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Introduction

One investigates physical systems by looking at them or by inquiring them. If
finding the right questions is craft, then having the most enriching dialog with
nature is art. On their path to becoming artists, scientists need first to imagine
and create tools that convey the words of nature. And so have we tried, too, to
make a chat room for nanoscale objects and to invite them to talk. This room
is a microwave setup, a cryostat, where quietness emerges at low temperatures.
My role was to have them listen and talk back by way of an impedance-matching
resonator. So questions started being asked, as you may expect, and even ended
answered, as you may hope. Until the moment we began to ask not for the
sake of a response, that did keep coming, but... for the mumbling sound that
always accompanies answers. It is unusual to engage in conversation not for the
exchanged words, but for the murmur that tickles our ears. Still, we diverged from
our way to artistic consecration and looked for noise. We persistently formulated
questions with gate and bias voltages, yet the current noise was our interest.
Why so? Were we searching a hardly whispered coded message? Was not all said
in loudly spoken current? In our defense, we don’t mistrust the current message,
but hoped for more. It resonated out and here it is.

Before presenting our findings, let me come back to a more common language
style in our scientific community. The marriage of microwave circuitry and quan-
tum devices has seen a consistently growing interest during the last decade, ow-
ing to the emergence of a promising field: the quantum computer with super-
conducting qubits [1], commonly called circuit quantum electrodynamics (cQED).
Inflamed by a seminal proof of concept in 2004 [2], at the bottom of the field stays
an older, Nobel-prized research domain: cavity quantum electrodynamics. In this
foundational domain, qubits (physical systems able to hold each a superposition
of two states, denoted by 0 and 1) were made out of atoms, in an optical cavity
[3]. This initial research domain spawned into its microwave version, cQED, in
which (i) cavities are wave-bearing transmission lines with capacitive couplings
(mirrors) at their ends and (ii) atoms are several-state quantum devices.

Not only superconducting qubit control, but also readout of very resistive quan-
tum devices needs microwave resonators, operating at frequencies in the range of
1−10 GHz. To efficiently measure radiation emitted from a device, one attempts
to couple the high device impedance to the Z0 = 50 Ω characteristic impedance
of the usual coaxial lines using an impedance-matching circuit. These circuits are
often implemented with superconducting on-chip transmission lines. Examples
include the quarter-wavelength step transformer in the fluxonium qubit [4], stub
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Introduction

tuners for quantum point contacts [5] and quantum dots [6, 7]. An alternative
approach makes use of an LC resonator built either from a lumped element in-
ductor [8] or form on-chip coils [9]. Nonetheless, the resonance frequencies have
typically been limited to a maximum of ∼1 GHz [10–12].

This thesis continues the work carried out in our group in terms of microwave
measurements of quantum devices [13, 14], with stress now on superconducting
lumped resonators as impedance transformers, instead of the distributed, rela-
tively large stub tuners. Addressing here the compactness of GHz resonators, we
fabricate 200-µm-wide on-chip superconducting coils with wire-bonded bridges
and utilize them as lumped LC matching circuits in a carbon nanotube quan-
tum dot noise experiment. Compared to the previously reported case of on-chip
inductor with bonded bridge [11, 15], we achieved a threefold frequency increase
with a similar footprint decrease. Our results are equally important in cQED:
When aiming quantum supremacy (the character of a computer to solve in linear
times problems that even the best classical-bit-manipulating algorithm solves
in exponential times) and error-correcting redundancy, the number of needed
qubits rapidly increase. Yet, microwave cavities are mm-long, making hard to so
many qubits to share the limited volume of a cryostat. Therefore, great interest
resides in replacing transmission line resonators by lumped-element resonators.
Comparable compactness to that of our LC circuit has been achieved only with
Josephson junction arrays acting as quarter-wavelength resonators [16, 17].

The overlap continues in more ways: Due to the larger bandwidth exhibited by
LC-like resonators, readout times decrease significantly, and this is beneficial to
qubits, too. Moreover, to ensure high fields in the region where such resonators
couple with the quantum device [18], efforts were made to increase their char-
acteristic impedance [17]. An attractive finding of our work is the fit-supported
validation of a lumped-resonator version in which the inductance is boosted, and
with it the characteristic impedance.

The second direction of this thesis is a deeper GHz-noise-based investigation
of transport phenomena in quantum dots. Distinct from what the qubit-focused
measurements, our noise measurements are based on the idea that noise can be
the signal [19]. The noise data triggered analyses of features that are potential
projections of quantum transport phenomena.

Electrical transport and noise phenomena in quantum dots (QDs) have been
studied in experimental [20–24] and theoretical works [25–28]. Theory has shown
that in single-level QDs the Pauli exclusion principle and the repulsive Coulomb
interaction result in anti-bunching [25–28]. However, occupation dynamics in
multi-level QDs can give rise to bunching, and correspondingly, super-Poissonian
noise [29–32]. The electron transport in an interacting two-level system is a
telegraphic process if the tunnel couplings of one level are much stronger than
of the other [31, 32]. This system supports a high current through the strongly
coupled level, which is strongly reduced for random intervals when the weakly
coupled level is filled. The electrons transferred in the highly conducting state
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Introduction

form bunches and result in enhanced noise. Recently, noise measurements have
been applied to probe the correlations induced by the many-body Kondo effect
[24]. It has been demonstrated that the increased effective charge results in
enhanced shot noise.

In general, such a state in which the QD can be trapped, thus blocking the
current, is referred to as a blocking state [33]. We investigate blocking states
through conductance and noise spectroscopy in CNT QDs. Different blocking-
state pictures were identified under their enhanced-noise signature. A distinction
is made between augmented noise and negative differential conductance. The
studies were convincingly supported by numerical simulations.

At last, surprisingly, these analyses improved in our circles the understanding
of the quantum dot language, that still misleadingly refers to chemical potential
levels with the term state instead of transition between states [34].

This thesis has the following structure: Chapter 1 introduces the reader to
microwave theory and details practical aspects of rf1-circuit design, like signal
flow graphs Chapter 2 presents the basic physics of carbon nanotubes, then treats
transport in quantum dots, from Coulomb diamonds to the interplay of cotunnel-
ing and sequential tunneling. This is also where quantum dot transport language
is clarified. Chapter 3 gives the formal definitions of noise spectral densities
and points to different limits of the current noise. Telegraphic transport, later
employed in our noise interpretations, is shortly developed. Chapter 4 exhibits
design and fabrication methods specific to microwave lumped resonators. The
measurement setup is briefly exposed. Chapter 5 presents the data and the
calibration methods. An alternative LC-like model is presented and validated
together with a standing-wave pattern removal method. Chapter 6 is the pièce
de résistance of our noise and conductance analysis. It identifies and confirms
by numerical simulations blocking states that lead to enhanced-noise transport
phenomena. At the end, chapter 7 uses the conclusions of the previous chapter
to explain cotunneling-assisted sequential tunneling outside Coulomb diamonds.

1rf = radio frequencies, i.e. 20 kHz – 300 GHz. The microwave spectrum is usually considered
to contain the rf frequencies above 300 MHz.
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1 Microwave Theory

Microwaves (MWs) represent electromagnetic radiation with wavelengths be-
tween 100 cm and 0.1 cm. In terms of frequencies, this range corresponds, in
vacuum or air, to 300 MHz – 300 GHz. In an electric circuit, alternating current
at such a frequency can also be seen as a wave and thus specific phenomena such
as propagation and reflection are present. The wave effects can be ignored when
the length scale of the circuit is much smaller than the involved MW wavelength.
However, when the circuit size is comparable to the MW wavelength, the usual
methods of circuit analysis (precisely, those approaches based on decomposing
the circuit in lumped elements) are not effective anymore. One should apply
instead the MW circuit theory [35, 36].

1.1. Transmission lines

For the purpose of presenting the manifestation of wave phenomena in circuits, a
uniform line or cable comparable to the wavelength of the ac signal it transports
is a simple object to start with. Such a line, called transmission line, can be
modeled as a ladder network made of identical infinitesimal cells of length dz,
comprising an element impedance dZ and an element shunt admittance dY , see
fig. 1.1.

Z
in

dZ dZ

dz

dY dY dY

dZ

dz dz

Figure 1.1. A distributed network models well uniform lines, because any infinitesimal
segment dz of the line is characterized by an element impedance dZ and an
element shunt admittance dY to a reference plane, i.e. ground.

Voltage and current equations can be written for an element cell of the trans-
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1. Microwave Theory

mission line, see fig. 1.2:

dZ

-dv

v(z)

i(z) -di i(z+dz)

v(z+dz)

dY

dz
z

Figure 1.2. Each infinitesimal element of a transmission line produces a voltage reduc-
tion, dv < 0, and a current leak, di < 0.

−dv = i(z)dZ, (1.1a)

−di = v(z + dz)dY, (1.1b)

reformulated as:

−dv

dz
= i(z)

dZ

dz
, (1.2a)

− di

dz
= v(z)

dY

dz
. (1.2b)

1.1.1. The telegraph equations

Eqs. 1.2a, 1.2b can be processed further, by differentiating (d/dz) each of them
and substituting the simple derivative from the other. This way, we obtain wave
equations for v(z) and i(z), commonly referred to as the telegraph equations:

d2v

dz2
= γ2 · v(z),

d2i

dz2
= γ2 · i(z),

(1.3a)

(1.3b)

with γ =
√

dZ
dz

· dY
dz

the complex propagation constant for v and i.
Assuming sinusoidal steady-state conditions, one can specify dZ = dR+jω ·dL

and dY = dG+jω ·dC, where ω is the angular frequency of the excitation applied

1
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1. Microwave Theory

at one end of the line and dR, dL, dG, dC are the resistance, the impedance, the
shunt conductance, and the shunt capacitance of the infinitesimal segment trans-
mission line. Notating per-unit-length quantities by the corresponding cursive
letter, i.e. Q ≡ dQ

dz
for any quantity Q, the propagation constant reads:

γ =
√

ZY =
√

(R + jωL)(G + jωC). (1.4)

The solutions of the telegraph equations, 1.3a and 1.3b, are:

v(z) = v+(0)e−γz + v−(0)eγz, (1.5a)

i(z) = i+(0)e−γz + i−(0)eγz. (1.5b)

Therefore, the voltage along the line, v(z), is a superposition of a forward wave,
v+(0)e−γz, and a backward wave, v−(0)eγz. Similarly for the current along the
line, i(z).

The relation between the current and the voltage waves can be extracted by
introducing eq. 1.3a in eq. 1.2a: i(z)Z = γ[v+(0)e−γz − v−(0)eγz], rewritten as:

i(z) =
v+(0)

Z0
e−γz − v−(0)

Z0
eγz, (1.6)

where

Z0 ≡
√

Z
Y , (1.7)

called the characteristic impedance, would actually be the impedance of the line
if it were semi-infinite. Indeed, if the forward wave never reached the line end in
order to reflect and give birth to a backward wave, then Z0 = v+(0)/i+(0) would
correspond to the impedance of that endless line.

The time-dependent solutions of the telegraph equations easily emerge from the
boundary condition v±(z = 0, t) = V ±

0 ejωt. Hence, eqs. 1.5a, 1.6 are generalized
to:

v(z, t) = V +
0 e−αzej(ωt−βz) + V −

0 e−α(−z)ej(ωt+βz),

i(z, t) =
V +

0

Z0
e−αzej(ωt−βz) − V −

0

Z0
e−α(−z)ej(ωt+βz),

(1.8a)

(1.8b)

where α = ℜ{γ} and β = ℑ{γ}. Physically, α is the attenuation constant (in
both propagation directions) and β the wave number. The speed of the waves
is found if considering the movement of a fixed-phase point, i.e. d

dt
(ωt ∓ βz) =

0. Therefore, both the forward and the backward waves travel at a velocity of
absolute value:

|c| =
ω

β
. (1.9)

1
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1. Microwave Theory

1.1.2. The lossless line

An ideal transmission line has no energy losses: R = 0 and G = 0. One conse-
quence is that the propagation constant is imaginary:

γ = jω
√

LC. (1.10)

It follows that attenuation constant is null, α ≡ ℜ{γ} = 0, and the wave number
is β ≡ ℑ{γ} = ω

√
LC. Substituting in eq. 1.9, one explicitly gets the wave

velocity:

|c| =
1√
LC

. (1.11)

Another consequence that the characteristic impedance (eq. 1.7) is real:

Z0 =

√

L
C . (1.12)

We remind that the impedance of a semi-infinite transmission line is equal to the
characteristic impedance, Zin = Z0. Therefore, a semi-infinite lossless line has a
real impedance. We know however that a real impedance is synonym to losses!
The apparent paradox is explained by the fact that, although no energy is lost
on the way, the current wave conveys energy to infinity. In other words, the loss
occurs at z → ∞.

1.1.3. Wave reflections in transmission lines

Having showed the presence of both forward and backward waves in transmission
lines, we want to investigate quantitatively how reflections produce backward
waves. Intuition can tell us that, like in optics, reflections should occur where
the transmission medium ends. We have already used the physical argument that
endless (semi-infinite) lines do not exhibit reflections. Here, we investigate what
happens at end of the finite transmission line.

Let us terminate a line with an impedance, ZL, that we call load. Fixing the
axis origin, z = 0, at the interface between the line and the load (see fig. 1.3),
one can relate the interface voltage and the current by the relation:

v(0) = ZL · i(0).

With v and i provided by equations . 1.8a, 1.8b, we obtain:

V +
0 + V −

0 =
ZL

Z0
(V +

0 − V −
0 ),

reformulated as
V −

0

V +
0

=
ZL − Z0

ZL + Z0
. (1.13)

1
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1. Microwave Theory

Z
L

Z
0

z = 0

v(0)

i(0)

z = -l

Z
in

Figure 1.3. Transmission line terminated with a load impedance ZL. The hashed part
represents ground. Z0 is the characteristic impedance of the line.

We now define the reflection coefficient in a point of the transmission line as the
amplitude of the reflected voltage wave relative to the amplitude of the forward
voltage wave, Γ ≡ V −/V +. The previous equation implies:

ΓL =
ZL − Z0

ZL + Z0
. (1.14)

This means that, at the interface of a transmission line, called TL0, with another
circuit element, reflections are generated and their relative strength is given by
the total impedance seen from the line side into the interface, ZL. Here are some
applied situations:

• If the transmission line is open at the end, ZL = ∞, then ΓL = 1. In words,
a total reflection occurs.

• If the transmission line is shorted (grounded) at the end, ZL = 0, then
ΓL = −1. This is a total reflection with a phase change of π.

• If the transmission line is terminated with an impedance equal to Z0, then
no reflection occurs: ΓL = 0. This is equivalent to extending the transmis-
sion line to infinity.

• If the load is another transmission line, of characteristic impedance Z1, one
could still apply eq. 1.14:

– If the load transmission line is semi-infinite, then we know that ZL =
Z1 and the reflection coefficient can be immediately calculated as ΓL =
Γ1 ≡ (Z1 − Z0)/(Z1 + Z0).

– We get the same result if the load transmission line is terminated in
Z1.

– If the load transmission line (TL1) is terminated in some impedance
different from Z1, then the ends of TL1 will act as two mirrors. At the
beginning, there is only a forward wave in TL1 and the wave reflected

1
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1. Microwave Theory

impedance

matcher
Z
S

Z
L

Z
in

impedance

matcher
Z
0

Z
L

Z
in

Z0

(a) (b)

Figure 1.4. (a) An impedance matcher, together with a load ZL, has an impedance
Zin = ZS. (b) In series with a source impedance Z0, a transmission line (of
characteristic impedance Z0) is seen from right as a semi-infinite transmission
line. The only possible reflections appear at its interface with a load. No reflec-
tions occur when the appropriate impedance matcher is placed in between, i.e.
Zin = Z0.

into TL0 is described by Γ1. Later, the backward wave in TL1 reaches
TL0 and partially passes into TL0, strengthening Γ1; it also partially
stays in TL1, as an extra forward wave. So on and so forth, waves
arriving at the termination of TL1 are reflected, reach later TL0 and
partially pass into TL0, further enforcing the backward wave in TL0.
Therefore, when loading with a terminated transmission line, ΓL ≥ Γ1.

1.2. Impedance matching

In microwave circuitry, the lines which connect different elements are modeled
as transmission lines. Reflections at their ends decrease the power transferred
between elements. In order to minimize reflections and thus maximize the power
transfer, special objects are inserted between transmission line ends and circuit
elements, such that the impedance perceived by the ends of the transmission
lines be equal to their characteristic impedance. These objects are interchange-
ably called impedance transformers, impedance matchers, impedance-matching
networks or impedance-matching circuits.

In the previous section, we have already met the simplest impedance matcher
(fig. 1.3): a Z0 impedance between a short to ground (0 Ω) and a transmission
line of characteristic impedance Z0. One can easily calculate that this component
increases from 0 to 100% the power transfer.

By definition, an impedance matcher transforms a given load impedance ZL

into the source impedance, ZS. This concept is suggested by fig. 1.4.

1.2.1. LC matching networks

Simple, yet effective, impedance matchers are the so-called LC matching net-
works. Two common declinations are presented in fig. 1.5.

Because we are interested in highly ohmic loads, let us analyze the circuit in

1
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1. Microwave Theory

R
L

(a) (b)L

C R
L

L

C

Z
in

Z
in

Figure 1.5. Some LC matching networks. (a) The source is less resistive than the load:
RS = Zin < RL. (b) The source is more resistive than the load: RS = Zin > RL.

fig. 1.5a. If RS is the resistance of the source as presented in fig. 1.4, then the
matching condition is: RS = Zin, with Zin expressed as iωL + 1/(R−1

L + iωC).
The imaginary part of the equality, 0 = ℑ{Zin}, reveals the frequency for which
matching occurs:

ωr = ω0

√

1 − Q−2
L . (1.15)

Here, we use the notations ω0 = 1/
√

LC and QL = ω0CRL. If the circuit is not
loaded (RL → ∞), then ωr = ω0. QL is called the quality factor of the loaded
circuit. ω0 is the resonance angular frequency of the unloaded circuit. ωr is the
resonance angular frequency of the loaded circuit.

The real part of the impedance match condition, RS = ℜ{Zin}, together with
eq. 1.15, gives:

RSRL = Z2
c , (1.16)

where Zc ≡
√

L/C is the characteristic impedance of the LC circuit. Therefore,
this type of LC network impedance-matches a load to a source if and only if its
characteristic impedance is the geometric mean of the source and the load resis-
tances. When matching to a transmission line like in fig. 1.4b, the LC network
of characteristic impedance Zc matches the load impedance Rmatch determined
by:

Z2
c = Z0Rmatch. (1.17)

Hence, if one aims at matching a 50-Ω transmission line to a quantum device of
resistance 100 kΩ, at a 3-GHz frequency, with the above LC network (fig. 1.5a),
then L and C are easily retrieved using 1/

√
LC = ω0 ≈ ωr = 2π · 3 GHz and

L/C = 50Ω · 105Ω. The result is: L = 119 nH and C = 24 fF. One can describe
this resonator either by the calculated values of L and C or by ω0 = 2π · 3 GHz
and Zc =

√
L/C = 2.24 kΩ.

1.2.2. Feed-forward capacitance in impedance transformers

Matching a resistive load is possible also with an LC-network variant in which
a feed-forward capacitor, Cf , is added in parallel with the existing inductor, L,

1

11



1. Microwave Theory

R
L

L

C

C
f

Z
in

Figure 1.6. An LC matching network characterized and used in this thesis. It presents
a feed-forward capacitance, Cf , in parallel with the inductor L.

like in fig. 1.6. This can be the case of a spiral or cylindrical coil with inter-
turn capacitance that builds up [9, 37, 38] into an equivalent one, Cf . In this
subsection, we show that Cf acts as an inductance booster.

With Zin = 1/[(iωL)−1 + iωCf ]+1/(R−1
L + iωC), we can repeat the calculation

steps of the previous subsection, to extract the resonance frequency and the
matched load.

First, we use the imaginary part of the match condition, 0 = ℑ{Zin}. If the
circuit is not loaded, RL → ∞, then the resonance frequency is:

ω0,f =
1

√
L(C + Cf)

. (1.18)

The resonance frequency of the loaded circuit is:

ωr,f = ω0,f

√

1 − 1
R2

L

L

C
(1.19)

Let us introduce the ration χ ≡ Cf/C. With the further notations

Lf ≡ L(1 + χ) and Zc,f ≡
√

Lf

C
, (1.20)

the real part of the match condition, Z0 = ℜ{Zin}, leads to the equation:

χ +
Rmatch

Z0
=

R2
match

Z2
c,f

. (1.21)

This equation becomes:

Z0Rmatch = Z2
c,f if χ ≪ Rmatch

Z0
, (1.22)
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similar to eq. 1.17. We can now re-write, without approximations, the resonance
frequency of the unloaded circuit (eq. 1.18):

ω0,f =
1√
LfC

. (1.23)

In consequence, from the point of view of the resonance frequency and that of
the characteristic impedance, the additional capacitance, Cf , acts as a booster of
the inductance value, L → L(1 + χ), with χ = Cf/C. As a remark, if Cf = 0,
then χ = 0 and we retrieve the old values of the circuit parameters, i.e. Lf = L,
ω0,f = ω0, Zc,f = Zc.

1.3. The scattering matrix

A microwave (MW) electric circuit is composed of MW components and trans-
mission lines. Such an electric circuit is often modeled as a black box with n
ports, i.e. an n-port network. A two-port network is presented in fig. 1.7a,b. As
shown there, we associate to each port i an incident wave and a reflected one,
noted in general with ai and bi. When working with voltage waves, we use the
notations V +

i and V −
i and define the scattering matrix of the n-port network by

its elements,

Sij =
V −

i

V +
j

∣
∣
∣
∣
∣
V +

k
=0 ∀k 6=j

. (1.24)

The matrix element Sij regards ports i and j; for the remaining ports, the incident
wave is set to zero. Therefore, Sij quantifies how much signal entering port j is
transmitted at port i.

If the analyzed network is reciprocal, i.e. it behaves identically when inversing
the sense of each signal flow, then its scattering matrix is symmetric: Sij =
Sji ⇒ S = ST. Moreover, if the network is lossless, one can demonstrate that S
is unitary: SS† = ✶.

Every MW component or circuit can be graphically described by a signal flow
graph, whose arrows are labeled with scattering matrix elements. A signal flow
graph example for a two-port network appears in fig. 1.7c.

1.3.1. Modeling defects in signal flow graphs

Although MW circuits are designed such that most of the interfaces are impedance-
matched, sometimes unforeseen reflections still appear. We say that unexpected
reflections are caused by defects. If these reflections interfere with those of the
device under test (DUT), then standing waves arise between the defect and the
DUT, like in a Fabry-Pérot cavity. Hence, a standing-wave pattern will appear
in frequency-dependent measurements. Successful defect modeling can lead to

1
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useful data corrections in rf experiments, e.g. calibrations that remove spurious
standing-wave patterns.

In the following examples, an electrical distance d is assumed between the
DUT and the port to which it is connected. The effective reflection coefficient Γ
incorporates the wave traveling from the port to the DUT and back:

Γ = ΓDUT · e−i·2kd, (1.25)

with k = ω/c. Thus, d is the electrical length of the formed Fabry-Pérot cavity.

The error box

When a DUT is interfaced with a transmission line (TL), the reflection coeffi-
cient, Γ(ω), is dictated by the DUT and TL impedances (eq. 1.14). Measuring a
response with a different shape from the anticipated Γ(ω) is a defect symptom. A
simple model for such a defect is the error box, well suited for faulty connectors,
presented in fig. 1.7.

S
21

S
22

S
12

S
11

DUT

Γ
T

error

box
21 S

a
1

b
1

a
2

b
2

a
1

b
1

a
2

b
2

(a) (b) (c)

Figure 1.7. (a) Symbol for an error box. The ground, common to ports and box, in
usually not depicted. (b) The signal flow representation considers, for each port
i, an incoming wave, ai, and an outgoing wave, bi. Their ratios can be grouped
in S, the scattering matrix. (c) The scattering matrix of the error box, S, defines
the signal flow graph of the error box. Port 2 is here connected to a device under
test (DUT) that partially reflects (Γ) the signal.

Ref. [39] applies reduction rules for the signal flow graph (fig. 1.7c) in order to
obtain an adjusted relation for the reflection coefficient:

Γmeasured = S11 +
S21ΓS12

1 − S22Γ
. (1.26)

A lossless, reciprocal error box can be described by the real matrix:

S =

[
−ǫ

√
1 − ǫ2√

1 − ǫ2 −ǫ

]

, (1.27)

with |ǫ| < 1. Using it in eq. 1.26, the altered reflection coefficient reads:

Γmeasured =
−ǫ + Γ
1 − ǫΓ

. (1.28)

For ǫ = 0, the error box becomes a perfect connector—that is total, phaseless
transmission between ports—and Γmeasured = Γ.
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If such a simple model is not successful in the data analysis, it should be
replaced by a more specific one. In our case, the error box model opened the way
to the model of erroneous directional couplers.

The erroneous directional coupler

Sometimes, an entire microwave part is faulty, for instance when the impedance
of its ports is not the nominal one (50 Ω) at low temperature. The interface
with the part is then impedance-mismatched, and undesigned reflections arise
at ports. Here, we take the example of a directional coupler (fig. 1.8a). Such a
component behaves like an attenuator between input and the coupled port; the
wave reflected by the coupled port is collected at a distinct, isolated port. Its
ideal behavior, captured in the signal flow graph of fig. 1.8b, shows null internal
reflections: Sii = 0 ∀i.

Directional

coupler

2
(through port)

- 20 dB

1

4 3
(coupled

port)

(isolated

port)

(a) (b)

DUT

OUT

IN
αa

1

a
2

a
3

b
2

b
3

b
1

a
4

b
4

Γ
T

α

cc

Figure 1.8. (a) Symbol of a directional coupler. (b) The usual signal flow graph of
an ideal directional coupler, that couples an input to a device under test (DUT).
The red crosses indicate reflection-suppressing 50Ω terminations, the gray X
indicates the lack of an incident wave. Thus, in this configuration, the dashed
arrows carry no signal. c = S31 is the coupling constant and α = S21 is the
transmission constant.

Starting with only the coupling factor, c = S31, we can build the scattering
matrix of an ideal directional coupler using its unitarity:

Sideal =






0 α c 0
α 0 0 −c
c 0 0 α
0 −c α 0




 (1.29)

with |α|2 + |c|2 = 1. A power attenuation of −20 dB corresponds to |c|2 = 0.01,
thus |α| ≈ 1. The measured output of the connected directional coupler is the
product of the transmission coefficients on the signal path a1b3a3b4 in the signal
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flow graph of fig. 1.8b:
S41,connected = cΓα ≈ cΓ. (1.30)

An erroneous direction coupler with reflections at the coupled port, S33 = ǫ,
can be described in the lossless case by the scattering matrix:

S′ =






−ǫ α c 0
α ǫ 0 −c
c 0 ǫ α
0 −c α ǫ




 (1.31)

with |α|2 + |c|2 + |ǫ|2 = 1. At this point, ǫ propagates into the matrix, due to
the imposed lossless character of the hole part. The signal flow graph of this
erroneous component, connected to a device, is drawn in fig. 1.9a. The loop
present at the coupled port, 3, can be successively reduced like in fig. 1.9b,c.
Here, reductions rules were applied [39, 40].

The measured output is the product of the transmission coefficients that label
the path shown in fig. 1.9c:

S′
41,connected =

cΓα

1 − ǫΓ
≈ cΓ

1 − ǫΓ

√

1 − ǫ2, (1.32)

where we used the approximation α ≈
√

1 − ǫ2, because c2 ≈ 0. By dividing the
output by c, we obtain:

(a)

DUT

OUT

IN
αa

1

a
2

a
3

b
2

b
3

b
1

a
4

b
4

Γ
T

α
α

α

cc

(b)

(c)

c
-ε

ε

a
3

b
3

Γ

Γε

a
3

b
3

Γ

1 − ε Γ
c

Figure 1.9. (a) The signal flow graph of an erroneous directional coupler, with a device
under test connected at the coupled port. Like in fig. 1.8b, the dashed arrows
carry no signal. ǫ = S33 (in blue) characterizes the unexpected reflection, c = S31

is the coupling constant, α = S21 is the transmission constant. (b) The signal
flow graph around port 3 contains a loop. (c) Simplification of the signal flow
graph around port 3.
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• Γ in the ideal case (from eq. 1.30) or

• a function of Γ (from eq. 1.32) in the case of the faulty directional coupler:

Γmeasured ≈ Γ
1 − ǫΓ

√

1 − ǫ2 =
ΓDUT · e−i·2kd

1 − ǫΓDUT · e−i·2kd

√

1 − ǫ2. (1.33)

One can now fit the measured curve, Γmeasured(ω), with the formulas arisen
from the above defect models, namely with eq. 1.28 and eq. 1.33.
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2 Quantum Dots

Quantum dots (QDs) are objects in which charge carriers are confined in all
directions, such that their states are quantized. They are also referred to as
artificial atoms [41–44]. There are many implementations of QDs [45]. One way
to make them is to start from objects that already exhibit confinement in two
directions, such as nanowires and nanotubes. This thesis considers only carbon
nanotube quantum dots.

A single-wall carbon nanotube is a sheet of graphene, i.e. monolayer graphite,
rolled on itself such that the resulting cylinder has a nanometer-scale diameter.
The movement of electrons is confined in the transversal directions (more pre-
cisely, it is subject to periodic boundary conditions in the circumferential direc-
tion). In the longitudinal direction, electrons move freely, because the nanotube
length is usually much bigger than the diameter: L ≫ d. However, if the tube is
shorter (fig. 2.1a), effects of longitudinal confinement arise.

A multi-wall carbon nanotube is a structure of several concentric single-wall
nanotubes. We restrain ourselves to single-wall carbon nanotubes.

In a carbon nanotube quantum dot, two electrical contacts to the nanotube are
placed at a small distance (L ∼ 500 nm), in order to establish electron confine-
ment in the longitudinal direction, too—see fig. 2.1b. Not shown in the figure,
an electric gate is commonly added to the quantum dot, in order to tune its
electrochemical potential.

L L

d

confinements

S D

SiO
2

Si

QD

(a) (b)

Figure 2.1. (a) Carbon nanotube; the electron movement is confined, more strongly in
the circumferential direction and less in the longitudinal one. (b) Quantum dot
made by placing electric contacts, i.e. source (S) and drain (D), at a relatively
small distance. If doped, the entire Si layer could act as a bottom gate.
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2.1. The structure of the carbon nanotube

The properties of carbon nanotubes are derived from those of graphene and are
enriched by confinement effects.

If we do the mental exercise of unfolding a carbon nanotube, we get a sheet of
graphene (fig. 2.2a). On the unfolded circumference lies the chiral vector of the
nanotube, C = na1 +ma2. Here, a1 and a2 are the graphene lattice vectors. The
indices n and m are integers whose values determine the properties of the carbon
nanotube. For a summary of the structure parameters of the (n, m) nanotube,
see table I in [46].

As illustrated in fig. 2.2b, the band structure of graphene is gapless in the
so-called Dirac points, where the conductance and valence bands form the Dirac
cones, that describe linear energy dispersion. The Dirac points are the vector
momenta K and K′ in the reciprocal lattice (fig. 2.2c) where the valence and the
conductance bands touch. Locally, the energy dispersion writes:

E = ±~vFκ, (2.1)

with κ = k − K or κ = k − K′ and κ ≪ K. Here, vF is the Fermi velocity and
takes values around 8 × 105 m/s, both in graphene and carbon nanotubes [46].

In carbon nanotubes, the circumferential confinement imposes discrete values
for the transverse component of the momentum:

kC = (K⊥ + κ⊥)πd = 2pπ, p ∈ ❩. (2.2)

After the geometric calculation of K⊥, this equation leads to the discrete values:

κ⊥,p =
2
d

(
n − m

3
+ p
)

p ∈ ❩. (2.3)

To exemplify, fig. 2.2c shows in blue lines the spectrum of allowed chiral momenta,
κ⊥,p, for the chiral indices n = 4 and m = 2.

The Dirac points, K and K′, are possible momenta in the nanotube if n =
m mod 3, because in this case the minimal value of the |κ| is κmin

⊥ = 0. If so, the
bandstructure is gapless, therefore the nanotube is metallic (fig. 2.2d). Its first
subbands are still described by eq. 2.1.

The band structure is formed by the p-parametrized hyperbolas:

E±
p (κ‖) = ±~vF

√

κ2
‖

+ κ2
⊥,p, p ∈ ❩. (2.4)

If the Dirac point is missed by the κ⊥,p spectrum, then n−m = ±1 mod 3, hence
κmin

⊥ = 2/3d. A gap is present and the nanotube is semiconducting (fig. 2.2d).
The first set of subbands of the semiconducting nanotube are the hyperbolas:

E±(κ‖) = ±
√

~2v2
Fκ2

‖
+ E2

g/4, (2.5)
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Figure 2.2. (a) By unfolding a carbon nanotube, one obtains a sheet of graphene, i.e.
a 2D honeycomb lattice of carbon atoms. The chiral vector, C, corresponds to
the unfolded circumference. Adapted from [46], inspired by [47]. (b) The energy
band structure of graphene exhibits Dirac cones that close the gap between the
upper, conductance band and the bottom, valence band. The dispersion E(k) is
locally linear. (c) The first Brillouin zone of graphene upon which overlay, as blue
lines, the discrete chiral momenta, κ⊥, of the (n, m) = (4, 2) carbon nanotube.
(d, e) The dispersion curves, E(κ‖), of a nanotube consist of the cuts made in

a Dirac cone by the allowed chiral momenta, κ⊥. (d) The nanotube is metallic
when the chiral momentum may be null. (e) When the chiral momentum takes
only finite values, a gap is present, and the nanotube is semiconducting. Adapted
from [46].

with the energy gap Eg = 2~vFκmin
⊥ = 4~vF/3d ≈ 0.7 eV/d [nm] inversely propor-

tional to the nanotube diameter, d. One can further observe that eq. 2.3 can be
re-written here as κ⊥,p = 2(±1 + 3p)/3d with p ∈ ❩. It follows from eq. 2.4 that
the subbands of the semiconducting nanotube are the p-parametrized hyperbolas

|Ep(κ‖)| =
√

~2v2
Fκ2

‖
+ E2

g(3p ± 1)2/4, p ∈ ◆.

The equations of this section refer to free-standing carbon nanotubes, where
only chiral confinement os present. However, in a carbon nanotube with electrical
contacts (i.e. a QD) lateral confinement effects arise in addition. These effects
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are treated in the next section.

2.2. Quantum dots in CNTs: confinement energy and Coulomb

interaction

By design, carbon nanotube quantum dots have a relatively short length between
contacts, L < 1 µm, and therefore longitudinal quasimomentum, k‖, is quantized.
Indeed, the contacts can confine the charge carriers like hard walls [48], hence
the effective length of the nanotube becomes L. In this case, one can write:

k‖,s · L = sπ, s ∈ ◆ \ {0}. (2.6)

This quantization relation writes for the K valley as K‖ + κ‖,q = s π
L

. In the
particular case where K‖ can be sliced into an integer number of π/L, it results
a discrete spectrum for the parallel momenta neatly expressed as:

κ‖,q = q
π

L
q ∈ ❩. (2.7)

This is shown in fig. 2.3 with orange lines, cutting also through K (and con-
sequently K′) points1. The longitudinal-momenta spacing (i.e. the distance
between two consecutive orange cuts) is ∆κ‖ = ∆k‖ = π/L.

Of course, the cuts of the perpendicular momenta do not necessarily hit K and
K′, as implied in eq. 2.7. Nonetheless, this simplification helps the purpose of
sketching a possible energetic model of the QD.

Let us see further how the longitudinal quantization has an effect on the dis-
persion curve already depicted in fig. 2.2e. The π

L
-spaced last cuts, applied onto

the dispersion curve, impose a discrete energy spectrum (fig. 2.3b). This cor-
responds to one of the two Dirac points, e.g. K. Every level in each of the
two branches (branch degeneracy) can be filled with two electrons of different
spins (spin degeneracy). The reduced dimensions of a quantum dot enhance the
Coulomb interaction between charge carriers. If, for the sake of simplicity, we
consider each pair of two electrons in the dot amounts for an effective charging
energy, Uc, then the fourfold degeneracy2 is lifted, as in the zoom of fig. 2.3b.

The energy spectrum (eq. 2.5) in a carbon nanotube quantum dot becomes,
for the lowest conductance subband, is composed by the one-electron energies:

Eq,l = E(κ‖,q) + (Nq + l) · Uc =
√

~2v2
Fκ2

‖,q + E2
g/4 + (Nq + l) · Uc, (2.8)

1The Dirac points, K and K
′, are cut if for instance the angle drew in white is null (so-called

zigzag nanotubes, i.e. m = 0).
2A supplementary degeneracy is the valley one, K-K′, like in graphene. Magnetically lifted

in semiconducting nanotubes [46], it manifests itself in clockwise and anticlockwise move-
ment of electrons around the nanotube, resulted from same-value, opposite-sign perpen-
dicular momenta κ⊥ = ±κmin 6= 0 in K and K

′ respectively. It can also be destroyed in
valley mixing, produced by defects or contacts [49]. Otherwise, valley degeneracy brings
the total degeneracy to 23 = 8, as analyzed in [50].
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Figure 2.3. (a) First Brillouin zone of graphene above which blue and orange lines
mark the discrete chiral and longitudinal momenta, κ⊥ and κ‖, in a carbon
nanotube or a carbon nanotube quantum dot. d is the nanotube diameter and
L is the length of the nanotube or quantum dot. Partially adapted from [46].
(b) The dispersion relation, E(κ‖), takes into account the quantization of the
longitudinal momentum, κ‖. It does not account for Coulomb interaction. Zoom:
Coulomb interaction lifts the fourfold degeneracy of the energy levels. Uc is an
effective charging energy, accounting for the interaction between two electrons.
Only one subband is illustrated. Suggested by [51].

with Nq is the number of electrons in shells 1...q and l ∈ {0, 1, 2, 3} is the index
of each electron in shell q. This relation also expresses the fact that a charging
energy of NqUc shifts up the energies of each shell.

Farther from the Dirac point or in metallic nanotubes, the momentum κ =
k − K consists mainly of its parallel component (~vFκ‖,q ≫ Eg/2), hence the
dispersion eq. 2.5 is linear (E(κ‖) ≈ ±~vFκ‖) and the lateral-confinement energy
spacing of the quantum dot, ∆E ≡ E(κ‖,q+1) − E(κ‖,q), reads:

∆E ≈ ~vF∆κ‖ = ~vF
π

L
. (2.9)

Therefore, the quantum dot longitudinal modes in the linear-dispersion limit,
also known as the massless-electron limit, are equally spaced in energy.

The opposite limit, i.e. the massive-electron limit [46], describes the region
closer to the Dirac point in semiconducting nanotubes. It is mathematically
defined by the relation ~vFκ‖,q ≪ Eg/2, that in conjunction with eq. 2.7 leads
to a shell-dependent mode spacing:

∆Eq =
1

Eg

(

~vF
π

L

)2

(2q + 1) q ∈ ❩. (2.10)

With this possible configuration, we can now develop the constant-interaction
model for the carbon nanotube quantum dot with a fourfold degeneracy. Nonethe-
less, a more complete description of such systems should go into the details of
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momentum quantization cuts in nanotubes [52]. One applied example for the
general case K‖ 6= n π

L
is the metallic nanotube measured in [53].

2.3. The constant-interaction model and the QD capacitance

model

The well-established constant-interaction model (CIM) supposes that the inter-
action between any two electrons of the system is the constant Uc = e2/C, with
C called the self-capacitance of the system. CIM was already used in eq. 2.8
without being explicitly named. This subsection presents the CIM implications
within the quantum dot capacitance model.

(a) (b)
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Figure 2.4. (a) The capacitance model of quantum gate with one gate. (b) The
equivalent electrical circuit. Negative charges are indicated on the QD island.
The voltage reference point (the ground) can be placed anywhere, e.g. at VD.
The grayed resistors combined constitute the load resistance, RL, of our circuits.

Presented in fig. 2.4, the capacitance model of the quantum dot connects the
dot to the source, the drain, and the gate through capacitances: CS, CD, CG.
If more gates are present, then each one will be ascribed its own capacitance.
The particularity here is that charge can leak through capacitors CS and CD,
by means of tunneling, i.e. resistors in parallel with the concerned capacitors.
Hence, the quantum dot is a charged island, as schematized in fig. 2.4b, and
its charge corresponds to N electrons: Q = −|e|N . One can partition this QD
charge into contributions from the above capacitors:

Q = −|e|N0 + CS(VQD − VS) + CD(VQD − VD) + CG(VQD − VG), (2.11)

with N0 the number of electrons on the dot island when VS = VD = VG = 0.
Without the N0 term, the previous equation would not necessarily hold anymore
if the voltage reference were reassigned. The dot voltage as a function of its
charge and the surrounding voltages results from eq. 2.11:

VQD =
1
C

(

Q + |e|N0 +
∑

i

CiVi

)

, i = S, D, G, (2.12)
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where C = CS + CD + CG is the self-capacitance of the quantum dot island. By
integrating between Q = 0 and Q = −|e|N , one gets the total charging energy of
the QD:

Uc,tot,N =

∫ −|e|N

0

VQD · dQ =
e2N2

2C
− e2N0N

C
− |e|N

∑

i

Ci

C
Vi, (2.13)

with i ∈ {S, D, G}.
The total energy of the quantum dot charged with N electrons is the sum of

their single-particle energies and the total charging energy:

Etot,N =
N∑

n=1

En + Uc,tot,N , (2.14)

with En = E(κ‖,q(n)) the confinement energies of the electrons. By this equation,
we assume that charging has no effect on the quantum spectrum generated by
confinement. Of course, this equality is equivalent to a summation over eq. 2.8.

The electrochemical potential is the energy paid for adding an electron to the
quantum dot:

µN ≡ Etot,N − Etot,N−1 (2.15a)

= EN +
e2

C

(

N − 1
2

− N0

)

− |e|
∑

i=S,D,G

Ci

C
Vi. (2.15b)

Thus, we obtained an electrochemical potential in which the charging component
is linear in N . Using the notation Uc = e2/C, we deduce, for a large number of
electrons, N ≫ N0 + 1/2:

µN ≈ EN + NUc − |e|CG

C
VG − |e|CS

C
VS − |e|CD

C
VD. (2.16)

We observe in this expression that the leads (S and D) act as gates, too. If the
drain is grounded, then eq. 2.16 simplifies to:

µN ≈ EN + NUc − |e|CG

C
VG − |e|CS

C
VSD, with VD = 0. (2.17)

2.3.1. Gating a QD

The expression of the QD electrochemical potential, µN , in the framework of the
constant-model interaction (eq. 2.16) shows that the level of µN can be electro-
statically controlled, at constant source and drain potentials, by a gate voltage.
Fig. 2.5a presents two diagrams, differing by the level of the QD chemical poten-
tial. This is lowered by increasing the gate voltage, VG.
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An electron can tunnel into the QD if its removal from the contact can pay
the energy increase in the QD, e.g. µS ≥ Etot,N+1 − Etot,N = µN+1. Therefore,
the energy condition for tunneling does not directly involve the energy levels of
the two sides of the tunnel barrier, but their respective electrochemical-potential
values. Another example: losing an electron of the QD to one contact, e.g. to
the drain, needs µN+1 ≥ µD. We say a transition N ↔ N + 1 is in the bias
window if both tunneling-in and -out conditions are met, e.g. µS ≥ µN+1 ≥ µD.
In conclusion, for a current to flow between the two leads of the QD, at least one
transition, i.e. a QD chemical-potential level, has to be in the bias window.

The situations presented in fig. 2.5a are created by gate voltage increase that
brings a level, µN+1, in resonance with the source, then fully in the bias window,
and ultimately in resonance with the drain. The current is expected to sharply
increase first, then remain relatively stable, and finally suddenly decrease3. By
gating further the QD, many other states can be brought in resonance with leads
or deeper into the bias window.

The spacing between two consecutive electrochemical-potential levels in the
QD is called the addition energy, Eadd. According to eq. 2.16, at a given gate
voltage the addition energy is:

Eadd ≡ µN+1 − µN = Uc + δE, (2.18)

where δE is either 0 or the inter-shell spacing ∆E from eq. 2.9 or eq. 2.10:
δE|N=4q = ∆E each time that a shell q is filled with its four electrons, in the
above fourfold-degeneracy assumption. Therefore, the addition energy sweeps
the sequence:

. . . , Uc, Uc, Uc, (Uc + ∆E), Uc, Uc, Uc, (Uc + ∆E), . . . (2.19)

The last situation of fig. 2.5a indicates the addition energy µN+2 − µN+1 = Uc =
e2/C.

2.3.2. Coulomb diamonds

We now understand that, in a plane defined by the gate and the bias voltages,
VG and VSD, regions of finite current alternate with regions of no current. We
have seen that, at the borders of these regions, the QD chemical-potential level
is in resonance with one of the leads. We can find out the geometry of these
regions in the (VG, VSD) plane by determining the aspect of their borders. Recall
that the source and drain electrochemical potentials are −|e|VS and −|e|VD. Let
us assume again that VD = 0, thus VS = VSD.

3However, current at resonance is not a δ function, but is smoothened by temperature [54]
(which empties some states below the Fermi level of the lead and occupies other states
above) and Γ-broadening [34] (due to Heisenberg’s principle, tunneling can occur from one
chemical-potential level in the lead to a more energetic one in the QD and vice versa).
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Figure 2.5. (a) Electrochemical-potential diagrams of a quantum dot. µS = −|e|VS

and µD = −|e|VD are the chemical potential of the leads. µN+1 is the chem-
ical potential of the dot when charged with N electrons. The middle diagram
indicates a transition in the bias window; the lateral diagrams depict the same
transition in resonance with one of the leads. (b) Coulomb diamonds in a generic
charge stability diagram. The blue lines depict the QD transition N ↔ N +1 res-
onant with the source (positive slope, s−) or with the drain (negative slope, s+).
On these lines, the green circle and the red square mark situations illustrated in
(a).

First, we observe that the borders are described by eq. 2.17 and they intersect
on the gate voltage axis (−|e|VSD = −|e|VD = 0) in the points VG,N defined by:

0 = EN + NUc − |e|CG

C
VG,N . (2.20)

These intersection points, spaced by the addition energies of eq. 2.18, are the
only points of finite current at zero bias voltage.

Then, their space variation is dictated by the differentiation of eq. 2.17, −dµN =
|e| CG

C
dVG+|e| CS

C
dVSD, applied to source or drain resonances. Starting in (0, VG,N ),

resonances of the QD with the source, i.e. µN = −|e|VS = −|e|VSD, draw
dVSD = CG

C
dVG + CS

C
dVSD, that is climbing on a straight line of slope

s+ =
dVSD

dVG
=

CG

C − CS
. (2.21)
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2. Quantum Dots

Resonances of the QD with the drain, i.e. µN = −|e|VD = 0, sketch the variation
0 = CG

C
dVG + CS

C
dVSD, which is sliding on a straight line of slope

s− =
dVSD

dVG
= −CG

CS
. (2.22)

Sets of straight lines of positive and negative slopes, s+ and s−, originating in
the same points, (0, VG,N ) from eq. 2.20, define a sequence of diamonds, like in
fig. 2.5b. They are termed Coulomb diamonds. Inside any of them, no current
can flow, because no QD chemical-potential level resides in the bias window.
This phenomenon is called Coulomb blockade. Outside the diamonds and on
their edges, current can flow. The edges are characterized by a finite differential
conductance, dI/dVSD 6= 0.

Two consecutive Coulomb diamonds are regimes of consecutive QD charges.
Because of that, the kind of (VG, VSD) map we have elaborated is usually ad-
dressed as charge stability diagram.

2.3.3. Excited states

We showed that the energy of one electron on the quantum dot can be divided
into two parts: the confinement energy and the contribution of the electron in
the charging energy. If one electron is excited to the next possible single-particle
state, by receiving the amount ∆E (eq. 2.9 or eq. 2.10), then the quantum dot
entirely is in an excited state. In this thesis, we commonly say that the QD went
from ground state |N〉 to excited state |N∗〉, where N is the number of electrons
on the dot. Subsequent excited states are marked by multiple stars, e.g. |N∗∗〉.

Other quantum dot energy models too include the possibility of excited states.
The following graphical construction helps placing excited states on chemical-

potential diagrams and charge stability diagrams. To start, fig. 2.6a draws the
energy levels (horizontal lines) and possible transitions between them. Each
sketched transition (a vertical arrow) between two states |N〉 and |M〉 that differ
by one electron represents the spacing energy µN↔M = |EN − EM |, already
referred to as chemical potential. We order these transitions in fig. 2.6b. The
result of their ordering is fig. 2.6c, showing the chemical-potential diagram of the
QD.

We have just illustrated how the existence of a QD excited state generates new
possible transitions, adding several excited levels in the electrochemical-potential
diagram. Fig. 2.6c exemplifies two possible transitions in the case of the excited
state |N∗〉: transition N − 1 ↔ N∗ is located at ∆E above N − 1 ↔ N ; another
transition, namely N∗ ↔ N +1, is located at ∆E below N ↔ N +1. Other addi-
tional levels could arise in the chemical-potential diagram, illustrating transitions
between |N∗〉 and excited states of charge N or N + 1.

In charge stability diagrams, new source- and drain-resonant lines appear due
to excited states, see fig. 2.6d. Such excited lines exist only at bias voltages that
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Figure 2.6. (a) Energy diagram of a quantum dot with a possible selection of excited
states: |N∗〉, |(N+1)∗〉. Their excitation energies are ∆, ∆′. Transitions between
states are marked with vertical arrows. (b) The electrochemical-potential levels
are obtained by standing on a common base the transitions arrows of the energy
diagram in (a). At fixed source and drain voltages, the common-base height is
dictated by the gate voltage. (c) The electrochemical-potential diagram respects
the levels determined in (a). We observe here two excited levels, i.e. N −1 ↔ N∗

and N∗ ↔ N + 1. The level of the N∗ ↔ (N + 1)∗ transition is omitted. (d)
On a charge stability diagram, the excited lines intersect the Coulomb diamonds
at a bias voltage that provides the excitation energy: |e|VSD = ±∆. Here, the
orange lines correspond to the lead-resonant transition N − 1 ↔ N∗ and the
red ones to N∗ ↔ N + 1, like the excited levels in (b), (c). Each line should be
prolonged in the region of opposite-sign bias and sufficient lead chemical potential
(|eVSD| ≥ ∆).

can provide the excitation energy:

|eVSD| ≥ ∆E (2.23)

for the first excited state. If the shells are equidistant, this condition becomes
|eVSD| ≥ n · ∆E for the nth excited state, n ∈ ◆ \ {0}. It is however common to
observe excited lines which are not equally spaced, suggesting that shells are not
equidistant.
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2.4. Quantum dot tunneling

In a quantum dot, a continuous flow of electrons appears if tunneling into the
QD from one contact is followed or accompanied by tunneling out into the other
contact. To this process family belong sequential tunneling on one hand and
cotunneling on the other hand.

2.4.1. Sequential tunneling

If a transition, i.e. an electrochemical-potential level, is in the bias window
µS − µD, then the QD can be filled from one lead and it empties into the other
one, sequentially.

First, we can easily see for a given point (VG, VSD) on a charge stability diagram
what transitions are in the bias window. If the point is below both or above
both the source-resonant and drain-resonant lines of a transition A ↔ B, then
transition A ↔ B is in the bias window. For example, the stared point in fig. 2.7a
is below both the source- and drain-resonant lines of N ↔ N + 1, therefore this
transition is included in the bias window. We call the region lying below or above
both resonant lines of a transition the cone of that transition.

(b)(a)

S D

N-1 ↔ N

μ
(N

-1 ↔ N
) =

 μ
D

μ(
N

-1
 ↔

 N
) 
=
 μ S

V
G

V
SD

NN-1 N+1

Figure 2.7. (a) The stared point is inside the vertical cone of transition N ↔ N + 1,
in purple. (b) Sequential tunneling for the stared point in (a).

Then, on a chemical-potential diagram, we can visualize the sequential-tunneling
process that uses a transition contained in the bias window. Hence, in fig. 2.7b,
the following tunneling sequence takes place:

N − 1 → N → N − 1 → . . .

In conclusion, if a point (VG, VSD) is in the cone of a transition, then the
transition level is in the bias window and electrons sequentially tunnel through
that level.
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Inside Coulomb diamonds, there is no transition in the bias window, unless
excited lines are present. That is why sequential tunneling is not present in the
Coulomb blockade.

2.4.2. Elastic cotunneling

Cotunneling is a process in which an electron tunnels from one lead into the QD
and quasi-simultaneously another electron or the same tunnels out of the QD into
the other lead. Thus, cotunneling is a second-order process. It does not change
the charge of the QD.

When cotunneling leaves the QD state unchanged, it is called elastic. Elastic
tunneling is possible at any bias voltage. This means even Coulomb diamonds
exhibit a relatively small current, due to elastic tunneling.

(a) (c) (d)

S D

N-1 ↔ N

S DS

1

1

1

22
2

D
N-1←N
N-1→N*

N+1→N*

N→N+1
(b)

S D

N-1 ↔ N

N-2 ↔ N-1

2 1 ∆E

∆E

Figure 2.8. (a) Elastic cotunneling trough virtual state |N〉. The ‘first’ transition
is N − 1 → N , the ‘second’ is N → N − 1. (b) Elastic cotunneling trough
virtual state N − 2. The ‘first’ transition is N − 1 → N − 2, the ‘second’ is
N − 2 → N − 1. (c) Inelastic tunneling through virtual state |N + 1〉. The ‘first’
transition is N → N + 1, the ‘second’ is N + 1 → N∗. (d) Inelastic tunneling
through virtual state |N〉. The ‘first’ transition is N → N − 1, the ‘second’ is
N − 1 → N∗.

The QD state reached for a very short time during the cotunneling process is
termed virtual state. An example of elastic tunneling is given in fig. 2.8a,b for a
QD in state |N − 1〉. Here, the virtual state is either |N〉 or |N − 2〉.

2.4.3. Inelastic cotunneling

When cotunneling excites or relaxes the quantum dot, it is called inelastic. Ex-
citing inelastic tunneling is possible only when the bias voltage is large enough to
provide the excitation energy (eq. 2.23). If the cotunneling process that relaxes
excited QD, no minimum bias voltage is needed.

Examples of inelastic tunneling are given in fig. 2.8c,d. Here, the initial state
of the QD is |N〉 and the final one is |N∗〉. The virtual state is |N −1〉 in fig. 2.8c
and |N〉 in fig. 2.8d.
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2.4.4. Interplay of inelastic cotunneling and sequential tunneling

Excited states allow a combination of processes that produces higher currents in-
side Coulomb diamonds. An excited state is possible can in principle be reached
by inelastic cotunneling (IEC). Relaxation is a concurrent process, that undoes
the effect of exciting IEC. Here, we suppose that relaxation is not strong. Thus,
after the IEC event, an excited level, e.g. N∗ ↔ N + 1, if in the bias win-
dow, allows sequential tunneling (SET) without being immediately stopped by
relaxation, N∗  N :

N → N∗

︸ ︷︷ ︸
IEC

→ N + 1 → N∗ → N + 1 → N∗ → N + 1 →
︸ ︷︷ ︸

SET

N∗
 N

︸ ︷︷ ︸
relaxation

. (2.24)

This phenomenon is called cotunneling-assisted sequential tunneling, abbreviated
COSET [55]. Fig. 2.9 shows that COSET appears inside diamonds, beyond a
minimum absolute bias voltage, in lateral bands delineated by the excited lines.

V
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NN-1 N+1
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IEC+SET

=COSET
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rr
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t

10 nA

N
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*
N

*↔
N

+1

(b)(a)

S D

N*↔N+1

SET

Figure 2.9. (a) This charge stability diagram highlights phenomena involving an ex-
cited state, |N∗〉. The current scale shows only possible magnitude orders. The
excited lines are dashed. Elastic cotunneling (EC) occurs everywhere; EC in the
point marked by � is detailed in fig. 2.8a,b. Inelastic cotunneling (IEC) occurs
only at sufficient bias voltages, |eVSD| ≥ ∆E; IEC in the point marked by • is
detailed in fig. 2.8c,d. Relaxation is assumed negligible. In the yellow bands of
Coulomb diamond N , an excited level is in the bias window (see •). IEC without
relaxation enables sequential tunneling (SET) through this excited level. This
phenomenon is termed COSET. (b) SET for • in (a).

Recognizing COSET in Coulomb diamonds is often reduced to observing full
or incomplete triangles of enhanced noise and increased current—see the yellow
bands sketched in fig. 2.9a. When the COSET bands are wide enough (∆E ≥
Uc/3), the triangle is full, otherwise it is incomplete. We meet both situations in
our measurements. We refer to such a graphical feature with the terms COSET
triangle or IEC triangle.
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3 Noise in Quantum Dots

Noise — the phenomenon of random fluctuations added to a signal — may be
extra information in the carried experiment. For instance, if present, thermal
noise can be used in measuring the temperature of a system. In this section,
we show that current noise reveals correlations between the electron pulses that
constitute the current. We establish a quantitative reference in the Schottky noise
and so define the Fano factor. In this thesis, further comparisons of noise levels,
each of them characterized by a Fano factor value, will shed light on the discrete
flow of electrons through quantum dots. Two instruments—the telegraph noise
analysis and full counting statistics—close the chapter.

3.1. Noise as a correlator

In the case of a stationary system, noise means fluctuations around the time-
average value of a measured observable. For example, a direct current in an
electric circuit (see fig. 3.1) exhibits the current fluctuations:

δI(t) = I(t) − 〈I〉,

with 〈I〉 the time-average current. This particular way to describe noise can be

〉I〈

I(t)

t

〉2)δI(〈
√

Figure 3.1. Fluctuations in a stationary current.

further concentrated in one number: the standard deviation of the fluctuations,
√

〈(δI)2〉
t
.
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Noise can however be quantitatively characterized in more detailed ways and
we present here the most common of them. One is the autocorrelator CI(t, t′) =
2〈δI(t) · δI(t′)〉t, with the factor 2 justified later. In a stationary system, this
quantity does not depend on the two sweeping moments t and t′, but only on the
interval ∆t = t′ − t:

CI(∆t) = 2〈δI(t) · δI(t + ∆t)〉t. (3.1)

It is common in stationary stochastic processes and in signal processing to ad-
dress the autocorrelation of a signal as power and its Fourier transform as power
spectrum. In this case, the autocorrelation of fluctuations will be called noise
power. Its unit is A2.

The frequency space counterpart of noise power is the its Fourier transform,

SI(ω) =

∫ ∞

−∞

CI(∆t)e−iω∆td(∆t) for ω ≥ 0. (3.2)

This is called the noise power spectral density or simply the noise power spectrum
[56]. Its unit is A2/Hz. The noise powers spectral density SI(ω) of any frequency
value ω incorporates both emission (+ω) and absorption (−ω); this is captured
in the factor 2 of the autocorrelator (eq. 3.1).

The above definitions are given for current noise. In the same manner can we
treat the noise of other observables, for instance voltage. Thus, SV (ω) would be
the spectral density of voltage noise power, measured in V2/Hz.

Equivalent definitions can be formulated in quantum mechanics, using corre-
sponding operators.

3.1.1. Noise measurements

We run current noise measurements at frequencies of ∼3 GHz, far from its dis-
turbing limits: Using cryogenic temperatures, the thermal noise component is
also negligible, except for the zero bias voltage. The frequency domain is not
high enough for noticeable vacuum fluctuations. These limits are introduced
later in the chapter. Another limit is the generally termed 1/f noise (the flicker
noise), which appears at low frequencies.

The noise data is acquired with a spectrum analyzer—a measurement instru-
ment which collects signal power in a frequency range, by applying a bandwidth
filter around a set frequency, f0. This collected power divided by the filter band-
width is an approximation of the power spectral density in f0 or its precise value
if the noise power spectrum is uniform, i.e. white noise.

In order to employ the spectrum analyzer for noise measurement, one needs to
separate noise from the underlying, dc signal. This separation is done by a bias
tee.
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3.1.2. Noise limits: the fluctuation-dissipation theorem

The fluctuation-dissipation relation [57, 58] is a very general theorem in statistical
physics that describes noise power spectrum in stationary linear systems:

SI(ω) = 2~ωG
(

coth
~ω

2kBT
+ 1
)

, (3.3)

where G is the conductance of the noise source. The above relation has two
significant limits:

In the low-frequency limit, fluctuations are due to temperature:

~|ω| ≪ kBT ⇒ SI(ω) = 4GkBT. (3.4)

This is called thermal noise.
For high frequencies or low temperatures, vacuum fluctuations play the major

role:
~ω ≫ kBT ⇒ SI(ω) = 4G~ω. (3.5)

This is also called quantum noise. Because vacuum fluctuations can only absorb
energy and cannot be used as a power source, the actual value of the quantum
noise should be half:

~ω ≫ kBT ⇒ SI(ω) = 2G~ω. (3.6)

In our experiments, run at frequencies of ∼ 3 GHz, the quantum noise can be
neglected.

3.2. Shot noise. Schottky noise. Fano factor

If current is seen as a sequence of electrons flowing through an imaginary amme-
ter, then fluctuations are obvious: the instantaneous value of the current is either
below the average, namely null, when no electron passes through, or above the
average, when one electron is passing. The discreteness of charges is therefore
the cause of a specific type of noise, termed shot noise.

Formally, current can be expressed as a sum of Dirac δ pulses: I(t) = e
∑

i
δ(t−

ti). The average current is 〈I〉 = e/τ , with τ the average time between two
electron pulses. Supposing that the pulse moments, ti, are uncorrelated, the
correlator of I(t) from eq. 3.1 easily yields the shot noise power

CI(∆t) = |2e〈I〉|δ(∆t) (3.7)

and its Fourier transform, the shot noise power spectrum:

SI(ω) = |2e〈I〉| = SSchottky. (3.8)
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This treatment ignores the possibility of some electrons going in the opposite
direction of the average flow. In this complete image, one gets the same result as
above.

The noise of uncorrelated pulses was measured first by Schottky in vacuum
tubes (1918) [59]. The duration between consecutive uncorrelated pulses follows
an exponential distribution, therefore the number of pulses in the time unit is
Poissonian-distributed. Different values of the shot noise power spectral den-
sity suggest correlations between electron pulses. Using the Schottky noise as a
reference, at zero frequency we define the Fano factor :

F =
SI

SSchottky
=

SI

|2e〈I〉| . (3.9)

We say that noise is Poissonian if F = 1, sub-Poissonian if F < 1, and super-
Poissonian if F > 1.

3.2.1. Two general expressions for the Fano factor

Using a two-terminal scattering approach—i.e. modeling the system as a medium
with several conductance channels n of transmission probability Tn and G0 =
2e2/h the conductance of a channel with transmission probability 1—physicists
arrived at the following relation [60] for noise power spectral density at zero
frequency:

SI = 2G0

[

2kBT
∑

n

Tn + eV coth
(

eV

2kBT

)∑

n

Tn(1 − Tn)

]

. (3.10)

At small voltage, |eV | ≪ 2kBT , the thermal noise dominates: SI = 4GkBT ,
because G = G0

∑

n
Tn.

At small temperatures, 2kBT ≪ |eV |, one gets SI = |2eV |G
∑

n
Tn(1 −

Tn)/
∑

n
Tn = |2e〈I〉|F , with:

F =

∑

n
Tn(1 − Tn)
∑

n
Tn

. (3.11)

In this derivation, we used the equality V G = 〈I〉, placing ourselves in the lin-
ear regime. The formula given by eq. 3.11 is therefore valid for small voltages,
such that the current variations responds linearly to voltage changes. Another
assumption is that the transmission probabilities are constant.

In a quantum dot, the two tunnel barriers (indices S and D) exhibit various
transmission probabilities, TS|D ≪ 1. They are Lorentzians centered at the elec-
trochemical potentials (levels) of the QD transitions. We write the tunneling
rates as ΓS|D = ~νTS|D with ν = ve

2L
the rate at which one electron inside the QD
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hits one barrier, ve = 1
~

∂E
∂k

the group velocity of the electron and L the width of
the QD. If the bias window contains several QD levels (indices n), one obtains
[61] the average current

〈I〉 =
e

~

∑

n

ΓSnΓDn

ΓSn + ΓDn
(3.12)

and the zero frequency shot noise at low temperatures

SI =
2e2

~

∑

n

ΓSnΓDn(Γ2
Sn + Γ2

Dn)
(ΓSn + ΓDn)3

. (3.13)

The Fano factor, F = SI/|2e〈I〉|, results immediately. In the particular case of
only one level in the bias window of the QD, the Fano factor takes the form:

F =
Γ2

S + Γ2
D

(ΓS + ΓD)2
. (3.14)

3.2.2. Some typical Fano factor values

The following cases are derived with eq. 3.11:

• F = 0 for ballistic wires, because all channels have maximal transmission
probability, Tn = 1.

• F = 1 for a tunnel barrier with very low transmission probability, T ≪ 1.
This result equally applies to a quantum dot in the Coulomb blockade that
features only elastic cotunneling.

• F = 1
3

for diffusive wires [60, 61].

In quantum dots, eq. 3.14 exposes the limits:

• F = 1
2

in the symmetric QD, i.e. ΓSn = ΓDn.

• F = 1 in the totally asymmetric QD, i.e. ΓS ≪ ΓD or ΓS ≫ ΓD.

3.3. Telegraph noise and telegraphic transport

The noise exhibited by a signal with only two possible values is called telegraph
noise. If the signal has two equally probable values, i.e. 〈I〉 ± δI (fig. 3.2a),
then the telegraph noise power, CI , is finite in one point only [60], namely ∆t =
0. Using the Dirac δ(t) distribution and τ is a small time constant defined by
τδ(0) = 1, we write CI(∆t) = 2(δI)2δ(∆t)τ . Its Fourier transform, the telegraph
noise power spectrum, reads: SI(ω) = 2(δI)2τ . This is white noise.

In general, the two values are not equally probable: I ∈ {I1, I2} with p2/p1 =
m the ratio of the probabilities of the two possible values (fig. 3.2b). With

3

37



3. Noise in Quantum Dots
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mδI+

Figure 3.2. (a) Simplest form of telegraph noise. Adapted from [60]. (b) Generalized
telegraph signal.

δI ≡ (I1 − I2)/(m + 1), one can calculate the expressions of the telegraph noise
power and noise power spectrum:

CI(∆t) = 2m(δI)2δ(∆t)τ, (3.15a)

SI(ω) = 2m(δI)2τ. (3.15b)

If a current is switched on and off, Ion 6= 0 = I2, then a simplifying relation arises:
〈I〉 = p1I1 = I1/(m + 1) = δI. The telegraph noise power spectrum becomes:
SI(ω) = 2m〈I〉 I1τ

m+1
. With the notations Ion ≡ I1 and Poff ≡ p2 = m

m+1
, the noise

takes the value SI(ω) = 2〈I〉IonτPoff . Therefore, the Fano factor, SI/|2e〈I〉|, is:

F =
Ionτ

e
Poff . (3.16)

We conclude that longer the circuit is usually off, higher the Fano factor. Also,
more intense the charge flow is, bigger the Fano factor.

The above elaboration ignores the discreteness of the electron flow. By con-
sidering it, we talk below about the shot noise in telegraphic transport.

It happens in quantum dots that sequential tunneling, thus current, is tem-
porarily interrupted because the quantum system fell in a blocking state. Let us
take the example of fig. 3.3a: a QD with two transition levels, N − 1 ↔ N and
N − 1 ↔ N∗, in the bias window (|N∗〉 denotes an excited state of charge N).
We neglect relaxation (N∗ → N). The transport sequence is:

N − 1 → N |N∗ → N − 1 → N |N∗ → . . .

with N |N∗ designating (N or N∗). If the tunneling rates (ΓS|D and Γ∗
S|D) of the

two respective transitions are not all equal, but Γ∗
S ≫ Γ∗

D, then the transport
sequence, once it reaches N∗, stops for a relatively long time, because tunneling-
out to the drain is now slow-rated. We say that transport is blocked in state
|N∗〉. The time dependence of the current, sketched in fig. 3.3b, shows that

3
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Figure 3.3. (a) Electrochemical-potential diagram of a QD that may fall into a block-
ing state, because Γ∗

D ≪ Γ∗
S. The blocking state is |N∗〉. (b) Telegraphic

transport illustrated by the current IS(t), measured at source. The colors of the
electron pulses correspond to the transitions N − 1 → N |N∗ in (a). Adapted
from [32].

electrons are transported in bunches. The situation is described within an equiv-
alent framework in ref. [32], which also derives the following relation for the Fano
factor:

F = 1 + 2〈n〉P 2
off , (3.17)

where 〈n〉 ≡ ΓS/Γ∗
S is the average number of electrons flowing through level

N − 1 → N . One could argue that the average number of electrons in a bunch is
Non ≈ 〈n〉 + 1.

In conclusion, the shot noise in telegraphic transport is characterized by a Fano
factor that scales with the square of the blocking-state probability and with the
average number of electrons in a bunch.
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4 Design, Fabrication, Experimental Setup

4.1. Lumped-resonator design

We wanted to investigate in a microwave experimental setup highly ohmic quan-
tum devices, using lumped-element resonators as impedance transformers. Match-
ing the typical impedance of carbon nanotube quantum dots (∼100 kΩ) to the
50 Ω of the transmission lines demands, at ∼3 GHz, an LC matching circuit with
L ≃ 120 nH and C ≃ 25 fF (see the example given in 1.2.1), that is a characteris-
tic impedance Zc =

√
L/C ≃ 2.2 kΩ. Moreover, the resonator needs to be placed

on the same chip as the quantum device, in order to avoid microwave phenomena
related to an eventually wavelength-comparable distance between the LC circuit
and the quantum dot. This additional requirement brings us to the fabrication
of a planar spiral inductor, with the inner end connected through a bridge to the
setup.

Our technical endeavor is obtaining L & 100 nH values for an on-chip coil with
a bridge and and C . 30 fF values for the adjacent capacitor. The electrical
losses in the coil are minimized by choosing a superconductor metal, i.e. Nb.

It is possible to evaluate on paper the inductance of a polygonal planar coil,
using methods (e.g. Grover [62]) or formulas (e.g. Wheeler [63], Mohan [64]) that
usually result from combining the mutual inductances of all segments. Several
online calculators also implement these methods and formulas. However, a real
inductor includes distributed capacitive shunt elements, who can play a heavy
role at our target frequencies. Therefore, it is more efficient to design with the
aid of first-principles software calculations.

4.1.1. Computer-aided design with Sonnet

We use the Sonnet software suite to architect microwave resonators. Our designs
considered first a supported bridge, then an airbridge (fig. 4.1). We eventually
opted for the latter, in order to replace several error-prone lithography and sput-
tering steps by a simpler operation, wire bonding.

Within Sonnet, the metallic material for the resonator, bridge, and ground is
modeled as a perfect conductor, since superconductors are not supported by this
software suite yet.
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Figure 4.1. (a) Coil design with the SonnetTM em simulation software (zoom). The
surrounding pink polygons are parts of the ground plane; white stands for SiO2.
(b) The deepest reflectance curve for the resonant circuit in (a) is obtained for

a port 2 resistance of 16.2 kΩ, thus Rmatch = 16.2 kΩ.

Initial geometries tried to separate inductor from capacitor. To do that, the
spacing between the spiral inductor and the ground plane was increased up to
values beyond which calculations did not change anymore. The existence of this
limit is justified by the logarithmic-like distance dependence of the capacitance
between two coplanar plates. Even at these spacing values, a shunt distributed
capacitance between the coil and ground still subsists; we refer to such an inductor
by the label minimally shunted coil. The calculated self-resonance of the coil can
easily lay in the GHz range.

Thus, we designed minimally shunted spiral coils that resonated at ∼3 GHz,
videlicet in the absence of a separate capacitor. Having obtained the desired
approximate resonance frequency (given by the LC product), we still had to
improve the characteristic impedance (given by the L/C ratio. But increasing
the effective inductance, L, by adding turns to the spiral, could not be achieved
with a simultaneous decrease of the effective shunt capacitance to ground, C.
Indeed, simulations did not show an improvement when simultaneously adding a
spiral winding and reducing the coil wire width.

The Sonnet design taken further to fabrication is presented in fig. 4.1a. The
coil wire is 2-µm wide. The perfect conductor film has zero height, a good
enough approximation of the later sputtered ∼100-nm Nb films. A background
plane lies below the 500-µm-thick undoped Si substrate. The airbridge, placed at
150 µm above the plane, is connected to the microwave signal port. At the other
end of the coil, the variable-resistance port 2 substitutes the quantum device.
By sweeping the resistance of this port, one can find the matched value: the

4
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resistance for which the reflectance curve is deepest, fig. 4.1b. Therefore, this
design predicts Rmatch = 16.2 kΩ (Gmatch = 62 µS), in other words Zc = 0.9 kΩ.

4.1.2. How could one still improve Zc?

We could wonder if, with greater-diameter inductors, one can obtain resonators of
higher characteristic impedance, but of same resonance frequency. We neglect the
capacitive influence of the ground below the 500-µm dielectric substrate, since it
is almost one order of magnitude farther. Upsizing the resonator plane by a factor
ζ multiplies inductances with ζ2 (like encompassed areas) and capacitances with ζ
(like an area divided by a distance). Thus at first sight, Zc increases by a factor
ζ1/2, but ω0 decreases, by ζ3/2. To keep the resonance frequency unchanged,
one could in addition readjust (by ζ3) the area of the coil turns, by going back
to a narrower coil wire; this leaves coil encompassed areas, and L, unchanged.
Consequently, a schematic recipe for improving Zc has loomed. It doubles Zc by
a fourfold upsizing of the design, then it corrects the resonance frequency and
doubles Zc again by shrinking the coil wire width eight times. This design limit
has major disadvantages: it corresponds to a geometry where the background
plane should matter, it is considerably harder to calculate in Sonnet and more
difficult to fabricate.

Moreover, at second sight, a new ingredient kicks in. The geometry of a spiral
coil also includes the inter-turn capacitance, which builds up the effective feed-
forward capacitance, Cf , introduced in 1.2.2. This ingredient takes part, under
the form χ = Cf/C, in the effective inductance value, as shown in equations 1.20,
1.23. Because the recipe constructed above modifies χ, it will also change the
the effective inductance and thus the resonance frequency. The recipe can be
corrected with an extra step: readjusting the inter-turn gap so that it is not
affected by the coil wire shrinking.

Another recipe arises from solely the framework of the feed-forward capaci-
tance. It is obvious that reducing C automatically enlarges χ, thus the effective
inductance. Hence, Zc increases, but ω0 is rather stable. The algorithm that
keeps ω0 unchanged is composed of the following steps: (i) retrieve the value of
χ by fitting the Sonnet-provided reflectance curve, (ii) diminish by a fraction x
the coil width in order to decrease C, (iii) calculate, from the known quantities
χ and x, the new inter-turn gap with which the product LC stays constant, (iv)
validate with a Sonnet simulation.

Unfortunately, evidence of the LCCf-model applicability first appeared during
the analysis phase that followed the execution of the main experiment. We did not
have the occasion to experimentally validate planar spiral resonators redesigned
with the above algorithms.

4
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4.2. Fabrication

We fabricated coils with two types of bridges: sputtered on a support or bonded.
We favored in the end the bonded-bridge type, essentially because it involves less
fabrication steps and a higher yield. For characterization purposes, we also made
secondary devices, called hangers, where a resonators were coupled or connected
to a transmission line (see appendix A).

4.2.1. Bonded-bridge coils

The fabrication of an on-chip superconductor resonator like in the computer-
aided design (fig. 4.1) starts with preparing a region on the undoped Si/SiO2

(500 µm/170 nm) substrate where carbon nanotubes will be placed. The Si crystal
parameters are: orientation 〈100〉, ρ > 100 Ωm. Thus, we first evaporate Ti/Au
(10 nm/30 nm) for markers and partial contacts in a square area (fig. 4.2a). We

(a) (b) (c)

Figure 4.2. (a) 1 mm2 region of SiO2 where CNTs will reside. Markers and partial
contacts (orange) are evaporated in the first step. Fine contacts (purple) to
selected CNTs are evaporated in a later step. (b) With the square window in
(a) protected by an HSQ film, we sputter a Nb film (white), then etch in this
film spiral coils and contact pads. After that, we lift the HSQ off, stamp CNTs
in the square window, and eventually evaporate the fine contacts. (c) The last
fabrication step is bonding metallic wire from contact pads into the inner pad of
the resonators. We use Al wire, visible in this optical photography.

then protect it with a PMMA/HSQ bilayer resist. Afterwards, we sputter 100 nm
of Nb and lift the protection bilayer resist off (fig. 4.2b). Subsequently, we e-beam-
pattern bonding pads and the desired inductor in a new PMMA resist layer, then
etch the Nb film with an Ar/Cl2 inductively coupled plasma; the surrounding Nb
becomes the ground plane.

Next, we stamp CNTs [7, 13, 65] in the predefined region, like in fig. 4.3.
We locate the stamped CNTs using a scanning electron microscope (SEM) and

4
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contact the chosen CNT in one Ti/Au evaporation step to the coil and to ground
(fine contacts in fig. 4.2a). In the same lithography step, a side gate is created
at a distance of ∼300 nm from the CNT.

4 μm

50 μm

CNT growth substrate CNT stamping

200 μm

(a) (b)

Figure 4.3. (a) CNTs are grown on a patterned substrate. Taken from [13]. (b) The
stamping procedure takes place in a mask aligner, where the CNT stamp resulted
in (a) and glued under a glass plate is pressed against the sample.

Finally, with the device glued onto a sample holder, we use Al wire to bond
the remaining end of the coil to a neighboring bigger pad (fig. 4.2c). Due to the
relatively small size of the inner pad (70 × 70 µm2, barely larger than the bonder
wedge), the man-operated bonding is delicate In the very end, we connect the
latter pad to the microwave line of the printed circuit board sample holder.
Furthermore, the Nb ground plane of the sample is bonded with multiple wires
along the wafer edge to the sample holder ground plane.

The square spiral inductor used in the main experiment has an outer dimension
of 210 µm, 14 turns with width w = 2 µm and spacing s = 2 µm. In the device
investigated here, two of the turns are shorted, lowering the effective inductance
and thus shifting up the resonance frequency by several percents.

4.2.2. Coils with bridge support

Previous versions of planar spiral coils had, instead of bonded Al airbridges, Nb
bridges sputtered over a 500-nm-thick crosslinked-PMMA support (fig. 4.4b).
The additional fabrication steps were intercalated before CNT stamping. Thus,
the PMMA-coated sample is intensely exposed to e-beam (∼3000 µC/cm2), such
that a strip forms between the coil inner end and an outer pad. This strip stays
after the PMMA liftoff and can serve as a bridge support. Then, the Nb bridge
is patterned and sputtered. Only afterwards, CNTs can be stamped, localized,
and contacted, as already described.
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The yield of this recipe suffers from bridge defects. A Nb bridge can be broken
where it descends from its support onto the contact pad (fig. 4.4a). Avoiding
this risk by making thinner bridge supports leads to important capacitive effects
involving bridge and coil turns. Sometimes, the lateral margins of the bridge
are several times higher (fig. 4.4b) and, if they detach during liftoff, they usually
create inter-turn shorts in the coil.

10 μm

(a) (b)

1 μm

broken

Nb

Nb

Nb

P
M

M
A

Figure 4.4. (a) Contact between Nb bridge and outer pad. The bridge is broken where
its support ends. (b) SEM micrograph of a supported bridge crossing several
coil turns. The end of the bridge presents tall margins.

4.3. Experimental setup

Minimizing the thermal energy of the studied devices is an important condition
in the precise measurement of their interesting features. For instance, sharp
Coulomb diamonds in quantum dots necessitate negligible thermal broadening.
Millikelvin temperatures are produced in dilution refrigerators, that use a mixture
of 3He and 4He. At 100 mK, the thermal energy, kBT , descends under 0.1 meV,
much lower than the charging energy of a QD, ∼10 meV.

Our measurements are carried in a Triton cryostat produced by Oxford. This
is a cryogen-free system or a dry dilution refrigerator: 3He is precooled not by
consumable, cryogenic agents (viz. N2 at 77 K followed by 4He at 4.2 K, like
in wet dilution refrigerators), but by cryocoolers (here, pulse tube coolers, PT).
After precooling, the dilution cycle of the lower plates brings temperatures down
to 20 mK. The setup is schematized in fig. 4.5c.

The Triton cryostat was wired by our research group during previous microwave
projects [13]. The dc loom (fig. 4.5c) is filtered from rf frequencies and reaches
the multi-pin nanoconnectors of the sample holder. One cable of the dc loom
is additionally low-pass filtered and connected, via a bias tee, to an SMP (rf)
connector of the sample holder (marked with a blue arrow in fig. 4.5d). The
rf wiring has a descending line, excited by an external vector network analyzer
(VNA). Attenuated at each plate of the cryostat, the microwave signal is reflected
at the sample and deviated by a directional coupler onto the ascending rf line.
This line encounters a cryoamplifier, before entering a different port of the VNA.
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Figure 4.5. Adapted from [13]. (a) Picture of the opened Oxford Triton cryostat,
without cans or magnet. (b) Photograph of the mixing chamber plate. Its
diameter is ∼40 cm. (c) Sketch of the cryogenic setup, connected to external rf
instruments (VNA or SSA) and dc sources. (d) Sample holder. The sample is
to be glued and bonded on the central copper ground plane surrounded by the
printed circuit board. Two SMP connectors and two multi-pin nanoconnectors,
placed on the opposite side, attach the sample holder to the puck.
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A circulator with a 50-Ω termination recuperates eventual reflections from the
cryo-amplifier, in the frequency range 2.5 GHz − 3.5 GHz.

For noise measurements, the rf wiring functions slightly differently: the de-
scending rf line is not connected, the microwave signal is the noise emitted by
the sample, and the same ascending rf line as above takes the sample noise to
a signal and spectrum analyzer (SSA). A second room temperature amplifier is
added in front of the SSA port. The total gain of the amplification chain, g,
is important later in retrieving the sample noise values from the SSA-measured
noise power. This gain was previously measured by our team with the help of
a gold wire in the hot-electron regime. Knowing both the Fano factor of this
regime, F =

√
3/4, and the conductance of the wire, as well as and the temper-

ature of the mixing chamber (MC), the gain was obtained by simply comparing
the SSA-collected noise power to the current noise of the wire. The method is
detailed in [7]. Therefore, the amplification chain has a gain g = 94.6 dB.

4.3.1. RF measurements at 4.2 K

Measurements of characterization samples, e.g. superconducting resonators, are
carried in a helium dewar at 4.2 K. For this, we use a dipstick with coaxial
cables, presented in fig. 4.6. With one end of the dipstick in the 4He bath and
the other end connected to a VNA, we acquire transmission or reflection curves
in the 100 kHz − 8 GHz frequency domain.

(a) (b)

1.8 m

Sample box

Can

Head

Figure 4.6. (a) RF dipstick for 4.2 K measurements in a He dewar. (b) Zoom of the
open dipstick end. Taken from [13].
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5 Measurement

In this chapter, we present measurements of a quantum dot with an impedance-
matching LC resonator, fabricated according to the methods explained in chap-
ter 4. First, we reveal raw data for dc current and rf reflectance, then we produce
the appropriate calibrated conductance data. Second, we calculate the param-
eters of the LC resonator. Third, we present raw noise data and subsequently
deduce the calibrated, QD shot noise.

The measurements are done at a frequency of about 3 GHz, where the 1/f
noise is insignificant and the quantum noise is still negligible.

VG
 

VSD

+ δV(rf)

1 μm50 μm

S

G

D

200 μm

Nb

QD

Si/SiO
2

(d)(c)

(b)(a)

Bias-T

Am
pl

ifi
er

s

20 mK

At
te

nu
at

or
s

VNA / SSA

Circulator

Filter box

Directional coupler
-20 dB

DC bias

I/V converter V

Gate

4 K

0.7 K

rf

dc

i o
+
-+

-

Device

VG

VSD

Figure 5.1. (a) Measurement setup sketch. The microwave (rf) input and output lines
are marked with “i” and “o”, respectively. (b) Optical picture of the device
under test. The quantum dot is inside the red circle. (c) False-color scanning-
electron micrograph (SEM) of the bonded coil. (d) False-color SEM of the
carbon nanotube quantum dot. The source and drain are marked with S and D;
the gate is noted with G.

The device under test (DUT), consisting of a QD and a coil (fig. 5.1bcd), is
connected electrically to both a dc circuit and an rf circuit (fig. 5.1a). In the
DUT, a direct current flows on which a relatively small alternating current is
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superimposed. The dc-connected DUT is schematized in fig. 5.2a. The rf circuit
with the DUT is sketched in fig. 5.2b. The DUT is modeled with lumped elements:
L is the inductance of the coil, C its capacitance to ground, and Rloss the effective
loss resistance, accounting for the rf loss of the superconducting material and the
dielectric loss in the substrate.
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Figure 5.2. (a) Schema for the dc circuit. (b) Simplified schema for the rf circuit, in
reflectometry mode. Vac = V + + V − is the ac signal sensed by the DUT. The
QD admittance is considered to be purely real: G(VG, VSD).

The current is measured in the dc circuit, in a sweep of the gate and bias
voltages, VG and VSD, with VSD being swept for each value of VG. The measured
current, I(VG, VSD), is differentiated numerically along the fast axis and the re-
sulting differential conductance, dI/dVSD, is shown in fig. 5.3a. This is a charge
stability diagram, in which Coulomb diamonds are evident.

5.1. Reflectometry

In the rf circuit (fig. 5.1), the microwave signal sent by the vector network analyzer
(VNA) ac source1 travels to the DUT; the signal reflected by the DUT is farther
deviated by the directional coupler onto a distinct line, reaching a different port
of the VNA. The initial ac signal undergoes:

(i) a total attenuation a, a(dB) ≈ −87 dB, then

(ii) a reflection at DUT of coefficient Γ and finally

(iii) an amplification of gain gr, gr(dB) ≈ 60 dB.2

Therefore, the VNA perceives an effective reflection coefficient, ΓVNA ≡ Vo/Vi,
different from Γ. The measured effective reflectance, |ΓVNA|2 = a|Γ|2gr, is
mapped in fig. 5.3b. The frequency at which the reflectance map is recorded,
fm = 3.23 GHz, is chosen with the attempt of reaching the deepest reflectance
values for any voltage point (VG, VSD).

1We use a VNA signal of −25 dBm.
2The complete amplification chain used in noise measurements has a well-determined gain,

g(dB) = 94.6 dB. In reflectometry measurements, a room temperature amplifier of ∼35 dB
is not used.

5

50



5. Measurement

-10

0

10

20 µS

10

0

-10

0

10

-24

-22

-20 dB

-10

0

10

-4.0 -3.6 -3.2 -2.8

20 µS

10

0

(b)

(d)

(a) (c)

(e)

dI / dV
SD

G

20100

dI/dV
SD

G from Γ

dI/dV
SD 

,G (µS)

dI/dV
SD 

,G (µS)

V
G
 = -3.75 V

V
S

D
 (

m
V

)
V

S
D
 (

m
V

)
V

S
D
 (

m
V

)

|Γ
VNA

|2

|Γ
V

N
A
|2

 (
d
B

)
V

G
 (V)

80400 120

-40

-50

-30

-20
f (GHz)

3.23
3.28

Figure 5.3. (a) Derivative of the dc current (dI/dVSD) as a function of the gate and
source-drain voltages. The contour of the Coulomb diamonds is highlighted by
the dashed line. (b) Reflectance measured at f = 3.23 GHz, with the same con-
tour as in (a). (c) Points of the (a),(b) maps are pinned as a scatter plot (green
diamonds). An extra point, near impedance matching, is added to the plot. The
fit of plot (dashed orange) reveals the LC-circuit parameters. With them, the
reflectance-conductance dependence at resonance is built (dashed brown), too,
and its minimum corresponds to Gmatch. (d) The rf conductance, G, deduced

from the reflectance |ΓVNA|2 (VG, VSD, f =3.23 GHz) by using the fitting curve,
|ΓVNA|(G), form (c). (e) Cuts in the (a),(d) maps, showing the overlap of low-
and high-frequency differential-conductance values.

The reflectance map, |ΓVNA|2(VG, VSD), looks also like a charge stability dia-
gram. Compared with the current or differential-conductance map (fig. 5.3a), its
acquisition is faster and it is less noisy, i.e. it exhibits clearer features. ΓVNA is
the DUT reflection coefficient, Γ = V −/V + (fig. 5.2b), downshifted in logarithmic
scale by a baseline, b:

ΓVNA = bΓ with |b|2 = agr. (5.1)

When using decibels, this equation rewrites as |ΓVNA|2(dB) = |b|2(dB)+|Γ|2(dB),
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with |b|2(dB) = a(dB) + gr(dB). Over larger frequency ranges, one often sees a
frequency dependence of the baseline, b = b(f), usually due to changes in a and
gr. Because Γ depends on the QD rf admittance, G, through the relations

Γ =
Zin − Z0

Zin + Z0
(5.2)

and
Zin = Rloss + iωL +

1
G + iωC

, (5.3)

our first task is to retrieve G(VG, VSD) from the reflectance map, ΓVNA(VG, VSD).
We reasonably assume that the QD admittance is purely real and we conse-

quently call it directly rf conductance. With this assumption, the rf conductance
of the QD and its dc conductance coincide3, G = dI/dVSD, like in [6, 7]. Thus, we
can plot in the plane |ΓVNA|2×G (fig. 5.3c) the pairs (|ΓVNA|2, dI/dVSD)(VG, VSD)
picked from the reflectance and the differential-conductance maps. We fit these
points4 on a theoretical curve, |ΓVNA|2(G), given by equations 5.1, 5.2, 5.3. The
fit parameters are: L, C, b(fm). The loss resistance was neglected and we justify
this choice in the appendix A. The fit reveals L = 37 nH, C = 63 fF. Therefore,
the resonance frequency of the lossless resonator is f0 = 1/(2π

√
LC) = 3.28 GHz

and its characteristic impedance is Zc =
√

L/C = 766 Ω. Also in fig. 5.3c
we build, with the help of the newly found circuit parameters, the reflectance-
conductance dependence at the resonance frequency, f0. We can see here that
ΓVNA(G, f0) has two branches: it first decreases to reach almost zero reflectance
at the matching point, G = Gmatch, then increases back for G > Gmatch.

Once we determined the ΓVNA(G) curve, we can invert the descending branch
of G(|ΓVNA|), either analytically or by means of a lookup table. This function,
applied to the reflectance map (fig. 5.3b), provides the QD rf-conductance map,
G(VG, VSD), see fig. 5.3c. This map is visibly equivalent to dI/dVSD(VG, VSD),
but has an improved resolution. This equivalence is illustrated by cuts in the two
maps (fig. 5.3e).

5.2. Noise measurement and calibration

When a dc current flows through the DUT, the current noise is transferred by
the bias tee into the rf circuit. At the end of the rf-circuit output line, we place

3Because here the rf signal, δV , is equivalent to a perturbation of the dc signal, V , one
can write δI = dI

dV
δV and conclude with G = dI/dV , i.e. the rf conductance is the

differential dc conductance. However, at GHz frequencies, the QD admittance has a priori

an imaginary part, B. If B ≪ G, then we can use G = dI/dVSD.
4For a better precision, we use an extra point (|ΓVNA|2, dI/dVSD)(VG, VSD), not belonging

to the two maps. This point is the lowest reflectance value we measured, in a QD regime
(VG, VSD) exhibiting a conductance G ≈ Gmatch close to the one matched by the LC
network.
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a signal spectrum analyzer (SSA) instead of the VNA. As opposed to the reflec-
tometry mode, in the noise measurement mode the input (“i” port in fig. 5.1a)
is not used. The simplified rf circuit is shown in fig. 5.4a.
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Figure 5.4. (a) Simplified schema for the rf circuit, in noise measurement mode. (b)
Noise transfer chain. Each square box is a multiplier. g is the total gain of the
amplifiers.

Let us calculate, from the SSA-measured noise, the spectral density of the
noise power produced by the QD. The noise power originated in the QD is trans-
ferred over the DUT, transmission lines, and microwave components to the 50-Ω
impedance of the SSA port (fig. 5.4b). A voltage transfer function is generally
defined for a two-port box, as the ratio between the output and the input voltage.
The transfer function of the DUT reads

HV (iω) =
Vac

Vnoise

and is easily calculated in this LC model to be:

HV (iω, G) =
GZ0

1 + Z0+Rloss

R
+ i ω

ω0

(
Z0+Rloss

Zc
+ Zc

R

)
+
(
i ω

ω0

)2
, (5.4)

where ω0 = 1/
√

LC is the angular resonance frequency of the lossless LC network
and R = G−1. Given that ω = 2πf , we often use the notation HV (if) instead.
This function is plotted for several QD conductance values in fig. 5.5a.
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Consequently, the voltage noise, SV = SI/G2, is transferred to the rf circuit
as HV (if, G)2SV and, after amplification, it arrives at the SSA as SSSA

V (f) =
gHV (if, G)2SV + Samp

V , where Samp
V is the voltage noise added by the amplifier.

This noise transfer chain is sketched in fig. 5.4b. The power noise spectral density
sensed by the SSA is SSSA

P = 1
Z0

|SSSA
V (f)|, where Z0 = 50 Ω is the impedance

of the SSA port. Because we measure in a frequency bandwidth BW = 50 MHz
around fm = 3.23 GHz, the value we collect is:

δP =

∫

BW

1
Z0

|SSSA
V |df =

SI

Z0
g

∫

BW

∣
∣
∣
∣

HV (if, G)
G

∣
∣
∣
∣

2

df + δP0. (5.5)

Here above, the only extra noise source considered, Samp
V , is the amplifier chain.

However, the system contains other noise sources too, e.g. thermal noise in
the lines or in the microwave components. We capture all these setup spurious
contributions in the term δP0 of eq. 5.5. δP0 is the noise power measured at zero
bias, where the lack of dc current in the DUT, as well as negligible thermal and
quantum noise, gives SI = 0. With thermal and quantum noise neglected in the
QD, SI is purely shot noise.

Extracting the noise of the QD from the measured noise power is now straight-
forward: SI = k(G) × (δP − δP0), where k(G) is the calibration coefficient:

k(G) =
Z0

g
∫

BW

∣
∣HV (if,G)

G

∣
∣
2

df
.

In fig. 5.6, we present the measured noise power, the calibration coefficient map,
and the extracted (calibrated) noise, i.e. the current noise of the QD.

In the endeavor of mapping the QD sub- and super-Poissonian noise, we com-
pare the extracted shot noise with the Poissonian reference, |2e〈I〉|, also known as
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Figure 5.5. (a) Voltage transfer function, HV (if), for several QD conductance values.
(b) Current-to-voltage transfer function, HV (if)/G, for the same QD conduc-
tance values as in (a). In both (a) and (b), the frequency domain is the range
over which the SSA is set to collect noise power.
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bandwidth of 50 MHz around the central frequency, 3.23 GHz. (b) Calibration
coefficient, k(VG, VSD), for the noise map depicted in (a). (c) Shot noise spectral
density, SI , obtained from (a) and (b).

Schottky noise. In order to use a better-resolution current map, we rebuild it from
the conductance, G = dI/dVSD, retrieved in reflectometry: I =

∫ VSD

0
G · dVSD.

Fig. 5.7ab presents the Schottky noise spectral density, |2e〈I〉|, and the excess
noise, SI − |2e〈I〉|, at the measurement frequency, fm = 3.23 GHz. In the latter,
one can already distinguish super-Poissonian noise from sub-Poissonian noise.

We finally illustrate the Fano factor the Fano factor, F = SI/|2e〈I〉|, in the
map of fig. 5.7c. Its highest values, F ≈ 8, are present in the cut VSD = −3.82 V,
plotted in fig. 5.7e.

5.3. Alternative model in reflectance fitting and noise calibration

Heretofore, the matching network we use was characterized as an LC circuit
(fig. 5.2a). The extracted parameters of the LC circuit reproduce correctly
the Γ(G, f = fm) dependence at the measurement frequency, fm = 3.23 GHz.
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Nonetheless, they fail to reproduce the frequency dependence of the reflection
coefficient, Γ(G, f), and fig. 5.9a shows this misfit.
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An LC-network model that succeeds in reproducing the frequency dependence
Γ(G, f) is the LCCf model, which consists of an LC tank circuit with a feed-
forward capacitor (Cf) in parallel with the inductor (L), see section 1.2.2. The
electrical schema of the new model is given in fig. 5.8. The impedance of the
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V
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V
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is
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Figure 5.8. Simplified schema for the rf circuit in the LCCf model, with the faulty
directional coupler producing a reflection of coefficient ǫ. The Fabry-Pérot-like
cavity is depicted as a coaxial cable with reflections at both ends (ǫ, Γ) and it
emerges between the directional coupler and the DUT.

device is now:
Zin =

1
(Rloss + iωL)−1 + iωCf

+
1

G + iωC
. (5.6)

This model manages to fit considerably better the bandwidth and depth of
the reflectance curve (fig. 5.9b). In order to also reproduce the standing-wave
background (fig. 5.9c), that shifts the |Γ|2 minima towards smaller frequencies,
we add to the model a Fabry-Pérot-like cavity of electrical length d produced by a
defect on the rf line (see section 1.3.1). The defect model successful in reproducing
our standing-wave pattern is that of an erroneous directional coupler.

The fitting procedure was applied onto a Γ(f, VSD) map (fig. 5.10a) at a fixed
gate voltage, so that the conductance, G = dI/dVSD, is known. The fitting func-
tion corresponds to eq. 1.33, multiplied with a constant baseline. In fitting, giving
more weight to a small interval around fm enforces G(ΓVNA, fm) ≈ dI/dVSD at
fm, which is important in the noise calibration precision.

The extracted fit parameters are: L = 10.2 nH, C = 66.4 fF, χ ≡ Cf/C = 2.56,
Rloss = 0.16 Ω, d = 0.84 m, and 74.3 Ω for the port impedance of the faulty
directional coupler, i.e. ǫ = 20%. It results a resonance frequency f0 = 3.24 GHz.
The effective inductance, Lf = (1 + χ)L = 36.3 nH, and the capacitance are very
close to the values obtained with the LC model.

The new circuit model gives rise to a different structure of the voltage trans-
fer function HV (iω) and to the additional transfer components Hcavity

V (iω) and
Hdircoupler

V . We calculate these transfer functions to be:

HV (iω) =
G

G + iωC + 1
Z0

1+[G+iω(C+Cf )](Rloss+iωL)
1+iωCf (Rloss+iωL)

,
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Figure 5.9. Frequency dependence of reflectance, for several conductance values. (a)
The dashed curves are built with the fit parameters obtained within the LC
model, by fitting data collected at 3.23 GHz. These “fitting” curves concord
with the data curves only around this frequency. (b) The fitting curves are
obtained within the LCCf model, from data collected in the [3.150, 3.266] GHz
range. (c) Extrapolated over a larger frequency range, the fit result from (b)
reproduces the observed standing-wave pattern. A spurious effect characterized
by deeper reflectance values at 3.38 GHz is not captured by the model.

Hcavity
V (iω) =

e−ikd

1 − δΓ(iω)e−i·2kd
,

∣
∣Hdircoupler

V

∣
∣
2

= 1 − c2 − δ2 ≈ 1 − δ2

and we plot them in fig. 5.11. We observe that the power transfer in the LCCf

model is reduced, compared with the LC model, in a fraction of the measurement
interval. Hence, noise calibration reveals a higher Fano factor than in the LC
model (maxima up to +50%, while F ≈ 1 values do not change), as selectively
shown in fig. 5.12.

5.3.1. Which model is better?

Both the LC and the LCCf model presented above are variants of a π model of a
planar spiral coil [9]. Connected to our measurement setup, the left capacitor in
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Figure 5.11. (a) Voltage transfer function of the “defect”, Hdefect
V =
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function, from the QD to the output port of the directional coupler (solid
curves). Dashed curves: voltage transfer function of the DUT only. (c)
Current-to-voltage transfer function, HV (if)/G, from the QD to the output
port of the directional coupler.

fig. 5.13 experiences relatively high losses due to the parallel resistor Z0 = 50 Ω
that the setup transmission lines embody. With this capacitor neglected, it is
now easy to visualize the two variants: LC for Cf = 0 and LCCf for Cf > 0.

Technically, the LC model is easier to utilize, because it involves less fit pa-
rameters. However, it introduces inexactness in the extracted shot noise, through
the voltage transfer function.

Physically, the LCCf model is more precise. However, it is not accurate enough
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Figure 5.13. The π model of a spiral planar coil contains two lateral shunt capacitors
(C and C in the symmetric version) and a feed-forward capacitor (Cf).

in the presence of a frequency-dependent background. Hence, the standing-wave
pattern seemingly produced by the faulty directional coupler necessitates a fur-
ther extension of the model, thus more fit parameters. In consequence, fitting
is more unstable—relatively to the initial guess or to local domains of apparent
convergence.

Although the combination of the LCCf model and the proper microwave defect
model do produce a preciser fit, the noise calibration initially obtained with the
LC model is still qualitatively valid. Although the quantitative results have
different scales, Poissonian noise (F = 1) is retrieved by both methods in the
same places. Therefore, it is not wrong to further analyze the data processed
with the LC model.
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6 Blocking States in Quantum Dots

The remarkable features of our data, presented in the previous chapter, are com-
binations of super-Poissonian noise with:

• relatively high conductance, inside several Coulomb diamonds (e.g. the
first and fifth diamonds in the charge stability diagrams of the previous
chapter, see figures 5.3d and 5.7d) or

• relatively low conductance, in the vicinity of a Coulomb diamond (e.g. the
fourth and sixth diamonds in the same charge stability diagrams), often
delimited by segments of negative differential conductance.

This chapter presents the analysis of these two categories. Both analyzed cases
highlight quantum dot transport mechanisms involving blocking states. Such a
state is one in which the QD is trapped; when a QD is in a blocking state, the
electric current is switched off.

The analysis is supported by numerical simulations using a master equation ap-
proach in the framework of full counting statistics. The closing section discusses
the overlap between super-Poissonian noise and negative differential conductance.

6.1. Data investigation supported by numerical simulations

The analysis presented in this section is published in our Physical Review B
article [66]. In addition, we detail how blocking is lifted.

6.1.1. Data selection

First, we pick out data candidates for analyzing the two evoked categories. The
study candidate for the first category is the first Coulomb diamond (CD) in
fig. 5.3 and fig. 5.7, as it exhibits the highest Fano factor values. The study
candidate for the second category could have been either the fourth or the sixth
CD, but we eventually utilized the data of a supplemental measurement carried
out in our group1 (see appendix B), due to a better contrast in noise and negative
differential conductance (figures 6.1f,h). Therefore, we further refer to the first
candidate as device A and to the second candidate as device B.

1This related measurement was effectuated by Roy Haller and Vishal Ranjan.
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6. Blocking States in Quantum Dots

The data of device A are plotted in figures 6.1a-e. Specifically, fig. 6.1a shows
the differential conductance, as a function of bias voltage, VSD, and side gate
voltage, VG. Fig. 6.1b depicts the noise spectral density reference, SPoisson =
|2e〈I〉|. This reference is calculated by scaling the measured current 〈I〉 with 2e.
Fig. 6.1c presents the measured noise spectral density, SI , of the QD. Further, the
enhanced noise is illustrated in two ways: the QD excess noise, SEP

I = SI −|2e〈I〉|,
appears in fig. 6.1d and the Fano factor, F = SI/|2e〈I〉|, is mapped in fig. 6.1e.

Analogously, the data of device B are plotted in figures 6.1f-j.
Guides for the eyes highlight the main lines of the differential conductance

maps. Both measurements show Coulomb diamonds, from the height of which
we extract a charging energy of Uc ≈ 15 meV (device A) and Uc ≈ 20 meV
(device B). The diamonds are labeled with the electron occupation number (e.g.
N). Current through QDs usually consists of sequences in which one electron
tunnels from a lead into the dot, increasing N by one, then tunnels out to the
other lead, decreasing the charge of the QD—that is sequential tunneling. Each
such electron hopping is called a first-order tunneling event. Inside the diamonds,
as first-order tunneling is prohibited, the system is in Coulomb blockade.

Outside the diamonds, the blockade is lifted. Also here, the conductance plots
exhibit high-G lines starting at a finite bias: about 5 mV (device A) and approx-
imately 2 mV, 8 mV (device B). These lines originate from excited states at a
fixed electronic occupation and their threshold bias corresponds to the excitation
energy, provided by the bias voltage: |eVSD| = ∆0,1. We designate excited states
with a star superscript, e.g. |N∗〉. Therefore, ∆0 ≈ 5 meV for state |N∗〉 in
device A and ∆0 ≈ 2 meV, ∆1 ≈ 8 meV for states |N∗〉, |(N + 1)∗〉 in device B.

We now focus on device A. Inside Coulomb diamond N , in the absence of
first-order tunneling, a low current still flows due to second-order tunneling (i.e.
cotunneling). Cotunneling means that one charge passes coherently, in one event,
through both tunnel barriers of the QD. In this process, the charge state of the
QD is preserved. Elastic cotunneling does not change the final state of the QD
and is possible at any value of the bias voltage. In contrast, inelastic cotunneling
(IEC) alters the QD state, e.g. N → N∗, the needed energy being provided by the
bias voltage, |eVSD| ≥ ∆0. Here, because we observe a conductance increase at
the excitation bias, |eVSD| = ∆0 (fig. 6.1a), the crucial role is played by IEC. The
IEC regime inside the Coulomb diamond appears also in the noise-related maps
(fig. 6.1c-e), with a strong Fano factor enhancement of up to F ≈ 8. Outside the
Coulomb diamond, below the excited state lines one observes mostly 0.5 < F < 1,
as it is expected for transport in a double tunnel barrier [7, 61].

In the case of device B, the same Coulomb diamond inner structure can be
observed as in device A, but the increase of conductance due to IEC is weaker.
Another difference is the very pronounced line of negative differential conduc-
tance (NDC) starting from the Coulomb diamond N and here depicted in blue.
While typically the current rises when the absolute bias voltage increases and a
transition enters the bias window, as in device A, here the current is suppressed.
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Figure 6.2. (a) Energy levels in the considered model, with transitions marked as
arrows. (b) QD transitions represented as electrochemical-potential levels, whose
positions are determined by the lengths of the transition arrows in (a). (c)
Schematic stability diagram with relevant transitions. Positive- (negative-) slope
lines depict resonances of the source (drain) Fermi level with the QD levels
depicted in (b). The dashed arrows are excited lines.

However, the NDC ridge is confined to a segment, between the Coulomb diamond
edge and a parallel line of high conductance. Regarding the noise produced in
device B, the striking feature is the enhanced F ≈ 6 just outside Coulomb dia-
mond N , at negative bias. By comparing the the conductance and Fano factor
maps, one can see that this region of enhanced noise is a band bordered by the
NDC ridge and parallel to the Coulomb diamond edge.

To summarize, our two key findings are: (i) in device A, strongly super-
Poissonian noise inside the Coulomb blockade, above a threshold voltage de-
termined by an excited state and (ii) in device B, strongly super-Poissonian noise
outside the Coulomb blockade, involving excited states. The origin of these two
findings will be detailed in the following.

6.1.2. Model

In this section, we detail a simple model for our QDs, similar to the model used in
ref. [67], and show how it is projected onto electrochemical-potential diagrams and
further onto charge stability diagrams. Lastly, we place transport mechanisms
on the stability diagram.

The QD is described by a spinless model, with states labeled by the electronic
occupation number:

|N − 1〉, |N〉, |N∗〉, |N + 1〉, |(N + 1)∗〉. (6.1)

The star superscript denotes an excited state, e.g. |N〉 is a ground state, |N∗〉
is an excited state, and both states have N electrons. The corresponding QD
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energies are:

EN−1 = 0, (6.2)

EN = ǫ0, EN∗ = ǫ0 + ∆0, (6.3)

EN+1 = 2ǫ0 + Uc, E(N+1)∗ = 2ǫ0 + Uc + ∆1, (6.4)

where ǫ0 is the kinetic and confinement energy of an additional charge and Uc is
the charging energy for double occupancy. The excitation energies ∆0 and ∆1,
differ from each other by virtue of many-body effects, are free parameters in our
model.

Fig. 6.2a illustrates the energy levels (horizontal lines) and possible transitions
between them. We order these transitions like in fig. 2.6 of chapter 2. The
result of their ordering is fig. 6.2b, showing the chemical-potential diagram of
the QD. The transitions pictured in a chemical-potential diagram are involved in
tunneling; not drawn here, the internal excitation or relaxation are transitions
between same-charge states, that do not involve tunneling.

Depicting transitions in a charge stability diagram is the aim of fig. 6.2c. Here,
we remind the significance of various lines in the (VG, VSD) maps. Remark first
the N -labeled Coulomb diamond. The underlying lines of this diamond’s edges
correspond to transitions to and from state |N〉: the left (right) edges represent
transitions between |N〉 and |N − 1〉 (|N + 1〉). All sketched lines mark the
alignment (resonance) of a chemical potential (fig. 6.2b) with the Fermi level of
a lead: positive-slope lines indicate resonance with source, negative-slope lines
indicate resonance with drain, as further exemplified in fig. 6.2e. Line graphic
styles in fig. 6.2c are replicated from corresponding transitions in fig. 6.2b.

Before placing significant transport mechanisms on the stability diagram, we
define several distinct regions delimited by excited lines, i.e. dashed lines, corre-
sponding to transitions that involve the excited state |N∗〉. The typical excited
lines are the lead-resonant N ± 1 ↔ N∗ transitions. Outside the Coulomb dia-
mond, they start at voltage biases |eVSD| = ∆0. Inside the diamond, together
with the horizontal line |e|VSD = −∆0, the excited lines form the regions II, II’,
III [55].

A particular excited line in fig. 6.2c is the purple one below diamond N . It
corresponds to the source-resonant N∗ ↔ (N + 1)∗ transition. This excited line,
together with its neighboring gray and blue excited lines, define below diamond
N the regions X, Y, Z. One can establish that the right corner of X is situated at
a bias |e|VSD = −∆1. Indeed, in the charge stability diagram, two lines intersect
at a bias given by their level difference in fig. 6.2b.

According to chapter 2, regions II and III exhibit cotunneling-assisted sequential
tunneling (COSET) [55]. Indeed, they allow sequential tunneling because in the
cone of transition N∗ ↔ N +1. Moreover, the excited state |N∗〉, depopulated
by relaxation, is repopulated at a strong enough rate by inelastic cotunneling,

IEC. Detailed in fig. 2.8c,d, IEC is concisely denoted as N
N±1−→ N∗. Between
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an IEC event and relaxation, the sequence undergone here by the QD state is
N∗ → N +1 → N∗ → N +1 → ... A similar reasoning can be done for regions II’
and III. The regions II+III and II’+III, as well as their counterparts in positive
bias, are COSET bands.

Region X, entirely laid under the cone of the lead-resonant N ↔ N +1 full
black lines, is another example of domain with possible sequential tunneling.

6.1.3. Interpretation

N*→N+1

II

N-1←N
N-1→N*

N+1 N* N
ex.
relax.

Γ
N→N*
SD

Γ
N+1→N*
D

Γ
N+1→N
D

Γ
N*→N+1
S

S DS D

N*←N+1

S D

N←N+1

S D

blocking

state

Figure 6.3. Quantum state graph with associated electrochemical-potential diagrams,
for device A, region II. The gray rectangles in tunnel barriers stand for weaker
tunneling via the neighboring transition. |N〉 is a blocking state, from which
the quantum dot can escape only by low-rate processes (inelastic cotunneling in
the second diagram; excitation). Elastic cotunneling is not displayed. In the
bottom-right chemical-potential diagram, tunneling into S is equally possible.

We further investigate our noise data within the model, by looking for transi-
tions through which tunneling is relatively weak. These may indicate a delayed-
escape path from a reachable state. Such a particular state is referred below as
a blocking state.

First, we match the large-Fano-factor data of the two devices onto labeled
regions of fig. 6.2d. For device A, we expect inside diamond N the existence of
regions II, II’, III. For device B, we argue that the band below diamond N is
region X. The involved processes are summarized in Figs. 6.3 and 6.4.
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Inside the Coulomb diamond N of device A, IEC triangles are indicated by cur-
rent and by differential-conductance lines (fig. 6.1b,a). The triangles are entirely
covered by the COSET sidebands, composed by regions II, II’, III. Hence, both
IEC and sequential tunneling are present. Fig. 6.3 specifically illustrates that

IEC breaks the blockade (N
N±1−→ N∗, red arrow), being followed by sequential

tunneling (N∗ S→ N +1
D→ N∗ S→ etc., orange and blue arrows). The transport

sequence is interrupted by spontaneous relaxation (wavy gray arrow) or by the
N + 1 → N transition (green arrow), both resulting in a return to the blocking
state, |N〉. Because cotunneling is a second-order process, the IEC rate, ΓSD

N→N∗ ,
is relatively weak, hence the blocking time is relatively long. Thus, electronic-flow
periods alternate with zero-current periods, implying telegraphic transport, i.e.
augmented noise. This is indeed what the Fano factor map (fig. 6.1e) reveals. We
stress here that the relaxation rate (wavy gray arrow) should be lower than the
sequential-tunneling rates (orange and blue arrows) in order allow alternation of
current and blocking periods, i.e. super-Poissonian noise.

Therefore, for device A we have pointed out a blocking state, |N〉, connected
to other QD states by a low-rate tunneling process, IEC. The IEC rate is usually
weak enough to assure an increased Fano factor. In the simple case of all-identical
tunneling couplings, and zero relaxation rate, a theoretical value F = 2 is pre-
dicted [67]. Furthermore, F can be substantially boosted by reducing the IEC
rate, e.g. when weakening the tunneling via transitions involved in IEC. The
slower IEC escape keeps the QD in the blocking state a longer time and thus in-
creases the transport telegraphicity. Impeded tunneling, resulting in rarer IEC, is
graphically suggested in the chemical-potential diagrams of fig. 6.3 by gray rect-
angles in the two tunnel barriers, at the heights of the N ↔ N ± 1 transitions.

Device B exhibits its highest Fano factor below diamond N , in a range that we
will show corresponds to region X. The bias window of this region contains two
transitions, N∗ → N + 1 and N → N + 1 (see the chemical-potential diagrams
in fig. 6.4X). Like for the other device, we explain, by means of a blocking state,
the telegraphic transport signaled by the strong Fano factor. For that, we can
suppose that one of the tunneling rates shown in the graph is weak. We assume
for the moment that tunneling from source via transition N∗ → N + 1 is slow.
Provided that the relaxation of |N∗〉 is slower or of same order, |N∗〉 becomes a
blocking state. Leaving the blocking state through the transition N∗ → N +1
(magenta arrow) or through relaxation (gray arrow) triggers sequential tunneling

(the transport sequence N+1
D→ N

S→ N+1
D→ etc., suggested by orange and blue

arrows), ended when the systems falls back into |N∗〉. As opposed to COSET,
the escape path to transport is not a second-order process (IEC), but a weakly
lead-coupled tunneling event or internal relaxation. Because the blocking state is
due to the weakly coupled tunneling, we are naming this phenomenon sequential
tunneling intermitted by weak coupling, SETWEC. As in COSET, the telegraphic
character of the transport induces an enhanced Fano factor.
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Figure 6.4. Quantum state graph with associated electrochemical-potential diagrams,
for device B, regions X and Z. (X) |N∗〉 is a blocking state if the main escape
process, namely tunneling from S via transition N∗ → N +1, is hindered (marked
with a gray rectangle in the tunnel barrier). Cotunneling transitions are not
displayed. (Z) In device B, region Z, an extra transition level enters the bias
window, opening a high-rate escape path from state |N∗〉. This transition, N∗ ↔
(N + 1)∗ (orange and cyan arrows), is a SET channel. Hence, blocking is lifted.

We now justify for device B the choice of lowering ΓS
N∗,N+1, over the other three

options in the quantum state graph. For example, if ΓD
N∗,N+1 were chosen, then

the QD would not have a blocking state2 (indeed, it would not stay in |N + 1〉,

2Nonetheless, were the rate ΓD
N∗,N+1

weak, a high-F band would rather appear in the
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but would oscillate between |N + 1〉 and |N〉). A similar situation would occur
if ΓD

N,N+1 were lowered. However, if ΓS
N,N+1 were chosen instead, the QD would

have |N〉 as a blocking state, instead of |N∗〉. This statement can immediately be
explained by the symmetry of N and N∗ in the graph of the QD states (fig. 6.4X).
The difference between the two candidates is the transition that lifts the blocking
state if entering the bias window: |N (∗)〉 is lifted by a transition from this state,
namely the source-resonant N (∗) → (N +1)∗. This transition is also the bottom-
right edge of the high-F band. Our choice, leading to the edge N∗ → (N + 1)∗,
is therefore the correct one. We remind that the right corner of region X and
that of the measured high-F band are the same bias, |e|VSD = −∆1.

Lifting of the blocking state

We extend the discussion over the blocking state in device B, by analyzing where
it is lifted.3 in general, blocking is due to the low rate of the escape paths from a
certain state. Adding a high-rate escape path, through e.g. a new transition level
in the bias window, is logically expected to lift blocking. The SETWEC region
of device B lies between the Coulomb diamond and a region of sub-Poissonian
noise—region Z. The noise level of region Z indicates that the blocking is lifted.
We schematize the new transport processes of this region in fig. 6.4Z. We show
that the extra transition involves the initially blocking state, |N∗〉, and the ex-
cited state of the next diamond, |(N + 1)∗〉. Thanks to it, an alternative es-
cape path from |N∗〉 is available. Moreover, the new transition allows sequential
tunneling and thus reestablishes transport through the QD. Further numerical
simulations confirm this interpretation.

We retain that the SETWEC band apposed to a Coulomb diamond (CD) is
delimited by the next available line involving the blocking state. The next chapter
will detail a similar finding, but in the case of COSET.

Occurrence of negative differential conductance

Subsequently, we discuss qualitatively the presence of the differential conductance
at some boundaries of the studied regions. For device A, we place ourselves in
region II. If the bias voltage increases such that transition N ↔ N + 1 enters
the bias window, one goes outside region II, across the Coulomb diamond edge.
In consequence, the quantum state graph (fig. 6.3) gains one arrow, from |N〉 to
|N +1〉. The electronic transport consists now not only of rare cotunneling events
(e.g. N → N∗, red arrow) and sequential tunneling through level N∗ ↔ N + 1
(loop of orange and cyan arrows), but also sequential tunneling through level
N ↔ N + 1 (loop formed by the green arrow and the newly added arrow).
The orange-cyan loop is faster than the new loop because of higher tunneling

positive-bias domain.
3Credits go to Roy Haller and Gergő Fülöp, with whom I analyzed blocking states.
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rates; indeed, transition N∗ ↔ N + 1 is more strongly connected to leads than
N ↔ N + 1. If including the latter in the bias window would only result in
the replacement of some faster sequences by slower sequences, then the current
would diminish (and the Coulomb diamond edge would exhibit NDC). However,
below region II, current grows (meaning positive differential conductance on the
Coulomb diamond edge) because access to the fast, orange-cyan loop solidly
increases: in region II, this access is granted by inelastic cotunneling (red arrow)
and excitation; below region II, it is substantially raised by transition N → N +1.

For device B, transport in region X (fig. 6.4) is carried by fast and slow tunnel-
ing sequences (orange-cyan and green-red loops, respectively). If the bias voltage
decreases such that the weakly coupled transition, N∗ → N + 1, exits the bias
window, only the fast, orange-cyan loop remains in the quantum state graph.
Hence, each slow tunneling sequence is substituted by several fast sequences.
Therefore, the bias voltage decrease results in a current increase, synonym to
NDC on the crossed boundary of region X. In a charge stability diagram, this
boundary is the line given by the resonance between level N∗ → N + 1 and the
drain. If the weakly coupled transition were N → N + 1 instead of N∗ → N + 1,
then the NDC line candidate would be a different boundary of region X, namely
the Coulomb diamond edge; yet, NDC would not occur here, for reasons exposed
for device A, region II.

6.1.4. Numerical simulations

In order to validate our interpretations, we run numerical simulations. To cal-
culate the conductance and the current noise, we employ the master equation
approach developed in ref. [67]. The master equation describes transitions be-
tween the QD states due to (a) first- and second-order tunneling trough the
barriers of the QD and (b) internal relaxation and excitation. The transition
rates can be found in [67].

For both devices, we simulate three Coulomb diamonds, labeled again as N −1,
N , and N + 1. The charging energy is Uc = 1 meV. We set the temperature
kBT = 4 · 10−3 Uc. The maximal tunneling rate is symmetrically chosen, ΓS =
ΓD = Γ0 = 10−3 Uc/~. (A tunneling rate through lead α is proportional to Γα;
a cotunneling rate is proportional to ΓSΓD.) Tunneling rates are also related to
tunneling amplitudes. If tα

N,M is the amplitude of tunneling from lead α into
the QD, such that the QD state undergoes the transition N → M (see formal
definition in appendix C), then the corresponding tunneling rate is:

Γα
N→M ∝ Γα|tα

N,M |2. (6.5)

The relaxation rates are 10−3 Γ0, unless specified. The excitation rates, pro-
portional to the respective relaxation rates, are described by the Bose-Einstein
distribution function.
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To reproduce the essential features of our data, our calculation utilizes a min-
imal number of states and a small number of distinct tunneling amplitudes. A
more detailed reproduction can be further obtained with more parameters.
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For the simulation of device A (fig. 6.5a-e), an excited state is introduced at
∆0 = 0.35 · Uc above the ground state |N〉. We weaken tunneling for ground-
state transitions (tS|D

N,N±1 = 0.33, while all other t amplitudes are 1) to obtain high
Fano factor values, F > 8, inside Coulomb diamond N at absolute bias voltages
greater than ∆0/|e|. The maximal value of F is therefore in good agreement with
the measurement. The simplicity of the tunneling amplitude set of values wipes
out only some nuances of the measured data.

For the simulation of device B (fig. 6.5f-j), an excited state is defined at ∆0 =
0.15 · Uc above the ground state |N〉 and another one at ∆1 = 0.35 · Uc above
the ground state |N + 1〉. By relatively weakening the source-QD tunneling via
transition N∗ ↔ N +1 (tS

N∗,N+1 = 0.1, versus tD
N∗,N+1 = 0.4), an enhanced Fano

factor region appears beneath the N diamond and an NDC line sets in at the
top of this region, exactly as in the measurement. The emerged high-F band,
labeled X, has its rightmost corner placed at VSD = −∆1/|e| and its southeastern
edge situated between diamond N and the excited line N ↔ (N + 1)∗; the only
transition corresponding to this position is, like in our interpretation, N∗ ↔
(N + 1)∗. We note that without including the excited state (N + 1)∗ in the
model, this escape process is absent and region X extends infinitely, as shown in
[67]. Further parameters were tuned in the calculation for the secondary purpose
of reducing the conductance of the excited line N ↔ (N + 1)∗ resonant with the
source: tS

N,(N+1)∗ = 0.1.
Obtaining Fano factor values beyond certain thresholds is not possible without

an extra ingredient, on which we elaborate here. As derived in ref. [32], the Fano
factor of the super-Poissonian noise in a telegraphic system is described by the
expression

F = 1 + 2〈n〉P 2
off , (6.6)

where 〈n〉 is the average number of electrons in a sequential-tunneling bunch and
Poff the occupation probability of the blocking state. A simple analysis, done
in the absence of internal relaxation and excitation, is presented in section 6.2.
It shows that a higher Poff is produced when the blocking-state escape rate is
lower than the other tunneling rates. Poff approaches 1 in the case of a strongly
blocking state. The additional ingredient, 〈n〉, is given by the relative strength
of the tunneling path that keeps the current on. Concretely, we demonstrate
that 〈n〉 is the ratio of the rates illustrated by the cyan and the green arrow
respectively (Figs. 6.3, 6.4). With all tunneling rates equal except for the escape
path, Eq. 6.6 leads to F ≤ 3. A simulation of device B confirms the limit F ≃ 3
in the special case Poff ≃ 1 (namely, when tunneling out of the blocking state is
extremely low). Our general calculations do reach Fano factors above 3 because
of the risen number of charges in a bunch, caused by the tunneling imbalances
tD
N∗,N+1/t

S|D
N,N+1 = 1 : 0.33 (device A) and tD

N,N+1/tD
N∗,N+1 = 1 : 0.4 (device B).
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6.1.5. Conclusions

We identify Fano factor corresponding to markedly super-Poissonian noise in two
devices. We propose a model which allows to explain the observed F > 1 regions
in a consistent way. In the exposure of the underlying quantum transport pro-
cesses, we show that the concept of blocking state is central in the occurrence of
enhanced noise. Escaping the blocking state leads to electronic flow for a cer-
tain time, until the system falls back into the blocking state. This gives rise to
a telegraphic pattern of charge transport, consisting of a random set of charge
packages, which determines the enhanced Fano factor. We have identified and
proven two mechanisms that can generate telegraphic transport: (i) In COSET
(cotunneling-assisted electron tunneling) the blocking state is the ground state
of the Coulomb blockade and can be left by cotunneling. If it is fled to an ex-
cited state, a transport channel may open. (ii) Outside the Coulomb blockade,
when the bias window contains two coupled transitions involving the same charge
states, e.g. N ↔ N +1 and N∗ ↔ N +1. If one state, e.g. |N∗〉, is weakly cou-
pled, then it becomes a blocking state, causing again telegraphic transport. We
term this process sequential tunneling intermitted by weak coupling (SETWEC).
SETWEC can be accompanied by negative differential conductance.

6.2. Telegraphicity, enhanced noise and negative differential

conductance

Here, we first explore a quantitative link between telegraphicity and enhanced
noise, applicable to the two-level system we analyzed outside the Coulomb di-
amond. Second, we study the overlap of super-Poissonian noise and negative
differential conductance, when a loosely coupled chemical-potential level enters
the bias window.

6.2.1. Telegraphic transport and Fano factor4

The Fano factor in the telegraphic picture can be written as F = 1+2〈n〉P 2
off [32].

Here we apply this formula to a specific case and derive expressions for its two
ingredients: the probability of the QD to be off, Poff , and the average number of
electrons in a bunch, 〈n〉. A bunch is a package of charge carriers that flow one
by one through the QD. The QD is considered to be off when no bunch is flowing
through.

We evaluate a QD with states |N〉, |N∗〉, |N + 1〉 and transition rates γ1,2,3,4, as
shown in fig. 6.6. This is a simplified model of device B in region X (compare with
fig. 6.4). We assume that the transport is unidirectional, i.e. the QD is always
filled from the source electrode, and emptied into the drain. This is ensured by the

4This subsection is part of our Physical Review B article [66].
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Figure 6.6. Graph of quantum states for a QD that exhibits telegraphic transport.
While the QD oscillates in the left loop (N + 1 ↔ N), the current is switched
on and an average number of 〈n〉 electrons tunnel sequentially from source into
the QD and farther into the drain. |N∗〉 is the blocking state. Cotunneling and
internal excitation and relaxation are not taken into account.

bias voltage. The QD exhibits telegraphic transport if, for instance, the escape
rate from state |N∗〉 is much lower than the rates in the left loop (N + 1 ↔ N).
We formulate a master equation for the probabilities pj to be in state |j〉:

d

dt

(
pN

pN∗

pN+1

)

=

(−γ1 0 γ4

0 −γ3 γ2

γ1 γ3 −γ2 − γ4

)(
pN

pN∗

pN+1

)

. (6.7)

By solving the master equation in the steady state, dp/dt = 0, we find the
occupation probability of state |N∗〉:

pN∗ =
γ1γ2

γ1γ2 + (γ1 + γ4)γ3
. (6.8)

For an escape rate much smaller than the falling rate, γ3 ≪ γ2, the off state of the
system is equivalent to being in the blocking state: Poff = pN∗ . Eq. 6.8 already
shows that a bigger Poff = pN∗ is produced by smaller values of the escape rate,
γ3. With γ3 ≪ γ2 and γ4 . γ1, one gets

Poff ≃ 1 − γ4

γ1

γ3

γ2
≃ 1. (6.9)

In this limit, essentially the number of electrons in a bunch, 〈n〉, determines Fano
factor.

The average number of electrons in one bunch is

〈n〉 =
γ4

γ2
(6.10)

and can be derived as follows: In state |N + 1〉, the probability to fall in the
blocking state, |N∗〉, is pb = γ2/(γ2 +γ4), while the probability to go to state |N〉
is p̃b ≡ 1 − pb. Therefore, the probability that n electrons sequentially tunnel be-
fore blocking is P (n) = p̃n

b pb. The average number of electrons in the sequential-
tunneling bunch, 〈n〉 =

∑∞

n=0
nP (n) = pb∂p̃b

∑∞

n=0
p̃n

b = p̃b/pb = γ4/γ2, reads as
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in Eq. 6.10. In this analysis, the electron that tunnels into the QD and switches it
on (N∗ → N + 1) is not considered to belong to the consequent bunch. In conclu-
sion, under the condition of slow escape from a blocking state, super-Poissonian
noise can still substantially grow from the imbalance of tunneling rates related
to the pre-blocking state, |N + 1〉.

A limit case arises when tunneling out of |N + 1〉 is balanced: γ4 = γ2. In this
situation, super-Poissonian noise is characterized by a Fano factor F = 1+2P 2

off ≤
3. If in addition γ3/γ2 → 0, then F → 3.

A similar analysis can be done for a QD described by the state graph of fig. 6.3,
in the absence of cotunneling and internal excitation and relaxation.

6.2.2. F versus NDC

The question arises if negative differential conductance (NDC) always implies
super-Poissonian noise, F > 1. To answer this question, we consider a quantum
dot with two electro-chemical potential levels, e.g. N ↔ N + 1 and N∗ ↔ N + 1.
When both levels are in the bias window, the state graph of the QD is the one
pictured by fig. 6.6. When only the N ↔ N + 1 transition is in the bias window,
the state graph contains only the left loop of fig. 6.6. We redraw these two
situations in fig. 6.7. For simplification, we neglect cotunneling, excitation and
relaxation; we consider constant tunneling rates.

N+1N

γ
1

γ
4

N+1 N*N

γ
1

γ
2

γ
4

γ
3

S D

N ↔ N+1

N* ↔ N+1

S D

N ↔ N+1

(b)

(a)

Γ
14

Figure 6.7. Comparison of two bias voltage regimes that differ by one transition level
in the bias window. (a) Chemical-potential diagram and state graph for a QD
with only one available transition. (b) Chemical-potential diagram and state
graph for a QD with two available transitions. The extra transition level enters
the bias window due to a bias increase: |V b

SD| > |V a
SD|.
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NDC emergence

Negative differential conductance occurs if, although the bias increased to include
a new transition, the electric current decreases:

|Ib| < |Ia|. (6.11)

The current through the QD can be expressed by looking at the flow through one
lead, e.g. the source (S):

|Ia| = pN γ1|e| or |Ib| = (pN γ1 + pN∗ γ3)|e|,

with pj the occupation probability of state |j〉. The probabilities pj in the two
cases (a and b) can be calculated with master equations. The stationary flow in
the one-level case is described by (see graph in fig. 6.7a) pN γ1 = pN+1γ4, with
pN + pN+1 = 1. Therefore,

|Ia| =
γ1γ4

γ1 + γ4
|e| = Γ14|e|. (6.12)

Γ−1
14 ≡ γ−1

1 + γ−1
4 is the average time that an electron spends in the one-level QD

of fig. 6.7; Γ14 is the rate at which one electron is transferred between leads.
The two-level case involves the probabilities given by eq. 6.7 and its corre-

sponding current reads:

|Ib| = γ1γ3
γ2 + γ4

γ1γ2 + γ3γ4 + γ1γ3
|e|. (6.13)

The regime of negative differential conductance is therefore equivalent, by virtue
of relations 6.11, 6.12, 6.13, to the inequality:

γ3 <
γ1γ4

γ1 + γ4
= Γ14. (6.14)

Interestingly, the falling rate, γ2, is not involved in the NDC emergence.
This is a general result in the sense that NDC occurs if and only if the so-called

escape rate of the newly included transition is lower than the rate at which an
electron was transferred between leads. In terms of time, NDC appears only when
the average escape time is larger than the average time spent by the electron in
the one-level QD.

If the first level is symmetrically coupled, γ1 = γ4 = γ, then one deduces from
eq. 6.14 that NDC arises from an escape rate

γ3 <
γ

2
. (6.15)
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Rate imbalance and F

It is known that the Fano factor, F , of a one-level system lies between 1/2 and
1 (see chapter 3). Adding one level to the QD changes F . We use full counting
statistics to calculate the Fano factor of a two-level QD, for a convenient range
of the escape rate, γ3. We plot the calculated F and investigate where super-
Poissonian noise, F > 1, arises.

We choose to work in the limit γ1 = γ4 ≡ γ, i.e. before the addition of
the new transition, the bias window contains only one transition, N ↔ N + 1,
symmetrically coupled to leads (see fig. 6.7). We define the escape rate and the
falling rate in relation to γ:

γ3 =
γ

m
and γ2 =

γ

n
.

As stated above (ineq. 6.15), NDC exists only at m > 2. The dependence
F (m) plotted in fig. 6.8 shows that super-Poissonian noise emerges in a more
restrictive domain of m. We analyze two cases of falling rates:

10-3 10-2 10-1

10-2 10-110 102 103 10 102
m=γ/γ

3

(γ
2
=γ)

m=γ/γ
3

(γ
2
=γ

3
)

0.5

1.5

1

13
2 2

2.5

2.0

3.0

F

0.5

5

10

F(b)(a)

Figure 6.8. The Fano factor as function of the normalized escape time, m = γ/γ3,
where γ is the tunneling rate in the symmetrically coupled first transition. The
red part of the curve indicates the NDC domain. (a) F (m) for the fixed falling
rate γ2 = γ, that is n = 1, in a linear-log plane. (b) F (m) for a falling rate, γ2,
equal to the escape rate, i.e. n = m. The curve lies in a log-log plane.

• n=1 (from state |N + 1〉, the QD goes with equal probability into |N〉 and
|N∗〉), illustrated in fig. 6.8a. Super-Poissonian noise sets in at m = 3 (i.e.
the escape rate from state |N∗〉 is γ/3). At a very slow escape (m ≥ 1), the
Fano factor goes asymptotically to 3, as predicted by eq. 6.6 and discussed
in subsection 6.2.1.

• n=m (falling into the new state, |N∗〉, is as likely as escaping from it),
illustrated in fig. 6.8b. Super-Poissonian noise emerges at 3 < m < 4
and the Fano factor is not bound at very low escape rates. The curve is

6
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symmetric in logarithmic scale because at high escape rates (m < 1), |N〉
and |N∗〉 swap places, i.e. the role of blocking state is taken by |N〉.

In conclusion, not only do NDC and super-Poissonian noise not exactly overlap,
but they can also occur independently.

6

79





7 Cotunneling outside Coulomb Diamonds

This shorter chapter, built on foundations lied by chapter 6, analyzes a COSET-
like triangle that overflows outside the Coulomb diamond (CD). Consider the
second CD of our measurement (figures 5.3d, 5.7d), replotted here in the noise
map fig. 7.1a. Let us employ again the label N + 1 for this diamond. Its upper
inelastic-cotunneling (IEC) triangle is not delimited, on the left side, by the
diamond edge, as it is often the case with other diamonds (e.g. the first diamond,
N). This means that the transition N ↔ N + 1, when source-resonant or in the
bias window, does not offer an alternative, high-rated escape path from |N + 1〉,
the blocking state of diamond N + 1. Hence, the additional escape path on and

beyond the discussed diamond edge, N +1
S→ N , is also very low-rated. In terms

of tunneling amplitudes, this reads:
∣
∣tS

N+1→N

∣
∣ ∼
∣
∣tDS

N+1→(N+1)∗

∣
∣ , (7.1)

where the last amplitude characterizes IEC in diamond N +1 and is relatively low
because it describes a a second-order process. We say that the source-resonant
line N ↔ N + 1 is weak, or weakly coupled.

With the above conclusion, one can try to qualitatively reproduce the data
by way of numerical simulations based on full counting statistics (FCS), like in
chapter 6. The result of such a simulation is presented in fig. 7.1b, for tS

N↔N+1 =
0.04 and one excited state per diamond (|N∗〉, |(N + 1)∗〉). We can see not only
the data-like IEC-triangle overflow from diamond N +1, but also an IEC-triangle
overflow from diamond N across the same weakened line, in the negative bias.
In the following, we show how this situation can be transformed into one similar
to the measurement.

First, we observe where COSET-related blocking is lifted. Here, blocking does
not disappear when crossing the source-resonant ground state line (the diamond
edge), since we have weakened it. It is lifted beyond the first resonant line that
involves the COSET blocking state (the blocking state in a COSET triangle of
diamond M is |M〉):

• source-resonant line N∗ ↔ N + 1 lifts the blocking related to overflown
COSET triangle N + 1;

• source-resonant line N ↔ (N + 1)∗ lifts the blocking related to simulated
overflown COSET triangle N ;
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Figure 7.1. (a) Fano factor data for the first two Coulomb diamonds of the measure-
ment. Added guide lines are drawn over the diamond edges and several excited
lines. The bottom of the overflowing IEC triangle is indicated with a dashed
segment. (b) Fano factor FCS simulation of two diamonds with excited lines,
for a very low source-coupling (tS) of the ground state transition N ↔ N + 1.
Several lead-resonant lines are indicated. The two white dashed lines are not
related to the simulation.

In last chapter, we met an analogous condition in lifting SETWEC-related block-
ing, where the blocking state was |N∗〉 and the SETWEC region was ended by
the next available N∗ line. Thus, the general pattern is that blocking is lifted at
the closest resonant line which is not weak (i.e. the transition is coupled strongly
enough to the resonant lead) and which involves the blocking state.

Second, we observe in the conductance data a possible excited line of Coulomb
diamond N +1, next to the bottom edge of diamond N (fig. 5.3d). Extra features
in the left corner of diamond N + 1 seem to sustain the excited character of the
line. Let us denote this additional excited state by |(N + 1)+〉. On top of the
simulated Fano factor map, fig. 7.1b, we mark with white dashed lines the new
source- and drain-resonant transitions N ↔ (N + 1)+. With the above finding
about blocking lifting, we now understand that the simulated overflown COSET
triangle N should end at the source-resonant N ↔ (N + 1)+ line, being therefore
barely visible. However, the new state would have no effect on the overflown
COSET triangle N + 1.

Having justified the relation between the weakly source-coupled transition N ↔
N + 1 and the existence of only one overflown COSET triangle, we can now
detail the transport processes in the COSET band situated outside the Coulomb
diamond. For region # we show the graph of quantum states with transitions
between them (fig. 7.2). We see that, like inside the CD, |N + 1〉 is the blocking

7
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Figure 7.2. Quantum state graph with associated electrochemical-potential diagrams,
for region # in the maps of fig. 7.1. Tunneling through source via transition
N + 1 → N is graphically marked as slow (gray rectangle).

state. The IEC transition N + 1
DS→ (N + 1)∗ is still an escape path, to a state

from which SET is possible. The tunneling transition N + 1
S→ N is another

escape path, of low rate (eq. 7.1); it leads to a state from which the QD falls back
into the blocking state. In consequence, the transport regime in the # region is
still cotunneling-assisted sequential tunneling, COSET.

This graph is valid for the above simulation, but also in the case of an additional
excited state, |(N + 1)+〉: one should either just add (N + 1)+ in the circle of
(N + 1)∗ or explicitly replicate this circle with its arrows.

Transport in the region marked with a bullet (•) of the above maps is also based
on the state graph of fig. 7.2, to which the SET-allowing transition N ↔ (N +1)∗

should be added. The difference is now that escaping from the blocking state via

N + 1
S→ N can lead to SET transport. Therefore, the bullet-marked region

presents a combination of COSET and SETWEC.
A last question to address is why we still measure a Fano factor F > 1 in

positive bias above diamond N + 1, but below the marked overflown COSET
triangle (fig. 7.1a). This is explained by COSET through the additional excited
state, |(N + 1)+〉. Hence, we reside here in a larger COSET triangle. 7
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Summary and Outlook

Electronic-transport phenomena in a quantum system are most often investi-
gated by measuring the electric-current response of that system when subjected
to different voltages. In other words, exploring electrical quantum devices usu-
ally starts with building their conductance maps. In such conductance-driven
investigations, low-frequency or dc signals are most common. Complementary
to conductance, other types of voltage-triggered responses can also be inspected.
In this thesis, current noise is measured, at microwave frequencies. We show
how both noise and conductance maps shed light on aspects of electron flow in
quantum dots, namely on concurrent transport channels.

Carrying experiments in the microwave spectrum adds complexity to the circuit
design. Indeed, the typical circuit scale is not short enough for ignoring the
wave aspect of the electrical signals. Due to reflections, power transfer between
circuit components is affected; this problem is lifted by implementing impedance-
matching techniques.

In this thesis, we designed and fabricated lumped-element resonators, for the
purpose of integrating carbon nanotube quantum dots into a microwave mea-
surement setup. The on-chip coil had the geometrical constraint of connecting
the inner end to the setup, through a bridge. We explored two possibilities: a
bridge laying on a support and a bonded airbridge. The second one proved to be
simpler to realize and more reliable.

Afterwards, we ran dc current, reflectance, and noise measurements. We se-
lected data with intense noise features and, with the help of numerical simulations
based on a master equation, we identified transport phenomena in quantum dots.
These phenomena are generated by the existence of blocking states.

At the end, we applied the quantum transport findings in explaining regions of
enhanced noise outside the Coulomb diamond (CD), but prolonging a CD-specific
region, namely an inelastic-tunneling triangle.

An additional finding emerged in the attempts to fit the measured data. We
showed that our resonator is modeled with a feed-forward capacitance across the
coil, boosting the effective value of the inductance. This can be used in future
designs, in order to improve the characteristic impedance of the resonator.

This work will be continued with the fabrication of resonators in supercon-
ducting films with high kinetic inductance [68, 69]. Such an option eliminates
the need of a bridge, as the spiral can be replaced with a meander. It can minia-
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turize further the resonator and increase even more the characteristic impedance.
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A Resonator characterization at 4.2 K

As part of the lumped-resonator fabrication process (chapter 4, subsections 4.2.1,
4.2.2), characterization measurements carried out in liquid helium at 4.2 K fol-
lowed the principle of the side experiment exposed here.

This appendix presents a supplement to chapter 5, namely a measurement of
a bonded-bridge coil for the extraction of the resonator loss at 4.2 K. With the
extracted loss value, we use the LC model to refit the main-experiment data and
find little variation in the conductance dependence of the reflectance.

A.1. Loss characterization of a wire-bonded coil

We combined same-geometry coils (fig. 5.1bc) and 50-Ω coplanar transmission
lines in a “hanger" configuration (fig. A.1a). We then measured at 4 K the power
transmission between ports 1 and 2 with P = −95 dBm (higher than the excita-
tion power used in the experiment). We then fit the S21 curve (fig. A.1b) with
the formula [35]:

S21 =
2

2 + Zline

Z

, Zline = 50 Ω · eiφ. (A.1)

Here, Z = Zin(G = 0) from eq. 5.2 stands for a series RlossLC cicuit; φ is a fitting
parameter [70] that reproduces the asymmetry of the measured curve, caused by
external spurious standing waves due to 50 Ω mismatches. The extracted param-
eters are: Rloss = 1.26 Ω, Zc = 954 Ω, f0 = 3.35 GHz, φ = 0.56. The obtained loss
resistance at 4 K is a comfortable upper limit of our 20 mK experiment, mainly
because the Al bond wire becomes superconducting and Nb superconductivity
gets reinforced in the mK range.

The reduced characteristic impedance in the main experiment Zc = 766 Ω as
compared to Zc = 954 Ω in the hanger is explained by a decreased inductance
from the two-turn short in the coil. However, the frequency (and L · C) is very
similar, suggesting that a short can also induce an increase in capacitance. The
distributed structure of inductive and capacitive elements in a coil could indeed
produce this effect.
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Figure A.1. (a) Hanger configuration, i.e. resonator connected to a transmission line.
The side of square spiral coil has 210 µm. The bonding wire (black) reaching
the inner pad of the coil is evident. The bright color stands for metal. (b) The
loss resistance of the resonator in (a) is extracted from fitting the transmittance
of the hanger, |S21|2.

A.2. Fitting procedure

We extract the unknown circuit parameters L, C, Rloss, and b(f) by first fixing
a frequency fm close to the resonance frequency. We then plot the measured
reflectance values |ΓVNA|2 against the dc-measured dI/dVSD for the same values
of VG and VSD. This is shown in fig. A.2 as green diamonds. We next assume
that dI/dVSD is equal to G at GHz frequencies. Then we can fit a theoretical
dependence to the data points, based on equations 5.3, 5.2. Both the dashed
orange and full yellow traces in fig. A.2 are candidate fitting curves. The re-
flectance values at G = 0 and G → ∞ yield the baseline b(f = fm) and Rloss; the
lack of the latter G value explains why these two parameters cannot be reliably
determined simultaneously. We therefore fix Rloss = 0; this choice is reasonable
also in further noise extraction, as Rloss is in series with the much larger charac-
teristic impedance Z0 = 50 Ω of the setup output line. One could be convinced
of the low influence of Rloss by observing the overlap of the lossless and lossy
fits in fig. A.2. In spite of the stability of the extracted parameters in the two
fit cases (less than 1 % for L and C), it is important to observe in fig. A.1b
and fig. A.2 a ∼10 % deviation of the extracted Gmatch value from the measured
one (∼75 µS). Therefore the accuracy of the extracted SI is at worst 10 %. In
conclusion, working at a fixed frequency outputs effective values of L and C at
that specific frequency, while the analysis of a whole frequency range, if possible,
should provide more precise circuit parameters.
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Figure A.2. Reflectance vs. conductance. Green diamonds represent measured
|ΓVNA|2 vs. dI/dVSD. The dashed (full) lines are extracted |ΓVNA|2(G) curves
at 3.23 GHz and at the resonance frequency, in the case Rloss = 0 (Rloss = 1 Ω).
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B Calibration of the stub tuner data

One of the two samples data sets used in chapter 6, namely device B, was a gated
CNT QD (fig. B.1a) with a stub tuner (fig. B.1c). Device B was fabricated and
measured by Roy Haller and Vishal Ranjan. They provided the content of this
appendix.

L
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VSD

I

VNA/SSA matching

circuit
bias tee

300 nm

(a)

(c)(b)

Z0

D1

D2

Figure B.1. Reminder: (a) simplified sketch of the measurement setup. (b) The LC-
matching circuit corresponds to the other sample, device A. (c) Stub tuner for
impedance matching, like in device B.

Impedance matching in device B is provided by a stub tuner based on trans-
mission lines. The reflectance response of the circuit for different G is plotted
in fig. B.2a. For increasing G, the depth of the resonance increases and goes
down to −30 dB for G = 6 µS, signifying a complete transmission of the applied
input power. Alternatively, at this conductance the circuit effectively transforms
the impedance of the CNT device close to 50 Ω. An interesting feature to note
is the change in the reflectance spectrum when G is negative. Here the depth
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and bandwidth of the resonance decrease. This behaviour of negative differential
conductance imitates an effective smaller microwave loss of the circuit yielding
an amplification.
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Figure B.2. Circuit calibration of Device B. (a) Reflectance response for different val-
ues of differential conductance. (b) Conductance plots deduced from the re-
flectance (high f) and from the numerical derivative dI/dVSD of the current
(low f). Color scale is kept same for both plots. (c) Cuts of conductance shown
by the solid arrows in panel (b) showing excellent agreement between two traces.

We describe the reflectance Γ = (Zineiφ −Z0)/(Zineiφ −Z0), where the phase φ
accounts for standing waves from the measurement setup and the input impedance
Zin reads as

Zin = Z0

(

tanh(γD2) +
Z0 + R tanh(γD1)
R + Z0 tanh(γD1)

)−1

, (B.1)

with γ = α + iβ the propagation constant, α the attenuation constant, β =√
ǫeff2πf/c the phase constant and c the speed of light. We first fit the resonance

in the Coulomb blockade by setting G = 0, yielding D1 = 10.16 mm, D2 =
10.52 mm, α = 0.019 m−1 and ǫeff = 5.9. Both lengths are within 1% of the
planned geometric values. The extracted parameters are now fixed and resonance
spectra outside the blockade are fit to extract G. These calculations are captured
by solid lines in fig. B.2a showing excellent match. We further compare the
conductance deduced from reflectance measurements (high frequency) with that
from the numerical derivative dI/dVSD (low frequency) of the dc current. As
shown in fig. B.2bc, both positive and negative conductances values match well.
The main text retains only the high-frequency conductance map (fig. 6.1f).

After the reliable extraction of the parameters, the transfer function from the
nanotube to the setup line can be calculated using a simple circuit model [7]:

HV (f, R) =
2Z0

R + Z0
· eγD1 · coth(γD2)

ΓL + e2γD1 · [1 + 2 coth(γD2)]
, (B.2)
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where ΓL = (R − Z0)/(R + Z0) is the reflection coefficient seen directly at the
device end before the matching circuit. The noise maps are presented in the main
text (fig. 6.1g-j).
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C Numerical simulations based on FCS

The Matlab code used in running simulations based on full counting statistics
(FCS) simulations by Gergő Fülöp and me. It is built on a master equation ap-
proach that involves the rates of all possible transitions between the states of the
system. Thus, the model takes into account all first- and second-order tunneling
processes, as well as thermal excitation and relaxation, in the way presented in
[67]. The master equation is extended into a counting field in order to make
possible the calculation of the cumulants (moments), i.e. current and current
noise power spectral density. With these, the numerical differential conductance
and the Fano factor are derived and plotted on voltage 2D maps (figures 6.5ae,
6.5fj, 7.1b).

C.1. Tunneling amplitudes

This appendix section makes the connection between the main simulation ingre-
dient, namely the tunneling amplitude, and tunneling rates. If the reader chooses
to descend to a deeper level, a more detailed description of the FCS framework
is given in the next sections.

In the model, we define the tunnel coupling of the QD to lead α via transition
N → M as the complex amplitude of tunneling between lead α and the QD [67],

tα
N→M = 〈M |t̂†

α|N〉 = (tα
M→N )∗, (C.1)

such that |N〉 is the initial state of the QD, |M〉 its final state, |N〉 and |M〉
are consecutive-charge states, and t̂†

α is the electron creation operator in the QD,
coupled to lead α. In other words, t̂†

α is the operator that describes the tunneling
of one electron from lead α into the QD. Tunneling rates are proportional to
tunneling probabilities, namely the magnitude squared of lead couplings:

Γα
N→M ∝ |tα

N→M |2 with α ∈ {S, D}. (C.2)

We suppose that tunnel couplings do not depend on VG and VSD. Moreover,
considering only real values, their notation simplifies: tα

N→M = tα
M→N =: tα

N,M .
In a sequential process, two tunneling rates are involved, e.g.

ΓS
N→N+1 ∝ |tS

N,N+1|2, (C.3)

ΓD
N+1→N ∝ |tD

N,N+1|2. (C.4)
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The tunneling rate of an IEC process, ΓSD
N→N∗ , accounts for both |N −1〉 and

|N +1〉 as possible virtual states and reads:

dΓSD
N→N∗ ∝

∣
∣
∣
∣

tD
N,N−1tS

N−1,N∗

µN∗↔N−1 − E
+

tS
N,N+1tD

N+1,N∗

E − µN↔N+1

∣
∣
∣
∣

2

dE. (C.5)

The VG and VSD dependence of the tunneling rates is explicitly taken into
account by means of Fermi-Dirac distribution functions. For details, see the
following sections and consult ref. [67].

C.2. The FCS theory

The dynamics of the state occupation probabilities of a system is described by
its master equation:

ṗ(n, t) =
∑

n′

M(n − n′)p(n′, t), (C.6)

with the matrices M holding the tunneling rates (equations C.2, C.5) between the
all the possible states (|M〉) and the vector p containing all the state occupation
probabilities, pM (n, t). n is the number of electrons that could have traversed the
quantum dot in the time t; in the stationary regime, this is also the number of
electrons that could have tunneled from the source into the QD. The probability
distribution of the charge transfer is P (n, t) =

∑

M
pM (n, t).

The tunneling mechanisms that we consider are first-order tunneling (n − n′ =
±1) and cotunneling (n − n′ = 0). As said in the appendix introduction, we also
consider excitation and relaxation mechanisms (n − n′ = 0), with rates included
in the M matrix.

The master equation (eq. C.6) has the form of a convolution around the count-
ing variable n and is therefore easily Fourier-transformable: The master equation
in the counting frequency (χ) space, also called the counting field, reads:

ṗ(χ, t) = M(χ)p(χ, t), (C.7)

where p(χ, t) =
∑

n
p(n, t)einχ. Deriving M(χ) from M(−1, 0, 1) is a relatively

easy task:
M(χ) = M(−1)e−iχ + M(0) + M(+1)eiχ. (C.8)

The FCS is based on obtaining the cumulant-generating function, S(χ, t), de-
fined by eS(χ,t) = 〈einχ〉n =

∑

n
P (n, t)einχ, from the eigenvalue of M(χ) with

the real part closest to zero, Λmin. In the stationary limit, t0 → ∞, within the
Markovian approximation, the relation is [67]:

S(χ, t0) = t0Λmin, (C.9)

C
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yielding the cumulants ∂mS
∂(iχ)m

∣
∣
χ→0

. Current and current noise are then written
as:

I =
e

t0

∂S
∂(iχ)

∣
∣
∣
∣
∣
χ=0

,

SI =
e2

t0

∂2S
∂(iχ)2

∣
∣
∣
∣
∣
χ=0

.

(C.10a)

(C.10b)

C.3. Simple example

In section 6.2 of the main text, we consider a 3-state stationary system where
the only transition is first-order tunneling. After sketching its quantum state
graph (fig. 6.6), we presented its master equation (eq. 6.7). If by convention the
counting lead is the drain (i.e. the counting variable is taken to be the number
of electrons arriving at drain, see fig. 6.7b), then we observe that the matrix of
the master equation (eq. 6.7) is the sum:

M(−1) + M(0) + M(1) = 0 +

(−γ1 0 0
0 −γ3 0
0 0 −γ2 − γ4

)

+

(
0 0 γ4

0 0 γ2

γ1 γ3 0

)

.

(C.11)
With eq. C.8, one calculates the χ-dependent matrix:

M(χ) =

( −γ1 0 γ4 · eiχ

0 −γ3 γ2 · eiχ

γ1 · eiχ γ3 · eiχ −γ2 − γ4

)

. (C.12)

The eigenvalues are further numerically calculated for different γ1 = γ4 = γ,
γ3 = γ/m and γ2 = γ/n, resulting in the cumulant-generating function, S(χ, t0)
(eq. C.9). The Fano factor is obtained from equations C.10a, C.10b and plotted
in fig. 6.8.

C.4. Rates

When their broadening is smaller than the other energy scales, i.e. kBT and |eV |,
the tunneling rates have expressions derived by expanding the T matrix to the
desired order:

• first-order tunneling, namely adding an electron to the QD:

Γα
i→j =

Γα

~
|ti→j |2fα(µi↔j), (C.13)

C
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• first-order tunneling, namely removing an electron from the QD:

Γα
j→i =

Γα

~
|tj→i|2

[

1 − fα(µi↔j)
]

. (C.14)

Here above, |i〉 and |j〉 are QD states of consecutive charges. α ∈ {S, D}
designates the lead and Γα is the tunnel broadening at electrode α and is
measured in energy units. fα is the Fermi-Dirac distribution function for
lead α.

• elastic tunneling:

Γαβ
j→j =

ΓαΓβ

2π~

∫

dǫ

∣
∣
∣
∣
∣

∑

i

tβ
j→it

α
i→j

ǫ − µi↔j
+
∑

k

tα
j→ktβ

k→j

µj↔k − ǫ

∣
∣
∣
∣
∣

2

fα(ǫ)
[

1 − fβ(ǫ)
]

,

(C.15)
where |i〉, |j〉, |k〉 are QD states of consecutive charges. The scripts α, β ∈
{S, D} designates leads and can be different or equal.

• inelastic tunneling:

Γαβ
Na→Nb =

ΓαΓβ

2π~

∫

dǫ

∣
∣
∣
∣
∣

∑

i

tβ
Na→it

α
i→Nb

ǫ − µi↔Nb
+
∑

k

tα
Na→ktβ

k→Nb

µNa↔k − ǫ

∣
∣
∣
∣
∣

2

fα(ǫ)
[

1−fβ(ǫ−∆)
]

,

(C.16)
where the QD states |Na〉, |Nb〉 have the same number of charge carriers;
|i〉, |Na〉, |k〉 are QD states of consecutive charges; ∆ = |ENa − ENb|.

Thermal relaxation is described with the aid of the Bose-Einstein distribution,
nB:

Γrel
Na→N =

Γrel

~
|nB(∆a)|, with ∆a = ENa − EN . (C.17)

The symmetric process, thermal excitation, is modeled with the same law.

C.5. Simulation parameters

Let us first recall, in table C.1, the QD configuration of most of our numerical
calculations.

Table C.1. Quantum dot states and the corresponding total energies

i |N − 1〉 |N〉 |N∗〉 |N + 1〉 |(N + 1)∗〉 |N + 2〉
Ei 0 ε0 ε0 + ∆0 2ε0 + Uc 2ε0 + Uc + ∆1 3ε0 + 3Uc

The usual values were ε0 = 0.5, Uc = 1, ~ = 1, ΓS|D = 10−3, kBT = 4 · 10−3,
Γrel = 10−6. The tunneling rates are given in the main text (chapter 6).
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C.6. Matlab code

To run the calculation, execute the script qdot_noise.m. The other .m files are

called by it. In the code, the tunneling amplitudes are noted with ML and MR

instead of tS and tD.

qdot_config.m

1 % This file is initially named: qdot_config.m

2 % The present config and output will be saved in directory:

3 config_dir = 'config_M2=0.4_M2e=0.6';

4

5 % GammaL, GammaR: coupling strength to the normal leads [eV]

6 % kT: temperature [meV]

7 % Ea: energy of the first level [meV]

8 % biasV: bias voltage [mV]; gateVv: gate voltage

9 % Uc: charging energy [meV]

10

11 inelastic_cotunneling = 1; %1 to include inelastic cotunneling; 0 ...

otherwise

12

13 Gamma = 0.001;

14 GammaL = 1 * Gamma;

15 GammaR = 1 * Gamma;

16 Gamma_rel = 0.001 * Gamma; % relax rate

17

18 Ea = 0.5;

19 Uc = 1;

20 kT = 0.004;

21

22 E_spectrum = [ 0 ...

23 Ea ...

24 (2*Ea+Uc) (2*Ea+Uc)+0.1*Uc+1e3*eps (2*Ea+Uc)+0.35*Uc ...

25 3*Ea+3*Uc ];

26 E_electrons = [0 1 2 2 2 3];

27

28 %%% Function orb will return the E_spectrum index of an electron, ...

from the number of electrons and the the orbital number (e.g. ...

orb (2,2) refers to 2 electrons, 2nd excited state).

29 subindex = @(vector,i) vector(i);

30 % N = charge; orbital index is 0 for a ground state

31 orb = @(N,orbital_index) subindex(find(E_electrons==N),orbital_index+1);

32 % Groundstate for N electrons

33 GS = @(N) orb(N,0);

34

35 num_states = length(E_spectrum);

36 % Matrix of relaxation rates

37 % The upper part contains relaxation rates, the lower part contains ...

excitation rates

38 Gamma_rel_mat = Gamma_rel * ones(num_states);

39

40 % Tunneling matrix elements (all 1 by default)

41 % Convention for M(n,m): from state m to state n (as opposed to n->m ...

in Belzig)

42 ML = ones(num_states);

43 ML(GS(1),GS(2)) = 0.4; ML(GS(2),GS(1)) = 0.4;

44 ML(GS(3),GS(2)) = 0.4; ML(GS(2),GS(3)) = 0.4;
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45 ML(orb(2,1),GS(1))=0.6; ML(GS(1),orb(2,1))=0.6;

46 ML(orb(2,1),GS(3))=0.6; ML(GS(3),orb(2,1))=0.6;

47 MR=ML;

48

49 biasVv = linspace(-1.2,1.2,120+1);

50 gateVv = linspace(1.3,2.7,140+1);

Main script: qdot_noise.m

1 %% Simulation of a single quantum dot based on a rate eq. model

2 % capable of noise calculation

3 % based on Kaasbjerg and Belzig, PRB 91 235413 (2015)

4 % Authors: Cezar Harabula (general case) and Gergo Fulop (1 excited ...

level)

5

6 % This script uses psin.m from: ...

https://www.mathworks.com/matlabcentral/fileexchange/

7 % 5687-polygamma-function-of-arbitrary-order-valid-complex-plane

8

9 clc;

10

11 % Spectrum and number of electrons in each orbital, to be defined in ...

config file (qdot_config.m)

12 E_spectrum = [0];

13 E_electrons = [0];

14

15 qdot_config; % gives E_spectrum, E_electrons, num_states, Gamma*, kT...

16

17 hbar = 1;

18 chi_step=1e-3;

19 im=sqrt(-1);

20

21 E=E_spectrum;

22

23 same_charge = @(i) find(E_electrons==E_electrons(i) );

24 previous_charge = @(i) find(E_electrons==E_electrons(i)-1);

25 next_charge = @(i) find(E_electrons==E_electrons(i)+1);

26 E_same_charge = cellfun(same_charge, ...

num2cell(1:num_states),'UniformOutput',false);

27 E_previous = ...

cellfun(previous_charge,num2cell(1:num_states),'UniformOutput',false);

28 E_next = cellfun(next_charge, ...

num2cell(1:num_states),'UniformOutput',false);

29

30 current = zeros(length(gateVv),length(biasVv));

31 current_old = zeros(length(gateVv),length(biasVv));

32 current_noise = zeros(length(gateVv),length(biasVv));

33 error_map = zeros(length(gateVv),length(biasVv));

34 trigamma_up = zeros(length(gateVv),length(biasVv));

35 pmatrix = zeros(num_states,length(gateVv)); % for storing the ...

solution of the stationary p vector (zero bias cut)

36

37 Bose = @(en) 1/(exp(en/kT)-1);

38

39 I = @(E1,E2,Ea,Eb) Bose(E2-E1)./(Ea-Eb) .* real(...

40 psin( 1/2 + im./(2*pi*kT) .* (E2-Ea)) ...

41 -psin( 1/2 - im./(2*pi*kT) .* (E2-Eb)) ...

42 -psin( 1/2 + im./(2*pi*kT) .* (E1-Ea)) ...
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43 +psin( 1/2 - im./(2*pi*kT) .* (E1-Eb)));

44

45 J = @(E1,E2,Ea) 1./(2*pi*kT) .* Bose(E2-E1) .* imag(...

46 psin(1, 1/2 + im./(2*pi*kT) .* (E2-Ea)) ...

47 -psin(1, 1/2 + im./(2*pi*kT) .* (E1-Ea)));

48

49 mu = @(m,n) E(max(m,n))-E(min(m,n)); % because E spectrum is ordered ...

upon charge state, this correctly returns negative result when ...

the input consists of E(N,i)>E(N+1,j)

50

51 tic

52

53 for Vbi = 1:length(biasVv)

54 biasV = biasVv(Vbi);

55 parfor Vgi = 1:length(gateVv)

56 % matrix of tunneling rates; convention: g(n,m) is the tunneling ...

rate from state m to state n (as opposed to Belzig)

57 g = zeros(num_states);

58 g_chi = zeros(num_states);

59 g_chi_minus = zeros(num_states);

60

61 % matrices of cotunneling rates; same sense convention

62 gCotLL = zeros(num_states);

63 gCotRR = zeros(num_states);

64 gCotLR = zeros(num_states);

65 gCotRL = zeros(num_states);

66

67 gL= zeros(num_states);

68 gR= zeros(num_states);

69 gLe= zeros(num_states); % Le means "exits the QD thru L"

70 gRe= zeros(num_states);

71

72 % Fermi functions, symmetric biasing:

73 dEL=gateVv(Vgi)-biasV./2;

74 dER=gateVv(Vgi)+biasV./2;

75

76 FermiL = @(x)(exp((x-dEL)./kT)+1).^(-1);

77 FermiR = @(x)(exp((x-dER)./kT)+1).^(-1);

78

79 % for elastic cotunneling:

80 ILR = @(Ea,Eb) I(dEL,dER,Ea,Eb);

81 IRL = @(Ea,Eb) I(dER,dEL,Ea,Eb);

82 ILL = @(Ea,Eb) I(dEL,dEL,Ea,Eb); % not in Gergo's code

83 IRR = @(Ea,Eb) I(dER,dER,Ea,Eb); % not in Gergo's code

84

85 JLR = @(Ea) J(dEL,dER,Ea);

86 JRL = @(Ea) J(dER,dEL,Ea);

87 JLL = @(Ea) J(dEL,dEL,Ea); % not in Gergo's code

88 JRR = @(Ea) J(dER,dER,Ea); % not in Gergo's code

89

90 % for inelastic cotunneling:

91

92 % Delta = excitation energy = E(N,m)-E(N,n) with m,n orbital indices

93 ILL_up = @(Ea,Eb,Delta) inelastic_cotunneling* ...

I(dEL,dEL+Delta,Ea,Eb);

94 IRR_up = @(Ea,Eb,Delta) inelastic_cotunneling* ...

I(dER,dER+Delta,Ea,Eb);

95 ILR_up = @(Ea,Eb,Delta) inelastic_cotunneling* ...
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I(dEL,dER+Delta,Ea,Eb);

96 IRL_up = @(Ea,Eb,Delta) inelastic_cotunneling* ...

I(dER,dEL+Delta,Ea,Eb);

97

98 JLL_up = @(Ea,Delta) 0;%J(dEL,dEL+Delta,Ea);

99 JRR_up = @(Ea,Delta) 0;%J(dER,dER+Delta,Ea);

100 JLR_up = @(Ea,Delta) 0;%J(dEL,dER+Delta,Ea);

101 JRL_up = @(Ea,Delta) 0;%J(dER,dEL+Delta,Ea);

102

103 % Sequential tunneling

104 % transition rates:

105

106 for i = 1:num_states

107

108 for ku = 1:length(E_next{i})

109 u = E_next{i}(ku);

110 % different charge states, indices i and u (i<u)

111 % (filling the dot)

112 gL(u,i)= GammaL/hbar .* abs(ML(u,i))^2 .* FermiL(mu(u,i)) ;

113 gR(u,i)= GammaR/hbar .* abs(MR(u,i))^2 .* FermiR(mu(u,i));

114 g(u,i) = gR(u,i);

115 g_chi(u,i) = gL(u,i);

116 end

117

118 for kd = 1:length(E_previous{i})

119 d = E_previous{i}(kd);

120 % different charge states, indices i and d (i>d)

121 % (emptying the dot)

122 gLe(d,i) = GammaL/hbar .* abs(ML(d,i))^2 .* (1-FermiL(mu(d,i)));

123 gRe(d,i) = GammaR/hbar .* abs(MR(d,i))^2 .*(1-FermiR(mu(d,i)));

124 g(d,i) = gRe(d,i);

125 g_chi_minus(d,i) = gLe(d,i);

126 end

127

128 end

129

130 % excitation/relaxation (i -> j or j -> i respectively )

131

132 for i=1:num_states-1

133 for j=i+1:num_states % j is always >i

134 if(E_electrons(j)==E_electrons(i)) % tests if j is among the ...

orbitals of i

135 g(i,j)=Gamma_rel_mat(i,j)/hbar *abs(Bose(E(i)-E(j)));

136 g(j,i)=Gamma_rel_mat(j,i)/hbar *abs(Bose(E(j)-E(i)));

137 % no transport, thus g_chi(_minus) do not change

138 end

139 end

140 end

141

142 % rate equation matrix:

143

144 % diagonal elements

145 for i=1:num_states

146

147 % diminishing, from emptying

148 for j = 1:length(E_previous{i})

149 d = E_previous{i}(j);

150 g(i,i) = g(i,i) - GammaL/hbar * abs(ML(d,i))^2 .* (1 - ...
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FermiL(E(i)-E(d)));

151 g(i,i) = g(i,i) - GammaR/hbar * abs(MR(d,i))^2 .* (1 - ...

FermiR(E(i)-E(d)));

152 end

153

154 % from filling

155 for j = 1:length(E_next{i})

156 u = E_next{i}(j);

157 g(i,i) = g(i,i) - GammaL/hbar * abs(ML(u,i))^2 .* ...

FermiL(E(u)-E(i));

158 g(i,i) = g(i,i) - GammaR/hbar * abs(MR(u,i))^2 .* ...

FermiR(E(u)-E(i));

159 end

160

161 % from relaxation / thermal excitation

162 for j = 1:length(E_same_charge{i})

163 s = E_same_charge{i}(j);

164 if(i~=s)

165 % subtract relax/excitation from i to s

166 g(i,i) = g(i,i) - g(s,i);

167 % no transport, thus g_chi(_minus) do not change

168 end

169 end

170

171 end

172

173 % Elastic co-tunnneling:

174 for i=1:num_states

175

176 for j=1:length(E_previous{i})

177 d = E_previous{i}(j);

178

179 gCotLR(i,i) = gCotLR(i,i) + abs(ML(i,d)*MR(d,i))^2 * ...

JLR(mu(i,d)); % eq.(45): |term|^2

180 gCotRL(i,i) = gCotRL(i,i) + abs(MR(i,d)*ML(d,i))^2 * ...

JRL(mu(i,d));

181 gCotLL(i,i) = gCotLL(i,i) + abs(ML(i,d)*ML(d,i))^2 * ...

JLL(mu(i,d)); % not in Gergo's code...

182 gCotRR(i,i) = gCotRR(i,i) + abs(MR(i,d)*MR(d,i))^2 * ...

JRR(mu(i,d));

183

184 for j2=1:j-1

185 d2 = E_previous{i}(j2);

186 gCotLR(i,i) = gCotLR(i,i) + 2 * real( ML(i,d2)*MR(d2,i) * ...

conj(ML(i,d)*MR(d,i)) * ILR(mu(i,d2),mu(i,d)));% ...

eq.(45): products

187 gCotRL(i,i) = gCotRL(i,i) + 2 * real( MR(i,d2)*ML(d2,i) * ...

conj(MR(i,d)*ML(d,i)) * IRL(mu(i,d2),mu(i,d)));

188 gCotLL(i,i) = gCotLL(i,i) + 2 * real( ML(i,d2)*ML(d2,i) * ...

conj(ML(i,d)*ML(d,i)) * ILL(mu(i,d2),mu(i,d)));

189 gCotRR(i,i) = gCotRR(i,i) + 2 * real( MR(i,d2)*MR(d2,i) * ...

conj(MR(i,d)*MR(d,i)) * IRR(mu(i,d2),mu(i,d)));

190 end

191 end

192

193 for j=1:length(E_next{i})

194 u = E_next{i}(j);

195 gCotLR(i,i) = gCotLR(i,i) + abs(MR(i,u)*ML(u,i))^2 * ...
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JLR(mu(i,u)); % eq.(42): |term|^2

196 gCotRL(i,i) = gCotRL(i,i) + abs(ML(i,u)*MR(u,i))^2 * ...

JRL(mu(i,u));

197 gCotLL(i,i) = gCotLL(i,i) + abs(ML(i,u)*ML(u,i))^2 * ...

JLL(mu(i,u));

198 gCotRR(i,i) = gCotRR(i,i) + abs(MR(i,u)*MR(u,i))^2 * ...

JRR(mu(i,u));

199

200 for j2=1:j-1

201 u2 = E_next{i}(j2);

202 gCotLR(i,i) = gCotLR(i,i) + 2 * real(MR(i,u2)*ML(u2,i) * ...

conj(MR(i,u)*ML(u,i)) * ILR(mu(i,u2),mu(i,u))); % ...

eq.(42): products

203 gCotRL(i,i) = gCotRL(i,i) + 2 * real(ML(i,u2)*MR(u2,i) * ...

conj(ML(i,u)*MR(u,i)) * IRL(mu(i,u2),mu(i,u)));

204 gCotLL(i,i) = gCotLL(i,i) + 2 * real(ML(i,u2)*ML(u2,i) * ...

conj(ML(i,u)*ML(u,i)) * ILL(mu(i,u2),mu(i,u)));

205 gCotRR(i,i) = gCotRR(i,i) + 2 * real(MR(i,u2)*MR(u2,i) * ...

conj(MR(i,u)*MR(u,i)) * IRR(mu(i,u2),mu(i,u)));

206 end

207

208 % now combine up and down states to get the negative reals - ...

eqs.(43,44)

209 for k=1:length(E_previous{i})

210 d = E_previous{i}(k);

211 gCotLR(i,i) = gCotLR(i,i) - 2 * real(ML(i,d)*MR(d,i) * ...

conj(MR(i,u)*ML(u,i)) * ILR(mu(i,d),mu(i,u)));

212 gCotRL(i,i) = gCotRL(i,i) - 2 * real(MR(i,d)*ML(d,i) * ...

conj(ML(i,u)*MR(u,i)) * IRL(mu(i,d),mu(i,u)));

213 gCotLL(i,i) = gCotLL(i,i) - 2 * real(ML(i,d)*ML(d,i) * ...

conj(ML(i,u)*ML(u,i)) * ILL(mu(i,d),mu(i,u)));

214 gCotRR(i,i) = gCotRR(i,i) - 2 * real(MR(i,d)*MR(d,i) * ...

conj(MR(i,u)*MR(u,i)) * IRR(mu(i,d),mu(i,u)));

215 end

216 end

217

218 gCotLR(i,i) = 1/(2*pi*hbar) * GammaL * GammaR * gCotLR(i,i);

219 gCotRL(i,i) = 1/(2*pi*hbar) * GammaL * GammaR * gCotRL(i,i);

220 gCotLL(i,i) = 1/(2*pi*hbar) * GammaL * GammaL * gCotLL(i,i);

221 gCotRR(i,i) = 1/(2*pi*hbar) * GammaR * GammaR * gCotRR(i,i);

222

223 g(i,i) = g(i,i) - gCotLR(i,i) - gCotRL(i,i);% - gCotLL(i,i)- ...

gCotRR(i,i);

224 g_chi(i,i) = g_chi(i,i) + gCotLR(i,i);

225 g_chi_minus(i,i) = g_chi_minus(i,i) + gCotRL(i,i);

226

227 end

228

229 % Inelastic cotunneling

230 for i=1:num_states

231 for j=1:length(E_same_charge{i})

232 s = E_same_charge{i}(j);

233

234 if(i==s)

235 % this is the elastic case, already calculated

236 continue;

237 end

238
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239 % now, gCotXX(s,i)=0 from initialization

240

241 if(i<s) % transition to a higher energy

242

243 Delta = E(s)-E(i);

244

245 for kd=1:length(E_previous{i})

246 d = E_previous{i}(kd);

247

248 gCotLL(s,i) = gCotLL(s,i) + abs(ML(s,d)*ML(d,i))^2 * ...

JLL_up(mu(s,d),Delta);

249 gCotRR(s,i) = gCotRR(s,i) + abs(MR(s,d)*MR(d,i))^2 * ...

JRR_up(mu(s,d),Delta);

250 gCotLR(s,i) = gCotLR(s,i) + abs(ML(s,d)*MR(d,i))^2 * ...

JLR_up(mu(s,d),Delta); % eq.(46): |first_MM_term|^2

251 gCotRL(s,i) = gCotRL(s,i) + abs(MR(s,d)*ML(d,i))^2 * ...

JRL_up(mu(s,d),Delta);

252

253 end

254

255 for ku=1:length(E_next{i})

256 u = E_next{i}(ku);

257

258 gCotLL(s,i) = gCotLL(s,i) + abs(ML(s,u)*ML(u,i))^2 * ...

JLL_up(mu(u,i),Delta);

259 gCotRR(s,i) = gCotRR(s,i) + abs(MR(s,u)*MR(u,i))^2 * ...

JRR_up(mu(u,i),Delta);

260 gCotLR(s,i) = gCotLR(s,i) + abs(MR(s,u)*ML(u,i))^2 * ...

JLR_up(mu(u,i),Delta); % eq.(46): |2nd_MM_term|^2

261 gCotRL(s,i) = gCotRL(s,i) + abs(ML(s,u)*MR(u,i))^2 * ...

JRL_up(mu(u,i),Delta);

262

263 end

264

265 for kd=1:length(E_previous{i})

266 d = E_previous{i}(kd);

267 for ku=1:length(E_next{i})

268 u = E_next{i}(ku);

269

270 gCotLL(s,i) = gCotLL(s,i) - 2 * real(ML(s,d)*ML(d,i) * ...

conj(ML(s,u)*ML(u,i)) * ...

ILL_up(mu(s,d),mu(u,i),Delta));

271 gCotRR(s,i) = gCotRR(s,i) - 2 * real(MR(s,d)*MR(d,i) * ...

conj(MR(s,u)*MR(u,i)) * ...

IRR_up(mu(s,d),mu(u,i),Delta));

272 gCotLR(s,i) = gCotLR(s,i) - 2 * real(ML(s,d)*MR(d,i) * ...

conj(MR(s,u)*ML(u,i)) * ...

ILR_up(mu(s,d),mu(u,i),Delta)); % eq.(46): product

273 trigamma_up(Vgi,Vbi) = IRL_up(mu(s,d),mu(u,i),Delta); ...

% for debugging

274 gCotRL(s,i) = gCotRL(s,i) - 2 * real(MR(s,d)*ML(d,i) * ...

conj(ML(s,u)*MR(u,i)) * ...

IRL_up(mu(s,d),mu(u,i),Delta));

275 end

276 end

277 end

278

279 if(i>s) % transition to a lower energy
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280 Delta = -E(s)+E(i);

281

282 for kd=1:length(E_previous{i})

283 d = E_previous{i}(kd);

284

285 gCotLL(s,i) = gCotLL(s,i) + abs(ML(s,d)*ML(d,i))^2 * ...

JLL_up(mu(s,d),-Delta);

286 gCotRR(s,i) = gCotRR(s,i) + abs(MR(s,d)*MR(d,i))^2 * ...

JRR_up(mu(s,d),-Delta);

287 gCotLR(s,i) = gCotLR(s,i) + abs(ML(s,d)*MR(d,i))^2 * ...

JLR_up(mu(s,d),-Delta); % eq.(47): |first_MM_term|^2

288 gCotRL(s,i) = gCotRL(s,i) + abs(MR(s,d)*ML(d,i))^2 * ...

JRL_up(mu(s,d),-Delta);

289

290 end

291

292 for ku=1:length(E_next{i})

293 u = E_next{i}(ku);

294

295 gCotLL(s,i) = gCotLL(s,i) + abs(ML(s,u)*ML(u,i))^2 * ...

JLL_up(mu(u,i),-Delta);

296 gCotRR(s,i) = gCotRR(s,i) + abs(MR(s,u)*MR(u,i))^2 * ...

JRR_up(mu(u,i),-Delta);

297 gCotLR(s,i) = gCotLR(s,i) + abs(MR(s,u)*ML(u,i))^2 * ...

JLR_up(mu(u,i),-Delta); % eq.(47): |2nd_MM_term|^2

298 gCotRL(s,i) = gCotRL(s,i) + abs(ML(s,u)*MR(u,i))^2 * ...

JRL_up(mu(u,i),-Delta);

299

300 end

301

302 for kd=1:length(E_previous{i})

303 d = E_previous{i}(kd);

304 for ku=1:length(E_next{i})

305 u = E_next{i}(ku);

306

307 gCotLL(s,i) = gCotLL(s,i) - 2 * real(ML(s,d)*ML(d,i) * ...

conj(ML(s,u)*ML(u,i)) ...

308 * ILL_up(mu(s,d),mu(u,i),-Delta));

309 gCotRR(s,i) = gCotRR(s,i) - 2 * real(MR(s,d)*MR(d,i) * ...

conj(MR(s,u)*MR(u,i)) ...

310 * IRR_up(mu(s,d),mu(u,i),-Delta));

311 gCotLR(s,i) = gCotLR(s,i) - 2 * real(ML(s,d)*MR(d,i) * ...

conj(MR(s,u)*ML(u,i)) ...

312 * ILR_up(mu(s,d),mu(u,i),-Delta)); % eq.(47): product

313 gCotRL(s,i) = gCotRL(s,i) - 2 * real(MR(s,d)*ML(d,i) * ...

conj(ML(s,u)*MR(u,i)) ...

314 * IRL_up(mu(s,d),mu(u,i),-Delta));

315 end

316 end

317 end

318

319 gCotLL(s,i) = 1/(2*pi*hbar) * GammaL * GammaL * gCotLL(s,i);

320 gCotRR(s,i) = 1/(2*pi*hbar) * GammaR * GammaR * gCotRR(s,i);

321 gCotLR(s,i) = 1/(2*pi*hbar) * GammaL * GammaR * gCotLR(s,i);

322 gCotRL(s,i) = 1/(2*pi*hbar) * GammaR * GammaL * gCotRL(s,i);

323

324 g(s,i) = g(s,i) + gCotLL(s,i) ...

325 + gCotRR(s,i) ;
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326 g_chi(s,i) = g_chi(s,i) + gCotLR(s,i);

327 g_chi_minus(s,i) = g_chi_minus(s,i) + gCotRL(s,i);

328

329 g(i,i) = g(i,i) - gCotLL(s,i) ...

330 - gCotRR(s,i) ...

331 - gCotLR(s,i) ...

332 - gCotRL(s,i);

333 end

334 end

335

336 for chi = [+chi_step -chi_step 0] % in this specific order

337

338 P = g + g_chi*exp(im*chi) + g_chi_minus*exp(-im*chi);

339

340 if (any(isnan(P(:))))

341 sre = nan;

342 error_map(Vgi,Vbi)=1;

343 else

344 if (any(isinf(P(:))))

345 1

346 end

347 % check for inf and replace any infinity by 1e308 (with its ...

sign)

348 P_real = real(P);

349 P_real(isinf(P_real)) = sign(P_real(isinf(P_real))) * 1e308; ...

% larger exponent x 0 = NaN

350 P_imag = imag(P);

351 P_imag(isinf(P_imag)) = sign(P_imag(isinf(P_imag))) * 1e308; ...

% larger exponent x 0 = NaN

352 P = P_real + 1i * P_imag;

353

354 % diagonalize

355 [~,D] = eig(P);

356 D=diag(D);

357 [~,IND] = min(abs(real(D)));

358 sre = D(IND) ;

359 end

360

361 if (chi > 0)

362 % + chi_step;

363 sre_plus = sre ;

364

365 elseif (chi < 0)

366 % -chi_step;

367 sre_minus = sre ;

368

369 elseif (chi == 0)

370 sre_zero = sre ;

371

372 % Old method: should be recovered for chi=0

373 pdot_stationary = zeros(num_states,1); %the time derivative ...

of the probability vector is nil mathematical trick: ...

setting one pdot to 1 and a row in P to 1, we state ...

that the sum of the probabilities is 1 (this trick ...

makes the following equation solvable)

374 pdot_stationary(1) = 1; %[1 0 0 0]';

375 P(1,:) = ones(1,num_states);

376 % solve the stationary probability vector, p
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377 p = P\pdot_stationary ;

378

379

380 if (biasV<1e-4)

381 pmatrix(:,Vgi) = p;

382 end

383 % calculating the current:

384 crt=0;

385 for i=1:num_states

386

387 for ku = 1:length(E_next{i})

388 u = E_next{i}(ku);

389 crt = crt + p(i)*gL(u,i);

390 end

391

392 for kd = 1:length(E_previous{i})

393 d = E_previous{i}(kd);

394 crt = crt + p(i)*(-gLe(d,i));

395 end

396 end

397 current_old(Vgi,Vbi) = -1 * crt;

398 end

399

400

401 end % chi end (calculated stuff for both +chi_step and -chi_step)

402 %current(Vgi,Vbi) = (sre_plus)./(im*2*chi_step);

403 current(Vgi,Vbi) = -(sre_plus-sre_minus)./(im*2*chi_step);

404 current_noise(Vgi,Vbi) = ...

(sre_plus-2*sre_zero+sre_minus)./((im*chi_step)^2);

405 end

406 end

407

408 toc

409

410 %% display figures and save output

411

412 qdot_noise_display;

413

414 mkdir(config_dir);

415 save([config_dir '/qdot_noise.mat'],'current', 'current_noise', ...

'gateVv', 'biasVv','config_dir');

416 copyfile('qdot_config.m', [config_dir '/' config_dir '.m']);

417 savefig(fighandle, [config_dir '/' config_dir '.fig'], 'compact');

qdot_noise_display.m

1 % This file is named: qdot_noise_display.m

2 % Displays maps for calculations in qdot_noise.m

3 % Saves the input qdot data and the resulted figure.

4 % Alternately, load data from qdot_noise.mat and run this.

5

6 % This script uses the bluewhitered color map from: ...

www.mathworks.com/matlabcentral/fileexchange/4058-bluewhitered

7 fighandle(1) = figure('rend','painters','pos',[900 500 1000 450]);

8

9 spdIdV = subplot(1,5,1);

10

11 dIdV = zeros(size(current));
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12 dV = biasVv(2)-biasVv(1);

13

14 for Ei = 1:length(gateVv)

15 for Vi = 2:length(biasVv)

16 dIdV(Ei,Vi)= (current(Ei,Vi)-current(Ei,Vi-1))./dV;

17 end

18 end

19 ih=imagesc(gateVv,biasVv,real(dIdV'));

20 set(gca,'YDir','normal');

21 caxis ([-.03 .03]);

22 %title('dI/dV');

23 colormap(spdIdV,bluewhitered(256))

24 c=colorbar('southoutside');

25 min_dIdV = min(dIdV(dIdV<0)); % min(dIdV(dIdV<0)) is a workaround

26 if(isempty(min_dIdV))

27 min_dIdV = min(dIdV(:));

28 end

29 c.Limits = [min_dIdV max(dIdV(:))];

30 c.Label.String = 'dI/dV';

31 c.Label.FontSize = 12; c.FontSize = 12;

32 c.TickDirection='out';

33 c.TickLength = 0.05;

34

35 sp2eI = subplot(1,5,2);

36 schottky = abs(current);

37 Si = abs(current_noise);

38 mS = max( max(schottky(:)), max(Si(:)));

39 ih=imagesc(gateVv,biasVv,real(schottky'));

40 set(gca,'YDir','normal');

41 caxis([0, mS]);

42 %title('|2eI|');

43 colormap(sp2eI,flipud(gray))

44 c=colorbar('southoutside');

45 c.Label.String = '|2eI|';

46 c.Label.FontSize = 12; c.FontSize = 12;

47 c.TickDirection='out';

48 c.TickLength = 0.05;

49

50 spSi = subplot(1,5,3);

51

52 ih=imagesc(gateVv,biasVv,real(Si'));

53 set(gca,'YDir','normal');

54 caxis([0, mS]);

55 colormap(spSi,flipud(gray))

56 c=colorbar('southoutside');

57 c.Label.String = 'S_I';

58 c.Label.FontSize = 12; c.FontSize = 12;

59 c.TickDirection='out';

60 c.TickLength = 0.05;

61

62 spSep = subplot(1,5,4);

63 S_ep = Si - schottky;

64 ih=imagesc(gateVv,biasVv,real(S_ep'));

65 set(ih,'alphadata',~isnan(S_ep'))

66 set(gca,'YDir','normal');

67 caxis([min(S_ep(:)), max(S_ep(:))]);

68 %title('S_{EP}');

69 colormap(spSep,bluewhitered(256))
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70 c=colorbar('southoutside');

71 c.Label.String = 'S_I^{EP}';

72 c.Label.FontSize = 12; c.FontSize = 12;

73 c.TickDirection='out';

74 c.TickLength = 0.05;

75

76 spF = subplot(1,5,5);

77 Fano_factor = Si./schottky;

78 Fano_factor(schottky<1e-15)=nan;

79 Fano_factor = Fano_factor - 1;

80

81 ih=imagesc(gateVv,biasVv,real(Fano_factor'));

82 set(ih,'alphadata',~isnan(Fano_factor'))

83 set(gca,'YDir','normal');

84 % set(sp,'clim',[0 3]);

85 caxis([-1, max(8,max(Fano_factor(:)))]);

86 %title('F');

87 %colormap(spF,flipud(gray))

88 colormap(spF,bluewhitered(256))

89 c=colorbar('southoutside');

90 c.Limits = [-1 max(Fano_factor(:))];

91 c.Label.String = 'F-1';

92 c.Label.FontSize = 12; c.FontSize = 12;

93 c.TickDirection='out';

94 c.TickLength = 0.05;

95 %suptitle(config_dir); %in BioInformatics toolbox
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D Fabrication Recipes

These are recipes used in resonator and CNT quantum dot fabrication.

LC resonators

Substrate Undoped Si (ρ > 1000 Ωcm) with 170 nm of thermal oxide on
top

Partial
contacts and
marks

Ti/Au deposition in the Sharon evaporator

• PMMA mask
– Spin-coat chlorobenzene-diluted PPMA (thickness

250 nm)
– Bake at 180 ◦C for 5 min.

• E-beam lithography
– Acceleration voltage 20 kV
– Area dose 200 µC/cm2, line dose 1200 pC/cm
– Writefield 20002 µm2, aperture 120 µm
– Writefield 2002 µm2, aperture 10 µm

• Mask development
– 1 min in MIBK-IPA (1:3)
– Stop in IPA, blow-dry with N2

• E-beam evaporation in Sharon
– First 10 nm of Ti, rate 0.5 − 1 Å/s
– Then Au with a rate ∼ 1 Å/s, thickness 30 − 50 nm

• PMMA liftoff
– 4 min. in acetone (safe to sonicate)
– Acetone jet with syringe

continued on next page...
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Covering
future
CNT area

• PMMA/HSQ bilayer mask
– Spin-coat PMMA (thickness 600 nm)
– Bake at 180 ◦C for 5 min.

– Spin-coat HSQ (6000 rpm, 60 s)
– Bake at 90 ◦C for 5 min.

• E-beam lithography (HSQ is a negative e-beam resist, ex-
pose where it should stay)

– Acceleration voltage 20 kV
– Area dose 200 µC/cm2

– Writefield 10002 µm2, aperture 120 µm
• Developing

– 25 s in TMAH (25% solution)
– Stop in deionized H2O and then IPA, blow-dry with N2

• Reactive-ion etch (RIE) uncovered PMMA in O2 plasma
– Params: O2-flow 16 sccm, 250 mTorr, 100 W, 9 min.

Nb
sputtering

• AJA magnetron sputtering machine
– Params: Ar 40 sccm, 4 mTorr, 160 W
– Stage rotation ON in case the sample is large
– Thickness 100 − 150 nm

• Remove PMMA/HSQ mask: 2 min. in acetone

Resonator
patterning

• PMMA mask
– Spin-coat diluted PPMA (thickness 600 nm)
– Bake at 180 ◦C for 5 min.

• E-beam lithography
– Acceleration voltage 20 kV
– Area dose 130 µC/cm2

– Aperture 60 µm
• Mask development

– 1 min in MIBK-IPA (1:3)
– Stop in IPA, blow-dry with N2

Nb etching • Etching with inductively coupled plasma (ICP)
– Ar 25 sccm, Cl2 40 sccm, 1 Pa, ICP power 100 W, rf

power 125 W
– Time 50 s, Nb etch rate ∼ 4 nm/s

• PMMA removal: 3 min. in acetone (safe to sonicate)
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CNT stamping

Substrate Si with 170 nm thermal oxide on top, patterned with pillars
like in fig. 4.3

Catalyst
solution

Recipe from Thomas Hasler [13]

• 30 mg of Al2O2, 93 mg of Fe(NO3)3− 9H2O and 27 mg of
MoO2Cl2, dissolved in 60 ml IPA

• High-power sonication in cell disrupter
– 2 h, Tmax = 34 ◦C, pulse ON 0.5 s, pulse OFF 0.5 s

• Spin-coat one drop of catalyst on the stamps
– 4000 rpm for 30 s
– repeat 5 times to get a high CNT density

CVD growth • Heat furnace to 950 ◦C under Ar flow (1500 sccm) and H2

flow (500 sccm)
• Growth: replace Ar by CH4 (1000 sccm) for 10 min.

• Cooldown under Ar and H2 flow again until T < 320 ◦C

CNT
stamping

• Place target substrate in center of mask aligner (Süss Mi-
croTec) stage

• Mount a cross-marked glass plate
• Use aligner’s optical microscope to align plate cross on top

of target substrate
• Take glass plate out and glue-stamp on its cross the pillared

substrate, with a drop of PMMA
• Re-mount glass plate in mask aligner
• Lift stage until contact
• Press target and plate together by turning the wheel until

"WEC"=OK, make 6 extra turns up, then release

Stamp reuse Substrate can be recycled, by cleaning its pillars

• HF etching: 40 s/stamp
• Stop in water and then IPA, blow-dry with N2
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At this point, final contacts can be fabricated. Note that they will connect to
previous (partial) Ti/Au contacts, not onto Nb. This way, no Nb oxide removal
is necessary.

CNT contacts and gates

Patterning • ZEP mask
– Spin-coat ZEP-520A diluted with anisole (thickness

300 nm)
– Bake at 180 ◦C for 3 min.

• E-beam lithography
– Acceleration voltage 10 kV
– Area dose 34 µC/cm2 for a trapezoidal undercut
– Aperture 10 µm

• Mask development
– 60 s in pentylacetate and 10 s in MIBK-IPA (9:1)
– Stop in IPA (20 s), blow-dry with N2

Ti/Au evap-
oration

• E-beam evaporation in Sharon
– First 10 nm of Ti, rate 0.5 − 1 Å/s
– Then Au with a rate ∼ 1 Å/s, thickness 30 − 50 nm

Mask liftoff No sonication

• 15 min. in NMP at 70 ◦C
– Blow surface with a syringe to remove metal residues

• 30 min. in acetone at 50 ◦C (to remove NMP)
– Rinse with IPA and blow-dry with N2
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Al wire is bonded on the sample, from an outer contact to the inner contact
of the planar coil. The recipe needs practice on dummy samples.

Al wire bonds

Stage mount • Glue sample on sample holder, with Ag paint

• Fixate sample holder on Delvotec bonder stage

Bonding work height 22300 µm

Bond 1 (outside) Bond 2 (inside)

search height 22800 µm 22900 µm

bond weight 19 g/cN 18 g/cN

u.s. power 47 47

u.s. time 53 ms 53 ms

t.d. steps 10 µm 10 µm

loop 800 µm, 50 cnt

Heights were set to match the Nb surface level: 22978 µm
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