similar to the one we used in yeast. It is thus of interest to test whether artificially reducing nucleosome levels in mammalian cells would increase CRIPR-Cas9 cutting and gene editing rates. This is of special interest as the efficiency of gene editing by HR remains poor and the major challenge to overcome for many practical applications of CRISPR-Cas9 editing (Mali, Yang et al. 2013, Wang, Yang et al. 2013, Chu, Weber et al. 2015, Maruyama, Dougan et al. 2015). A number of molecules exist that bind to and block HMGB1 function such as the anti-inflammatory drug Glycyrrhizin (Mollica, De Marchis et al. 2007) (Fig. 9a). We now obtained initial indications that treating either yeast or human cells with this HMGB1 antagonist is sufficient to decrease histone levels in a dose dependent manner (Fig. 9b-e). Together with Andrew Seeber and Susan Gasser, I now plan to move on with expanding our previous work from yeast to human cells and test whether more accessible DNA increases the efficiency of CRISPR-Cas9 gene editing.

As mentioned in the introduction, the Neefjes laboratory showed that the chemotherapeutic agent doxorubicin caused histone eviction from open chromatin and contributed to chemotherapeutic effects (Pang, Qiao et al. 2013). Similar to HMGB1, doxorubicin binds to the minor groove of DNA (Frederick, Williams et al. 1990) where it is likely to compete for histone binding (Pang, Qiao et al. 2013). This raises...
the idea of testing small molecules which can sterically antagonize HMGB1 in chemotherapeutic combination treatments.

Last, but not least, it should not be forgotten, that controlled histone proteolysis has additional roles in a variety of cellular processes including developmental transitions, spermatogenesis, the immune response and neuronal plasticity (Maze, Wenderski et al. 2015). An interesting article by Dhaenens et recently summarized these facts and put an end to the “step-motherly fashion” by which histone proteolysis had “consistently been treated by the scientific community” (Dhaenens, Glibert et al. 2015).

![Chemical structure of Glycyrrhizin](image)

Figure 9 Glycyrrhizin induces histone loss in yeast and human cells. (a) Structure of HMGB1 antagonist, Glycyrrhizin, showing the sugar moiety and the triterpene ring. (b) HMGB1 binds to the minor groove of DNA. Molecular modelling indicates that the triterpene ring is important for antagonism of HMGB1 (Mollica, De Marchis et al. 2007). (c) Immunoblot blot of whole protein content extracted from S. cerevisiae cells after treatment with Glycyrrhizin. (d) Groth curve of WT yeast treated with increasing amounts of Glycyrrhizin. No change is seen upon Glycyrrhizin treatment. (e) Immunoblots showing H3 and H4 levels in whole cell extracts from HEK293T cells treated with increasing concentrations of Glycyrrhizin dissolved in DMSO or DMSO alone. Interestingly, no checkpoint activation is seen in response to Glycyrrhizin treatment (pATM).
References

List of abbreviations

53BP1: p53 binding protein 1, a critical DSB repair protein that antagonizes DNA end resection to promote repair by non-homologous end joining and plays a critical role in the DNA damage checkpoint

alt-NHEJ: alternative non-homologous end joining, a mutagenic pathway in which previously resected DNA ends are ligated together, also called microhomology-mediated NHEJ (MM-NHEJ)

ATR: ataxia telangiectasia and Rad3-related protein, a critical protein kinase in the DNA damage response pathway. Mec1 in S. cerevisiae.

D-loop: displacement loop, the DNA structure caused by strand invasion that displaces one strand of the duplex DNA that serves as the template for HR

DSB: DNA double-strand break, a DNA lesion in which both strands of DNA are broken

HC: heterochromatin, highly condensed, and predominantly repetitive and transcriptionally repressed chromatin region that reside at the nuclear periphery and/or in intranuclear depots.

HP1: heterochromatin protein 1, a chromodomain-containing protein that associates with heterochromatin

HR: homologous recombination, a major pathway of DSB repair that requires a homologous template

IR: ionizing radiation consisting of particles, X-rays, or gamma rays with sufficient energy to cause ionization in the medium through which it passes.

KASH: Klarsicht/Anc-1/Syne1 homology, a family of orthologous tail-anchored outer nuclear membrane proteins that make up the cytoplasmic aspect of the LINC complex

LINC complex: linker of nucleoskeleton and cytoskeleton, a complex of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins that spans the nuclear envelope

LOH: loss of heterozygosity

MRX(N): Mre11-Rad50-Xrs2 (Nbs1 in mammals) complex, important for DSB repair and stabilization of stalled replication forks

MSD: mean squared displacement

NHEJ: non-homologous end joining, a major pathway of DSB repair that involves direct ligation of the DSB

NPC: nuclear pore complex, the massive protein complex that stabilizes nuclear pores and controls the bidirectional traffic of macromolecules in and out of the nucleus

NORs: nucleolar organization regions, the regions of the genome that give rise to nucleoli, later established as being the rDNA
OB fold: oligonucleotide binding fold.

rDNA: ribosomal DNA, the repetitive region of the genome that is composed of repeats of the genes encoding the ribosomal rRNA subunits. It resides in the nucleolus.

R-loops: an R-loop is a three-stranded nucleic acid structure, composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (ssDNA).

rRNA: the RNAs produced from the rDNA that make up the bulk of the ribosomes.

RPA: replication protein A, a trimeric (Rfa1,2,3) complex that binds ssDNA, coating it during replication and DNA repair and acting as a major protein recruitment scaffold.

SDSA: synthesis-dependent strand annealing, a template-dependent repair mechanism that proceeds without Holliday junction intermediates and leads to non-crossover products.

SMC5/6: a cohesin-related protein complex important for genome integrity, linked to SUMOylation activity.

SSA: single-strand annealing, a template-independent (but homology-dependent) repair mechanism in which the copy number of tandem repeats can be reduced after DSB resection.

ssDNA: single-strand DNA

STUbL: SUMO-targeted ubiquitin ligase, a family of proteins that induce ubiquitination of target proteins and require prior SUMOylation.

SUMO: small ubiquitin-like modifier, a small protein that can be conjugated to lysine residues on target proteins.

SUN: Sad1/Unc84, a family of orthologous integral inner nuclear membrane proteins that make up the nuclear aspect of the LINC complex.

TRF2: telomere repeat (binding) factor, a component of the shelterin complex that protects chromosome ends.
Non-thesis related contributions

This is a summary of contributions that I made during my PhD to other bodies of work not directly related to my thesis. Where necessary I state my contribution.

Peer-reviewed Publications

Horigome showed that the Htz1 incorporation by SWR1 shifts DSBs to the nuclear periphery. In this work, I was investigating whether direct SWR1 targeting via Arp6-LexA fusion proteins would impact chromatin mobility (Fig. 4).

Before I joined Susan Gasser’s laboratory, I was working together with Martin Jinek (now Prof. at the University of Zuerich, Switzerland) in Jennifer Doudnas lab in Berkeley (in 2011). During this time, I initiated the biochemical characterization and crystallization of the Cas9 protein (at that time called Csn1) which is now used in the CRISPR/Cas9 genome editing system.

Patent

“Methods for increasing the frequency of gene targeting by chromatin modification”

Inventors: Hauer, M., Seeber, A. and Gasser, S.M.,

ACKNOWLEDGEMENTS

First of all, I want to thank Susan Gasser for the guidance and the support throughout my time in her laboratory. I have learned a lot! I am grateful for the fruitful discussions in each of my PhD committee meetings and want to thank all members of my committee. Tom Owen-Hughes (my co-referee), Carl Wu, Dirk Schübeler and Kenji Shimada. I especially thank Tom and Vijender Sighn for our collaboration and the dedication in pushing my project forward. I also thank Nancy Hynes for chairing my PhD thesis defense. Many thanks also go to my external collaborators David Holcman and Assaf Amitai.

During my time as a PhD student in Susan Gasser’s laboratory, I was working together with a lot of very talented and helpful colleagues. The beginning of my PhD studies would have been a lot rougher without Vincent Dion and Helder Ferreira. I thank you both for the guidance, tips, tricks and discussions. A big “thank you” also goes to Andrew Seeber. We collaborated closely, discussed regularly, climbed to the highs, fell to the downs and will be tied to each other for some more time in the future. Thanks Andrew. Especial thanks also go to Mariya Kryzhanovska, an unusually talented master student.

I want to express my gratitude to Monika Tsai, Veronique Kalck and Razel Arpagaus. Without your support, my PhD would have probably been twice as long. Many thanks also go to the whole Gasser Laboratory – past and current. Without you guys, daily work, coffee breaks and all the other things would not have been the same.

The FMI microscopy and the FMI protein analysis facilities have been essential to my PhD research. Without the help, input and experience of Laurent Gelman, Steve Bourke, Ragna Sack, Jan Seebacher and Daniel Hess, it would have been a lot more difficult or even impossible to pursue the questions I was asking. Especial, image-analysis-thank-you-very-muches go to Raphael Thierry and Jan Eglinger. I want to thank all the other groups in the FMI for supplying me with advice and material.

Finally, and saving the most important “thank-you’s” and hugs for last: Thank you Jenia & Leo. Thank you for your love, the support and the strength I find in the both of you (soon the three of you). I am grateful for the constant support from my parents Monika and Hermann.