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SOLVING A BERNOULLI TYPE FREE BOUNDARY PROBLEM
WITH RANDOM DIFFUSION

RAHEL BRÜGGER, ROBERTO CROCE, AND HELMUT HARBRECHT

Abstract. The present article is concerned with the numerical solution of a free

boundary problem for an elliptic state equation with random diffusion. The do-

main under consideration is represented by a level set function which is evolved

by the objective’s shape gradient. The state is computed by the finite element

method, where the underlying triangulation is constructed by means of a march-

ing cubes algorithm. The high-dimensional integral, which is induced by the ran-

dom diffusion, is approximated by the quasi-Monte Carlo method. By numerical

experiments, we validate the feasibility of the approach.

1. Introduction

Let T ⊂ R2 denote a bounded domain with free boundary ∂T = Γ. Inside the

domain T , we assume the existence of a simply connected subdomain S ⊂ T with

fixed boundary ∂S = Σ. The resulting annular domain T \ S is denoted by D, see

Figure 1 for an illustration. Notice that, instead of a single subdomain S, there might

also be considered a certain number of simply connected subdomains Si, i = 1, . . . , k,

which leads to S =
⋃k

i=1 Si.

Bernoulli’s exterior free boundary problem reads as follows. For a given constant

g > 0, seek the domainD and the associated function u such that the overdetermined

boundary value problem

(1.1)

∆u = 0 in D,

u = 1 on Σ,

−∂u

∂n
= g, u = 0 on Γ,

is satisfied. We like to emphasize that the positivity of the Dirichlet data implies

that u is positive on D and thus it holds in fact ∂u/∂n < 0. Especially, in view of the

homogeneous boundary condition at Γ, we there have the identity −∂u/∂n = ‖∇u‖.
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Figure 1. The domain D and its boundaries Γ and Σ.

The problem under consideration models the growth of anodes in electrochemical

processes and can be seen as the prototype of a free boundary problem arising in

many applications. For example, in the exterior magnetic shaping of liquid metals

the state equation is the exterior Poisson equation where the uniqueness is ensured

by a volume constraint [10, 12, 30, 35].

Shape optimization is a well established tool to solve free boundary problems like

(1.1), see [3, 11, 13, 16, 19, 21, 40, 41] for example. Here, the free boundary problem

is cast into an equivalent minimization problem. For example, the minimizer D of

the Dirichlet energy functional

(1.2)
J(D) =

∫

D

{
‖∇u‖2 + g2

}
dx → inf

subject to ∆u = 0 in D, u = 1 on Σ, u = 0 on Γ

is the sought unknown domain D, see [13] for the details. For the existence of

solutions to the free boundary problem (1.1), we refer the reader to [2, 4, 14]. Results

concerning the geometric form of the solutions can be found in [1] and the references

therein.

In order to model materials which are not perfectly homogeneous, we shall consider

a random version of the free boundary problem (1.1) in this article. To that end, let

(Ω,F ,P) denote an appropriate probability space and consider that

(1.3)

div
(
α(ω)∇u(ω)

)
= 0 in D,

u(ω) = 1 on Σ,

−α(ω)
∂u

∂n
(ω) = g, u(ω) = 0 on Γ,
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holds for almost all ω ∈ Ω. Here, we have in mind a uniformly elliptic random pertur-

bation of the Laplace operator. For solving this random free boundary problem, we

will first extend the shape optimization problem (1.2) to elliptic diffusion problems.

Especially, we derive the Hadamard representation of the associated shape gradient

and prove that the necessary optimality condition imposes a variational formulation

of the desired Neumann boundary condition. Hence, we are able to solve (1.3) for

each realization ω ∈ Ω. Therefore, since the random diffusion induces a random

state and thus a random shape functional, we shall minimize the ensemble average

of the random shape functional.

The rest of this article is organized as follows. Section 2 is dedicated to the reformu-

lation of the free boundary problem (1.3) as a random shape optimization problem.

Then, in Section 3, we introduce the level set method which we will use to repre-

sent the sought optimal domain. In Section 4, we present the numerical method to

compute the state function. We consider the mesh generation algorithm and briefly

recall the computation of the shape gradient by means of the finite element method.

In Section 5, we present numerical results to demonstrate the capability of our ap-

proach. Especially, it turns out that the random diffusion has indeed a great impact

on the solution of the free boundary problem. In the last section, we state concluding

remarks.

2. Shape Optimization for free boundary problems

2.1. A free boundary problem with non-constant coeffcients. In this section,

we will provide the mathematical theory concerning the solution of the free boundary

problem

(2.1)

div(α∇u) = 0 in D,

u = 1 on Σ,

−α
∂u

∂n
= g, u = 0 on Γ.

Here, the fixed boundary Σ is Lipschitz-continuous and g > 0 is a given constant.

The free boundary Γ is sought such that the overdetermined boundary value problem

(2.1) admits a solution.

We will denote the hold all by D ⊂ R2 and assign Υ to be the set of all bounded

shapes D ⊂ D which have a C2-smooth boundary Γ := ∂D. Especially, we assume

that the coefficient is sufficiently regular and uniformly positive on the hold all. This

means α ∈ C1(D) and that there exist constants α, α ∈ R such that

(2.2) 0 < α ≤ α ≤ α < ∞ on D.
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In order to solve the free boundary problem (2.1), we aim at minimize the energy

functional

(2.3) J(D) =

∫

D

{
α‖∇u‖2 + g2

α

}
dx → inf

D∈Υ

over the class Υ of admissible shapes, where the state function u solves the boundary

value problem

(2.4)

div(α∇u) = 0 in D,

u = 1 on Σ,

u = 0 on Γ.

Notice that the existence of minimizers for the shape optimization problem (2.3)

and (2.4) follows from [7, 8], since we have an energy type shape functional.

2.2. Shape calculus. We briefly recall well known facts about shape calculus, use-

ful for the discussion of the necessary condition and the numerical algorithms. For

a general overview on shape calculus, mainly based on the perturbation of identity

(Murat and Simon) or the speed method (Sokolowski and Zolésio), we refer the

reader to [11, 28, 36, 38, 40], and the references therein.

For a smooth perturbation field U : Γ → R2, we define the perturbed shape Dε via

its boundary Γε = ∂Dε in accordance with

Γε = {x+ εU(x) : x ∈ Γ}

with ε > 0 sufficiently small [28]. This enables the definition of the shape derivative

of the shape functional J at D in direction of a vector field U by

δJ(D)[U] = lim
ε→0

J(Dε)− J(D)

ε
.

The shape functional J is shape differentiable at D, if the Eulerian derivative

δJ(D)[U] exists for all directions U and if the mapping U 7→ δJ(D)[U] is linear

and continuous. In particular, according to the Hadamard-Zolésio structure theo-

rem [11, 40], it is known that the shape gradient ν can be expressed as a boundary

integral of the form

δJ(D)[U] =

∫

Γ

〈U,n〉 ν dσ.

Furthermore, we shall introduce the local shape derivative δu = δu[U] that describes

the sensitivity of the state with respect to shape variations. It is defined pointwise

by

δu(x) := lim
ε→0

uε(x)− u(x)

ε
, x ∈ D ∩Dε,
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with the solution of the boundary value problem on the perturbed shape denoted

by uε.

Theorem 2.1. Let n denote the outward unit normal vector to the boundary Γ and

consider a C2-smooth boundary perturbation field U : Γ → R2. Then, the Hadamard

representation of the shape gradient to the functional (2.3) reads

(2.5) δJ(D)[U] =

∫

Γ

〈U,n〉
{
g2

α
− α‖∇u‖2

}
dσ.

Proof. Following [40], we obtain

(2.6) δJ(D)[U] = 2

∫

D

α〈∇u,∇δu〉 dx +

∫

Γ

〈U,n〉
{
α‖∇u‖2 + g2

α

}
dσ.

Here, the local shape derivative δu = δu[U] satisfies

div(α∇δu) = 0 in D,

δu = 0 on Σ,

δu = −〈U,n〉∂u
∂n

on Γ.

By applying integration by parts, one obtains
∫

D

α〈∇u,∇δu〉 dx = −
∫

D

div(α∇u)δu dx +

∫

∂D

α〈∇u,n〉δu dσ

=

∫

Γ

α
∂u

∂n
δu dσ,

where we inserted in the last step local shape derivative’s homogeneous Dirichlet

boundary condition at Σ. Therefore, in view of the local shape derivative’s Dirichlet

boundary condition at Γ, we conclude
∫

D

α〈∇u,∇δu〉 dx = −
∫

Γ

α〈U,n〉‖∇u‖2 dσ.

Inserting this identity into (2.6) yields the desired shape gradient (2.5). �

2.3. Necessary optimality condition. By having the shape gradient at hand,

we are able to formulate the following result about the necessary optimality condi-

tion of the shape problem under consideration. It shows that the desired Neumann

boundary condition is variationally imposed through the shape functional (2.3).

Theorem 2.2. The first order necessary optimality condition for the optimum free

boundary γ⋆ of the minimization problem (2.1) under consideration reads

−α
∂u

∂n
= g on Γ⋆.
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Proof. If D⋆ ∈ Υ is an optimizer, then the shape gradient (2.5) vanishes for all

sufficiently smooth perturbation fields U : Γ⋆ → R:

δJ(D⋆)[U] = 0 for all U ∈ C2(R2).

The fundamental lemma of calculus of variations implies thus

ν =
g2

α
− α‖∇u‖2 = 0 on Γ⋆.

This is equivalent to the desired necessary condition, due to the uniform positivity

(2.2) of α on D⋆ and due to the maximum principle, implying u > 0 on D⋆ and

hence ∂u/∂n = −‖∇u‖ < 0. �

2.4. Random diffusion. We shall now incorporate random diffusion to the free

boundary problem. To this end, let (Ω,F ,P) be a complete, separable probability

space with σ-field F ⊂ 2Ω and probability measure P. Assume further that the

random field α is member of the Bochner space L∞
P
(
Ω;W 1,∞(D)

)
, satisfying E[α] ≡ 1

and

(2.7) 0 < α ≤ α(ω) ≤ α < ∞ on D.

Then, in accordance with [18], the solution of random diffusion problem

(2.8)

− div
(
α(ω)∇u(ω)) = 0 in D,

u(ω) = 1 on Σ,

u(ω) = 0 on Γ.

satisfies u ∈ L∞
P
(
Ω;W 2,∞(D)

)
for any bounded domain D ∈ Υ. Hence, the random

shape functional

(2.9) J(D,ω) =

∫

D

{
α(ω)‖∇u(ω)‖2 + g2

α(ω)

}
dx

is well-defined, satisfying J ∈ L∞
P (Ω;R).

According to the previous subsections, the minimization of the shape functional

(2.9) subject to (2.8) would yield the solution to the free boundary problem (1.3)

for each instance ω ∈ Ω. Therefore, in order to define a meaningful solution to the

random problem under consideration, we should take the ensemble average of (2.9)

and minimize it over the class Υ of admissible shapes:

(2.10) E
[
J(D,ω)

]
→ inf

D∈Υ
.
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Due to Fubini’s theorem, we can interchange the order of integration in (2.10),

arriving at

(2.11) E
[
J(D,ω)

]
=

∫

D

∫

Ω

{
α(ω)‖∇u(ω)‖2 + g2

α(ω)

}
dP(ω) dx.

Our assumption on the random coefficient ensures u ∈ L2
P
(
Ω;C2(D)

)
and, hence,

(2.11) is well defined. In particular, it is shape differentiable. In view of Theorem

2.2, we conclude the following result.

Corollary 2.3. The shape gradient of (2.11) is given by

(2.12) δE
[
J(D,ω)

]
[U] =

∫

Γ

〈U,n〉
∫

Ω

{
α(ω)‖∇u(ω)‖2 + g2

α(ω)

}
dP(ω) dσ.

The existence of minimizers to the shape optimization problem (2.10) follows again

from [7, 8], since the shape functional is of energy type.

3. Shape representation via level set functions

3.1. Level set functions. The level set method allows to compute the motion of

a boundary under a velocity field V, especially for multiply-connected domains,

cf. [9, 31, 32]. The level set function φ : � → R, where � ⊂ R2 denotes a sufficiently

large square, defines the shape T and thus the free boundary Γ = ∂T by the rule

(3.1)

φ(x) > 0 ⇒ x ∈ T,

φ(x) = 0 ⇒ x ∈ Γ,

φ(x) < 0 ⇒ x ∈ R2 \ T .

An important representative of a level set function is the signed distance function,

which we will consider in our particular implementation. It has the property

|φ(x)| = min
y∈Γ

{
‖x− y‖

}
,

where its sign tells whether the point x ∈ R2 lies inside or outside the shape D in

the same convention as in (3.1). Hence, the signed distance function has the same

sign property as level set functions, but also fulfills the Eikonal equation

‖∇φ(x)‖ = 1

almost everywhere. The signed distance function has the advantage that it returns

the distance of a point to the boundary, whereas a general level set function only

tells us whether a point is inside or outside the shape.
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3.2. Level set equation. For solving the shape optimization problem (2.3) and

(2.4), we need to add dynamics to the level set function. To this end, we consider

the advection-convection equation

∂φ

∂t
+ 〈V,∇φ〉 = 0,

where t > 0 is the variable in which the level set function evolves [33]. We shall

define a velocity field V in normal direction, meaning that V = νn with a scalar

function ν : � → R. Since the relation

n =
∇φ

‖∇φ‖ on {φ = 0}

holds for the normal n, we arrive at the level set equation for motion in normal

direction:

(3.2)
∂φ

∂t
+ ν‖∇φ‖ = 0.

3.3. The choice of the velocity field. It is crucial to choose the velocity field

νn in the level set equation (3.2) in an appropriate way. The goal is to obtain some

decrease in the shape functional under consideration and hopefully convergence to

a solution of the optimization problem [9]. We first define ν on the boundary of the

domain by means of the shape gradient defined in (2.12):

(3.3) ν =

∫

Ω

{
g2

α(ω)
− α(ω)‖∇u(ω)‖2

}
dP(ω) on Γ.

We then need to extend ν into � in order to have a contribution of it on the discrete

mesh in � used for numerical computations, cf. [9]. This is done by multiplying ν|Γ
with an approximation to the delta distribution

(3.4) δ(φ) =





1
2
+ 1

2
cos

(
πφ
ε

)
, −ε ≤ φ ≤ ε,

0, otherwise,

leading to a smeared out velocity field

νn = δ(φ) ν|Γ n.

3.4. Discretization of the transport equation. The discretization of the level

set function φ is performed in a finite difference (FD) framework. The free boundary

moves towards the optimal shape via the transport equation (3.2) with motion in

normal direction using (3.3) as according velocity strength. A second order TVD

Runge-Kutta method is employed for the time discretization and a second order

ENO scheme for the space discretization, compare [6, 31, 32]. To this end, we coupled
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our finite element (FE) method (see the next section) with the Level Set Method

Toolbox, cf. [25, 26, 27].

Since the transport equation is explicitly discretized, we have to control the time

step ∆t such that the information is not tracked further than one grid-cell of the

FD mesh of size ∆x. Therefore, we use an adaptive time-step control in accordance

with

∆t =
1

2
√
2

∆x

‖ν‖∞
to ensure numerical stability for the transport on the FD mesh.

3.5. Reinitialization. In our implementation, we use the reinitialization from [39]

to maintain the signed distance property in each step time. If φ⋆ is a distorted

signed distance function due to the transport of the level set function, then the

signed distance function with the same zero level set is obtained as the steady state

φ of the Hamilton-Jacobi equation in pseudo time t

(3.5)
∂φ

∂t
+ sign(φ⋆)(‖∇φ‖ − 1) = 0

when using the initial value φ(x, 0) = φ⋆(x). Equation (3.5) is also discretized by a

second order TVD Runge-Kutta method in time and a second order ENO scheme

in space. In particular, the sign step-function is approximated in accordance with

[34] by

sign(φ⋆) ≈ φ⋆

√
(φ⋆)2 + ‖∇φ⋆‖2(∆x)2

.

Since our numerical approach relies on the signed distance property in the vicinity

of the free surface only, it is sufficient to compute the solution of (3.5) in the ε-

neighbourhood (3.4) of the zero level set. The parameter ε must be proportional

to the spatial resolution ∆x of the FD mesh and is ε = 6∆x in our simulations.

Since the normal velocities have an absolute value ≤ 1, the choice ∆t = ∆x/2 is

appropriate to provide the stability of the explicit time discretization.

4. Numerical method to compute the state

4.1. Reformulation as parametric problem. The computation of the shape gra-

dient (2.12), which defines the motion of the level set function in accordance with

(3.3), amounts to the evaluation of an integral over the sample space Ω. This integral

has to be recast first into a deterministic high-dimensional one by parametrizing the
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random diffusion coefficient α(ω). To this end, we assume that the random diffusion

coefficient is represented by

(4.1) α(x, ω) = 1 +

M∑

k=1

αk(x)Yk(ω),

where the coefficient functions {αk(x)}k are elements of C1(D) and the random

variables {Yk(ω)}k are independently and uniformly distributed in [−1/2, 1/2]. For

example, the Karhunen-Loève expansion is of the form (4.1), cf. [23].

The assumption that the random variables {Yk(ω)}k are stochastically independent

implies that the pushforward measure PY := P◦Y−1 with respect to the measurable

mapping

Y : Ω → � := [−1/2, 1/2]m, ω 7→ Y(ω) :=
(
Y1(ω), . . . , Ym(ω)

)

is given by the joint density function 1. With this representation at hand, we can

reformulate (3.3) as a deterministic expression where, for ease of notation, we take

the same function names as before. To that end, we substitute the random variables

Yk by the coordinates yk ∈ [−1/2, 1/2] and intend to compute

(4.2)
ν =

∫

�

{
g2

α(y)
− α(y)‖∇u(y)‖2

}
dy on Γ,

where div
(
α(y)∇u(y)

)
= 0 in D, u(y) = 1 in Σ, u(y) = 0 on Γ.

Notice that the integrand in (4.2) depends analytically on the high-dimensional

parameter y, see [37] for example. Hence, if the spatial functions {αk} in the expan-

sion (4.1) decay fast enough in the sense of the series {‖αk‖L∞(Ω)}k, truncation rank

robust quadrature rules are available. In our implementation, we apply the quasi-

Monte Carlo method, using the Halton sequence, to evaluate the high-dimensional

integral in (4.2), see [29, 42] for example. Therefore, we just need to be able to

compute the state u for specific realizations yi ∈ � and domains D ∈ D.

4.2. Triangulation. For solving the state equation and for computing the shape

gradient, which enters the definition of the velocity field via (4.2), we shall apply

the finite element method. To that end, we employ a mesh generator which is based

on the idea of marching cubes as firstly proposed by Lorensen and Cline in [24].

We create a regular grid of quadratic cells of step size h. By using the sign of the level

set method, each vertex is classified as being inside or outside of the domain. For each

edge of the cells which has one endpoint inside the domain and one endpoint outside

of the shape, the point on the shape’s boundary is determined by applying a bisection

algorithm. Connecting all the boundary points yields a polygonal approximation Γh
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of the boundary Γ, i.e., the boundary of the zero level set. The interior boundary Σ

is assumed to be resolved exactly.

A triangulation Th = {Tk}k is finally obtained by dividing all quadrilateral cells into

two triangles. Since the triangulation may contain degenerated triangles, it has to

be improved in a postprocessing step. This needs only be done in the vicinity of the

boundary, as the triangulation is fine in the interior. The particular procedure we

use in our implementation has been described in [6].

4.3. Truncated Karhunen-Loève expansion. We shall explain how we compute

the Karhunen-Loève expansion of the random diffusion coefficient from a given two-

point covariance function Cov(x,x′). In order to obtain piecewise constant realiza-

tions of the random diffusion coefficient on the mesh introduced in Subsection 4.2,

we first collocate the two-point covariance function in the midpoints {xT}T∈Th of

the elements, which leads to a matrix

Ch =
[
Cov(xT ,xT ′)

]
T,T ′∈Th .

The Karhunen-Loève expansion is then derived from computing the eigenpairs (λk,αk)

of eigenvalue problem

DhChDhαk = λkDhαk,

where Dh =
[
|T |

]
T∈Th denotes the piecewise constant mass matrix. By using the

pivoted Cholesky decomposition, cf. [17], we can easily compute a low-rank approx-

imation of

LhL
⊤
h ≈ Ch.

Since typically the rank M of Lh is much smaller than the number of finite elements,

we can simply compute the eigenpairs (λ̃k, α̃) of the small matrix L⊤
hDhLh ∈ RM×M .

As one readily verifies, it holds λk = λ̃k and αk = Lhα̃k for all k = 1, . . . ,M . We

like to emphasize that the overall complexity of computing the Karhunen-Loève

expansion is only O(M2N) by the algorithm proposed, where M is the rank of the

pivoted Cholesky decomposition and N is the number of finite elements, see [17].

4.4. Finite element discretization. Having the triangulation Th at hand, we can

apply the finite element method to solve the state equation in (4.2), necessary for

computing the velocity field which drives the level set function. For ease of notation,

we assume that the parameter y is fixed and drop its dependence in the subsequent

presentation.
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We discretize the variational formulation

seek u0 ∈ H1
0 (D) such that
∫

D

α〈∇u0,∇v〉 dx =

∫

D

α〈∇w,∇v〉 dx for all v ∈ H1
0 (D)

in the finite element space

Vh = {v ∈ C(D) : v|T ∈ P1 for all T ∈ Th}

of globally continuous, piecewise linear ansatz functions on the triangulation Th.

Here, w ∈ H1(D) denotes a suitable extension of the Dirichlet data 1 on Σ into the

domain D.

We denote the nodal basis in Vh by {ϕk : k ∈ Λ}, where the index set Λ = ΛΓ∪Λ0∪ΛΣ

consists of nodes on the boundary Γ, interior nodes, and nodes on the boundary Σ.

A suitable extension of the Dirichlet data at Σ is just given by wh =
∑

ℓ∈ΛΣ
ϕℓ ∈ Vh.

By making the ansatz u0,h =
∑

k∈Λ0
ukϕk ∈ Vh and setting uh = [uk]k∈Λ0, we arrive

at the system of linear equations

Ahuh = fh,

where

Ah =

[∫

D

α〈∇ϕℓ,∇ϕk〉 dx
]

k,ℓ∈Λ0

, fh =

[ ∑

ℓ∈ΛΣ

∫

D

α〈∇ϕℓ,∇ϕk〉 dx
]

k∈Λ0

.

This system of linear equations can be solved in nearly linear time when using

nested dissection, see e.g. [5, 15, 20, 22] and the references therein. It yields an

approximation uh = u0,h+wh to the solution of (2.4) which converges quadratically

in h with respect to the mesh size h provided that the domain D is convex.

5. Numerical experiments

5.1. First example. In our first example, we consider the L-shape

S := (−1/2, 1/2)2 \ [0, 1/2)2

as interior domain S. The random diffusion coefficient α has the mean value E[α] ≡ 1

and the two-point covariance function

(5.1) Cov[α](x,x′) =
1

5
exp(−‖x− x′‖2).

Given the covariance function (5.1), the expansion (4.1) is approximately computed

with the help of the pivoted Cholesky decomposition in accordance with Subsec-

tion 4.3 up to an accuracy of 10−3. The expansion rank M is then about 60. We
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further apply 10’000 Halton points in the quasi-Monte Carlo method to evaluate the

high-dimensional integral in (4.2).
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Figure 2. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 1 and an L-shape as fixed

inclusion.

The level set function is discretized on the square � := [−2, 2]2 on a rectangular

grid of 160 × 160 grid cells. The ε smoothing region for the Dirac functional (3.4)

is set to ε = 6∆x while the number of iterations for the reinitialization (3.5) is set

to 12. The signed distance function which corresponds to the circle of radius 1.0,

centered in the origin, is used as initialization for the level set function. Then, we

perform 200 time steps of the level set method which is enough to get the stationary

solution.

The mesh generation for the finite element method is based on the grid which un-

derlies the level set function. This yields a finite element mesh of mesh size about
1/100, which corresponds to about 10–20 000 finite elements, depending on the actual

shape.

The prescribed flux g through the free boundary Γ is varied in accordance with g = 1,

g = 3, and g = 5, cf. 1.1. The computed free boundaries are found in Figures 2–4 on

the left hand side. In addition to the random diffusion coefficient, we also compute

the free boundaries for the deterministic diffusion coefficient α ≡ 1. The respective

results are found in Figures 2–4 on the right hand side. As one can clearly see, the

randomness of the diffusion coefficient influences the results drastically, especially

in the case g = 1, cf. Figure 2, where the optimum shape is much smaller than
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Figure 3. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 3 and an L-shape as fixed

inclusion.
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Figure 4. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 5 and an L-shape as fixed

inclusion.

for the deterministic diffusion coefficient. Nonetheless, also for the random diffusion

coefficient, we observe that the free boundary comes approaches the L-shape as the

prescribed flux g increases.
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5.2. Second example. In the second example, we will treat the situation of two

subdomains inside the domain T . Thus, if the desired Neumann data are large

enough, we expect that the optimum shape consists of two separated components.

The level-set method is able to deal with such a change of topology.

Consider the two squares

S1 = (−1,−1/2)× (−1/2, 1/2), S2 = (1/2, 1)× (−1/2, 1/2), S = S1 ∪ S2,

to define the two non-connected parts ∂S1 and ∂S2 of the interior boundary Σ =

∂S1 ∪ ∂S2. The random diffusion coefficient α under consideration has again the

mean value E[α] ≡ 1 and the two-point covariance

(5.2) Cov[α](x,x′) =
3

20
exp(−‖x− x′‖2).

The expansion rank in (4.1) is again about 60 to approximate the two-point covari-

ance up to an accuracy of 10−3. All the other parameters for the quasi-Monte Carlo

method, the level set method, and the finite element method are identical to the

settings in the previous example. The only difference is that the initial circle has

radius 1.5 and the we need now about 400 time steps of the level set method to get

the optimum shape. The additional iterations account for the topological change

which appears during the course of the level-set method.
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Figure 5. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 1 and two squares as fixed

inclusions.

We vary again the prescribed Neumann data and compute the resulting free bound-

ary for the random diffusion coefficient and for the deterministic diffusion coefficient

α ≡ 1. The resulting free boundaries are found in Figure 5 for g = 1, in Figure 6 for
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g = 2, and in Figure 7 for g = 3, for the random diffusion coefficient on the left in

each case and for the deterministic diffusion coefficient on the right in each case.
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Figure 6. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 2 and two squares as fixed

inclusions.

In case of the deterministic diffusion coefficient, we see that the flux g = 3 is suf-

ficiently large to split the optimum domain into two components. In case of the

random diffusion coefficient, this already happens for g = 2. In case of the random

diffusion coefficient and for g = 2 and g = 3, it is clearly observed that the two

components are not uncorrelated, compare the left plot in Figure 6 and Figure 7,

respectively. This issues from the chosen random model, since the random diffusion

coefficient in the left and in the right component is correlated according to the choice

(5.2).
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Figure 7. Solution to the free boundary problem with random dif-

fusion (left) and without (right) for g = 3 and two squares as fixed

inclusions.
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6. Conclusion

In the present article, Bernoulli’s free boundary problem has been considered in case

of random diffusion. This situation accounts for uncertainties in the material prop-

erties under consideration. We have modelled the problem under consideration by

minimizing an expected energy functional over the class of admissible shapes. The

minimization is performed by a gradient based shape optimization algorithm. After

parametrizing the random diffusion coefficient by means of a finite Karhunen-Loève

expansion, the shape gradient computation amounts to the evaluation of a high-

dimensional integral. This integral is evaluated by the quasi-Monte Carlo method.

The level set method has been used to represented the sought optimum free bound-

ary while the state equation is approximated by the finite element method. Our

numerical results show that the randomness has a drastic impact on the optimum

free boundary.
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